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	Note.—This table is taken from Vol. II. of Legendr
	the one nearest to the true value whether in excess or defect. This table, and the table of Least Factors, have each been subjected to two complete and independent revisions before finally printing off.
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	1.12
	1072 Ab+Ba = 2Hh.
	DIFFERENTIAL CALCULUS.
	1555
	To change the variables to r, 0, and $, in V2 — V2, — V22, the equations (1783) still subsisting. Result—
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	2415 Clog‘±8 dr = - {log (72-1)}2.
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1 X9)

PREFACE TO PART I.

THE work, of which the part now issued is a first instalment, has been compiled from notes made at various periods of the last fourteen years, and chiefly during the engagements of teaching. Many of the abbreviated methods and mnemonic rules are in the form in which I originally wrote them for my pupils.

The general object of the compilation is, as the title indicates, to present within a moderate compass the fundamentaltheorems, formulae, and processes in the chief branches of pure and applied mathematics.

The work is intended, in the first place, to follow and supplement the use of the ordinary text-books, and it is arranged with the view of assisting the student in the task of revision of book-work. To this end I have, in many cases, merely indicated the salient points of a demonstration, or merely referred to the theorems by which the proposition is proved. I am convinced that it is more beneficial to the student to recall demonstrations with such aids, than to read and re-read them. Let them be read once, but recalled often. The difference in the effect upon the mind between reading a mathematical demonstration, and originating one wholly or partly, is very great. It may be compared to the difference between the pleasure experienced, and interest aroused, when in the one case a traveller is passively conducted through the roads of a novel and unexplored country, and in the other case he discovers the roads for himself with the assistance of a map.

In the second place, I venture to hope that the work, when completed, may prove useful to advanced students as an aide-memoire and book of reference. The boundary of mathematical science forms, year by year, an ever widening circle, and the advantage of having at hand some condensed statement of results becomes more and more evident.

To the original investigator occupied with abstruse researches in some one of the many branches of mathematics, a work which gathers together synoptically the leading propositions in all, may not therefore prove unacceptable. Abler hands than mine undoubtedly, might have undertaken the task of making such a digest; but abler hands might also, perhaps, be more usefully employed,—and with this reflection I have the less hesitation in commencing the work myself. The design which I have indicated is somewhat comprehensive, and in relation to it the present essay may be regarded as tentative. The degree of success which it may meet with, and the suggestions or criticisms which it may call forth, will doubtless have their effect on the subsequent portions of the work.

With respect to the abridgment of the demonstrations, I may remark, that while some diffuseness of explanation is not only allowable but very desirable in an initiatory treatise, conciseness is one of the chief requirements in a work intended for the purposes of revision and reference only. In order, however, not to sacrifice clearness to conciseness, much more labour has been expended upon this part of the subject-matter of the book than will at- first sight be at all evident. The only palpable result being a compression of the text, the result is so far a negative one. The amount of compression attained is illustrated in the last section of the present part, in which more than the number of propositions usually given in treatises on Geometrical Conics are contained, together with the figures and demonstrations, in the space of twenty-four pages.

The foregoing remarks have a general application to the work as a whole. With the view, however, of making the earlier sections more acceptable to beginners, it will be found that, in those sections, important principles have sometimes been more fully elucidated and more illustrated by examples, than the plan of the work would admit of in subsequent divisions.

A feature to which attention may be directed is the uniform system of reference adopted throughout all the sections. With the object of facilitating such reference, the articles have been numbered progressively from the commencement in large Clarendon figures; the breaks which will occasionally be found in these numbers having been purposely made,in order to leave room for the insertion of additional matter, if it should be required in a future edition, without disturbing the original numbers and references. With the same object, demonstrations and examples have been made subordinate to enunciations and formulae, the former being printed in small, the latter in bold type. By these aids, the interdependence of propositions is more readily shown, and it becomes easy to trace the connexion between theorems in different branches of mathematics, without the loss of time which would be incurred in turning to separate treatises on the subjects. The advantage thus gained will, however, become more apparent as the work proceeds.

The Algebra section was printed some years ago, and does not quite correspond with the succeeding ones in some of the particulars named above. Under the pressure of other occupations, this section moreover was not properly revised before going to press. On that account the table of errata will be found to apply almost exclusively to errors in that section; but I trust that the list is exhaustive. Great pains have been taken to secure the accuracy of the rest of the volume. Any intimation of errors will be gladly received.

I have now to acknowledge some of the sources from which the present part has been compiled. In the Algebra, Theory of Equations, and Trigonometry sections, I am largely indebted to Todhunter’s well-known treatises, the accuracy and completeness of which it would be superfluous in me to dwell upon.

In the section entitled Elementary Geometry, I have added to simpler propositions a selection of theorems from Townsend’s Modern Geometry and Salmon’s Conic Sections.

In Geometrical Conics, the line of demonstration followed agrees, in the main, with that adopted in Drew’s treatise on the subject. I am inclined to think that the method of that author cannot be much improved. It is true that some important properties of the ellipse, which are arrived at in Drew’s Conic Sections through certain intermediate propositions, can be deduced at once from the circle by the method of orthogonal projection. But the intermediate propositions cannot on that account be dispensed with, for they are of value in themselves. Moreover, the method of projection applied to the hyperbola is not so successful; because a property which has first to be proved true in the case of the equilateral hyperbola, might as will be proved at once for the general case. I have introduced the method of projection but sparingly, always giving preference to a demonstration which admits of being applied in the same identical form to the ellipse and to the hyperbola. The remarkable analogy subsisting between the two curves is thus kept prominently before the reader.

The account of the C. G. S. system of units given in the preliminary section, has been compiled from a valuable contribution on the subject by Professor Everett, of Belfast, published by the Physical Society of London.1 This abstract, and the tables of physical constants, might perhaps have found a more appropriate place in an after part of the work. I have, however, introduced them at the commencement, from a sense of the great importance of the reform in the selection of units of measurement which is embodied in the C. G. S. system, and from a belief that the student cannot be too early familiarized with the same.

The Factor Table which follows is, to its limited extent, a reprint of Burckhardt’s " Tables des diviseurs” published in 1814-17, which give the least divisors of all numbers from 1 to 3,036,000. In a certain sense, it may be said that this is the only sort of purely mathematical table which is absolutely indispensable, because the information which it gives cannot be supplied by any process of direct calculation. The logarithm of a number, for instance, may be computed by a formula. Not so its prime factors. These can only be arrived at through the tentative process of successive divisions by the prime numbers, an operation of a most deterrent kind when the subject of it is a high integer.

A table similar to and in continuation of Burckhardt’s has recently been constructed for the fourth million by J. W. L. Glaisher, F.R.S., who I believe is also now engaged in completing the fifth and sixth millions. The factors for the seventh, eighth, and ninth millions were calculated previously by Dase and Rosenberg, and published in 1862-65, and the tenth million is said to exist in manuscript. The history of the formation of these tables is both instructive and interesting.2

As, however, such tables are necessarily expensive to pur2 chase, and not very accessible in any other way to the majority of persons, it seemed to me that a small portion of them would form a useful accompaniment to the present volume. I have, accordingly, introduced the first eleven pages of Burckhardt’s tables, which give the least factors of the first 100,000 integers nearly. Each double page of the table here printed is an exact reproduction, in all but the type, of a single quarto page of Burckhardt’s great work.

It may be noticed here that Prof. Lebesque constructed a table to about this extent, on the plan of omitting the multiples of seven, and thus reducing the size of the table by about one-sixth.* But a small calculation is required in using the table which counterbalances the advantage so gained.

The values of the Gamma-Function, pages 30 and 31, have been taken from Legendre’s table in his ‘ Exercices de Calcul Integral” Tome I. The table belongs to Part II. of this Volume, but it is placed here for the convenience of having all the numerical tables of Volume I. in the same section.

In addition to the authors already named, the following treatises have been consulted—Algebras, by Wood, Bourdon, and Lefebure de Fourcy ; Snowball’s Trigonometry; Salmon’s Higher Algebra; the Geometrical Exercises in Potts’s Euclid; and Geometrical Conics by Taylor, Jackson, and Renshaw.

Articles 260, 431, 569, and very nearly all the examples, are original. The latter have been framed with great care, in order that they might illustrate the propositions as completely as possible.

G. S. C.

Hadley, MIDDLESEX;

May 23, 1880.

* " Tables diverses pour la decomposition des nombres en leurs facteurs premiers.” Par V. A. Lebesgue. Paris. 1864.
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INDEX TO PROPOSITIONS OF EUCLID

REFERRED TO IN THIS WORK.

The references to Euclid are made in Roman and Arabic numerals ; e.g. (VI. 19).

BOOK I.

	
	
I.    4.—Triangles are equal and similar if two sides and the included angle of each are equal each to each.


	
I.    5.—The angles at the base of an isosceles triangle are equal.


	
I.    6.—The converse of 5.


	
I.    8.—Triangles are equal and similar if the three sides of each are equal each to each.


	
I.    16.—The exterior angle of a triangle is greater than the interior and opposite.


	
I.    20.—Two sides of a triangle are greater than the third.


	
I.    26.—Triangles are equal and similar if two angles and one corresponding side of each are equal each to each.


	
I.    27.—Two straight lines are parallel if they make equal alternate angles with a third line.





I. 29.—The converse of 27.

	
	
I.    32.—The exterior angle of a triangle is equal to the two interior and opposite; and the three angles of a triangle arc equal to two right angles.





Cor. 1.—The interior angles of a polygon of n sides = (n — 2) r.

Cor. 2.—The exterior angles = 27.

	
	
I.    35 to 38.—Parallelograms or triangles upon the same or equal bases and between the same parallels are equal.


	
I.    43.—The complements of the parallelograms about the diameter of a parallelogram are equal.


	
I.    47.—The square on the hypotenuse of a right-angled triangle is equal to the squares on the other sides.





I. 48.—The converse of 47.

BOOK II.

	
	
II.    4.—If a, b are the two parts of a right line, (a+b)3 = a?+2ab+62. If a right line be bisected, and also divided, internally or externally, into two unequal segments, then—


	
II.    5 and 6.—The rectangle of the unequal segments is equal to the difference of the squares on half the line, and on the line between the points of section; or (a+b) (a — b) = a?— b2.


	
II.    9 and 10.—The squares on the same unequal segments are together double the squares on the other parts ; or (a + b)2+ (a-by = 243+283.


	
II.    11.—To divide a right line into two parts so that the rectangle of the whole line and one part may be equal to the square on the other part.


	
II.    12 and 13.—The square on the base of a triangle is equal to the sum of the squares on the two sides plus or minus (as the vertical angle is obtuse or acute), twice the rectangle under either of those sides, and the projection of the other upon it; or a2 = b2+c- 2bc cos A (702).





BOOK III.

	
	
III.    3.—If a diameter of a circle bisects a chord, it is perpendicular to it: and conversely.


	
III.    20.—-The angle at the centre of a circle is twice the angle at the circumference on the same arc.


	
III.    21.—Angles in the same segment of a circle are equal.


	
III.    22.—The opposite angles of a quadrilateral inscribed in a circle are together equal to two right angles.


	
III.    31.—The angle in a semicircle is a right angle.


	
III.    32.—The angle between a tangent and a chord from the point of contact is equal to the angle in the alternate segment.


	
III.    33 and 34.—To describe or to cut off a segment of a circle which shall contain a given angle.


	
III.    35 and 36.—The rectangle of the segments of any chord of a circle drawn through an internal or external point is equal to the square of the semi-chord perpendicular to the diameter through the internal point, or to the square of the tangent from the external point.


	
III.    37.—The converse of 36. If the rectangle be equal to the square, the line which meets the circle touches it.





BOOK IV.

	
	
IV.    2.—To inscribe a triangle of given form in a circle.


	
IV.    3.—To describe the same about a circle.


	
IV.    4.—To inscribe a circle in a triangle.


	
IV.    5.-—To describe a circle about a triangle.


	
IV.    10.—To construct two-fifths of a right angle.


	
IV.    11.—To construct a regular pentagon.





BOOK VI.

	
	
VI.    1.—Triangles and parallelograms of the same altitude are proportional to their bases.


	
VI.    2.—A right line parallel to the side of a triangle cuts the other sides proportionally; and conversely.


	
VL    3 and A.—The bisector of the interior or exterior vertical angle of a triangle divides the base into segments proportional to the sides.


	
VI.    4.—Equiangular triangles have their sides proportional homologously.


	
VI.    5.—The converse of 4.


	
VI.    6.—Two triangles are equiangular if they have two angles equal, and the sides about them proportional.


	
VI.    7.—Two triangles are equiangular if they have two angles equal and the sides about two other angles proportional, provided that the third angles are both greater than, both less than, or both equal to a right angle.


	
VI.    8.—A right-angled triangle is divided by the perpendicular from the right angle upon the hypotenuse into triangles similar to itself.


	
VI.    14 and 15.—Equal parallelograms, or triangles which have two angles equal, have the sides about those angles reciprocally proportional; and conversely, if the sides are in this proportion, the figures are equal.


	
VI.    19.—Similar triangles are in the duplicate ratio of their homologous sides.


	
VI.    20.—Likewise similar polygons.


	
VI.    23.—Equiangular parallelograms are in the ratio compounded of the ratios of their sides.


	
VI.    B.—The rectangle of the sides of a triangle is equal to the square of the bisector of the vertical angle plus the rectangle of the segments of the base.


	
VI.    C.—The rectangle of the sides of a triangle is equal to the rectangle under the perpendicular from the vertex on the base and the diameter of the circumscribing circle.


	
VI.    D.—Ptolemy’s Theorem. The rectangle of the diagonals of a quadrilateral inscribed in a circle is equal to both the rectangles under the opposite sides.





BOOK XI.
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PREFACE TO PART II.
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Wolstenholme’s Problems.
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As the volumes only date from the year 1800, the important contributions of Euler to the “ Transactions of the St. Petersburg Academy,” in the last century, are excluded. It was, however, unnecessary to include them, because a very complete classified index to Euler’s papers, as well as to those of David Bernoulli, Fuss, and others in the same Transactions, already exists.

The titles of this Index, and of the works of Euler therein referred to, are here appended, for the convenience of those who may wish to refer to the volumes.
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MATHEMATICAL TABLES.

INTRODUCTION.

The Centimetre-Gramme-Second system of units.

Notation.—The decimal measures of length are the kilometre, hectometre, decametre, metre, decimetre, centimetre, millimetre. The same prefixes are used with the litre and gramme for measures of capacity and volume.

Also, 107 metres is denominated a metre-seven; 10-7 metres, a seventh-metre ; 1015 grammes, a gramme-fifteen; and so on.

A gramme-million is also called a megagramme; and a millionth-gramme, a microgramme; and similarly with other measures.

Definitions.—The C. G. S. system of units refers all physical measurements to the Centimetre (cm.), the Gramme (gm.), and the Second (sec.) as the units of length, mass, and time.

The quadrant of a meridian is approximately a metreseven. More exactly, one metre = 3-2808694 feet = 39'3 70432 inches.

The Gramme is the Unit of mass, and the weight of a gramme is the Unit of weight, being approximately the weight of a cubic centimetre of water; more exactly, 1 gm. = 15'432349 grs.

The Litre is a cubic decimetre: but one cubic centimetre is the C. G. S. Unit of volume.

1 litre = '035317 cubic feet = '2200967 gallons.

The Dyne (dn.) is the Unit of force, and is the force which, in one second generates in a gramme of matter a velocity of one centimetre per second.

The Erg is the Unit of work and energy, and is the work done by a dyne in the distance of one centimetre.

The absolute Unit of atmospheric pressure is one megadyne per square centimetre = 74'964 cm., or 29:514 in. of mercurial column at 0° at London, where g = 981'17 dynes.

Elasticity of Volume = k, is the pressure per unit area upon a body divided by the cubic dilatation.

B

Rigidity = n, is the shearing stress divided by the angle of the shear.

Young’s Modulus = M, is the longitudinal stress divided by the elongation produced, = 9nlc — (31c+n).

Tenacity is the tensile strength of the substance in dynes per square centimetre.

The G-ramme-degree is the Unit of heat, and is the amount of heat required to raise by 1° C. the temperature of 1 gramme of water at or near 0°.

Thermal capacity of a body is the increment of heat divided by the increment of temperature. When the increments are small, this is the thermal capacity at the given temperature.

Specific heat is the thermal capacity of unit mass of the body at the given temperature.

The Electrostatic unit is the quantity of electricity which repels an equal quantity at the distance of 1 centimetre with the force of 1 dyne.

The Electromagnetic unit of quantity = 3 X 1010 electro-static units approximately.

The Unit of potential is the potential of unit quantity at unit distance.

The Ohm is the common electromagnetic unit of resistance, and is approximately = 109 C. G. S. units.

The Volt is the unit of electromotive force, and is = 108 C. G. S. units of potential.

The Weber is the unit of current, being the current due to an electromotive force of 1 Volt, with a resistance of 1 Ohm. It is = 10 C. G. S. unit.

Resistance of aWire—Specific resistances Length A- Section.

Physical constants and Formulae.

In the latitude of London, g = 32:19084 feet per second.

= 98117 centimetres per second.

In latitude X, at a height A above the sea level,

g = (980-6056— 2:5028 cos 2A—000003 h) centimetres per second.

Seconds pendulum = (99:3562—2536 cos 2— 0000003 li) centimetres.

THE EARTH.—Semi-polar axis, 20,854895 feet1 = 6-35411 X 108centims. Mean semi-equatorial diameter, 20,926202 „ 1 = 637824 x 108   „

Quadrant of meridian, 39:377786 X IO7 inches1 = 1'000196 X 107metres. Volume, 1'08279 cubic centimetre-nines.

Mass (with a density 52) — Six gramme-twenty-sevens nearly.

Velocity in orbit = 2933000 centims. per sec. Obliquity, 23° 27‘ 16".2

Angular velocity of rotation =1 : 13713.

Precession, 50"26.2 Progression of Apse, 1l"25. Eccentricity, e =01679.

Centrifugal force of rotation at the equator, 3’3912 dynes per gramme.

Force of attraction upon moon, ‘2701. Force of sun’s attraction, 25839.

Ratio of g to centrifugal force of rotation, g : ro2 — 289.

Sun’s horizontal parallax, 8"-7 to 9.2 Aberration, 20"11 to 20"79.2

Semi-diameter at earth’s mean distance, 16' l"82.2

Approximate mean distance, 92,000000 miles, or 1:48 centimetre-thirteens.

Tropical year,    365’242216 days, or 31,556927 seconds.

Sidereal year,    365’2563 74    „   31,558150

Anomalistic year, 365’259544 days. Sidereal day, 86164 seconds.

THE MOON.—Mass = Earth’s mass X ’011364 = 6’98 102 grammes.

Horizontal parallax. From 53' 56" to 61' 24".2

Sidereal revolution, 27d. 7h. 43m. ll’46s. Lunar month, 29d. 12h. 44m. 2’87s.

Greatest distance from the earth, 251700 miles, or 4’05 centimetre-tens,

Least „         „        225600    „    3’63    ,    „

Inclination of Orbit, 5° 9'. Annual regression of Nodes, 19° 20'.

Rule.—(^The Year+1) : 19. The remainder is the Golden Number.

(The Golden Number—1) X 11-4-30. The remainder is the Epact.

GRAVITATION.— Attraction between masses )  ____mm‘ , m, m at a distance I S 72 x 1-543 X 107 )

The mass which at unit distance (1 cm.) attracts an equal mass with unit force (1 dn.) is = 1(1543 X 107) gm. = 3928 gm.

WATER.—Density at 0°C., unity ; at 4°, 1 000013 (Kupffer).

Volume elasticity at 15°, 2:22 X 1010.

Compression for 1 megadyne per sq. cm., 4’51 X 10-5 (Amaury and Descamps).

The heat required to raise the temperature of a mass of water from 0° to t° is proportional to t+000022 +000000318 (Regnault).

GASES.—Expansion for 1° C., ’003665 = 1-4-2 73.

Specific heat at constant pressure _ 1-408

Specific heat at constant volume

Density of dry air at 0° with Bar. at 76 cm. = '0012932 gm. per cb. cm.

(Regnault).

At unit pres, (a megadyne) Density = ’0012759.

Density at press, p = p X 1’2759 X IO-9.

Density of saturated steam at f, with p taken ) _    '7936098^ from Table II., is approximately )    (1+00366t) 109’

SOUND.—Velocity = • (elasticity of medium 4- density}.

Velocity in dry air at t° = 33240 v(1 + 00366t) centimetres per second.

Velocity in water at 0° = 143000                   „      „

LIGHT.—Velocity in a medium of absolute refrangibility u = 3’004 X 1010: u (Cornu).

If P be the pressure in dynes per sq. cm., and t the temperature, u—1 = 2903 x10-BP-:(1+ -003660 (Biot & Arago).

TABLE I.

Various Measures and their Equivalents in 0. G. S. units.


	
Dimensions.

1 inch       = 2'5400 cm.

1 foot        = 30-4797 ,

1 mile       = 160933  „

1 nautical do. = 185230  „

1 sq. inch = 6'4516 sq. cm.

1 sq. foot = 929'01   ,,

1 sq. yard = 8361'13 „

1 sq. mile = 2'59 X 1010,,

1 cb. inch = 16'387 cb. cm.

1 cb. foot = 28316   „

1 cb. yard = 764535 ,,

1 gallon = 4541    „

= 277'274 cb. in. or the volume of 10 lbs. of water at 62° Fah., Bar. 30 in.

Mass.

1 grain       = '06479895 gm.

1 ounce       = 28'3495   „

1 pound      = 453'5926  „

1 ton         = 1,016047   „

1 kilogramme = 2:20462125 lbs.

1 pound Avoir. = 7000 grains

1 pound Troy = 5760  ,,

Velocity.

1 mile per hour = 44'704 cm. per sec.

1 kilometre „ = 27'777    „
	
Pressure.

1 gm.persq. cm. = 981 dynespersq.cm.

1 lb. per sq. foot = 479       „

1 lb. per sq. in. = 68971    „

76 centimetres)

of mercury - = 1,014,000 „

at 0° C. )

lbs. per sq. in. _ 70-307 _    1

gms. per sq. cm.             '014223

Force of Gravity.

upon 1 gramme = 981      dynes

„  1 grain   = 63'56777    „

,,  1 oz.      = 2'7811 xlO4 ,,

„  1 lb.      = 4'4497 X 105 „

„  1 cwt.    = 4-9837 X 107 „

„ iton    = 9'9674xlO8 „

Work (g = 981).

1 gramme-centimetre = 981     ergs.

1 kilogram-metre    = 981 X 105  „

1 foot-grain           = 1'937 X 103 ,,

1 foot-pound         = 1'356 X 107 ,,

1 foot-ton            = 304 x 1010 ,,

1 ‘horse power’p. sec. = 7'46 X 109  „

Heat.

1 gramme-degree C. = 42 x 106 ergs. 1 pound-degree     =191xl08 „

1 pound-degree Fah. = 106 X 108 ,,




Table II.

Pressure of Aqueous Vapour in dynes per square centim.


	
Temp.
	
Pressure.
	
Temp.
	
Pressure.


	
— 20°
	
1236
	
40°
	
73200


	
— 15°
	
1866
	
50°
	
122600


	
-10°
	
2790
	
60°
	
198500


	
- 5°
	
4150
	
80°
	
472900


	
0°
	
6133
	
100°
	
1014000


	
5°
	
8710
	
120°
	
1988000


	
10°
	
12220
	
140°
	
3626000


	
15°
	
16930
	
160°
	
6210000


	
20°
	
23190
	
180°
	
10060000


	
25°
	
31400
	
200°
	
15600000


	
30°
	
42050
		



TABLE III.

Values for the principal Lines of the Spectrum in air at 160° C. with Bar. 76 cm.


		
Wave-length
	
No.of vibrations


		
in centims.
	
per second.


	
A
	
7'604 xlO’5
	
3'950 X 1014


	
B
	
6-867   „
	
4'373   „


	
C
	
6'56201 „
	
4-577   „


	
D (mean)
	
5'89212 „
	
5-097   „


	
E
	
5-26913 „
	
5'700   „


	
F
	
4'86072 „
	
6179   „


	
G
	
4-30725 „
	
6'973   „


	
H,
	
3-96801 „
	
7'569   „


	
H,
	
3'93300 „
	
7'636   „





TABLE IV. in C. Gr. S. units.
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TABLE VI.—Functions of it and e.


7 = 3-1415926 m2 = 9-8696044 m3 = 31-0062 761 •T = 1-7 724539 log. T = 1-4971499 log T = 0-6679358




m-1 =   -3183099

m2 =   -1013212

T-8 =   -0322515

2009 : T = 639-6619772

180°:r = 57°-2957795

= 206264”:8




e = 2-71828183 e2 = 7'38905631 e-1 = 0-3678794 e-2 = 0-1353353

loge = 0*43429448 log. 10 = 2-30258509




TABLE VII.





	
No.
	
Square root.
	
Cube root.


	
2
	
1-4142136
	
1-2599210


	
3
	
1-7320508
	
1-4422496


	
4
	
2-0000000
	
1-5874011


	
5
	
2'2360680
	
1-7099 759


	
6
	
2-449489 7
	
1-8171206


	
7
	
2-6457513
	
1-9129312


	
8
	
2-8284271
	
2-0000000


	
9
	
3-0000000
	
2-0800837


	
10
	
3-1622777
	
2-1544347


	
11
	
3-3166248
	
2-2239801


	
12
	
3'4641016
	
2-2894286


	
13
	
3-6055513
	
2-3513347


	
14
	
3-7416574
	
2-4101422


	
15
	
3-8729833
	
2-4662121


	
16
	
4-0000000
	
2-5198421


	
17
	
4-1231056
	
2'5712816


	
18
	
4-2426407
	
2-6207414


	
19
	
4'3588989
	
2'6684016


	
20
	
4 4721360
	
2-7144177


	
21
	
4-5825757
	
2-7589243


	
22
	
4-6904158
	
2'8020393


	
23
	
4-7958315
	
2-8438670


	
24
	
4-8989795
	
2'8844991


	
25
	
5-0000000
	
2-9240177


	
26
	
5-0990195
	
2'9624960


	
27
	
5-1961524
	
3-0000000


	
28
	
5-2915026
	
3-0365889


	
29
	
5-3851648
	
3-0723168


	
30
	
5-4772256
	
3T072325







TABLE VIII,


	
N.
	
logio N.
	
1og, N.


	
2
	
•3010300
	
•69314718


	
3
	
•4771213
	
1-09861229


	
5
	
•6989700
	
1-60943791


	
7
	
•8450980
	
1-94591015


	
11
	
1-0413927
	
2'39789527


	
13
	
1-1139434
	
2-56494936


	
17
	
1-2304489
	
2-83321334


	
19
	
1-2787536
	
2-94443898


	
23
	
1-3617278
	
3-13549422


	
29
	
1-4623980
	
3-36729583


	
31
	
1-4913617
	
3-43398720


	
37
	
1'5682017
	
3'61091791


	
41
	
1-6127839
	
3'71357207


	
43
	
1-6334685
	
3'76120012


	
47
	
1-6720979
	
3-85014760


	
53
	
1-7242759
	
3-97029191


	
59
	
1-7 708520
	
4'07753744


	
61
	
1-7853298
	
4-11087386


	
67
	
1'8260748
	
4-20469262


	
71
	
1-8512583
	
4-26267988


	
73
	
1-8633229
	
4-29045944


	
79
	
1-8976271
	
4-36944785


	
83
	
1-9190781
	
4-41884061


	
89
	
1-9493900
	
4-48863637


	
97
	
1-9867717
	
4-57471098


	
101
	
2-0043214
	
4-61512052


	
103
	
2-0128372
	
4-63472899


	
107
	
2-0293838
	
4-67282883


	
109
	
2-0374265
	
4-69134788






Note.—The authorities for Table IV. are as follows .-—Columns 2, 3, and 4 (Mercury excepted), Everett’s experiments (Phil. Trans., 1867); g is here taken = 981'4. The densities in these cases are those of the specimens employed. Cols. 5 and 7, Rankine. Col. 6, Watt’s Diet. of Chemistry. Col. 8, Dulong and Petit. Col. 10, Wertheim. Col. 11, Matthiessen.

Table V. is abridged from Loomis’s Astronomy.

The values in Table III. are Angstrom’s.

BURCKHARDT’S FACTOR TABLES.

FOR ALL NUMBERS FROM 1 TO 99000.

Explanation.—The tables give the least divisor of every number from 1 up to 99000 : but numbers divisible by 2, 8, or 5 are not printed. All the digits of the number whose divisor is sought, excepting the units and tens, will be found in one of the three rows of larger figures. The two remaining digits will be found in the left-hand column. The least divisor will then be found in the column of the first named digits, and in the row of the units and tens.

If the number be prime, a cipher is printed in the place of its least divisor.

The numbers in the first left-hand column are not consecutive. Those are omitted which have 2, 3, or 5 for a divisor. Since 22.3.52 = 300, it follows that this column of numbers will re-appear in the same order after each multiple of 300 is reached.

MODE OF using THE Tables.—If the number whose prime factors are required is divisible by 2 or 5, the fact is evident upon inspection, and the division must be effected. The quotient then becomes the number whose factors are required. If this number, being within the range of the tables, is yet not given, it is divisible by 3. Dividing by 3, we refer to the tables again for the new quotient and its least factor, and so on.

Examples.—Required the prime factors of 310155.

Dividing by 5, the quotient is 62031. This number is within the range of the tables. But it is not found printed. Therefore 3 is a divisor of it. Dividing by 3, the quotient is 206 7 7. The table gives 23 for the least factor of 20677. Dividing by 23, the quotient is 899.

The table gives 29 for the least factor of 899. Dividing by 29, the quotient is 31, a prime number. Therefore 310155 = 3.5.23.29.31.

Again, required the divisors of 92881. The table gives 293 for the least divisor. Dividing by it, the quotient is 317. Referring to the tables for 317, a cipher is found in the place of the least divisor, and this signifies that 317 is a prime number.

Therefore 92881 = 293 x 317, the product of two primes.

It may be remarked that, to have resolved 92881 into these factors without the aid of the tables by the method of Art. 360, would have involved fifty-nine fruitless trial divisions by prime numbers.
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1

 These dimensions are taken from Clarke’s “Geodesy,” 1880.

2

 These data are from the “Nautical Almanack” for 1883.

+ Transit of Venus, 1874, “ Astrom. Suc. Notices," Vols. 37, 38.
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n
	
O
	
1
	
2
	
3
	
4
	
5
	
6
	
7
	
8
	
9


	
1.00
		
97497
	
95001
	
92512
	
90030
	
87555
	
85087
	
82627
	
801,73
	
77727


	
1.01
	
9.9975287
	
72855
	
70430
	
68011
	
65600
	
63196
	
60799
	
58408
	
56025
	
53648


	
1.02
	
51279
	
48916
	
46561
	
44212
	
41870
	
39535
	
37207
	
34886
	
32572
	
30265


	
1.03
	
27964
	
25671
	
23384
	
21104
	
18831
	
16564
	
14305
	
12052
	
09806
	
07567


	
1.04
	
05334
	
03108
	
00889
	
98677
	
96471
	
94273
	
92080
	
89895
	
87716
	
85544


	
1.05
	
9.9883379
	
81220
	
79068
	
76922
	
74783
	
72651
	
70525
	
68406
	
66294
	
64188


	
1.06
	
62089
	
59996
	
57910
	
55830
	
53757
	
51690
	
49630
	
47577
	
45530
	
43489


	
1.07
	
41469
	
39428
	
37407
	
35392
	
33384
	
31382
	
29387
	
27398
	
25415
	
23449


	
1.08
	
21469
	
19506
	
17549
	
15599
	
13655
	
11717
	
09785
	
07860
	
05941
	
04029


	
1.09
	
02123
	
00223
	
98329
	
96442
	
94561
	
92686
	
90818
	
88956
	
87100
	
85250


	
1.10
	
9.9783407
	
81570
	
79738
	
77914
	
76095
	
74283
	
72476
	
70676
	
68882
	
67095


	
1.11
	
65313
	
63538
	
61768
	
60005
	
58248
	
56497
	
54753
	
53014
	
51281
	
49555


	
1.12
	
47834
	
46120
	
44411
	
42709
	
41013
	
39323
	
37638
	
35960
	
34288
	
32622


	
1.13
	
30962
	
29308
	
27659
	
26017
	
24381
	
22751
	
21126
	
19508
	
17896
	
16289


	
1.14
	
14689
	
13094
	
11505
	
09922
	
08345
	
06774
	
05209
	
03650
	
02096
	
00549


	
1.15
	
9.9699007
	
97471
	
95941
	
94417
	
92898
	
91386
	
89879
	
88378
	
86883
	
85393


	
1.16
	
83910
	
82432
	
80960
	
79493
	
78033
	
76578
	
75129
	
73686
	
72248
	
70816


	
1.17
	
69390
	
67969
	
66554
	
65145
	
63742
	
62344
	
60952
	
59566
	
58185
	
56810


	
1.18
	
55440
	
54076
	
52718
	
51366
	
50019
	
48677
	
47341
	
46011
	
44687
	
43368


	
1.19
	
42054
	
40746
	
39444
	
38147
	
36856
	
35570
	
34290
	
33016
	
31747
	
30483


	
1.20
	
29225
	
27973
	
26725
	
25484
	
24248
	
23017
	
21792
	
20573
	
19358
	
18150


	
1.21
	
16946
	
15748
	
14556
	
13369
	
12188
	
11011
	
09841
	
08675
	
07515
	
06361


	
1.22
	
05212
	
04068
	
02930
	
01796
	
00669
	
99546
	
98430
	
97318
	
96212
	
95111


	
1.23
	
9.9594015
	
92925
	
91840
	
90760
	
89685
	
88616
	
87553
	
86494
	
85441
	
84393


	
1.24
	
83350
	
82313
	
81280
	
80253
	
79232
	
78215
	
77204
	
76198
	
75197
	
74201


	
1.25
	
73211
	
72226
	
71246
	
70271
	
69301
	
68337
	
67377
	
66423
	
65474
	
64530


	
1.26
	
63592
	
62658
	
61730
	
60806
	
59888
	
58975
	
58067
	
57165
	
56267
	
55374


	
1.27
	
54487
	
53604
	
52727
	
51855
	
50988
	
50126
	
49268
	
48416
	
47570
	
46728


	
1.28
	
45891
	
45059
	
44232
	
43410
	
42593
	
41782
	
40975
	
40173
	
39376
	
38585


	
1.29
	
37798
	
37016
	
36239
	
35467
	
34700
	
33938
	
33181
	
32439
	
31682
	
30940


	
1.30
	
30203
	
29470
	
28743
	
28021
	
27303
	
26590
	
25883
	
25180
	
24482
	
23789


	
1.31
	
23100
	
22417
	
21739
	
21065
	
20396
	
19732
	
19073
	
18419
	
17770
	
17125


	
1.32
	
16485
	
15850
	
15220
	
14595
	
13975
	
13359
	
12748
	
12142
	
11540
	
10944


	
1.33
	
10353
	
09766
	
09184
	
08606
	
08034
	
07466
	
06903
	
06344
	
05791
	
05242


	
1.34
	
04698
	
04158
	
03624
	
03094
	
02568
	
02048
	
01532
	
01021
	
00514
	
00012


	
1.35
	
9.9499515
	
99023
	
98535
	
98052
	
97573
	
97100
	
96630
	
96166
	
95706
	
95251


	
1.36
	
94800
	
94355
	
93913
	
93477
	
93044
	
92617
	
92194
	
91776
	
91362
	
90953


	
1.37
	
90549
	
90149
	
89754
	
89363
	
88977
	
88595
	
88218
	
87846
	
87478
	
87115


	
1.38
	
86756
	
86402
	
86052
	
85707
	
85366
	
85030
	
84698
	
84371
	
84049
	
83731


	
1.39
	
83417
	
83108
	
82803
	
82503
	
82208
	
81916
	
81630
	
81348
	
81070
	
80797


	
1.40
	
80528
	
80263
	
80003
	
79748
	
79497
	
79250
	
79008
	
78770
	
78537
	
78308


	
1.41
	
78084
	
77864
	
77648
	
77437
	
77230
	
77027
	
76829
	
76636
	
76446
	
76261


	
1.42
	
76081
	
75905
	
75733
	
75565
	
75402
	
75243
	
75089
	
74939
	
74793
	
74652


	
1.43
	
74515
	
74382
	
74254
	
74130
	
74010
	
73894
	
73783
	
73676
	
73574
	
73476


	
1.44
	
73382
	
73292
	
73207
	
73125
	
73049
	
72976
	
72908
	
72844
	
72784
	
72728


	
1.45
	
72677
	
72630
	
72587
	
72549
	
72514
	
72484
	
72459
	
72437
	
72419
	
72406


	
1.46
	
72397
	
72393
	
72392
	
72396
	
72404
	
72416
	
72432
	
72452
	
72477
	
72506


	
1.47
	
72539
	
72576
	
72617
	
72662
	
72712
	
72766
	
72824
	
72886
	
72952
	
73022


	
1.48
	
73097
	
73175
	
73258
	
73345
	
73436
	
73531
	
73630
	
73734
	
73841
	
73953


	
1.49
	
74068
	
74188
	
74312
	
74440
	
74572
	
74708
	
74848
	
74992
	
75141
	
75293





Note.—This table is taken from Vol. II. of Legendre’s work, and not from Vol. I., as stated in the Preface: the numbers given in Vol. I. being inaccurate in the seventh decimal place. In Vol. II. the values are given to twelve places of decimals. The figure here printed in the seventh place is



	
n
	
O
	
1
	
2
	
3
	
4
	
5
	
6
	
7
	
8
	
9


	
1.50
	
9.9475449
	
75610
	
75774
	
75943
	
76116
	
76292
	
76473
	
76658
	
76847
	
77040


	
1.51
	
77237
	
77438
	
77642
	
77851
	
78064
	
78281
	
78502
	
78727
	
78956
	
79189


	
1.52
	
79426
	
79667
	
79912
	
80161
	
80414
	
80671
	
80932
	
81196
	
81465
	
81738


	
1.53
	
82015
	
82295
	
82580
	
82868
	
83161
	
83457
	
83758
	
84062
	
84370
	
84682


	
1.54
	
84998
	
85318
	
85642
	
85970
	
86302
	
86638
	
86977
	
87321
	
87668
	
88019


	
1.55
	
88374
	
88733
	
89096
	
89463
	
89834
	
90208
	
90587
	
90969
	
91355
	
91745


	
1.56
	
92139
	
92537
	
92938
	
93344
	
93753
	
94166
	
94583
	
95004
	
95429
	
95857


	
1.57
	
96289
	
96725
	
97165
	
97609
	
98056
	
98508
	
98963
	
99422
	
99885
	
00351


	
1.58
	
9.9500822
	
01296
	
01774
	
02255
	
02741
	
03230
	
03723
	
04220
	
04720
	
05225


	
1.59
	
05733
	
06245
	
06760
	
07280
	
07803
	
08330
	
08860
	
09395
	
09933
	
10475


	
1.60
	
11020
	
11569
	
12122
	
12679
	
13240
	
13804
	
14372
	
14943
	
15519
	
16098


	
1.61
	
16680
	
17267
	
17857
	
18451
	
19048
	
19650
	
20254
	
20862
	
21475
	
22091


	
1.62
	
22710
	
23333
	
23960
	
24591
	
25225
	
25863
	
26504
	
27149
	
27798
	
28451


	
1.63
	
29107
	
29767
	
30430
	
31097
	
31767
	
32442
	
33120
	
33801
	
34486
	
35175


	
1.64
	
35867
	
36563
	
37263
	
37966
	
38673
	
39383
	
40097
	
40815
	
41536
	
42260


	
1.65
	
42989
	
43721
	
44456
	
45195
	
45938
	
46684
	
47434
	
48187
	
48944
	
49704


	
1.66
	
50468
	
51236
	
52007
	
52782
	
53560
	
54342
	
55127
	
55916
	
56708
	
57504


	
1.67
	
58303
	
59106
	
59913
	
60723
	
61536
	
62353
	
63174
	
63998
	
64826
	
65656


	
1.68
	
66491
	
67329
	
68170
	
69015
	
69864
	
70716
	
71571
	
72430
	
73293
	
74159


	
1.69
	
75028
	
75901
	
76777
	
77657
	
78540
	
79427
	
80317
	
81211
	
82108
	
83008


	
1.70
	
83912
	
84820
	
85731
	
86645
	
87563
	
88484
	
89409
	
90337
	
91268
	
92203


	
1.71
	
93141
	
94083
	
95028
	
95977
	
96929
	
97884
	
98843
	
99805
	
00771
	
01740


	
1.72
	
9.9602712
	
03688
	
04667
	
05650
	
06636
	
07625
	
08618
	
09614
	
10613
	
11616


	
1.73
	
12622
	
13632
	
14645
	
15661
	
16681
	
17704
	
18730
	
19760
	
20793
	
21830


	
1.74
	
22869
	
23912
	
24959
	
26009
	
27062
	
28118
	
29178
	
30241
	
31308
	
32377


	
1.75
	
33451
	
34527
	
35607
	
36690
	
37776
	
38866
	
39959
	
41055
	
42155
	
43258


	
1.76
	
44364
	
45473
	
46586
	
47702
	
48821
	
49944
	
51070
	
52200
	
53331
	
54467


	
1.77
	
55606
	
56749
	
57894
	
59043
	
60195
	
61350
	
62509
	
63671
	
64836
	
66004


	
1.78
	
67176
	
68351
	
69529
	
70710
	
71895
	
73082
	
74274
	
75468
	
76665
	
77866


	
1.79
	
79070
	
80277
	
81488
	
82701
	
83918
	
85138
	
86361
	
87588
	
88818
	
90051


	
1.80
	
91287
	
92526
	
93768
	
95014
	
96263
	
97515
	
98770
	
00029
	
01291
	
02555


	
1.81
	
9.9703823
	
05095
	
06369
	
07646
	
08927
	
10211
	
11498
	
12788
	
14082
	
15378


	
1.82
	
16678
	
17981
	
19287
	
20596
	
21908
	
23224
	
24542
	
25864
	
27189
	
28517


	
1.83
	
29848
	
31182
	
32520
	
33860
	
35204
	
36551
	
37900
	
39254
	
40610
	
41969


	
1.84
	
43331
	
44697
	
46065
	
47437
	
48812
	
50190
	
51571
	
52955
	
54342
	
55733


	
1 85
	
57126
	
58522
	
59922
	
61325
	
62730
	
64140
	
65551
	
66966
	
68384
	
69805


	
1.86
	
71230
	
72657
	
74087
	
75521
	
76957
	
78397
	
79839
	
81285
	
82734
	
84186


	
1.87
	
85640
	
87098
	
88559
	
90023
	
91490
	
92960
	
94433
	
95910
	
97389
	
98871


	
1.88
	
9.9800356
	
01844
	
03335
	
04830
	
06327
	
07827
	
09331
	
10837
	
12346
	
13859


	
1.89
	
15374
	
16893
	
18414
	
19939
	
21466
	
22996
	
24530
	
26066
	
27606
	
29148


	
1.90
	
30693
	
32242
	
33793
	
35348
	
36905
	
38465
	
40028
	
41595
	
43164
	
44736


	
1.91
	
46311
	
47890
	
49471
	
51055
	
52642
	
54232
	
55825
	
57421
	
59020
	
60622


	
1.92
	
62226
	
63834
	
65445
	
67058
	
68675
	
70294
	
71917
	
73542
	
75170
	
76802


	
1.93
	
78436
	
80073
	
81713
	
83356
	
85002
	
86651
	
88302
	
89957
	
91614
	
93275


	
1.94
	
94938
	
96605
	
98274
	
99946
	
01621
	
03299
	
04980
	
06663
	
08350
	
10039


	
1.95
	
9.9911732
	
13427
	
15125
	
16826
	
18530
	
20237
	
21947
	
23659
	
25375
	
27093


	
1.96
	
28815
	
30539
	
32266
	
33995
	
35728
	
37464
	
39202
	
40943
	
42688
	
44435


	
1.97
	
46185
	
47937
	
49693
	
51451
	
53213
	
54977
	
56744
	
58513
	
60286
	
62062


	
1.98
	
63840
	
65621
	
67405
	
69192
	
70982
	
72774
	
74570
	
76368
	
78169
	
79972


	
1.99
	
81779
	
83588
	
85401
	
87216
	
89034
	
90854
	
92678
	
94504
	
96333
	
98165




the one nearest to the true value whether in excess or defect. This table, and the table of Least Factors, have each been subjected to two complete and independent revisions before finally printing off.

ALGEBRA.

FACTORS.

1            a‘—b2 = (a—b) (a^b).

2           a^—bz = (a—b) (a2+ab+62).

3           a‘+b3 = (a+b) ^-ab-^-b2).

And generally,

4 an—bn = (a—b) (an~1+an~2b+...-^b^1) always.

5 a"—bn = (a+b) (an~x—an~^b-\-... ~bn^ if n be even.

6 a"+ bn = (a+b) (a"-1 — a"-2b+ +6"-1) if n be odd.

7 (a+a) (a+b) = a?+(a+b) a+ab.

8 (a+a) (x+b) (x+c) = a+(a+6+c) a2

9 (a+b)2 = a^ab+V.       +{bc+ca+ab^+abe.

10 (a- b)^ = a2— 2ab+62.

11 (a+b)s = a‘+Za‘b+3ab?+b8 = a3+b‘+3ab (a+b).

12 (a-b)^ = a‘—Za‘b+3ab?—b8 = a^-b-^ab (a-b).

Generally

(a=b)7=a‘±7a‘b+21a‘b2±35a*b3+35a*b*±21a‘b*+7ab±b7.

Newton’s Rule for forming the coefficients—Multiply any coefficient by the index of the leading quantity, and divide by the number of terms to that place to obtain the coefficient of the term next following. Thus 215—3 gives 35, the following coefficient in the example given above. See also (125).

To square a polynomial—Add to the square of each term twice the product of that term and every term that follows it. Thus,           (a+6+c+d)2 = a‘+2a (b+c+d)+62+26 (c+d)+c+2cd+d2.

13 a‘—a2b2+64 = (a2+ab+b2) (a2 — ab +62) .

14 a*+b = (a^-^-ab 12+62) (a^—ab 12+62). a+— ) = a+1;+2, (a+1) = a3 -—- + 3 ( a +— ) 20/        00"      \    0/ d \ 0/

16 (a+b+c)2 = a2+b2+c2+2bc+2ca+2ab.

17 (a-}-b-\-cyi = a‘+b+c+3 (b3c+bc?+ca+ca?

+ a’b + ab^) -{-Qabc.

Observe that in an algebraical equation the sign of any letter may be changed throughout, and thus a new formula obtained, it being borne in mind that an even power of a negative quantity is positive. For example, by changing the sign of c in (16), we obtain

{a-\-b — cf = a2 + b2 + c2-2bc — 2ca-]-2ab.

18 a2+b2— ciAr2ab = (a+b)2— c2 = (a+b+c) (a+b— c) by (1)-

19 a’— b2—c+2bc = a2—(b — cf = (a-{-b—c) (a—b+c).

20 a+b+c- 3abc = (a+b+c) (a2+b‘+c- be—ca—ab).

21 be + b2c + ca2 + c2a + ab2 + cub + a5 +63+c

= (a-^b-f-c) (a2+b2+c).

22 be + b2c + ca2 + ea + a b2 + a2b + 3abc

= (a-\-bJt-c') (bc-\-ca-\-ab).

23 be2+bc+ca‘+ca+ab?+a‘b+2abc= (b+c)(c+a)(a+b)

24 be+ b‘c+ca‘+ c2a + ab?+ a2b—2abc—as—b3 — c

= (b+c— a) ^ef-a — b) (a-\-b—c).

25 be- b2c-\-ca2—c’a+ab?—a2b = (b—c) (c—a) (a—b).

26 203c+2c‘a?+2a‘b? -a-b-e

= (a+b+c) (b-^-c—ci) ^c+a—b) {a-Yb — c).

27 a*+2"y+2vy?+y = (a+y) (a*+ay+y).

Generally for the division of (a + yf — (a" + yn) by x2 + xy + y2 see (545).

MULTIPLICATION AND DIVISION,

BY THE METHOD OF DETACHED COEFFICIENTS.

28 Ex. 1:     (a‘-3a?b2+2ab3+b4) X (a3—2ab2—2b3).

14-0-3 + 2 + 1

14-0—2—2

1+0-3+2+1 -2-0+6-4-2 -2-0+6-4-2 14-0-5 + 0 + 7 + 2-6-2 Result a‘—5a5b2+743b4+20?05—620®—2b".

Ex. 2:     (x‘— 525+7x3+2x2— 6x—2) — (x‘— 3a2+2x+1).

1+0-3+2+1) 1+0—5+0+7+2—6—2(1+0-2-2 -1-0+3-2-1

0-2-2+6+2-6 + 2 + 0 — 6+4+2

— 2 + 0 + 6 — 4 — 2 +2+0 — 6+4+2

Result 3— 22 — 2.

Synthetic Division.

Ex. 3 : Employing the last example, the work stands thus,


-0 + 3

-2

-1



14-0-5 + 0 + 7 + 2-6-2 0+0+0+0

+3+0—6—6

-2+0+4+4

-1+0+2+2

1+0-2-2

Result 23—22—2.


[See also (248).



Note that, in all operations with detached coefficients, the result must be written out in successive powers of the quantity which stood in its successive powers in the original expression.

INDICES.

29 Multiplication: a‘Xal= as*l=a, or Va5;

1     1       11      m + n amy.Qjn = am " = amn, or "Va”*".

Division : as—a‘= as 2 = as, or Va; 1     1       11      m - n           _____ a^cG = cG m = a^, or ^a^.

Involution: (as) = a**l= a, or a.

Evolution : Vas = as** = a*, or Va2.

a~n = 1, a° = 1. an

HIGHEST COMMON FACTOR.

30 RULE.—To find the highest common factor of two expressions—Divide the one which is of the highest dimension by the other, rejecting first any factor of either expression which is not also a factor of the other. Operate in the same manner upon the remainder and the divisor, and continue the process until there is no remainder. The last divisor will be the highest common factor required.

31 Example.— To find the H. C. F. of

	
	
3.5 — 102+152+8 and «5 — 24- 623+4«?+13+6.





1_ 2- 6+ 4+13+ 6        3+0-10+ 0+15+ 8  3

3                     -3+6+18-12-39-18


1   3- 6-18 + 12 + 39 + 18

-8- 4+ 6 + 12+ 5

2) -10-12 + 24 + 44 + 18

- 5- 6 + 12 + 22+ 9

____3

5    -15-18+36+66+27

+ 15 + 20-30-60-25

2)2+ 6+ 6+ 2

1 + 3 + 3 + 1




2)6+ 8-12-24-10

3+ 4- 6-12- 5

-3- 9- 9- 3 _ 5-15-15- 5 + 5 + 15 + 15+ 5




Result H. C. F. = a3 + 3x2 + 3x +1.



32 Otherwise.—To form the H. C. F. of two or more algebraical expressions—Separate the expressions into their simplest factors. The H. G. F. will be the product of the factors common to all the expressions, taken in the lowest powers that occur.

LOWEST COMMON MULTIPLE.

33 The L. G. M. of two quantities is equal to their product divided by the H. G. F.

34 Otherwise.—To form the L. C. M. of two or more algebraical expressions—Separate them into their simplest factors. The L. G. FL. will be the product of all the factors that occur, taken in the highest powers that occur.

Example.—The H. C. F. of a2 (b—xp dd and a? (b —xp rfe is a?(b- x)2c4; and the L. C. M. is a3 (b — x)5 Ude.

EVOLUTION.

To extract the square root of

2   Ba • a   3. a _ 41 a _ 1

" ~ 2     2

Arranging according to powers of a, and reducing to one denominator, the


expression becomes




16a?—24a‘+4la — 244+16




16



35 Detaching the coefficients, the work is as follows:—

16-24+41-24+16 (4-3+4

16


8-3

-3

8-6+4



-24+41

	
24— 9 .



32—24+16

— 32 + 24—16


Result



4a— 3a + 4          . _

---4-- = d-avatl

To extract the cube root of

37       826 — 36.5 Vy + Q^y — 63.By VJ + 332”y2 — 9.y? vy + y”.

The terms here contain the successive powers of a and • y; therefore, detaching the coefficients, the work will be as follows:—

I.                    II.                                        III. 8-36+66-63+33-9+1 ( 2-3 + 1


6-31      12

-65       -18+ 9

6-9 + 1    12-18+ 9

+ .9



-8

-86 + 66-63 + 33-9 + 1

+36—54+27

12-36 + 27                12 — 36 + 33 — 9 + 1

6-9 + 1        -12 + 36-33 + 9-1

12-36 + 33-9 + 1

Result 2x2— 3avy+ y.

EXPLANATION.—The cube root of 8 is 2, the first term of the result. Place 3x2 = 6 in the first column I., 3x22= 12 in column II., and 23 = 8 in III., changing its sign for subtraction.

— 364:12 = —3, the second term of the result.

Put —3 in I., (6 — 3) X ( — 3) gives —18 + 9 for II.

(12—18 + 9) X 3 (changing sign) gives 36— 54+27 for III. Then add.

Put twice ( — 3), the term last found, in I., and the square of it in II.

Add the two last rows in I., and the three last in II. 12 = 12 gives 1, the third term of the result.

Put 1 in col. I., (6 —9 + l)xl gives 6 — 9 + 1 for col. II.

(12 —36 + 33—9 + 1) X 1 gives the same for III. Change the signs, and add, and the work is finished.

The foregoing process is but a slight variation of Horner’s rule for solving an equation of any degree. See (533).

Transformations frequently required. 38 If a = €, then a+6 = C— ........................[68. o d       a — b  c—d

39 if a+y= a) (a = l(a+b) im\x-ij-bj' en ly =3(a- b)


40

41



(a+y)2+(a— 3)2 = 2 (a2+y).

(x+y)?—(a—y)2 = 4xy.


42

43



(a+y)2 = (a— y)2+4xy.

(a— y)2 = (x+y)2—4y.

44                         Examples.

2va2—b2+Mc2—a2 _ 8va‘—b2+c2—d2 2 Va‘—b2 - ~c—22  3 va’-b - •c—d

2va‘—ba ~ 3va‘—63

9 (c?—2?) = 4 (c?—d?) c = 5c2 + 4d?.

To simplify a compound fraction, as

a2 — ab-lU a~Aab-\-lT

a’— ab + b2 a?+ab+62 multiply the numerator and denominator by the L. C. M. of all the smaller denominators.

Result         (a2 +ab+ bQ + (a2 — ab+ 62) _ a2 + b~ (a2 + ab + 62) — (a2 — ab + 62) ab

QUADRATIC EQUATIONS.

45 If az?+ba+c=0, w =—b ± %b ^ac •

46 If ax2+2ba+c = 0; that is, if the coefficient of x be

an even number, a = -——------- a

47 Method of solution without the formula.

Ex.:                 22‘—7:+3 = 0

Divide by 2,           a?-72+3=0

48 Rule for " completing the square” of an expression like a2— Za, Add the square of half the coefficient of x.

49 The solution of the foregoing equation, employing formula (45), is **62—4ac  7=149-24 7±5 o 1 2a           4       4       2

THEORY OF QUADRATIC EXPRESSIONS.

If a, 3 be the roots of the equation ax2+ba+c = 0, then

50          ax2+ba+c = a (x—a) (x—3). b

51 Sum of roots a+3 =--. a

c

52 Product of roots a =

a

Condition for the existence of equal roots—

53               b— 4ac must vanish.

54 The solution of equations in one unknown quantity may sometimes be simplified by changing the quantity sought.

Ex. (1):        2 + 3—1 + 8r±6 =14 ..................... (1).

32+1 6a‘+5x— 1 622+52—1 6 (32+1) . 3x+1     6x2+5z— 1

Put                     , = 628+5-1 .................................(2)

6 thus                       y +--= 14 y y?— 14y +6 =0 y having been determined from this quadratic, a is afterwards found from (2).

55 Ex. 2 :         &2+1,+a + 1 =4

Put x + 1 = y, and solve the quadratic in y. x

56 Ex. 3 :      «2+2+3122+a+2 = 7 + 1.

222 +2+3 V2a? +2+2 = 2

22? + x + 2 + 3 • 222 + x + 2 = 4

Put V2x2+2+2 = y, and solve the quadratic

y2 + ^J = 4.

57 Ex. 4 :

[image: ]

_ 16 _, = 3 « *




4n o 2n x3 + — x3


16

3



3

A quadratic in

58 To find Maxima and Minima values by means of a Quadratic Equation.

Ex.—Given             y = 322 + 6x + 7, to find what value of a will make y a maximum or minimum.

Solve the quadratic equation

322 +62+7- y = 0

.                 —3± By —12               -Thus                x =-----0--- [46

In order that x may be a real quantity, we must have By not less than 12 ; therefore 4 is a minimum value of y, and the value of a which makes y a minimum is —1.

G

SIMULTANEOUS EQUATIONS.

General solution ivith two unknown quantities.

Given

59  a^+^y = c±)   2 _ cb,—cb, _ Cd,—cd1 a,a+b,y = c, 5         a,b2 a.^by ba, b,a.

General solution with three unknown quantities.

60 Given       qa+by—cz = di ) aia>+b2y-}-c.2z = d2 ( a,a+by+o:= d^

, _ d^h^—b^c^^dJJ)^—^^

	
	
a, (b,ca—bac,) + a, (baC,—bica) + a, (b,c,—b,C1) and symmetrical forms for y and z.





Methods of solving simultaneous equations between two unknown quantities a and y.

61 I. By substitution.—Find one unknown in terms of the other from one of the two equations, and substitute this value in the remaining equation. Then solve the resulting equation.


Ex. :



a+5y = 23 ......(1) )

70 = 28 ......(2)5

From (2), y =4 Substitute in (1) ; thus z+20 = 23, a = 3.

62           II. By the method of Multiqdiers.

Ex.:              3x+5y = 36 ..........

22—3y = 5 ......(2) 5 ’

Eliminate a by multiplying eq. (1) by 2, and (2) by 3; thus

62+10y = 72

6x— 9y = 15

19y = 57, by subtraction,


J = 3

a = 7, by substitution in eq. (2).



63 III. By changing the quantities sought.

Ex. 1:                   x-y = 2......(1) 2

a?—y‘+a+y = 30 ......(2) 5

Let                z+y = u, a— y = v.

Substitute these values in (1) and (2),

v = 2) uv+u = 30 ) 2u+u = 30 u = 10 x + y = 10 x—y = 2

From which              x = 6 and y = 4.


	
64 Ex. 2 :
	
2%+9+10 *-= 9...... (1) )

x—y     &+3            C

«?+7y? = 64 ...... (2))


	
Substitute z for
	
a+y . -

a—y in (1);

22+10 =9

%

222—92+10 = 0


	
From which
	
5      o

% — — or 2

a+y o    5

--• = 2 or —

x—y       2


	
From which
	
7

x = ^j or — y




Substitute in (2) ; thus y = 2 and x = 6


	
or
	
y = -6, and a = 2 7.




Multiply (3) by 2, and (4) by 3, and by subtraction y is eliminated.

66 IV. By substituting y—tjc, when the equations are homogeneous in the terms which contain a and y.

RATIO AND PROPORTION.

C

	
68    If a : b :: c : d', then ad = bc, and - = -: b d



a-\-b _ c-\-d a — b_c—d a-\-b_c-\-d b d } b d ‘ a—b c—d

e o j a aic+e+&c.

	
69    If z=a=f=8ci then 6=6+d+f+&c.



General theorem.

	
70    If t = C = € = &c. = k say j then b d f



PA{ pav-\-qcn-\-renAr&,c:_ ) 1 i pbn-\-qdn-]-rfn-^&c. j

where p, q, r, &c. are any quantities whatever. Proved as in (71).

	
71    RULE.—To verify any equation between such proportional quantities—Substitute for a, e, e, ^c. their equivalents kb, kd, kf, ^c. respectively, in the given equation.



Ex.—If a : b :: c : d, to show that

	
•    a — b   Ma—


	
•    c—d   «c — •d



Put kb for a, and kd for c; thus

Va — b   Vkb — b   Abk — 1   Mb

74 DEF.—The ratio compounded of the ratios a : b and c : d is the ratio ac : bd.

75 If a : b :: c : d, and a : b':: c : d'; then, by compounding ratios, aa : bb':: cc : dd'.

VARIATION.

76 If a & c and b & c, then (a+b) o c and V ab & c.

77 If a & b)                       a b

	
	
-      - 1 , then ac oc bd and — Q—. and c o d )               cd



	
78 If a & b, we may assume a=mb, where m is some constant.



ARITHMETICAL PROGRESSION.

General form of a series in A. P.

79 a, afd, a-\-2d, a-}~3d, ...... a+(n— 1) d.

a = first term,

d = common difference,

I = last of n terms,

	
s = sum of n terms; then



80             l = aA-^n-^) d.

81              s = (a+1) 5.

82            s = {2a+(n—1) d} y.

Obtained by writing (79) in reversed order, and adding both series together.

GEOMETRICAL PROGRESSION.

General form of a series in G. P.

83                 a, ar, ar2, ar3, ...... ar"-1.

a = first term, r = common ratio, I = last of n terms, s = sum of n terms; then

84               l = arn~x.

If r be less than 1, and n be infinite,

86           s = _ j since rn = 0.

1—r

	
	
(85)    is obtained by multiplying (83) by r, and subtracting one series from the other.





HARMONICAL PROGRESSION.

	
	
	
87 a, b, c, d, &c. are in Harm. Prog, when the reciprocals 1,    1, 1, 1, &c. are in Arith. Prog. a b c C







88 Or when a : b :: a—b : ~b — c is the relation subsisting between any three consecutive terms.

89 nth term of the series =  --- ab—_    [87, 80. (n—1) a — (n — 2) b

90 Approximate sum of n terms of the Harm. Prog. -----, ---—, ---—, &c.? when d is small compared with a, a + d’ a + 2d’ a-^3d                         -

— (a+d)"—a"


By taking instead the G. P.




a^pd + (a-^-dy T (a+d)3 +:



91 Arithmetic mean between a and b = ——.

92 Geometric         do.         = • ab.

93 Harmonic         do.         = 2ab.

The three means are in continued proportion.

PERMUTATIONS AND COMBINATIONS.

94 The number of permutations of n things taken all at a time = n (n— 1) (n—2)   3.2.1 = | n or nM.

PROOF by Induction.—Assume the formula to be true for n things. Now take n+1 things. After each of these the remaining n things may be arranged in | n ways, making in all n X 7 (that is, + 1) permutations of n + 1 things; therefore, &c. See also (233) for the mode of proof by induction.

95 The number of permutations of n things taken r at a time is denoted by P (n, r).

P (n, r) = n (n—1) (n— 2) ... (n— 7+1) = nM.

By (94); for (n—r) things are left out of each permutation; therefore P (n, r) =n — | n — r.

Observe that T = the number of factors.

96 The number of combinations of n things taken 7 at a time is denoted by G (n, r).

1 _ n (n — 1) (n—2) ... (n—7+1) _

‘ "            1.2.3 ... r = 7

= .— n--= C (n, n—r).

| r | n—T

For every combination of r things admits of | r permutations ; therefore G (n, r) — P (n, r) — 7.

97 G (n, 7) is greatest when r = zn or 2 (n—1), according as n is even or odd.

98 The number of homogeneous products of r dimensions of n things is denoted by H (n, 7).


H (n, r)



_ n (n+1) (n+2) ... (n-\-r—1)_(n+r—1))

	
	
	
	
1.2 ... r                          r









When r is > n, this reduces to

99          (+1) (+2) . (n+7-1)

| r — 1

PROOF.—H (n, r) is equal to the number of terms in the product of the expansions by the Bin. Th. of the n expressions (1 — ax)-1, (1 — ba)“1, (1 — ca)-1, &c.

Put a = b = c = &c. = 1. The number will be the coefficient of xr in (1-2)-". (128, 129.)

100 The number of permutations of n things taken all to-gether, when a of them are alike, b of them alike, c alike, &c.

n

abc.. ^G’

For if the a things were all different, they would form a permutations where there is now but one. So of b, c, &c.

101 The number of combinations of n things r at a time, in which any p of them will always be found, is

= C (n—p, r—p).

For if the p things be set on one side, we have to add to them r— p things taken from the remaining n—p things in every possible way.

102 THEOREM: C (n— 1, r—1)+C (n— 1, r) = C(n, r).

PROOF by INDUCTION ; or as follows : Put one out of n letters aside; there are C (n — 1, r) combinations of the remaining n — 1 letters r at a time. To complete the total C (n, r), we must place with the excluded letter all the combinations of the remaining n—1 letters r—1 at a time.

103 If there be one set of P things, another of Q things, another of R things, and so on; the number of combinations formed by taking one out of each set is = PQR ... &c., the product of the numbers in the several sets.

For one of the P things will form Q combinations with the Q things. A second of the P things will form Q more combinations ; and so on. In all, PQ combinations of two things. Similarly there will be PQB combinations of three things ; and so on. This principle is very important.

104 On the same principle, if p, q, r, &c. things be taken out of each set respectively, the number of combinations will be the product of the numbers of the separate combinations; that is, = C (JPp) . C (Qq). C (Rr) ... &c.

H

105 The number of combinations of n things taken m at a time, when p of the n things are alike, q of them alike, r of them alike, &c., will be the sum of all the combinations of each possible form of m dimensions, and this is equal to the coefficient of a" in the expansion of

(1+2+2+ ... +2P) (1+2+22+ ... +2?) (1+2+a+ ... +2)... .

106 The total number of possible combinations under the same circumstances, when the n things are taken in all ways, 1, 2, 3 ... n at a time

= (p+1) (7+1) („+1)

107 The number of permutations when they are taken in all possible ways will be equal to the product of | m and the coefficient of a" in the expansion of

/1+a+6++.+*1++8++.+

(                   2)(                  LL)

......&c.

SURDS.

108 To reduce V2808. Decompose the number into its prime factors by (196); thus,

$2808 = $23.33.13 = 6 V13 als 610 c8 = a” b* cA = a5 63 c2 z c = a5 63 c2 Vbe.

109 To bring 513 to an entire surd.

5 • 3 = $54.3 = • 1875,

2 11      20  6 15    30 /9  - 1>

233523 = 23° y3° 23° = va" y202.

110 To rationalise fractions having surds in their denominators.

1 _ 7 .  1 3/49 _ 2/49 •/7    7‘   3/7 3/7x49 7 '

111        9-780 ="Gi=s302=30+V80)

since           (9- 180) (9+ 180) = 81 -80, by (1).

149          1     _ 1 + 273 + 2 _ 3 + 2^3 1 + 2 73-72 (l + 2 73)2-2  11+4.3 _ (3 + 2 73) (11-4 73) _ 9 + 10 73 121—48            73

114  4——. Here the result will be the same as in the last example 7 3 + 7 2 if the signs of the even terms be changed.                           [See 5.

115 A surd cannot be partly rational; that is, va cannot be equal to Mb + c.                    Proved by squaring.

116 The product of two unlike surds is irrational; V7 X V3 = V21, an irrational quantity.

117 The sum or difference of two unlike surds cannot produce a single surd; that is, Va+vb cannot be equal to Vc.                                       By squaring.

118 If a+Vm=b+vn; then a—b and m=n. Theorems (115) to (118) are proved indirectly.

119 If Va + Vb = •a+y; then           Va — Vb = Va— Vy.

By squaring and by (118).

120 To express in two terms 7+2 V6.

Let              ^7 + 2^6 = ve + vy then       a+y = 7 ............... by squaring and by (118), and       «—y = •7-(2,/6)2 = 149-24 = 5, by (119) ;

/. a = 6 and y = 1.

Result 4/6+1.

General formula for the same—

121 • a ±b = v}(a+va‘—b) ± V}(a—va‘—b).

Observe that no simplification is effected unless a2—b is a perfect square.

122 To simplify      • a + Vb.

Assume \/a -\- Vb = a+y

Let                c = Va3 —b

Then a must be found by trial from the cubic equation 4a3 — 3ca = a

and                 y — a^ — c

No simplification is effected unless a2—b is a perfect cube.


	
Ex. 1:
	
37+5.2 = z+vy

c = 349-50 = -1

4.+% = 7; .. « =1, = 2.

Result 1 + 12.


	
Ex. 2:
	
V9v3- 11.2 = ^/x+ ^/y, two different surds.


	
Cubing,
	
9 • 3 11 V2 — a •a + 3a • y +3y •:a + y •y

..   9 13 = («+ 3y) a )

11.2 = (3+y) Vy)               1 7




2 = 3 and y = 2.

123 To simplify •(12+4.3+4.5+2.15).

Assume     • (12+4/3+4/5+ 2.5) = 1z+y+.z.

Square, and equate corresponding surds.

Result 1/3+ 14+ 1/5.

124 To express VA+B in the form of two surds, where A and B are one or both quadratic surds and n is odd. Take q such that q {AZ~B2) may be a perfect nth power, say pn, by (361). Take s and t the nearest integers to ^q{A-\-B)2 and V7(A- B)2, then

\/A -^F B = .....1 - { •s—t+2p + • sA-t — ^p} • 2 vq

Example: To reduce V89./3+109./2.

Here              A = 89 13, B = 109 1/2,

A2—B2 = 1;    p = 1 and q = 1.

V q (A + B)2 = 9 +f ) f being a proper fraction;

Vq {A-Bp = 1—f5 ’     .s=9,t=1

Result } (19+1+2 ± 19+1—2) = 3+ 4/2.

BINOMIAL THEOREM.

125                 (d+b)" =

a-+na-1b + n(n—1) a--26%+ n(n-1)(n-2) a--3834&c.

126 General or (r+1)th term, n^n—B) {n—^ ... (n—7+1)

127            or .  —= an~rbr

| n—r r

if n be a positive integer.

If b be negative, the signs of the even terms will be changed.

If n be negative the expansion reduces to

128                 (a+6)-" =

a-n_na--i+"(n+1) a~n~2b2a—n-3834Bc.


[See 98.



f(m+n+p+&c.) = f (m) Xf(n) Xf^pY &c.

h

Put m=n—p=&c. to k terms, each equal 7, and the

theorem is proved for a fractional index.

Again, put —n for m in (1); thus, whatever n may be, /(-») X/« =/(0) = 1, which proves the theorem for a negative index.

130 For the greatest term in the expansion of (a + b)n, take i _  (n+1)b   (n—1)5 r — the integral part ot -— —- or -----—>

C—b     a—b according as n is positive or negative.

But if b be greater than a, and n negative or fractional, the terms increase without limit.

Examples.

Required the 40th term of (1--7) .

Here r = 39 ; a =1; b=4; n = 42.

By (127), the term will be

42 /_2\3_ _ 42.41.40


/Q,\39

(4) by (96).



3|39 \   3 /        1.2.3

Required the 31st term of (a—®)-4.

Here r = 30 ; b = — x ; n = — 4.

By (129), the term is

130 4.5.6...30.31.32.33  34


*0 = 31/32:33 ■ 5 by (98).



(   )       1.2.3...30

131 Required the greatest term in the expansion of — — when a==14

—---— = (1 + x)-5. Here n — a = b = x in the formula (1+2)°

therefore 7 = 23, by (130), and the greatest term

z 1)5 5.6.7... 27 /14)2.


24.25.26.27 (14\2

1.2.3.4   (17) '



-    ) 1.2.3 ... 23 (17)

132 Find the first negative term in the expansion of (2a+3b) 3.

We must take r the first integer which makes n — r+1 negative ; therefore r >1—1=1+1=63; therefore t = 7. The term will be


17 14 11 8

3   3° 3 * 3 •




52 (2a) 3(36)7 by (126)




17.14.11.8.5.2.1




(2a)1



133 Required the coefficient of a3 in the expansion of (213) .


(2+3x) (2-3x)

= (1+6z+2.2




2 = (2+32)2 (2—3=)




-2




2.3 (3x\2

1.22/



The three terms last written being those which produce a34 after multiplying by the factor (1 + 6a + ^x1) ; for we have

9 200/32 \32 - .0/3 — a X33—) + O X 34-

4            \ 2 /                 \ 2 giving for the coefficient of a4 in the result

007 / o \32          / 9 \33 4* ( 2) + 204 (2) + 35


32 \34




32



The coefficient of a" will in like manner be 459 (2)" 2.

134 To write the coefficient of a3m*1 in the expansion of (a2 —

The general term is

I 2n +1    .    1 I 2n +1    _ ।             g2(2n-"+1) - _ 1              g4n-4r+2 | 2n + 1—r | 7           a?"     2n+1 —r | r

Equate 4n— 4r+2 to 3m +1, thus 4n—31—1 7 = --------- 4

Substitute this value of r in the general term; the required coefficient becomes L21+1

4n+3m+3 4- 3m+1 4            4

.             42, — 822 — ] . The value of r shows that there is no term in a3m *1 unless —--------- is an 4 integer.

135 An approximate value of (1+a)" when a is small is 1+na, by (125), neglecting a2 and higher powers of x.

136 Ex.—An approximation to V999 by Bin. Th. (125) is obtained from the first two or three terms of the expansion of

(1000—1) = 10 - } . 1000-1 =10-}= 9388 nearly.

MULTINOMIAL THEOREM.

The general term in the expansion of (a+ba+ca2+&c.)" is


137 n (n 1) (n 2) ... (»+1) aPbc 21+27+3+.. ars...

where           p — q + r — s — &c. = n, and the number of terms p, q, r, &c. corresponds to the number of terms in the given multinomial.

p is integral, fractional, or negative, according as n is one or the other.

If n be an integer, (137) may be written

138           t——===- c^b^e... a1+2r+83.

pgr...

[Deduced from the Bin. Theor.

Ex. 1.—To write the coefficient of a3bc5 in the expansion of (a+b+c+d)1. Here put n=10, a==1, P=^i (= 1, r=5, =0 in (138).


Result



110 410.9.8

315 1.2.3°

Ex. 2.—To obtain the coefficient of a8 in the expansion of (1-2+322-43)4.

Here, comparing with (137), we have a=1, b=-2, c=3, d—— 4, p+q+ r+ s = 4 q + 2r + 3s = 8,


	
1
	
0
	
1
	
2


	
0
	
2
	
0
	
2


	
0
	
1
	
2
	
1


	
0
	
0
	
4
	
0




The numbers 1, 0, 1, 2 are particular values of p, q, r, s respectively, which satisfy the two equations given above.

	
	
	
	
	
0, 2, 0, 2 are another set of values which also satisfy those equations ; and the four rows of numbers constitute all the solutions. In forming these rows always try the highest possible numbers on the right first.











Now substitute each set of values of p, q, r, s in formula (138) successively as under:

-4 1 (-2)0 31 (-4)2 = 576

4,10 (-2)2 3° (-4)2 = 384

4 1° (-2)1 32 (-4)1 = 864

14

— 1° (-2)0 34 (-4)° = 81

Result 1905

Ex. 3.—Required the coefficient of a4 in (1 + 22 — 422 — 23) 2.

Here a—1, b=2, c= - 4, d — — 2, n=-1; and the two equations are p + q_+ r+ s = — 1, q+2r+3s =  4,

[image: ]



Employing formula (137), the remainder of the work stands as follows: (-}) (- 3) 1-121(-4)°(-2)= - 3

1(-})(-3)1-420(-4)(-2)° = 6 2(-2) (-2) (-2) 1-12(-4)(-2)°= 15

1 ( _ 1) ( — 3) ( _ 5) ( _ 7) 1-9 94 (_4j0 (—2)° = — 4  2/ 2/ 2/ 2 /. •    8

Result 223

139 The number of terms in the expansion of the multinomial (a+b+c+to n terms)" is the same as the number of homogeneous products of n things of r dimensions. See (97 and 98).

The greatest coefficient in the expansion of (a+b+c+ to m terms)", n being an integer, is

n

140       (q)n(+1y where Im+1=n.

Obtained by making the denominator in (138) as small as possible.

LOGARITHMS.

142         loga N = a signifies that ax = N, or

DEF.—The logarithm of a number is the power to which the base must be raised to produce that number.


	
143

144
	
loga a = 1, log 1 — 0.

log MN = log M + log N.

log M = log M— log N.

P N P P

log (M)n = n log M.

log "M = 1 log M.              [142

n




145              log" F ios:6

That is—The logarithm of a number to any base is egual to the logarithm of the number divided by the logarithm of the base, the two last named logarithms being taken to any the same base at pleasure.

146         log, a = t—1. Put c=a in (145). 1oga b

147           logi, N = log:70 by (145).

148           ,1 = -43429448 ... log. 10

is called the modulus of the common system of logarithms; that is, the factor which will convert logarithms of numbers calculated to the base e into the corresponding logarithms to the base 10. See (154).

EXPONENTIAL THEOREM.

149     «*=1+c+ 2+3 + &c,

where c = (a- 1) — } (a—1)2+ } (a—I)3—&c.

PROOF: as = {1+(a — 1)}". Expand this by Binomial Theorem, and collect the coefficients of a; thus c is obtained. Assume C2, C3, &c. as the coefficients of the succeeding powers of x, and with this assumption write out the expansions of ax, ay, and ax+y. Form the product of the first two series, which product must be equivalent to the third. Therefore equate the coefficient of a in this product with that in the expansion of ax+y. In the identity so obtained equate the coefficients of the successive powers of y to determine C2, C3, &c.

Let e be that value of a which makes c=1, then

150     e=1+,+4+*+&.

Hence, by putting a = 1,

151 e=1+1+1+1+ &c.

= 2718281828 ......an incommensurable quantity.

See (295).

152 By making a=1 in (149), and x~c in (150), we obtain a = e; that is, c = log. a. Therefore by (149)

154 log, a = (a- 1) — } (a—1)2+} (a-1)- &c.

155    log(l+®)= x — 4 +2 — 4 + &c.

156   log(1-)=-RA A&c. [154

157 :. log 4 =20+4+4+&c. ‘ 1—3              5      )

Put ——1 for x in (157); thus,

m—1

158
[image: ]

But ------ for x in (157); thus, 2n+1 v 7

159 log(n+1) — log n _o51 j    1     i    1____L %.

T (2n+1 T 3 (2n+1)8 T 5 (2n+1) T '

CONTINUED FRACTIONS AND CONVERGENTS.

16 0 To find convergents to 3-14159 = 308058. Proceed as in the rule for H. C. F.


	
7
	
100000

99113
	
314159

300000
	
3
	
The continued fraction is

3+1

7 + 1

15 + &c.;

or, as it is more conveniently written,

3 + * 1} de.


	
1
	
887

854
	
14159

887
	
15


	
1
	
33

29
	
5289

4435
	

	
4
	
4

4
	
854

66
	
25


			
194

165
	

			
29

28

]
	
7
	



The convergents are formed as follows :—

3   7   15    1    25     1      7       4 3  22  333  355  9208  9563  76149  314159 1’ 7’ 106’ 113’ 2931’ 3044’ 24239’ 100000'

161 RULE.—Write the quotients in a row, and the first two convergents at sight (in the example 3 and 3+7). Multiply the numerator of any convergent by the next quotient, and add the previous numerator. The result is the numerator of the next convergent. Proceed in the same way to determine the denominator. The last convergent should be the original fraction in its lowest terms.

162      Formula for forming the convergents.

If 2n-2, Pn-i^ Pn are any consecutive convergents, and

In-2 In-1 In

Cn-g, @,-1, an the corresponding quotients; then

Pn   ^nPn- 1 ~\~ Pn—2, ^[n — a,4,-1+ 4,-2.

The nth convergent is therefore

Pn __ An Pn-1 I Pn—i q, a, Q,-1 -- 42-2

The true value of the continued fraction will be expressed by

163               F _ ^nPn-1 — Pn—i

	
a. In-1 + q»- 2 in which an is the complete quotient or value of the continued fraction commencing with an.



164           P» Q,-1—P»-1Q, = ±1 alternately, by (162).

The convergents are alternately greater and less than the original fraction, and are always in their lowest terms.

165 The difference between Fn and the true value of the continued fraction is


—— and An (2+1




1

qn (42+92+1)



and this difference therefore diminishes as n increases. Proved


by taking the difference,



Pn   ^Pn+1 + Pn qn a qn+iF qn


(163).



Also F is nearer the true value than any other fraction with a less denominator.

166 FnFn+1 is greater or less than F2 according as Fn is greater or less than Fn+1.

General Theory of Continued Fractions.

167 First class of continued fraction.


Second class of continued fraction.

7= bi__ ba__ ba__

01 — CL^ • as & C •



I = bi ba__ ba__

	
	
a, + a,+ a3+&c.





a1, 61, &c. are taken as positive quantities.

b b

—, -2, &c. are termed components of the continued frac-C1 C2

tion. If the components be infinite in number, the continued fraction is said to be infinite.

Let the successive convergents be denoted by

21 _ bi;   22 = 9112;   23 = 1 ba — 93; and so on. (1 C1     72 01— @2     73 A1 C2— @3

168 The law of formation of the convergents is,


For E,

P» ■— ^nPn-1 + ^nPn-i 4, — a, 4,-1 + b, 4,-2



For V,

Pn — ^nPn-1 — ^nPn~2 (n — Un ^n—x bn Q.n-%

Proved by induction.

The relation between the successive differences of the

convergents is, by (168),

[image: ]

Pr-1) 41-1/





169



Pn+1 _ Pn _ — On+1 In-1

Q2+1 q, Q2+1

Take the — sign for F, and the + for V.

170   PnF-\— Pn-\F = ( — 1)" 16,6263 ... ^n (by 16 8).

171 The odd convergents for F, 11, 23, &c., continually

decrease, and the even convergents, 22, 24, &c., continually increase. (167.)                         42    44

Every odd convergent is greater, and every even convergent is less, than all following convergents. (169.)

172 DEF.—If the difference between consecutive convergents diminishes without limit, the infinite continued fraction is said to be definite. If the same difference tends to a fixed value greater than zero, the infinite continued fraction is indefinite ; the odd convergents tending to one value, and the even convergents to another.

173 F is definite if the ratio of every quotient to the next component is greater than a fixed quantity.

Apply (169) successively.

174 F is incommensurable when the components are all proper fractions and infinite in number.

Indirectly, and by (168).

175 If a be never less than b — 1, the convergents of V are all positive proper fractions, increasing in magnitude, pn and Qn also increasing with n.                By (167) and (168).

176 If, in this case, V be infinite, it is also definite, being = 1, if a always ==b+1 while b is less than 1, (175); and being less than 1, if a is ever greater than b+1. By (180).

177 V is incommensurable when it is less than 1, and the components are all proper fractions and infinite in number.

180 If in the continued fraction V (167), we have a,==b+1 always; then, by (168),

Pn = b1+b1b2+61b2bs+ ... to n terms, and (n =pn+l.

181 If, in the continued fraction F, an and b, are constant and equal, say, to a and b respectively; then pn and qn are respectively equal to the coefficients of a"-1 in the expansions


of




b

1 — ax — bx2.




and




a+ba

1 — ax—bx2'



For p, and qn are the nth terms of two recurring series.

See (168) and (251).

182 To convert a Series into a Continued Fraction.

ine series--------... - — U M1 U2 ‘Un

is equal to a continued fraction V (167), with n+1 components ; the first, second, and n + 1th components being

	
1    u2a       U^ a


	
- - 9 • —          9 • • •             — U Miua UA-Un-12





Proved by induction.

183 The series

	
1      ,       ,2                 on



v 1 00, 1 00,02       ' 20,02 ...vn

is equal to a continued fraction V (167), with n+1 components, the first, second, and n+1th components being

	
	
1,    -22, ...... 21-12. Proved by Induction. v  01—a       UA—a





184 The sign of a may be changed in either of the statements in (182) or (183).

185 Also, if any of these series are convergent and infinite, the continued fractions become infinite.

186   To find the value of a continued fraction with recurring quotients.

Let the continued fraction be a = bi— —-- where y = 9,+1— di— ... + an-\-y              Cn+1 i *•• + Cn+m ^y

so that there are m recurring quotients. Form the nth convergent for x, and the mth for y. Then, by substituting the complete quotients an-\-y for an, and an+m-\-y tor an+miii (168), two equations are obtained of the forms

Ay-]-B - EyA-F

Cy+D • Gy+H

from which, by eliminating y, a quadratic equation for determining x is obtained.


187 If




bi ba

a,+ ... + a,—



be a continued fraction, and

P1          Pr

7i ‘ ...... 4,

K the corresponding first n convergents; then In-1, developed by (168), produces the continued fraction

1    b,     b-1_      ba ba

an + a,—i+ an-2+ ... + a, + a, the quotients being the same but in reversed order.

INDETERMINATE EQUATIONS.


188 Given




ax + by = c



free from fractions, and a, 3 integral values of a and y which satisfy the equation, the complete integral solution is given by

a = a — bt

y = 3+ at

where t is any integer.

Example.—Given         52+By = 112.

Then a = 20, y = 4 are values ;

a = 20-3t) y = 4+5t J

For solutions in positive integers t must lie between 2° = 63 and —4; that is, t must be 0, 1, 2, 3, 4, 5, or 6, giving 7 positive integral solutions.

189 If the equation be

ax — by = c

the solutions are given by

a = a + bt

y = P+^t

EXAMPLE :                 4x — 3y = 19.

Here a = 10, y = 7 satisfy the equation ;

190 If two values, a and 3, cannot readily be found by inspection, as, for example, in the equation

17+13J = 14900, divide by the least coefficient, and equate the remaining fractions to t, an integer ; thus

	
2    — ----- = 7 = a :



4

and                 y+x + t = 1146, by (1), y = 1146-7-2 = 1137 = s.

The general solution will be a =    7 -13t, y = 1137 + 17t

Or, changing the sign of t for convenience, « =    7 +13/, y = 1137 — 17/.

Here the number of solutions in positive integers is equal to the number of 7       1137 integers lying between      — — and -17 ;

F or                          — — and 661% ; that is, 67.

191 Otherwise.—Two values of a and y may be found in the following manner :— Find the nearest converging fraction to 12 by (160).

This is 3. By (163) we have 17x3-13x4= 1.

Multiply by 14900, and change the signs ; 17 ( -44700) +13 (59600) = 14900 ; ,                             ( a = — 44700 which shews that we may take 3 - p 59000 and the general solution may be written a = - 44700+13t, y =   59600—17t.

This method has the disadvantage of producing high values of a and B. 192 The values of a and y, in positive integers, which satisfy the equation ax + by = c, form two Arithmetic Progressions, of which b and a are respectively the common differences. See examples (188) and (189).

193 Abbreviation of the method in (169).


EXAMPLE :



lla— 18y = 63.

Put a = 9z, and divide by 9 ; then proceed as before.

194 To obtain integral solutions of ax-\-by-\-cz = d.

Write the equation thus

ax^by = d—cz.

Put successive integers for z, and solve for a, y in each case.

TO REDUCE A QUADRATIC SURD TO A CONTINUED FRACTION.


195 Example :





	
29 =
	
5 + 129—5 = 5 +
	
4

•29+5'


	
129+5 _
	
2  129 -3 —
	
5


	
4  ~
		
•29+3'


	
129+3 _
	
1.29-2 1
	
5


	
5
	
1 1       5               T
	
•29+2'


	
29+2 _
	
1 + 129—3
	
4


	
5
		
•29+3'


	
129+3
	
2 | 29—5 — 2 |
	
1


	
4
		
•29+5'


	
129+5 =
	
10 + 129—5 = 10 +
	
4

29+5*






The quotients 5, 2, 1, 1, 2, 10 are the greatest integers contained in the quantities in the first column. The quotients now recur, and the surd V29 is equivalent to the continued fraction

1 1 1 1 1 1   1 1 1

5+2+ 1 + 1 + 2 + 10+ 2 + 1 + 1+ 2+&c.

The convergents to 29, formed as in (160), will be

5  11 16 27 70 727 1524 2251 3775 9801 1’ 2 5 3’ 5’ 13’ 135’ 283’ 418’ 701’ 1820’

196 Note that the last quotient 10 is the, greatest and twice the first, that the second is the first of the recurring ones, and that the recurring quotients, excluding the last, consist of pairs of equal terms, quotients equi-distant from the first and last being equal. These properties are universal. (See 204 —210).

To form high convergents rapidly.

197 Suppose m the number of recurring quotients, or any multiple of that number, and let the mth convergent to VQ be represented by Fm; then the 2mth convergent is given by the formula          F, = 1 § Fm + ? 2 by (203) and (210).

2 C I’m )

198 For example, in approximating to 129 above, there are five recurring quotients. Take m = 2 x 5 = 10 ; therefore, by


F = }
[image: ]





Therefore




F = 9801, the 10th convergent.




1 _ 1 § 980 1 99 1820 I _ 192119201

20    2 11820 T 9801)    35675640 ’




the 20th convergent to 129 ; and the labour of calculating the intervening convergents is saved.




GENERAL THEORY.




199 The process of (174) may be exhibited as follows :—




“I+c

71




— C1 —




72

• Q+c,




MQ+c,

72




— d, —




73

VQ+c3



	
•    Q+ C, _ , I 7+1



rn ~    *Q+C+


200 Then



1 1___ 1___

	
•    Q = a, + a,+ a3+ a4+&c.



The quotients ai, a2, as, &c. are the integral parts of the fractions on the left.

201 The equations connecting the remaining quantities are


	
C1 = 0
	
Y = 1


	
C2 = a,Y—C
	
- 2 r — Q—C2 " 2

71


	
C3 — a, 72   ^2
	
T3 = —---3


	
Cn — Cn- 17n-1   Cn-1
	
— Q-4

4 n — ‘

Y2-1




The nth convergent to Q will be

202               — = d, P,-14P, 2 [By induction. In    Un In-1 T In- 2

The true value of VQ is what this becomes when we substitute for an the complete quotient M C,, of which a, 1 n

is only the integral part. This gives

203          • Q   ( VQ+c„) P,-1+7, 7,-2 ( VQ+c„) qa—1+r, (2-2

By the relations (199) to (203) the following theorems are demonstrated :—

204 All the quantities a, r, and c are positive integers.

205 The greatest c is C2, and c^ — a^

206 No a or 7 can be greater than 201.

207 If Tn = 1, then cn = ax.

208 For all values of n greater than 1, a—cn is <T,.

209 The number of quotients cannot be greater than 2a1 . The last quotient is 241, and after that the terms repeat. The first complete quotient that is repeated is MO-C, and C2, 72, C2 commence each cycle of repeated terms.

210 Let am, T,n, cm be the last terms of the first cycle; then @m—1, Tm—1, c^ are respectively equal to a2, T2, C2; am_2, rm_2, C,n-2 are equal to C3, 1’3, C3, and so on.                  By (187).

EQUATIONS.

Special Cases in the Solution of Simultaneous Equations.

211 First, with two unknown quantities. a^^b^j = Ci ? go 4 C1ba—Cbi = C1d2—C2di a2 a + b, y — c2 )           ai b 2 a, h^          bi a2 b2 ai

If the denominators vanish, we have

— — and— oo, V= O; a2

unless at the same time the numerators vanish, for then

	
C.       b\      c-i                0                0


	
a,    A    c2 ‘ o ‘ J o’ and the equations are not independent, one being produced by multiplying the other by some constant.





212 Next, with three unknown quantities. See (60) for the equations.

If d1} d2, d^ all vanish, divide each equation by z, and we have three equations for finding the two ratios , and 7, two only of which equations are necessary, any one being deducible from the other two if the three be consistent.

213 To solve simultaneous equations by Indeterminate Multipliers.

Ex.—Take the equations a + 2y +  3z + 4w = 3x + by + 7z + w = 5% + 8y + 10z - 2w = 7x + by +  52 + 4w =

Multiply the first by A, the second by B, the third by G} leaving one equation unmultiplied; and then add the results.

Thus    (A+3B+50+7) x + (2A-\-5B + 8C+6)y

+(34+78+100+5) :+(44+B-20+4) w

= 274+48B+650+53.

To determine either of the unknowns, for instance a, equate the coefficients of the other three separately to zero, and from the three equations find A, B, C. Then

27A+48B+650+53

A+3B+50+7

MISCELLANEOUS EQUATIONS AND SOLUTIONS.

214               N ± 1 = 0.

Divide by a3, and throw into factors, by (2) or (3). See also (480).

215            a—7»—6 = 0.

a = —1 is a root, by inspection; therefore 2+1 is a factor. Divide by a+1, and solve the resulting quadratic.

216               a3+16a = 455.

a*+1622 = 455% = 65X7


a*+6522 —



2 65 , 65 *+2 ="+2

a2 — 7a;     :.  x = 7.

RULE.—Divide the absolute term (here 455) into two factors, if possible, such that one of them, minus the square of the other, equals the coefficient of x. See (483) for general solution of a cubic equation.

217          ^—y^ = 14560, a—y = 8.

Put           a = z+v and y = z—v.

Eliminate v, and obtain a cubic in z, which solve as in (216).

218          a5—y‘= 3093, a—y = 3

Divide the first equation by the second, and subtract from the result the fourth power of x—y. Eliminate (a2+y2), and obtain a quadratic in xy.

219 On forming Symmetrical Expressions.

Take, for example, the equation

(y—c) (:-) = a.

To form the remaining equations symmetrical with this, write the corresponding letters in vertical columns, observing the circular order in which a is followed by b, b by c, and c by a. So with x, y, and z. Thus the equations become

(y—c) (=—6) = « (z— a) (x-c) = b2

{x—b^y—a) = c2

To solve these equations substitute

& == b+c+a, y=c+a+y, z=a+b+z; and multiplying out, and eliminating y and z, we obtain

, _ be (b + c^ — a (b?+c3) be — ca — ab and therefore, by symmetry, the values of y and z, by the rule just given.

220                 32+*2+yz= a2 .....................(1),

Eliminate a between (2) and (3). and substitute the value of a from equation (1).

IMAGINARY EXPRESSIONS.

223 The following are conventions :—

That V(— a2) is equivalent to av(— 1); that av(— 1) vanishes when a vanishes; that the symbol a(—1) is subject to the ordinary rules of Algebra. •(— 1) is denoted by i.

224 If a+i =y+i8; then a=y and 3=8.

225 a+i3 and a—i3 are conjugate expressions; their product = a‘+32.

226 The sum and product of two conjugate expressions are both real, but their difference is imaginary.

227 The modulus is + • a3+3.

228 If the modulus vanishes, a and 3 must vanish.

229 If two imaginary expressions are equal, their moduli are equal, by (224).

230 The modulus of the product of two imaginary expressions is equal to the product of their moduli.

231 Also the modulus of the quotient is equal to the quotient of their moduli.

METHOD OF INDETERMINATE COEFFICIENTS.

232 If A+Ba+Ca2+ ... = A+Be+C‘a+ ... be an equation which holds for all values of a, the coefficients A, B, &c., not involving a; then A = A', B = B', C — O', &c.; that is, the coefficients of like powers of a must be equal. Proved by putting a =0, and dividing by a alternately. See (234) for an example.

233 METHOD OF PROOF BY INDUCTION.

Ex.—To prove that

1+22+33+..+,* _ n (n+1) (2n+1), 6

Assume       1+2+34.+,%= n(n+1) (2n+1),

1+2+8+...+»?+(n+1)‘=n"*102n±1+ (n+1)2

_n (n+1) (21+1) +6 (n+1)2  (n+1) {n (21+1) +6 (n+1)} 6                               6

— (n+1) (n+2) (2n+3) _ n(n+1) (2n+1)

6                      6 where n is written for n + 1;

1 + 22 + 32 । +22 = 1(x+1) (2n+1).

6

It is thus proved that if the formula be true for n it is also true for n+1.

But the formula is true when n = 2 or 3, as may be shewn by actual trial; therefore it is true when n = 4 ; therefore also when n = 5, and so on ; therefore universally true.

234 Ex.—The same theorem proved by the method of indeterminate coefficients.

Assume

1+22+32+...+n2        = A + Bn    +Cv? +Dn + &c.; .. 1+22+3‘+...+n+(n+1)2 = A + B(n + 1) + 0(n+1)?+D(n+1)®+&c. . therefore, by subtraction,

n?+2n+1 = B + C^n^iy+D^ + Sn + l), writing no terms in this equation which contain higher powers of n than the highest which occurs on the left-hand side, for the coefficients of such terms may be shewn to be separately equal to zero.

Now equate the coefficients of like powers of n; thus

3D = 1, .. D = 1 ;

20+3D = 2, .. and A=0;

B + C+D = l, .. B=l;

therefore the sum of the series is equal to

222 ns _n(n+1) (2n+1)

PARTIAL FRACTIONS.

In the resolution of a fraction into partial fractions four cases present themselves, which are illustrated in the following examples.

235 First.—When there are no repeated factors in the denominator of the given fraction.

Ex.—To resolve  --- ...... — into partial fractions.

(2— 1)(2—2)(2— 3)

Assume -__32—2___=lA4B0

(a— 1) (x—2) (a— 3) x — 1 x — 2 x—3

32-2 = A (-2) (»-3)+B (-3) (—1)+0 (-1) (a—2).

Since A, B, and G do not contain a, and this equation is true for all values of x, put x = 1; then

3-2 = A (1-2) (1 - 3), from which A =

Similarly, if x be put = 2, we have

236 Secondly.—When there is a repeated factor. Ex.—Resolve into partial fractions 708—-1044+ bx. {x—(2—2)

A         723—1022+62      A . B . G . D Assume • -3------ = > = + 7 49 I 7--— 4--— (2 — 1)(x +2)   (x— I)3   (2—1)4 (a— 1) 2+2

These forms are necessary and sufficient. Multiplying up, we have

7a- 10.2+62 = A(+2)+B(—1) (*+2)+0(-1)2(+2)+D(-1)8

(1).

Make® = l; .. 7-10 + 6 = A (1 + 2); .. A = 1.

Substitute this value of A in (1) ; thus 72—10.2+52-2 = B (-1) (*+2)+0(-1)(+2)+D(-1)3.

Divide by x — 1; thus 72?—3+2 = B(+2)+0(-1) (+2)+D(-1) .........(2). Make a?=1 again, 7—3 + 2 = B (1 + 2) ;   .. B = 2.

Substitute this value of B in (2), and we have 7a”—5a-2 = C(-1) (=+2)+D(—1)3. Divide by a—1,      7:+2 = 0(+2)+D(-1) ........................(3). Put «=l a third time, 7+2=0(1+2); .. 0 = 3. Lastly, make a = — 2 in (3), —14+2 =D (-2-1);   .. D =4.


Result



1,234 (a—1)3 (2—1)2 T a—1 x+2

237  Thirdly.—When there is a quadratic factor of imaginary roots not repeated.

Ex.—Resolve ——— into partial fractions. (a2+1) (a2+a+1) -

Here we must assume

	
1       _Ax + B   Cx + D .


	
(«3+1) (x2+a+1) a3+1 22+x+1‘ 22+1 and a2+2+1 have no real factors, and are therefore retained as denominators. The requisite form of the numerators is seen by adding together two simple fractions, such as 4 + 8            r                  x + b





A = -1.

Again let                   22 + x + 1 = 0 ; x2 = — x — 1.

Substitute this value of x2 repeatedly in (1) ; thus 1 = (Cx + D)(-x) = -Cx2-Dx = Cx+0-Dxi or                  (C-D)x+G-l = 0. Equate coefficients to zero ; thus C = 1, D = 1. Hence         —----1----- = 2+1___ai. (x2+1) (x2+2+1) a2+a+1 a2+1 238 Fourthly.—When there is a repeated quadratic factor of imaginary roots.

Ex—Resolve (6+150*44+8) into partial fractions.

Assume 40z—103    _ Ax + B Cx + D . Bx + F (x+1)2(a2— 4x+8) (a?—4x+8)3 (a‘— 42+8)2 23—42+8 G       H . («+1)2 2+1 ’

402—103 = {(Ax + B^ + ^Gx + B^^-^x + S^ + ^Bx-^-F^^-^x + S^j^ + iy

+ {G + H(x + l)} ..................................(1).

In the first place, to determine A and B, equate x2 — 42+8 to zero ; thus a2 = 4—8.

Substitute this value of x2 repeatedly in (1), as in the previous example, until the first power of a alone remains. The resulting equation is

402—103 = (17A + 6B) X—48A — 7B.

Equating coefficients, we obtain two equations

17A + 6B= 40 }


from which




A =2

B = 1.



48A + 7B = 103 5

Next, to determine G and D, substitute these values of A and B in (1) ; the equation will then be divisible by a2—4a+ 8. Divide, and the resulting equation is

0 = 22+13+ {Gx+D + (Bx+F) (a?—4«+8)} (z+1)2

+{G+H(+1)} ....................................(2).

Equate x2 — 4x +8 again to zero, and proceed exactly as before, when finding A and B.

Next, to determine F and F, substitute the values of G and D, last found in equation (2) ; divide, and proceed as before.

Lastly, G and H are determined by equating a +1 to zero successively, as in Example 2.

CONVERGENCY AND DIVERGENCY OF SERIES.

239 Let a1+a,+as+&c. be a series, and an, @2+1 any two consecutive terms. The following tests of convergency may be applied. The series will converge, if, after any fixed term— (i.) The terms decrease and are alternately positive and negative.

(ii.) Or if -"- is always greater than some quantity Cn+1

greater than unity.

(iii.) Or If —n_ is never less than the corresponding ratio Cn+1 .

in a known converging series.

(iv.) Or if ( "0" — n ) is always greater than some quan-tity greater than unity.                    By 244, 234, & iii.

(v.) Or if ( "0n — n — 1 ) log n is always greater than some quantity greater than unity.

240 The conditions of divergency are obviously the converse of rules (i.) to (v.)

OL

241 The series di+dze+daRE&c. converges, if is

always less than some quantity p, and x less than —.

By 239 (ii.)

242 To make the sum of the last series less than an assigned quantity p, make x less efficient.


than 747 1 being the greatest co-



General Theorem.

243 If $ (x) be positive for all positive integral values of a, and continually diminish as x increases, and if m be any positive integer, then the two series

	
• (1)+ (2)+, (3)+9 (4)+...... $ (1)+m4 (m)+m2p (m2)+mp ........... are either both convergent or both divergent.



244 Application of this theorem. To ascertain whether the series        1 + — + 1 — 1 _

is divergent or convergent when p is greater than unity.

M

Taking m = 2, the second series in (243) becomes

1+3+3+3+40....... a geometrical progression which converges; therefore the given series converges.

245 The series of which —-----— is the general term is 7 (log n)p convergent if P be greater than unity, and divergent if p be not greater than unity.                      By (243), (244).

246 The series of which the general term is ________________1________________ nX (n) X2 (n) ......Ar (n) {X7+1 (n) ^p where X (n) signifies log n, A2 (n) signifies log {log (n)}, and so on, is convergent if p be greater than unity, and divergent if p be not greater than unity. By Induction, and by (243).

247 The series a+a+&c. is convergent if

nan log (n) log2 (n) ......log" (n) {log^+1 (n)]p

is always finite for a value of p greater than unity; log2 (n) here signifying log (log n), and so on.

[See Todhunter’s Algebra, or Boole’s Finite Differences.

EXPANSION OF A FRACTION.

248 A fractional expression such as 1—6241122—63 may be expanded in ascending powers of x in three different ways.

First, by dividing the numerator by the denominator in the ordinary way, or by Synthetic Division, as shewn in (29).

Secondly, by the method of Indeterminate Coefficients (232).

Thirdly, by Partial Fractions and the Binomial Theorem.

To expand by the method of Indeterminate Coefficients, proceed as follows :—

Assume -—4 -102—— = A + Bx + Ox2 + Lx5-]rExl + &c....

1 — Ox — 11a" — 625

4z— 10x2 = A+ Bx+ Cx2+ Da3+ Ex‘+ Fa5+... ~6Ax~ 6B- 60x3- 6D.4- 6E2—... + 11A28 + ll^s + 11024 + 11Da+ ...

— 6Aa?— QBx^"— 6Gx5—...


	
Equate coefficients of like powers of a, thus


	
A =
	
o,
	

	
B- 6A =
	
4,
	
• B= 4;


	
0- 6B + 11A =
	
-10,   .
	
• 0= 14;


	
D-GO+11B- 6A =
	
o, .
	
. D = 40;


	
E-6D + 110- GB =
	
o,
	
. E = 110 ;


	
F-6EA1ID- GO =
	
0,
	
. F = 304 ;




The formation of the same coefficients by synthetic division is now exhibited, in order that the connexion between the two processes may be clearly seen.

The division of 42—1022 by 1-62+11x2—623 is as follows:—

0+4—10


+ 6 -11 + 6



24+84+240+660

-44—154—440-1210

+ 24+ 84+ 240+660

0+4+14+40+110+304+ ............

ABODE F

If we stop at the term 110x4, then the undivided remainder will be 304x5— 970x6 + 66027, and the complete result will be 40+14*+ 4028+11024 + 30427—97022+6607.

1—62+11x4—6x5

249 Here the concluding fraction may be regarded as the sum to infinity after four terms of the series, just as the original expression is considered to be the sum to infinity of the whole series.

250 If the general term be required, the method of expansion by partial fractions must be adopted. See (257), where the general term of the foregoing series is obtained.

RECURRING SERIES.

a,+aa—a,a2+a,x3+&c. is a recurring series if the coefficients are connected by the relation

251           a, — P1@,-1 I P2@,-2 I ... .1 Pm^n-m*

The Scale of Relation is


252




1—Pa—Pa2— ... —pm^m.



	
The sum of n terms of the series is equal to 253 [The first m terms — p^ (first m— 1 terms + the last term) — p^ (first m—2 terms + the last 2 terms) — p^z (first m—3 terms — the last 3 terms)


	
—    P,-10m-1 (first term — the last m — 1 terms)


	
—    P„am (the last m terms)]-? [1—Pia—p^—... —P„a"].



254 If the series converges, and the sum to infinity is required, omit all " the last terms” from the formula.

255 EXAMPLE.—Required the Scale of Relation, the general term, and the apparent sum to infinity of the series

40 + 143 + 4028 + 11024 + 30405 + 85408 + ...

Observe that six arbitrary terms given are sufficient to determine a Scale of Relation of the form 1 —px— qa?— ru3, involving three constants p, q, r, for, by (251), we can write three equations to determine these constants; namely, 110= 40p+ 14q+ 4r) The solution gives

804 = 110p+ 407+14, p = 6, q = ~ 11, r = 6. 854 = 304p+1104+40r)

Hence the Scale of Relation is 1 — 6x+1la2 — 6x3.

The sum of the series without limit will be found from (254), by putting Pi = 6, Pi = — 11, Ps = 6, m = 3.

The first three terms = 4x +14x2+ 40a8 — 62 X the first two terms =   —24x2— 8423

+1lx x the first term =         +4423

• g — 42—10x2 .

1 — 6x + 1lx2 - 628 ’ the meaning of which is, that if this fraction be expanded in ascending powers of x, the first six terms will be those given in the question.

256 To obtain more terms of the series, we may use the Scale of Relation ; thus the 7th term will be

(6 X 854-11 X 304+6 X 110) x7 = 244027.

257 To find the general term, S must be decomposed into partial fractions; thus, by the method of (235),

42—1028    _  1      2 3 1 — 6x + lla'— 628   1-3 1-22  1-a

By the Binomial Theorem (128),

1 = 1+32 ............. 3"c", 1—32

= 2+220 + ............ 2n+la", 1— 22

	
	
— —3— = — 3 — 32 — 302 —......— 3xn.





1—2

Hence the general term involving a" is

(3"+2"*1-3) xn.

And by this formula we can write the " last terms” required in (253), and so obtain the sum of any finite number of terms of the given series. Also, by the same formula we can calculate the successive terms at the beginning of the series. In the present case this mode will be more expeditious than that of employing the Scale of Relation.

258 If, in decomposing S into partial fractions for the sake of obtaining the general term, a quadratic factor with imaginary roots should occur as a denominator, the same method must be pursued, for the imaginary quantities will disappear in the final result. In this case, however, it is more convenient to employ a general formula. Suppose the fraction which gives rise to the imaginary roots to be

L+Mx   L+Mx a+ba+a2   (p—a)(q—a)'

P and q being the imaginary roots of a+ba+a2 = 0.

Suppose           p = a+i3, q = a — ip, where i = • (—1).

If, now, the above fraction be resolved into two partial fractions in the ordinary way, and if these fractions be expanded separately by the Binomial Theorem, and that part of the general term furnished by these two expansions written out, still retaining 2 and q, and if the imaginary values of 2 and q be then substituted, it will be found that the factor will disappear, and that the result may be enunciated as follows.

259 The coefficient of a" 1 in the expansion of

L+M

(a2+32)—2a+a

will be

— L {na”—3—C (», 3) a*-383+C(n, 5)a—s—...3

P (a TP)


M

3(a?+2)n-1




{(n— 1) a"-23— C (n—1, 3) an~^s




+C(n—1, 5) a"-5—...}.



260 With the aid of the known expansion of sin nO in Trigonometry, this formula for the nth term may be reduced to

/(L+Ma)3+M33 0_

V [3 (a+32)" (" 4‘

in which 0 = tan-1 B, 4 = tan-1 - M2. a

If n be not greater than 100, sin (nO— $) may be obtained from the tables correct to about six places of decimals, and accordingly the nth term of the expansion may be found with corresponding accuracy. As an example, the 100th term in the expansion of ——C—2 is readily found by this method

O — Ao -I 2

, , 41824 99 to be 1091 & ■

To determine whether a given Series is recurring or not.

261 If certain first terms only of the series be given, a scale of relation may be found which shall produce a recurring series whose first terms are those given. The method is exemplified in (255). The number of unknown coefficients p, q, 7, &c. to be assumed for the scale of relation must be equal to half the number of the given terms of the series, if that number be even. If the number of given terms be odd, it may be made even by prefixing zero for the first term of the series.

262 Since this method may, however, produce zero values for one or more of the last coefficients in the scale of relation, it may be advisable in practice to determine a scale from the first two terms of the series, and if that scale does not produce the following terms, we may try a scale determined from the first four terms, and so on until the true scale is arrived at.

If an indefinite number of terms of the series be given, we may find whether it is recurring or not by a rule of Lagrange’s.

263 Let the series be

S = A+Br+Cx+Da+&c.

Divide unity by S as far as two terms of the quotient, which will be of the form p — qx^, and write the remainder in the form S'x2, S' being another indefinite series of the same form as S.

Next, divide S by S' as far as two terms of the quotient, and write the remainder in the form S"x2.

Again, divide S' by S", and proceed as before, and repeat this process until there is no remainder after one of the divisions. The series will then be proved to be a recurring series, and the order of the series, that is, the degree of the scale of relation, will be the same as the number of divisions which have been effected in the process.

Example.—To determine whether the series 1, 3, 6, 10, 15, 21, 28, 36, 45, ...... is recurring or not.

Introducing a, we may write

S = 1+32+622+10=3+1524+ 21=5+282®+3627+4548...

Then we shall have 1 = 1 — Za + ... with a remainder

3a2 + 823 + 1524 + 245 + 3526 + &c.


Therefore



S' = 3+8x+15a2+248+35a4+&c.,

S _ 1 + 2

S' 3    9’


with a remainder



} (*+328+6:4+10.5+&c....).

Therefore we may take S" = 1+3a+ 6x2 + 10x3 + &c.


Lastly




S’

S"




= 3—x without any remainder.



Consequently the series is a recurring series of the third order. It is, in


fact, the expansion of




1

1-32+322—28



SUMMATION OF SERIES BY THE METHOD OF DIFFERENCES.

264 Rule.—Form successive series of differences until a series of equal differences is obtained. Let a, b, c, d, &c. be the first terms of the several series; then the nth term of the given series is

265 a+(n-1) b + (n 13 2) c + (" 122" 3)4+

The sum of n terms 00            । n(n—1), । n (n— 1) (n — 2) । 0

266     = na + 102 b + • - 102.3--- C+&c.

[Proved by induction.

Example:     a... 1+ 5 +15+35+ 70+126+ ... b ... 4+10+20+35+56+... c ... 6+10+15+21+... d ... 4+ 5 + 6 + ... e ...1+1+.

The 100th term of the first series

160 a _ 99.98 . , 99.98.9 7 . 99.98.9 7.96 = 1+99-4+1.2 6 + 1.2.3 4 + 1.2.3.4"

The sum of 100 terms


= 100 +



100.99,100.99.98,100.99.98.97,100.99.98.97.96

1.24 + 1.2.3 6 + 112.3.4— 4 +  1.2.3.4.5 '

267 To interpolate a term between two terms of a series by the method of differences.

Ex.—Given log 71, log 72, log 7 3, log 74, it is required to find log 72:54.

Form the series of differences from the given logarithms, as in (267),


	
log 71 a... 1-8512583 b ... 0060742 c ... -0000838 d... --0000022
	
log 72         log 73         log 74

1-85 73325     1-8633229     1-8692317

•0059904     . -0059088

-•0000816

considered to vanish.




Log 72:54 must be regarded as an interpolated term, the number of its place being 2:54.

Therefore put 2:54 for n in formula (265).

Result log 72:54 = 1-860 5 7 7 7.

DIRECT FACTORIAL SERIES.

268 Ex.: 5.7.9+7.9.11+9.11.13+11.13.154...

d = common difference of factors, m = number of factors in each term, n = number of terms, a = first factor of first term — d.

nth term = (a+nd) (a+n+1d) ............. 1 df

269 To find the sum of n terms. RULE.—From the last term with the next highest factor take the first term with the next lowest factor, and divide by (m+1) d. Proof, by induction.

Thus the sum of 4 terms of the above series will be, putting d = 2, m = 3, =44=3,     8=11.18.15.17-3.5.7.9

(3 + 1)2

Proved either by Induction, or by the method of Indeterminate Coefficients.

INVERSE FACTORIAL SERIES.

270 Ex.: 5.7.9*7.9.11 *0.11.13 *11.13.15 *

Defining d, m, n, a as before, the

nth term = ---------- 1------======—

(a-\-nd) (a+n+1 d) ... a+ln—m—1 d

271 To find the sum of n terms. Rule.—From the first term, wanting its last factor take the last term wanting its first factor, and divide by (m— 1) d.          Proof, by induction.

Thus the sum of 4 terms of the above series will be, putting d = 2, m = 3, 1        1

Proved either by Induction, or by decomposing the terms, as in the following example.

272 Ex.: To sum the same series by decomposing the terms into partial fractions. Take the general term in the simple form

1 (r- 2) 7 (r+ 2)

Resolve this into the three fractions 5(42) -*+ 5(42) by (235).

Substitute, 7, 9, 11, &c. successively for r, and the given series has for its equivalent the three series


for the nth or last term.



(21+3) (21+5) (2n+7)

273 Analogous series may be reduced to the types in (268) and (270), or else the terms may be decomposed in the manner shewn in (272).

	
	
1.2.3 2.3.4 3.4.5 4.5.6 has for its general term.





3n 2     _   1 I 5     4  (935) n (n+1) (n+2) n n+1 n+2 % ’ and we may proceed as in (272) to find the sum of n terms.

The method of (272) includes the method known as ‘ Summation by Subtraction,’ but it has the advantage of being more general and easier of application to complex series.

COMPOSITE FACTORIAL SERIES.

274 If the two series

- _5 -> 5.6 25.6.7 , 5.6.7.8.

(1—8) 5=1+5+1.2*+12.3*+1234*+...

\_3 419 3.4 3.4.5 3 3.4.5.6 4

(1-6) =1*3*1.2*+1.2.3** 1.2.34* be multiplied together, and the coefficient of a" in the product be equated to the coefficient of a" in the expansion of (1—2)8, we obtain as the result the sum of the composite series

	
5. 6.7.8 X 1.2 + 4.5. 6.7 X 2.3 + 3.4. 5.6 X 3.4



4 11

	
	
+ 2.3.4. 5 X 4.5 + 1.2.3.4 X 5.6 = — —=.





7 4

275 Generally, if the given series be

PQ+P,Q+ ... +P,-10-1 ...............(1), where Qr = 7 (r+1) (r+2) ... (r+q— 1), and Pr = [n—r) (n— r+1) ... (n— r-\-p—1); the sum of n—1 terms will be p q n+p+q—1 p+q—1 | n—2

MISCELLANEOUS SERIES.

276 Sum of the powers of the terms of an Arithmetical

Progression.


1+2+3+.+="7+1          = S,


1+22+32




_n (n+1) (2n+1)




= S2



= S3

_n (n — 1) (2n +1) (3n2 + n — 1)

30

By the method of Indeterminate Coefficients (234).

A general formula for the sum of the rth powers of 1.2.3 ... n, obtained in the same way, is

Sr = —1 n‘+1—3n+A,n-1... A^n, where A1, A2, &c. are determined by putting p = 1, 2, 3, &c. successively in the equation

1 22+2

__ 1__। A, ।__A,___ ______:_____A,___________ p+2 T r\p rf—1)(p— 1)    r (r—1) ... f—p+1)

277     am + (a + d)m+ (a+2d)"+ ... + («+nd)m

= (n+1) amf SpnaP^d + C (m,2) a"~‘d2+ C (m,3) a^d8-^ &c.

By Bin. Theor. and (276).

278 Summation of a series partly Arithmetical and partly Geometrical.

Example.—To find the sum of the series 1+3z+5a2+to n terms.

Let s = 1 + 3x+5x2+ 7a3+ ... + (2n— 1) and

.. sx —    2+323+52+ ... +(2n—3) a"—1+ (2n—1) xn

.'. by subtraction,

s (1-%) = 1+2+22+2x3+ ... +2"-1- (2n— 1) xn

	
1    __on - 1 = 1+2 — € - - (2n—1) a” 1    — X _ 1-(2n—1) a" I 22 (1—2"-1) 1—X        (1—2)2



279 A general formula for the sum of n terms of a+(a+d) r+(a+2d) 72+(a+3d) 72+&c.

c a— (a+n— 1 d) rn . dr (1-7"-1)

is S = —--------------- — -------52-

Obtained as in (278).

RULE.—Multiply by the ratio and subtract the resulting series.


280

281




—— = 1+2—a2—x3—...—a" 1 1—00




1—




1

(1—2)2




1 + 2x + 3a2—403 +...




+ na"*1 —




(n+1) a"—nan*1 (1—4)2



282 (n—1) a+(n— 2) a2—(n—3) a3—... +2a" 2—a-1


(n—1) oc—na2+a"t] (1—2)2




By (253).



283 1 + » + n(n- 1) + iLlAIA 2) + &c. = 2", LA D

1 - „ + n(n—1) _ n(n-1)(-2) + &c. = 0.

By making a = 1 in (125).

284 The series n—3 _ (n — 4) (n—5)  (n—5)(n—6)(n—7)

7-1 (n— r—1) (n— r—2) ... (n— 2r+1)


...—(—1)




• X e Y consists of — or

2




n—1




2

3 n

0

1 n

2 n




terms, and the sum is given by




if n be of the form 6m +3,




if n be of the form 6m—1,




if n be of the form 6m,




if n be of the form 6m+2.



By (545), putting p = a+y, q — xy, and applying (546).

285 The series nr—n (n—1)" + 2 (n, 1) (n- 2)7

_ n(—1(n-2) (n—3)+8c....

takes the values 0, n, 2n | n+1.

according as r is <n, = n, or =+1.

Proved by expanding (e"—1)", in two ways : first, by the Exponential Theorem and Multinomial; secondly, by the Bin. Th., and each term of the expansion by the Exponential. Equate the coefficients of xr in the two results.

Other results by putting 7 = +2, n+3, &c.

The series (285), when divided by r, is, in fact, equal to the coefficient of xr in the expansion of

286 By exactly the same process we may deduce from the function {e“—e=«}" the result that the series

n—n {n—2)7+ n(n,1) (n—4)r—&c.

takes the values 0 or 2nn, according as r is < n or = n; this series, divided byr, being equal to the coefficient of a" in the expansion of
[image: ]

POLYGONAL NUMBERS.

287 The nth term of the 7th order of polygonal numbers is equal to the sum of n terms of an Arith. Prog, whose first term is unity and common difference r—2 ; that is

= 3 {2+(n—1) (r-2)3 = n+4n (n—1) (r—2). 288 The sum of n terms

_ n (n+1) n (n — 1) (n+2) (r—2)

“  2 T “     6

By resolving into two series.


	
Order.
	
nth term.
	

	
1

2

3

4

5

6

r
	
1

n

An (n—1)

n2

4n (3n— 1) (2n— 1) n

, n(n —     —

n + -o—- (r—2)
	
1111111

1  2   3   4   5   6   7

1  3   6  10  15  21  28

1  4   9  16  25  36  49

1  5  12  22  35  51  70

1  6  15  28  45  66  91

1, r, 3+3(7—2), 4+6(r-2), 5+10 (r-2),

6 + 15(r—2), &c.




In practice—to form, for instance, the 6th order of polygonal numbers—write the first three terms by the formula, and form the rest by the method of differences.

Ex.:          1 6 15 28 45 66 91 120 ...

5 9 13 17 21 25 29 ...

[r- 2 = 4]            4 4 4 4 4 4 ...

FIGURATE NUMBERS.

289 The nth term of any order is the sum of n terms of the preceding order.

The nth term of the rth order is

nl±1) ;1+r=2) = H(,»-1) By (98).

290 The sum of n terms is

n(n+1)... (n+,-1) = H(+1,1-1)


	
Order.
	
Figurate Numbers.
	
nth term.


	
1
	
1,
	
1,
	
1,
	
1,
	
1,
	
1
	
1


	
2
	
1,
	
2,
	
3,
	
4,
	
5,
	
6
	
n


	
3
	
1,
	
3,
	
6,
	
10,
	
15,
	
21
	
n (n+1)

1.2


	
4
	
1,
	
4,
	
10,
	
20,
	
35,
	
56
	
n (n+1) (n+2)

1.2.3


	
5
	
1,
	
5,
		
2
	
70,
	
126
	
n (n+1) (n+2) (n+3)


			
1.2.3.4


	
6
	
1,
	
6,
	
21,
	
56,
	
126,
	
252
	
n (n + 1) (n + 2) (n+3) (n+4)

1.2.3.4.5




HYPERGEOMETRICAL SERIES.


291



a(a+1)B(B+1)

1.2.y(y+1) "

, a(a+1) (a+2) B (3+1) (B+2)


a3+&c.



T 1.2.3.y(y+1) (y+2)

is convergent if x is < 1, and divergent if a is > 1; and if a = 1, the series is convergent if y — a — 3 is positive, divergent if y— a — 3 is negative, and divergent if y—a—3 is zero.


(239 ii.)

(239 iv.)

(239 v.)



Let the hypergeometrical series (291) be denoted by F(a, 3, Y) ; then, the series being convergent, it is shewn by induction that

292 E’sPs}; z+1 = 1-        concluding with

1 k2 1 — K2,-1_____

1 —&C....        1—k2,%2,

where K1, 2, 73, &c., with 22,, are given by the formulae

, _ (a+r—1) (y+r—1—B) a (y+2r—2) (y+2r—1)

J _ (B+r) (y+r—a) a (y+2r— 1) (y+2r)

, — F(a+r, 8+7+1, y+2+1) F (a+r, B+r, y+2r)

The continued fraction may be concluded at any point with k2,22,. When r is infinite, 22, — 1 and the continued fraction is infinite.

293 Let


ac6



f () = 1_ 42 ___a*      __________________


+&c.



• ‘ - 1.y 1.2.y(y+1) 1.2.3.y(y+1)(y+2)

• 22 the result of substituting — for a in (291), and making

3 = a = go . Then, by last, or independently by induction, f(y+1) _ 1 Pis P2 Pm fM 1+ 1+ 1+ ••• + 1-&c.

22

with Pm = —-----------

(Y-M— 1) (Y-M)

294 In this result put 7=1 and 2 for a, and we obtain by Exp. Th. (150),

—--= 2— — 2— 0 the 7th component being -»-e"-Fe™ 1+ 3+ 5 + &c.          -        8 2r— 1 Or the continued fraction may be formed by ordinary division of one series by the other.

m

295 en is incommensurable, m and n being integers. From the last and (174), by putting a — —.

INTEREST.

If r be the Interest on £1 for 1 year, n the number of years,

P the Principal,

A the amount in n years. Then

296 At Simple Interest A = P (1+nr).

297 At Compound Interest A = P (1+r)".


By (84)



298 But if the payments of )         /       \ nq

Interest be made ( A=P(1+.—) times a year ...   ... )1

If A be an amount due in n years time, and P the present worth of A. Then

299 At Simple Interest     P = —A—        By (296) 1 + nr

300 At Compound Interest P = - A      By


301




Discount — A— P.




ANNUITIES.




302 The amount of an Annu- )       p

ity of a in 7 years, ( = n — — o—- 7 at Simple Interest... )

303 Present value of same = n+1n (n—1)r 1-nr




By (82)

By (299)




304 Amount at Compound )   (1 -- r)n--1

Interest ...... 5    (1+7)—1

Present worth of same — ———•——

(1+r)—1




By (85)

By (300)




305 Amount when the payments of Interest are made q times per annum.........




Present value of same



[image: ]




306




Amount when the payments of the Annuity are made m times per annum.........




(1+r)"—1

1

m {(1+r)n— 1}




Present value of same




1—(1+r)7

1

m {(1—r)n— 1}




307




Amount when the interest is paid q times and the Annuity m times per annum ...




n nq

1+ ) — 1

_______9/_______

m {(1 + 7) -1}




Present value of same



[image: ]



PROBABILITIES.

309 If all the ways in which an event can happen be m in number, all being equally likely to occur, and if in n of these m ways the event would happen under certain restrictive conditions; then the probability of the restricted event happening is equal to n — m.

Thus, if the letters of the alphabet be chosen at random, any letter being equally likely to be taken, the probability of a vowel being selected is equal to 26. The number of unrestricted cases here is 26, and the number of restricted ones 5.

310 If, however, all the m events are not equally probable, they may be divided into groups of equally probable cases. The probability of the restricted event happening in each group separately must be calculated, and the sum of these probabilities will be the total probability of the restricted event happening at all.

EXAMPLE.—There are three bags A, B, and C.

A contains 2 white and 3 black balls

B „ 3      „     4      „

C » 4 » 5

A bag is taken at random and a ball drawn from it. Required the probability of the ball being white.

Here the probability of the bag A being chosen = }, and the subsequent probability of a white ball being drawn = 3.

If a be the number of ways in which an event can happen, and b the number of ways in which it can fail; then the

311 Probability of the event happening = —L6

312 Probability of the event failing    = 46

Thus           Certainty = 1.

If p, p be the respective probabilities of two independent events; then

313 Probability of both happening = pp .

314      ,3     of not both happening = 1—pp .

315       ,,     of one happening and one failing

= p-\-p — dpp.

316       „,     of both failing = (1-p) (1—p).

If the probability of an event happening in one trial be p, and the probability of its failing, q; then

317 Probability of the event happening r times in n trials = C (n, r) prqn~r.

318 Probability of the event failing r times in n trials

= C (n, r)pn~rqr. [By induction.

319 Probability of the event happening at least r times in n trials = the sum of the first n-r-\-\ terms in the expansion of (p-\~q)n-

320 Probability of the event failing at least r times in n trials = the sum of the last n—r+1 terms in the same expansion.

321 The number of trials in which the probability of the same event happening amounts to p

log (1—p)

f                      q log (1 —p)

From the equation (1— pfi = 1— p .

322 DEFINITION.—When a sum of money is to be received if a certain event happens, that sum multiplied into the probability of the event is termed the expectation.

EXAMPLE.—If three coins be taken at random from a bag containing one sovereign, four half-crowns, and five shillings, the expectation will be the sum of the expectations founded upon each way of drawing three coins. But this is also equal to the average value of three coins out of the ten; that is, 1oths of 45 shillings, or 13s. 6d.

323 The Probability that, after r chance selections of the numbers 0, 1, 2, 3 ... n, the sum of the numbers drawn will be s, is equal to the coefficient of a® in the expansion of

(a”+a1+a+ ... +%")" + (n+1)".

324 The probability of the existence of a certain cause of an observed event out of several known causes, one of which must have produced the event, is proportional to the a priori probability of the cause existing multiplied by the probability of the event happening from it if it does exist.

Thus, if the a priori probabilities of the causes be P1, P2, ... &c., and the corresponding probabilities of the event happening from those causes Q1, Q2 ... &c.; then, the probability of the rth cause having produced the event is

E(PQ)

325 If P1, P2 ... &c. be the a priori probabilities of a second event happening from the same causes respectively; then, after the first event has happened, the probability of the

second happening is ■ 2(PQ)

....POP'

For this is the sum of such probabilities as          which is the probability of the rth cause existing multiplied by the probability of the second event happening from it.

Ex. 1.—Suppose there are

4 vases containing each 5 white and 6 black balls,

	
2    vases containing each 3 white and 5 black balls, and 1 vase containing 2 white and 1 black ball.



A white ball has been drawn, and the probability that it came from the group of 2 vases is required.

Here          P, = 4, P, = 2, A = 1;
[image: ]

Therefore, by (324), the probability required is

2.3

PL 7.8        99

2 4.5 2.31.2 F 427

7.117.87.3


Ex. 2.—After the white ball has been drawn and replaced, a ball is drawn again; required the probability of the ball being black.

Here P=6, P= 5, P= l. O           O

The probability, by (325), will be

	
4.5.6   2.3.5 1.2.1


	
7.11.11 17. 8.87. 3.3   58639


	
4.5 2.31.2 = 112728


	
7.117.8 7.3



If the probability of the second ball being white is required, PPPs must be employed instead of PPPs.

326 The probability of one event at least happening out of a number of events whose respective probabilities are a, b, c, &c., is          P- P,+P,- P,+&c. where Pi is the probability of 1 event happening, P2          ,3            93          2             j j and so on. For, by (316), the probability is

	
	
1    — (1 — a) (1 — b) (1—-c) ... = ^a—^ab-^^abc—, ...





327 The probability of the occurrence of r assigned events and no more out of n events is

Q— Q-+1+ Qr+2~ Q,+s+&c., where Qr is the probability of the r assigned events; Q,+1 the probability of r+1 events including the r assigned events.

For if a, b, c ... be the probabilities of the r events, and a', b‘, c ... the probabilities of the excluded events, the required probability will be

abc ... (1-4) (1-U) (1 — c) ...

= abc ... (1 — ^a -\-^ab'~^ab'c -\-...)

328 The probability of any r events happening and no more

IS             ^Qr 2Q,1+2Q,42—&c.

NOTE.—If a = b = c = &c.; then ZQ, = C {n} r) Q,, &c.

INEQUALITIES.


330




@i+a,— ...An b,+b,+ ••• +6,




lies between the greatest and least of



the fractions C1, 42, ... «n, the denominators being all of

bi 62

the same sign.

PROOF.—Let 7 be the greatest of the fractions, and ~ any other; then ar < lcbr. Substitute in this way for each a. Similarly if k be the least fraction.

331               d+b > Jab.

332 ai+oftd, «/ o

n

or,        Arithmetic mean > Geometric mean.

PROOF.—Substitute both for the greatest and least factors their Arithmetic mean. The product is thus increased in value. Repeat the process indefinitely. The limiting value of the G. M. is the A. M. of the quantities.

999              am+bm . /a+b\m P 2 7 (2)

excepting when m is a positive proper fraction.

Proof: a"+b =(d+6) {(1+4)"+(1- a)"}

where x = a—6. Employ Bin. Th.


334



[image: ]



[image: ]



aQ-b - •

excepting when m is a positive proper fraction.

P

Otherwise. — The Arithmetic mean of the mt11 powers is greater than the mth power of the Arithmetic mean, excepting when m is a positive proper fraction.

PROOF.—Similar to (332). Substitute for the greatest and least on the left side, employing (333).

336 If a and m are positive, and a and mx less than unity; then             (1+a)-" >1— mx.        (125, 240).

337 If x, m, and n are positive, and n greater than m; then, by taking x small enough, we can make

1 + nx > (1 +a)".

For a may be diminished until 1+na is > (1 — ma)-1, and this is > (1 +a)™, by last.

338 If x be positive, if a be positive and > 1, if x be positive and < 1,


log (1+a) < x

,2

log (1+a) > x - 2

log 4 > a

1—X




(150).

(155, 240).

(156).



	
339 When n becomes infinite in the two expressions 1.3.5 ... (2^-1) J 3.5.7 ... (2^ + 1) 2.4.6. .. 2n an 2.4.6. ..2n the first vanishes, the second becomes infinite, and their product lies between 2 and 1.



Shewn by adding 1 to each factor (see 73), and multiplying the result by the original fraction.

340 If m be > n, and n > a, mfa\n . _ (n—a\"

—-— is < —!— M—A/     \n—a/

341 If a, b be positive quantities,


Similarly




aahbcc >




aabb is >
[image: ]





(a+b+c\d*tb+c

\ 3   )



These and similar theorems may be proved by taking logarithms of each side, and employing the Expon. Th. (158), &c.

SCALES OF NOTATION.

342 if A be a whole number of n+1 digits, and r the radix of the scale, N ~                          +p1r+p0, where pn, pn^ ... Po are the digits.

343 Similarly a radix-fraction will be expressed by 2+2+2+80.

Y° Y where P1, 22, &c. are the digits.

EXAMPLES: 3426 in the scale of 7 = 3.7+4.72+2.7+6

1045 in the same scale = 1+0 +     5 7              73     7*

344 Ex.—To transform 34268 from the scale of 5 to the scale of 11.

RULE.—Divide successively by the new radix.

111 34268

11 | 1343 -t

1140—3

1-9


Result 193^ in which t stands for 10.



345  Ex.—To transform ^0el from the scale of 12 to that of 7, e standing for 11, and t for 10.

RULE.—Multiply successively by the new radix.

tOel

7

5:1657

_____7

6-19.1

7

10497

___7

0-2971         Result -5610...

346 Ex.—In what scale does W represent the number 475 in the scale of ten ?

Solve the equation 212+10r+7 = 475.


[178.



Result 7 = 13.

347 The sum of the digits of any number divided by r— 1 leaves the same remainder as the number itself divided by r—1; r being the radix of the scale.                    (401).

348 The difference between the sums of the digits in the even and odd places divided by 7+1 leaves the same remainder as the number itself when divided by r +1.

THEORY OF NUMBERS.

349 If a is prime to b, ~ is in its lowest terms.

Proof.—Let - = “1, a fraction in lower terms. b 01

Divide a by 01, remainder C2 quotient 41, b by b^ remainder b2 quotient A1 ; and so on, as in finding the H. C. P. of a and a,, and of b and bx (see 30). Let a, and bn be the highest common factors thus determined.

Then, because I = 41   .. % = d 7191 = C2               (70) ; b 01 b     0—7101     02

and so on; thus — — — = —- = OC....... = — b             b^                    bn

Therefore a and b are equimultiples of an and bn ; that is, a is not prime to b if any fraction exists in lower terms.

350 If a is prime to b, and , = — ; then a and b' are b b equimultiples of a and b.

PROOF.—Let - reduced to its lowest terms be 2. Then 2 = -, and b       .I   I b since p is now prime to q, and a prime to b; it follows, by 849, that 2 is neither greater nor less than F ; that is, it is equal to it. Therefore, &c.

351 if ab is divisible by c, and a is not; then b must be.

	
	
— T , ab               a q PROOF.—Let -— = q      -—— -





C                   C b

But a is prime to c; therefore, by last, b is a multiple of c.

352 if a and b be each of them prime to c, ab is prime to c.                                                     By last.

353 If abed ... is divisible by a prime, one at least of the factors a, b, c, &c. must also be divisible by it.

Or, if p be prime to all but one of the factors, that factor is divisible by p.                                          (351).

354 Therefore, if an is divisible by p, p cannot be prime to a; and if p be a prime it must divide a.

355 If a is prime to b, any power of a is prime to any power of b.

Also, if a, b, c, &c. are prime to each other, the product of any of their powers is prime to any other product of their powers.

356 No expression with integral coefficients such as A+Ba+Ca2+ ... can represent primes only.

PROOF.—For it is divisible by a if A = 0; and if not, it is divisible by A, when x = A.

357 The number of primes is infinite.

PROOF.—Suppose p the greatest prime. Then the product of all primes up to p plus unity is- either a prime, or divisible by a prime greater than p.

358 If a be prime to b, and the quantities a, 2a, 3a, ... (b— 1) a be divided by b, the remainders will be different.

PROOF.—Assume ma—nb = m'a—nb, m and n being less

than b,                a = ——"1,        Then by (350).

359 A number can be resolved into prime factors in one way only.                                       By (353). 360 To resolve 5040 into its prime factors.

RULE.—Divide by the prime numbers successively.

2x5 | 5040

	
2 | 504


	
2 | 252


	
2 | 126



7 163

	
3 19



3 Thus 5040 = 24.33.5.7.

361 Required the least multiplier of 4704 which will make the product a perfect fourth power.

By (19 6),                 4 704 = 25. 3.72.

Then               25. 31. 7x 28.33. 72 = 28. 34. 7 = 84*.

The indices 8, 4, 4 being the least multiples of 4 which are not less than 5, 1, 2 respectively.

Thus 2.33.7= 3528 is the multiplier required.

362 All numbers are of one of the forms 2n or 2n—1


	
99
	
93
	
2n or 2n—1


	
99
	
99
	
3n or 3n-1


	
99
	
55
	
4 or 4n—1 or 4n+2


	
33
	
55
	
4n or 4n-1 or 4n— 2


	
93
	
55
	
5n or 5n-1 or 5n-2


	
and so on.
		



363 All square numbers are of the form 5n or 5n—1.

Proved by squaring the forms 5n, 5n ±1, 5n =L 2, which comprehend all numbers whatever.

364 All cube numbers are of the form 7n or 7n—1. And similarly for other powers.

365 The highest power of a prime 2, which is contained in the product m, is the sum of the integral parts of

m m m o , 9, 9, &C.

2

For there are — factors in m which p will divide; — which it will divide a second time; and so on. The successive divisions are equivalent to dividing by

mm m + m +

pP . pP ... &c. = pP 7

EXAMPLE.—The highest power of 3 which will divide | 29. Here the factors 3, 6, 9, 12, 15, 18, 21, 24, 27 can be divided by 3. Their number is 29

— = 9 (the integral part).

The factors 9, 18, 29 can be divided a second time. Their number is 29

	
	
— = 3 (the integral part).





29

One factor, 27, is divisible a third time. — = 1 (integral part).

9+3+1 = 13; that is, 313 is the highest power of 3 which will divide | 29.

366 The product of any r consecutive integers is divisible by r.


n (n—1) ... (n — r+1) r




PROOF : by (96).




is necessarily an integer,



367 If n be a prime, every coefficient in the expansion of (a+b)", except the first and last, is divisible by n. By last.

368 If n be a prime the coefficient of every term in the expansion of (a + b^c ...)", except an, bn, &c., is divisible by n.

By last. Put 3 for (b+c+ ...).

369 Fermat’s Theorem.—If p be a prime, and N prime to p; then          N”-1— 1 is divisible by p.

Proof:    Np = (1+1+ ...)p = N-[-Mp. By last. 370 if p be any number, and if 1, a, b. c, ... (p — 1) be all the numbers less than, and prime to p; and if n be their number, and a any one of them; then a"— 1 is divisible by p.

Proof.—If a, ax, bx ... (p — 1) x be divided by p, the remainders will be all different and prime to p (as in 358); therefore the remainders will be 1, a, b, c ... (p — 1); therefore the product xnabc ... (p —1) = abc ... (p — 1)+Mp.

371 Wilson’s Theorem.—If p be a prime, and only then, 1+p—1 is divisible by p.

Put p — 1 for r and n in (285), and apply Fermat’s Theorem to each term.

372 If p be a prime = 2n+1, then (n)2+(— 1)" is divisible by p.

Proof.—By multiplying together equi-distant factors of \p—1 in Wilson’s Theorem, and putting 2n+1 for p.

373 Let N = apbqcr ... in prime factors, the number of integers including 1, which are less than n and prime to it, is

N(1 - —) (1 - 1) (1 - —) \ a J \ b/ \ cj

Proof.—The number of integers prime to N contained in ap is ap — —. Similarly in bq} cr} &c. Take the product of

these.

Also the number of integers less than and prime to (NxMX&c.) is the product of the corresponding numbers for N, M, &c. separately.

374 The number of divisors of N, including 1 and N itself, is = (p+1) (q+1) (r+1) .... For it is equal to the number of terms in the product

(1+a+... +a”) (! + & + ...+&«) (1 +c+ ... +cr) &c.

375 The number of ways of resolving N into two factors is half the number of its divisors (374). If the number be a square the two equal factors must, in this case, be reckoned as two divisors.

376 If the factors of each pair are to be prime to each other, put p, q, , &c. each equal to one.

377 The sum of the divisors of N is a”*1—1 . be*1—1 . c‘*1—1 a—1    6 — 1    c — 1

PROOF.—By the product in (374), and by (85).

378 If p be a prime, then the p — 1th power of any number is of the form mp or mp+1. By Fermat’s Theorem (369).

Ex.—The 12th power of any number is of the form 13m or 13m +1.

379 To find all the divisors of a number; for instance, of 504.


	
I.
	
II.
	
1


	
504
	
2
	
2


	
252
	
2
	
4


	
126
	
2
	
8


	
63
	
3
	
3    6 12   24


	
21
	
3
	
9   18 36   72


	
7
	
7
	
7   14 28   56   21   42


			
84 168 63 126 252 504




EXPLANATION. —- Resolve 504 into its prime factors, placing them in column II.

The divisors of 504 are now formed from the numbers in column II., and placed to the right of that column in the following manner:—

Place the divisor 1 to the right of column II., and follow this rule— ^Multiply in order all the divisors which are written doivn by the next number in column II., which has not already been used as a multiplier: place the first new divisor so obtained and all the following products in order to the right of column II.


380 S, the sum of the nth numbers is divisible by 2n+1.




powers of the first n natural



PROOF:              a (x2—12) (x2— 22) ... (x2—12)

constitutes 2n+1 factors divisible by 2n+1, by (366). Multiply out, rejecting a, which is to be less than 2n+1. Thus, using (372),

«?n— S,a?n-2+S,22—4- ... S,-2+(—1)" (Ln)2 = M (2n+1).

Put 1, 2, 3 ... (n —1) in succession for a, and the solution of the (n— 1)

equations is of the form Sr = M (fin + 1).

THEORY OF EQUATIONS.

FACTORS OF AN EQUATION.

General form of a rational integral equation of the nth degree.

400   Poa"+pa"—1+p,a—*+ ... +pn-!^+pn = 0.

The left side will be designated f(x) in the following summary.

401 If/W be divided by x—a, the remainder will be f(a). By assuming f(x) = P (x—a) + R.

402 if a be a root of the equation f(x) = 0, then f(a) = 0.

403 To compute f(a) numerically; divide f(x) by x—a, and the remainder will bef(a).                         [401

404 EXAMPLE.—To find the value of 4x°- 327+1224— a+10 when a=2 4-3+12 +0 -1 +0 +10 2    8+10+44+88+174+348

4+5+22+44+87+174+358 Thus f(2) = 358.

If a, b^ c ... k be the roots of the equation f (x) = 0; then, by (401) and (402),

405 f(x) =p(a—a) (x— b) (x—c) ... (x— k).

By multiplying out the last equation, and equating coefficients with equation (400), considering Po = 1, the following results are obtained:—

406 — P1 — the sum of all the roots of f (x).

{the sum of the products of the roots taken two at a time.

the sum of the products of the roots taken three at a time.

.     (the sum of the products of the roots taken (DPFt rat a time.

(—1)"P, = product of all the roots.

407 The number of roots of f(x) is equal to the degree of the equation.

408 Imaginary roots must occur in pairs of the form a+3v — 1, a— • — 1.

The quadratic factor corresponding to these roots will then have real coefficients; for it will be

a?—2az+a?+32.            [405, 226

409 If/W be of an odd degree, it has at least one real root of the opposite sign to pn.

Thus a7—1 = 0 has at least one positive root.

410 If/(®) be of an even degree, and pn negative, there is at least one positive and one negative root.

Thus a’— 1 has +1 and —1 for roots.

411 If several terms at the beginning of the equation are of one sign, and all the rest of another, there is one, and only one, positive root.

Thus a5+2a4+3a3+a2— 5a— 4 = 0 has only one positive root.

412 If all the terms are positive there is no positive root. 413 If all the terms of an even order are of one sign, and all the rest are of another sign, there is no negative root.

414 Thus a’— x3+a2— a+1 = 0 has no negative root. 415 If all the indices are even, and all the terms of the same sign, there is no real root; and if all the indices are odd, and all the terms of the same sign, there is no real root but zero.

Thus a4+a2+1 = 0 has no real root, and a5+a3+a = 0 has no real root but zero. In this last equation there is no absolute term, because such a term would involve the zero power of x, which is even, and by hypothesis is wanting.

DESCARTES’ RULE OF SIGNS.

416 In the following theorems every two adjacent terms in f^x), which have the same signs, count as one " continuation of sign”; and every two adjacent terms, with different signs, count as one change of sign.

417 /«, multiplied by {x — a), has an odd number of changes of sign thereby introduced, and one at least.

418 f(<0 cannot have more positive roots than changes of sign, or more negative roots than continuations of sign.

419 When all the roots of f(x) are real, the number of positive roots is equal to the number of changes of sign in f (x) ; and the number of negative roots is equal to the number of changes of sign in f(—x).

420 Thus, it being known that the roots of the equation a*—102*+352?—50:+24 = 0

are all real; the number of positive roots will be equal to the number of changes of sign, which is four. Also f(—2)=a+ 1023 + 35x2 + 502 + 24 = 0, and since there is no change of sign, there is consequently, by the rule, no negative root.

421 If the degree of f(x) exceeds the number of changes of sign in f (x) and f (—x) together, by u, there are at least u imaginary roots.

422 If, between two terms in f (x) of the same sign, there be an odd number of consecutive terms wanting, then there must be at least one more than that number of imaginary roots; and if the missing terms lie between terms of different sign, there is at least one less than the same number of imaginary roots.

Thus, in the cubic equation a3 + 4x — 7 = 0, there must be two imaginary roots.

And in the equation a—1 = 0 there are, for certain, four imaginary roots.

423 If an even number of consecutive terms be wanting in f(x), there is at least the same number of imaginary roots.

Thus the equation a5 +1 = 0 has four terms absent; and therefore four imaginary roots at least.

THE DERIVED FUNCTIONS OFf(x).

Rule for forming the derived functions.

424 Multiply each term by the index of a, and reduce the index by one; that is, differentiate the function with respect to X.

Example.—Take

f (x) = a5+ a4+ a3— a?—2-1 f‘(x) = 5a4+ 4x3+32—2—1

f Qa") = 2023+12x3+6 —2 f^x^ 6022+24+6 f‘(x) = 120. +24

f(x) = 120

f (x), /2 (x), &c. are called the first, second, &c. derived functions of f (x).

425 To form the equation whose roots differ from those of f(x) by a quantity a.

Put &=y+a in f{xf and expand each term by the Binomial Theorem, arranging the results in vertical columns in the fol-lowing manner:—

f(a+y) = (a+y)5+(a+y)*+(a+y):—(a+y)?-(a+y)-1 = a5  +  a’  +  a?  —  a?  —

+ ( 5a + 1) 34

+ f

Comparing this result with that seen in (424), it is seen that

426          f(a+y) = f(a)+fl(a)y

[image: ]



so that the coefficient generally of yr in the transformed

.    . fr(a)

equation is ---

T

427 To form the equation most expeditiously when a has a numerical value, divide f(x) continuously by a — a, and the successive remainders will furnish the coefficients.

Example.—To expand f(yA2) when, as in (425), f (x) = a5+a+a— a2 — a - 1.

Divide repeatedly by a — 2, as follows :—•


1 + 1 + 1 - 1 - 1-1

+ 2 + 6 + 14 + 26 + 50


	
2

2

2

2
	
1 + 3 + 7 + 13 + 25

+ 2+10 + 34 + 94
	
+ 49 =/(2)


	
1 + 5 +17 + 47

+ 2 +14 + 62
	
+ 119
	
=5(2)


	
1 + 7 +31 + 2 +18
	
+ 109
	
12


	
1+9

+ 2 11+11

i = r
	
+49 =13’

_ £*(2)

4

(2)

5







That these remainders are the required coefficients is seen by inspecting the form of the equation (426) ; for if that equation be divided by x—a = y repeatedly, these remainders are obviously produced when a = 2.



Thus the equation, whose roots are each less by 2 than the roots of the proposed equation, is y5 + 1ly4 + 49y + 109y2 + 119y + 49 = 0.

428 To make any assigned term vanish in the transformed equation, a must be so determined that the coefficient of that term shall vanish.

Example.—In order that there may be no term involving y* in equation (426), we must have f“(a) = 0.

Eind f* (a) as in (424) ;

thus               120a+24 = 0;    .. a = — }.

The equation in (424) must now be divided repeatedly by a + } after the manner of (427), and the resulting equation will be minus its second term.

429 Note, that to remove the second term of the equation f(x) = 0, the requisite value of a is = — 21 ; that is, the coefficient of the second term, with the sign changed, divided by the coefficient of the first term, and by the number expressing the degree of the eguation.

430 To transform f(x) into an equation in y so that y = $ (x), a given function of x, put a=d-l(y), the inverse function of y.

EXAMPLE.—To obtain an equation whose roots are respectively three times the roots of the equation a3— 6x + 1 = 0. Here y = a; therefore a =


3 3‘




and the equation becomes



3——8+1 = 0, or y-54J+27 = 0,

46    •

431 To transform f(x) = 0 into an equation in which the coefficient of the first term shall he unity, and the other coefficients the least possible integers.

EXAMPLE.—Take the equation

28828+24022-176- 21 = 0.

Divide by the coefficient of the first term, and reduce the fractions ; the


equation becomes



3 511   7 -«8+6 a—18 * - 96=0.

Substitute • for a, and multiply by id; we get ,5%, 1173 773 > y+ 692—18 3 —96 =0

Next resolve the. denominators into their prime factors, 3 5k 9 1172 7U _ -9+2.33 2.33 J 25.3 0.

The smallest value must now be assigned to k, which will suffice to make each coefficient an integer. This is easily seen by inspection to be 22. 3 = 12, and the resulting equation is y8+10y2—88y—126 = 0, the roots of which are connected with the roots of the original equation by the relation                      y = 12x.

EQUAL ROOTS OF AN EQUATION.

By expanding f(x-[-z) in powers of z by (405), and also by (426), and equating the coefficients of z in the two expansions, it is proved that


432   f()=fl).+ f(e).+f(r) + &c.,

	
• Qv—a) Qx—o) (R—C) from which result it appears that, if the roots a, b, c, &c. are all unequal, f (x) and f‘ (x) can have no common measure involving x. If, however, there are 7 roots each equal to a, s roots equal to b, t roots equal to c, &c., so that



f(x) = p^^—ay {x—b)s (^—cY then

433 f (x) = zf (a) + ^fM + EAL + &c.; Z— a x—b and the greatest common measure of f(x) and f(x) will be 444 {x^ay^ {x—by~i (x—cy^... When x = a, f(xf /'(«), ... fr-1(x) all vanish. Similarly when x = b, &c.

Practical method of finding the equal roots.

445 Let f()=xxx;x|x}...xm where X1 = product of all the factors like (x—a), x}=        „        „        (—a)?, X}=        „        „        (—a)".

Find the greatest common measure of f(x) and f‘ (x) = F (x) say, ,,           „            F^x) and F («) = F, (x), „            „            F2 (x) and F (x) = Fa (x),

Lastly, the greatest common measure of Em-i(x) and F'm.1(x') = Fm(fi) = 1.

Next perform the divisions f (x) - F (x) = $1 (x) say, F^} + F^ (e) = Pa (e),

E‘-1(x) — 1 = $„().

And, finally,                 01 (x) : $2 (x) = X1, $2 (x) — $3 («) = Xa,

	
-1 () - $.n (a) = Xm^,



Fm.^x) = m(x) = X,                 [T. 82.

R

The solution of the equations X, = 0, X,= 0, &c. will furnish all the roots of f(x) ; those which occur twice being found from X, ; those which occur three times each, from X3; and so on.

446 If f(x) has all its coefficients commensurable, X1,X2,X3, &c. have likewise their coefficients commensurable.

Hence, if only one root be repeated 7 times, that root must be commensurable.

447 In all the following theorems, unless otherwise stated, f (x) is understood to have unity for the coefficient of its first term.

LIMITS OF THE ROOTS.

448 If the greatest negative coefficients in f(x) and f(—x) be 2 and q respectively, then p+1 and — (q+1) are limits of the roots.

449 If a" r and a" 8 are the highest negative terms in f(x) and f(—x) respectively, (1+Vp) and —(1+.g) are limits of the roots.
[image: ]


451 If each negative coefficient be divided by the sum of all the preceding positive coefficients, the greatest of the fractions so formed + unity will be a superior limit to the positive roots.

452 Newton's method.—Puta=h+y in f(x); then, by (426), f^+y) =f(h)+yf"(1)+2 f"(h) + ...+^fUO = o.

Take h so that f^^ f'\^\ f2 W (h) are all positive; then h is a superior limit to the positive roots.

453 According as f(a) and f (b) have the same or different signs, the number of roots intermediate between a and b is even or odd.

454 Rolle’s Theorem.—One real root of the equation f (x) lies between every two adjacent real roots of f(x).

455 CoR. 1.—-f(x) cannot have more than one root greater than the greatest root in f (x) ; or more than one less than the least root in f‘(x).

456 CoR. 2.—If f (x) has m real roots, fr(x) has at least m—r real roots.

457 CoR. 3.—If fr(x) has u imaginary roots, f(x) has also u at least.

458 CoR. 4.—If a, (3, y ... k be the roots of f (a) ; then the number of changes of sign in the series of terms

f(y).f(-0) is equal to the number of roots of f (x).

NEWTON’S METHOD OF DIVISORS.

459 To discover the integral roots of an equation.

EXAMPLE.—To ascertain if 5 be a root of


5 ) 105

21

-176

5 ) -155

-31

86

5 ) 55

11

-6

5) -5

-1



a4—623+8622-1 762 +105 = 0.

if 5 be a root it will divide 105. Add the quotient to the next coefficient. Result, —155.

If 5 be a root it will divide —155. Add the quotient to the next coefficient; and so on.

If the number tried be a root, the divisions will be effectible to the end, and the last quotient will be —1, or — 20, if Po be not unity.

460 In employing this method, limits of the roots may first be found, and divisors chosen between those limits.

461 Also, to lessen the number of trial divisors, take any integer m; then any divisor a of the last term can be rejected if a—m does not divide f (m).

In practice take m = +1 and — 1.

To find whether any of the roots determined as above are repeated, divide f(x) by the factors corresponding to them, and then apply the method of divisors to the resulting equation.

Example.—Take the equation

«®+227—17.*—2623+882*+72.—144 = 0.

	
Putting a=1, we find f(1) = —24. The divisors of 144 are 1, 2, 3, 4,   6, 8,   9,   12, 16,   24,   &c. The values of a—m (since m =1) are therefore 0, 1, 2, 3,  5, 7,  8,  11, 15,  23,  &c. Of these last numbers only 1, 2, 3, and 8 will divide 24.  Hence 2, 3, 4, and 9 are the only divisors of 144 which it is of use to try.  The only integral roots of the equation will be found to be ± 2 and ± 3.



462 If f(x) and F (X) have common roots, they are contained in the greatest common measure of f (x) and F (X).

463 If f(x) has for its roots a, ^(a), b, p(b) amongst others; then the equations f(x) =0 and f{p(x)}= 0 have the common roots a and b.

464 But, if all the roots occur in pairs in this way, these equations coincide.

For example, suppose that each pair of roots, a and b, satisfies the equation a+b = 2r. We may then assume a—6 = 2z. Therefore f(z+r) = 0. This equation involves only even powers of z, and may be solved for a2.

465 Otherwise: Let ab = z ; then f(x) is divisible by (x— a) (z— b) = a2-2ra+z. Perform the division until a remainder is obtained of the form Px + Q, where P and Q only involve z.

The equations P = 0, Q= 0 determine z, by (462) ; and a and b are found from a + b = 2r, ab = z.

RECIPROCAL EQUATIONS.

466 A reciprocal equation has its roots in pairs of the form

	
	
	
a,    —; also the relation between the coefficients is a







Pr = Pn-n or else Pr = —' Pn-r-

467 A reciprocal equation of an even degree, with its last term positive, may be made to depend upon the solution of an equation of half the same degree.

468 Example: 42— 24x5+ 57a4— 73a3+ 57a2— 242+4 = 0 is a reciprocal equation of an even degree, with its last term positive.

Any reciprocal eqnation which is not of this form may be reduced to it by dividing by a+1 if the last term be positive; and, if the last term be negative, by dividing by x—1 or a2—1, so as to bring the equation to an even degree. Then proceed in the following manner :—

469 First bring together equidistant terms, and divide the equation by a3; thus

4(23+ 1)-24(22 + 1)+57(x + 1)-73 = 0.

By putting x + — = y, and by making repeated use of the

1 /       1 \2 relation a2 4--- = ( a — —) — 2, the equation is reduced to a cubic in y, the degree being one-half that of the original equation.

Put p for x + 1, and for xm + 1.

470 The relation between the successive factors of the form pm may be expressed by the equation

P.   PPm—1 Pm-2.

471 The equation for 2m, in terms of p, is

pm = p=_ mp*-+ m (m - 3) p—- ...

+(-1) " (n—-1) ... (-2+1) p"*+ ...

By (545), putting q = 1.

BINOMIAL EQUATIONS.

472 If a be a root of xn—1 = 0, then am is likewise a root where m is any positive or negative integer.

473 if a be a root of a”+1 = 0, then a?m+1 is likewise a root.

474 If m and n be prime to each other, a"— 1 and a"— 1 have no common root but unity.

Take pm — qn = 1 for an indirect proof.

475 If n be a prime number, and if a be a root of a"— 1 = 0, the other roots are a, a2, a3 ... an.

These are all roots, by (472). Prove, by (474), that no two can be equal. 476 If n be not a prime number, other roots besides these may exist. The successive powers, however, of some root will furnish all the rest.

477 If a"— 1 = 0 has the index n = mpq; m, p, q being prime factors; then the roots are the terms of the product (1+a+a+ ... +a"-1) (1+3+32+ ••• +3e-1) x(1++*+ ... +751), where a is a root of xm—1, 3     „    «P-1, Y        »       a" 1 j but neither a, 3, nor y = 1.                      Proof as in (475).

478 if n = m3, and a be a root of xm— 1 = 0, 3      ,,     Xm — a = 0, Y     „    xm—(3=0; then the roots of xn— 1 = 0 will be the terms of the product (1+a+a+ ... +a"-1) (1+3+82+...+3"-1)

X (1 +y+y+ ... +y” 1).

479 xn + I = 0 may be treated as a reciprocal equation, and depressed in degree after the manner of (468).

480 The complete solution of the equation ^ — 1 = 0

is obtained by De Moivre’s Theorem.                  (757) The n different roots are given by the formula

27 . /—V • 2rT a = COS -- — V —1 sin --

n             7

in which r must have the successive values 0, 1, 2, 3, &c., concluding with - , if n be even; and with


n— 1 "2-




if n be odd.



481 Similarly the n roots of the equation a" + 1 = 0

are given by the formula


00 — cos ----—

n




: (2r+1) T sin   -%—

n



r taking the successive values 0, 1, 2, 3, &c., up to o, if n be even; and up to ——, if n be odd.

482 The number of different values of the product

1 1 Am Bm

is equal to the least common multiple of m and n, when m and n are integers.

CUBIC EQUATIONS.

483 To solve the general cubic equation a3+pa2+qx+r = 0.

Remove the term px2 by the method of (429). Let the transformed equation be a+qa+r = 0.

484 Cardan’s method.—The complete theoretical solution of this equation by Cardan’s method is as follows :— Put                  x = y + z                       (i.)

3*+:+(3y2+.) (y+:)+r = 0. Put       3y2+4=0;  .. y = — L.

Substitute this value of y, and solve the resulting quadratic in y3. The roots are equal to y3 and 23 respectively; and we have, by (i.),

[image: ]



The cubic must have one real root at least, by (409).

( q / 72 03 ) } Let m be one of the three values of 3--— — . / ——- - , and n one (    2 V 4    27 ) of the three values of f —7--/*+9.3 ( 2 V 4 27 )

486 Let 1, a, a2 be the three cube roots of unity, so that

.=-}+} -3, and c=-}-}.-3.


[472



487 Then, since • m3 = m31, the roots of the cubic will be m+n, am + a^n, almF^n.

Now, if in the expansion of

( r/22g3 ) s 12*V4 * 275

by the Binomial Theorem, we put u = the sum of the odd terms, and v = the sum of the even terms ; then we shall have m = u + v, ___ and n = u — v ; _ or else          m = +vv — 1, and n=u-vv — 1; •               / 72                                        • according as 14 +27 is real or imaginary.

By substituting these expressions for m and n in (487), it appears that— 488   (i.) If — + 27 be positive, the roots of the cubic will be 2u, —u+vv — 3, —u — vv—3.

7.2

(n.) If 4   27 be negative, the roots will be 2u, — u+v.3, — u—v v3.

(iii.) If 2 + 9 = 0, the roots are

4   27 2m,  —m,  —w, since m is now equal to u.

489 The Trigonometrical method.—The equation a3 — qa — r = 0 may be solved in the following manner, by Trigonometry, 2 (3 when 4+9 is negative.

Assume a = n cos a. Divide the equation by n3; thus cos3 a — L cos a +   — 0.

But          cos3 a —3 cos a — cos 3a = 0. By (657) 4            4

Equate coefficients in the two equations; the result is

n —= (—) , cos UC =-4Y(--) , 3/                    \ 44/ a must now be found with the aid of the Trigonometrical tables.

490 The roots of the cubic will be n cos a, n cos (3T+a), n cos (3T— a).

72

491 Observe that, according as 4+9 is positive or negative, Cardan’s method or the Trigonometrical will be practicable. In the former case, there will be one real and two imaginary roots; in the latter case, three real roots.

BIQUADRATIC EQUATIONS.

494 The cubic in e2 is reducible by Cardan’s method, when the biquadratic has two real and two imaginary roots. For proof, take a ± A and — a ± y as the roots of (i.), since their sum must be zero. Form the sum of each pair for the values of e [see (ii.)], and apply the rules in (488) to the cubic in e1.

If the biquadratic has all its roots real, or all imaginary, the cubic will have all its roots real. Take a ±i and —a ± iy for four imaginary roots of (i.), and form the values of e as before.

For proof, take w, a, y, z for the roots of the biquadratic; then, by (ii.), the sum of each pair must give a value of e. Hence, we have only to solve the symmetrical equations

y +z = a,       w+a = — a, z + a = 3,        w+y = — 3,

a+y = ,     w+z = .

496 Ferrari s solution.—To the left member of the equation ^Arpa^-yqa^-Yrx-^s = 0, 72 add the quantity ax2 + bx + —, and assume the result

= af + 2 a + m ).

497 Expanding and equating coefficients, the following cubic equation for determining m is obtained

8m3—Aqmz-\-{2pr—8s) m-^-^qs— p^s—r = 0.

Then a is given by the two quadratics

*2“m=-2Va

498 The cubic in m is reducible by Cardan's method when the biquadratic has two real and two imaginary roots. Assume a, 6, y, 8 for the roots of the biquadratic; then aft and 3 are the respective products of roots of the two quadratics above. From this find m in terms of aftyU

499 Eulers solution.—.Remove the term in x3; then we


have




a+qa2+ra+s = 0.



500 Assume a = y+z+u, and it may be shewn that y2, 22, and u2 are the roots of the equation


t+%t+




q2— 4s 72

-16t— 64




= 0.



501 The six values of y, z, and u, thence obtained, are

restricted by the relation


r

y2" =g*



Thus a = y+z+u will take four different values.

COMMENSURABLE ROOTS.

502 To find the commensurable roots of an equation.

First transform it by putting a = 7 into an equation of the form a"+21an-1+p,an-2+ ... —P, = 0, having Po = 1, and the remaining coefficients integers. (431) 503 This equation cannot have a rational fractional root, and the integral roots may be found by Newton’s method of Divisors (459).

These roots, divided each by I, will furnish the commensurable roots of the original equation.

504 Example.—To find the commensurable roots of the equation 8127-207.*-9*+8922+2-8 = 0.

Dividing by 81, and proceeding as in (431), we find the requisite substitu-

tion to be


9*



The transformed equation is

y5—23y*—9y8+80ly2+162y — 5832 = 0.

The roots all lie between 24 and —34, by (451).

	
	
	
The method of divisors gives the integral roots 6,    —4, and 3.







Therefore, dividing each by 9, we find the commensurable roots of the original equation to be                 3, —4, and }.

505 To obtain the remaining roots ; diminish the transformed equation by the roots 6, —4, and 3, in the following manner (see 427) :—

1-23- 9+801+162—5832


6

-4



6-102-666 + 810 + 5832

1-17-111 + 135 + 972

- 4+ 84 + 108-972

1-21- 27 + 243

	
3-    54-243



1-18- 81

The depressed equation is therefore

7/ - 18y - 81 = 0.

The roots of which are 9 (1+ 2) and 9 (1— V2) ; and, consequently, the incommensurable roots of the proposed equation are 1+2 and 1— V2.

INCOMMENSURABLE ROOTS.

506 Sturm’s Theorem.—If f(x), freed from equal roots, be divided by f (x), and the last divisor by the last remainder, changing the sign of each remainder before dividing by it, until a remainder independent of x is obtained, or else a remainder which cannot change its sign; then f(x), f'(x), and the successive remainders constitute Sturm’s functions, and are denoted by f(x), ff^f fM^ &c.......f„(x).

The operation may be exhibited as follows :— f (a) = qf (a) —f (a), fi (x) = If (x) —f (a), f2 (x) = (f (w) —f (x),

f-2 (a)    I- 1f-1 (w) f (a) •

507 Note.—Any constant factor of a remainder may be rejected, and the quotient may be set down for the corresponding function.

508 An inspection of the foregoing’ equations shews—

	
	
(1)    That fm(x) cannot be zero; for, if it were, f(x) and fi (x) would have a common factor, and therefore f (x) would have equal roots, by (432).


	
(2)    Two consecutive functions, after the first, cannot vanish together; for this would make fi (x) zero.


	
(3)    When any function, after the first, vanishes, the two adjacent ones have contrary signs.





509 If, as x increases^ f (x) passes through the value zero, Sturm’s functions lose one change of sign.

For, before f(x) takes the value zero, f(x) and fi (x) have contrary signs, and afterwards they have the same sign ; as may be shewn by making h small, and changing its sign in the expansion of f(x+h), by (426).

510 If any other of Sturm’s functions vanishes, there is neither loss nor gain in the number of changes of sign.

This will appear on inspecting the equations.

511 Result.—The number of roots of f (a) between a and b is equal to the difference in the number of changes of sign in Sturm’s functions, when x — a and when x = b.

512 Cor.—The total number of roots of f (x) will be found by taking a = — 0 and b = — 0 ; the sign of each function will then be the same as that of its first term.

When the number of functions exceeds the degree of f(x) by unity, the two following theorems hold :—

513 If the first terms in all the functions, after the first, are positive; all the roots of f (x) are real.

514 If the first terms are not all positive; then, for every change of sign, there will be a pair of imaginary roots.

For the proof put a = + 0 and — 0, and examine the number of changes of sign in each case, applying Descartes’ rule.                 (416).

515 If $ (x) has no factor in common with f (x), and if $ (x) and f' (x) take the same sign when f (x) = 0; then the rest of Sturm’s functions may be found from f (x) and $ (x), instead oiffx). For the reasoning in (509) and (510) will apply to the new functions.

516 If Sturm’s functions be formed without first removing equal roots from f (x), the theorem will still give the number of distinct roots, without repetitions, between assigned limits.

For iff (x) and fi (a) be divided by their highest common factor (see 444), and if the quotients be used instead of f(x) and f (x) to form Sturm’s functions ; then, by (515), the theorem will apply to the new set of functions, which will differ only from those formed from f (x) and p (x) by the absence of the same factor in every term of the series.

517 EXAMPLE.—To find the position of the roots of the equation a4 — 423+22+62+2 = 0.


	
Sturm’s functions, formed according to f (x) the rule given above, are here calculated.    p (x)

The first terms of the functions are all p (x) positive; therefore there is no imaginary Ji^p root.                                           p (x)

The changes of
	
= a4
	
— 4a8+ a2+ 62+ 2

2x3 — 6x2 + a+ 3

5^-10®- 7

a— 1

12


	
sign in the functions, as a passes through integral values, are exhibited in the adjoining table. There are two changes of sign lost while a passes from —1 to 0, and two more lost while x passes from 2 to 3. There
	
a =
	
-2
	
-1
	
0
	
1
	
2
	
3
	
4


	
f («) = f^) = f (x) = fs(x) = IA^ =
	
+

+

+
	
+

+

+
	
+ +

+
	
+ +

+ +
	
+

+

+
	
+ + + + +
	
+ + + + +


	
No. of changes ?

of sign ...... 5
	
4
	
4
	
2
	
2
	
2
	
0
	
0




are therefore two roots lying between 0 and — 1; and two roots also between 2 and 3.

These roots are all incommensurable, by (503).

518 Fourier s Theorem.—Fourier’s functions are the following quantities f(F), f'^y f" (w) ......f‘(x).

519 Properties of Fourier’s functions. — As a increases, Fourier’s functions lose one change of sign for each root of the equation f(x) = 0, through which a passes, and r changes of sign for r repeated roots.

520 If any of the other functions vanish, an even number of changes of sign is lost.

521 RESULTS.—The number of real roots of f(x) between a and 3 cannot be more than the difference between the member of changes of sign in Fourier’s functions when a == a, and the number of changes when a = 3.

522 When that difference is odd, the number of intermediate roots is odd, and therefore one at least.

523 When the same difference is even, the number of intermediate roots is either even or zero.

524 Descartes’ rule of signs follows from the above for the signs of Fourier’s functions, when 2 = 0 are the signs of the terms in f (x); and when & == 0, Fourier’s functions are all positive.

525 Lagrange^ method of approximating to the incommensurable roots of an equation.

Let a be the greatest integer less than an incommensurable root of f(x). Diminish the roots of/(®) by a. Take the reciprocal of the resulting equation. Let b be the greatest integer less than a positive root of this equation. Diminish the roots of this equation by b, and proceed as before.

526 Let a, b, c, &c. be the quantities thus determined; then, an approximation to the incommensurable root of f (x) will be .       .          11 the continued fraction 2 = a — ----

b — c -

527 Newton’s method of approximation.—If C1 be a quantity a little less than one of the roots of the equation f (x) = 0, so that f(+h) = 0; then cx is a first approximation to the value of the root. Also because

f^+0 =f()+1f"()+9 f"(6)+&c.......(426)

and h is but small, a second approximation to the root will be

1 f()

In the same way a third approximation may be obtained from C2, and so on.

528 Fourier's limitation of Newton’s method.—To ensure that C1, C2, C3, &c. shall successively increase up to the value C1 +h without passing beyond it, it is necessary for all values of a between cr and cNrh.

(i.) That f(x) and f (f) should have contrary signs.

(ii.) That f (x) andf"(x) should have the same sign.

[image: ]
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A proof may be obtained from the figure. Draw the curve y~f(x). Let OX be a root of the equation, and ON — c-n, draw the successive ordinates and tangents NP, PQ, QR, &c. Then OQ, = C2, OS = C3, and so on.

Fig. (2) represents C2 > OX, and the subsequent approximations decreasing towards the root.

530 Newton's Rule for Limits of the Roots.—Let the coefficients of f(x) be respectively divided by the Binomial coefficients, and let a0, a1, a, ... an be the quotients, so that

f (x) = a,a"+na,e-1 + "7 21)


aga" 2+...+a,-@+a,.



Let Ax, A2i As... An be formed by the law Ar = ar— a,-10,+1. Write the first series of quantities over the second, in the following manner :—

C0»    C1»    C2»    C3 ...... @n-19    Cn»

Ao,   Aif  A.2)   43 ......An^i)   A,.

Whenever two adjacent terms in the first series have the same sign, and the two corresponding terms below them in the second series also the same sign; let this be called a double permanence. When two adjacent terms above have different signs, and the two below the same sign, let this be known as a variation-permanence.

531 RULE.—The number of double permanences in the associated series is a superior limit to the number of negative roots offA

The number of variation-permanences is a superior limit to the number of positive roots.

The number of imaginary roots cannot be less than the number of variations of sign in the second series.

532 Sylvesters Theorem. — Let f^x^X) be expanded by (426) in powers of a, and let the two series be formed as in Newton’s Rule (530).

Let P (X) denote the number of double permanences.

Then P (X) ~ P (u) is either equal to the number of roots of f(xf or surpasses that number by an even integer.

Note.—The first series may be multiplied by n, and will then stand thus,

f"G), f"H(), 2f"~0), 3f"P0).nf().

The second series may be reduced to

GnW, G,41@), G.().. G (), where Gr^ = (fr()]* - nzzt1/afma).

533 Horner's Method.—To find the numerical values of the roots of an equation. Take, for example, the equation

a*— 423+22+6x+2 = 0,

and find limits of the roots by Sturm’s Method or otherwise.

It has been shewn in (517) that this equation has two incommensurable roots between 2 and 3. The process of calculating the least of these roots is here exhibited.


	
-4
	
+ 1
	
+ 6
	
+ 2 (2-414213


	
2
	
-4
	
-6
	
0


	
-2
	
-3
	
0
	
A. 20000


	
2
	
0
	
-6
	
-19584


	
0
	
-3
	
B. -6000
	
A. 4160000


	
2
	
4
	
1104
	
— 2955839


	
2
	
C, 100
	
-4896
	
A3 12041610000


	
2
	
176
	
1872
	
— 11437245184


	
D, 40
	
276
	
B2 -3024000
	
A,      604364816


	
4
	
192
	
68161
	
-566003348


	
44
	
468
	
-2955839
	
A,        38361468


	
4
	
208
	
68723
	
-28285470


	
48
	
C, 67600
	
B, —2887116000
	
A6       10075998


	
4
	
561
	
27804704
	
- 8485368


	
52
	
68161
	
-2859311296
	
Aj        1590630


	
4
	
562
	
27895072


	
D, 560
	
68723
	
B, —2831416224
	

	
1
	
563
	
139948
	
282843)1590630 (562372


	
561
	
C, 6928600
	
-283001674
	
1414215


	
1
	
22576
	
139970
	
28284) 176415


	
562
	
6951176
	
B, -282861704
	
169706


	
1
	
22592
	
700
	
2828) 6709


	
563
	
6973768
	
- 28285470
	
5657


	
1
	
22608
	
700
	
282) 1052


	
D, 5640
	
C, 6996376
	
B. -28284770
	
848-


	
4
	
11
	
21
	
28) 204


	
5644
	
69974
	
-2828456
	
197


	
4
	
11
	
21
	
2) 7


	
5648
	
69985
	
B^ -2828435
	
5


	
4
	
11
		
2


	
5652
	
C, 69996
		

	
4
	
C, 7
		

	
D, 5,656
		
Root = 2-414213562372,




METHOD.—Diminish the roots by 2 in the manner of (427),

The resulting coefficients are indicated by Av Bv Cv Di


By Newton’s rule (527),



f(c) .  A, •     ..

-,- ; that is, — —- is an approximation to f (c)                 B1 the remaining part of the root. This gives 3 for the next figure ; ‘4 will be found to be the correct one. The highest figure must be taken which will not change the sign of A.

Diminish the roots by ‘4. This is accomplished most easily by affixing ciphers to Av Bv Cu in the manner shewn, and then employing 4 instead of -4.

Having obtained A2, and observing that its sign is +, retrace the steps,

T

trying 5 instead of 4. This gives A, with a minus sign, thereby proving the existence of a root between 2:4 and 25. The new coefficients are A^ B2, 02, D2.

A

	
— 52 gives 1 for the next figure of the root.



Affix ciphers as before, and diminish the roots by 1, distinguishing the new coefficients as As, B3, 08, Ds.

Note that at every stage of the work A and B must preserve their signs unchanged. If a change of sign takes place it shews that too large a figure has been tried.

To abridge the calculation proceed thus:—After a certain number of figures of the root have been obtained (in this example four), instead of adding ciphers cut off one digit from B^ two from G^ and three from Da. This amounts to the same thing as adding the ciphers, and then dividing each number by 10000.

Continue the work with the numbers so reduced, and cut off digits in like manner at each stage until the D and G columns have disappeared.

A7 and B7 now alone remain, and six additional figures of the root are determined correctly by the division of A7 by B7.

To find the other root which lies between 2 and 3, we proceed as follows :— After diminishing the roots by 2, try 6 for the next figure. This gives A2 negative ; 7 does the same, but 8 makes A7 positive. That is to say, f (2*7) is negative, and f (2:8) positive. Therefore a root exists between 27 and 2-8, and its value may be approximated to, in the manner shewn.

Throughout this last calculation A will preserve the negative sign. Observe also that the trial number for the next figure of the root given at each stage of the process by the formula too great, as in the former case it was always too small.


f (c)

— 2-, will in this case be always f‘(c)’



SYMMETRICAL FUNCTIONS OF THE ROOTS OF AN EQUATION.

Notation.—Let a, b, c ... be the roots of the equation /0) = °-

Let sm denote an+bm+ ..., the sum of the mth powers of the roots.

Let sm>p denote a"bP+b"a”+a"c+ ... through all the permutations of the roots, two at a time.

Similarly let smjP^q denote amb'pcq-]-amlpdq, taking all the permutations of the roots three at a time; and so on.

534 SUMS OF THE POWERS OF THE ROOTS.

$.+P18„-1+P,S-24...+Pm-181+mp. = 0, where m is less than n, the degree of f (x).

Obtained by expanding by division each term in the value of f‘(x) g’iven at (432), arranging the whole in powers of x, and equating coefficients in the result and in the value of f‘(x), found by differentiation as in (424).

535 If m be greater than n, the formula will be

S+P1S-1+P, $-9+ ... fPn^m-n = 0.

Obtained by multiplying f (a) = 0 by xm~n, substituting for a the roots a, b, c, &c. in succession, and adding the results.

By these formulae S1, S2, S3, &c. may be calculated successively.

536 To find the sum of the negative powers of the roots, put m equal to n—1, n—2, n—3, &c. successively in (535), in order to obtain S_1, SL2, S_3, &c.

537 To calculate sr independently.

RULE : sr = — r X coefficient of x~r in the expansion of tog 12 descending powers oj x.

Proved by taking f (x) = (a— a) (a— b) (x — c) ..., dividing by xn, and expanding the logarithm of the right side of the equation by (156).

538 SYMMETRICAL FUNCTIONS WHICH ARE NOT POWERS OF THE ROOTS.

These are expressed in terms of the sums of powers of the roots as under, and thence, by (534), in terms of the roots explicitly,

Sm, p    ^m^p ' ^m+p »

539 ^m,p,q SmSpSq ^m+p^q ^m+q^p ^p + q^m \ ^^m+p + q’

The last equation may be proved by multiplying sm^ by sq; and expansions of other symmetrical functions may be obtained in a similar way.

540 If $ (a) be a rational integral function of a, then the symmetrical function of the roots of f (a), denoted by $(a)+p(b)+p(c)+&c., is equal to the coefficient of a"-1 in the remainder obtained by dividing $ (a) f' (x) by f(x).

Proved by multiplying the equation (432) by 4)4, and by theorem (401).

541 To find the equation whose roots are the squares of the differences of the roots of a given equation.

Let F (x) be the given equation, and S, the sum of the 7th powers of its roots. Let f(x) and sr have the same meaning with regard to the required equation.

The coefficients of the required equation can be calculated from those of the given one as follows :—

The coefficients of each equation may be connected with the sums of the powers of its roots by (534); and the sums of the powers of the roots of the two equations are connected by the formula

542 2s, = nS,-2S,S,_,+ 2r (2r—1) S,S,_,- ...+1s,.

RULE.—2sr is equal to the formal expansion of (S—Sfr by the Binomial Theorem, with the first and last terms each multiplied by n, and the indices all changed to sibfiixes. As the equi-distant terms are equal we can divide by 2, and take half the series.

DEMONSTRATION.—Let a, 1), c ... be the roots of F (x).

Let               9 (x) = .....................................(i.)

Expand each term on the right by the Bin. Theor., and add, substituting Sv S^, &c. In the result change a into a, b, c ... successively, and add the n equations to obtain the formula, observing that, by (i.),

p (a) + 9 ()+.. • = 2s.

If n be the degree of F(x), then ^n(n~ 1) is the degree of/h)-                                         By (96).

543 The last term of the equation f(x) = 0 is equal to nnF(«) F(fi) F(y) ...

where a, 3, y, ... are the roots of F (x). Proved by shewing that          F'ia)F'(b) ... = nnF(a) F(P) ...

544 If F (x) has negative or imaginary roots, f(x) must have imaginary roots.

545 The sum of the mth powers of the roots of the quadratic equation        a2—pa+q = 0.

sm = p”-mp"-2q+ m (m;—3) p"-4q? -...

+(- 1)r "(n—=D);("=2±1) P***r+ &c.

By (537) expanding the logarithm by (156).

546 The sum of the mth powers of the roots of a"— 1 = 0 is n if m be a multiple of n, and zero if it be not.

By (537) ; expanding the logarithm by (156).

547 If $ (x) = .............................(i.), then the sum of the selected terms

Cm’ U Cm+n •    1 C‘m+2n C T CS. will be s= {a."-"$(ax)+B"-"$(B.)+y"="$(yx)+8c.}

where a, 3, y, &c. are the nth roots of unity.

For proof, multiply (i.) by a"-", and change a into ax; so with /3, y, &c., and add the resulting equations.

548 To approximate to the root of an equation by means of the sums of the powers of the roots.

By taking m large enough, the fraction 3m±1 will approx-

Sm

imate to the value of the numerically greatest root, unless there be a modulus of imaginary roots greater than any real root, in which case the fraction has no limiting value.

549 Similarly the fraction 3m8n±2—3m±] approximates, as m $m-1 Sm+1 "7 Sm

increases, to the greatest product of any pair of roots, real or imaginary; excepting in the case in which the product of the pair of imaginary roots, though less than the product of the two real roots, is greater than the square of the least of them, for then the fraction has no limiting value.

550 Similarly the fraction 2n3m±3—^+i£»^ approximates, mSm+2 Sm+1

as m increases, to the sum of the two numerically greatest roots, or to the sum of the two imaginary roots with the greatest modulus.

EXPANSION OF AN IMPLICIT FUNCTION OF D.

Let y"(Aa"+)+y(Ba‘+)+..+y"(Sa*+) = 0......(1) be an equation arranged in descending powers of y, the coefficients being functions of x, the highest powers only of x in each coefficient being written.

It is required to obtain y in a series of descending powers of X.

First form the fractions

a—b    a — c    a — d a—s /9\ a — B‘   a—y‘   a —8 ** a—or

7

Let —7 = t be the greatest of these algebraically, or if several are equal and greater than the rest, let it be the last of such. Then, with the letters corresponding to these equal and greatest fractions, form the equation

Proceed in this way until the last fraction of the series (2) is reached.

To obtain the second term in the expansion of y, put

y = a‘(u—Y1) in (1).....................(6), employing the different values of u, and again of t' and u, t" and u, &c. in succession; and in each case this substitution will produce an equation in y and a similar to the original equation in y.

Repeat the foregoing process with the new equation in y, observing the following additional rule :—

When all the values of t, t', t", §c. have been obtained, the negative ones only must be employed in forming the eguations in u.                                                             (7).

552 To obtain y in a series of ascending powers of x.

Arrange equation (1) so that a, 3, , &c. may be in ascending order of magnitude, and a, b, c, &c. the lowest powers of x in the respective coefficients.

Select t, the greatest of the fractions in (2), and proceed exactly as before, with the one exception of substituting the word positive for negative in (7).

553 Example.—Take the equation (x3 + a4) + (8a2— 523) y+ (— 4x+ 7a2+a3) y^ — y5 = 0. It is required to expand y in ascending powers of a.

The fractions (2) are - 3-2, - 3—3, - 3—0 ; or 1, 1, and 8.

V — X    V — 4    V—•

The first two being equal and greatest, we have t = 1.


1-0

2 — 5



The fractions (4) reduce to


Equation (3) is which gives

Equation (5) is and from this



1 + 3u — 4u2 = 0,

u = 1 and — 1, with t = 1.

— 4u?- u = 0,

u = 0 and — 48, with t' = x.

We have now to substitute for y, according to (6), either

«(1+y), a (—1+yi), ^y, or a‘(— ^PyO-

Put y = a (1 +yi), the first of these values, in the original equation, and arrange in ascending powers of y, thus

— 424+ (— 52*+) yx + (—4+) y^ — 1028/? — 523y{ — a”y; = 0.

The lowest power only of a in each coefficient is here written.

The fractions (2) now become 4-3   4—3   4-5   4-5   4-5 0-1’   0-2’   0-3’   0-4’   0-5 ‘ or                   1, i -, -} -}. From these t— 1, and equation (3) becomes

—4— 5u = 0; .. v= 4.

Hence one of the values of Y1 is, as in (6), Y1 = a (—4 +Y2). Therefore         y = a {1 + a ( — 4+Y2)} = a — ga2+ ...

Thus the first two terms of one of the expansions have been obtained.

DETERMINANTS.

554 Definitions.—The determinant


is equivalent




C1 C2



bi b. to afi^—a961, and is called a determinant of the second order. A determinant of the third order is


C1 C2 C3 bi b, ba

C1 C, C3



= ai (bac, — bsC^ + az (b,C — byC^ + a^ (b^ - b.^.

Another notation is E — afi^c^, or simply (afi^c^.

The letters are named constituents, and the terms are called elements. The determinant is composed of all the elements obtained by permutations of the suffixes 1, 2, 3.

The coefficients of the constituents are determinants of the next lower order, and are termed minors of the original determinant. Thus, the first determinant above is the minor of C3 in the second determinant. It is denoted by Cs. So the minor of ax is denoted by A1, and so on.

555 A determinant of the nth order may be written in either of the forms below


C1 C2 • • • C, • • • Un b b, ... br ... bn • • • • • • • • • • • • l1 l2 ... Ir ‘”1,1



(11 (12 • • • (1, • * • @1,

C21 C22 • • • ^2r • • • C2n

	
• • •       • • •       • • •       • • •



Cn1 ^n2 • • • ^nr • • • Cnn

In the latter, or double suffix notation, the first suffix indicates the row, and the second the column. The former notation will be adopted in these pages.

A Composite determinant is one in which the ax a^ az number of columns exceeds the number of rows, 61 62 63 and it is written as in the annexed example. Its value is the sum of all the determinants obtained by taking a number of rows in every possible way.

A Simple determinant has single terms for its constituents.

A Compound determinant has more than one term in some or all of its constituents. See (570) for an example.

For the definitions of Symmetrical, Reciprocal, Partial, and Complementary determinants; see (574), (575), and (576).

General Theory.

556 The number of constituents is n2.

The number of elements in the complete determinant is | n .

557 The first or leading element is a1b,C3 ... ln. Any element may be derived from the first by permutation of the suffixes.

The sign of an element is — or — according as it has been obtained from the diagonal element by an even or odd number of permutations of the suffixes.

Hence the following rule for determining the sign of an element.

RULE.—Take the suffixes in order, and put them back to their places in the first element. Let m be the whole number of places passed over ; then (— 1)m will give the sign repaired.

Ex.—To find the sign of the element a4b3C5de, of the determinant (a, b, ca d, eg).

In all, seven places; therefore (—1)7 = — 1 gives the sign required.

558 If two suffixes in any element be transposed, the sign of the element is changed.

Half of the elements are plus, and half are minus.

559 The elements are not altered by changing the rows into columns.

If two rows or columns are transposed, the sign of the determinant is changed. Because each element changes its sign.

If two rows or columns are identical, the determinant vanishes.

560 If all the constituents but one in a row or column vanish, the determinant becomes the product of that constituent and a determinant of the next lower order.

561 A cyclical interchange is effected by n—1 successive transpositions of adjacent rows or columns, until the top row has been brought to the bottom, or the left column to the right side. Hence

A cyclical interchange changes the sign of a determinant of an even order only.

The 7th row may be brought to the top by r—1 cyclical interchanges.

562 If each constituent in a row or column be multiplied by the same factor, the determinant becomes multiplied by it.

If each constituent of a row or column is the sum of m terms, the compound determinant becomes the sum of m simple determinants of the same order.

Also, if every constituent of the determinant consists of m terms, the compound determinant is resolvable into the sum of m2 simple determinants.

563 To express the minor of the rth row and Tth column as a determinant of the n—1th order.

Put all the constituents in the rth row and Ith column equal to 0, and then make r—1 cyclical interchanges in the rows and k—1 in the columns, and multiply by (— 1)r*+/)(n-1).

p .  =: (—1)r-1+k-1)(n-1).

564 To express a determinant as a determinant of a higher order.


1 0 0 0 0 a 1 0 0 0 B e a h g V t h bf o 7 g f c



Continue the diagonal with constituents of " ones,” and fill up with zeros on one side, and with any quantities whatever (a, 3, 72 &c.) on the other.

565 The sum of the products of each constituent of a column by the corresponding minor in another given column is zero. And the same is true if we read ‘row’ instead of ‘ column.’ Thus, referring to the determinant in (555),

Taking the pth and qth columns, Taking the a and c rows, a,A,++b,B,+ ...+l,L, — 0. a C1+a,C,+ ...+a„C, = 0.

For in each case we have a determinant with two columns identical.

566 In any row or column the sum of the products of each constituent by its minor is the determinant itself. That is,


Taking the pth column, a,A,+b,B,+ ...+l, L, = A.




Or taking the c row,

cCI+c,C,+... —c„C, = A.



567 The last equation may be expressed by ^cpCp = A.

Also, if {apc^ express the determinant


Cp Cq




then



^p Ca

E (a,c,) will represent the sum of all the determinants of the second order which can be formed by taking any two columns out of the a and c rows. The minor of (ap, cq) may be written (Ap, Cq), and signifies the determinant obtained by suppressing the two rows and two columns of ap and cq. Thus A=£ (a,, cq) (Ap, Cq). And a similar notation when three or more rows and columns are selected.

568           Analysis of a determinant.

RULE.—To resolve into its elements a determinant of the nth order. Express it as the sum of n determinants of the (n—iy11 order by (560), and repeat the process with each op the new determinants.

EXAMPLE:


C, b, C1




C2 ba Ca d.




Cs ba Cs d3




C4 b, C, da




— CL




b2

C2 d.




ba Cs da




— C2




bs b, bi

Ca C, C1 ds da di




da




ba cs d.




b2

C2 d2




— C4




bi A bs

G1 C2 Ca di A A




Again,




bi b2 bs

C1 C2 Ca d1 d2 d3



— bi C2 ca +62 Cs C1 | + ba I C1 C2 dada |da di I I A A and so on. In the first series the determinants have alternately plus and minus signs, by the rule for cyclical interchanges (561), the order being even.

569            Synthesis of a determinant.

The process is facilitated by making use of two evident rules. Those constituents which belong to the row and column of a given constituent a, will be designated " a’s constituents.” Also, two pairs of constituents such as ap, cq and aq, cp, forming the corners of a rectangle, will be said to be “conjugate” to each other.

RULE I.—No constituent will he found in the same term with one of its own constituents.

RULE II.—The conjugates of any two constituents a and b will be common to a’s and b’s constituents.

Ex.—To write the following terms in the form of a determinant: a bed + bfgl Af2^ + 1 edfA cgbp + 1 ahr + elpr

—fhpr—ablr—acE — ifhg — bdf — efhl — cedp.

The determinant will be of the fourth order; and since every term must contain four constituents, the constituent 1 is supplied to make up the number in some of the terms. Select any term, as abed, for the leading diagonal.

Now apply Rule I.,

a is not found with e,f,f, g,p, 0...(l). c is not found with f, f, I, r, 1, 0...(3). b is not found with e, h, b,p,1,0. ..(2). d is not found with g, h,h,,r,0...(4). Each constituent has 2 (n— 1), that is, 6 constituents belonging to it, since n = 4. Assuming, therefore, that the above letters are the constituents of a, b, c, and d, and that there are no more, we supply a sixth zero constituent in each case.

Now apply Rule II.—The constituents common

to a and b are e, p ; to a and c—-f, f;    to b and c—1, 0 ;

to a and d—g, 0 ;    to & and d—h, b, 0 ; to c and d—I, r, 0.

The determinant may now be formed. The diagonal being abed; place e, p, the conjugates of a and b, either as in the diagram or transposed.


a e f 9 p b 1 h f 0 c r 0 b I d



Then/and/, the conjugates of a and c, may be written.

	
1    and 0, the conjugates of b arid c, must be placed as indicated, because 1 is one of p’s constituents, since it is not found in any term with p, and must therefore be in the second row.



Similarly the places of g and 0, and of I and r, are assigned.

In the case of b and d we have b, b, 0 from which to choose the two conjugates, but we see that 0 is not one of them because that would assign two zero constituents to b, whereas b has but one, which is already placed.

By similar reasoning the ambiguity in selecting the conjugates I, r is removed.

The foregoing method is rigid in the case of a complete determinant

having different constituents. It becomes uncertain when the zero constituents increase in number, and when several constituents are identical. But even then, in the majority of cases, it will soon afford a clue to the required arrangement.

570 PRODUCT OF TWO DETERMINANTS OF

THE nth ORDER.


(P)




(1 C2 ... Un b^b.^ ... bn




(I)

a, a, ... a,

A 3, ••• 3,




(S)

A, A, • • • A,

B, B, ... Bn



1

495 If a2, 32, y be the roots of the cubic in e2, the roots of the biquadratic


	
l1    l2 • • • l.



The values of A1, Bx ... Lx in the first column of S are annexed. For the second column write b’s in the place of a’s. For the third column write c’s, and so on.

A1 — A1 ai + @2 a2 + ... + an an

Bx = a13i + a,2 + ... + a„3,

L1 = 011-a-...— @, An

For proof substitute the values of Av B1, &c. in the determinant S, and then resolve S into the sum of a number of determinants by (562), and note the determinants which vanish through having identical columns.

RULE.—To form the determinant S, which is the product of two determinants P and Q. First connect by plus signs the constituents in the rows of both the determinants P and Q.

Now place the first row of P upon each row of Q in turn, and let each two constituents as they touch become products. This is the first column of 8.

Perform the same operation upon Q with the second row of P to obtain the second column of S ; and again with the third row of P to obtain the third column.of 8, and so on.

571 If the number of columns, both in P and Q, be n, and the number of rows r, and if n be > r, then the determinant 8, found in the same way from P and Q, is equal to the sum of the G (n, r) products of pairs of determinants obtained by taking any r columns out of P, and the corresponding r columns out of Q.

But if n be <r the determinant 8 vanishes.

For in that case, in every one of the component determinants, there will be two columns identical.

572 The product of the determinants P and Q may be formed in four ways by changing the rows into columns in either or both P and Q.

573 Let the following system of n equations in 2122 ... xn be transformed by substituting the accompanying values of the variables,

q,a,+a,2,+...+a„a, = 0,   21 = q s+a,s+...Ha,S»,

b,2+baa,+ ...+b„2, = 0, a, = BS+BG2—...+B,Sn,

l121+,a,...—l„a, — 0, a, — AS+As—..+h,S

The eliminant of the resulting equations in 81 52 ... En is the determinant 8 in (570), and is therefore equal to the product of the determinants P and Q. The determinant Q is then termed the modulus of transformation.

574 A Symmetrical determinant is symmetrical about the leading diagonal. If the R’s form the r^ row, and the K’s the. ItP1 row; then Pk = Kr throughout a symmetrical determinant.

The square of a determinant is a symmetrical determinant.

575 A Reciprocal determinant has for its constituents the first minors of the original determinant, and is equal to its n—1th power; that is,


	
A1 •
	
• A,
	
—
	
ai .
	
• Cn
	
n-1     Proof.—Multiply both sides

of the equation by the original determinant (555). The constituents on the left side all vanish excepting the diagonal of A’s.


			

	
A .
	
• Rn
		
4 •
	
. ln




576 Partial and Complementary determinants.

If r rows and the same number of columns be selected from a determinant, and if the rows be brought to the top, and the columns to the left side, without changing their order, then the elements common to the selected rows and columns form a Partial determinant of the order r, and the elements not found in any of those rows and columns form the Complementary determinant, its order being n—r.

Ex.—Let the selected rows from the determinant (a,b,cad4es) be the second, third, and fifth; and the selected columns be the third, fourth, and fifth. The original and the transformed determinants will be


	
C1 C, C3 C4 as
	
and
	
bs b, bs
	
bi b2


	
b, ba ba b, bs
		
Ca C, C5
	
C1 C2


	
C1 C2 Ca C, C5
		
ea e, es
	
61 e2


	
d1 d2 C3 da d5
		
a, C4 as
	
A1 C2


	
e, e, es e, e.
		
d3 da d.
	
d1 d2




The partial determinant of the third order is (bac4e), and its complementary of the second order is (^d^).

The complete altered determinant is plus or minus, according as the permutations of the rows and columns are of the same or of different class. In the example they are of the same class, for there have been four transpositions of rows, and six of columns. Thus (—1)"=+1 gives the sign of the altered determinant.

577 THEOREM.—A partial reciprocal determinant of the rth order is equal to the product of the r— 1th power of the original determinant, and the complementary of its corresponding partial determinant.

Take the last determinant for an example. Here n=5, 7=3; and by the theorem,

B,  B,  B,  = A2 01  a,    where B, C, E are the

Os  0,  0.          d,  d. respective minors.

E, E, E,

PROOF.—Raise the Partial Reciprocal to the original order five without altering its value, by (564); and multiply it by A, with the rows and columns changed to correspond as in Ex. (576) ; thus, by (570), we have


	
B, B4 Bs
	
Bi Ba
		
bs b, bs
	
bi ba
	
—
	
A 0 0 b, b.
	
= A8a a.


	
C, C, C,
	
C C,
		
Cs C, C5
	
Ci Ca
		
0 A 0 c± C2
	
| d1 d2


	
E, E, E,
	
E, E,
		
e, e4 es
	
el e.
		
0 0 A e, e.
	

	
0 0 0
	
1 0
		
as a, as
	
a C2
		
0 0 0 a1 C
	

	
0 0 0
	
0 1
		
d, da d.
	
di d^
		
0 0 0 d, d^
	



578 The product of the differences between every pair of n quantities a1, a, ... ani

(d,—a,)(d1—aa)(a,—a,) ... (a — an) X (a,—az)(a,— a^ ... (a,— an) X (a,— a,) ... (a,— an)





n— 1 n— 1 ftn—1     n— 1

“1   “2   “3 ‘"Un



X (a,-1 a,)

Proof.—The determinant vanishes when any two of the quantities are equal. Therefore it is divisible by each of the factors on the left; therefore by their product. And the quotient is seen to be unity, for both sides of the equation are of the same degree; viz., }n (n— 1).

579 The product of the squares of the) differences of the same n quantities )


So 81 ... 8n-1

S1 S2 ... S,

S2-1 sn ••• S2n-2



PROOF.—Square the determinant in (578), and write sr for the sum of the rth powers of the roots.

580 With the same meaning for S1, s2..., the same determinant taken of an order r, less than n, is equal to the sum of the products of the squares of the differences of r of the n quantities taken in every possible way; that is, in C (n, r) ways.


Ex.:



8 3= (a,—a,)2+(a,—a)2+&c. = ” (a—a,)3,

S1 S2 1


So 81 82

81 82 83

S2 S3 S4



= 2 (a,—1,)2 (a—a3)2 (a,—a)2.

The next determinant in order = 2 (d1—0,)3 (a,—a,)2 (a,— a4)2 (a— 03)2 (a,— a^ (da—a)3.

And so on until the equation (579) is reached.

Proved by substituting the values of S1, S2 ... &c., and resolving the determinant into its partial determinants by (571).

581 The quotient of

aa"+a,a"-1+ ...-\-ar^‘m~r-^-...

b. a”—b, a”-1+F... +b,an-r + ...

is given by the formula gam-" + qia"--1 + ... + q,a-"-" + ...,


where




_ 1

Ir 7+1 bo



	
bo    0     0 ... do bi  bo  0 ...a b2 bi bo • • • a, b, b,-1 b,-2 ... ba.



Proved by induction.

ELIMINATION.

582 Solution of n linear equations in n variables.

The equations and the values of the variables are arranged below:


q1a1+a,2,—...+a„a»— $i,

6121+b2,+ ...+b„2, = $2,




2A — Ais+Bis2+ -..8. &,A — A,6+B,s,+ ...+L8.



l1 21 — l2 a, + • • • — in &, — $,   00n^ — A,S1—B,S—...—L,Sn where △ is the determinant annexed, and A1, B1, &c. are its first minors.

[image: ]



To find the value of one of the unknowns xr.

RULE.—Multiply the equations respectively by the minors of the rth column, and add the results, a, will be equal to the fraction whose numerator is the determinant A, with its rth column replaced by 512 52 ... 52, and whose denominator is A itself.

583 If 51, 82... 5 and △ all vanish, then 21, 22 ... 2 are in the ratios of the minors of any row of the determinant △.

For example, in the ratios C1 : C2 : C3 : ... : Cn.

The eliminant of the given equations is now A = 0.


584



Orthogonal Transformation.

If the two sets of variables in the n equations (582) be connected by the relation

44+44+... +*= #+ 6+... + € ......(1), then the changing from one set of variables to the other, by substituting the values of the E’s in terms of the a’s in any function of the former, or vice versa, is called orthogonal transformation.

When equation (1) is satisfied, two results follow.

	
	
I.    The determinant A = — 1.


	
II.    Each of the constituents of A is equal to the corresponding minor, or else to minus that minor according as A is positive or negative.





Proof.—Substitute the values of 81, 52 ... 5 in terms of 21, ag... 2, in equation (1), and equate coefficients of the squares and products of the new variables. We get the n2 equations


Also




A = ab... 7




C2 02 • • • l2

C3 63 • • • h




C, b, ... l.




Form the square of the determinant A by the rule (570), and these equations show that the product is a determinant in which the only constituents that do not vanish constitute a diagonal of ‘ ones.’ Therefore

A2 = 1 and A = 4 1.



Again, solving the first set of equations for a (writing a as a^, &c.), the second set for C2, the third for a3, and so on, we have, by (582), the results annexed; which proves the second proposition.


a^ = Ar +4,0+40+ = Ai a,A = A,0 + A, + A,0 + = A, «,A = A,0 + A,0 + A, + = A, &c.         &c.



585 Theorem.—The n—2th power of a determinant of the nth order multiplied by any constituent is equal to the corresponding minor of the reciprocal determinant.

Proof.—Let p be the reciprocal determinant of A, and 3, the minor of Br in p. Write the transformed equations (582) for the a‘s in terms of the ^’s, and solve them for 52. Then equate the coefficient of a, in the result with its coefficient in the original value of 52.

Thus p^ = A (3a+ ...+,«,+ ...), and 4, = b+...+ba,+...;

.. A/8, = plr = A"-1b, by (575) ;     .. (3r = A"-2b,.

586 To eliminate x from the two equations

and1 + bxm 1 + ex™' 2 + ... = 0 ............(1), did + b'E1^ -\~ do"-2 + ... = 0 ............(2).

If it is desired that the equation should be homogeneous in x and y; put — instead of x, and clear of fractions. The following methods will still be applicable.

I. Bezouts Method.—Suppose m > n.

RULE.—Bring the eguations to the same degree by multiplying (2) by xm^n. Then multiply (1) by a, and (2) by a, and subtract.

Again, multiply (1) by d‘a+b‘, and (2) by (ax-\-bf and subtract.

Again, multiply (1) by a'^A-b'x-^d, and (2) by (ax2+ba+c), and subtract, and so on until n eguations have been obtained. Each will be of the degree m— 1.

Write under these the m—n eguations obtained by multiplying (2) successively by x. The eliminant of the m eguations is the result reguired.


Ex.—Let the equations be



a ac5 + b a4+ c a3 + d 03 + ex +f = 0, axs + b'x2 + c'o} +d'          = 0.

The five equations obtained by the method, and their eliminant, by (583), are, writing capital letters for the functions of a, b, c, d, e, f,

ApA+B^ + O-jA + Da + Ei = 0 )



	
A. B. C1 Di E1
	
= 0.


	
A, B2 C, D, E,
	

	
As Bs C& Da E,
	

	
a' b' c d' 0
	

	
0 d b' c d'
	





A,p* + B^xA + O^A + D,a + E^ =0 Aja" + B^ + Oa? + D, + E, = 0 - and «a*+b‘a8+c‘a‘+da =0 a 23+b‘a+ca+d = 0)

Should the equations be of the same degree, the eliminant will be a symmetrical determinant.

587         II. Sylvesters Dialytie Method.

RULE.—Multiply eguation (1) successively by x, n— 1 times; and eguation (2) m— 1 times; and eliminate x from the m-^n resulting eguations.

Ex.—To eliminate a from axA +ba3 + ex +d = 0 px -^-qx-^r = 0

The m+n equations and their eliminant are


	
px2 + qa + r = 0
		
0 0 p q r


	
pxs+ qx2 + rx = 0
		
0 p q r 0


	
pa* + pA + rx2       = 0
	
- and
	
p q r 0 0


	
axs + ba2+ cx +d = 0
		
0 a b e d


	
ax* + bx3 + ex2 + dx = 0)
	
a b c d 0




588 III. Method of elimination by Symmetrical Functions.

Divide the two equations in (586) respectively by the coefficients of their first terms, thus reducing them to the

forms f(x) = a" + Pia"-1 + ... -\-pm = 0,

$(x) = a" +q,a*-1 + ... +7„ = 0

RULE.—Let a, b, c ... represent the roots of f(f). Form the equation $ (a) $ (b) $ (c) ... = 0. This will contain symmetrical functions only of the roots a, b, c ....

Express these functions in terms of pr, p2 ... by (538), ^c., and the equation becomes the eliminant.

Reason of the rule.—The eliminant is the condition for a common root of the two equations. That root must make one of the factors P (a), $ (b) ... vanish, and therefore it makes their product vanish.

589 The eliminant expressed in terms of the roots a, b, c ... of f(xf and the roots a, 3, y ... of $ (x), will be

(a—a) (a—(3) (a—y) ... (b — a) (b—p) (b — y) ... &c., being the product of all possible differences between a root of one equation and a root of another.

590 The eliminant is a homogeneous function of the coefficients of either equation, being of the nth degree in the coefficients of/(«), and of the mth degree in the coefficients of $ (a).

591 The sum of the suffixes of p and q in each term of the eliminant = mn. Also, if p, q contain z ; if p2, q^ contain 22 ; if p^ q3 contain z3, and so on, the eliminant will contain zmn.

Proved by the fact that p, is a homogeneous function of r dimensions of the roots a, b, c ..., by (406).

592 If the two equations involve a and y, the elimination may be conducted with respect to a; and y will be contained in the coefficients 21, 22..., (1, q^ ....

593 Elimination by the Method of Highest Common Factor.

Let two algebraical equations in x and y be represented by A = 0 and B = 0.

It is required to eliminate a.

Arrange A and B according to descending powers of a, and, having rejected any factor which is a function of y only, proceed to find the Highest Common Factor of A and B.

. The process may be exhibited as follows :


^A = ^B + r1B1

^B = (,R,+ t^B^

: csB — qzBj.2-\- ^^Bj3

c^B = q^B& + 74



C1, C2, C3, Ca are the multipliers required at each stage in order to avoid fractional quotients; and these must be constants or functions of y only.

q19 (2, (3, 44 are the successive quotients.

T1R1, T2R2, T3R3, Ta are the successive remainders; 71, 12, T3, Ta being functions of y only.

The process terminates as soon as a remainder is obtained which is a function of y only; T4 is here supposed to be such a remainder.

Now, the simplest factors having been taken for C1, c.2) C3, C4, we see that



	
1 is the H. 0. F.
	
of C1
	
and r2'


	
d2 »
		
55
	
G1
	
and r2


	
da „
		
55
	
G1C2 d2
	
and rs


	
d4        5 5
		
55
	
G1C2C3 dada
	
and 74


	
7, = 0
	
and
	
B
	
=0.....
	
..()


	
2 =0

C2
	
and
	
R,
	
=0.....
	
••••(2)


	
‘ = 0

C3
	
and
	
R,
	
=0.....
	
....(3)


	
‘= 0

C4
	
and
	
B^
	
=0 .....
	
....(4)




tions (1), (2), (3), and (4) reduce



The values of a and y} which satisfy simultaneously the equations A=0 and B=0, are those obtained by the four pairs of simultaneous equations, following:

The final equation in y, which gives all admissible values, is

r^r^ = 0.

d2 ds da

If it should happen that the remainder T4 is zero, the simultaneous equate

*=0 and B =0;  22=0 and R=0; B= 0 and R = 0.

L3        Co                    do         B

594 To find infinite values of a or y which satisfy the given equations.

Put x = 1. Clear of fractions, and make z=0. %

If the two resulting equations in y have any common roots, such roots, together with x = 0 , satisfy simultaneously the equations proposed.

Similarly we may put y = 1.

PLANE TRIGONOMETRY.

ANGULAR MEASUREMENT.

600 The unit of Circular measure is the angle at the centre of a circle which subtends an arc equal to the radius. Hence

arc

601 Circular measure of an angle = —-—.

radius

602 Circular measure of two right angles = 314159... = 7.

603 The unit of Centesimal measure is a Grade, and is the one-hundredth part of a right angle.

604 The unit of Sexagesimal measure is a Degree, and is the one-sixtieth part of a right angle.

To change degrees into grades, or circular measure, or vice versa, employ one of the three equations included in


605



DG42C

90   100    - 5 where D, G-, and C are respectively the numbers of degrees, grades, and units of circular measure in the angle considered.

TRIGONOMETRICAL RATIOS.

606 Let OA be fixed, and let the revolving line OP describe a circle round 0. Draw PN always perpendicular to AA'. Then, in all positions of OP, PN

[image: ]



Op = the sine of the angle AOP, ON

Op = the cosine of the angle AOP,

PN

7x = the tangent of the angle AOP.

607 If P be above the line AA‘, sin AOP is positive.

If P be below the line A A', sin AOP is negative.

608 If P lies to the right of BB', cos AOP is positive.

If P lies to the left of BB', cos AOP is negative.

609 Note, that by the angle AOP is meant the angle through which OP has revolved from OA, its initial position; and this angle of revolution may have any magnitude. If the revolution takes place in the opposite direction, the angle described is reckoned negative.

610 The secant of an angle is the reciprocal of its cosine, or                 cos A sec A = 1.

611 The cosecant of an angle is the reciprocal of its sine, or                 sin A cosec A = 1.

612 The cotangent of an angle is the reciprocal of its tangent, or                  tan A cot A == 1.

Relations between the trigonometrical functions of the same angle.

613              sin? A+cos A = 1.             [I. 47

614             sec2 A = 1+tan A.
[image: ]

618 sin A = .....tan A , cos A =    - 1------ [617

•1 + tan2 A            1+ tan2 A

619 The Complement of A is = 90°— A.

620 The Supplement of A is = 180°— A.

621 sin (90°—A) = cos A, tan (90° — A) = cot A, sec (90°—A) = cosec A.

[image: ]



622 sin (180°—A) = sin A, cos (180°—A) = — cos A, tan (180°—A) = — tan A.

In the figure _Q0X= 180°—A.   [607,

623           sin (—A) = — sin A.

624            cos( — A) = cos A.

By Fig., and (607), (608).

The secant, cosecant, and cotangent of 180°—A, and of —A, will follow the same rule as their reciprocals, the cosine, sine, and tangent.                               [610—612

625 To reduce any ratio of an angle greater than 90° to the ratio of an angle less than 90°.

RULE.—Determine the sign of the ratio by the rules (607), and then substitute for the given angle the acute angle formed by its two bounding lines, produced if necessary.

Ex.—To find all the ratios of 660°. Measuring 300° (= 660°—360°) round the circle from A to P, we find the acute angle AOP to be 60°, and P lies below AA, and to the right of BB'.

[image: ]



Therefore

sin 660° = - sin 60° = - 43,

cos 660° = cos 600 =    1, and from the sine and cosine all the remaining ratios may be found by (613—616).

INVERSE NOTATION.—The angle whose sine is x is denoted by sin™1 a.

626 All the angles which have a given sine, cosine, or tangent, are given by the formulas

Cosec-1 a, sec-la, cot-la have similar general values, by (610—612).

These formulae are verified by taking A, in Fig. 622, for 0, and making n an odd or even integer successively.

FORMULA INVOLVING TWO ANGLES, AND MULTIPLE ANGLES.

627    sin (A+B) = sin A cos B + cos A sin B,

628    sin (A — B) = sin A cos B — cos A sin B,

629    cos (A+B) = cos A cos B — sin A sin B,

630    cos (A — B) = cos A cos B + sin A sin B.

Proofs of (627) to (630).—By (700) and (701), we have

sin C = sin A cos B+cos A sin B, and               sin 0 = sin (A+B), by (622).

To obtain sin (A—B) change the sign of B in (627),. and employ (623), (624),         cos (A+B) = sin {(90°-A) -B], by (621).

Expand by (628), and use (621), (623), (624). For cos (A—B) change the sign of B in (629). .


	
631
	
tan (A+B)
	
tan A — tan B

1—tan A tan B ’


	
632
	
tan (A—B)
	
tan A — tan B

1+tan A tan B ’


	
633
	
cot (A-\-B)
	
cot A cot B — 1 cot A + cot B


	
634
	
cot (A- B)
	
— cot A cot B+1 cot B — cot A


			
Obtained from (627—630).





	
635

636

637

638

639

640
	
sin 2A = 2 sin A cos A. [627. Put B~A cos 2A = cos? A — sin2 A,

= 2 cos? A — 1,

= 1 - 2 sin? A.           [629, 613

2 cos® A — 1 + cos 24.                [637

2 sin2 A = 1 — cos 2A.               [638


	
641
	
• A    /1 — cos A           -

sin 2 =V—2—•         [640


	
642
	
A   /1 + cos A          -

COs2 = V—2—■        [639


	
643
	
tan A — / 1 “ cos A _ 1 — cos A _ sin A

2 1+ cos A — sin A 1+ cos A '

[641, 642, 613

1 — tan2 4              2 tan 4


	
646
	
cos A = --------- . sin A = --------- .

1 + tan2 —            1 + tan2 4

[643, 613


	
648
	
cos A = ----.—1--—- .

1 + tan A tan 4


	
649
	
। A\               A\ / 1 — sin A. - ,

sin 45°) = cos(45°——) = 1—L—--. 641

\    2 /     \    2/Y   2


	
650
	
cos(45°+4) = sin (45° — 4) = 1-sinA. [642


	
651
	
tan(4504L A) _ /1+sin A = 1+sin A _ cos A

\ 2/ V 1—sin A cos A 1—sin A


	
652
	
tan 2A = . 2 tan A . [631. Put B=A 1 — tan2 A L


	
653
	
cot 2A = ceA / . 2 cot A





	
654
	
tan (45°+A) = 1+t tan A .

1 — tan A


	
655
	
tan (45°—A) = 1— tan A .       631, 632

1 + tan A


	
656

657
	
sin 3A = 3 sin A — 4 sin’A. cos 3A = 4 cos’A — 3 cosA.


	
658
	
, O ,    3 tan A — tan3 A

1—3 tan2 A

By putting B=2A in (627), (629), and (631).




659 sin (A+B) sin (A— B) = sin2 A— sin2 B = cos2 B—cos2 A.

660 cos(A+B) cos(A-B) = cos’A— sin2 B = cos2B—sin2 A.

From (627), &c.

661       sin 9 + cos 9 = ±l+ sin A.

Proved by squaring.

662        sin 4 — cos 4 = + VI — sin A.

663     sin 4 = 1 { v1+sin A — VI- sin A}.

664    cosA = 1{1+sin A + VI-sin A},

A

when — lies between —45° and +45°

2

665 In the accompanying diagram the signs exhibited in each quadrant are the signs to be prefixed to the two surds in

[image: ]



A the value of sin — according to the quad-

A rant in which — lies,

A

For cos — change the second sign.

Proved by examining the changes of sign in (661) and (662) by (607).

666  sin (A+B) + sin (A—B) = 2 sin A cos B.

667  sin (A+B) - sin {A—B) = 2 cos A sin B.

668  cos (A+B) + cos (A- B) = 2 cos A cosB.

669  cos {A - B) - cos (A+B) = 2 sin A sin B. [627—630

670 sin A + sin B = 2 sin A- cos A .

	
•  . . A—B • A—B


Obtained by changing A into





A±B, and B into A B, in (666—669).

It is advantageous to commit the foregoing formula to memory, in words, thus—           sin sum — sin difference = 2 sin cos, sin sum — sin difference = 2 cos sin, cos sum + cos difference = 2 cos cos, cos difference — cos sum = 2 sin sin. sin first   + sin second = 2 sin half sum cos half difference, sin first   — sin second = 2 cos half sum sin half difference, cos first   + cos second = 2 cos half sum cos half difference, cos second — cos first   = 2 sin half sum sin half difference.

674 sin (A+B+C)

= sin A cos B cos C + sin B cos C cos A

+ sin C cos A cos B — sin A sin B sin C.

675 cos (A+B+ C)

= cos A cos B cos C — cos A sin B sin C

	
	
— cos B sin C sin A — cos C sin A sin B.





676 tan (A+B+C)

_ tan A + tan B + tan C — tan A tan B tan C

	
1    — tan B tan C — tan C tan A — tan A tan B ’



Put B + G for B in (62 7), (629), and (6 31).


If

677




A+B + C = 180°, sin A + sin B + sin C = 4




sin A + sin B — sin C = 4




678




cos A — cos B — cos C = 4




COS A + CoSB — cos C = 4




ABC COS cos— cos— .

L E E

AB C

sin 2 sin 2 COs2 ■

ABC sin — sin — sin — — 1.




679




680




681

682




tan A — tan B + tan C = tan A tan B tan C.

A B  C   A  B  C

cot— 4- cot— — cot— — cot— cot— cot— .

2      2      2      2    2    2

sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.

cos 2A + cos2B + cos 2C = —4 cos A cos B cos C— 1.



General formulae, including the foregoing, obtained by applying (666—673).

If A+B+C=, and n be any integer, a         • nB . nC

683 4 sin - sin — sin — 2                %

• nrr A : nir 7• n't? \    • 7278

= sin —— nA ) — sin —— nB — sin-— nC — sin — . 2      /       2      /       2      /       2

5 A nA AB nC 684  4 cos — cos — cos hit     A . nir    7 , nn     z\ , nir

— cos —— — nA — cos — — nB — cos — —nC )—COS —-. 2      /        2      /        2      /       2

If A+B+C= 0,

685 4 sin 74 sin 2P sin   = sin nA — sin nB—sin nG. 222

686 4cos?Acos"P cos" = cos 7A+cos AB+cOsnC+1. 2       2        2

RULE.—If, in formulae (683) to (686), two factors on the left be changed by writing sin for cos, or cos for sin; then, on the right side, change the signs of those terms which do not contain the angles of the altered factors.

Thus, from (683), we obtain

A . nA    nB    nC

687  4 sin — cos — cos

2        2        2


• (Y7r A

— — sin I —— nA \ 2




— sin I —— nB I

A /




— sin (—— nC) A /




. mr

+ smy



A Formula for the construction of Tables of sines, cosines, &c.—

688 sin (n+1) a — sin na = sin na — sin (n — 1) a—k sin na, where a = 10", and * = 2 (1-cos a) = -0000000023504.

689 Formula for verifying the tables—

sin A+sin (72°+A)— sin (72° — A) = sin (36°+ A)— sin (36°—A), cos A+cos (72°+ A) + cos (72°—4) = cos (36°+A)+cos (36°—A), sin (60° + A) — sin (60°—A) = sin A.


	
RATIOS OF CERTAIN ANGLES.


	
690
	
sin 45° =
	
cos 45° = -1, tan 45° = 1.


	
691
	
sin 60° =
	
%3, cos 60° = 1, tan 60° = 13.


	
692
	
sin 15° =
	
3 — 1   . 3+1

272 ’ 00815 = 27/2 ’

tan 15° = 2-^3}

cot 15°= 2+3)


	
693
	
sin 18° =
	
5-1    TOO  15+5

4 ’ cos 18 =   27/2 ’

tan 180 =1/5-215.


	
694
	
sin 54° =
	
15+1 pjo 15-5 -   4 , cos 54° =   2772 ,

tan 54» = V5+3V5.




695 By taking the complements of these angles, the same table gives the ratios of 30°, 75°, 72°, and 36°.

696   NOTE.—sin 15° is obtained from sin (43°— 30°), expanded by (628).

697  sin 18° from the equation sin 2x = cos 3a, where a = 18°.

698  sin 54° from sin 32 = 3 sin a-4 sin3 a, where a = 18°.

699 And the ratios of various angles may be obtained by taking the sum, difference, or some multiple of the angles in the table, and making use of known formula. Thus

1 KO 12° = 30°—18°, 73° =     &c. &c.

PROPERTIES OF THE TRIANGLE.


700

701

702



c = a cos B-{-b cos A.

[image: ]



a _ b _ c sin A sin B sin C ’

a? = b'+c— 2bc cos A.

[By Euc. II. 5 & 6.


703




cos A =




b2+c2—a2

2bc



If s = a±b+e, and A denote the area ABC,

,   • A / (s—b) (s—c) A /s(s— a)

704 sin2 = V----be---<, Cos2 = V—be *

[image: ]




705

706

707

708



[641, 642, 703, II, 12

[635, 704

[707, 706

= J ^b^A-^cW^d^-a^-b^-c4.


Let

r = radius of inscribed circle. ra= radius of escribed circle touching the side a.

R=radius of circumscribing circle.




The Triangle and Circle.




709




—     — A   ra I rb 1 TC

[From Fig., A = 2 + 2 +2:




710




. B : C a sin — sin —

cos A




711




[By C=T cot or cot — .

A



[image: ]




712




S— a

B C a cos cos —

A—

Cos2




[By A =‘+"g-"g.




B 0

[From a = Ya tan - + ra tan — .

ra =
[image: ]




Distance between the centres of inscribed and circumscribed circles

716               = VR*-2Rr.                [936

Radius of circle touching b, c and the inscribed circle

717               r = r tan2 } (B-^-C). [By sin4 = 747.

SOLUTION OF TRIANGLES.

Right-angled triangles are solved by the formula

[image: ]



718 c= a’+b;

719     } b = c cos A,

(a = b tan A,

Scalene Triangles.

720 Case I.—The equation a _ b sin A   sin B

[image: ]



will determine any one of the four quantities A, B, a, b when the remaining three are known.


721




The Ambiguous Case.




When, in Case I., two sides and an acute angle opposite to one of them are given, we have, from the figure,

• J c sin A sin C =------.

a



[image: ]




Then C and 180°— C are the values of C and C', by (622).




Also




b = c cos A — Vd1—c2 sin2 A,




because




= AD — DG.



722 When an angle B is to be determined from the equation sin B = b sin A, a

and — is a small fraction; the circular measure of B may be approximated a

to by putting sin (B+ 0) for sin A, and using theorem (796).

723 CASE II.—When two sides b, c and the included angle A are known, the third side a is given by the formula

a3 = b^-^c2—2bc cos A,               [702 when logarithms are not used.

Otherwise, employ the following formula with logarithms,


724



B-C b-c , A tan —= —- cot — .

	
2    6+c    2


Obtained from




b — c sin B — sin 0




b + c sin B — sin 0




(701), and then applying




(670) and (671).

B_

—o— having been found from the above equation, and

Bz being equal to 90° — 4, we have




725




—B+C , B-C ~ B+C B—C

2=2123 (=2 2—




B and 0 having been determined, a can be found by Case I.




726 If the logarithms of b and c are known, the trouble of taking out log (b— c) and log (b+c) may be avoided by employing the subsidiary angle 0 = tan-1 b, and the formula

727            tan | (B- C) = tan (e--T) cot 4.             [655




Or else the subsidiary angle 6 = cos 1 £, and the formula




728




tan ^ (B—C) = tan2 • cot 4.




[643




If a be required without calculating the angles B and 0, we may use the formula




729




(b+c) sin —

" - cos 1 (B-C)'




From the figure in 940, by drawing a perpendicular from B to EC produced.




730 If a be required in terms of b, c, and A alone, and in a form adapted to logarithmic computation, employ the subsidiary angle




0 = sin




4il)c 2 A \

(b+c)3 cos 2)’




and the formula




a = (b+c) cos 0.




[702, 637




CASE III.— When the three sides are known, the angles may be found without employing logarithms, from the formula 731           cos A = ^=A.          [702




732 If logarithms are to be used, take the formulae for sin cos 4, or tan 4; (704) and (705).

22   2




QUADRILATERAL INSCRIBED IN A CIRCLE.




733




cos B =




a2+62—c—d2

2(ab-\-cd)




From AC2 = a?+62—2ab cos B = c2+d2+ 2cd cos B, by (702), and B + D = 180°




734 SinB=ao*ea: [813,783

735 Q= V^-a^s-b^s-c^s-d) = area of ABCD,



[image: ]




and         s — 2 (a+b+c+d).

Area = } ab sin B +}cd sin B; substitute sin B from last.




736




A22_ (ac+bd) (ad-]-bc) (ab+cd)




[702, 733




Radius of circumscribed circle




737




= 1 • (ab-{-cd) {ac^-^d) (adA-bc).




[713, 734, 736





If AD bisect the side of the triangle ABC in D, 738               tan BDA = 44,

739                cot BAD = 2 cot A + cot B.

740         AD2 = 1 (b2 + c2 + 2bc cos A) = 1 (b3+c‘—}a).

If AB bisect the angle A of a triangle ABC, 7749           tan BDA = cot B-C = b+c tan 4.

743                  AD = 2bc cos 4.

‘.                   b+c 2


If AD be perpendicular to BG,




744




AD =




bc sin A _ 62 sin 0+ c2 sin B a          b+c




745



—       62—c2    tan B — tan G

BD ~ GD =   = a   —— — .

a tan D — tan U

REGULAR POLYGON AND CIRCLE.

Radius of circumscribing circle = R. Radius of inscribed circle Side of polygon              =

[image: ]



USE OF SUBSIDIARY ANGLES.

749 To adapt a—b to logarithmic computation.

Take        0 = tan-1./b ; then a+b =asec?0.

V a

750 For a—b take 0 = tan 1 (b) ; thus

7 _ a ,/2 cos (0+45°) cos 0

751 To adapt a cos C±b sin G to logarithmic computation.

Take 0 = tan-1 d. : then

b

a cos 0* b sin G = ^G^+b^ sin G±G}. [By 617 For similar instances of the use of a subsidiary angle, see (726) to (730). 752 To solve a quadratic equation by employing a subsidiary angle.

If a2 — 2pa + q = 0 be the equation,

w =p (1 ± 1 -3).            [By 45

Case I.—If I be <p^, put 3 = sin2 6 ; then a =2p cos2 6, and 2p sin? 6 .                [639, 640

Case II.—If q be >p3, put I = sec2 0 ; then

a = P (1 ±i tan 0), imaginary roots.                [614

Case III.—If q be negative, put , = tan3 0 ; then

« = »q cot • and _q tan 2 .         [644, 645

LIMITS OF RATIOS.

pgo sin 0 _ tan 6

[image: ]



when 0 vanishes.

For ultimately 2% = AF = 1 [601,606 o—

0

754 n sin — = O when n is infinite. _   .  0

n                               By putting — for • in last.


755 (



0 \n

cos — I = 1 when n is infinite. n /

Put (1 — sin2 —) 2, and expand the logarithm by (156).

DE MOIVRE’S THEOREM.

756 (cos a— i sin a) (cos B+ i sin 3) ... &c. = cos (a+8+y+ •••) + i sin (a+B+y+ ...), where i= — 1.                         Proved by induction.

757 (cos 6+i sin ^}n = cos n@+i sin nO.

By Induction, or by putting a, 3, &c. each = 0 in (756).

Expansion of cos nO, 8c. in powers of sin 0 and cos 0.


758 cos ne = cos" e- C (n, 2) cos"—2 0 sin2 0

+ C (n, 4) cos"-4 0 sin4 6— &c.

759 sin n0 = n cos"-1 0 sin 0— C (n, 3) cos"-3 0 sin3 6+&c. By expanding (757) by Bin. Th., and equating real and imaginary parts. Pen           n^e-C^n,^ tan@+&c.

) 1—C (n, 2) tan2 0+C (n,4) tan’@—&c. •

In series (758, 759), stop at, and exclude, all terms with indices greater than n. Note, n is here an integer.

Let sr = sum of the 0 (n3 r) products of tan a, tan 3, tan y, &c. to n terms.

761 sin (a+B+y+&c.) = cos a cos 3 ... (s— Sa+s— &c.)

762 cos (a+B+y+&c.) = cos a cos B ... (1 — 82+s,— &c.)

By equating real and imaginary parts in (756). 763 tan (+8+7+ &c.) = IZ-+7-7+&O • — 82184 6T—&.

Expansions of the sine and cosine in powers of the angle.

764 sin 6 = 6—+-—&c. cos 0 = 1 —- ——&c. 0

By putting— for 0 in (757) and n =0, employing (754) and (755).

766    Ne = cos 0+i sin 0.   e " = cos 0— i sin 0. By (150).

768     ei0+e-ie = 2 cos 0.    et — e-i = 21 sin 0.


770



• , n e“— e-i 1 — i tan 0 ii9

v tan 0 =  ----. .   ——.---- = e” eie — e ie 1 _ i tan 0

Expansion of cosn 0 and sinn 0 in cosines or sines of multiples of 6.

772      2n-1 cos" 6 = cos n@+n cos [n—2) 0 +C fi, 2) cos fi—4) 6+C fi, 3) cos (n- 6) 6+&c.

773 When n is even, 2n-1 (— 1)1" sin" 0 = cos nO—n cos (n—2) 0 +C (n, 2) cos (n— 4) 0—C fi, 3) cos (n—6) 6+&c.

774 And when n is odd,

n-1

2"-1(— 1) 2 sin"@ = sin nO—n sin (n—2) 0

-fC fi, 2) sin (n—4) 6—C (n,3) sin (n—6) 6+&c.

Observe that in these series the coefficients are those of the Binomial Theorem, with this exception,—If n be even, the last term must be divided by 2.

The series are obtained by expanding (e" ± eie)" by the Binomial Theorem, collecting the equidistant terms in pairs, and employing (768) and (769).

Expansion of cos nO and sin nO in powers of sin 0. 775 When n is even,


n2(n?—22) sina g



•                                                2 cos n=1—2 sin2 0 — 2 _ n3(n*-2)(n2—42) sin- 0

6


776 When n is odd, cos nO = cos 0’1- n2—1




. (n2 sm2 0 — -—




-1)(n—32) sin40 4




_ (n2—1) (n2—




sin6 0 + &c.



777 When n is even,

,2.__Q2

sin 0 — —,— sin3 0 +

{n^) (n^) sins e—(n‘—22) (n2—42) (n2—62) sin" 6+&c. ?

5                      7                  )


778 When n is odd, sin n0 = n sin 0 — n(‘




n (n2—




gsin‘e+"nn,C" *-3) (8—50) in784 A0.




sin5 0



METHOD OF PROOF.

By (758), we may assume, when n is an even integer,

cos n9 = 1 + A2 sin2 0 + A^ sin4 0 + ... + A2r sin2’’ 0 + ...

Put 0+x for 0, and in cos nd cos nx — sinn@ sin na substitute for cos na and sin nz their values in powers of nx from (764). Each term on the right is of the type A,, (sin 0 cos a + cos 0 sin x}2r. Make similar substitutions for cos x and sin x in powers of X. Collect the two coefficients of x2 in each term by the multinomial theorem (137) and equate them all to the coefficient of x2 on the left. In this equation write cos2 0 for 1 — sin20 everywhere, and then equate the coefficients of sin2*- 0 to obtain the relation between the successive quantities A2r and A2r+2 for the series (775).

To obtain the series (777) equate the coefficients of a instead of those of a3. When n is an odd integer, begin by assuming, by (759),

sin nO = A, sin 0+A, sin3 0 + &c.

779 The expansions of cos 20 and sin 20 in powers of cos 0 are obtained by changing 0 into 37—0 in (775) to (778).

780 Expansion of cos nO in descending powers of cos 0.

2 cos n0 = (2 cos 0)n — n (2 cos 6)7-2 +


(2 cos 6)"-4 —



+ (-1) n(n—7—1)(n—7—2) ..(n—2r+1) (2 cos 6)»-2r+

up to the last positive power of 2 cos 0.

Obtained by expanding each term of the identity

log (1-zz)+log fl--—) = log f 1 — z (a + 1--z) 2/ C \  2   /

by (156), equating coefficients of zn, and substituting from (768).

783 sina+csin (a+B)+c2 sin (a+2)+&c. to n terms

_ sin a—c sin (a— B) — cn sin (a+n,)+c+1 sin {a+n— 1 B} 1-2 COS B+c

if c be < 1 and n infinite, this becomes

79A            = sin a—c sin (a—3) 1—2 cos 3+c2

785 cos a+ c cos (a+B)+ccos (a+2)+&c. to n terms = a similar result, changing sin into cos in the numerator.

786 Similarly when c is < 1 and n infinite.

787 Method of summation.—Substitute for the sines or cosines their exponential values (768). Sum the two resulting geometrical series, and substitute the sines or cosines again for the exponential values by (766).

788 c sin (a+B)+ — sin (a+2)+ sin (a+3B)+&c. to infinity = ec cos 8 sin (a— c sin 3) — sin a.

2                              3

789 c cos (a +3)+ ~ cos (a+23)+ € cos(a+38)+&c. to infinity = e-of cos(a+e sin B)—cos a. Obtained by the rule in (787).

790 If, in the series (783) to (789), B be changed into +T, the signs of the alternate terms will thereby be changed.

Expansion of 0 in powers of tan 0 {Gregory s series').

A A tan3^tan5^ ,

791       0 = tan 0 — —-— — —"--&C. o 5

The series converges if tan 6 be not > 1.

Obtained by expanding the logarithm of the value of e2 in (771) by (158).

Formulae for the calculation of the value of T by Gregory’s series.

792 I = tan"1 } + tan"1 1=4 tan"1 } — tan"123 [791


794




=4tan”15—tan"170+tan199



Proved by employing the formula for tan (A ± B), (631).

To prove that T is incommensurable.

795 Convert the value of tan 0 in terms of 9 from (764) and (765) into .00260 a continued fraction, thus tan 0 = — — — ——     ; or this result may

be obtained by putting id for y in (294), and by (770). Hence

1__0 -02 62 63 tan 6   3— 5— 7—&c.

	
	
-           -2 0 Put — for 9, and assume that 7, and therefore —, is commensurable. Let 2                                       4



	
72_m     .  . •  • ।      r      .. i__ mn mn — = — 1 and n being integers. Then we shall have 1 = — — „ — 0


	
4 n        P                  3n — bn— 7n— &c.



The continued fraction is incommensurable, by (177). But unity cannot be equal to an incommensurable quantity. Therefore T is not commensurable.

796 If sin® = n sin (+a), a = nsin a + " sin 2a + "" sin Za+&c.

797 if tana = ntan y, a = y—m sin 2y + 7 sin 4y — ‘ sin 6y + &c.,

I Y where m = ----.

These results are obtained by substituting the exponential values of the sine or tangent (769) and (770), and then eliminating x.

798 Coefficient of xn in the expansion of eaxcosbx — -——— cos n9, where a = r cos 9 and b = r sin 9.                            L2L

For proof, substitute for cos bx from (768) ; expand by (150); put a = r cos 9, b = r sin 0 in the coefficient of xn} and employ (757).

	
7 9 9 When e is < 1, *1—e= 1+2b cos 6+263 cos 20+263 cos 30+..., 1 — e COS 0 where b =----- .



1+1—e

For proof, put e = 1472 and 2 cos 0 = • + —, expand the fraction in two series of powers of x by the method of (257), and substitute from (768).

800 sin a+sin (a+B)+sin (a+2)+...+sin {a+(n—1)B}

	
	
• / , n—1 . n sin I a + ——— P I sin - P





sin 2

801 cosa+cos(a+8)+cos(a+23)+...+cos{a+(n— 1)3} / , n—1 A . nS cos I a  --o p) sin —o

sin 2

802 If the terms in these series have the signs + and — alternately, change 3 into 3+m in the results.

For proof, multiply the series by 2 sin 3, and apply (669) and (666).

803 If B=7 in (800) and (801), each series vanishes.

804 Generally, If= —, and if r be an integer not a multiple of n, the sum of the rth powers of the sines or cosines in (800) or (801) is zero if r be odd; and if r be even it is =50(r, 5); by (772) to (774).

General Theorem.—Denoting the sum of the series

805              c+c,%+c,a*+ ... +cnxn by F (x) ; then ccosa + cx cos (a+) + ... +c„cos (a+n) = } {e^F^e^) + e-"F(e-4)}, and

806  c sin a + C, sin (a + 3) + ... + cn sin (a + n) = 1 { e^F (e4) — e~iaF (e-4)}.

Proved by substituting for the sines and cosines their exponential values (766), &c.

Expansion of the sine and cosine in factors.

807            a?" — 2xnyn cos n0 + y^

= {a—2y COS 6+y } {a2—2y cos (6 + 27) +y} ... to n factors, adding 2T to the angle successively.

PROOF.—By solving the quadratic on the left, we get a = y(cosn6 +isinn@)n. The n values of a are found by (757) and (626), and thence the factors. For the factors of xn ± yn see (480).

808 sin nd = 2n 1 sin 4 sin ($ + T) sin (4 + —) ...

X n /    \ n / as far as n factors' of sines.

PROOF.—By putting a = y = 1 and 9 = 2c in the last.

809 If n be even, sin ncl) = 2’1 sind cos $ (sin? — — sin?) (sin2 AT — sin%) &c.

810 If n be odd, omit cos $ and make up n factors, reckoning two factors for each pair of terms in brackets.

Obtained from (808), by collecting equidistant factors in pairs, and applying (659).

o — —- ) sin ( o — — )... to nfactors.

PROOF.—Put 4 + r for 4 in (808).

812 Also, if n be odd, cosnd = 2n-1 cos + ( sin2 7 — sin2 4) (sin?3T — sin? 4) ... \            / 2n 813 If n be even, omit cos p. Proved as in (809).

PROOF.—Divide (809) by sin d, and make « vanish; then apply (754). 815 sin@ = 1-()M1-()1-(€)? 816 cos^ = 1— —  1- — (1—().......

Proof.—Put $ = • in (809) and (812) ; divide by (814) and make n infinite.


817




e"— 2 COS 6+e 3

=4sin‘2 (1+62 5 (1+




x2 ? (2m±0)25




x2 (4T±0)2



Proved by substituting x = 1+ 2, y = 1—%, and — for 0 in (807), in         In n

making n infinite and reducing one series of factors to 4 sin2 — by putting z = 0.                                                            -
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De Moivre9s Property of the Circle. — Take P any point, and POP = 0 any angle,

BOG = GOD = &c. = —;

OP = x; OP = r.

819 a?" —2"r" cos n6+72"

— PB2 PC2 PD2 ... to n factors.

By (807) and (702), since PB2 = a’— 2xr cos 0+7, &c.

820 Tix = r, 2,” sin " = PB.PC .PD ... &c.

821 Cotes's properties.—If 0 = —


822



a" ~ rn = PB .PC. PD ... &c. a”—y" — pa . p^ . pc ... &c.

ADDITIONAL FOBMULPE.

823 cot A+tan A = 2 cosec 2A = sec A cosec A.

824 cosec 24+ cot 2A = cot J. sec A = 1+tan A tan 4.

826           cosA = cos4 4—sin 4.

827         tan A + sec A = tan (45°+ 4).

828         tan A-tanB = tan A tan B ‘ cot A+cotB

829^ sec? A cosec? A = sec? A+cosec? A.

830 If A+B+C = ^, tan B tan C+tan C tan A+tan A tan B = 1. 831 IiA+B+C=ir3 cot B cot C+cot C cot A+cot A cot B = 1.

832 sin—13+sin—1* = F. tan-]+tam-l = T

In a right-angled triangle ABG} G being the right angle, 833 cos2B =d—b tan 2B-2b. a"—64             a2—bz

834 tan ]A =v(L6). R+r = l{a+b).

In any triangle,

835          sin 4 (A -B) = a—b cos JC. C cos | (A—B) = a+b sin JC.

920 sin A— B _ a?— b2 tan 2A+tan2B _ c sin A+B c" ' tan ^A — tan ^B a—b 837 A (a?+6?+c) = be cos A+ca cos B+ab cos C. 838 Area of triangle ABC = 2 bc sin A _ 1 2 sin B sin C _ 1 9492 sin A sin B 2 sin A 2sin (A—B) ’ 839   = 2abc cos JA cos iB cos iC. a-]~bA-c

840   = 1 (a+b+c)2 tan 1 A tan }B tan^C.

With the notation of (709),

841 r = 2 (a+b+c) tan }A tan }B tan|(7. 842 ^Rr — abc . A = • rrarbrc. d-ro-c

843 a cos A+b cos B+ c cos C = ^R sin A sin B sin C. 844 R+r=2(a cot A+b cotB+Iccot C) — sum of perpendiculars on the sides from centre of circumscribing circle. This may also be shown by applying Euc. VI. D. to the circle described on R as diameter and the quadrilateral so formed.

845 rarbrc = abc cos 2A cos^B cos-JC.

846        r = • (rbrc) + v(rra) + V(rarb). 847 1-141+1. tan = J rr, . 7 Ta 76 rc                   v rbr0

849 If 0 be the centre of inscribed circle,

850          a (b cos C — c cos B) = 62—c3. 851 b cos B + c cos C — c cos (B-C). 852   a cos A + b cos B+ c cos C = 2a sin B sin C. .     .   , ।    I_ 2a sin Bsin C 853   COS A — cos B — cos C = 1 —---——---. 854 f 8=±(d+b+c), 1—cos2 a—cos2 b—-cos2 c+2 cos a cos b cos c = 4 sin s sin (s— a) sin {s—b) sin (s—c). 855    -1+ cos2 a+cos26+cos2c+2 cos a cos b cos c = 4 cos s cos (s— a) cos(s— b)cos(s — c).

859 Examples of the Solution of Triangles.

	
Ex. 1: CASE II. (724).—Two sides of a triangle b, c, being 900 and 7 0 0 feet, and the included angle 47° 25‘, to find the remaining angles. tan B-C = b—e cot A = 1 cot 23042’ 30" ; 2 b+c 2    8 therefore          log tan } (B — O') = log cot 4 — log 8 ; therefore L tan } (B — C) — L cot 23° 42‘ 30"— 3 log 2 ; 10 being added to each side of the equation.



	
	
.. L cot 2 3° 42‘ 3 0" = 10-3573942 1(..   ^(R-G} = 15° 53 19"-55 1 3 log 2 =   -9030900 ) and 1 (B+ C) = 66° 17 30" .. Ltan} (B-C) = 9-4543042 (.. B = 82010 49:55





And, by subtraction, C = 50° 24 10":45

Ex. 2: Case III. (732).—Given the sides a, b, c = 7, 8, 9 respectively, to find the angles.

tan A = /(s—b) (3—c) = /4.3 = IN 2 V s (s— a) V 12.5 V id’ therefore Ltan-4 = 10+3 (log 2—1) = 9-650515;

therefore                  ^A = 24° 5‘ 41" 43.1

is found in a similar manner, and G = 180°—A—B.

Ex. 3.—In a right-angled triangle, given the hypotenuse c = 6953 and a side b = 3, to find the remaining angle.


3

Here cos A = 6953




But, since A is nearly a right angle, it cannot be



determined accurately from log cos A. Therefore take

• A _ /1 -cos A _ /3475 sin 2 V 2 V .6953’ therefore L sin 4 = 10+4 (log 3 4 7 5-log 69 53) = 9-8493913,

therefore                 4 = 44° 59' 15"’521

therefore A = 8 9° 5 8' 31”04 and B = 0° 1' 28” 96.

SPHERICAL TRIGONOMETRY.

INTRODUCTORY THEOREMS.

870 Definitions.—Planes through the centre of a sphere intersect the surface in great circles; other planes intersect it in small circles. Unless otherwise stated, all arcs are measured on great circles.

The poles of a great circle are the extremities of the diameter perpendicular to its plane.

The sides a, b, c of a spherical triangle are the arcs of great circles BC, CA, AB on a sphere of radius unity; and the angles A, B, 0 are the angles between the tangents to the sides at the vertices, or the angles between the planes of the great circles. The centre of the sphere will be denoted by 0.

The polar triangle of a spherical triangle ABC has for its angular points A', B', C', the poles of the sides BC, CA, AB of the primitive triangle in the directions of A, B, C respectively (since each great circle has two poles). The sides of A'B'G' are denoted by a, b', c .

871 The sides and angles of the polar triangle are respectively the supplements of the angles and sides of the primitive triangle; that is,
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u -[- A —I -[-1) — c+C=m, a A~ A' = b + B' = c + C' = rr.

Let BC produced cut the sides A'B', C'A' in G, H. B is the pole of A'O', therefore BH = 7. Similarly CG = 3, therefore, by addition, a + GH — z and GH=A', because A' is the pole of BC.

The polar diagram of a spherical polygon is formed in the same way, and the same relations subsist between the sides and angles of the two figures. -

2 B

Rule.—Hence, any equation between the sides and angles of a spherical triangle produces a supplementary equation by changing a into T—A and A into T— a, ^c.

872 The centre of the inscribed circle, radius r, is also the centre of the circumscribed circle, radius R‘, of the polar triangle, and r+R‘= 3T.

PROOF.—lu the last figure, let 0 be the centre of the inscribed circle of ABO; then OD, the perpendicular on B 0, passes through A', the pole of BC. Also, OD = r, therefore 0A'— 37 — r. Similarly OB=OC=3m—r, therefore 0 is the centre of the circumscribed circle of A'B'C', and r+ R' = 37.

873 The sine of the arc joining a point on the circumference of a small circle with the pole of a parallel great circle is equal to the ratio of the circumferences, or corresponding arcs of the two circles.

For it is equal to the radius of the small circle divided by the radius of the sphere; that is, by the radius of the great circle.

874 Two sides of a triangle are greater than the third. [By XI. 20.

875 The sides of a triangle are together less than the circumference of a great circle.                        [By XI. 21.

876 The angles of a triangle are together greater than two right angles.

For 7—A + tt— B+T— 0 is < 27, by (875) and the polar triangle.

877 If two sides of a triangle are equal, the opposite angles are equal.                           [By the geometrical proof in (894). 878 If two angles of a triangle are equal, the opposite sides are equal.                             [By the polar triangle and (877).

879 The greater angle of a triangle has the greater side opposite to it.

PROOF.—If B be > A, draw the arc BD meeting A0 in D, and make _ ABD = A, therefore BD = AD; but BD+DO >BC, therefore A0 >B0.

880 The greater side of a triangle has the greater angle opposite to it.                        [By the polar triangle and (879).

RIGHT-ANGLED TRIANGLES.

881 Napier’s Rules.—In the triangle ABC let C be a right angle, then a, (2T— B), (^ir—c), (2T— A), and b, are called the five circular parts. Taking any part for middle part, Napier’s rules are—

	
I.    sine of middle part = product of tangents of adjacent parts.


	
II.    sine of middle part =product of cosines of opposite parts.



In applying the rules we can take A, B, c instead of their complements, and change sine into cos, or vice versa, for those parts at once. Thus, taking b for the middle part, sin b = tan a cot A = sin B sin c.

Ten equations in all are given by the rules.
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PROOF:—From any point P in OA, draw PR perpendicular to 00, and RQ to OB; therefore PRQ is a right angle, therefore OB is perpendicular to PR and QR, and therefore to PQ. Then prove any formula by proportion from the triangles of the tetrahedron OPQR, which are all right-angled. Otherwise, prove by the formula for oblique-angled triangles.

OBLIQUE-ANGLED TRIANGLES.


882



cos a = cos b cos c+sin b sin c cos A.

PROOF.—Draw tangents at A to the sides c, b to meet 0B, 00 in D and E. Express DE2 by (702) applied to each of the triangles DAE and DOE, and subtract.

[image: ]



If AB and AC are both > produce them to meet in A' the pole of A, and employ the triangle A'B0.

If AB alone be >3, pro-duce BA to meet BC.

The supplementary formula, by (871), is 883 cos A = — cos B cos C + sin B sin C cos a. 884        sin A = vsin (s—b) sin (s—c) .

	
885       cos A = sins sin (s—a) . 2    • sin b sin c



886 tanA = J sin (s—6) sin (s—c) where s=1(a+64c). 2     • sin s sin (s— a) A

PROOF.—sin2 — = 2 (1—cos A). Substitute for cos A from (872), and throw the numerator of the whole expression into factors by (673). Similarly , A tor cos—.

2

The supplementary formulas are obtained in a similar way, or by the rule in (871) . They are


	
887
	
a

cos 2 — 1
	
/cos (S-B) cos (S-C)


	
V       sin B sin C


	
888
	
a

sin 2 =
	
/—cos S cos (S- A)


	
•     sin B sin C


	
889
	
, a

tan 2 =1
	
/ —cos S cos (S— A)


	
V cos (S-B) cos (S-C)




where S = 2 (A-j-B-^-C).

890 Let o=V sin s sin (s—a) sin (s—6) sin (s— c)

= 2 1+2 cos a cos b cos c—cos‘a—cos‘b—cos2c.

Then the supplementary form, by (871), is

891  ==• —cos S cos (S— A) cos (S—B) cos (S— C) = } V1— 2 cos A cos B cos C— cos2 A — cos2 B—cos2 C.

892 sin A = . 2o.— .    sin « = -—23. - .

sin b sin C              sin B sin C

[By sin A = 2 sincos 4 and (884, 885), &c.

893 The following rules will produce the ten formula (884 to 892)—

A

	
	
I.    Write sin before each factor in the s values of sin —,


cos 2




, A tan2




sin A, ancL/R, in Plane Trigonometry (704—•







707), to obtain the corresponding formulce in Spherical Trigo

nometry.

	
	
II.    To obtain the supplementary forms of the five results, transpose large* and small letters everywhere, and transpose sin and cos everywhere but in the denominators, and write minus before cos S.





Proof.—By (882). Otherwise, in the figure of 882, draw PN perpendicular to BOG, and NR, NS to OB, OG.  Prove PRO and PSO right angles by I. 47, and therefore PN = 0P sin c sin B = 0P sin b sin G.

895 cos b cos C = cot a sin b—cot A sin C.

To remember this formula, take any four consecutive angles and sides (as a, C, b, A), and calling the first and fourth the extremes, and the second and third the middle parts, employ the following rule :—

RULE.—Product of cosines of middle parts = cot extreme sideXsin middle side—cot extreme angle X sin middle angle. .

Proof.—In the formula for cos a (882) substitute a similar value for cos c, and for sin c put sin C Sin

sin A


	
896

(1)
	
NAPIER’S FORMULAE.

tan(A—B) = sin Ja-b cot S.


	
(2)
	
tan }(A+m)= cozllEP cot S.

COD 2 C M U) H


	
(3)
	
tan 1 (a — b) = sin s (A—B) tan c .


	
(4)
	
tan 1 p - cos](A—B) tan c

tan " 0 = cos](A+B) tan 2 ‘




RULE.—In the value of tan 2 (A—B) change sin to cos to obtain tan 2 (A+B). To obtain (3) and (4) from (1) and (2), transpose sides and angles, and change cot to tan.

Proof.—In the values of cos A and cos B, by (883), put m sin a and m sin b for sin A and sin B, and add the two equations. Then put m = sin 4 ± sin B, and transform by (670-672).

sin a = sin b

897              GARSSH EORMCLHC.

	
(1)    sin 1(A+B) = cos + (a—b)



‘ • cosIC        cos^c

	
79)    sin 4 (A-B) _ sin !(«—&) ‘ cosIC         sin^c


	
(3)    cosl(A+B) cost (a+b)



sin 2C cos }c

	
(4)    cos 4(A—B) = sin 1 (a+b) .



	
• 2 sin IC cos }e



From any one of these formula the others may be obtained, by the following rule :—

RULE.—Change the sign of the letter B (large or small) on one side of the eguation, and write sin for cos and cos for sin on the other side.

Proof.—Take sin 2 (A + B) = sin 3 A cos ^B + cos 2 A sin ^B, substitute the s values by (884, 885), and reduce.

SPHERICAL TRIANGLE AND CIRCLE.

898 Let r be the radius of the inscribed. circle of ABC; ra the radius of the escribed circle touching the side a, and R, Ra the radii of the circumscribed circles; then

	
	
(1)    tanr = tanW sin (s— a) = —— 7                                 ' sin S -         __2 sin ci •        • 1 —     1 -(3)      = —.—— sin 24 sin AB sin 1          sin A.           4      2





	
(4)    _______________%_____________ ‘        2 cos ^A cos ^B cos



+ ____________2%____________ cosS+cos(S— A)+cos(S- B)+&c.

Proof. — The first value is found from the right-angled triangle OAF, in which AE — s—a. The other values by (884-892).

[image: ]



899   (1) tan ra = tan ^A sin s = ——------

Sll ( S — d )

	
(3)    = 2 sin a sin ^A cos cos ^C sin A


	
(4)    = 2 cos ^A sin ^B sin ^C



_ ________________22________________

	
	
— cos S—cos (S- A)+cos (S—B)+cos (S—C)’





Proof.—From the right-angled triangle O'AF', in which AF' = s.

NOTE.-—The first two values of tan ra may be obtained from those of tanr by interchanging s and s — a.


900




(1)




tan R =




tan ^a cos (S— A)




— COS S




sin ^a sin A cos ^b cos^c




2 sin 2a sin ^b sin ^c




—sin s+sin (s— a)+sin (s— b)+&c. _ _         —

Proof.—The first value from the right-angled triangle OBD, in which L OBD = S—A. The other values by the formulas (887-892).



[image: ]



901 (1) tan R, = tank’s = cos(s 4)


(3)




(5)



sin 2U

sin A sin ^b sin ^c

_ 2 sin }a cos ^b cos }c

sin s— sin (s— a)+sin (s— 6)+sin (s—c) 20 Proof.—From the right-angled triangle O'BD, in which L O'BD = T- S. SPHERICAL AREAS.

902 area of ABC = (A+B^C-Tr) *2 = Er2, where E = A-j-B-j-C—7, the spherical excess.

[image: ]



PROOF.—By adding the three lunea ABDC, JBCEA, CAFB, and observing that ARE = CBE, we get (4+2+ C) 2772 = 27rr2+2ARO. a 7    7 /

903       AREA OF SPHERICAL POLYGON, n being the number of sides,

Area = {interior Angles — (n—2) T} 72

= (2m— Exterior Angles) 72

= (2m— sides of Polar Diagram) r2.

The last value holds for a curvilinear area in the limit.

Proof.—By joining the vertices with an interior point, and adding the areas of the spherical triangles so formed.


904




Cagnoli’s Theorem.




sin 3 E =



• {sin s sin (s—a) sin (s—b) sin (s—c)} 2 cos ^a cos ^b cos ^c

Proof.—Expand sin [2 (A+B)—} (r— 0)] by (628), and transform by Gauss’s equations (897 i., iii.) and (669, 890).

905              Lihuillier's Theorem.

tan |E = v{tan3s tan 4 (s— a) tan 1 (s— b) tan 2 (s - c)}.

Proof. — Multiply numerator and denominator of the left side by 2 cos 4 (A + R— C+r) and reduce by (667, 668), then eliminate 1 (A+B) by Gauss’s formulas (897 i., iii.) Transform by (6 72, 6 73), and substitute from (886).

POLYHEDRONS.

Let the number of faces, solid angles, and edges, of any polyhedron be F, S, and E; then


906



F+S = E+2.

PROOF.—Project the polyhedron upon an internal sphere. Let m = number of sides, and s = sum of angles of one of the spherical polygons so formed. Then its area = {s—^m — 1^) 7} 73, by (903). Sum this for all the polygons, and equate to 47r.

THE FIVE REGULAR SOLIDS.

Let m be the number of sides in each face, n the number of plane angles in each solid angle; therefore


907



mF = nS = 2E.

From these equations and (906), find F, S, and E in terms of m and n, thus,

	
1  m / 1  1  1\  1  n / 1  1  1 \  1111



F   2 m  n  2/  8   2 m  n  2 /’ E min 2

in order that F, 8, and E may be positive, we must have +4 >), a relation which admits of five solutions in whole nnmbers corresponding to the five regular solids. The values of m, n, F, S, and E for the five regular solids are exhibited in the following table :—


	
m n F S
	
E


	
Tetrahedron ...... 3   3    4   4
	
6


	
Hexahedron ...... 4   3    6   8
	
12


	
Octahedron ...... 3   4    8   6
	
12


	
Dodecahedron...... 5   3   12 20
	
30


	
Icosahedron ...... 3   5   20 12
	
30




908 The sum of all the plane angles of any polyhedron

= 2m (S-2) ;

Or, Four right angles for every vertex less eight right angles. 2 o

909 If I be the angle between two adjacent faces of a regular polyhedron,

•                           77 . • 77

sin 21 — cos--7 sin —.

n m

PROOF.—Let PQ = a be the edge, and S the centre of a face, T the middle point of PQ, 0 the centre of the inscribed and circumscribed spheres, ABC the projection of PST upon a concentric sphere. In this spherical triangle,

C = ~ A=—, and B = ~ = PST. 2       n          m Also          STO = II. Now, by (881, ii.), cos A = sin B cos BO;

that is, cos — = sin — sin ^1. n m Q. e. d.

[image: ]



If r, R be the radii of the inscribed and circumscribed spheres of a regular polyhedron,

	
910    =4 tan }I cot—, R = 4 tan +I tan —. 2         m       2         n



PROOF. — In the above figure, OS = r, OP = R, PT = ~; and

OS = PT cot — tan }I. Also OP = PT cosec AC, and by (881 i.), m

sin AC = tan BC cot A = cotil cot—, therefore, &c.

n

ELEMENTARY GEOMETRY.

MISCELLANEOUS PROPOSITIONS.

920 To find the point in a given line QY, the sum of whose distances from two fixed points S, S' is a minimum.

Draw SYR at right angles to QY, making YR = YS. Join RS', cutting QY in P. Then P will be the required point.

[image: ]



PROOF.—For, if D be any other point on the line, SD = DR and SP = PR. But RD + DS' is >RS', therefore, &c. R is called the reflection of the point S, and SPS' is the path of a ray of light reflected at the line QY.

If S, S' and QY are not in the same plane, make SY, YR equal perpendiculars as before, but the last in the plane of S' and QY.

Similarly, the point Q in the given line, the difference of whose distances from the fixed points S and R‘ is a maximum, is found by a like construction.

The minimum sum of distances from S, S’ is given by

(SP+SP)= SS+4SY.SY.

And the maximum difference from S and R‘ is given by

(.SQ-RQY = (SR‘)-4SY. RY’.

Proved by VI. D., since SRR'S' can be inscribed in a circle.

921 Hence, to find the shortest distance from P to Q en route of the lines AB, BG, CD ; in other words, the path of the ray reflected at the successive surfaces AB, BG, GD.
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Find Pv the reflection of P at the first surface; then P^, the reflection of Px at the second surface ; next Ps, the reflection of P, at the third surface ; and so on if there be more surfaces. Lastly, join Q with Ps, the last reflection, cutting CD in a. Join aP2, cutting BC in b. Join bP^ cutting AB in c. Join cP. PcbaQ is the path required.

The same construction will give the path when the surfaces are not, as in the case considered, all perpendicular to the same plane.

922 If the straight line d from the vertex of a triangle divide the base into segments p, q, and if h be the distance from the point of section to the foot of the perpendicular from the vertex on the base, then

b2+c2 = p2+q+24‘+2h (p—q\ [II. 12, 13.

The following cases are important:—

	
(i.) When p = q, 62+c2 = 2q2+2d2; i .e., the sum of the squares of two sides of a triangle is equal to twice the square of half the base, together with twice the square of the bisecting line drawn from the vertex.

[image: ]

(II. 12 or 13)






(ii.) When p = 2q, b2+2c2 = 6q‘+3d‘.

(iii.) When the triangle is isosceles,

b2 = c2 — pq-}-d2.

923 If 0 be the centre of an equilateral triangle ABG and P any point in space. Then

PA3+PB+PC2 = 3 (P0+04%).


(922, i.)

(922, ii.)
[image: ]




PROOF— PB^ + PC^ = 2PD2+2BD2.

Also      PA2 +2PD = 6 OD2 + 3P03, and            B0 = 20D; therefore &c.

CoR.—Hence, if P be any point on the surface of a sphere, centre 0, the sum of the squares of its distances from A, B, C is constant. And if r, the radius of the sphere, be equal to OA, the sum of the same squares is equal to 6r2.

924 The sum of the squares of the sides of a quadrilateral is equal to the sum of the squares of the diagonals plus four times the square of the line joining the middle points of the diagonals.               (922, i.)

[image: ]



925 Cor.—The sum of the squares of the sides of a parallelogram is equal to the sum of the squares of the diagonals.


926 in a given line AC, to find a point X whose distance
[image: ]





927 To find a point X in AC, whose distance XY from AB parallel to BC shall have a given ratio to its distance XZ from BC parallel to AD.

Draw AE parallel to BC, and having to AE the given ratio. Join BE cutting A 0 in X, the point required. [Proved by (VI. 2).



[image: ]




928 To find a point X on any line, straight or curved, whose distances XY, XZ, in given directions from two given lines AP, AB, shall be in a given ratio.

Take P any point in the first line. Draw PB parallel to the direction of XY, and BC parallel to that of XZ, making PB have to BC the given ratio. Join PC, cutting AB in E. Draw EE parallel to CB. Then AE produced cuts the line in X, the point required, and is the locus of such points. [Proof.—By (VI. 2).



[image: ]



929 To draw a line XY through a given point P so that the segments XP, PY, intercepted by a given circle, shall be in a given ratio.

Divide the radius of the circle in that ratio, and, with the parts for sides, construct a triangle PDC upon PC as base. Produce CD to cut the circle in X. Draw XPY and CY.

Then PDA DC = radius, therefore        PD = DX. But           CY = CX,

therefore PD is parallel to CY (I. 5, 28), therefore &c., by (VI. 2).

930 From a given point P in the side of a triangle, to draw a line PX which shall divide the area of the triangle in a given ratio.

Divide BC in D in the given ratio, and draw AX parallel to PD. PX will be the line required.

ABD :.ADC = the given ratio (VI. 1), and APD = XPD (I. 37), therefore &c.

[image: ]
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931 To divide the triangle ABC in a given ratio by a line XY drawn parallel to any given line AE.

Make BD to DC in the given ratio. Then make BY a mean proportional to BE and BD, and draw YX parallel to EA.

PROOF.—AD divides ABC in the given ratio (VI. 1). Now

ABE : XBY :: BE : BD, (VI. 19) or                     :: ABE : ABD-, therefore       XBY = ABD.

[image: ]



932 If the interior and exterior vertical angles at P of the triangle APB be bisected by straight lines which cut the base in 0 and D, then the circle circumscribing CPD gives the locus of the vertices of all triangles on the base AB whose sides AP, PB are in a constant ratio.

Proof.—

[image: ]



The 2 CPD = i(APB + BPE)

= a right angle ;

therefore P lies on the circumference of the circle, diameter CD (III. 31). Also

AP : PB :: AC : CB :: AD : DB

(VI. 3, and A.), a fixed ratio.

933 AD is divided harmonically in B and C; i.e., AD : DB :: AC : CB; or, the whole line is to one extreme part as the other extreme part is to the middle part. If we put a, b, c for the lengths AD, BD, CD, the proportion is expressed algebraically by a : b :: a—c : c — b, which is equivalent to

1

 See Chambers’s Mathematical Tables for a concise explanation of the method of obtaining these figures.


1.12

a b c

934 Also        AP : BP = 0A : 00 = 00 : 0B

and                    AP^ : BP2 = OA : 0B,                (VI. 19)

AP2-A02 : CP2 : BP2-BC3. (VI. 3, & B.)

935 If Q be the centre of the inscribed circle of the triangle ABC, and if AQ produced meet the circumscribed circle, radius R, in F; and if FOG be a diameter, and AD perpendicular to BG; then

(i.) FC=FQ=FB = 2RnmA.

[image: ]



(ii.) Z.FAD=FAO=%(B-C'), and ACAG = l(B+C\

Proof of (i.)—

AFQC = QCAA-QAC.

But QAC = QAB = BCF, (III. 21)

.. FQC = FCQ, .. F0 = FQ.

Similarly FB = FQ.

Also L GOT' is a right angle, and

FGC = FAO = 44, (III. 21)

.. FC = 2 sin A.

2

936 If R, r be the radii of the circumscribed and inscribed circles of the triangle ABC (see last figure), and 0, Q the centres; then      0Q= R3—2Rr.

Proof.—Draw QH perpendicular to AC; then QH = r. By the isosceles triangle AOF, OQ2 = B2-AQ . QF (922, iii.), and QF = FC (935, i.), and by similar triangles GFC, AQH, AQ, : QH :: GF : FC, therefore             AQ . FC = GF. QH = 2Rr.

The problems known as the Tangencies.

937 Given in position any three of the following nine data— viz., three points, three straight lines, and three circles,—it is required to describe a circle passing through the given points and touching the given lines or circles. The following five principal cases occur.

938 I. Given two points A, B, and the straight line CD.

[image: ]



Cor.—The point X thus determined is the point in CD at which the distance AB subtends the greatest angle. In the solution of (941) Q is a similar point in the circumference CD.

(III. 21, & 1.16.)

939 II. Given one point A and two straight lines DC, DB.

In the last figure draw A 00 perpendicular to DO, the bisector of the angle D, and make OB = OA, and this case is solved by Case I.

940 III. Given the point B, the straight line DB, and the circle ACB.

ANALYSIS.—Let PEF be the required circle touching the given line in E and the circle in F.

Through H, the centre of the given circle, draw AMCD perpendicular to DE. Let K be the centre of the other circle. Join HK, passing through F, the point of contact. Join AF, EF, and AP, cutting the required circle in X. Then

[image: ]

(III. 36)




L DHF = LKF, (I. 27) therefore EFA = KFE (the halves of equal angles), therefore AF, FE are in the same straight line. Then, because AX. AP = AF. AE, and AF. AE = AC. AD by similar triangles, therefore AX can be found. A circle must then be described through P and X to touch the given line, by Case I. There are two solutions with exterior contact, as appears from Case I. These are indicated in the diagram. There are two more in which the circle A C lies within the described circle. The construction is quite analogous, C taking the place of A.

941 IV. Given two points A, B and the circle CD.

Draw any circle through A, B, cutting the required circle in C, D. Draw AB and DC, and let them meet in P. Draw PQ to touch the given circle. Then, because

PC.PD = PA.PB = PQ\ (III. 36) and the required circle is to pass through A, B; therefore a circle drawn through A, B, Q must touch PQ, and therefore the circle CD, in Q (III. 37), and it can be described by Case I. There are two solutions corresponding to the two tangents from P to the circle CD.

[image: ]



942 V. Given one point P, and two circles, centres A and B.

[image: ]



ANALYSIS.—Let PFG be the required circle touching the given ones in F and G. Join the centres QA, QB. Join FG, and produce it to cut the circles in E and H, and the line of centres in 0. Then, by the isosceles triangles, the four angles at E, F, G, H are all equal; therefore AE, BG are parallel, and so are AF, BH-, therefore AO : B0 :: AF : BH, and 0 is a centre of similitude for the two circles. Again, L HBK = 2HLK, and FAM = 2FNM (III. 20); therefore FNM = HLK= HGK (III. 21); therefore the triangles OFN, OKG are similar; therefore OF. OG = OK. ON; therefore, if OP cut the required circle in X, OX. OP = OK. ON. Thus the point X can be found, and the problem is reduced to Case IV.

Two circles can be drawn through P and X to touch the given circles. One is the circle PFX. The centre of the other is at the point where EA and HB meet if produced, and this circle touches the given ones in E and H.

943 An analogous construction, employing the internal centre of similitude O', determines the circle which passes through P, and touches one given circle externally and the other internally. See (1047-9).

The centres of similitude are the two points which divide the distance between the centres in the ratio of the radii. See (1037).

	
2    D



944 CoR.—The tangents from 0 to all circles which touch the given circles, either both externally or both internally, are equal.

For the square of the tangent is always equal to OK. ON or OL. OM.

945 The solutions for the cases of three given straight lines or three given points are to be found in Euc. IV., Props. 4, 5.

946 In the remaining cases of the tangencies, straight lines and circles alone are given. By drawing a circle concentric with the required one through the centre of the least given circle, the problem can always be made to depend upon one of the preceding cases; the centre of the least circle becoming one of the given points.

947 DEFINITION.—A centre of similarity of two plane curves is a point such that, any straight line being draivn through it to eat the curves, the segments of the line intercepted between the point and the curves are in a constant ratio.

948 If AB, AG touch a circle at B and G, then any straight line AEDF, cutting the circle, is divided harmonically by the circumference and the chord of contact BG.
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Proof from AE. AF = AB\ (III. 36)

AB? = BD. DC+AD'2, (923) and         BD.DO = ED. DF. (III. 35)

949 If a, 3, y, in the same figure, be the perpendiculars to the sides of ABG from any point E on the circumference of the circle, then By = a2.

PROOF.—Draw the diameter BM=d ; then EB~ = (id, because BEE is a right angle. Similarly EC2 = yd. But EB. EC = ad (VI. D.), therefore &c.

950 If FE be drawn parallel to the base BG of a triangle, and if EB, FG intersect in 0, then
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AE : AG :: EO : OB :: FO : OG.

By VI. 2. Since each ratio = FE : BC.

COR.—If AC = n.AE, then

BE = (n+1) OE.

951 The three lines drawn from the angles of a triangle to the middle points of the opposite sides, intersect in the same point, and divide each other in the ratio of two to one.

For, by the last theorem, any one of these lines is divided by each of the others in the ratio of two to one, measuring from the same extremity, and must therefore be intersected by them in the same point.

This point will be referred to as the centroid of the triangle.

952 The perpendiculars from the angles upon the opposite sides of a triangle intersect in the same point.

COR.—The perpendiculars on the sides bisect the angles of the triangle DEF, and the point 0 is therefore the centre of the inscribed circle of that triangle.

PROOF.—From (III. 21), and the circles circumscribing OEAF and OEGD. 953 If the inscribed circle of a triangle ABC touches the sides a, 1), c in the points D, E, F; and if the escribed circle to the side a touches a and b, c produced in D', E',F'; and if

	
	
8 = }(a+b+c) ; then





BF' = BD' = CD = s-c, and AE' = AF' = s; and similarly with respect to the other segments.

PROOF.—The two tangents from any vertex to either circle being equal, it follows that CD+c = half the perimeter of AB G, which is made up of three pairs of equal segments; therefore   CD = s—c. Also AEA AF' = AC+ CD'+AB + BD' =2s; therefore AE' = AF' = s.
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The Nine-Point Circle.

954 The Nine-point circle is the circle described through D, E, F, the feet of the perpendiculars on the sides of the triangle ABC. It also passes through the middle points of the sides of ABC and the middle points of OA, OB, OC; in all, through nine points.

PROOF.—Let the circle cut the sides of ABG again in G, H, K; and OA, OB, OG in L, M, N ^EMF=EDF (III. 21) = 20DF (952, Cor.) ; therefore, since OB is the diameter of the circle circumscribing OFBD (III. 31), M is the centre of that circle (III. 20), and therefore bisects OB.

Similarly OG and OA are bisected at N and L,
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Again, 4 MGB = MED (III. 22) = OCD, (III. 21), by the circle circumscribing OEGD. Therefore MG is parallel to OG, and therefore bisects BG. Similarly E and K bisect GA and AB.

955 The centre of the nine-point circle is the middle point of OQ, the line joining the ortho-centre and the centre of the circumscribing circle of the triangle ABC.

For the centre of the N. P. circle is the intersection of the perpendicular bisectors of the chords DG, EE, FK, and these perpendiculars bisect OQ in the same point N, by (VI. 2).

956 The centroid of
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the triangle ABC also lies on the line OQ and divides it in




R so that OR = 2R Q.



PROOF.—The triangles QEG, OAB are similar, and AB = 2EG; therefore A0 = 2GQ; therefore OR = 2RQ ; and AR = 2RG-, therefore R is the centroid, and it divides OQ as stated (951).

957 Hence the line joining the centres of the circumscribed and nine-point circles is divided harmonically in the ratio of 2 : 1 by the centroid and the orthocentre of the triangle.

These two points are therefore centres of similitude of the circumscribed and nine-point circles; and any line drawn through either of the points is divided by the circumferences in the ratio of 2 : 1. See (1037.)

958 The lines DE, EF, FD intersect the sides of ABC in the radical axis of the two circles.

For, if EF meets EC in F, then by the circle circumscribing BCEF, PE. PF = PC.PB-, therefore (III. 36) the tangents from P to the circles are equal (985).

959 The nine-point circle touches the inscribed and escribed circles of the triangle.

PROOF.—Let 0 be the orthocentre, and I, Q, the centres of the inscribed and circumscribed circles. Produce AI to bisect the arc BC in T. Bisect AO in L, and join GL, cutting AT in S.
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The N. P. circle passes through G, D, and L (954), and D is a right angle. Therefore

GL is a diameter, and is therefore = R = QA (957). Therefore GL and QA are parallel. But QA = QT, therefore

GS = GT = CT sin 4 = 2R sin? 4. (935, i.)

Also ST = 2GS cos 0 (0 being the angle GST = GTS).

N being the centre of the N. P. circle, its B radius — NG = ^R’, and r being the radius of the inscribed circle, it is required to shew that

NI = NG-r.

Now        NF = SN^SF^SN.SI cos B.          (702) Substitute               SN = ^R—GS; SI = TI-ST = 2R sin 4 -2GS cos 6; and GS = 2R sin2 }A, to prove the proposition.

If I be the centre of the escribed circle touching BC, and ra its radius, it is shewn in a similar way that NJ = NG-Vra.

To construct a triangle from certain data.

960 When amongst the data we have the sum or difference of the two sides AB, AC; or the sum of the segments of the base made by AC, the bisector of the exterior vertical angle; or the difference of the segments made by AF, the bisector of the interior vertical angle; the following construction will lead to the solution.

Make AE = AD = A C. Draw DH parallel to AF, and suppose EK drawn parallel to AG to meet the base produced in K-, and complete the figure. Then BE is the sum, and BD is the difference of the sides.
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BK is the sum of the exterior segments of the base, and BH is the difference of the interior segments. L EDIT = BEG = ^A,

L ADG = EAG =^(B + G\

A DGB = ^DEB = } {G-B}.

961 When the base and the vertical angle are given; the locus of the vertex is the circle ABG in figure (935); and the locus of the centre of the inscribed circle is the circle, centre F and radius FB. When the ratio of the sides is given, see (932).

962 To construct a triangle when its form and the distances of its vertices from a point A' are given.

ANALYSIS.—Let ABG be the required triangle. On A'B make the triangle A'BG' similar to ABG, so that AB : A'B :: GB : G'B. The angles ABA', CBG' will also be equal; therefore AB : BG :: AA : GC, which gives CG', since the ratio AB : BG is known. Hence the point C is found by constructing the triangle A'GC'. Thus BG is determined, and thence the triangle ABG from the known angles.
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963 To find the locus of a point P, the tangent from which to a given circle, centre A, has a constant ratio to its distance from a given point B.
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Let AK be the radius of the circle, and p : q the given ratio. On AB take AG, a third proportional to AB and AK, and make

AD : DB =pi : q\ With centre D, and a radius equal to a mean proportional between DB and DC, describe a circle. It will be the required locus.

PROOF.—Suppose P to be a point on the required locus. Join P with A, B, C, and D.

Describe a circle about PBC cutting AP in F, and another about ABF cutting PB in G, and join AG and BF. Then

PK2 = AF-AIF = Al?-BA . A0 (by constr.) = AP2-PA. AF (III. 36)

= AP.PF (II. 2) =GP.PB (III. 36).

Therefore, by hypothesis,

/ : 42 = GP. PB : PB2 = GP : PB = AD : DB (by constr.) ; therefore ADPG = PGA (VI. 2) = PFB (III. 22) = PCB (III. 21).

Therefore the triangles DPB, DCP are similar; therefore DP is a mean proportional to DB and DC. Hence the construction.

964 Coe.—If p = q the locus becomes the perpendicular bisector of BC, as is otherwise shown in (1003).

965 To find the locus of a point P, the tangents from which to two given circles shall have a given ratio. (See also 1036.)

Let A, B be the centres, a, b the radii (a > b), and p : q the given ratio. Take c, so that c : b = p : q, and describe a circle with centre A and radius AN = • a2 — c2. Find the locus of P by the last proposition, so that the tangent from P to this circle may have the given ratio to PB. It will be the required locus.
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PROOF.—By hypothesis and construction,



PK2 _ c A PK’+c _ AP--apai _ AP2-AN2 PT2 b2 PT2 Ab2 BP2         BP2 ‘

Coe.—Hence the point can be found on any curve from which the tangents to two circles shall have a given ratio.

966 To find the locus of the point from which the tangents to two given circles are equal.

Since, in (965), we have now p = q, and therefore c = b, the construction simplifies to the following :

Take AN = •(a?—b2), and in AB take AB : AN : AG. The perpendicular bisector of BG is the required locus. But, if the circles intersect, then their common chord is at once the line required. See Radical Axis (985).

Collinear and Concurrent systems of points and lines.

967 DEFINITIONS.—Points lying in the same straight line are collinear. Straight lines passing through the same point are concurrent, and the point is called the focus of the pencil of lines.

Theorem.—If the sides of the triangle ABC, or the sides produced, be cut by any straight line in the points a, b, c respectively, the line is called a transversal, and the segments of the sides are connected by the equation


968



(Ab : bC) (Ca : aB) (Be : cA) = 1.

Conversely, if this relation holds, the points a, b, c will be collinear.

PROOF. — Through any vertex A draw AD parallel to the opposite side BC, to meet the transversal in D, then
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Ab : bC = AD : Ca and Bc : cA = aB : AD (VI. 4), which proves the theorem.

NOTE.—In the formula the segments of the sides are estimated positive, independently of direction, the sequence of the letters being preserved the better to assist the memory. A point may be supposed to travel from A over the segments Ab, bC, &c. continuoibsly, until it reaches A again.

969 By the aid of (701) the above relation may be put in the form

(sin ABb : sin bBC) (AnCAa : sin aAB) (sin BCc : sin cCA)=1

970 If 0 be any focus in the plane of the triangle ABC, and if AO, B0, CO meet the sides in a, b, c; then, as before,

(Ab : bC) (Ca : aB) (Bc : cA) = 1.

Conversely, if this relation holds, the lines Aa, Bb, Cc will be concurrent.

PROOF.—By the transversal Bb to the triangle AaC, we have (968) (Ab : bC) (CB : Ba)

[image: ]



x (aO : OA) = 1.

And, by the transversal Cc to the triangle AaB, (Bc : cA) (AO : Oa)

x (aC : CB) = 1. Multiply these equations together.

COLLINEAR AND CONCURRENT SYSTEMS. 209

971 If bc, col, ab, in the last figure, be produced to meet the sides of ABC in P, Q, R, then each of the nine lines in the figure will be divided harmonically, and the points P, Q, R will be collinear.

PROOF.—(i.) Take bP a transversal to ABC; therefore, by (968), (CP : PB) (Be : cA) (Ab : bC) = 1; therefore, by (970), CP : PB = Ca : aB.

(ii.) Take CP a transversal to Abc, therefore

(AB : Bc) (cP : Pb) (bC : CA) = 1.

But, by (970), taking 0 for focus to Abc,

(AB : Bc) (cp : pb) (bC : CA) = 1;

therefore                    cP : Pb = cp : pb.

(iii.) Take PC a transversal to AOc, and b a focus to AOc; therefore, by (968 & 9 70),       (Aa : a0) (00 : Cc) (cB : BA) = 1, and               (Ap : pO) (00 : Cc) (cB : BA) = 1; therefore                 Aa : aO = Ap : p0. Thus all the lines are divided harmonically.

(iv.) In the equation of (970) put Ab : bC = AQ : Q,0 the harmonic ratio, and similarly for each ratio, and the result proves that P, Q, R are collinear, by (968).

Cor.—If in the same figure qr, rp, pq be joined, the three lines will pass through P, Q, R respectively.

Proof.—Take 0 as a focus to the triangle abc, and employ (970) and the harmonic division of bc to show that the transversal 1q cuts be in P.

972 If a transversal intersects the sides AB, BC, CD, &c. of any polygon in the points a, b, c, &c. in order, then

(Aa : aB) (Bb : bC) (Cc : cD) (Dd : dE) ... &c. = 1.

Proof.—Divide the polygon into triangles by lines drawn from one of the angles, and, applying (968) to each triangle, combine the results.

973 Let any transversal cut the sides of a triangle and their three intersectors AO, BC, CO (see figure of 970) in the points A', B', O', a, b', c , respectively; then, as before,

(A'R : b'C) (C'a : dB') (B'c : cA') = 1.

Proof.—Each side forms a triangle with its intersector and the transversal. Take the four remaining lines in succession for transversals to each triangle, applying (968) symmetrically, and combine the twelve equations.
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974 If the lines joining corresponding vertices of two triangles ABG^ abc are concurrent, the points of intersection of the pairs of corresponding sides are collinear, and con-

975 Hence it follows that, if the lines joining each pair of corresponding vertices of any two rectilineal figures are concurrent, the pairs of corresponding sides intersect in points which are collinear.

The figures in this case are said to be in perspective, or in homology, with each other. The point of concurrence and the line of collinearity are called respectively the centre and axis of perspective or homology. See (1083).

976 Theorem.—When three perpendiculars to the sides of a triangle ABG, intersecting them in the points a, b, c respectively, are concurrent, the following relation is satisfied; and conversely, if the relation be satisfied, the perpendiculars are concurrent.

AlT~bC-2+Ca2-aBz+Bc2-cA2 = 0.

PROOF.—If the perpendiculars meet in 0, then Ab2— bC2 = AO2— 00^, &c. (I. 47).

EXAMPLES.—By the application of this theorem, the concurrence of the three perpendiculars is readily established in the following cases:—

	
	
(1)    When the perpendiculars bisect the sides of the triangle


	
(2)    When they pass through the vertices. (By employing I. 47.)


	
(3)    The three radii of the escribed circles of a triangle at the points of contact between the vertices are concurrent. So also are the radius of the inscribed circle at the point of contact with one side, and the radii of the two escribed circles of the remaining sides at the points of contact beyond the included angle.





In these cases employ the values of the segments given in (953).

	
	
(4)    The perpendiculars equidistant from the vertices with three concurrent perpendiculars are also concurrent.


	
(5)    When the three perpendiculars from the vertices of one triangle upon the sides of the other are concurrent, then the perpendiculars from the vertices of the second triangle upon the sides of the first are also concurrent.





PROOF.—If A, B, C and A', B, C' are corresponding vertices of the triangles, join AB', AC', BC', BA', CA, CB', and apply the theorem in conjunction with (I. 47).

Triangles of constant species circumscribed to a triangle.

977 Let ABC be any triangle, and 0 any point; and let circles circumscribe AOB, BOC, COA. The circumferences will be the loci of the vertices of a triangle of constant form whose sides pass through the points A, B, 0.
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PROOF.—Draw any line bAc from circle to circle, and produce bC, cB to meet in a. The angles AOB, COA are supplements of the angles c and b (III. 22); therefore BOC is the supplement of a (I. 82) ; therefore a lies on the circle OBC. Also, the angles at 0 being constant, the angles a, b, c are constant.

978 The triangle abc is a maximum when its sides are perpendicular to OA, 0B, 00.

PROOF.—The triangle is greatest when its sides are greatest. But the sides vary as Oa, Ob, Oc, which are greatest when they are diameters of the circles; therefore &c., by (III. 31).

979 To construct a triangle of given species and of given limited magnitude which shall have its sides passing through three given points A, B, C.

Determine 0 by describing circles on the sides of ABC to contain angles equal to the supplements of the angles of the specified triangle. Construct the figure abcO independently from the known sides of abc, and the now known angles ObC = OAC, OaC — OBC, &c. Thus the lengths Oa, Ob, Oc are found, and therefore the points a, b, c, on the circles, can be determined.

The demonstrations of the following propositions will now be obvious.

Triangles of constant species inscribed to a triangle.

980 Let abc, in the last figure, be a fixed triangle, and 0 any point. Take any point A on bc, and let the circles circumscribing OAc, OAb cut the other sides in B, C. Then ABC will be a triangle of constant form, and its angles will have the values A = Oba + Oca, &c. (III. 21.)

981 The triangle ABC will evidently be a minimum when OA, 0B, OC are drawn perpendicular to the sides of abc.

982 To construct a triangle of given form and of given limited magnitude having its vertices upon three fixed lines bc, ca, ab.

Construct the figure ABGO independently from the known sides of ABG and the angles at 0, which are equal to the supplements of the given angles a, b, c. Thus the angles OAO, &c. are found, and therefore the angles ObC, &c., equal to them (III. 21), are known. From these last angles the point 0 can be determined, and the lengths OA, OB, 00 being known from the independent figure, the points A, B, 0 can be found.

Observe that, wherever the point 0 may be taken, the angles AOB, BOC COA are in all cases either the supplements of, or equal to, the angles c, a, b respectively; while the angles aOb, bOc, cOa are in all cases equal to C = c, A = a, B = b.

983 Note.—In general problems, like the foregoing, which admit of different cases, it is advisable to choose for reference a standard figure which has all its elements of the same affection or sign. In adapting the figure to other cases, all that is necessary is to follow the same construction, letter for letter, observing the convention respecting positive and negative, which applies both to the lengths of lines and to the magnitudes of angles, as explained in (607—609).

Radical Axis.

984 Definition.—The radical axis of two circles is that perpendicular to the line of centres which divides the distance between the centres into segments, the difference of whose squares is equal to the difference of the squares of the radii.

Thus, A, B being the centres, a, b the radii, and IP the the radical axis, AP—BP = a?—b2.
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985 It follows that, if the circles intersect, the radical axis is their common chord; and that, if they do not intersect, the radical axis cuts the line of centres in a point the tangents from which to the circles are equal (I. 47).

To draw the axis in this case, see (966).

Otherwise: let the two circles cut the line of centres in C, D and O', D’ respectively. Describe any circle through C and D, and another through C' and D', intersecting the former in E and F. Their common chord FF will cut the central axis in the required point I.

Proof. — IC. ID = IF. IF = IC'. ID' (III. 36) ; therefore the tangents from I to the circles are equal.

986 Theorem.—The difference of the squares of tangents from any point P to two circles is equal to twice the rectangle under the distance between their centres and the distance of the point from their radical axis, or

PK2-PT2 = 2AB .PN.
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Proof.

PIC-PTZ = (AP2-DP2) - (a2-F) = (AQ^-DQ2) - (AF—BF), by (I. 47) & (984). Bisect AB in C, and substitute for each difference of squares, by (II. 12).


987 Cor. 1.—If P be on the circle whose centre is B} then PK2 = 2AB. PN.

988 Cor. 2.—If two chords be drawn through P to cut the circles in X, X, Y, Y'; then, by (III. 36),

PX.PX-PY.PY' = 2AB.PN.

989 If a variable circle intersect two given circles at constant angles a and 3, it will intersect their radical axis at a constant angle; and its radius will bear a constant ratio to the distance of its centre from the radical axis. Or

PN : PX = a cos a — b cos 8 : AB.

Proof.—In the same figure, if P be the centre of the variable circle, and if PX—PY be its radius; then, by (988),

PX {XX'- YY') = 2 AB. PN. But            XX' = 2a cos « and YY' = 2b cos ft; therefore          PN : PX = a cos a — b cos ft : AB, which is a constant ratio if the angles a, ft are constant.

990 Also PX : PN = the cosine of the angle at which the circle of radius PX cuts the radical axis. This angle is therefore constant.

991 Coe.—A circle which touches two fixed circles has its radius in a constant ratio to the distance of its centre from their radical axis.

This follows from the proposition by making a = ft = 0 or 27.

If P be on the radical axis; then (see Figs. 1 and 2 of 984) 992 (i.) The tangents from P to the two circles are equal, or                PK=PT.              (986)

993 (ii.) The rectangles under the segments of chords through P are equal, or PX . PX' = PY. PY'.       (988)

994 (iii.) Therefore the four points X, X', Y, Y' are con-cyclic (III. 36); and, conversely, if they are concyclic, the chords XX', YY' intersect in the radical axis.

995 DEFINITION.—Points which lie on the circumference of a circle are termed concyclic.

996 (iv.) If P be the centre, and if PX=PY be the radius of a circle intersecting the two circles in the figure at angles a and 3 ; then, by (993), XX'=YY', or a cos a = b cos 3 ; that is, The cosines of the angles of intersection are inversely as the radii of the fixed circles.

997 The radical axes of three circles (Fig. 1046), taken two and two together, intersect at a point called their radical centre.

Proof.—Let A, B, Ob t’ie centres, a, b, c the radii, and X, Y, Z the points in which the radical axes cut BC, CA, AB. Write the equation of the definition (984) for each pair of circles. Add the results, and apply (976).

998 A circle whose centre is the radical centre of three other circles intersects them in angles whose cosines are inversely as .their radii (996).

Hence, if this fourth circle cuts one of the others orthogonally, it cuts them all orthogonally.

999 The circle which intersects at angles a, 3, y three fixed circles, whose centres are A, B, C and radii a, b, c, has its centre at distances from the radical axes of the fixed circles proportional to

b cos B—c cos y c cos y— a cos a a cos a—b cos 3

‘ CA 5 "AB '

And therefore the locus of its centre will be a straight line passing through the radical centre and inclined to the three radical axes at angles whose sines are proportional to these fractions.

PROOF.—The result is obtained immediately by writing out equation (989) for each pair of fixed circles.

The Method of Inversion.

	
1000 DEFINITIONS.—Any two points P, P', situated on a diameter of a fixed circle whose centre is 0 and radius I , so that OP. OP' = 72, are called inverse points with respect to the circle, and either point is said to be the inverse of the other. The circle and its centre are called the circle and centre of inversion, and Z the constant of inversion.

[image: ]





1001 If every point of a plane figure be inverted with respect to a circle, or every point of a figure in space with respect to a sphere, the resulting figure is called the inverse or image of the original one.

Since OP : k : OP', therefore

1002 OP : OPf = OP2 : k^ = k2 : OP'2.

1003 Let D, D', in the same figure, be a pair of inverse points on the diameter OD'. In the perpendicular bisector of DD', take any point Q as the centre of a circle passing through D, D, cutting the circle of inversion in B, and any straight line through 0 in the points P, P'. Then, by (III. 36), OP . OP' = OD . OD' = OB2 (1000). Hence

1004 (i.) P, P' are inverse points; and, conversely, any two pairs of inverse points lie on a circle.

1005 (ii.) The circle cuts orthogonally the circle of inversion (III. 37) ; and, conversely, every circle cutting another orthogonally intersects each of its diameters in a pair of inverse points.

1006 (iii.) The line IQ is the locus of a point the tangent from which to a given circle is equal to its distance from a given point D.

1007 DEF.—The line IQ is called the axis of reflexion for the two inverse points D, D, because there is another circle of inversion, the reflexion of the former, to the right of IQ, having also D, D for inverse points.

1008 The straight lines drawn from any point P, within or without a circle (Figs. 1 and 2), to the extremities of any chord AB passing through the inverse point Q, make equal angles with the diameter through PQ. Also, the four points 0, A, B, P are concyclic, and QA . QB = Q0 . QP.
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PROOF. ■—In either figure OP : OA : OQ and OP : OR : OQ (1000), therefore, by similar triangles, 4 OP A = OAR and OPR = ORA in figure (1) and the supplement of it in figure (2). But OAR = ORA (I. 5), therefore, &c.

Also, because L OFA = ORA, the four points O. A, R, P lie on a circle in each case (III. 21), and therefore QA. QR = Q0 . QP (III. 35, 36).


1009 The inverse of a circle is a circle, and the centre of inversion is the centre of similitude of the two figures. See also (1037).

PROOF.—In the figure of (1043), let 0 be the point where the common tangent RT of the two circles, centres A and R, cuts the central axis, and let any other line through 0 cut the circles in P, Q P. Q'- Then, in the demonstration of (942), it is shown that OP ■ OQ' = OQ-OP = I2, a constant quantity. Therefore either circle is the inverse of the other, k being the radius of the circle of inversion,

1010 To make the inversions of two given circles equal circles.

RULE.—Take the centre of inversion so that the squares of the tangents from it to the given circles may be proportional to their radii (965).

Proof.—(Fig. 1043) AT : BR = OT : OR = OE : 73, since OT : 7 : OR. Therefore OT2 : AT = E : BR, therefore BR remains constant if OT'2 o AT.

1011 Hence three circles may be inverted into equal circles, for the required centre of inversion is the intersection of two circles that can be drawn by (965).

1012 The inverse of a straight line is a circle passing through the centre of inversion.

Proof.—Draw OQ perpendicular to the line, and take P any other point on it. Let Qi, P be the inverse points. Then OP . OP'= OQ.OUi therefore, by similar triangles, Z OEQi = OQP, a right angle ; and OQ,' is constant, therefore the locus of P' is the circle whose diameter is OQ'.

[image: ]



1013 EXAMPLE.—The inversion of a polygon produces a figure bounded by circular arcs which intersect in angles equal to the corresponding angles of the polygon, the complete circles intersecting in the centre of inversion.

1014 If the extremities of a straight line P’Q in the last figure are the inversions of the extremities of PQ, then

PQ : P Q' = U(0P . OQ) : ^(OP'. OQ).

Proof.—By similar triangles, PQ : P Q' = OP : OQ' and PQ : P'Q' = OQ : OE. Compound these ratios.

1015 From the above it follows that any homogeneous equation between the lengths of lines joining pairs of points in space, such as PQ . BS. TU = PB . QT. SU, the same points appearing on both sides of the equation, will be true for the figure obtained by joining the corresponding pairs of inverse points.

For the ratio of each side of the equation to the corresponding side of the equation for the inverted points will be the same, namely,

V^OP.OQ.OR ...) : V{OR' .OU -OR! ..Q.
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Pole and Polar.

1016 DEFINITION.—The polar of any point P with respect to a circle is the perpendicular to the diameter OP (Fig. 1012) drawn through the inverse point P'.

1017 It follows that the polar of a point exterior to the circle is the chord of contact of the tangents fron the point; that is, the line joining their points of contact.

1018 Also, P'Q' is the polar of P with respect to the circle, centre 0, and PQ is the polar of Q'. In other words, any point P lying on the polar of a point Q, has its own polar always passing through Q‘.

1019 The line joining any two points P, p is the polar of Qi, the point of intersection of their polars.

Proof.—The point Q‘ lies on both the lines P'Q', p'Qh and therefore has its polar passing through the pole of each line, by the last theorem.

1020 The polars of any two points P, p, and the line joining the points form a self-reciprocal triangle with respect to the circle, the three vertices being the poles of the opposite sides. The centre 0 of the circle is evidently the orthocentre of the triangle (952). The circle and its centre are called the polar circle and polar centre of the triangle.

If the radii of the polar and circumscribed circles of a triangle ARC be r and R, then

72 = 4R2 cos A cos B cos C.

Proof.—In Fig. (952), 0 is the centre of the polar circle, and the circles described round ABC, BOG, COA, AOB are all equal; because the angle BOG is the supplement of A; &c. Therefore 2R. OD = 0B. OG (VI. C) and 72 = OA . OD = OA . OB. OG 4- 2R. Also, OA = 2R cos A by a diameter through B, and (III. 21).

Coax at Circles.

1021 DEFINITION.—A system of circles having a common line of centres called the central axis, and a common radical axis, is termed a coaxal system.

1022 If 0 be the variable centre of one of the circles, and

OK its radius, the whole system is included in the equation OP —OK2 — ± 8,

where 8 is a constant length.
[image: ]

1023 In the first species (Fig. 1),

OP-OK2 = 82,


and 8 is the length of the tangent from I to any circle of the system (985). Let a circle, centre I and radius 8, cut the central axis in D, D'. When 0 is at D or D’, the circle whose radius is OK vanishes. When 0 is at an infinite distance, the circle developes into the radical axis itself and into a line at infinity.

The points D, D' are called the limiting points.

1024 In the second species (Fig. 2),

OR2- OP = 83,

and 8 is half the chord RR common to all the circles of the system. These circles vary between the circle with centre I and radius 8, and the circle with its centre at infinity as described above. The points R, R' are the common points of all circles of this system. The two systems are therefore distinguished as the limiting points species and the common points species of coaxal circles.

1025 There is a conjugate system of circles having R, R' for limiting points, and D, D for common points, and the circles of one species intersect all the circles of the conjugate system of the other species orthogonally (1005).

Thus, in figures (1) and (2), Q is the centre of a circle of the opposite species intersecting the other circles orthogonally.

1026 In the first species of coaxal circles, the limiting points D, D' are inverse points for every circle of the system, the radical axis being the axis of reflexion for the system.

Proof.—(Fig. 1)        OP-o2 = OIP,

therefore                   OD . OP' = 01P,                    (II. 13) therefore D, LT are inverse points (1000).

1027 Also, the points in which any circle of the system cuts the central axis are inverse points for the circle whose centre is I and radius 8.                [Proof.—Similar to the last.

1028 Problem.—Given two circles of a coaxal system, to describe a circle of the same system—(i.) to pass through a given point; or (ii.) to touch a given circle; or (iii.) to cut a given circle orthogonally.

1029 I. If the system be of the common points species, then, since the required circle always passes through two known points, the first and second cases fall under the Tangencies. See (941).

1030 To solve the third case, describe a circle through the given common points, and through the inverse of either of them with respect to the given circle, which will then be cut orthogonally, by (1005).

1031 II. If the system be of the limiting points species, the problem is solved in each case by the aid of a circle of the conjugate system. Such a circle always passes through the known limiting points, and may be called a conjugate circle of the limiting points system. Thus,

1032 To solve case (i.)—Draw a conjugate circle through the given point, and the tangent to it at that point will be the radius of the required circle.

1033 To solve case (ii.)—Draw a conjugate circle through the inverse of either limiting point with respect to the given circle, which will thus be cut orthogonally, and the tangent to the cutting circle at either point of intersection will be the radius of the required circle.

1034 To solve case (iii.)—Draw a conjugate circle to touch the given one, and the common tangent of the two will be the radius of the required circle.

1035 Thus, according as we wish to make a circle of the system touch, or cut orthogonally, the given circle, we must draw a conjugate circle to cut orthogonally, or touch it.

1036 If three circles be coaxal, the squares of the tangents drawn to any two of them from a point on the third are in the ratio of the distances of the centre of the third circle from the centres of the other two.

PROOF.—Let A, B, C be the centres of the circles ; PK, PT the tangents from a point P on the circle, centre C, to the other two; PN the perpendicular on the radical axis. By (986),

PK2 = 2 AC. PN and PT2 = 2D 0. PN, therefore               PK2 : PT2 = AC : DC.

Centres and axes of similitude.

1037 DEFINITIONS.—Let 00' be the centres of similitude (Def. 947) of the two circles in the figure below, and let any line through 0 cut the circles in P, Q, P, Q'. Then the constant ratio 0P : OP' = OQ : OQ' is called the ratio of similitude of the two figures; and the constant product 0P . OQ' = OQ . OP' is called the product of anti-similitude. See (942), (1009), and (1043).

The corresponding points P, P' or Q, Q' on the same straight line through O are termed homolog oils, and P, Q' or Q, P' are termed anti-homologous.

1038 Let any other line Opgp'g be drawn through O. Then, if any two points P, p on the one figure be joined, and if P',p', homologous to P,p on the other figure, be also joined, the lines so formed are termed homologous. But if the points which are joined on the second figure are anti-homologous to those on the first, the two lines are termed anti-homologous. Thus, Pg, Q'p' are anti-homologous lines.

1039 The circle whose centre is O, and whose radius is equal to the square root of the product of anti-similitude, is called the circle of anti-similitude.

1040 The four pairs of homologous chords Pp and P'p, Qg and Q^g, Pg and Pg, Qp and Q'p of the two circles in the figure are parallel. And in all similar and similarly situated figures homologous lines are parallel.

Pkoof.—By (VI. 2) and the definition (947).
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1041 The four pairs of anti-homologous chords, Pp and ., Qq and Pp, Pq and Qp, Qp and Pg, of the two circles meet on their radical axis.

Proof.—            OP. OQ,' = Op . Oq' = k\ where k is the constant of inversion; therefore P, p, Q', q are concyclic; therefore Pp and Q{ meet on the radical axis. Similarly for any other pair of anti-homologous chords.

1042 Cor.—From this and the preceding proposition it follows that the tangents at homologous points are parallel; and that the tangents at anti-homologous points meet on the radical axis. For these tangents are the limiting positions of homologous or anti-homologous chords.                (1160)

1043 Let G, D be the inverse points of 0 with respect to two circles, centres A and P; then the constant product of anti-similitude

OP.OQ' or OQ.OP’ = OA.OD or OB.OC.
[image: ]

PROOF.—By similar right-angled triangles,

OA : OT : 00 and OD : OR : OD;

therefore                 OA . OD = OB . 00..............................(1), and also              OA . 00 = OF = OF . 0Q,              (III. 36) and                0B. OD = OR2 = OF . OQ';

therefore OA . OB . 00. OD = OP . OQ . OF. OQ', therefore &c., by (1).

1044 The foregoing definitions and properties (1037 to 1043), which have respect to the external centre of similitude 0, hold good for the internal centre of similitude O', with the usual convention of positive and negative for distances measured from O' upon lines passing through it.

1045 Two circles will subtend equal angles at any point on the circumference of the circle whose diameter is 00', where 0, O' are the centres of similitude (Fig. 1043). This circle is also coaxal with the given circles, and has been called the circle of similitude.

PROOF.—Let A, B be the centres, a, b the radii, and K any point on the circle, diameter 00’. Then, by (932),

KA : KB = AO : B0 = A0' : B0' = a : b, by the definition (943) ;

therefore                 a : KA = b : KB; that is, the sines of the halves of the angles in question are equal, which proves the first part. Also, because the tangents from K are in the constant ratio of the radii a, b, this circle is coaxal with the given ones, by (1036, 934).

1046 The six centres of similitude P, p, Q, q, P, r of three circles lie three and three on four straight lines PQB, Pqr, .

Qpr, Ppq, called axes of similitude.

[image: ]
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PROOF. — Taking any three of the sets of points named, say P, q, r, they are shewn at once to be collinear by the transversal theorem (968) applied to the triangle ABC.

For the segments of its sides made by the points P, q, r are in the ratios of the radii of the circles.

1047 From the investigation in (942), it appears that one circle touches two others in a pair of anti-homologous points, and that the following rule obtains :—

RULE.—The right line joining the points of contact passes through the external or internal centre of similitude of the two circles according as the contacts are of the same or of different hinds.

1048 DEFINITION.—Contact of curves is either internal or external according as the curvatures at the point of contact are in the same or opposite directions.

1049 Gergonne^s method of describing the circles which touch three given circles.

Take Pgr, one of the four axes of similitude, and find its poles a, 3, y with respect to the given circles, centres A, B, C (1016). From 0, the radical centre, draw lines through a, 3, y, cutting the circles in a, a', b, b', c, o'. Then a, b, c and a, b', o' will be the points of contact of two of the required circles.

PROOF.—Analysis.—Let the circles E, F touch the circles A, B, C in a, b, c, a', b', o'. Let be, b'c meet in P ; ca, ca in g; and ab, a'b' in r.

[image: ]



Regarding E and F as touched by A, B, C in turn, Rule (1047) shews that aa', bb', cc meet in O, the centre of similitude of E and F; and (1041) shews that P, g, and r lie on the radical axis of E and F.

Regarding B and C, or C and A, or A and B, as touched by E and F in turn, Rule (1047) shews that P, g, r are the centres of similitude of B and C, C and A, A and B respectively; and (1041) shews that O is on the radical axis of each pair, and is therefore the radical centre of A, B, and C.

Again, because the tangents to E and F, at the anti-homologous points a, a, meet on Pgr, the radical axis of E and F (1042) ; therefore the point of meeting is the pole of aa' with respect to the circle A (1017). Therefore aa passes through the pole of the line Pgr (1018). Similarly, bb' and co pass through the poles of the same line Pgr with respect to B and C. Hence the construction.

1050 In the given configuration of the circles A, B, C, the demonstration shews that each of the three internal axes of similitude Pgr, Qrp, Rpg (Fig. 1046) is a radical axis and common chord of two of the eight osculating circles which can be drawn. The external axis of similitude PQR is the radical axis of the two remaining circles which touch A, B} and 0 either all externally or all internally.

1051 The radical centre 0 of the three given circles is also the common internal centre of similitude of the four pairs of osculating circles. Therefore the central axis of each pair passes through 0, and is perpendicular to the radical axis. Thus, in the figure, EF passes through 0, and is perpendicular to Pgr.

Anharmonic Ratio.

1052 DEFINITION.—Let a pencil of four lines through a point 0 be cut by a transversal in the points A, B} C, D. The anharmonic ratio of the pencil is any one of the three fractions


or
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AB .CD    AB. CD -------- QY -------- AD.BC   AC.BD

1053 The relation between these three different ratios is obtained from the equation

AB . CD+AD .BC = AC. BD.

Denoting the terms on the left side by p and q, the three anharmonic ratios may be expressed by

p : q, p p + q, q : p + q.

The ratios are therefore mutually dependent. Hence, if the identity merely of the anharmonic ratio in any two systems is to be established, it is immaterial which of the three ratios is selected.

1054 In future, when the ratio of an anharmonic pencil {O, AR CD} is mentioned, the form AR. CD : AD. RC will be the one intended, whatever the actual order of the points A, R, C, D may be. For, it should be observed that, by making the line OD revolve about 0, the ratio takes in turn each of the forms given above. This ratio is shortly expressed by the notation {0, AR CD}, or simply {AR CD}.

1055 If the transversal be drawn parallel to one of the lines, for instance OD, the two factors containing D become infinite, and their ratio becomes unity. They may therefore be omitted. The anharmonic ratio then reduces to AR : RC. Thus, when D is at infinity, we may write

{0, ARC^} = AR : RC.

1056 The anharmonic ratio

AB . CD_sin A OB sin COD AD.BC ~ sin AOD sin BOC’

2 G

and its value is therefore the same for all transversals of the pencil.

PROOF.—Draw OR parallel to the transversal, and let p be the perpendicular from A upon OR. Multiply each factor in the fraction by p. Then substitute p .AB = OA . 0B sMAOB, &c. (707).

1057 The anharmonic ratio (1056) becomes harmonic when its value is unity. See (933). The harmonic relation there defined may also be stated thus: four points divide a line harmonically when the product of the extreme segments is egual to the product of the whole line and the middle segment.

Homographic Systems of Points.

1058 DEFINITION.—If x, a, b, c be the distances of one variable point and three fixed points on a straight line from a point 0 on the same; and if x, a, b', c be the distances of similar points on another line through 0; then the variable points on the two lines will form two homographic systems when they are connected by the anharmonic relation 1 ako       (a—a) {b — c} _ {x—a) (b' — c)

(x—c) (a—b)  (f—c) (a —bf

Expanding, and writing A, B, C, D for the constant coefficients, the equation becomes

1060        Axx + Ba+Ca+D = 0.

From which -


Ba+D

A^+C’



1061   o.= - S+ D, and « = Ad —b

1062 Theorem.—Any four arbitrary points 21, 22, 23, 24 on one of the lines will have four corresponding points a, 22, a, a on the other determined by the last equation, and the two sets of points will have equal anharmonic ratios.

Proof.—This may be shown by actual substitution of the value of each a in terms of x, by (1061), in the harmonic ratio {a,,2324}.

1063 If the distances of four points on a right line from a point 0 upon it, in order, are a, a, 3, 3, where a,; a, 3‘ are the respective roots of the two quadratic equations

ax?+2ha+b = 0, «a+2lw+b = 0 ;

the condition that the two pairs of points may be harmonically conjugate is

1064              ab'A-^b = 21.

PROOF.—The harmonic relation, by (1057), is

(a-c) (B- G) = (a— ) («- ).                :

Multiply out, and substitute for the sums and products of the roots of the quadratics above in terms of their coefficients by (51, 52).

1065 If uv u, be the quadratic expressions in (1063) for two pairs of points, and if u represent a third pair harmonically conjugate with M1 and U2, then the pair of points u will also be harmonically conjugate with every pair given by the equation u1—Au, = 0, where X is any constant. For the condition (1064) applied to the last equation will be identically satisfied.

Involution.

1066 DEFINITIONS.—Pairs of inverse points PP', QQ, &c., on the same right line, form a system in involution, and the relation between them, by (1000), is

OP . OP' = OQ . OQ' = &c. = k\ -

A                  O        P Q B         O' P'

$— --------------------,           T ir—‘                i2

The radius of the circle of inversion is k, and the centre 0 is called the centre of the system. Inverse points are also termed .conjugate points.

When two inverse points coincide, the point is called a focus.

1067 The equation OP2 = 72 shows that there are two foci A, B at the distance I from the centre, and on opposite sides of it, real or imaginary according as any two inverse points lie on the same side or on opposite sides of the centre.

1068 If the two homographic systems of points in (1058) be on the same line, they will constitute a system in involution when B = C.

PROOF.—Equation (1060) may now be written

Axx+H (z+2) +B = 0,
[image: ]

a constant. Therefore —A is the distance of the origin 0 from the centre of inversion. Measuring from this centre, the equation becomes &E‘ = P, representing a system in involution.

1069 Any four points whatever of a system in involution on a right line have their anharmonic ratio equal to that of their four conjugates.

PROOF.—Let p, p'-, q, (; r, Y; s, s' be the distances of the pairs of inverse points from the centre.

In the anharmonic ratio of any four of the points, for instance {pq'rs], substitute p — li2-^-p', { = k2 : q, &c., and the result is the anharmonic ratio {p'qr's'}.

1070 Any two inverse points P, P are in harmonic relation with the foci A, B.


1072            Ab+Ba = 2Hh.

PROOF.—The roots of equation (2) must be simultaneous values of x, x' in (1) ; therefore substitute in (1)

«+*- ~ and xx = b.             (51)

a               a

1073 Cor.—A system in involution may be determined from two given pairs of corresponding points.

Let the equations for these points be

az® + 2hx +b = 0 and ax2 + Thx + b' = 0.

Then there are two conditions (1072),

Ab p Ra = 2Hh and Ab' A Ba' = 2HK, from which A, H, B can be found.

A geometrical solution is given in (985). O, D ; O', D are, in that construction, pairs of inverse points, and I is the centre of a system in involution defined by a series of coaxal circles (1022). Each circle intersects the central axis in a pair of inverse points with respect to the circle whose centre is O and radius o.

1074 The relations which have been established for a system of collinear points may be transferred to a system of concurrent lines by the method of (1056), in which the distance between two points corresponds to the sine of the angle between two lines passing through those points.

The Method of Projection.

1075 DEFINITIONS.—The projection of any point P in space (Fig. of 1079) is the points in which a right line 0P, drawn from a fixed point 0 called the vertex, intersects a fixed plane called the plane of projection.

If all the points of any figure, plane or solid, be thus projected, the figure obtained is called the projection of the original figure.

1076 Projective Prop er ties.—The proj ection of a right line is a right line. The projections of parallel lines are parallel. The projections of a curve, and of the tangent at any point of it, are another curve and the tangent at the corresponding point.

1077 The anharmonic ratio of the segments of a right line is not altered by projection; for the line and its projection are but two transversals of the same anharmonic pencil. (1056) 1078 Also, any relation between the segments of a line similar to that in (1015), in which each letter occurs in every term, is a projective property.                  [Proof as in (1056).

1079 Theorem.—Any quadrilateral PQBS maybe projected into a parallelogram.

CONSTRUCTION. — Produce PQ, SB to meet in A, and PS, QB to meet in B.

Then, with any point O for vertex, project the quadrilateral upon any plane pab parallel to OAB. The projected figure pqrs will be a parallelogram.

Proof. — The planes OPQ, OBS intersect in OA, and they intersect the plane of projection which is parallel to OA in the lines pq, S. Therefore pq and rs are parallel to OA, and therefore to each other. Similarly, ps, qr are parallel to OB.

[image: ]



1080 COR. 1.—The opposite sides of the parallelogram pqrs meet in two points at infinity, which are the projections of the points A, B; and AB itself, which is the third diagonal of the complete quadrilateral PQRS, is projected into a line at infinity.

1081 Hence, to project any figure so that a certain line in it may pass to infinity—Take the plane of projection parallel to the plane which contains the .given line and the vertex.

1082 Cor. 2.—To make the projection of the quadrilateral a rectangle, it is only necessary to make AOB a right angle.

On P erspective Drawing.

1083 Taking the parallelogram pqrs, in (1079), for the original figure, the quadrilateral PQRS is its projection on the plane ABab. Suppose this plane to be the plane of the paper. Let the planes OAB, pab, while remaining parallel to each other, be turned respectively about the fixed parallel lines AB, ab. In every position of the planes, the lines Op, Oq, Or, Os will intersect the dotted lines in the same points P, Q, R, S. When the planes coincide with that of the paper, pqrs becomes a ground plan of the parallelogram, and PQRS is the representation of it in perspective.

AB is then called the horizontal line, ab the picture line, and the plane of both the picture plane.

1084 To find the projection of any point p in the ground plan.

RULE.—Draw pb to any point b in the picture line, and draw OB parallel to pb, to meet the horizontal line in B. Join Op, Bb, and they will intersect in P, the point required.

In practice, pb is drawn perpendicular to ab, and OB therefore perpendicular to AB. The point B is then called the point of sight, or centre of vision, and 0 the station point.

1085 To find the projection of a point in the ground plan, not in the original plane, but at a perpendicular distance c above it.

RULE.—Take a new picture line parallel to the former, and at a distance above it = c cosec a, ivhere a is the angle between the original plane and the plane of projection. For a plane through the given point, parallel to the original plane, will intersect the plane of projection in the new picture line so constructed.

Thus, every point of a figure in the ground plan is transferred to the drawing.

1086 The whole theory of perspective drawing is virtually included in the foregoing propositions. The original plane is commonly horizontal, and the plane of projection vertical. In this case, cosec a = 1, and the height of the pichcre line for any point is equal to the height of the point itself above the original plane.

The distance BO, when B is the point of sight, may be measured along AB, and bp along ab, in the opposite direction; for the line Bb will continue to intersect Op in the point P.

Orthogonal Projection.

1087 DEFINITION.—In orthogonal projection the lines of projection are parallel to each other, and perpendicular to the plane of projection. The vertex in this case may be considered to be at infinity.

1088 The projections of parallel lines are parallel, and the projected segments are in a constant ratio to the original segments.

1089 Areas are in a constant ratio to their projections.

For, lines parallel to the intersection of the original plane and the plane of projection are unaltered in length, and lines at right angles to the former are altered in a constant ratio. This ratio is the ratio of the areas, and is the cosine of the angle between the two planes.

Projections of the Sphere.

1090 In Stereographic projection, the vertex is on the surface of the sphere, and the diameter through the vertex is perpendicular to the plane of projection which passes through the other extremity of the diameter. The projection is therefore the inversion of the surface of the sphere (1012), and the diameter is the constant k.

1091 In Globular projection, the vertex is taken at a distance from the sphere equal to the radius —2, and the diameter through the vertex is perpendicular to the plane of projection.

1092 In Gnomonic projection, which is used in the construction of sun-dials, the vertex is at the centre of the sphere.

1093 Mercatopsprojection, which is employed in navigation, and sometimes in maps of the world, is not a projection at all as defined in (1075). Meridian circles of the sphere are represented on a plane by parallel right lines at intervals equal to the intervals on the equator. The parallels of latitude are represented by right lines perpendicular to the meridians, and at increasing intervals, so as to preserve the actual ratio between the increments of longitude and latitude at every point.

With r for the radius of the sphere,. the distance, on the chart, from the equator of a point whose latitude is X, is = r log tan (45°+2).

Additional Theorems.

1094 The sum of the squares of the distances of any point P from n equidistant points on a circle whose centre is 0 and radius r              = n (r2+ OP9-).

Proof.—Sum the values of PR2, PC2, &c., given in (819), and apply (803). This theorem is the generalization of (923).

1095 In the same figure, if P be on the circle, the sum of the squares of the perpendiculars from P on the radii OB, 00, &c., is equal to ^nr^.

Proof.—Describe a circle upon the radius through P as diameter, and apply the foregoing theorem to this circle.

1096 Cor. 1.—The sum of the squares of the intercepts on the radii between the perpendiculars and the centre is also equal to 2nr2.        (I. 47)

1097 Cor. 2.—The sum of the squares of the perpendiculars from the equidistant points on the circle to any right line passing through the centre is also equal to ^nr2.

Because the perpendiculars from two points on a circle to the diameters drawn through the points are equal.

1098 Cor. 3.—The sum of the squares of the intercepts on the same right line between the centre of the circle and the perpendiculars is also equal to ^nr2.                                                           (I. 47)

If the radii of the inscribed and circumscribed circles of a regular polygon of n sides be r, R, and the centre 0; then,

1099 I. The sum of the perpendiculars from any point P upon the sides is equal to nr.

1100 II. If p be the perpendicular from 0 upon any right line, the sum of the perpendiculars from the vertices upon the same line is equal to np.

1101 III. The sum of the squares of the perpendiculars from P on the sides is = n (12+20P2).

1102 IV. The sum of the squares of the perpendiculars from the vertices upon the right line is = n (p2 + 1 R2).

Proof.—In theorem I., the values of the perpendiculars are given by r—OP cos (0+ 2mr), with successive integers for m. Add together the n values, and apply (803).

Similarly, to prove II.; take for the perpendiculars the values

— /„ 2n7\ p—R cos 0 ---.

To prove III. and IV., take the same expressions for the perpendiculars; square each value; add the results, and apply (803, 804).

For additional propositions in the subjects of this section, see the section entitled Plane Coordinate Geometry.

GEOMETRICAL CONICS.

THE SECTIONS OF THE CONE.

1150 Definitions.—A Conic Section or Conic is the curve AP in which any plane intersects the surface of a right cone.

A right cone is the solid generated by the revolution of one straight line about another which it intersects in a fixed point at a constant angle.

Let the axis of the cone, in Fig. (1) or Fig. (2), be in the plane of the paper, and let the cutting plane PMXN be perpendicular to the paper. {Bead either the accented or unaccented letters throughout.) Let a sphere be inscribed in the cone, touching it in the circle FQF and touching the cutting plane in the point S, and let the cutting plane and the plane of the circle FQF intersect in XM. The following theorem may be regarded as the defining property of the curve of section.

1151 Theorem.—The distance of any point P on the conic from the point S, called the focus, is in a constant ratio to PM, its distance from the line XM, called the directrix, or

PS : PM = PS' : PM' = AS : AX = e, the eccentricity.

[See next page for the Procf.^

1152 Cor.—The conic may be generated in a plane from either focus S, S', and either directrix XM, XM', by the law just proved.

1153 The conic is an Ellipse, a Parabola, or an Hyperbola, according as e is less than, equal to, or greater than unity. That is, according as the cutting plane emerges on both sides of the lower cone, or is parallel to a side of the cone, or intersects both the upper and lower cones.

1154 All sections made by parallel planes are similar; for the inchnation of the cutting plane determines the ratio AE : AX.

1155 The limiting forms of the curve are respectively—a circle when e vanishes, and two coincident right lines when e becomes infinite.

	
2 H



PROOF OF THEOREM 1151.—Join P, S and P, 0, cutting the circular section in Q, and draw PM parallel to NX. Because all tangents from the same point, 0 or A, to either sphere are equal, therefore RE = PQ = PS and AE = AS. Now, by (VI. 2), RE : NX = AE : AX and NX = PM; therefore PS : PM = AS : AX, a constant ratio denoted by e and called the eccentricity of the conic.
[image: ]

Referring the letters either to the ellipse or the hyperbola in the subjoined figure, let C be the middle point of AA' and N any other point on it. Let EE', RR' be the two circular sections of the cone whose planes pass through 0 and N; EOS' and PN the intersections with the plane of the conic. In the ellipse, EG is the common ordinate of the ellipse and circle; but, in the hyperbola, EG is to be taken equal to the tangent from C to the circle EE'.

1156 The fundamental equation of the ellipse or hyperbola

is           PN2 : AN. NA' = BC2 : AC2.

Proof.—PN2 = NRI. NR' and EG2 = CE. GE' (III. 35, 36). Also, by similar triangles (VI. 2, 6), NR : CE = AN : AG and NR' : GE' = A'N : A'G. Multiply the last equations together.

1157 Cor. 1.—PN has equal values at two points equi-distant from AA. Hence the curve is symmetrical with respect to AA and BB.

These two lines are called the major and minor axes, otherwise the transverse and conjugate axes of the conic.

When the axes are equal, or BC=AO, the ellipse becomes a circle, and the hyperbola becomes rectangular or a equilateral.

[image: ]



1158 Any ellipse or hyperbola is the orthogonal projection of a circle or rectangular hyperbola respectively.

Proof.—Along the ordinate NP, measure NP' = AN. NA'; therefore by the theorem PN : P'N = BC : AC. Therefore a circle or rectangular hyperbola, having A A' for one axis, and having its plane inclined to that of the conic at an angle whose cosine = BC-i-AC, projects orthogonally into the ellipse or hyperbola in question, by (1089). See Note to (1201).

1159 Hence any projective property (1076-78), which is known to belong to the circle or rectangular hyperbola, will also be universally true for the ellipse and hyperbola respectively.

THE ELLIPSE AND HYPERBOLA.

Joint properties of the Ellipse and Hyperbola.

1160 Definitions.—The tangent to a curve at a point P (Fig. 1166) is the right line PQ,, drawn through an adjacent point Q, in its ultimate position when Q is made to coincide with P.

The normal is the perpendicular to the tangent through the point of contact.

In (Fig. 1171), referred to rectangular axes through the centre 0 (see Coordinate Geometry) ; the length ON is called the abscissa; PN the ordinate ; PT Pae tangent; PG the normal; NT the subtangent; and NG the subnormal. S, S' are the foci; XM, X'M' the directrices; PS, PS' the focal distances, and a double ordinate through S the Latus Tectum.

The auxiliary circle (Fig. 1173) is described upon AA' as diameter.

A diameter parallel to the tangent at the extremity of another diameter is termed a conjugate diameter with respect to the other.

The conjugate hyperbola has BG for its major, and AG for its minor axis (1157).


1161 The following theorems (1162) to (1181) are deduced from the property PS : PM = e obtained in (1151).

The propositions and demonstrations are nearly identical for the ellipse and the hyperbola, any difference in the application being specified.
[image: ]

Proof.—By (1151), e = —

A'8 _ 2 (A‘S±AS) _ CS A'X } (A‘X±AX) CA

or

CA

GX'




1163 In the ellipse the sum, and in the hyperbola the difference, of the focal distances of P is equal to the major axis, or             PS' + PS = A A.

Proof.—With the same figures we have, in the ellipse, by (1151),


i ,    AS+A'S  A A ,

and also e =      7— = —» therefore OC.



_ PS + PS' _ PS+PS' PM+ PM'   XX' ’

For the hyperbola take difference instead of sum.

1164 CS2 = AC2-BC2 in the ellipse.

[For ES^AC, by (1163).

CS2 = AC^A-BC^ in the hyperbola.

[By assuming PC. See (1176).

1165          BC= SL.AC.

Proof.—(Figs. of 1162) SL : SX = CS : CA,           (1151, 1162)

.. SL. AC = CS. SX = CS (CX ~ CS) = GA2 ~ GS2 (1162) = PG2 (1164).

1166 If a right line through P, Q, two points on the conic, meets the directrix in Z, then SZ bisects the angle QSR.

[image: ]
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Proof.—By similar triangles, ZP : ZQ, = MP : NQ, = SP : SQ (1151), therefore by (VI. A.)

1167 If PZ be a tangent at P, then PSZ and P8'Z' are right angles.

Proof.—Make Q coincide with P in the last theorem.

1168 The tangent makes equal angles with the focal distances.

Proof.—In (1166), PS : PS' = PM : PM' (1151) = PZ : PZ'-, therefore, when PQ becomes the tangent at P, L SPZ = S'PZ', by (1167) and (VI. 7).

1169 The tangents at the extremities of a focal chord intersect in the directrix.

Proof.—(Figs. of 1166). Join ZR-, then, if ZP is a tangent, ZR is also, for (1167) proves RSZ to be a right angle.

1170           CN.CT= AC2.

Pnoor.—(Tigs. 1171.) 7S = PS (VI. 3, A.) = PX (1151) = NX,

therefore TS+TS E NX!±NX o 2CT = 20X,

TS'-TS  NX—NX   2GS 2GN'

therefore             ON. CT = CS. CX = AC2.               (1162)

1171 If PG be the normal,

[image: ]

GS _ GS‘ _ GS‘+GS _ 2CS _

PS PS' PS'PPS 20A

But, for the hyperbola, change plus to minus.




1172 The subnormal and the abscissa are as the squares of the axes, or NG : NC = BC2 : AC2.

PROOF. — (Figs. 1171.) Exactly as in (1170), taking the normal instead

)   ,            ON . CN GX CA2 9 of the tangent, we obtain CS=ex • CG = Cs =092 (1162),

ON ^ CG = GA2 ^ GS2


NG _ EG2

NG AG2




(1164).



GN CA2 5

1173 The tangents at P and Q, the corresponding points on the ellipse and auxiliary circle, meet the axis in the same point T. But in the hyperbola, the ordinate TQ of the circle being drawn, the tangent at Q cuts the axis in N.

[image: ]

PROOF.—For the ellipse: Join TQ. Then CN. GT = GQ2 (1170) ; therefore CQT is a right angle (VI. 8) ; therefore QT is a tangent.

For the hyperbola: Interchange N and T.




1174         PN: QN = BC : AC.

Proof.—(Figs. 1173). NG.NT = PN2, and ON. NT = QN2. (VI. 8) Therefore NO : NO = PN2 : QN2; therefore, by (1172).

This proposition is equivalent to (1158), and shows that an ellipse is the orthogonal projection of a circle equal to the auxiliary circle.

1175 Cor.—The area of the ellipse is to that of the auxiliary circle as BC : AC (1089).

1176 PN2 : AN. NA' = BC2 : AC2.

Proof.—By (1174), since QN2 = AN. NA' (III. 35, 36). An independent proof of this theorem is given in (1156). The construction for B0 in the hyperbola in (1164) is thus verified.

1177            Cn.Ct = BC2.

Proof.—(Figs. 1173.)

Ot _ PN, . Cn.Ct _ PN2 _PN2 — 9 _ PN2 — 3 30

CT NT’ "CN.CT  CN.NT QN2 1 J AN.NA'^ ' ’

Therefore, by (1170) and (1176), Cn.Ct: AC2 = BC2 : AC2.

1178 If SY, S'Y' are the perpendiculars on the tangent, then Y, Y' are points on the auxiliary circle, and

SY. S'Y' = BC2.
[image: ]

Proof.—Let PS meet SY in W. Then PS = PW (1168). Therefore S‘W= AA' (1163). Also, SY= YW, and SC = CS'. Therefore CY— ±SW = AC. Similarly CY' = AC. Therefore Y, Y' are on the circle.

Hence ZY' is a diameter (III. 31), and therefore SZ = S'Y', by similar triangles ; therefore SY. SZ = SA . SA (III. 35, 36) = OS2 ~ CA2 (II. 5) = BC2 (1164).

1179 Cor.—If CE be drawn parallel to the tangent at P, then         PE=CY=AC.

1180 Problem.—To draw tangents from any point 0 to an ellipse or hyperbola.

CONSTRUCTION. — (Figs. 1181.) Describe two circles, one with centre 0 and radius OS, and another with centre S' and radius = AA', intersecting in M, M'. Join MS', M'S'. These lines will intersect the curve in P, P‘, the points of contact. For another method see (1204).

PROOF:—By (1163), PS'±PS = A A' = S'M by construction. Therefore PS = PM, therefore A OPS = OPM (1. 8), therefore OP is a tangent by (1168).

Similarly PS = P'M', and OP is a tangent.

1181 The tangents OP, OP' subtend equal angles at either focus.

[image: ]

PROOF.—The angles OSP, OSP' are respectively equal to OMP, OM'P, by (I. 8), as above; and these last angles are equal, by the triangles OS'M, OS'M', and (I. 8). Similarly at the other focus.




Asymptotic Properties of the Hyperbola.

1182 DEF. — The asymptotes of the hyperbola are the diagonals of the rectangle formed by tangents at the vertices A, A', P, P'.

1183 If the ordinates RN, RA from any point R on an asymptote cut the hyperbola and its conjugate in P, P', D, D',
[image: ]

then either of the following pairs of equations will define both the branches of each curve—

RN‘—PN2 = BC^ = P'N2-RN2 ............(1),

RM^-DM^ AC2 = D'M2-RM2 ............(2).

PROOF.—Firstly, to prove (1) : By proportion from the similar triangles BO2 PN2

RLC, OAO, we have —-+9 = —9 = —9—9 ; CN2 AG2   GN2—AG2 by (1176), since        AN. NA' = GN2-AC2.             By (IL 6) r ,              R^^-PN2  BG2     . _ _      0 Therefore                ---——- = - 9,      by the theorem (0) ; AG2 AG^ therefore                RN2 - PN2 = B G2.

Also, by (1176), applied to the conjugate hyperbola, the axes being now

GN2 A G2 GN2

reversed,               P'N^-JBGi = BG2 = RN2’ by similar triangles 3

therefore P'N2-BG2 = BN2 or P'N2-RN2 = BG2.

Secondly, to prove (2) : By proportion from the triangles RMG, OBG, we


have



RM2   AC2 DM2

CM2   BG2   CM?—B03

by (1176), applied to the conjugate hyperbola, for in this case we should


have




BM.MB' = GM2-BG2.



r .   RM2-T)M2 AG2 j                 109

Therefore ---——---= -- ; therefore RM — DM = AG . BG2 BG2

Also, by (1176), since GM, D'M are equal to the coordinates of D', GM2 BG2 GM2  ......  ,

VM^AG’ =40 5 RM" by similar triangles i therefore     D'M2-AG2 = RM2 or D'M2-RM2 = AG2.

1184 Cor. 1.—If the same ordinates RN, IN meet the other asymptote in r and r’, then

PR.Pr = BC* and DR.Dr'=AC\ (1.5)

1185 Cor. 2.—As R recedes from G, PR and DR continually diminish. Hence the curves continually approach the asymptote.

1186 If NE be the directrix, CE = AC.

Proof.— CE : CO = GX : CA = GA : GS and CS = GO. (1164)

1187 BD is parallel to the asymptote.


Proof.—



RN2 _ BG2 _ RN2-PN2 1199) _ PN2


(69).



RM2 AG2 RM2-DM2 -   ) “ DM2

Therefore RN : PN = RM : DM; therefore, by (VI. 2).

2 I

1188 The segments of any right line between the curve and the asymptote are equal, or QR = qr.
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PROOF.—           QR : QU = qR : qUA Compound the ratios, and                     Qr : Qu = qr : qu S and employ (1184).

1189 Con. 1— PL = Pl and Qv= qV.

1190 COR. 2.— CH= HL. Because PD is parallel to IC.

(1187)

1191 QR.q»=PL=RV-QV= QT-RV^

Proof.— QR : QU = PL : PE ) Compoundtheratios. Therefore,by(1184), and        Qr : Qu = Pl : Pe 3 QR . Qr = PL . PI = PE (1189).

1192          ^PH.PK= CS\

Proof.— PH : PE = CO : Ool .. PH. PK : PE. Pe= CO2 : 002 and          PK : Pe = Co : Oo) = CS^ : 4B02; therefore, by (1184).

Joint Properties of the Ellipse and Hyperbola resumed.

If POP' be a diameter, and QV an ordinate parallel to the conjugate diameter CD (Figs. 1195 and 1188).

1193 QV2 : PV. VP = CD2 : CP\

This is the fundamental equation of the conic, equation (1176) being the most important form of it.

Otherwise:

In the ellipse, Q V2 : CP2 - C V2 = CD2: CP2. in the hyperbola, QV2 : CV2-CP2 = CD2: CP2;

and            Q V2 : CV2+ CP2 = CD2: CP2.

PROOF.—{Ellipse. Fig. 1195.)—By orthogonal projection from a circle. If 0, P, P', D, Q, V are the projections of c, p, p, d, q, v on the circle; qv2 = pv . vp and cd2 = cp2. The proportion is therefore true in the case of the circle. Therefore &c., by (1088).

{Hyperljola. Fig. 1188)—

OB2 _ RV2 _ PL2 _ RV2±PL2 _ QV2        QT2


(1191)



CP2 GV2   CP2 GV^GP2 GV2-GP2 or CV2+CP2

1194 The parallelogram formed by tangents at the extremities of conjugate diameters is of constant area, and therefore, PF being perpendicular to CD (Figs. 1195),

PF. CD = AC.BC.

Proof.—(Ellipse!)—By orthogonal projection from the circle (1089).

(Hyperbola. Fig. 1188.) — CL.GI = ^PH.PK= GO. Go (1192) ; therefore, by (VI. 15), ALGI = OGo = AG. BG.

If PF intersects the axes in G and G', 1195 PF. PG = BC2 and PF. PG = AC1.
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ppPpo— PF. PG = PK.PN= Cn. Gt = 302 (1177). Similarly for




1197 Cob.— PG . PG' = CD2 = PT. Pt. By (1194)

1198 The diameter bisects all chords parallel to the tangent at its extremity.

PROOF. — (Ellipse, Fig. 1195.)—By projection from the circle (1088) QV = VQ'. (Hyperbola.) By (1189.)

1199 Cor. 1.—The tangents at the extremities of any chord meet on the diameter which bisects it.

PROOF.—The secants drawn through the extremities of two parallel chords meet on the diameter which bisects them (VI. 4), and the tangents are the limiting positions of the secants when the parallel chords coincide.

1200 Cor. 2.—If the tangents from a point are equal, the diameter through the point must be a principal axis. (i. 8) 1201 Cor. 3.—The chords joining any point Q on the curve with the extremities of a diameter PP', are parallel to conjugate diameters, and are called supplemental chords.

For the diameter bisecting PQ is parallel to P'Q (VI. 2). Similarly the diameter bisecting P'Q, is parallel to PQ.

1202 Diameters are mutually conjugate; If CD be parallel to the tangent at P, CP will be parallel to the tangent at D.

PROOF.—(Ellipse. Fig. 1205.)—By projection from the circle (1088).

NOTE.—Observe that, if the ellipse in the figure with its ordinates and tangents be turned about the axis Tt through the angle cos’1 (PC -t- AC), it becomes the projection of the auxiliary circle with its corresponding ordinates and tangents.

(Hyperbola. Fig. 1188.)—By (1187, 1189) the tangents at P, D meet the asymptotes in the same point L. Therefore they are parallel to CD, CP (VI. 2.)

If QT be the tangent at Q, and QV the ordinate parallel to the tangent at any other point P,
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Proof.—CR bisects PQ (1199). Therefore PW is parallel to QR.

Therefore, by (VI. 2), CV: CP = CW: OR = CP : CT.

1204 Cor.—Hence, to draw two tangents from a point T, we may find

CV from the above equation, and draw QVQ' parallel to the tangent at P to determine the points of contact Q, Q'.

Let PN, DN be the ordinates at the extremities of conjugate diameters, and PT the tangent at P. Let the ordinates at N and R in the ellipse, but at T and G in the hyperbola, meet the auxiliary circle in 2 and d; then

[image: ]



PROOF.—(Bllipse.) Cp, Cd are parallel to the tangents at d and p (Note to 1202). Therefore pCd is a right angle. Therefore pNC, CPd are equal right-angled triangles with CN = dP and CP=pN.

(Hyperbola.)         CN. CT = AO2 (1170),

and       DB.CT= 2ACDT = 2CDP = AC. BC (1194) ;

CN _ AC _ pN —  . CN_DB_CB,. . ,.  , .

DB BC PN         PN PN TN (similar triang 65)

But CN = PN (V1. 8); .. CR = pN. Also Cp — Cd', therefore the tri-pN TN              " angles CpN, d CP are equal and similar; therefore CN = dP and dP is parallel to pN.

1206 Cor— DR: dR = BC : AC.

Proof.—(HUipse.) By (1174). (Hyperbola.) By the similar right-angled triangles, we have   dP : pN = CP : TN = DP : PN; therefore          dP : DP = pN : PN= AC : BC (1174).

In the same figures,

1207 (.Ellipse.) CN3+CR2= AC2; DR^+PN^BC2. 1209 {Hyperbola.) CN2-CR2 = AC2; DR2-PN2 = BC2.

Proof.— Firstly, from the right-angled triangle ONp in which pN = CP (1205).

Secondly, in the ellipse, by (1174), DP2+PN2 : dP2+pN2 = BC2: AC2, and dpl+pN2=AC2, by (1205). Por the hyperbola, take difference of squares. 1211 (Ellipse.)   CP2+CD2 = AC2+BC\

1212 (Hyperbola.) CP2-CD2 = AC2-BC\

PROor.—(Figs. 1205.) By (1205—1210) and (I. 47), applied to the triangles ONE, CRD.

The product of the focal distances is equal to the square of the semi-conjugate diameter, or

1213            PS. PS' = CD2.

PROOF. — {Ellipse. Fig. 1171.) 2PS. PS' = {PS + PS')2 - PS2— PS'2 = 4AC2-2CS2-WP2 (922, i.) = 2 {AC2 + BO2-CP2) (1164) = 2CD2(1211).

{Hyperbola.)—Similarly with 2PS. PS' = PS2 + PS'2-{PS'-PS)2 = &c.

1214 The products of the segments of intersecting chords Q^Oci, Q'Oq are in the ratio of the squares of the diameters parallel to them, or

OQ.Oq : OQ'.Oq' = CD2 : CD'2.

PROOF.—{Ellipse.) By projection from the circle (1088) ; for the proportion is true for the circle, by (111. 35, 36).


{Hyperbola. Fig. 1188.) Let 0 be any point on Qq. Draw lOi parallel to Ee, meeting the asymptotes in I and i; then

OR. Or-OQ.Oq = QR. Qr (II. 5) = PL2 (1191) ......... (1).




Now




OR PL , Or — pn and oi




01




PI. . OR. Or _ PL2 _ CD2 (1184)

Pe’ " 01. Oi PE.Pe BO22*




Therefore



OR. Or—PL2 _ CD2    1 1 0Q . Oq _ CD2

OI.Oi-BO2 BO2’ X 1 0I.0i-BG2 BO2’

Similarly for any other chord Q'Oq drawn through 0.


Therefore



OQ. Oq : OQ'. Oq = CD2 : CD'2.

1215 CoR.—The tangents from any point to the curve are in the ratio of the diameters parallel to them.

For, when 0 is without the curve and the chords become tangents, each product of segments becomes the square of a tangent.

1216 If from any point Q on a tangent PT drawn to any conic (Fig. 1220), two perpendiculars QR, QL be drawn to the focal distance PS and the directrix XM respectively; then

SR : QL = e.

PROOF.—Since QR is parallel to ZS (1167), therefore, by (VI. 2), SR : PS = QZ : PZ = QL : PM-, therefore              SR : QL = PS : PM = e.

COR.—By applying the theorem to each of the tangents from Q, a proof of (1181) is obtained.

1217 The Director Circle.—The locus of the point of intersection, T, of two tangents always at right angles is a circle called the Director Circle.
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PROOF.—Perpendiculars from S, S' to the tangents meet them in points Y, Z, Y', Z', which lie on the auxiliary circle. Therefore, by (II. 5, 6) and

(III. 35, 36), TO2 ~ AG2 = TZ. TZ' = S Y. S'Y' = EC2.          (1178)

Therefore                 TG2 = A02 ± BC2, a constant value.

NOTE.—Theorems (1170), (1177), and (1203) may also be deduced at once for the ellipse by orthogonal projection from the circle; and,.in all such cases, the analogous property of the hyperbola may be obtained by a similar projection from the rectangular hyperbola if the property has already been demonstrated for the latter curve.

1218 If the points A, S (Fig. 1162) be fixed, while C is moved to an infinite distance, the conic becomes a parabola. Hence, any relation which has been established for parts of the curve which remain finite, when AC thus becomes infinite, will be a property of the parabola.

1219 Theorems relating to the ellipse may generally be adapted to the parabola by eliminating the quantities which become infinite, employing the principle that finite differences may be neglected in considering the ratios of infinite quantities.

Example.—In (1193), when P‘is at infinity, VP' becomes = 2CP; and in (1213) PS' becomes = 2CP. Thus the equations become

QV2 2GD2             CD? Pr = p and P8=—.

Therefore QV2 = 4<PS.PV in the parabola.

THE PARABOLA.

If S be the focus, XM the directrix, and P any point on the curve, the defining property is
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1220  PS = PM and e = 1.     (1153)

1221 Hence

AX = AS.

1222 The Latus Rectum = 4tAS. Proof.—         SL = SX (1220) = 2AS.

1223 If PZ be a tangent at P, meeting the directrix in Z, then PSZ is a right angle.

Proof.—As in (1167) ; theorem (1166) applying equally to the parabola.

1224 The tangent at P bisects the angles 8PM, SZM.

Proof.—PZ is common to the triangles PSZ, PMZ; PS = PM and A PSZ = PMZ (1223).

1225 CoR.— ST=SP = SG.          (i.29,6)

1226 The tangents at the extremities of a focal chord PQ intersect at right angles in the directrix.

Proof.—(i.) They intersect in the directrix, as in (1169).

(ii.) They bisect the angles SZM, SZM' (1224), and therefore include a right angle.

1227 The curve bisects the sub-tangent. AN = AT.

Proof.— ST = SP (1225) = PM = XN, and AX = AS.

1228 The sub-normal is half the latus rectum. NG = 2AS.

Proof.—ST = SP = SG and TX = SN (1227). Subtract.

1229            PN2 = 4AS .. AN.

Proof.—PN2 = TN. NG (VI. 8) = AN. ^NG (1227) = 4AS . AN (1228).

Otherwise, by (1176) and (1165) ; making AC infinite. See (1219).

1230 The tangents at A and P each bisect SM} the latter bisecting it at right angles.

Proof.—(i.) The tangent at A, by (VI. 2), since AX = AS.

(ii.) PT bisects SM at right angles, by (I. 4), since PS = PM and 4 SP Y = MPY.

1231 COR.—         SA : SY: SP. [By similar triangles.

1232 To draw tangents from a point 0 to the parabola.

CONSTRUCTION.—Describe a circle, centre 0 and radius OS, cutting the directrix in M, M'. Draw MQ, M'Q' parallel to the axis, meeting the parabola in Q, Q. Then OQ, OQ' will be tangents.
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Proof.— OS, SQ = OM, MQ (1220); 0 therefore, by (I. 8), L OQS = OQM-, therefore OQ, is a tangent (1224). Similarly OQ’is a tangent.

Otherwise, by (1181). When S' moves to infinity, the circle MM' becomes the directrix.

1233 CoR. 1.—The triangles SQO, SOQ' are similar, and SQ : SO : SQ'.

Proof.— z SQO = MQO = SMM' = SOQ,'.         (III. 20) Similarly                   SQ'O = SOQ.

1234 Cor. 2.—The tangents at two points subtend equal angles at the focus; and they contain an angle equal to half the exterior angle between the focal distances of the points.

Proof.—              z OSQ = OSQ', by (Cor. 1). Also        z QOQ' = SOQ+ SQO = T- OSQ = ^QSQ'.

1235 DEF.—Any line parallel to the axis of a parabola is called a diameter.

1236 The chord of contact QQ‘ of tangents from any point 0 is bisected by the diameter through 0.

Proof.—This proposition and the corollaries are included in (1198-1200), by the principle in (1218). An independent proof is as follows.

2 K

The construction being as in (1232), we have ZM=ZM'-, therefore QV=VQ (VI. 2).

1237 Cob. 1. — The tangent RR’ at P is parallel to QQ'; and OP = PV.

PROOF.—Draw the diameter RW. QW= WP; therefore QR = RO (VI. 2).

Similarly Q R — RO.
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1238 Cob. 2.—Hence, the diameter through P bisects all chords parallel to the tangent at P.

If Q7 be a semi-chord parallel to the tangent at P,


1239




QV2 = 4PS.PV.



This is the fundamental equation of the parabola, equation (1229) being the most important form of it.
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PROOF.—Let QO meet the axis in T. By similar triangles (1231),

L SRP = SOP = STO = POR ; and £SPR- OPR (1224). Therefore PR^ PS.PO = PS.PVand Q P= 2PR.

Otherwise: See (1219), where the equation is deduced from (1193) of the ellipse.

1240 Cob. 1.—If v be any other point, either within or without the curve, on the chord QQ', and pv the corresponding diameter,           vQ .vQ' = 4pS .pv.               (II. 5)

1241 Cob. 2.—The focal chord parallel to the diameter through P, and called the parameter of that diameter, is equal to 4SP. For PV in this case is equal to PS.

1242 The products of the segments of intersecting chords, QOq, Q^Oq , are in the ratio of the parameters of the diameters which bisect the chords; or

OQ.Oq : OQ.Oq = PS : PS.

• PROOF.—By (1240), the ratio is equal to MPS .pO : MP'S . pO. Otherwise: In the ellipse (1214), the ratio is = CD —          (1213) p S                                    CD - P

= Pg when S' is at infinity and the curve becomes a parabola (1219).

1243 Cor.—The squares of the tangents to a parabola from any point are as the focal distances of the points of contact.

Proof.—As in (1215). Otherwise, by (1233) and (VI. 19).

1244 The area of the parabola cut off by any chord QQ‘ is two-thirds of the circumscribed parallelogram, or of the triangle formed by the chord and the tangents at Q, Q‘.

Proof.—Through Q, q, q', &c., adjacent points on the curve, draw right lines parallel to the diameter and tangent at P. Let the secant Qq cut the diameter in 0. Then, when q coincides with Q, so that Qq becomes a tangent, we have OP = PV (1237). Therefore the parallelogram Vq = ^Uq, by (I. 43), applied to the parallelogram of which 0Q, is the diagonal. Similarly vq = 2uq, &c. Therefore the sum of all the evanescent parallelograms on one side of PQ, is equal to twice the corresponding sum on the other side; and these sums are respectively equal to the areas PQV, PQ,U.— (NEWTON, Sect. I., Lem. II.)
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Practical 'methods of constructing the Conic.

1245              To draw the Ellipse.

Fix two pins at 8, 8' (Fig. 1162). Place over them a loop of thread having a perimeter SP8' = SS’+AA. A pencil point moved so as to keep the thread stretched will describe the ellipse, by (1163).

1246 Otherwise.— (Fig. 1173.) Draw INK parallel to QC, cutting the axes in H, K. PK = AC and PH = PC (1174). Hence, if a ruler PHK moves so that the points H, K slide along the axes, P will describe the ellipse.

1247            To draw the Hyperbola.

Make the pin S’ (Fig. 1162) serve as a pivot for one end of a bar of any convenient length. To the free end of the bar attach one end of a thread whose length is less than that of the bar by AA'; and fasten the other end of the thread to the pin 8. A pencil point moved so as to keep the thread stretched, and touching the bar, will describe the hyperbola, by (1163).

1248 Otherwise:—Lay off any scale of equal parts along both asymptotes (Fig. 1188), starting and numbering the divisions from C, in both positive and negative directions.

Join every pair of points L, 1, the product of whose distances from C is the same, and a series of tangents will be formed (1192) which will define" the hyperbola. See also (1289).


1249




To draw the Parabola.



Proceed as in (1247), with this difference : let the end of the bar, before attached to S', terminate in a " T-square," and be made to slide along the directrix (Fig. 1220), taking the string and bar of the same length.

1250 Otherwise:—Make the same construction as in (1248), and join every pair of points, the algebraic sum of whose distances from the zero point of division is the same.

PROOF.—If the two equal tangents from any point T on the axis (Fig. 1239) be cut by a third tangent in the points R, r- then RQ, may be proved equal to rT, by (1233), proving the triangles SRQ, SrT equal in all respects. 1251 CoR.—The triangle SRr is always similar to the isosceles triangle SQT.

1252 To find the axes and centre of a given central conic.

(i.) Draw a right line through the centres of two parallel chords. This line is a diameter, by (1198); and two diameters so found will intersect in the centre of the conic.

(ii.) Describe a circle having for its diameter any diameter PP' of the conic, and let the circle cut the curve in Q. Then PQ, P'Q are parallel to the axes, by (1201) and (III. 31).

1253 Given two conjugate diameters, CP, CD, in position and magnitude: to construct the conic.

On CP take PZ = CD2-^-CP; measuring from C in the ellipse, and towards C in the hyperbola (Fig. 1188). A circle described through the points C, Z, and having its centre 0 on the tangent at P, will cut the tangent in the points where it is intersected by the axes.
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Proof.—Analysis: Let AC, PC cut the tangent at P in T, t. The circle whose diameter is Tt will pass through C (III. 31), and will make

CP. PZ = PT. Pt (III. 35,36) = CD2 (1197).

Hence the construction.

Circle and Radius of Curvature.

1254 DEFINITIONS.—The circle which has the same tangent with a curve at P (Fig. 1259), and which passes through another point Q on the curve, becomes the circle of curvature when Q ultimately coincides with P; and its radius becomes the radius of curvature.

1255 Otherwise.—The circle of ciLrvature is the circle which passes through three coincident points on the curve at P.

1256 Any chord PH of the circle of curvature is called a chord of curvature at P.

1257 Through Q draw PQ' parallel to PH, meeting the tangent at P in R, and the circle in Q‘, and draw QV parallel to PR. PQ is called a subtense of the arc PQ.

1258 THEOREM.—Any chord of curvature PH is equal to the ultimate value of the square of the arc PQ divided by the subtense RQ parallel to the chord : and this is also equal to

QV2-PV.

Proof.—RQ' = RP^—RQ (III. 36). And when Q moves up to P, RQ' becomes PH-, and RP, PQ, and QV become equal because coincident lines.

1259 In the ellipse or hyperbola, the semi-chords of curvature at P, measured along the diameter PC, the normal PF, and the focal distance PS, are respectively equal to

CD2   CD2   CD2.

CP9  PF ‘   AC 9 the second being the radius of curvature at P.
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Proof.-G.) By (1258), PH = 4 = YESD2 (1193) = 2°P in the limit when VP' becomes PP = 2 CP.

(ii.) By the similar triangles PHU, PFC (III. 31), we have




PU.PF = CP .PH=2CD\ by (i.)

(iii.) By the similar triangles PIU, PFE (1168), we have

PI. PE = PU.PF = 20D3, by (ii.) ; and PE = AC (1179).

1260 In the parabola, the chord of curvature at P (Fig. 1259) drawn parallel to the axis, and the one drawn through the focus, are each equal to 4SP, the parameter of the diameter at P (1241).

Proof.—By (1258). The chord parallel to the axis = QV3-PV = IPS (1239) ; and the two chords are equal because they make equal angles with the diameter of the circle of curvature.

1261 Cor.—The radius of curvature of the parabola at P (Fig. 1220) is equal to %SP* - SY.

Proof.—(Fig. 1259.) %PU = ^PI sec IPU = 2SP sec PSY (Fig. 1221). 1262 The products of the segments of intersecting chords are as the squares of the tangents parallel to them (1214-15), (1242-43).

1263 The common chords of a circle and conic (Fig. 1264) are equally inclined to the axis; and conversely, if two chords of a conic are equally inclined to the axis, their extremities are coney die.

Proof.—The products of the segments of the chords being equal (III. 35, 36), the tangents parallel to them are equal (1262). Therefore, by (1200).

1264 The common chord of any conic and of the circle of

curvature at a point P, has the same inclination to the axis as the tangent at P.
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Proof.—Draw any chord Qq parallel to the tangent at P. The circle circumscribing PQq always passes through the same point p (1263), and does so, therefore, when Qq moves up to P, and the circle becomes the circle of curvature.

1265 PROBLEM.—To find the centre of curvature at any given point of a conic.

First Method.—(Fig. 1264.) Draw a chord from the point making the same angle with the axis as the tangent. The perpendicular bisector of the chord will meet the normal in the centre of curvature, by (1264) and (III. 3).

1266 Second Method.—Draw the normal PG and a perpendicular to it from G, meeting either of the focal distances in Q. Then a perpendicular to the focal distance drawn from Q will meet the normal in 0, the centre of curvature.

PROOF.—{Ellipse or Hyperbola.) By (1259), the radius of curvature at P =CP=CP PG (1105) = AQ: PG (1194)
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= PG sec2 S'PG = P0.

For          AC = PE (by 1179).

(Parabola.) By (1261). The radius of curvature

= 2SP^SY= 2SP see SPG = P0.

For 2SP = PQ, because SP = SG (1125).

Miscellaneous Theorems.

1267 In the Parabola (Fig. 1239) let QD be drawn perpendicular to PV, then                     QD2 = 4AS.PV.             (1231,1239)

1268 Let RPR' be any third tangent meeting the tangents OQ, OQ' in R, Ri', the triangles SQO, SRR', SOQ' are similar and similarly divided by SR, SP, SR' (1233-4).

1269 Cor.— OR. OR' = RQ,. R'Q).

1270 Also, the triangle PQQ( = 2ORR'.                     (1244) With the same construction and for any conic,

1271             OQ : OQ' ^RQ.RP' : R'Q'. PR. (1215, 1243) 1272 Also the angle RSR' = ^QSQ'.                   (1181)

1273 Hence, in the Parabola, the points 0, R, S, R are concyclic, by (1234).

1274 in any conic (Figs. 1171), SP : ST = AN : AT.

Proor- SP = SP-A (69,1163) = SX (1170) =AN (69).

1275 Cor.—If the tangent PT meets the tangent at A in R, then SR bisects the angle PST (VI. 3).

1276 In Figs. (1178), SY', S’Y both bisect the normal PG.

1277 The perpendicular from S to PG meets it in CY.

1278 If CD be the radius conjugate to CP, the perpendicular from D upon OY is equal to BC.

1279 SY and CP intersect in the directrix.

1280 If every ordinate PN of the conic (Figs. 1205) be turned round N, in the plane of the figure, through the same angle PNE, the locus of E is also a conic, by (1193). The auxiliary circle then becomes an ellipse, of which AC and EC produced are the equi-conjugate diameters.

If the entire figures be thus deformed, the points on the axis AA' remain fixed while PN, DR describe the same angle. Hence CD remains parallel to PT. CP, CD are therefore still conjugate to each other.

Hence, the relations in (1205-6) still subsist when CA, CB are any conjugate radii. Thus universally,

1281 PN : CR = DR : ON or PN. CN = DR . CR.

1282 If the tangent at P meets any pair of conjugate diameters in T, T', then PT. PT' is constant and equal to CD2.

PROOF.—Let CA, CB (Figs. 1205) be the conjugate radii, the figures being deformed through any angle. By similar triangles,

PT' : CN ETD:PR}, therefore PT. PT' : PN. CN = CD2 : DR. CR.

Therefore             PT. PT' = CD2, by (1281).

1283 If the tangent at P meets any pair of parallel tangents in T, T1, then PT. PT' = CD2, where CD is conjugate to CP.

PROOF.—Let the parallel tangents touch in the points Q, O'. Join PQ, PQf GT, GT'. Then GT, GT' are conjugate diameters (1199, 1201). Therefore PT. PT' = CD2 (1282).

1284 COR.—QT. Q'T' = GE2, where CN is the radius parallel to QT.

1285 To draw two conjugate diameters of a conic to include a given angle. Proceed as in (1252 ii.), making PP' in this case the chord of the segment of a circle containing the given angle (III. 33).

1286 The focal distance of a point P on any conic is equal to the length QN intercepted on the ordinate through P between the axis and the tangent at the extremity of the latus rectum.

Proof.—(Fig. 1220). QN : NX = LS : SX = e and SP : NX - e.

1287 In the hyperbola (Fig. 1183). CO : 0A = e.


(1162, 1164).



If a right line PKK' be drawn parallel to the asymptote CR, cutting the one directrix XE in K and the other in K'; then

1288 SP = PK = e. GN—AC; S'P = PK'=e. CN+AG.

Proof.—From CR = e . CN (1287) and CE = AC (1186).

1289 Cor.—Hence the hyperbola may be drawn mechanically by the method of (1249) by merely fixing the cross-piece of the T-square at an angle with the bar equal to BCO.

1290 DEFINITION.—Confocal conics are conics which have the same foci.

1291  The tangents drawn to any conic from a point T on a confocal conic make equal angles with the tangent at T.

Proof.—(Fig. 1217.) Let T be the point on the confocal conic.

SY : SZ = S’Z': S'Y' (1178).

Therefore ST and S'T make equal angles with the tangents TP, TQ; and they also make equal angles with the tangent to the confocal at T (1168), therefore &c.

1292 In the construction of (1253), PZ is equal to half the chord of curvature at P drawn through the centre 0 (1259).


DIFFERENTIAL CALCULUS.

INTRODUCTION.

1400 Functions.—A quantity which depends for its value upon another quantity x is called & function of x. Thus, sin a, log a, a®, a2+ax+a2 are all functions of x. The notation y =f(x) expresses generally that y is a function of a. y = sina is a particular function.

1401 /W is called a continuous function between assigned limits, when an indefinitely small change in the value of x always produces an indefinitely small change in the value of f(e).

A transcendental function is one which is not purely algebraical, such as the exponential, logarithmic, and circular functions ax, log a, sin a, cos a, &c.

If f(x) —f^xf the function is called an even function. If f(x) = — /(—xf it is called an odd function.

Thus, a2 and cos 2 are even functions, while a3 and sin a are odd functions of a ; the latter, but not the former, being altered in value by changing the sign of x.

1402 Differential Coefficient or Derivative.—Let y be any function of x denoted by f{xf such that any change in the value of x causes a definite change in the value of y; then x is called the independent variable, and y the dependent variable. Let an indefinitely small change in x, denoted by dx, produce a corresponding small change dy in y; then the ratio d%, in the limit when both dy and dx are vanishing, is called the differential coefficient, or derivative, of y with respect to X.

1403 Theorem.—The ratio dy : dx is definite for each value of x, and generally different for different values.

Proof.— Let an abscissa ON (Defs. 1160) be measured from 0 equal to x, and a perpendicular ordinate NP equal to y. Then, whatever may he the form of the function y = f(x), as a varies, the locus of P will be some line PQL. Let OM = a’, HQ = y' be values of a and y near to the former values. Let the straight line QP meet the axis in T- and when Q coincides with P, let the final direction of QP cut the axis in T'.

[image: ]



Then or "/—J = PN. And, ultimately, when QS and SP vanish, SP x—x NT            •  7 PN

they vanish in the ratio of PN: NT'. Therefore — =---, = tan PT'N, a

•                      dx NT'

definite ratio at each point of the curve, but different at different points.

1404 Let NM, the increment of a, be denoted by it; then, when I vanishes, dy = f^^^1) • fM =7(0), dx         h a new function of x, called also the first derived function. The process of finding its value is called differentiation.

1405 Successive differentiation.—If d or f (z) be differ-entiated with respect to x, the result is the second differential Coefficient oifff, or the second, derived function; and so on to any number of differentiations. These successive functions may be represented in any of the three following systems of notation :—■

dy d’y d^y d’y           dny . dxd dx^ dx^ dx^ .....1 dxni f («), f" (a), f" (a), f"(x), ......fn (x) ; yxi      y^xi y^xi y^xi ...... ynx1’

The operations of differentiating a function of x once, twice, or n times, are also indicated by prefixing the symbols d d2 dn d i d^ (d\. da’ dx^ 1 dxn> 01 dx" \dx) ‘ \da) or, more concisely, d, dix, ... dnx.

1406 If, after differentiating a function for x, a be made zero in the result, the value may be indicated in any of the following ways: dy, f‘(0), 3.05   —d., d.o.

Uv 0                  U. 0

If any other constant a be substituted for a in yxi the result may be indicated by Ya,a .

1407 Infinitesimals and Differentials. — The evanescent quantities dx, dy are called infinitesimals; and, with respect to x and y, they are called differentials. dx2, d2y are the second-differentials of x and y; dx3, d3y the third, and so on.

1408 The successive differentials of y are expressed in terms of dx by the equations

dy =f (a) doc; d2y —f'r(ff) doc2; &c., and dny ^f^^oc) doon.

Since f’ (x) is the coefficient of dx in the value of dy, it has therefore been named the differential coefficient of y or f (x).2 For similar reasons f" (a) is called the second, and fn (x) the nth differential coefficient of f(x), &c.

1409 Two infinitesimals are of the same order when their ratio is neither zero nor infinity.

If dx, dy are infinitesimals of the same order, dx2, dy2, and dxdy will be infinitesimals of the second order with respect to dx, dy; dx3, dx2dy, &c. will be of the third order, and so on.

dx, dx2, &c. are sometimes denoted by x, x, &c.

1410 LEMMA.—In estimating the ratio of two quantities, any increment of either which is infinitely small in comparison with the quantities may be neglected.

Hence the ratio of two infinitesimals of the same order is not affected by adding to or subtracting from either of them an infinitesimal of a higher order.

DIFFERENTIATION.

DIFFERENTIATION OF A SUM, ERODUOT, AND QUOTIENT.

Let u, v be functions of a, then


1411



d (u—v) _ du , dv doc doc doc


1412

1413




d (uv)     du

doc        doc




dv




" doc




d ( u ) — (, du _ dlo) \ doc
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— v2.



PROOF.—(i.) d(u + v} = (u + du+v Edv) — (u+v) = du + dv.

(ii.) d (uv) = QtEdu) (y + dv~) —uv = vdu+udv—dudvf and, by (1410), dudv disappears in the ultimate ratio to dx.

... .          - / u \ u+du u vdu—udv

(in.)         O I— =  -------— —---——,

\ v /     v + dv    v (v F dv) v

therefore &c., by (1410) ; vdv vanishing in comparison with v2.

Hence, if u be a constant = c,


C dv

72 doc *



1414 d(cv) =e dv and d(c) doc doc          00/

DIFFERENTIATION OF A FUNCTION OF A FUNCTION.

If y be a function of z, and z a function of a.


1415



dy   dy dz doc     dz ’ doc '

PROOF.—Since, in all cases, the change dx causes the change dz, and the change dz causes the change dy ; therefore the change dx causes the change dy in the limit.

Differentiating the above as a product, by (1412), the successive differential coefficients of y can be formed. The first four are here subjoined for the sake of reference. Observe that (J2)± = Y2%7.

1416   Y. = yA-

1417   y^ = Y2 R& + yA-

1418 y^x Ysa? + 3J2%,%2 +y,%s

1419 Ya — y.24 + ^y^z^x^2x+y^z (3zz, + 4%,%) + yz^ix*

DIFFERENTIATION OF A COMPOSITE FUNCTION.

If u and v be explicit functions of a, so that u = $ (a) and v = 1 (x),

1420 dF ^U’ 2)   dF du I dF de da       du doc dv doc *

Here dF in the first term on the right is the change in F (u, v) produced by du, the change in u; and dF in the. second term is the change produced by dv, so that the total change dF(u, v) may be written as in (1408)

dF, +ZF, = ddu+ dldv.

du dv

DIFFERENTIATION OF THE SIMPLE FUNCTIONS.

Since dy =l(e-1)—fW. when % vanishes, we have the following rule for finding its value :

1421 RULE.—Fxpand f(x+h) by some known theorem in ascending powers of h; subtract f (x); divide by h; and in the result put h equal to zero.

The differential coefficients which follow are obtained by the rule and the theorems indicated.

1422          y = ocn. dy = nocn 1. doc

Proof—Here £(o+1)—f() = (z+1)"—a" = na"11,+0(n, 2) «"-273+ h                h                    h

	
(125)    = na"-1+0 (n, 2) a"~21+... = na"—1, when A vanishes. 1423 Cob.—



42 = n(n-1)... (n—7+1) ar. 4%=|n.


1424 y = logaa;




dy _   1

doc a log,a



PRoor.—By (145), logn(a+7)-1og,@ = _— Slog, fi + h) ? - A. h            a loge a (     \ x / ) X

Expand the logarithm by (155).


1425 COR.—



dny _ (—1)" 1 n—l Put n = -1 in (1423) docn OCn log a •      and r = w— 1. ■


	
1426       y =a;     d = a" log,a-

Pnoot.-          a— = ^l^zl).     Expand a by (140).

1427 Cor—     d‘% = a(log.a)".

—   ).            — . ,.           Method of Proof by Rule (1421)

and Limits {756).

1428 sin a.           cos a.           Expand by (627, 629), and

1429 cos a.       -sin?.       put 1-oosh = 2sir2 _

1430 tana.          secta.        qEand by (631), observing

1431 cot a.        —cosec8 a?.       By cote = -, and(1415).

tan a

1432 sec a. tan a sec a.    By secz=l, and(1415).

•          cosa’

1433 COSeC a.      — cotrcoseca.    Similarly,

1434 sin-la)       ,      1           If sin"1«= y, « = sin y,

( .    I——---95. therefore

cos 1a)       (1 —a)     da         —

—- = cos y = v 1 — 23";

1436 tancla)    ___1            dy

cot             1+22        therefore dy — —---

1                      dx vl— a4

1438 sec-1 a )    ।      1

cosecrla) Fav(a—1)°   . Similarly for the rest.

EXAMPLES.

1440        (*)=()= }l=1        (1422)


	
1441 ■       J
	
1\ \ a" /
	
,= ^~n\ = -na-1 = - a".-         (1422)


	
1442 {(a+x?)* (b+a8)?} = 3 (a+13)2 2 (b+23)2+2 (b+23) 82? (a+23)8 . = 6x (a+23)2 (b+a3) (b+ax+22).     (1412, ‘15, ’22)


	
1443 l
	
e"—e=z\ \e"+e—#/
	
_ (e"+e-5) (e+e=) - (e*-e=)(e"-e=) _ 4

a            (e"+e-)2              (e*+e=)*

(1413, 1426)




1444 d, (log tanz)3 = 2logtana ——sec2 a =4 1og tan E. (1415, ‘24, ‘30).

	
	
——!!      •                  tana . sin 23


Some function.

1445

therefore therefore

1446

therefore therefore







differentiations are rendered easier by taking the logarithm of the For example,


1—a2 (1+22)8



therefore log y = 2 log (1 — x2) —2 log (1 + a2) ; 1 dy   1 — 2w    3 2a y da - 2 (1—22)   2 (1+22) ‘ dy _ -2 (2-2) _ -2 (2—2) da - 9 1-a (+ «3)% (1 - «2)* y = (sin a)® ; therefore log y = x log sin 2 ; — = log sin c+—Ecosc; (1415, ‘24, ‘28) y                  sin a Y, = (sin a)® (log sin a+a cot x). Otherwise, by (1420), yx = a (sin a)" 1 cos z + (sin a)E log sin a (1426) = (sin a)® (x cot x + log sin x) .

SUCCESSIVE DIFFERENTIATION.

1460 Leibnit^s Theorem.—If n be any integer, ^y^nx   Jnz-+nyn-1) x z,+ C (n, 2) J(-9) %*+ ...

^.+C{n,r}y (n—r) x %+ ... +y:nx*

Proof.—By Induction (233). Differentiate the two consecutive terms

C (n, r) y‘(»—%) «Z,z + c (n, 7 +1) Y6-*-1) x %(r+1) =, and four terms are obtained, the second and third of which are

C (n, r) Jn- r) x Zcr+n. + C (n, 7 +1) Jn-») x Z0+1) x { C (n, 1 ) + C (n, 7+1)} y(n-r)x 2(7+1) x — C (n + 1, 7 + 1) Y(A-1-7+1) a ^(r+l)x) by (102).

This is the general term of the series with n increased by unity. Similarly, by differentiating all the terms the whole series is reproduced with n increased by unity.

DIFFERENTIAL COEFFICIENTS OF THE nth ORDER.


	
1461

1462
	
(sin aa)n = an sin (ax—]nm).     By Induction

(cos aa), = a" COS (ax+1nm).      and (1428).


	
1463

1464 where, in
	
(e"),o = a"ed.                   (1426)

^axy\x = e" (a+d^i/, the expansion by the Binomial Theorem, d‘ y is to




be replaced by Yr.                                    (1460, ’63)

1465       (edr cos ba)n = rneax cos (ba+no), where        a = r cos p and b= r sin p.

	
PROOF.—By induction. Differentiating once more, we obtain rneax {a cos (IjxAnclC — b sin (ba+np) } = r"*led {cos p cos (bz+np) — sin $ sin (ba+np)} = "tle®F cos (ba+n+14).



Thus n is increased by one.

1466           (a”-1 log^)nx = n—1 - X, (1460), (283)

1467         (1—z) =-1)"2,n.          (1423) 1468 (tan-1 a)na = (— 1)"-1 | n — 1 sin" 6 sin ne, where                 6 = cot-1 a.

PROOF.—By induction. Differentiating again, we obtain (omitting the coefficient)

(n sin"-19 cos 9 sin n0+n cos n9 sin” 6) 9X

= n sin"-19 (sin n9 cos 9 + cos n9 sin 0) ( —sin20).

Since, by (1437), 9X = — (1+x)-1 = —sin2 9.

Therefore (tan-la)6-1= (—1)” n sin"1 9 sin (n+1) 9, n being increased by one.

1469 (—1) = (“I? n sin”+10 sin (n+1) 0. (1436,1468) X1 -I J / nx

	
	
1470 () = (- 1)" n sin"+1 0 cos (n+1) 0. 1-    O / nx





Proof.—By (1460), () =z (1) +(1) 1+a / nx 1+a2/nx    \ 1 -- a / (n—1) x

Then by (1469).

1471               Jacobi’s Formula. d-1 x (1- ab)"—1 = ( — 1)"-1 1.3... (2n-1) sin (n cos-1 a) + n.

Proof.—Let y— I — a2; therefore

(y"*3). = -(2n+1) (ey"—b)a-)- Also (y"*H). = {yyn~^nx-

Expand each of these values by (1460) and eliminate (y"-2)(n-2)a the derivative of lowest order. Call the result equation (1). Now assume (1471) true for the value n. Differentiate and substitute the result, and also (1471) on the right side of equation (1) to obtain a proof by induction.

1472 Theorem.—If y, z are functions of x, and n a positive integer,

ZYne — {y^)nx n (yz).-1,+C (n, 2)(y%2)0-2).... +(  1) y^nx*

Proof.—By induction. Differentiate for x, substituting for zxynx on the right its value by the formula itself.

PARTIAL DIFFERENTIATION.

1480 If u =f(x, y^ be a function of two independent vari

ables, any differentiation of u with respect to a requires that y should be considered constant in that operation, and vice versa.


Thus, d“ or u.



signifies that u is to be differentiated successively twice with respect to x, y being considered constant.

1481 The notation - 2 7 or U2 sy* signifies that u is to be differentiated successively twice for a, y being considered constant, and the result three times successively for y^ x being considered constant.

1482 The order of the differentiations does not affect the final result, or

Proof.—Let u —f (xy) ; then ux = f(e+h. 3)—LLkAl in limit. (1484)

ux = du, ^f^-Vh y+1)—f(, y + lQ—f(x + h, iQ+f(x, y) in limit.

" dy                        hk

Now, if uy had been first formed, and then uyx, the same result would have been obtained. The proof is easily extended. Let ux — v ; then                      u2xy = vxy = vyx = uy2x ; and so on.

THEORY OF OPERATIONS.

1483 Let the symbols H, Y, prefixed to a quantity, denote operations upon it of the same class, such as multiplication or differentiation. Then the law of the operation is said to be distributive, when

	
	
	
• ^-\-y} =(x)+d (y);







* See note to (1487).

2 M

that is, the operation may be performed upon an undivided quantity, or it may be distributed by being performed upon parts of the quantity separately with the same result.

1484 The law is said to be commutative when

Ha = da;

that is, the order of operation may be changed, H operating upon Ya producing the same result as Y operating upon a.

1485 Hma denotes the repetition of the operation H m times, and is equivalent to Hd ... x to m operations. This definition involves the index law,

Hngna = ©m±a — $n+ma,

which merely asserts, that to perform the operation n times in succession upon x, and afterwards m times in succession upon the result, is equivalent to performing it m~Cn times in succession upon x.

1486 The three laws of Distribution, Commutation, and the law of Indices apply to the operation of multiplication, and also to that of differentiation (1411, ’12). Therefore any algebraic transformation which proceeds at every step by one or more of these laws only, has a valid result when for the operation of multiplication that of differentiation is substituted.

1487 In making use of this principle, the symbol of dif-d

ferentiation employed is —, or simply dx prefixed to the quantity upon which the operation of differentiating with respect to x is to be performed. The repetition of the opera-

02     03 d5 tion is indicated by —, -, —, —, &c., prefixed to the

• dx2 dx6 dx2dff 1 function. An abbreviated notation is dx, d2x, d^, d2x8y, &c. Since dx X dx = da in the symbolic operation of multiplication, it will be requisite, in transferring the operation to differentiation, to change all such indices to suffixes when the abbreviated notation is being used.

NOTE.—The notation y^ y2„ U2z3y, dMy, &c. is an innovation. It has, however, the recommendations of definiteness, simplicity, and economy of time in writing, and of space in printing. The expression 973 requires at least fourteen distinct types, while its equivalent 1223, requires but seven. For such reasons I have introduced the shorter notation experimentally in these pages.                                                                    ......

All such abbreviated forms of differential coefficients as y' y"y"' ■.. or y y y..., though convenient in practice, are incomplete expressions, because the independent variable is not specified.

The operation d23y, and the derived function 12r3y, would be more accurately represented by (d?)3 and (u2)3, the index as usual indicating the repetition of the operation. But the former notation is simpler, and it has the advantage of separating more clearly the index of differentiation from the index of involution.

In the symbols y2 and 322, the figure 2 is an index in each case: in the first, it shows the degree of involution; in the second, the order of differentiation. The index is omitted when the degree or the order is unity, since we write y and yx.

The suffix takes precedence of the superfix. y? means the square of yx. da(y2) would be written (3/2), in this notation.

As a concise nomenclature for all fundamental operations is of great assistance in practice, the following is recommended: 4 or yx may be read “y for a," as an abbreviation of the phrase, “the differential coefficient of y for, or with respect to, 0." Similarly,                      or the shortened J                1                     1      ' dxdy dxldy*

forms y2x, uxy, 12r3y, may be read " y for two a," " u for xy,” 1 Ah for two x, three ‘ y,” and so forth.

The distinction in meaning between the two forms ynx and Yez is obvious. The first (in which n is numerical and always an integer) indicates n succes-. sive differentiations for a ; the second indicates two successive differentiations for the variables a and z.


d’y. or 42.0, may be read, for shortness,




The symbols



" or yx0, and

Cilo

"y for x zero,” "y for two x zero”; d223y $ (xy) can be read "d for two x three y of q (xy).”

Although the notation v, is already employed in a totally different sense in the Calculus of Finite Differences, my own experience is that the double signification of the symbol does not lead to any confusion: and this for the very reason that the two meanings are so entirely distinct. Whenever the operation of differentiation is introduced along with the subject of Finite Differences, the notation "y must of course alone be employed.

Thus, in differentiation, we have


	
1488
	
THE DISTRIBUTIVE LAW
	
d, (u+v) = du+dv.
	
(1411)


	
1489
	
THE COMMUTATIVE LAW
	
d, (dyU) = dy (d,u)
	

		
or
	
dvuu    — d.u.
	
(1482)


	
1490
	
THE INDEX LAW
	
ym 72         jm+n

(1,. (I 'll — di, U,
	

	
that is,
		
dmx dnx it — d^^,,^ a u.
	
(1485)




1491 Example.—

(d,— dv)2 = (d,— dy) (dx—dv) = dxdx—dxdy—d„d,+d„d, = d2—2d,+d2.

Here dxdy—dydx or dxy = dyx, by the commutative law.           (1489) d,d, = dix by the index law.                                       (1490)

Also {dix — 2dxy + d2y) u = d2xu—2dxyu+d2v u, by the distributive law.

Therefore, finally, (dx—d.)2 u = d2xu—2dxvu + d2yu.

Similarly for more complex transformations.

1492 Thus dx may be treated as quantitative, and operated upon as such by the laws of Algebra; dx being written d,M, and factors such as dxdy, in which the independent variables are different, being written dxy, &c.

EXPANSION OF EXPLICIT FUNCTIONS.

TAYLOR’S THEOREM.—EXPANSION OF f{x^-li).

1500

72

f(x+h) =f(e)+hf‘(e)+1.2f"(e)+ ... +nf"(x+en), where 0 is some quantity between zero and unity, and n is any integer.

Proof.—(i.) Assume f(+h) = A + BI+ C73+&c.

Differentiate both sides of this equation,—first for x, and again for h,—and equate coefficients in the two results.

1501  (ii.) Cox's Proof.— LEMMA.—If f(x) vanishes when x~a, and also when x = b, and if f (x) and f'(a) are continuous functions between the same limits ; then J"(x) vanishes for some value of x between a and b.

For f' (x) must change sign somewhere between the assigned limits (see proof of 1403), and, being continuous, it must vanish in passing from plus to minus.

1502 Now, the expression

fCa + x)-f (a)-xf' (a) -......- ~fn (a)

7

-itltatn)—zoo—rco)—Hrto}

vanishes when a = 0 and when x = h. Therefore the differential coefficient with respect to x vanishes for some value of x between 0 and h by the lemma. Let 6h be this value. Differentiate, and apply the lemma to the resulting expression, which vanishes when a = 0 and when x = 66h. Perform the same process n+1 times successively, writing 6h for 66h, &c., since 0 merely stands for some quantity less than unity. The result shews that

f"" (a+9)—7t1 p(«+^)-/w-vw---^rw} vanishes when x = 6h. Substituting 61 and equating to zero, the theorem is proved.

1503 The last term in (1500) is called the remainder after n terms. It may be obtained in either of the subjoined forms, the first being due to Lagrange,

7n                               7n

—f"(x+6h) or —(1-0)"-1f"(x+6h).

hn

1504 Since the coefficient .— diminishes at last without 7

limit as n increases (239, ii.), it follows that Taylor's series is convergent if fn (x) remains finite for all values of n.

1505 If in any expansion of f(x+h) in powers of h some index of h be negative, then f(x), f' (x), f" (x), &c. all become infinite.

1506 If the least fractional index of h lies between n and n+1; then f"*1(x) and all the following differential coefficients become infinite.

PROOF.—To obtain the value of fn(x\ differentiate the expansion n times successively for h, and put h = 0 in the result.

MACLAURIN’S THEOREM.

Put x = 0 in (1500), and write x for h; then, with the notation of (1406),

2                          A

1507 f^ =f(0)++af(0)+1.2 f"(0)+...+f"(B), where 0, as before, lies between 0 and 1.

Putting y =f(x), this may also be written

1509 ,_„dy I a2 d’y _ a8 d’y 2 1006 J 27"d,1.2 d “1.2.3 da" •

1509 Note.—If any function f (x) becomes infinite with a finite value of a, then f‘(x), f" (x), &c. all become infinite. Thus, if f(x) = sec-1 (1+x), fix) is infinite when a = 0 (1438). Therefore f"(0), f’"l^\ &c. are all infinite, and f (x) cannot be expanded by this theorem.

Bernoulli’s Series.—Put h = — x in (1500); thus,

2                         3

1510 /(0) =f(x)—f (x)+1.2f" (x)-12.3f""(x)+&c.


1511



If $ (y + k) = 0 and $ (y) — a ; then

002                003 k = —&3s—1.9 32—1.9.3 Js&c.

PROOF.—Let y = d 1(x) =f(x), and let y+k =f(x+h); therefore              a+h=p(y+k) = 0.

Therefore y+l = f(0) == f(=x)—af‘(=)+" f”(=)—&c., by (1510) ; which proves the theorem.

EXPANSION OF f(x+h, y + ^)-

Let f{xy) — u. Then, with the notation of (1405), 1512 f^+h, y-\-k) = u+(hu,+ku,)+—(lu,,+2hku,,+k‘u,,)

+ 19.3 (l‘uze—3lkuzwy—3lik‘u,tk‘uy)t&c.

1513 The general term is given by .— (hd,+kdy)" u,

N

where, in the expansion by the Binomial Theorem, each index of d, and du is changed into a suffix; and the coefficients dx, d2, &c. are joined to % as symbols of operation (1487); thus us is to be changed into "3.

Proof.—First expand f^x + h, y + k) as a function of (x + h) by (1500); thus, f(x + h,y + k) =f(x,y + k) + hfx(x,y + k) + 1, Uf2x (x, y + k} + &c.


Next, expand each term of this writing u for f\xy),




series as a function of (y + k).




Thus,




(,J+1) =

1f(x,y+k) =

^A.^,y+^ =




« +

hux +




liUy +

ll]iUXy +




1 73u,,




hk

2 r"




+ 1 ^U^ + 1 UU^j + . . .

+ 3 hl3ut„, +.........




1           1              1

9 lt’Uz, + 9 Fku^y +92 k^Uu.2x2y +



3 J («, y + 1) = 3 1Pua- + 3 ^ku3xy + ...

"  («, y+k) = 1 Tuze +   ..............................

The law by which the terms of the same dimension in h and k are formed, is seen on inspection. They lie in successive diagonals; and when cleared of fractions the numerical coefficients are those of the Binomial Theorem.

The theorem may be extended inductively to a function of three or more variables. Thus, if u — f(x, y, z), ~wq have 1514   f^^h^ y-\-k, 3+l) = u+(hu+ku,+lug)

+} (I‘u,„+R*u,,++l‘u,+2l:l1,+2Uhu.++2/:1„)+ ... , the general term being obtained as before from the expression ) (hd,+d,+ld,)" u.

1515 Cor.—If u=f(xyz) be a function of several independent variables, the term (hu+kcu,+luz) proves, in conjunction with (1410), that the total change in the value of u, caused by simultaneous small changes in x, y, z, is equal to the sum of the increments of u due to the increments of a, y, z taken separately and superposed in any order.

This is known as the principle of the superposition of small quantities.

1516 To expand f(x, y) or f(x,y,z, ...) in powers of a, y, &c., put x, y, z each equal to zero after differentiating in (1512) or (1514), and write a, y, ... instead of h, k, &c.

1517 Observe that any term in these series may be made the last by writing 2+0h for a, y+07 for y, &c., as in (1500).

* SYMBOLIC FORM OF TAYLOR’S THEOREM.

The expansion in (1500) is equivalent to the following

1520        f{^ = ef ().

PROOF.—By the Exponential Theorem (150), writing the indices of dr as suffixes (1487),

def(e) = (1 + 72^ + 17?^+...)» =f(=)+1f. (e)+17/ ()+..., by (1488).

Cor.— A f(a) =f(+1)-f(a) = (e‘d--1) f(a), therefore A?f(x) = (e"ds—1)2f(x), and generally A"f(a) = (e‘d-—1)"f(x), the index signifying that the operation is performed n times upon f(x).

1521 Similarly fipe-^-hy y-\-ty = ehdx+lcdyf(pe,y).

PROOF.—

hax+kdyj(«,3) _ {1 + lid, + J.^ +1(d,+ lidyp + % (lidx+IvdyP +...}f^,y) = f^hyFlc\ by (150) and (1512).

1522 And, generally, with any number of variables, f(x+1,3++1,z+l...) = et1d,t1A,t.f(r,y,z...).

Con.—As in (1520),

Sf(X,y,z...) = (e‘d,tld,*-—1) f(a,y,z...).

1523 if u =f(x,y} = $(r,0), where a=rcos@, y = rsin0; and if a’ = r cos (0+), y' = r sin (0 + o) ; then f{x'y') is expanded in powers of o by the formula

f(,y)=et"f(e,z).

PROOF.—By (1520), r being constant,

9 (r, 6+.) = e®9d, q (r, 6) = e®9d, f (a, y).

Now x and y are functions of the single variable 0; therefore u, = u^x^AUyy^ = U, (—r sin 0) +uy (r cos 0) = xuy—yux.

The operation d3 will be transformed by the same law (1492) ; therefore

de = xdy—yd,; therefore

f(«,9) = oU{xdy~ydx} f^F,y} = 1+(u,- yu,)+3.%(z?u,,- 2xyuxy + y2u2x) + &c.

1524 EXAMPLES. — The Binomial, Exponential, and Logarithmic series for (1+2)", a", and log (1+2), (125, 149, 155), are obtained immediately by Maclaurin’s Theorem (1507); as also the series for sin a and cos a (764), and tan-1 a (791). The mode of proceeding, which is the same in all cases, is shewn in the following example; the test of convergency (1504) being applied when practicable.

1525 tana = w + 1 a3 + 2 a” +17a + -62-a+&c.

3             315     2805

Obtained by Maclaurin’s theorem, as follows :—Let

f (x) = tan a = y ? Therefore yx = z and zx = 2yz ;

f‘ (x) = sec2 a = z 5   'll and 2 being used for shortness.

f” (x) = 2 sec2 a tan a = 2yz,

f (a) = 2 (zyx + yzx) = 2 (23+2y32), fl() = 2 (4y23+4y22+4y*z) = 8 (2yz2+ysz), f (x) = 8 (22*+8J22+3J32+2y*2) = 8 (223+11J323+2J42), f" () = 8 (12/23+22J23+...) = 2 72y?+..., fV"(x) = 272?+...&c.,

the terms omitted involving positive powers of y, which vanish when x is zero, and which therefore need not be computed if no term of the expansion higher than that containing a' is required.

Hence, by making a = 0, and therefore y = 0 and 2 = 1, we obtain f(0)=0; “(0) =1; r^=^\ r^ = ^i f\^ = ^-, r^^^', f“(0) =0; f‘(0)=272.

Thus the terms up to x7 may be written by substituting these values in (1507).

In a similar manner, may be obtained

1526  seca = 1+a2—a*+ _—. a —  ............. 2       24 . 720

Methods of expansion by Indeterminate Coefficients.

1527 Rule I.—Assume £ (x) = A+Bx+Cx+&c. Differ^ entiate both sides of the equation. Then expand f‘(x) by some known theorem, and equate coefficients in the two results to determine A, B, C, ^c.

1528   . sin “= +23+245+ 2.4.6 7 + &c’ Obtained by Rule I. Assume

sin-la = A + Ex + Cx^ + Da3 + Ex4 + Fx5 +.....................

Therefore, by (1434), (1-2)** = ................................

But, by Bin. Th. (12 8), (1-23)=* = 1+323+ 1.3 44+ 1.3.5 29+...............

Equate coefficients ; therefore E =1; C=0; D =    ; E = 0; F = one ;

A . 3               2.4.0 &c. By putting x = 0, we see that A=f(0) always. In this case A = sin-10 = 0.

In a similar manner, by Rule I., p sin x           a 3x 82 3a 9

1529 e"=1+“+[2 45-6................

1530 Rule II.—Assume the series, as before, with unknown coefficients. Differentiate successively until the function reappears. Then equate coefficients in the two equivalent series. 1531 Ex.—To expand sin x in powers of x.

Assume sine = ApExp C.2+D.+ ..............................

Differentiate twice, cos x = E + 2 Cx + 3D.3 + ^Ex^ + 5Fxi + .........

—sin c = 20+3.2D.+4.3E2+5.4F8+ ..................

Put &= 0 in the first two equations ; therefore A = 0, E = 1.

Equate coefficients in the first and third series.                 u -

	
2 N



Thus -2C=A, .. 0 =0;  -3.2D=B, .-.D^-^

-4.3E = C, ..E=0;  -5AF=D, .. F=-1 . &c.

1.2.3.4

Therefore sin a = a —     - + -----— — &c., as in (764).

1.2.3 1.2.3.4.5

1532 RULE III.—Differentiate the equation y = f (x) tzuice with respect to x, and combine the results so as to form an equation in y, yx, and y2x. Next assume y=A— Bx + Ox2 — &c. Differentiate twice, and substitute the three values of y, Y,, Y2x so obtained in the former equation. Lastly, equate coefficients in the result to determine in succession A, B, C, ^c.

1533 Ex.—To expand sin m3 and cos m3 in ascending powers of sin 0 or cos 0.

These series are given in (775-779). They may be obtained by Rule III. as follows :—

Put a = sin 0 and y = sin m0 = sin (m sin la).

(n—1) (n + 2)

Now, when a =0, y = 0 ; therefore A = 0, by (iii.). And when a = 0, yx = m, by (i.) ; and therefore Aj == m, by differentiating (iii.). The relation (iv.) furnishes the remaining coefficients by making n equal to 0, 1, 2, 3, &c. in succession.

Cos mO is obtained in a similar way.

1534 RULE IV.—Form the equation in y, yx, and y2x, as in Bule III. Take the nth derivative of this equation by applying Leibnitz’s formula (1460) to the terms, and an equation in y(n+2)x, y(n+1)x, and ynx is obtained. Put x =0 in this; and employ the resulting formula to calculate in succession Y3x0, J4xo, ^c‘ in Maclaurin’’ s expansion (1507).

1535 Ex. easin ‘, = 1+2+   02 — a (a +1) 03

1.2.6


a2(a2+22)

1.2.3.4




a* +




a (a2+1) (a2+32)

1.2.3.4.5




ad + &c.



Obtained by Rule IV. Writing y for the function, the relation found is (1—22) J2— xyx—a?y = 0.

Differentiating n times, by (1460), we get

(1—2) y{n^x— (2n+1) &Jo+n)a — (a2+n2) J„ = 0.

Therefore Y(n+2)20 = (a2+n2) ynx0, a formula which produces the coeffi-cients in Maclaurin’s expansion in succession when yx0 and yixQ have been calculated.

Hence, in the values of yx} 92,7 &c., at (1416), x has to be put = 0.

Now, when «=0, z=a; therefore Y2, 9227 &c. become f(af p"‘(a), &c.; and 2,0, 2200, 23,70, &c. become 01, a^ a^ &c. Hence y^ = $ (a) ai, y^ = $" (a) a? + $‘ (a) a,, y^ = $"(a) a + 3d"(a) aa, + ^'(a) a3, &c.

1537 Example.—To expand log (a+ba+ca?+da3+&c.).

1538 Ex. 2.—To expand (a+a,a+a,x3+ ...+anxny in powers of c.

Arbogast’s method may be employed; otherwise, we may proceed as follows. Assume (a,+a+aa2+... a„a")'= A+A,2+A,a2+ ...............

Differentiate for a ; divide the equation by the result; clear of fractions, and equate coefficients of like powers of a.

BERNOULLI’S NUMBERS.

1539 -=1-+B,-B,“+B. -&c., where B2, B4, &c. are known as Bernoulli’s numbers. Their values, as far as B18, are

6’ 430'  6“4 2’ 8530' 10—66'

691  7 P _3617 > _ 43867 125 2730'   14   6’   16   510'   18    798 ’

They are found in succession from the formula 1540 nBn^-Y C (n, 2) Bn_^ C (n, 3) Bn_5+„.

...+C (n,2) B,—In+1 = 0, the odd numbers Bs, B5, &c. being all zero.


T Then, by (1508),




PROOF.—Let y = -e



22 g3 g4 y = 3o*3«os+3240 2 + y^xo 3 + Vano 4 + &c.

Here J2z= (—1)"+1B,,. Now J =1 and y^^—2, by (1587). Also ye* =y+a. Therefore, by (1460), differentiating n times, e {J„+nJ»-1)+C (n, 2) Jn-2)=+ ... +nyx+y} = ynx. Therefore n n-1).20 + C (n, 2) J(n-2)=0+ ... +.0+30 = 0. Substitute En-^ Bn-2, &c., and we get the formula required.

Ds, E^ B,, &c. will all be found to vanish. It may be proved, a priori, that this will be the case : for

a . a _ a e*+1 e-I 122 e'-I

Therefore the series (1539) wanting its second termsis the expansion of the expression on the right. But that expression is an even function of x (1401) ; changing the sign of x does not alter its value. Therefore the series in question contains no odd powers of a after the first.

1542 The connexion between Bernoulli’s numbers and the sums of the powers of the natural numbers in (276) is seen by expanding (1 — e)-1 in powers of e", and each term afterwards by the Exponential Theorem (150).

1543

-= 4- B,(2‘—1) +B,(2‘—1) 2-B,(2°—1).2 +&c.

1544

5=23 B,(22—1) 2 — B,(2‘—1) 4+B,(2‘—1) "—&c. L


PROOF.




2

e*+1




e“ — 1




2 and e—-1 = 1—2 -, and by (1539).

2—1    e“+1 x e”+1‘     •   •



1       02n—1,2n

1545 .................. 12.72n Por

q e= — 1

PROOF.—In the expansion of 9 e—1 (1540) substitute 2i9 for x, and it becomes the expansion of 0 cot 0 (770). Obtain a second expansion by differentiating the logarithm of equation (815, sin 6 in factors). Expand each term of the result by the Binomial Theorem, and equate coefficients of like powers of 6 in the two expansions.

STIRLING’S THEOREM.

1546 $ (x+1)—$ (x) = hd‘ (x)+A,h {$ (x+1)—$‘ (a)} +A,h2 {4(x+h)—#"(a)} +8c., where A, = ( — 1)" B2 — 2n and A2n+1 = 0.

PROOF.—A1, A2, A3, &c. are determined by expanding each function of xph by (1500), and then equating coefficients of like powers of x. Thus 2-4=0; *-d-A=0; 1-d-d-4=0; de.

To obtain the general relation between the coefficients: put d (x) = e", since A1} A2, &c. are independent of the form of p. Equation (1546) then produces        — " = 1—Afi—A2U—ASU— &c.; and, by (1539), we see that, for values of n greater than zero, A2n-1 = 0 and A2n = (-1)"B,—| 2n.

BOOLE’S THEOREM.

1547 $ (a+1)- $ (a) = Afi {$ (a+1)+# (a)} +A/21$ (x+1) +$ (a)} +&c.

PROOF.—A, A2, As, &c. are found by the same method as that employed in Stirling’s Theorem.

For the general relation between the coefficients, as before, make d (x) = e“, and equation (1547) then produces

ph — 1

	
	
	
5—    = A,1+A,12+A,13+&c. ;







€ i L

and, by comparing this with (1544), we see that

A,, = 0 and A9,E1 = (-1)-13,, 2—1

EXPANSION OF IMPLICIT FUNCTIONS.

1550 Definition.—An equation f {x, y) = 0 constitutes y an implicit function of x. If y be obtained in terms of a by solving the equation, y becomes an explicit function of x.

1551 LEMMA. — If y be a function of two independent variables x and z,

Ax{F{y)y^ = ^{FO}y^-

Proof.—By performing the differentiations, we obtain

F(J)yy+F(y)y and F\y) yzyx+F(y) y^, which are evidently equal, by (1482).

LAGRANGE’S THEOREM.

1552 Given y = z+ad (y), the expansion of u —f^y} in powers of x is

f{y> = /0) +1$ (0/ (»)+•••+^ 4 [{()} "f (a)] +

Proof.—Expand u as a function of a, by (1507) ; thus, with the notation 22 gn of (1406),      " = "o*e"ro* 2"2of - + 7 "nro + &c.

Here ", is evidently f^z).

Differentiating the equation y = z+ad (y) for a and z in turn, we have

J. = # {y}+«0 {y} y- and y: = 1+ao‘ (J) y^

Therefore J, = * (y) Y2; and, since ux — f'(y) yx and u, =f(y) Y. therefore also                   ", = $ (y) uz....................................(i.)

The following equation may now be proved by induction, equation (i.) being its form when n = 1.

Assume that          unx = d(n-1)= L{7 (y)}"u,] .....   (ii.)

Therefore             "n*n)s = do-n-d, [{^ (J)}"u] (1482)

	
	
	
	
- d^^cl^^yu^ (1551) = dnz[{<j>Cy)V^ by (i.)









Thus, n becomes n+1. But equation (ii.) is true when n = 1; for then it is equation (i.); therefore it is universally true.

Now, since in equations (i.) and (ii.) the differentiations on the right are all effected with respect to z, a may be made zero before differentiating instead of after. But, when a = 0, uz—f'(^,') and ^ (yj^ = ^ ^f therefore equations (i.) and (ii.) give

"co = p ^f'^} ;    1,20 = d(n-1= [{p (z) }"f‘(z)].

1553 Ex. 1.—Given y- ay Fb = 0 : to expand log y in powers of —.

O

Here y — — + —; therefore, in Lagrange’s formula, O O =1; z=b; f(y) =logy; 4(y) =y; and J =z+=y.

Therefore          U = log z ;   Y*=2‘1=2; Z = d„_M. (23n 1) = (3^-1) (31—2) ... (21+1) ^.

Therefore, substituting the values of a and z, (1552) becomes .         662 1    . (31—1) (32—2) ... (27+1) Fn 1 , log y = log- + —— + ... +  ---—9 7— “, — + a a a                       12 ... n             a a 1554 Ex. 2.—Given the same equation: to expand yn in powers of —. C f^y} is now yn, and, proceeding as in the last example, we find n bn ( , 62 1 , n(n + 5) 64 1 , n(n+7) (n+8) ba 1 J an I «2 a "   1.2 a4 a2T 1.2.3 al al n (n+9) (n+10) (n+11) 68 1 ,

	
1.2.3.4        as a C.


If n = 1, J =





b U , 62 1 964 1  49 66 1ELU8 1

— 1 + —--F 3 — — +12 — — 3——&c.

C \ a a a a a a a a

CAYLEY'S SERIES FOR —.

$(z)

1

 See note to (1487).

2

 The name is slightly misleading, as it seems to imply that f' (x) is in some sense a coefficient of f (x).


1555

ac =4 - 1 [=46+ -+Azs- ^ 1 1+ ’

where A = : 1.

$(0)

PROOF. — Differentiate Lagrange’s expansion (1552) for z, noting that du = ---1— Replace a by 1—7. Put f' (y) = - ; and therefore d2 ^-^0j)* P(y) " "   9(y)' f (2) =4 (2‘ since/is an arbitrary function. Then make J=0.

LAPLACE’S THEOREM.

1556 To expand f(y) in powers of a when y = F{z+a(y)}.

RULE.—Proceed as in Lagrange’s Theorem, merely sup-stituting F (z) for z in the formula.

1557 Ex. 3.—To expand C in powers of x when y = log L+x Any).

Here f(y) =e; F(z) = logz; •() = siny;

In the value of U,20 (1552), 4 (z) becomes p {F (z) } = sin log z ; f (z) becomes f {FL)} = eos* = 2; therefore f (z) = 1.

Thus the expansion becomes

xn e‘ — 2+2 sin logz+ ... + — C(-1) z (sin log 2)".

1558 Ex. 4.—Given sin y = a sin (y + a) : to expand y in powers of x.

Here           y = sin-1 (x sin y + a), with z = 0. f(y)=y, F (2) = sin-1 z; (j>{y) — An{yFa). $ (z) in (1552) becomes d {F(z)} = sin (sin-1 zF a). f() becomes f {F D} = F D = sin-1 z •, therefore F' (2) = (1-22)-3.

Thus             y = x sin (sin-1 z + a) (1 — 22) 2 +4a‘d, {sin2 (sin-12+a)(1-2)-}} +}r*d, {sin® (sin-12+a)(1-2)-*} + with z put =0 after differentiating. The result is, as in (796), y = x sin a+3x2 sin 2a+3a3 sin Za+&c.

BURMANN’S THEOREM.

1559 To expand one function f(y) in powers of another function 1 (yf

RULE.—Put x = 1 (y) in Lagrange’s expansion, and therefore •() = (y-z)+4 (y); therefore

1560 f(o) =f)+v() {7“®)},.+..


{y(y)}n d"1




n—1




y—%




y =z



Here y = z signifies that after differentiating 2 is to be substituted for y.

1561 Cor. 1.—Since x = ^(y), y = ^ 1(e); therefore (1560) becomes, by writing x for 1(y),

,3=%

But since the variable y is changed into z after differentiating, it is immaterial what letter is written for y in the second factor of the general term.

1562 Cor. 2.—If f(y) be simply y, the equation becomes _     । /y—z\ . । a” dn-1 ( /y-_ \n


J(y) ,u=z ""* n dyn 1




y=-z



1563 Cor. 3.—If z= 0, so that y = ad (y), we obtain the expansion of an inverse function,

_    / y \   । an dn~Y (/9\n)   ,


,y=0




n dyn 1




,3=0




1564 Ex. 5.—The series (1528) for sin la may be obtained by this formula; thus,

Let sinla = y, therefore x = sin y = 1 (y), in (1563) ; therefore




sin 1 x = x




,2




,2




xs




,3




1.2sin2 y 7 yo 1.2.3sin3 y 7 2J0



1565 Ex. 6.—If y = —-—"--— = 1—all——, then, by Lagrange’s

L(L — X j     3

theorem (1552), since y = 8+3 we find


n+2




n | n+2r—1




n+2r



Put x = 2 vt, thus


1566 (




1—(1—4t)

2




n|n+2r—1



Change the sign of n, thus


1567 (




1+(1—4t) 2



)"= 1-nt+...(-1)""—-1

/                    7 ln—2r

This last series, continued to 3 +1 or 77 - terms, according as n is even or odd, is equal to the sum of the two series, as appears by the Binomial theorem.

Also, by Lagrange’s Theorem,

1568 1089 =08 2 +(2/f*,7(2) + ..................... or, by putting x = 2vt,

1569     1ogl-,]-40 =+.+2 1+........................

1570 Ex. 7.—Given xy = ^gy ; to expand y in powers of x.

The equation can be adapted as follows:

y = e", therefore xy = xUy.

Put xy = y', therefore y' = xe", from which, by putting z = 0 in (1552), y may be expanded, and therefore y.

Ex. 8,—To expand eay in powers of yeb.


Here

1571




x = yeby, eay =



0 (y) = J 72 = e~by, if we take z = 0. Therefore yeby

1 + ayeby + a (a—2b) 19 + a (a — 36)2 12.3 + ...............

ABEL’S THEOREM.

1572 If $(x) be a function developable in powers of e“; then 4 (w+a) = $ (a)+ad(=+b)+@(4-2b) 4” (+26)+...

1573 CoR.—If $ (a) = a", Abel’s formula gives

(a+a)" = ^-yna^-yby^-yC^n^^a-^a—2b) (x+26)"—2+ ...

..................  (ji^a^a — rb)"—(a+rb)n—r+ &c.

INDETERMINATE FORMS.

1580 Forms 0, 92.   Rule.—If • (x) be a fraction Tubicb 00         I (x) takes either of these forms when x = a: then $ (a) = • (a) or a» (a)                    .                    . • (a) ^(a).

, the first determinate fraction obtained by differentiating In (a)

the numerator and denominator simultaneously and substituting a for x in the result.

1581 But at any stage of the process the fraction may be reduced to its simplest form before the next differentiation. See example (1589).

PROOF.—(i.) By Taylor’s theorem (1500), since $ (a) = 0 = v (a), p (a+h) _ Q (a) + h‘ (aFOE)   f (a+6h)   f (a) J(a+h)   V («)+h‘(a+6h)   J(a+6h)   ip'(a)’ when h vanishes.

(ii.) If 4 (a) = l() =c,   9(a) = - - -1,

	
	
• H • (a) P («) which is of the first form, and therefore





_ FfF) . $‘(a)   4143 _ {d (a)}2 V‘(a) Therefore $ (a) = $‘ (a)

{(a)}2 • {^a)d (    )   {^PW^ ^faf          l(a) U(u)

1582 Vanishing fractions in Algebra are of the indeterminate form just considered, and may be evaluated by the rule, or by rejecting the vanishing factor common to the numerator and denominator.

form —

e

1584 Forms 0°, 0°, 1”. RULE.—If {(x)}‘“) takes any of these forms when x = a, find the limit of the logarithm of the expression. For the logarithm = 1(a) log p(a), which, in each case, is of the form 0 X 00 .

1585 Form 0 — c. RULE.—If $(x)— 1(F) takes this form

e-lla) 0


and if the value of



when x—a, we have eb(a)Ya) — —— = — ‘                             e-$la) 0 this expression be found to be c, by (1580), the required value will be log c.

1586 Otherwise : ^ (a) — ^ (a) = $ (a) 1- La). , which is of C $ (a)) the form 0 X 0 (1583).

1587 Ex. 1.—With « = 0, J = .21 = 8 = 1 (1580) = 1.

Also, with z-= 0, _ e-1 — xe* _ 0 _ e- e"- ze= _  —a? _ 0 _   1 _ _ 1 3*0 “ (e”-1)2 o 2 (e”—l) e” ~ 2(e-1)  o- 2? “ 2' 1588 Ex. 2.—With x = 1; , z . log a 0   cos? (Tx) -   1 cot (T2) log a = =—- = — =  ----—- (1580) = —. tan {ttx) 0       72                T 1589 Ex. 3.—With x = 0 ; qge (log < = (log.)" =0 = iOog^rj =___In.—= 0, x~m 0    —mx m   (—m)nx m by (1581), differentiating n times and reducing the fraction to its simplest form after each differentiation.

1590 Ex. 4.—With x = 0; y = (1+az)= = 1”.

Indeterminate forms involving two variables.

1592 RULE.—First: If the vaMes x=a, y= b make the fraction • (a, 9) = 0; the true value is = Is, if 4, and 1, both . ‘ (a, y) 0                               Y. vanish.

1593 Secondly: if d. : 1. = pu : Y. = k, the true valise of the fraction is k.

Proof.—(i.) By (1703) • (x, 3/) = $x+ $v J., and y being an arbitrary l^,y) Yx YvY* function of a,—that is, independent of a,—the value of the fraction is indeterminate unless p, and Iy both vanish.

(ii.) If we substitute dz = klx and p, = kiy, the fraction becomes = k.

JACOBIANS.

1600 Let u, v, w be n functions of n variables a, y, z (n =3). The following determinant notation is adopted:—


Ux Uy Uz v, v, ", W, w, wz




d (uvw)

d (xyz) ’




M A M

Cu Cv C w

yu yv Yw

Su Sv Sw




d (xyz') d {uvw) '



The first determinant is called the Jacobian of u, v, w with respect to a, y, z, and is also denoted by J (uvw), or simply by J.


1601 THEOREM.—




d {uvw) d {ay J) d {ayz) d (uvw)



PROOF.—If the product of the two determinants be formed by the rule in (570), first changing the columns into rows in the second determinant (559), the first column of the resulting determinant will be

UyTu + uyyu +u,Zu = Uu ) and the whole u,2, +uyyv +u,2, = u, > , determinant ", a. + u, yw + uzzw= uw) will be


Uu Vu Wu U, v, w, u. vw W.




10 0 0 10 0 0 1



1602 If u, v, w are n functions of n variables a, 3, y (n=3), and a, 3, y, functions of a, y, z;

d(uvw) X d (ay) — d (uvw)

d (ay) d {ayz) d {ayz)


PROOF.—Form the product of the two determinants, changing columns into rows in the second as in (1601). The firs determinant will be

ua,+u,,+u,Yx = u,) and the whole de-ua,+u,B,+u,Yy = uy - ,     terminant will

u,a,+u,6,+u,Y± = uz)      be

since rows and columns may be transposed (559).

1603 Cor.—If a, 3, y are only given as implicit functions of x, y, z, by the equations $=0, X = 0, 1=0, involving the six variables; then

d(xt) x d(asy) _ ( 1)3 d (pxV) . d (a/3y) d {xyz)d (ayz)

PROOF.—By (1737), $.a,+$,3a+P,Yz = — $z, where Px is the partial derivative of d. Thus ux, vx, wx, in the determinant, are now replaced by — ,, —X«, —V; so with y and z ; and by changing the sign of each element, the factor (—1)8 is introduced (562).




column of the resulting




‘x




l, u, u,




Vx

Vy v.




Wx

Wy wz




_ d (uvw) d (xyz) ‘



1604 If u, v, w, n functions of n variables a, y, z (n =3), be transformed into functions of 5, n, Z by the linear substitutions


& = as+a,n—ag y = 6,8+b,n++b,% z = c$+c, +cg




then




d(uvw)  nd (uvw) d (En%) d (ayz) ‘




or        J' = MJ,



where M is the determinant (a,b2C3) called the modulus of transformation (573).


PROOF.— J = ux uy u.




"x Vy "z

W, Wy w.




a, 61 C1

A, b2 C2 a, b, C3




"g U, Ug " ", ", w. w. w.

s V 5



Form the product MJ by the rule in (570). The first element of the resulting determinant is uxa1 + uyb1I-uzcl = U,2;+",Y+U,%; = us Similarly for each element. Then transpose rows and columns, and the determinant J' is obtained.

1605 When the modulus is unity, the transformation is said to be unimodular.

1606 If, in (1600), (uvw) = 0, where p is some function; then J (uvw) = 0; and conversely.

PROOF.—Differentiate p for a, y, and z separately, thus

$uu,+$.V,+$wW, — 0 ;

similarly y and z ; and the eliminant of the three equations is J (wow) = 0.

1607 If u = 0, v=0, w — 0 be a number of homogeneous equations of dimensions m, n, 2 in the same number of variables x, y, z; then J (uvw) vanishes, and if the dimensions are equal Ja, Jy, Jz also vanish.

Proof.—By(1624), xux +yuy +zus = mu)

2vx FyVy +zvz = nv - ; :.Ja = Amu+Bnv+Cpw. aw, + ywy + zwz = pw )

By (582), Ax, Dv Ct being the minors of the first column of J. Therefore, if u, v, w vanish, J also vanishes.

Again, differentiating the last equation, J+aJ, = Amu,+Bn,+ CTpwx, Therefore, if m = n = p, JA^'JX = m (A,u,+B,+ C,) = mJ.

Therefore Jx vanishes when J does.

1608 If 1=0, v=0, w=0 are three homogeneous equations of the second degree in x, y, z, their eliminant will be the determinant of the sixth order formed by taking the eliminant of the six equations u, v, w, J, Jv, J2.

PROOF.—J is of the third degree, and therefore Jx, Jy, J, are of the second degree, and they vanish because u, v, w vanish, by (1607). Hence u, v, w, Jx, Jy, Js form six equations of the form (a, y, z^ = 0.

1609 If n variables a, y, z (n =3) are connected with n other variables E, n, L, by as many equations "=0, v=0, w=0 ;

41             da dy dz_d (uvw) . d (uvw)

de dy d^ d (§yU) ' d (^y^) •

PROOF.—By (562) we have


	
dx dy dz di, dr/ dX
	
U,
	
Uy
	
u.
		
", as
	
24,3,
	
u,Zg
		
ug
	
",
	
"g


	
v.
	
v.
	
v.
	
—
	
v, Te
	
v,y.
	
v, zg
	
---
			
%


		
w.
	
Wy
	
w.
		
w,Ee
	
WTJV
	
w,z
		
wg
	
w.
	
"g




QUANTICS.

1620 DEFINITION.—A Quantic is a homogeneous function of any number of variables : if of two, three variables, &c., it is called a binary, ternary quantic, &c. The following will illustrate the notation in use. The binary quantic

ax^ + 3 bay + 3 oxy2 + dy3

is denoted by (a, b, c, d^x, y)3 when the numerical coefficients are those in the expansion of (x+y)8. When the numerical coefficients are all unity, the same quantic is written (a, b, c, d^x, y)3. When the coefficients are not mentioned, the notation (x, y)3 is employed.

EHLER’S THEOREM OE QUANTICS.

If u =f(x, y) be a binary quantic of the nth degree, then 1621             Xu+yu, = nu.

1622      a‘u,,+2xyu,+y‘u,y = n (n—1) u.

1623    (ad,+yd.)" u = n (n— 1) ... (n—r+1) u.     (1492)

PROOF.—In (1512) put h = ax, k = ay ; then, because the function is homogeneous, the equation becomes

( 1+ a)n u = u+ a (xu, + yUy) + la2 (x’uz, + 2yu,y + y^Q +............ Expand (1 + a)", and equate coefficients of powers of a.

The theorem may be extended to any quantic, the quantities on the right remaining unaltered. Thus, in a ternary quantic u of the nth degree,

1624           au,+yu,Lzu, = nu; and generally

1625 (ad,+yd,+zd,)” u = n (n—1) ... (n— 7+1) u.

DEFINITIONS.

1626 The Eliminant of n quantics in n variables is the function of the coefficients obtained by putting all the quantics equal to zero and eliminating the variables (583, 586).

1627 The Discriminant of a quantic is the eliminant of its first derivatives with respect to each of the variables (Ex. 1631).

1628 An Invariant is a function of the coefficients of an equation whose value is not altered by linear transformation of the equation, excepting that the function is multiplied by the modulus of transformation (Ex. 1632).

1629 A Covariant is a quantic derived from another quantic, and such that, when both are subjected to the same linear transformation, the resulting quantics are connected by the same process of derivation (Ex. 1634).

1630 A Hessian is the Jacobian of the first derivatives of a function.

Thus, the Hessian of a ternary quantic u, whose first derivatives are U,, uy, uz, is

,. U2x Uay Uxz

Uzx Uzy "2z

1631 Ex.—Take the ’binary cubic u = axs + Sb^y + 3cxy2 + dy3. Its first derivatives are

ux = Zax2 + 6bxy + 3cy2 , uy = 3b22 + 3cxij + 3dy2.


3a 6b 3c 0 0 3a 6b 3c

3b 6c 3d 0 0 3b 6c 3d



Therefore (1627) the discriminant of u is the annexed determinant, by (587).

1632 The determinant is also an invariant of u, by (1638) ; that is, if u be transformed into v by putting a = al+3n and y = a'4+In; and, if a corresponding determinant be formed with the coefficients of v, the new determinant will be equal to the original one multiplied by (a‘—a‘)3.

1633 Again, U2, = 6ax + 6by, U2, = 6cx + 6dy, u,y = Gbx + 6cy.

Therefore, by (1630), the Hessian of u is

uu,— u2, = (az + by) (ex + dy) — (bx + cy)2

= (ac—UQ x^+^ad—bc) xy + (bd—c) y^.

1634 And this is also a covariant; for, if u be transformed into v, as before, then the result of transforming the Hessian by the same equations will be found to be equal to V2=V2y—v2,. See (1652).

1635 If a quantic, u =f(x,y,z ...), involving n variables can be expressed as a function of the second degree in X1, X,... X,-1, where the latter are linear functions of the variables, the discriminant vanishes.

Proof.—Let     u = 9X? + 1X,X, + x X,X, + &c.,

where                  X1 = qa + b^y + c^ + &c.

The derivatives u„ uy, &c. must contain one of the factors X1X2 ... X,-1 in every term, and therefore must have, for common roots, the roots of the simultaneous equations X1 = 0, X, — 0, ... X,-1 = 0; n— 1 equations being required to determine the ratios of the n variables. Therefore the discriminant of u, which (1627) is the eliminant of the equations ux = Q, uy = 0, &c., vanishes, by (588).

1636 Cor. 1.—If a binary quantic contains a square factor, the discriminant vanishes ; and conversely.

Thus, in Example (1631), if u has a factor of the form (Ax+By)?, the determinant there written vanishes.

1637 Cor. 2.—If any quadric is resolvable into two factors, the discriminant vanishes.

An independent proof is as follows :—

Let u = XY be the quadric, where

X = (ax + by + cz+ ...), Y = (a'x + b'y + cz + ...).

The derivatives Ug, uy, uz are each of the form pX+qY, and therefore have for common roots the roots of the simultaneous equations X =0, Y = 0. Therefore the eliminant of u, — 0, uy = 0, &c. vanishes (1627).

1638 The discriminant of a binary quantic is an invariant.

Proof.—A square factor remains a square factor after linear transformation. Hence, by (1636), if the discriminant vanishes, the discriminant of the transformed equation vanishes, and must therefore contain the former discriminant as a factor (see 1628). Thus the determinant in (1631) is an invariant of the quantic u.

The discriminant of the ternary quadric

1639 u = ax?+by?+cz?+2fyz+2g2+2hay

2 p

is the eliminant of the equations


1640

1641




2u, = ax+hy+gz = 0 Zu, = ha+by+fz — o

zu, = gx-^-fy-Ycz = 0




that is, the determinant



= abc-\-2fgh — af — bg2 — ch2 = A.

1642 The following notation will frequently be employed.

The determinant will be denoted by △, and its minors by A, B, C, F, G, H. Their values are readily found by differentiating A with respect to a, b, c,f, g, h; thus,

A = be —f? = A,, B = ea—g2 = A,,  C = ab—12 = A,,

F =gb~af= L^fi G = hf—bg = ^^g, H=fg—ch = i^h.

1643 The reciprocal determinant is equal to A2 or


	
A H G
		
a h g
	
2


	
H B F
	
-
	
h b f
	
By (575)


	
G F C
		
g f e
	



1644 The discriminant of the quaternary quadric

u = aFF^y^F^ F^^A-^fy^A-^g^A-^bxy — 2paw — 2qyw + 2rzw

is the eliminant of the equations

1645 zu, = ax—h y +gz+pw = 0


that is, the determinant




a h g p h b f q g f c r p q r d



zu, = h^-^-byA-fz +qw = 0

Ju, = gev+fy +cz +rw = 0

Zu, = p^+qy+rz A-dw= 0

The determinant will be denoted by A’, and, by decomposing it by (568), we have

1646 A’ = d.A — Ap2—Bq2— Cr2~2Fqr—2Grp—2Hpq.

1647 A’ = 1 (pA;+{4,+rA)+d.A.

1648 T BEOREM.—If $ (xy) be a quantic of an even degree, $(d,, —d^^^.y)

is an invariant of the quantic.

PROOF.—Let the linear substitutions (1628) be

x = ak+by, y = a4+Un ..........................(i.) Solve for E and n. Find 5,, E,, 7727 n, and substitute in the two equations

	
d, -- d: Sy + d, n y ;         d, de &, + dy ng-



The result is

dy = {acQ + b ( — d^} - M; — dx = {a'd^ + U (-d)}— M.......(ii.), where M = ab' — a'b, the modulus of transformation. Equations (i.) and (ii.) are parallel, and show that the operations dy and —dx can be transformed in the same way as the quantities a and y; that is, if © (x, y) becomes 1 (4, n), then 4 (dy, — d,) becomes 1 (d, , — d^) -~ Mn, where n is the degree of the quantic p. But $ (dy, —d^ $ (x, y') is a function of the coefficients only of the quantic 0, since the order of differentiation of each term is the same as the degree of the term ; therefore the function is an invariant, by definition (1628).

1649 Example.—Let $ (x, y) = ax4+bx3y+ exys+fy4. The quantic must first be completed; thus, $ (xy) = ax4 + bx3y + cx3iff + exy3 +fy4, (c = 0) ; then 4 (d„,   d,) P (x, y) - (ads,   bd^yx + cd2y2   edyz+fd4) I (2, y)

= a.24f— b.6e+c.4c— e.Qb +f.21a = 4 (T2af— 3be + c2). Therefore 12a/—3be+ c2 is an invariant of 4, and = (12AF- 3BIj + 03) +M*, where A, B, C, E, F are the coefficients of any equation obtained from 4 by a linear transformation.

But if the degree of the quantic be odd, these results vanish identically.

1650 Similarly, if $ (x, y), 1 (x, y} are two quantics of the same degree, the functions

$(d,, — d„) 4 (x,y) and 1(d„—d„) $ (a,y) are both invariants.

1651 Ex.—If $ = ax2A-2bxy + cy2 and 1 = ax2 + 2b'xy Fey2; then

(ad2y—2bdxy + cd^ (a'x2 + 2b'xy + cy2) = ac' + ca' — 2bb, an invariant.

1652 A Hessian is a covariant of the original quantic.

PROOF.—Let a ternary quantic u be transformed by the linear substitu-tions in (1604) ; so that u = d (a, y, z) = 1 (4, 7, Z). The Hessians of the two functions are d (1,1,1,) and d(1e","e) (1630). Now

d (Jz)          d (51-)

d (""„") =nd(" ", UO =M d QtrUyuQ = N72 d (uxUyuf) d(^)          d (xyz)          d (4114)          d ^xyz)

The second transformation is seen at once from the form of the determinant by merely transposing rows and columns; the first and third are by theorem (1604). Therefore, by definition (1629), the Hessian of u is a covariant.

1653 Cogredients.—Variables are cogredient when they are subjected to the same linear transformation; thus, a, y are

cogredient with a’, y' when


a’ = as‘—bn‘ y‘= c&’+dn’



a=af+ln) and y = c^-\-dy)

1654 Emanents.—If in any quantic u = d (x, y), we change a into 2+px‘, and y into y-\-py', where a’, y' are cogredient with a, y; then, by (1512),

$(x+pa‘, y+py)

= u+p ^'dx+y'dy) u+1p2 (a‘d,+y‘d,)u+&c.,

and the coefficients of p, p2, p3, ... are called the first, second, third, ... emanents of u.

1655 The emanents, of the typical form [x'd^y'd^u, are all covariants of the quantic u.

PROOF.—If, in $ (x, y), we first make the substitutions which lead to the emanent, and afterwards make the cogredient substitutions, we change a into x + px, and this into as+bn+p(al+bn).

And if the order of these operations be reversed, we change a into as+bn, and this into a (£ +p£)+ b (p+pr)').

The two results are identical, and it follows that, if p (x, y) be transformed by the same operations in reversed order, the coefficients of the powers of p in the two expansions will be equal, since p is indeterminate. Therefore, by the definition (1629), each emanent is a covariant.

1656 For definitions of contragredients and contravariants, see (1813-4).

For other theorems on invariants, see (1794), and the Article on Invariants in Section XII.

IMPLICIT FUNCTIONS.

IMPLICIT FUNCTIONS OF ONE INDEPENDENT VARIABLE.

If y and z be functions of a, the successive application of formula (1420) gives, for the first, second, and third derivatives of the function $ (y, z) with the notation of (1405),


1700




p. (yz) = $.Y.—9,%,.



1701 $2, (y^) = $2y?+2zY,%,+$2%2+ Y2—$,%2.

1702 tse (yz) = $sy+ 3myz,+ 3,23,52+$a*% +3 (,y.+$ 12% ) y2+3 (25,+ P=uy.) %2, + $uys—$,%z-

By making z = a in the last three formula, and consequently z,==1, z2==0, or else by differentiating independently, we obtain

1703             c. («y) = $.y.+...

1704    $. M = (.32+2.J.+.+o.Y2,-

1705     $. (xy) = Kyi+3z«y% + 3.23.+K' +3 ($.y.+ $.u) Y2+$.Ysa-

1706 In these formula the notation Q is used where the differentiation is partial, while d, (x, y) is used to denote the complete derivative of $ (x, y) with respect to x. Each successive partial derivative of the function <p(y^ z) (1700) is itself treated as a function of y and z, and differentiated as such by formula (1420).

Thus, the differentiation of the product d.Yx in (1700) produces ($)=Y=+PvY2 — (Azv J. + Pu: Z) y*+ Pv92.

The function d, involves y and z by implication. If it should not in fact contain z, for instance, then the partial derivative dyz vanishes. On the other hand, yx, y^, &c. are independent of z; and zm 2227 &c. are independent of y.

DERIVED EQUATIONS.

1707 If $ (xy) = 0, its successive derivatives are also zero, and the expansions (1703-5) are then called the first, second, and third derived equations of the primitive equation $(xy) = 0.

In this case, those equations give, by eliminating yx,

1909 dy _ — c. • d y — 29.u P. $, 2r $3 $2, $8

dx $.‘ d^             $3

1710 Similarly, by eliminating yK and Y2, equation (1705) would give Y3 in terms of the partial derivatives of $ (xy). See the note following (1732).

1711 If $(ay) = 0 and d= 0; d‘= - $%; doc dx^ P,

1712 and d‘% = dx6


392 as $3r $,

Therefore (1704) and (1705) give these



Proof.—By (1708), 9. = 0.

values of Y2« and ySK.

1713 If $. and p. both vanish, yv in (1708) is indeterminate. In this case it has two values given by the second derived equation (1704), which becomes a quadratic in yx.

1714 If $2.3 <l>ry, and fay also vanish, proceed to the third derived equation (1705), which now becomes a cubic in yx, giving three values, and so on.

1715 Generally, when all the partial derivatives of $ (x, y) of orders less than n vanish for certain values x = a, y = b3 we have, by (1512), ^{a, b) being zero,

o (a+h,b+1) = 1 (hd,+kd,)"4 {xy\ab-\- terms of higher orders which may be neglected in the limit. (x, y are here put = a, b after differentiation.) Now, with the notation of 1406),            Ties, + k^b = 0; therefore         L = — Pra - dy ; h (j)y>b dx the values of which are therefore given by the equation

1716          (Nd, + kdyy $ (r, y)>a>b = 0.

1717 If yx becomes indeterminate through x and y vanishing, observe that = % in this case, and that the value of dx x the latter fraction may often be more readily determined by algebraic methods.

If x and y in the function(x, y) are connected by the equation(x, y) = 0, y is thereby made an implicit function of x, and we have

1718         $.(r,3) =**‘.2.

1719 $. (r, 3) = {(„- V.,%.) v + (p..v, — v..$.) v;

	
	
-2 (b,-1,—P,4,) v.v,} + v; •





PROOF. — (i.) Differentiate both $ and 1 for a, by (1703), and eliminate yx. (ii.) Differentiate also, by (1704), and eliminate yx and y2x.

If u, y, z are functions of x, then, as in (1700),

1720         $. (uyz) = $.u,+p„Y,+$,%,.

1721 $z (uyz) = Ozuu2+.y+$2R% + 2u-y. %, + 2.%, u, + 2uy u,3.

+ $ u "2 + $u y 2 -- $= S2, •

1722 To obtain $a (xyz) and $2 (xyz), make u — x in the above equations.

Let U = $ (x, y, z, 5) be a function of four variables connected by three equations u — 0, v=0, w=0, so that one of the variables, 5, may be considered independent.

1723 We have, by differentiating for 5,

$.&,+$Y—$,%+$—U, = 0    dU __ d(puvw) 1 . u,a+u,3+u,z+ue =0(;   dg  d(xyzg)J‘

v, a,+v, y^vz z+Ht = ° )    where J = d(ucw). w,x+w,y+w,z—We = 0           d ^yz\

1P9A da _ _d (uvw) 1 . dy __ _d (uvw) I . dg d {iyz) J ‘ d^ d (xgz) J ‘ dz  d (uvw) 1 d^     d (ycy^ J

Observe that stands for the complete and de for the partial derivative of the function U.

PROOF. — (i.) Ug is found by taking the eliminant of the four equations, separating the determinant into two terms by means of the element Pe — U^ and employing the notation in (1600).

(ii.) Eg, y^ and 2, are found by solving the last three of the same equations, by (582).

IMPLICIT FUNCTIONS OF TWO INDEPENDENT VARIABLES.

1725 If the equation $ (a, y, z) = 0 alone be given, y may be considered an implicit function of x and z. Since x and z are independent, we may make z constant and differentiate for x; thus, for a variation in x only, the equations (1703-5) are produced again with $ (x, y, z) in the place of $ (x, y).

1726 If x be made constant, z must replace x in those equations as the independent variable.

Again, by differentiating the equation $ (xyz) = 0 first for x, making z constant, and the result for z, making x constant, we obtain

1727    $+% y^Uz + .y«+wy„y-+ cyxz  0.

From this and the values of yx and yz, by (1708), 1728 y :  Pur $y $- + ^yz $, $. ' ^xz 9 $. ^z %zy

1729 If a, y, z in the function p(x, y, z) be connected by the relation 1 (x, y, z) = 0, y may be taken as a function of two independent variables x and z. We may therefore make z constant, and the values of $. (x, y, z) and $2 (x, y, z) are identical with those in (1718, ’19) if x, y, z be substituted for x, y in each function.

1730 By changing x into z the same formulas give the values of $z (x, y, z) and $22 (x, y, z).

1731 On the same hypothesis, if the value of p. (x, y, z), in forming which z has been made constant, be now differentiated for z while x is made constant, each partial derivative $.» 1., &c. in (1718) must be differentiated as containing x, y, and z, of which three variables x is now constant and y is a function of z.

The result is

1732 $.=(x,y,2) = {(b.V,—*ac.)V2—(.eY,—YecJ)v.v3

—(uzVu—Yuscu)v.v2+(d>Y.—2uHu)v.v±v.} + 13.

In a particular instance it is generally easier to apply such rules for differentiating directly to the example proposed, than to deduce the result in a functional form for the purpose of substituting in it the values of the partial derivatives.

1734 Example.—Let $(x,Y,2) = lx+my+nz and J (x, y, z) = a2+y2+22 = 1, a and z being the independent variables; dz (x, y, a) and 022 (x, y, z) are required. Differentiating ©, considering z constant,

, -dy . dy J, a

O, (x, y, z) — L—m - = l~m —; since -- —----; dx        y         dx ^y y

42 («, y, ») = -m"5 = ~m zt ; a result which is otherwise obtained from formula (1719) by substituting the values $= =1,   $, = m, 0, =n;    02 = P2y = $2 = 0;

	
V, = 2, Y = 2y, V. = 2z ;   12 = Vz = 12 = 2.



Again, to find $az (x, y, z), differentiate for z, considering x constant in the function

do x         d20    , cy,       xz • di J, z

	
— - thus --- = +m~ = —-m—, since — =--" =--. dx         y         dxdz        y         y          dz xpy y



1735 Let U = $ (x, y, z, 5, ri') be a function of five variables connected by three equations u = 0, v = 0, w = 0; so that two of the variables 5, » may be considered independent. Making n constant, the equations in (1723), and the values obtained for Ux, Eg, y^ Z8, hold good in the present case for the variations due to a variation in 5, observing that p, u, v, w now stand for functions of n as well as of 5.

1736 The corresponding values of U^, a,, yv, z, are obtained by changing E into n.

IMPLICIT FUNCTIONS OF n INDEPENDENT VARIABLES.

1737 The same method is applicable to the general case of a function of n variables connected by r equations 1=0, v=0, w=0 ... &c.

The equations constitute any n—r of the variables we please, independent: let these be 5, n, Z .... The remaining r variables will be dependent: let these be a, y, z...; and let the function be U= $ (a, y, z ... 5, 7, %...).

For a variation in 5 only, there will be the derivative of the function U, and r derived equations as under.

1738    $.ax+$,3+.= +.+* = U, u,a+u,ye+u,% + ... + ug = 0,

	
v, &,+v, Y,+1,2+ ... + v, = 0,



&c., involving the r implicit functions ^, y^, Zg, &c. The solution of the r equations, as in (1724), gives

1790 da _   d^uvw...) 1 dy _ d(uvw...) 1 o

d^z...) J’ ’

1740 where J=d(utw...). Also dU=d(buw) 1

The last value being found exactly as in (1723).

1741 With 5 replaced by n we have in like manner the values of a,, Y, 2,, U,; and similarly with each of the independent variables in turn.

1742 If there be n variables and but one equation $ (x, y, z ...) = 0, there will be n—1 independent and one depen-2 Q

dent variable. Let y be dependent. Then for a variation in a only of the remaining variables, the equations (1703-5) apply to the present case, $ standing for $ (x, y, % ...). If a be replaced by each of the remaining independents in turn, there will be, in all, n—1 sets of derived equations.

CHANGE OF THE INDEPENDENT VARIABLE.

If y be any function of a, and if the independent variable a be changed to t, and if t be afterwards put equal to y, the following formulae of substitution are obtained, in which pey,:


1760




1768



dy   yt   1

dx   at    a.

Differentiating these fractions, we get


	
1762
	
d'y _ yu^t—^tyt _2,_ , — Piy‘


	
1765
	
d^y _ & {Ysa—Es3e} — 3az {322—223} .

da3                      as


	
1766
	
= 2 F 8" = pp} + p'ps. y




Ex.—If a = 7 cos 0 and y — r sin 0 ; then

dy re sin 6+r cos 6 .   d2y    72—2r— 172

doc .rQ cos 6— r sin 6 ‘   dF1    (re cos 6— r sin 0)3 ’

Proof.—Writing 0 for t in (1760) and (1762), we have to find To, ya, 22, J2 ; thus,

T, = re cos 0 — r sin 0 ;   22 == T2 cos 0— 2r, sin 0—r cos 0 ;

Y = re sin 0+r cos 0 ;   yls = 120 sin 0+2r, cos 0—r sin 0.

Substituting these values, the above results are obtained.

To change the variable from a to t in [a-[-l)x)nynx, where (a+ba) = et, employ the formula

1770 (a+b^nynx = bn(dt—n—l) (dt—n—2) ... (dt—l)yt. in which, multiplication by dt by the index law signifies the repetition of the operation dt (1492).

Proof.— dt{(a + bxyiy,ix} = {n y Vb^y^by^P (a+ bx)n y(n+V)X} xt.

Now bxt = e‘ = a + bx. Substitute this, and denote (a-]-bx)ny„x by Un; therefore dt (UA = AU,+ 1 U.., or Un+i = b ^dt~n) U,. b

Therefore U, = b ^df—n~ 1) Un^ and Un_i = b {dt—n — 2) Un-2, &c., and finally                    U2 = b (d, — 1) U,. But               Ui = (a + bx) yx = bxtyx = byt.

Therefore U, = z" (d,——1) (d,—7—2) ... (d,-1) yt.

1771 Cob.— (a+a)"Y,a and xnynx are transformed by the same formula by putting b=1.

1772 Let V = F(x, yf where a, y are connected with 5, n by the equations u — 0, v=0. It is required to change the independent variables x, y to 5,n in the functions Vx and Vy.

1773 Rule.—To find the value of Vx—Differentiate V, u, v, each with respect to x, considering E, n functions of the independent variables x, y; and form the etiminant of the resulting equations; thus,

1774 V&+Y—= 0) ue f. + u, 7. +u, = 0 (; v $+e,n+, = 0)





= 0.



Similarly, to find Vy.


17 75 Ex.—Let a = r cos 0 and y = r sin 6 ; then




—    — A — sin 6

14 — Vr COS b — VQ ——




%°




V, = V,sin 0+v, cos




Proof.— u~r cos 6—a, V=rsuif)—y, and the determinant in (1774) takes the form annexed by writing 7 and 0 instead of 5 and n. A similar determinant gives V,.

To find V^ substitute V,cos 6- v.sin in r




Vr Y

cos 6 —r sin 6

sin 0 r cos 6




—V.

-1

0




= 0.




the pl.ce of V in the value of



Vr; and in differentiating for r and 0, consider Vr and V. as functions of both r and 6. Similarly, to find V2y and Vxy. Thus,

- prr —   —     2 , i / 1 — — \ 2 sin 6 COS 6 . — S111 6 . — sin 6

1777 V2= = V2r COSO F(—V.—Vr) —■-----+V,---V2—9.

Y        1 r           ?         ?

_ to Foy O —   — ■ 2 , I 1 —   — \ 2 sin 6 COS 6 1778  V2y = V2,sm 6 - — L — VrA-------- \ r           / r


+ y cos2 6

‘ r




- cos20 20 73,



By addition these equations give

1779       V,+ v, = V,+ 1 V+1 va.

r r

1780 Given V = f(x, y, z) and 5, n, Z known functions of x, y, z; Ve, V7, V, are expressed in terms of V, V,, Vz by the formulae dV-d(Vng). dV=d(VG) . j dV=d(syV). de d (ayz)’ dy d ^y^) ' ’ d^ d (xyz)

PROOF.—Differentiate V as a function of 5, n, % with respect to independent variables a, y, z. The annexed equations are the result. Solve these by (582) with the notation of (1600).


V,4,+V,n+Vg4 = Ve,

V45,+Y,»,+V,4 = Vy, V4+V n:+V,%, = V..



1781 Given V=f (x, y, z), where a, y, z are involved with

E, n, % in three equations u— 0, v=0, w=0, it is required to change the variables to E, n, Z in V., Vy, and V.

Applying Rule (1773) to the case of three variables, we have

V&+V7+V&—V = 0 ^ s,+ u,+ u,%+ u, = 0 v $+ v„7+ v&+ v = 0 we s.+ w,n.+ wL,+ v,= 0



	
Ve
	
V
	
Vs
	
—V.
	

	
ug
	
u.
	
ug
	
U,
	
= 0.


	
v
	
«,
	
v
	
v
	

	
we
	
w.
	
we
	
w.
	





The determinant gives V in terms of Ve, V, Vz and the derivatives of u, v, w. Vy and Vz are found in an analogous manner. 1782 Similarly with n equations between 2n variables.

1783 Ex.—Given

a = r sin 0 cos $ ; y = r sin 0 sin $ ;   % — r cos 0.

The equations u, v, w become

r sin 6 cos p— a = 0 ; r sin 0 sin 4— y = 0 ; r cos 0-2 = 0. Writing r, 0, $ instead of 4, n, %, the determinant becomes


Vr Vo .

sin 6 cos p rcos 0 cos p

sin 0 sin 0 r cos 0 sin $ cos 0      — r sin 6




—r sin 0 sin 4 r sin 0 cos $

0




—V%

-1

0

0




= 0. 1



From which Va is obtained. Similarly, Vy and Vz ; and, by an exactly similar process, the converse forms for Vr, Vo, and V. The results are

.     ,         — __ — . ,     , i — COS 0 COS d — sin d 1784     Va = Ksin0 COS O—Ve  — V—. ®                                              r           r sin 0 _ p r •        — — . j — COS 6 sin $ • — COS o 1785      Yv = Yr sin 6 sin 9+Y —+ Y rsin’e* 1786      v. = V,cos@-v,sip®. 1787       V, = V, sin 0 cos +V, sin 0 sin 9+V, cos 0. 1788       V. = Var cos 0 cos $ + Vy r cos 9 sin 4 — V, r sin 0. 1789       V, = —Ver sin 0 sin+ V, r sin 9 cos p.

1790 To find V, directly; solve the equations u, v, w, in (1783), for r, 9, and © ; the solution in this case being practicable; thus, r = ./(z?+92+22),    9 = tan-1 M/(x +12),    4 = tan-1 —.

%                         2

Find rx, 9X, d from these, and substitute in Vx = V,r,+V,0,+V. Similarly, Vy and V.. Also Vr = Vaa,+Vy,+Vzz,. Similarly, Ve and V.

1791 To obtain Vxy, substitute the value of Vx in the place of V, in the value of Vy, in (1785), and, in differentiating Vr, V., V, consider each of these quantities a function of r, 9, and (f).

1

 In writing out a determinant like the above, it will be found expeditious in practice to have the columns written on separate slips of paper in order to be able to transpose them readily. Thus, to find the coefficient of V., bring the second column to the left side, and, since this changes the sign of the determinant, transpose any two other columns, so that the coefficient of V9 may be read off in the standard form as the minor of the first element of the determinant.


To change the variables to r, 0, and $, in V2 — V2, — V22, the equations (1783) still subsisting. Result—

1792           V.+V„+V, = v,+ 2 v,+ 1 ( V, cot 6+ V,+ V, cosec® 6).

Proof.— V= Vr^x— V,", since T, = “, by differentiating (i.), therefore  V,=V.2+Y,‘—= V,4+v,(1_ %). Similarly                 v,= v**+v,(1-*), &c.

Thus, by addition,

V,+V,+&. = v"+±+ +v,(n_®±+.) = v,+"-1v.

LINEAR TRANSFORMATION.

1794 If V = f{x, y, z), and if the equations u, v, w in (1781) take the forms

a = as+b,+cG)       C^ = Aa+A,y+A,,

y = a,8+bmn+c,g - , then 3 An = Bja +Bay+B,s, s = a,8+b,n+c,Z)        (A = C^v+C^y+C.^,

by (582), △ being the determinant (a,b2C3), and A1 the minor of d1, &c.

1795 The operations d,, dy, ds will now be transformed by the first set of equations below; and d^, dv, d^ by the second set.

d, — (Ad:+Bd,+ Cid,) • A ) d, = (A,d,+B,d,+C,d) + A ( , de = (Aad,+Bad,+Cad,) + A)


de = a^d^a.dy-^-ci^d^ d, = b^+b.^ly+^d^ ( .

d, = cd,+cd,+cd,>



Proof.—By d, =d*+d,n+d,%, and d, = dx+dy+d,2;; and the values of Se, T, &c., from the preceding equations.

1797 From (1795), Ve = a1V+a,V,+dsVz. Operating again upon Ve, we have

V2 = (a,d,+a,d,+a,d.) Ve = a(Ve).+a,(Voy+a,(V)., and by substituting the value of V, and similarly with V2„, V2g, we obtain the formulae,

1798

V2 = a? Vz+ha? Vz,+a V,++2aa,V,+2a,a,V+2aa,V»y) V2, = ^ V2+b3 V2+b3 V2+2b,b, Vy++2b,6, V=++2b,b, V., -V2 = c? V2+cz V.+c V22+2c,c, V,+2c,C1 V=+2c,c, V.„)

ORTHOGONAL TRANSFORMATION.

1799 If the transformation is orthogonal (584), we have a+y2+i2 = §‘+2+5;

and since, by (582, 584), A= 1, A= a1, &c.; equations (1794) now become

1800 a = a+b+c) f = qa + a,y + as ) y = a,6+bn+cz ,    =ba+by+b= {•

z = a§+6,+cL) G = qa+&y+63)

And equations (1795) become


1802




dz = ad,+bd,+cid, dy = a,d,+b,d,+Ic,d, d, = a,d,+bad,+cd.




de - ad—a,d,—aad, d, — ^xdx-]-li2dy-\-b5dz d^ = cd+c,d,+ed.



The double relations between a, y, z and E, n, Z, in the six equations of (1800-1), and the similar relations in (1802-3) between dxdydz and d^d^ are indicated by a single diagram in each case; thus,


	
1804
		
7
	
%
	
d^
	
d.
	
d.


	
a
	
41
	
b.
		
d.
	
ai
		
C1


	
y
	
a2
	
ba
	
Ca
	
dy
	
a.
	
ba
	
C2


	
z
	
a.
	
b&
	
^3
	
dz
	
a.
	
ba
	
C3




1806 Hence, when the transformation is orthogonal, the quantities a, y, z are cogredient with dx, dyi dz) by the definition (1653).

1807 Extending the definition in (1629), it follows that any function u = $ (a, y, z), when orthogonally transformed, has, for a covariant, the function $ (^dxi dy, dz) u. That is, if by the transformation,

u = $ (a, y, z) = v (f, 7, %), then also $ (d, dy, df) u = J (d^ dv, d^ u.

1808 But if u be a quantic, then, as shown in (1648), $ (dx, dy, df u is always a function of the coefficients only of u, and the covariant is, in this case, an invariant.

1809 Ex.—Let u or p (x, y,z) = ax2 +by‘+c22 -VifyzP^gzx +2 R^y • .. $ (d., dy dt) u = au,x + buzy + cu2z + 2fuyz + 2gu, + 2hu,

= 2 {a? + b2 + c2 + 2f + 2 g2 + 2 A2},, and this is an invariant of u.

1810 When V=f(x, y, 2) is orthogonally transformed, V.+ V.,+ V. = V,+ v,+ V,.

PROOF.—By adding together equations (1798), and by the relations a + bi + c = 1, &c., and a,a, + 61b, + ^c.2 = 0, &c., established in (584).

1811 If two functions u, v be subjected to the same orthogonal transformation, so that

u=d(a,y,z) = d(£,n, [) and v=v(a,y,2) =k(§,n,[); then           $ {dx, dy, d) v = $ (de, d^, d^ v.

1812  Ex.—Let u = ax2 + by2 + c22 + 2fyz + 2gzx + 2hxy = p

= aV + b'^ + c^A^'^+^g'^+W^ = «, and let           v = a” + y^ + 22 = 82 + »? + 22 = v and .

Then    $ (4, d, d.) v = avz +bv2y +cv^ +2fvy: +2gv, +2hU,y , and     d (de d, d^ v = «‘v2 + b'v^ + C‘V2+2f‘v, + 2gvg + 2lVe„

But v2 = 2, and v, = 0, &c. Hence the theorem gives a Ab Ac = a' Ab' A c \ in other words, a Ab Ac is an invariant.

1813 Contragredient.— When the transformation is not orthogonal, (1795) shows that dx is not transformed by the same, but by a reciprocal substitution, in which a1, 61, C1 are replaced by the corresponding minors A1, H, C^ in this case dx, dy, d^ are said to be contragredient to x, y, z.

1814 Contravariant.—If, in (1629), the quantics are subjected to a reciprocal transformation instead of the same, we obtain the definition of a contravariant.

1815 When z is a function of two independent variables a and y, the following notation is often used:


	
dz _

d =P
	
d^

— = 4, dy
	
dp d2z

- -- -     • ?

dx dx^    ‘


	
dp _ dq _ dy dx
	
dz _ z i — S, dx dy
	
dq _ d2z _+

dy dy^




Let $ (x,y,z) = 0. It is required to change the independent variables from x, y to z, y. The formulae of trans-


	
formation are


	
dx   1       dx      q       d2x      r

1816  — — —i    ~t- = — —;    ->-=--—9;

d 3   p       dy      p       dz2      ps


	
1240 d2a _ -sP(l~~lC~~~rir.       d’a _ qr —ps

dy2          pi6      ‘       dydz      ps




PROOF.—Formulas (1761, 1763) give xz and x-iz, because, since y remains constant, d may be considered a function of only two variables, a and z.

Formulae (1708-9) give a, and 22, in terms of partial derivatives of $, since z is now constant, and d may be taken as a function of the two variables a and y.

But $ (x, y, z} = 0 is equivalent to J (a, y)—z = 0 ; and the partial derivatives of $ with respect to x and y are the same as those of 1 ; and therefore the same as those of z when a and y are the independent variables. Hence z may be written for $ in the formula.

Lastly,  d’x = ( - L) =(-4) dz = IP.—20 1 = qr-ps^

‘  dydz \ p / z \ p / x dz p^    p p3

The independent variable is here changed from z to x, without reference to the equation © = 0; and this is allowable, because y is constant for the time being in either case.

MAXIMA* AND MINIMA.

Maxima and Minima values of a function of one independent variable.

1830 DEFINITION.—A function $ (x) has a maximum value when some value a = a makes $ (x) greater than it is made by any value of a indefinitely near to a. Similarly for a minimum value, reading less for greater.

1831 ILLUSTRATION.—If the ordinate y in the figure be always drawn =f(x), it has maximum values at A, C, E, and minimum at B and D (1403).

[image: ]



NOTE.—For the algebraic determination of maxima and minima values by a quadratic equation, see (58).

1832 RULE I.—A function $ (x) is a maximum or minimum when f (x) vanishes, and changes its sign as x increases from plus to minus or from minus to plus respectively.

1833 RULE II.—Otherwise $ (x) is a maximum or minimum when an odd number of consecutive derivatives of d (x) vanish, and the next is minus or plus respectively.

PROOF.—(i.) The tangent to the curve in the last figure becomes parallel to the a axis at the points A, B, G, D, E as x increases; therefore, by (1403); tan 6, which is equal to f' (x), vanishes at those points, while its sign changes in the manner described.

(ii.) Let fnlF) be the first derivative of f(x) which does not vanish when x — a, n being even; therefore, by (1500), f(a±h)=f(a)+—f’\a+^h').

J n

The last term retains the sign of fn{a), when h is small enough, whether h be positive or negative, since n is even. Therefore f(x) diminishes for any small variation of 2 from the value a if f‘ (a) be negative, but increases if fl(_a') be positive. Hence the rule.

1834 NOTE.—Before applying the rule for discovering a maximum or minimum, we may evidently—

(i.) reject any constant factor of the function ;

(ii.) raise it to any constant power,paying attention to sign;

(iii.) take its reciprocal; maximum becoming minimum, and vice versa ;

(iv.) take the logarithm of a positive function.

1835 Ex. 1.—Let 9 (=) = =7-7 — 352+1, therefore f (x) = 72"-2828-35 = 7 (23—5) (=3+1).

Also <p" QO = 7 (625—12x2). Therefore x = 3/5 makes o‘(x) vanish, and o" (x) positive; and therefore makes $(x) a minimum.

1836 Ex. 2.—Let   $ (x) = (z—3)"4 (x—2)". Here f(x) = 14 (a-3)"* (-2)1+11 (—3)"(-2)" = (z—3)"8(—2)10 (25z—61), and we know, by (444) or by (1460), that, when x = 3, the first thirteen derivatives of d (x) vanish ; and 13 is an odd number. Therefore 0 (x) is either a maximum or minimum when a = 3.

To determine which, examine the change of sign in o’ (x). Now (a — 3)13 changes from negative to positive as x increases from a value a little less than 3 to a value a little greater, while the other factors of 9' (x) remain positive. Therefore, by the rule, $ (x) is a minimum when x — 3.

Again, as x passes through the value 2, f (x) does not change sign, 10 being even. Therefore x = 2 gives no maximum or minimum value of $ ix).

Lastly, as x passes through the value 8l the signs of the three factors in (^ GO change from ( —) (+) ( —) to ( —) (+) (+) ; that is, fix') changes from + to — ; and, consequently, d (x) is a maximum.

1837 Ex. 3.—Let $ (x, y) = a*+2x‘y — if = 0. To find limiting values of y-


Here y is given only as an implicit function of a. Differentiating, in order to employ formulae (1708, 1711),




$. = 4a3+4xy, $2 = 12x2+4y, $. = 222—3y2;




J. = 0 makes d. = 0. Solving this equation with p (2, y) = 0, we get a = ±1, y =—1 when yx vanishes.




And then Y2 =




(2   12 — 4

4,      2—3




= 8, positive; therefore, when a==1.




has —1 for a minimum value.



Similarly, by making y the independent variable, it may be shewn that, 8                                                 . .                       4

when J = — 9, x has both the maximum and minimum values = 9  6.

1838 A limiting value of subject to the condition is obtained from the equation


$(a, 3),

*(a,3)  .........(i.),

$.1, = $,Y,   (ii.)



Simultaneous values of x and y, found by solving equations (i.) and (ii.), correspond to a maximum or minimum value of $.

PROOF.—By (1718), $ being virtually a function of a only ; and, by (1832), $,(ay) = o.

1839 Ex.—Let $ (x, y) = xy and J (x, y) = 2x3- ay+y3 = 0......(i.) Equation (ii.) becomes y (3y2 — a) == 2 (6a‘— y).

Solving this with (i.), we find ys = 2a;8 and x2 (4a — 3/2).

Therefore a= 432, ! = 434 are values corresponding to a maximum value of 0. That it is a maximum, and not a minimum, is seen by inspecting equation (i.)

1840 Most geometrical problems can be treated* in this way, and the alternative of maximum or minimum decided by the nature of the case. Otherwise the sign of $2a (xy) maybe examined by formula (1719) for the criterion, according to the rule.

Maxima and Minima values of a function of two independent variables.

1841 RULE I.—A function $ (x, y) is a maximum or minimum when $x and $y both vanish and change their signs from plus to minus or from minus to plus respectively, as x and y increase.

1842 RULE II.—Otherwise, $x and $y must vanish ; H2x$2y—$2y must be positive, and $2x or 2y must be negative for a maximum and positive for a minimum value of d.

PROOF.—By (1512), writing A, B, 0 for $2z ^xy, (p2y, we have, for small changes h, 1c in the values of x and y,

9 (x+1, yA-tc) — P («, y) = ho,+1,+} (Ah2 +2BI/+ 01^} + terms which may be neglected, by (1410).

Hence, as in the proof of (1833), in order that changing the sign of h or k shall not have the effect of changing the sign of the right side of the equa-tion, the first powers must disappear, therefore d, and p, must vanish. The


next term may be written, 7.2 ( / 7                             )

27{(4%+B) +AG~^}



by completing the square, in the form and, to ensure this quantity retaining its sign for all values of the ratio h : k, AC—B2 must be positive. $ will then be a maximum or minimum according as A in the denominator is negative or positive.

It is clear that A and B might have been transposed in the proof. Hence B must have the same sign as A.


1843 A limiting value of




$(a, y, z).



subject to the condition             J (a, y, z) = 0.........(i.),

is obtained from the two equations

1844 dab, = ^x......(ii.), ^y = $,. ......(iii.);

1846 or, as they may be written, *=*=$: ......


(iv.)



Ya Yy Yz

Simultaneous values of a, y, z, found by solving equations (i., ii., iii.), correspond to a maximum or minimum value of p.

PROOF.—By (1841), $ being considered a function of two independent variables a and z, and, by (1729,1730),

$a(a, y, z) = 0 gives (ii.), and $z (x, y, z) = 0 gives (iii.)

The criterion of maximum or minimum in (1842) may also be applied without eliminating y by employing the values of 02 and $2, in (1719, ’30).

1847 Ex.—Let $ (x, y, z) = a+y2+z2

and 1 (a, y, z) = ax2+by2+cz2+2fyz+2gza+2hay—1 = 0..(i.) Equations (ii.) and (iii.) here become

---------- — ----•---- —--------- = —, say, (iv.) ax-Yhy^gz hxf-byf-fz gx-Cfyf-cz I

Therefore, by proportion (70) and by (i.), a2+y2+z2 = R-1 = p.

From equations (iv.) we have

1848 ax + hy +gz = Rx


a—R h g h b-R f

g f C—R



TixRby+fz = Ry g^+fy +cz = Rz

1849 or    (^R—a) (R—b) {R-c) + 2fgh

-(R-ajf-^R-b)g-(R-c) 12 = 0, or (see 1641)

R3-R°{a+b+c}+R (bc+ca+ab-^-g^-h2}-^ = 0,

This cubic in R is the eliminant of the three equations in x, y, z. It is called the discriminating cubic of the quadric (i.), and its roots are the reciprocals of the maxima and minima values of a2+y2+22.

1850 To show that the roots of the discriminating cubic are all real.

Let R1, R, be the roots of the quadratic equation

1851       |R-b „  =(R-i) ......................„...(v.)

R, > b and c, and b and c > R2.

Make R =R in the cubic, and the result is negative, being minus a square quantity, by (v.). Make R = R^ and the result is positive. Therefore the cubic has real roots between each pair of the consecutive values + 0 , R1, R2, —0 ; that is, three real roots. But since the roots are in order of magnitude, the first must be a maximum value of R, the third a minimum, and the intermediate root neither a maximum nor a minimum.

Mahima and Minima values of a function of three or more variables.

1852 Let $ (xyz) be a function of three variables. Let (2, hy’ (2= (.=, d= ^xy he denoted by a, b, c, f, g, h; and let A, B, C, F, G, H be the corresponding minors of the determinant A, as in (1642).

1853 RULE I.—$ (x, y, z) is a maximum or minimum when $x, $y, $z all vanish and change their signs from plus to minus or from'minus to plus respectively, as x, y, and z increase. Otherwise—

1854 RULE II.—The first derivatives of $ must vanish; A and its coefficient in the reciprocal determinant of A must be positive ; and $ will be a maximum or minimum according as a is negative or positive. Or, in the place of A and a, read B and b or G and c.

PROOF.—Pursuing the method of (1842), let 4, 7, % be small changes in the values of a, y, z. By (1514),

$ (x+4, J+1, z + G~9 (x, y, 2)

= % +19,+60-+1 (al? + by? + cz? + 2fn3 + 2g28 + 2757) + &c.

Por constancy of sign on the right, $2, dy, $z must vanish. The quadric may then be re-arranged as under by first completing the square of the terms in E, and then collecting the terms in J, n, and completing the square. It


thus becomes




1{(s+ln+gz+(n—"52+EC—r}.



Hence, for constancy of sign for all values of 6, n, Z, it is necessary that C and JBG—F2 should be positive. This makes B also positive. By symmetry, it is evident that A, B, C, BC—F2, GA-G2, AB —II2 will all be positive. The sign of a in the first factor then determines, as in (1842), whether $ is a maximum or a minimum.

1855 The condition may be put otherwise. Since BC— F2 = aA by (577), the condition that jBC2—F2 must be positive is equivalent to the condition that a and A must have the same sign. Hence we have also the following rule :—•

1856 RULE III.—$x> $y, $2 must vanish ; the second of the four determinants below must be positive, and the first and third must have the same sign: that sign being negative for a maximum and positive for a minimum value of 4 (x, y, z).


1857 $222




$2 O.J , $ux $2




$2 O.y $.= ,

Au $2 Gus $2z ^zy $22




$2 ^xy ^xz ^xw ^yx Ozu ^yz ^yw $= fzy ^iz $ zw Pux Pwy ^WZ $ 2w



1858 The theorem can be extended in a similar manner to $ (x, y, 2, w, ..f, a function of any number of variables. Form the successive Hessians of p (1630) for one, two, three, &c. variables in order as shown above; then—

1859 RULE.—In order that $ (x, y, z, w, ...) may be a maximum or minimum, $x, Hy,$2,4w, &c. must vanish; the Hessians of an even order must be positive; and those of an odd order must have the same sign, that sign being negative for a maximum and positive for a minimum value of the function p.

For a demonstration in full, see Williamson’s Diff. Gale., 4th Edit., p. 433.

1860  Ex.—Required a limiting value of the function

u = ax2 + by2 + cz2 + 2fyz + igzx + 2hxy + 2px + 2qy + 2rz + d.

The condition in the rule produces equations (1), (2), (3). Equation (4) results from Euler’s theorem (1624), thus; introducing a fourth variable w, as in (1645), we have Ku, + yuyA zu, + WU. = 2u,

which reduces to (4) by means of (1), (2), (3), and the value of u, putting w = 1.


1861 lux = ax + hy + gz +p = 0 ^uy = h.x + by -\-fz + q — Q 2u, = gx+fy +cz+ = 0 pa + cgy + rz + d = u




	
(1)    )


	
(2)    .


	
(3)    ’


	
(4)    )






a li g   p

tibf I g f c    r

pgr d—u




= 0.



The determinant is the eliminant of the four equations, by (583), and is equivalent, by the method of (1724, Proof, i.), to A’ — Au = 0, or u = A’: A (Notation of 1646).

To determine whether this value of u is a maximum or minimum, either of the conditions in (1854, ’6) may be applied ; and since, in this example, U2 = 2a, u2y = 2b, &c., the letters a, b, c, f, g, h may be considered identical with those in the rule.

1862 To determine a limiting value of $ (2, y, z, ...), a function of m variables connected by n equations 1=0, 12 = 0, ... u,=0.

RULE.—Assume n undetermined multipliers X15 X2, ... Xn with the following m eguations :—

•.+Ai (u,),+A2 (u,),+ ••• +An (u,)x = 0,

$s + A (u)y + ^2 (u,), + • • ■ + An (u)y = 0,

making in all m+n equations in m+n quantities, x,y,z, ... and X15 X2, ... Xn. The values of x,y,z, ..., found from these equations, correspond to a maximum or minimum value of p.

PROOF.—Differentiate $ and 11 u2, ... un on the hypothesis that a, y, z, ... are arbitrary functions of an independent variable t. Multiply the resulting equations, excepting the first, by X15 A,... \n in order, and add them to the value of ©t. The coefficients of at, yt, zt, ... may now be equaled to zero, since the functions of t are arbitrary, producing the equations in the rule.

1863 Ex. 1.—To find the limiting values of 72 = a2 + y2 + 22 with the conditions Ax2 + By2 — CA = 1 and Ix + myAnz = 0.

Here m = 3, n = 2 ; and, choosing X and u for the multipliers, the equations in the rule become

2+242+ p.1 —0......(1) ) Multiply (1), (2), (3) respectively by

2y + 2BXy + pm= 0 (2) - . a, y, 2, and add; thus p disappears, 2z + 2GXz+pn = 0 (3))       and we obtain

a?+y‘+22+ (Ax2 + By2+ Gz2) X = 0, therefore X = —r2. Substitute this in (1), (2), (3) ; solve for a, y, z, and substitute their values in                        IxA^y-Inz = 0.

1864 The result is —‘—- + +7 — +       = 0, a quadratic in r2.

Ar—1 Br—1 Cr‘—1

The roots are the maximum and minimum values of the square of the radius vector of a central section of the quadric Ax2 + By2+ Gz2 = 1 made by the plane lx + my + nz = 0.

1865 Ex. 2.—To find the maximum value of u = (x+1) (J+1) (2+1), subject to the condition         N = a® b"c“.

This is equivalent to finding a maximum value of

log (« +1) + log (y + 1) + log (z +1), subject to the condition log N= z log a + y log b+z log c. The equations in the rule become

1                                                                              1

— +A1og =0;   __ + xiog& = 0;   2+1 +Alog® =0.

By eliminating X, these are seen to be equivalent to equations (1846).

Multiplying up and adding the equations, we find X, and thence a+1, y+1, z + 1; the values of which, substituted in u, give, for its maximum value, u = {log {Nabc) }— 3 log as log 63 log c3.

Compare (374), where a, b, c and x, y, z are integers.

Continuous Maxima and Minima.

1866 If $. and $,, in (1842), have a common factor, so that . = P^^, y\        $. = Qy (a, y)..........(i.), where P and Q may also be functions of a and y; then the equation 1 (x, y) = 0 determines a continuous series of values of x and y. For all these values p is constant, but, at the same time, it may be a maximum or a minimum with respect to any other contiguous values of $, obtained by taking x and y so that 1 {xy} shall not vanish.

1867 In this case, $242— $2, vanishes with 1, so that the 1 criterion in Rule II. is not applicable.

PROOF.—Differentiating equation (i.), we have

^x — F^ + P^^     0. = P,+P,?.

$2 — Qjy^F Q^y )       ^yx — Qx^F Qy, )

If from these values we form $2 $2y—day X Ayr, 1 will appear as a factor of the expression.

1868  Ex.—Take z as $ (xy) in the equation

22 = a2—62+2b(a*+y) - a’- y2 ..................... (i,), ... zz=e( — — 1) and  zz=y(——5  --1).

\(a2+y2) /           " *\(x*+y2) /

The common factor equated to zero gives a2+y‘= b2, and therefore z = =a. .. (ii.) Here a is a continuous maximum value of z, and —a a continuous minimum.

Equation (i.) represents, in Coordinate Geometry, the surface of an anchor ring, the generating circle of radius a having its centre at a distance, b from the axis of revolution Z. Equations (ii.) give the loci of the highest and lowest points of the surface.

For the application of the Differential Calculus to the Theory of Curves, see the Sections on Coordinate Geometry.

INTEGRAL CALCULUS.

INTRODUCTION.

1900 The operations of differentiation and integration are the converse of each other. Let f(x) be the derivative of $ (x); then $ (x) is called the integral of f(x) with respect to x. These converse relations are expressed in the notations of the Differential and Integral Calculus, by


d(b (x) da




= fM




and




da = $ (x).



1901 Theorem.—Let the curve y =f(x) be drawn as in (1403), and any ordinates Ll, Mm, and let OL = a, 0M=b; then the area LMml = $(b)—(a).

Proof.—Let ON be any value of x, and PN the corresponding value of y, and let the area ONPQ, = A ; then A is some function of a. Also, if NN' = dx, the elemental area NN'F'P = dA dA

[image: ]



= ydx in the limit; therefore — = y. Thus A is that function of x whose derivative for each value of x is y or f(x) ; therefore A = d U) + U where C is any constant. Consequently the area LMml = $ (b)—p (a), whatever 0 may be.

The demonstration assumes that there is only one function $ (x) corres-ponding to a given derivative f (x). This may be formally proved.

If possible, let 1 (x) have the same derivative as d (x) ; then, with the same coordinate axes, two curves may be drawn so that the areas defined as above, like LMml, shall be © (x) and 1 (x) respectively, each area vanishing with x. If these curves do not coincide, then, for a given value of x, they have different ordinates, that is, p‘ (x) and V’ (x) are different, contrary to the hypothesis. The curves must therefore coincide, that is, p (x) and V (x) are identical.

1902 Since p(b) — p(a) is the sum of all the elemental areas like NN'P'P included between Li and Mm, that is, the sum of the elements ydx or f(x) dx taken for all values of a between a and b, this result is written

( f(P) da = 4 (6)—$ (a).

	
	
• a





1903 The expression on the left is termed a definite integral because the limits a, b of the integration are assigned.1 When the limits are not assigned, the integral is called indefinite.

1904 By taking the constant C=0 in (1901), we have the area        ONPQ = $ (a) = §f(a) da.

NOTE.—In practice, the constant should always be added to the result of an integration ruhen no limits are assigned.

MULTIPLE INTEGRALS.

1905 Let f(x, y, z) be a function of three variables ; then (22 (J2

the notation I 1 I f^^ y, 2) da dy dz

is used to denote the following operations.

Integrate the function for z between the limits z==2, z= 22, considering the remaining variables x and y constant. Then, whether the limits 21, 22 are constants or functions of x and y, the result will be a function of x and y only. Next, considering x constant, integrate this function for y between the limits yx and y^, which may either be constants or functions of x. The result will now be a function of x only. Lastly, integrate this function for x between the limits 21 and 22.

Similarly for a function of any number of variables.

1906 The clearest view of the nature of a multiple integral is afforded by the geometrical interpretation of a triple integral.

[image: ]



Taking rectangular coordinate axes, let the surface z = $ (2, y) (XYom in the figure) be drawn, intersected by the cylindrical surface y = 1 (x) (R MNnm), and by the plane & =21 (^LSml). The volume of the solid OLMNolmn bounded by these surfaces and the coordinate planes will be

[image: ]



(x,y)

dcc dy dz.

PROOF.—Since the volume cut off by any plane parallel to OYZ, and at a distance x from it, varies continuously with x, it must be some function of x. Let V be this volume, and let dV be the small change in its value due to a change da in x. Then, in the limit, dV = PQqp X dx, an element of the solid shown by dotted lines in the figure. Therefore

dV            (y (x)

— = PQqp = q (x, y) dy, by (1902),

J 0

a being constant throughout the integration for y. The result will be a function of a only. Making a then vary from 0 to x, we have, for the whole

pi ( p(«)            )       pi ( p(«) - c$ {x,y)   -    ) volume, 3   $ (a, y) dy ( dx =  3           dzdy {dx, since $ (x, y) = z. With the notation explained in (1905), the brackets are not required, and the integrals are written as above.

1907 If the solid is bounded by two surfaces 2 = 4, (x, yf z, = $2 (x, yf two cylindrical surfaces yx = V1(x), Y2 = ,(x), and two planes a = 21, x = 2,, the volume will then be arrived at by taking the difference of two similar integrals at each integration, and will be expressed by the integral in (1905).

If any limit is a constant, the corresponding boundary of the solid becomes a plane.

METHODS OF INTEGRATION.

INTEGRATION BY SUBSTITUTION.


1908



The formula is ( $ (a) da = ( $ (a) de dz, where z is equal to f(x), some function chosen so as to facilitate the integration.

RULE I.—Put x in terms of z in the given function, and multiply the function also by X,; then integrate for z.

if the limits of the proposed integral are given by x = a, x =b, these must be converted into limits of z by the equation x = £-1 (z).

The following rule presents another view of the method of substitution, and is useful in practice.

1909 RULE II.—If $(x) can be expressed in the form F(z)Zy;

then | $ (w) dx = F (2) z„da = I F (2) dz.


Ex. 1.—To integrate



— f—— . Substitute z = & + 4(x2 + a?) ; v(x"+a2) therefore da = 1 + - a: , = 2+(a2+,a2) = _, dx        • (x 2+ a2)      • (x2 + cd) • (x2 + cd) 2a d: as = [ 7 = log - = log (• + v(+ «)).

— o " 5+223 , f 5® 6+22-3 , Ex. 2. I--. dx = \ ---------— dx = — log (x 6—2 2). J x + x^ J anb+a-2          2       7

Here % = c~5+ a-2, F (z) = — —, z, = — (52-6+22-2). %


Ex. 3.




or



1—ca2 dx _ f a 2— c        dx 1+cx‘   (1 +ax2+c‘4) J arl+cz •(c‘x?+x=2+a) __________d, (x-1+cx) dx________

J (arl + CX) (a-1 + cz)2 + a—2c}

— 1 1 2v/(a—2)+(1+aa2+cx4)

P(a— 2c) °8          1+cz2 __1_____ -1@M(2c—a)

Pg^c—a)       1+caa

By (1927) or (1926). Here z=x=+ca.

In Examples (2) and (3) the process is analytical, and leads to the discovery of the particular function z, with respect to which the integration is effected. If z be known, Rule I. supplies the direct, though not always the simplest, method of integrating the function.

INTEGRATION BY PARTS.

1910 By differentiating uv with respect to a, we obtain the general formula   s uo doc — uv —


^uvxdw.



The value of the first integral is thus determined if that of the second is known.

RULE. — Separate the quantity to be integrated into two factors. Integrate one factor, and differentiate the other with respect to x. If the integral of the resulting quantity is known, or more readily ascertained than that of the original one, the method by " Parts” is applicable.

1911 Note. — In subsequent examples, where integration by Parts is directed, the factor which is to be integrated will be indicated. Thus, in example (1951), “By Parts Je“da" signifies that eax is to be integrated and sin ba differentiated afterwards in applying the foregoing rule. The factor 1 is more frequently integrated than any other,and this step will be denoted by J dx.

INTEGRATION BY DIVISION.

1912 A formula is


J (a-^-bocn)p doc = a ^ fi-fbHff 1+6



ocn (a+ba")~-1 doc :

The expression to be integrated is thus divided into two terms, the index p in each being diminished by unity, a step which often facilitates integration.

Similarly,                J (a + bxn + cxm)p dx = a (a+ba"+cz")r-1 + lxn (a+ba"+cz")p-1 + cxm (a+ba"+cam)r-1.

1913 Ex.—To integrate•(«+ a2) dx.

By Partsdx, i /(a? + a?) dx = x / (=2 + a?) —_dz . J J                                     J v (x" + a )

By Division, [ (a*-.) dx = [ —e, +—,.  •

J              J v(x +«) J v(x*+a2)

Therefore, by addition,

INTEGRATION BY RATIONALIZATION.

1914 In the following example, 6 is the least common denominator of the fractional indices. Hence, by substituting z = as, and therefore 2, = 6z5, we have


at —1

a — 1




z3— 1 do -2—1 adz=6




28—25 --—— dz 22—1



Each term of the result is directly integrable by (1922) and (1923). For other examples see (2110).

INTEGRATION BY PARTIAL FRACTIONS.

1915 Rational fractions can always be integrated by first resolving them into partial fractions. The theory of such resolutions will now be given.

1916 If $(a) and F(x) are rational algebraic functions of a, $ (x) being of lowest dimensions, and if F(x) contains the factor (x—a) once, so that

F (a) = (- a) • (a).....................(1);

1917 theo *8—44+362 - A-%6......c

Proof.—Multiply equation (2) by (1), thus

4 (x) = Al (x) + («— a) x («).

Therefore, putting a = a, p (a) = Al (a). Also, by differentiating (1), and putting x — a afterwards, F\a) = 1 (a). Therefore A = $ (a) 4- F' (a).

1918 Again, if F (x) contains the factor (x-a), n times, so


that




F (x) = (a— a)n J (x).




Assume



$ (a) __ Ai I__A2__1 I An । X (x)

F^) " ^—a)n (x—ay^ Ta—ay(a)

To determine A1, A, ... An. Multiply by (x—a)n; put x=a and differentiate, alternately.

1919 If F (x) = 0 has a single pair of imaginary roots

a — i(3; then, applying (1917), let

*(a+iB). = A-in; . ^.a~^ = A+iB;

H (a—i)              I (a —

and the partial fractions corresponding to these roots will be

A— iB | A+iB _2A (a—a)+2BB


x—a—-



(a— a)2+32

For practical methods of resolving a fraction into partial fractions in the different cases which occur, see (235-238).

INTEGRATION BY INFINITE SERIES.

When other methods are not applicable, an integral may sometimes be evaluated by expanding the function in a converging series and integrating the separate terms.

Ex. Jad =lgs+o+1.2+1.2.3+1.2.3.4 *8c.   (150)

STANDARD INTEGRALS.

1921 Some elementary integrals are obtained at once from the known derivatives of simple functions. Thus the derivatives (1422-38) furnish corresponding integrals. The following are in constant use :—-

1922     s a"da = a ( — = log a.

	
1924      ( ar doo = a—.         ( er = ex. •         log a


	
1928 s —de— = log {a+V(w2 ± a?) } .    (1909, Ex. 1) •    V (4 C)


	
1929 1 — ,---, = sin 1 — or — cos 1 —.       (1434) •    V(a—^)      a         a


	
1930 (d,=*V(a‘±a%). •    v(a‘±af)



1931 By Paris, Division, and adding results (1913), we obtain

5 V(a‘± a’) d^ = }a • (a3 ± a2) ± }a log {a + • («2 ± a3) } .

1932 By Parts, Division, and difference of results,

—244% = }av(a‘±a) - a 10g {a+v(x±a)} .

1933 I • (a?- a?) dx = Ja sin 14+ }a • (a”—a).

	
•                                a                 [As in (1931)


	
1934
	
( x^dx      i 2      x

e -              — — (J- CITT)
	
— 2a
	
• (cd—x^..


	

		
J (a" — w")              a
		
[As in (1932)


	
1935
	
C dx   1 _ x

| —---; — — tan 1 — or
	
_ 1
	
. cot-1 2        (1436)


	
• a"—d" a      a
	
a
	
a


	
1936
	
C dx   1
	
x—a
	
[By Partial fractions


	
J a2—a2 2a 8
	
a—a


	
1937
	
C dx   1
	
a-\-x
	
[      Do.


	
J a?—02 “ 2a 8
	
a—x





	
1938
	
J sin x dx = — cos x.        ‘
	
| cos x dx = sin x.


	
1940
	
Stanada =- logcosa. ‘
	
| cot xdx = log sin x.


	
1942
	
I secada = log tan ( T-C).   |

J                  4 2 J
	
cosecxdx = log tan ~.


	
METHOD. — (1940, ’2), substitute cos a. (1941, ’3), substitute sin a.


	
1944
	
J sin 1 x dx = x sin 1 x + (1 — x^).


	
1945
	
1 cos 1 x dx = x cos 1 x —
	
V(1-a3).






1946 J tan ladx = a tan 1a—2log(1+a2).

1947 I cot-1 oc dx = x tan-1a+2log (1+a2).

sec-1 x dx — x sec 1 x —log {a+v(a2—1)}.


1949 s

METHOD.



cosec 1 x dx = x cosec la—log {a— v(x2— 1)}.

—(1944) to (1949), integrate by Parts, § dx.


1950




J log x dx = a log x—x.




[By Parts, J dx



1951 ( _d--= A..... tan- / tan 4 J(^I} ? , • a—bcosa \Z^r—b-)     (    2 V \a-b/)


1952 or



1 log v(b+a) -^-^/(b—a) tanja •(b-—a‘)  8 V(6+ a) —^{b—a) tan 4a‘ according as a is > or < b.

[Subs, tan 3x, and integrate by (1935 or ’37)

VARIOUS INDEFINITE INTEGRALS.

GENERALIZED CIRCULAR FUNCTIONS.

1954 § sin" dx. I cos" dx. § cosec" dx.

METHOD.—When n is integral, integrate the expansions in (772-4). Otherwise by successive reduction, see (2060). For s cosec" dx, see (2058). .         7    tan”-la tan”-3a , tan”-5a p

	
1957 1 tan” ado _-------— ---— — &c. •           n — 1    n — o n — 5



Proof.—By Division; tan” a = tan"-2a sec2® — tan”-2 x, the first term of which is integrable ; and so on.

	
1958 sd-- =     s(a—b COS^)-1 dz. •    (d-b cos x) (a- — b~)n 4 J



Method.—By substituting tan 2 = tan % • (az). Similarly with sin a in the place of cos a, substitute 27—x.


1959 scos”a dz. CcosPadz.

• cos nx J sin nx

2 T




( sin'a

J cos nx




dx.




sin” X 7

—----dx.

sin nx



METHOD.—By (809 & 812), when p and n are integers, the first two functions can be resolved into partial fractions as under, p being < n in the first and < n—1 in the second. The third and fourth integrals reduce to one or other of the former by substituting ]7— x.


1963




cos’s i x" =n ( 1)7+1

COSTON    n   7=1




sin (2r — 1) 0 cosP (2r — 1) 0 cos x — cos ^N — 1) 6




with 6 = 7. 2n




1964




cosP a _ i sin nx n sin x



x‘=n-1(-1)+1 sin2r@ cosPr@, with @=T

The fractions in (1963) are integrated by (1952) ; those in (1964) by (1990).

Formulce of Reduction.


	
1965
	
Ccos nx 7

I----dx —
	
2
	
cos (n — 1) x ^
	
(cos(n-2)Eda


		
• COS® W‘
		
cosP 1 X
	
J COSP X


	
1966
	
( cos nx 7 _

S --a------- Uil ---
	
-2
	
‘sin (n-1)24,+
	
C^n-^dM


		
• sin® R
		
sinP 1 X
	
J sin? X


	
1967
	
f sin nx , —--dx —
	
2
	
‘cos(n-1)2a+
	
Csin(n—2)aa,


		
• sin” R
		
sinP 1 X
	
J sinP X


	
1968
	
( sin nx -

1-----dx —
	
25
	
sin {n—1) x ^  |
	
"sin (n—2)a de


		
J COSP 0
		
cos? 1a        J
	
cos” a




PROOF.—In (1965).   2 cos a cos (n—1) a = cos na+cos (n—2) a, &c.

Similarly in (1966-8).

P-n p+n •

Proof.—(1969). By Parts, J smnxdx. In the new integral change cos w® cos® into cos (n — 1) ®—sin nx sin®. By successive reduction in this way the integral may be found. Similarly in (1970-2).

Otherwise, expand sin®® or cos® a in multiple angles by (772-4), and integrate the terms by the following formulae.

1973-1975

,     1 /sin (p — n) a sin (p—n)a\ sin Pa sin nx ax = — ——------——1—-— . 2 \ p—n        p-\-n   / and so with similar forms, by (666-9).

.  (a^pxdx - (sin pxdx .  - .

	
	
1976 | -------- and I ------- are round from • cos nx       • cos nx





i cos px—sin px 7a zP*na1 pz

J cos na " J 1+22" when p and n are integers, by equating real and imaginary parts after integrating the right side by (2023).

	
Proof.—Put cos a+i sin a = z ; therefore iz dx = dz. Multiplying numerator and denominator of the fraction below by cos nx + i sin nx, we get cos px+i sin p2 _ 2 cos (2+ n) x +i sin (p + n) x   2 zp+n cos nx             1 + cos 2nx + i sin 2nx         1 + z2n ‘ ,   ,           f cos px —i sin 2 7 .(z+n-ldz therefore        I            i— da — — 20 —---—. J cos nx                 J 1 — %n ( cos pa da . (sin pa do . 1976 I —.---- and i —y---- are found in the same •    sin nx        • sin nx .         f COS 202—i sin 03 j       ( zp^-\ dz way from     —-—.--— ax — 2 —  J sin nx               • 1 — E""


1980





Putting y = cosE+i sin x we find tan nx = i (l~yn), and therefore V(cos nx)

ydz = 2—y^’ Hence, multiplying by i, we have i cos a — sin x 7


dy

2—yn*



	
•    (cos nx)



The real part and the coefficient of i in the expansion of the integral on the right by (2021, ’2), are the values required.


	
1982
	
— tan ^tan®/b).      Subs, tang

J a cos x — b sin" x v(ab)      \     Val


	
1983
	
Jalan- = all {b log (a cosa+l sinc)+az}. [Subs. tana


	
1984
	
de. , ■ =   . 1—— tan-1 (a+b).        [Substitute cot®

J a + osin ® CC +ab)     cot 2 va


	
1985
	
f sin® cos2® -    1     \ cos a  PC , . ,

-.....  — dx — — tan (a cos x) — -—.   Substitute a COS R

J 1+a2 cos2 a     aA             a"


	
1986
	
f cos’a do          1      , _ a sin a sin a — ,

9 — 3 7   9 tan                   . [Subs, sin®

J 1 — a’costa aA C C — a")      v(1—a")    a2


	
1987
	
cos® • (1 — a? sin2®) dx = sinav(1 — a?sin?z)+ — sin- 1(a sin®).

[Substitute a sin w


	
1988
	
sin • (1 — a2 sin2 ®) dx = — |cos® • (1 —u2sin2®)

J           1—02

--— log {a cos x + • (1 — a2 sin2 a) }. [Subs, a cos a


	
1989
	
sin « (1 — asin"x) dx = — ^cos® (1 — a‘sin“«)%

+1 (1 — a2)J sin® • (1 —a2 sin2®) dx. [Subs, a cos®


	
1990
	
______dx______ _ log {(a cosec® + 5 cot®)6 tan“|®}

J sina (a+b cos a)                 a2—62


	
By
	
1         _ a— b cos a           62 sin a

sin® (a + b cos ®)    (a2— 62) sin a   (a2 — U) (a + b cos x)'





	
1991 1
	
tan® dx         1      _COS? A(b — ()

---------------- — ---------COS 1-------------—.

1 V(a+b tan2 a)   • C — a)         V b

[Subs, cos a (b — a)




1992M(a+b sin2a) dx = Vb cos-1 Mb.cose

J sin 2                      V (a + b)

— Ca log {va cot a +(a cosec2 a+b)}.

METHOD.—By Division (1912), making the numerator rational, and integrating the two fractions by substituting cota and cos a respectively.

1993 f de _ c { f dx _dx )

J a+2bcosz+ccos2a m ( J 2ccosa+b— m J 2c cos® + b + m ) ‘ where m = V{b2— 2c (a— c)}. Then integrate by (1953).


1994 J



dx       _ ( d9


(1953)



a cos a+6 sin a+e 0   (a2+62) cos @+c

METHOD.—Substitute 0 - a — a, where tan a = b. a

1

 The integral may be read " Sum a to bfi (x) dx”; J signifying li sum.”



1995



F (sin a, COS a) da a cos a+b sin a—c‘

F being an integral algebraic function of sin a and cos 2.

METHOD.—Substitute 0 = 2 — a as in (1994), and the resulting integral ,   ,      ( f(sin@, cos9) (6    ( $ (cos fl) d6 f sin 6. tens fl) takes the form ———2-------- — — — — + — ------—

J A cos 6 +B J A cos 6+B J A cos fl + B since f contains only integral powers of the sine and cosine, and may therefore be resolved into the two terms as indicated.

To find the first integral on the right, divide by the. denominator and integrate each term separately. To find the second integral, substitute the denominator.


1996



F (cos a) dx

J (a,+bi cos a) (a,+62 cos a) ... (a,+6, cos a)’ where F is an integral function of cos x.

METHOD.—Resolve into partial fractions.


Each integral will be of the




form




1997



----de---- (1951).

A — B cos a

A cos a + B sin a + C 4 ,

Cl COS a+b sin a +c

METHOD.—Let d (2) = a cos x + b sin xFc ; .'. o‘(x) = —a sin x + b cos x. Assume A cos a + B sin x + C = Xd (x) +uq‘ (x) + v. Substitute the values of P (x) and q‘(x), and equate the coefficients to zero to determine X, u, v. The integral becomes

I ‘ X + u 9 (e) q--7 ? da = Xa + u log (a) + - dx, J $ (x) $ (x) )                           J p (x) and the last integral is found by (1991).

EXPONENTIAL AND LOGARITHMIC FUNCTIONS.

1998 JeF(x) d can be found at once when F() can be expressed as the sum of two functions, one of which is the derivative of the other, for e" {$ (a) + $‘ (a) } dx = e"$ (a).

1999 J e" cos" bx dx and s e" sin" bx dx are respectively = a cos ba—nb sin ba„_,  , nfi — FFtf__ -----,— 277---e" cosM bx — -Vr^ r ^ cos 2 bxdx, a f-n-b^                    1 a2+n‘62 J


and




a sin ba—nb cos bx a2+n262




ear sin" i ba +




n(n—1)62 ("az




sin” 2bada.



PROOF.—In either case, integrate twice by Parts, ) ed da.

Otherwise, these integrals may be found in terms of multiple angles by expanding sin" a and cos" a by (772-4), and integrating each term by (1951-2).

2000 J e" sin"a cosnada is found by expressing sin"a and cos"a in terms of multiple angles.

Ex.: Ser sin"a cos’a da. Put e" = z in (768), (2i sin «)5 (2 cos a)? = (z— z=1)5 (2+21)2

= (2—2")(a?-2=2)’= (27—2*7)-3 (2"—*=5)+(=-==3)+5 (a-2=1);

26 ee sinba cos2 a? = ee (sin 7a — 3 sin 52+sin 3x+5 sin a).

Then integrate by (1999).

2001 THEOREM.—Let P, Q be functions of a ; and let

§ Pdx = Pi, 5 P^^dx = P2, J PaQ.dx = Pa, &c. Then §PQ"d» = P,Q"-nP,0-1+n (m-1) P,Q—- ... ±n P.4+1. Proof.—Integrate successively by Parts, 5 P dx, &c.

2002 THEOREM.—Let P, Q, as before, be functions of x; and


let



P,=(P), p, = (L\   P,=(%), &c. Then

\ Ka/ X           \Kx/ X^X X

(P       P          P1

JQ" ‘ (n—1) Q,Q"-1 (n—1) (n—2) Q, Q"-2

(n—1) (n—2) (n—3) QQ"=3...... n—I. Q


Proof.—Integrate successively by Parts,




(n—1) Qa

Gn




dx.



EXAMPLES.

2003               5 a"-1 (log a)" da = a" (jn_ n [-1 । n(n 1) I-2_ +(_1)n)

m \ m m2                 • m”/

pm 2m om

Method.—By (2001). P = =, P.= C, Ps = % &c.


2004

| am+nx doc =




ocm {1+na log a—} (na log a)+&c.} da,

[By (149)




and each term of this result can be integrated by (2003).




2005




( ccm 1 doc

J (log a)"




— ocm




l-n+1




ml n+2




mH n+3




n— 1 (n — 1) (n—2)   (n — 1) (n—2) (n—3)




mn 1

n — 1




'ocm lda log a "



METHOD.—By (2002). Fx = a", P1 = mxm 1, P^ = m2a"-1, &c.

The last method is not applicable when n = 1. In this case, writing I for log a,

- (oc^^doc i       , m2P , m3l3 . mH41 . , 2006 J log.=108      12* 1.2.3+1.2.3.4P+ gm -1      em log X

METHOD : —— = •— ---. Expand the numerator by (150), and inte-log x x log x grate.

See also (2161-6) for similar developments of the exponential forms of the same functions.

PARTICULAR ALGEBRAIC FUNCTIONS.


2007




dx




a"(a—1)"

1_______1

n — 2 ( (1— )n-2 xn~




n— 1 ( (1— x)




1 an-




n(n+1) ... 2 (n-1) ,    @

1.2... (n-1)    8 1—x

n being even. (1918)




dx




—------------- —__pcm

(1+a‘x2) •(1—22) V(1+a2)




[Subs. 4(1.......«2)

X




2009

2010 [




dx




(1-43) (1+28) 2log




dx




(1+48) (=1) 21og




@M2+M(1+a2)

•(1—a)

4/2+ •(z?—1)

•(1+22) '




2011



dr________= 1 sin-1 / («2(ae—bc))


ae > be

ae < be



(c+ex2) •(a+baz)   V(ace— be2) V \ aex2 + ac /

_ _____1_____10 c • (a + ba3) + x • (be2 — ace)

^(b^ — ace) °8           (c+ex?)        ’


dx____ _  2 100 • (al bxn) — Na

a • (a + bx11)   nNa °8      N xn




2012



[Subs. -.


	
2013
	
(1+22) da       1 , x N^ + NA + a1)         , a .2

J (1-2)(+= v2l06 1- • [Stbs-1-g


	
2014
	
f__(1-2) dx _ 1 . j xN^            fSubs 2.2

J (1+«2) •(1+4) N^ 1+a"          -  1+22


	
2015
	
[ W1+9)         108 va+d)+nv2 + sin- ev2 2 •


	
2016
	
• 1—«£n/283 ‘      1-4        1+965

s      adz J        1 C,    (1+24) +x 12   . 122 )

J (1—a)v(1+x4)   412 ( 8     1—a2           1+a25

Cow): (286 2—     [Substitute 1YQ+=1Y2 in (2015-6)


	
2017
	
( -----1---- = 1 log (222-1)4—2 _ 1 tan-1 A--

J (1—22) (2x2—1)      “ (2x2—1)++a         (2x2—1)




Unqepal. f. 2352—28$1 2838/ [Substitute a = z (243—1)*


	
2018
	
f    dx     ,_z

-------------------- — tan —-------—----.

J (1+24) {v(1+a4)—x3}4       {NN+x^-x2^

[Smbstitnto 0a$a-7




2019 da , = log •.+ V1-q—1, tan-1 21—4—2. [Subs. M(L-2)

J V(1— Xs)                   N3        xN3              X

2020           de, - —— reduces to (2019) by substituting - .

J (1+2) v + 32+ ox )                                   1 -- x

INTEGRATION OF a , — a" ± 1

If I and n are positive integers, and I — 1 < n;1 then, n

being even,                             5

a’ 2


329



a"+1

2021 salde = 1 log (a—1)+(-1log (+1)

+ } z cos r 18 log (a® — 2, cos *8 + 1) — 2 z sin r 1/3 tan-1 EginNgr

where 3 =, and 2 denotes that the sum of all the terms n

obtained by making r = 2, 4, 6 ... n — 2 successively, is to be taken.

■ If n be odd,-—— -        (a’-lda  1 i / .1.

2022       Ja=1 =nl8(—1) + 1 s cos 7'1/3 log(a? -2c0sr+1)-25 sin rl/3 tan-1@ : -cos"’ n                          n            sin T with r = 2, 4, 6 ... n—1 successively.

If n be even,

2023 ( 41d« = - 1 £ cos r^ log (a- 2 cos 78+1) +--2 sin rip tan 2 —.--, n                 sin rp with r = 1, 3, 5 ... n— 1 successively.

If n be odd, 2024 (e’dlde = (-1)llog (+1) • a"+1 n — — s cos rl^log(4?—2wcos,8+1)+22 sin rl^ tan"2 @—cosrB n                               n               sin rp with “=1,3,5... n— 2 successively.


PROOF.—(2021-4).



Resolve —---- into partial fractions by the method

of (1917). We have d.(a) = a—. = a", since an = = 1. The different F (a) nan~x n’

values of a are the roots of an ± 1 = 0, and these are given by x = cos r ±

2025 If, in formula (2021-4), + 22(1-73) sin rl be added to the last term for the constant of integration, the integral vanishes with a, and the last term becomes

— — 2 sin rip tan 1  --4-, n             1— a cos rp reading — in (2021-2), and + in (2023-4).


2026



( anda   1(a)n ( zm > ) a+ba” a\b) J 1+z""3

where azn = bxn. Then integrate by (2023-4).

2027 s aggm dx = At sin mr^ tan’1 a CosFB, • <x +1          n                  SinTP

where 3 = Tn, and r = 1, 3, 5, ... successively up to n—1 or n~ 2, according as n is even or odd.

2028

	
I ----,7---da = — — Z cos mr^. log (x2— 2a cos rB+1), •    C "—1           7 with the same values of r; but when n is odd, supply the additional term (— 1)m 2 log (x+1) An.



Proof.—-Follow the method of (2024, Proof).

Similar forms, are obtainable when the denominator is xn — 1.

2029

f —da = 1 - S cos (n—l) c.tan—1 2—cosp

	
•    a2"— 2a" cos 26+1 n sin n&                     sin $



— }2 sin (n — I) p.log (x2— 2a cos $+1), where $ =0+7" and r = 0, 2, 4, ... 2 (n — 1) successively. But if the integral is to vanish with x, write tan-1- ESinP—, * /QA00\                                            1 a COS d as in (2025).                                                 "

Proof.—By the method of (2024).—The factors of the denominator are given in (807), putting y equal to unity.

2030 s “(980)0 da =*: OAT 9 cos (x18+1mm) x log@‘- 2 cosrs+1) — 2 sin (r18+1mm) tan"1 " 5; nog78 } , with the values of 3 and r in (2021-4).

PROOF.—Differentiate the equations (2021-4) m times with respect to I, by (1427) and (1461-2). If m be negative, integrate m times with respect to I, and the same formula is obtained by (2155-6).

In a similar manner, from (2027-8) and (2029), the general terms may be found for the integrals

2032

({a"‘±( — 1)Pa"=n:1} (log a)” J, ana ( a‘-1 (log x}mdx

J          a”—L1              an J 227— 2a" cosn@+1

INTEGRATION OF § a"(ax+ba") doc. m -_ 1

2035 RULE I.—When —— is a positive integer, integrate

1

by substituting z = (a+bxn). Thus

p 0       / q_ \m+1 1 a" (a—ba”) I doc = - I z+a-1(2 n dz. no •       \ b /

Expand the binomial, and integrate the separate terms by (1922). 2036 But if the positive integer be 1, the integral is known at sight, since m then becomes = n—1.

2037 RULE II.— When m-1 + P is a negative integer, 1 n q substitute z = (axn+b)9. Thus

	
1    a” (a+ba”)t doc = — - I zp+a-1----) n I dz. •                      na J \ a / Expand and integrate as before.



2038 But, if the negative integer be —1, the integral is found immediately by writing it in the form

I x • (ax" +6)° dx = 2 " 1(ax n-\-b'')qdx

= —I--- (ax~njc-b')q+1-na {p — g)

Examples.

2039 To find Sa* (1+23)" dz. Here m=}, n=^, p = 2, q=3, m±l = 3, n a positive integer. Therefore, substituting y = (l+xt)}, x = (y— 1)2, Ey = 6y2 (y‘—1), and the integral becomes

f (y‘—1) yd"dy=6 / (—1)2 dy, the value of which can be found immediately by expanding and integrating the separate terms.

2040            I 23 (a+b24)+ dx = 3. {a + bx^.

F or 74 1 = 1 (2036) ; that is, m + 1 = n, and the factor 23 is the derivative n

of 4a4.

2041(1 + Ma) dx, or 2 $ (1+23)3 dz. Here m = — 4, n = }, p = 2, J as                 J

q = 3, m +1 + 2 = — 2, a negative integer. Therefore, substitute n 4

y = (a +1)}, x = (y— I)-2, a, = — 6y2 (y— I)’3. Writing the integral in the form below, and then substituting the values, we have

J a-2 (=1+1)1 ^ydy =-6§y (y3—1) dy,

which can be integrated at once.

2042 f — da— = a-1 («+b.)-1 dx. Here m+1 + 2. = — 1; J x {a-[-bxn) J                               n q

therefore, by (2038), the integral

= a-n-1 (az-1+b)-1 dx =--1 log (ax~n+ b).

na

REDUCTION OF § an {a + ba")P dx.

When neither of the conditions in (2035, 2037) are fulfilled, the integral may be reduced by any of the six following rules, so as to alter the indices m and p, those indices having any algebraic values.

2043 I. To change m and p into m+n and, p —1.

Integrate by Parts, J xm dx.

2044 II. To change m and p into m—n and P+1.

Integrate by Parts, Jxn-1 (a+bx")P dx.

2045 III. To change m into m+n.

Add 1 to p. Then integrate by Parts, J xm dx; and also by Division, and equate the results.

2046 IV. To change m into m—n.

Add 1 to p, and subtract n from m. Then integrate by Parts, Jxmdx; and also by Division, and equate the results. 2047 V. To change p into p+1.

Add 1 to p. Then integrate by Division, and the new integral by Parts, J xh-1 (a+bx")P.

2048 VI. To change p into p —1.

Integrate by Division, and the new integral by Parts, § xh-1 (a+bx")P.

2049 Mnemonic Table FOR the same RULES.


	
I.
	
m+n, p — 1
	
By Parts (m).


	
II.
	
m — n, p + 1
	
By Parts (p).


	
III.
	
m+n
	
(p + 1), Parts (m) and Division.


	
IV.
	
m — n
	
(p+1, m — n), Parts (m) and Division.


	
V.
	
p + 1
	
(p + 1), Division, and the new integral by Parts (p).


	
VI.
	
p-1
	
Division, and the new integral by Parts (p).




By applying the rules, Formulae of reduction are obtained. Thus, any of the six values below may be substituted for the integral            {FfapbDfpdw.             . •


2050-2055




	
I.






om+±1




wm+n (aA-bjcn)v 1 dw. /282




	
II.






	
III.






	
IV.






an"f(a—ban)21 bn (p+1)

wm+1 (a+ ba")p±1 a (m+1)

am-ntl(a+ba")p+1




7.7— a”-n(a+ba")”+lda. n^ju bn(pA-l) J




wm+n (a + bwnf dx/2yV




a (m — n+1) b (m+np+1)




Fn~n




VI.




x \aAbFr   m-

an(pA-l) e

xm+1 {a + bF1} P      an n




/799 a" (a+F bxnf+x da.ReL uyp—1 dw. /2801



EXAMPLES.

2056 To find J V(d , 82 dx. Apply Rule I. or Formula I.; thus

Sa=3(a?—22)dz =-}==2(a‘-2?)++1 Sanl(a?—2)ldz (1927).

2057 To find -———, dx. Apply Rule II. or Formula II.; thus J (u2—®^)^

Sa* (a?—a)=Ida =4% (a?—=)=13 S«2 (a3—2)-+dz (1934).

2058 J cosec"@ de. Substituting sin 0 = a, the integral becomes sin-me de dx = f x~m (1 — 22)-} dx.

dx J

Apply Rule III.; thus, increasing P by 1 and integrating, first by Parts § x~m dx, and again by Division; x~m (1-qy dx = -——(1—a3) + 1—c2-m (1— 43)—idz,

	
1    — m     1—m J x~m (1—a?) dx =x~m (1-22)-} dx— «2-m (1-22)-+ dx.



Equating the results, we obtain

2059 a-m (1-23)-ld = a" (1-23)+2—m 42-m (1-23)-+dz. J                 1 — m         L_m j

By repeating the process, the integral is made to depend finally upon «-1 (1-)" dx or(1 — «)"1 dx, according as m is an odd or even integer (1927, ’29).

2060 J sinmO de is found in a similar manner by Rule IV. The integral to be evaluated is Jam (1—a2)Ida ; and the integral operated upon is sam-2 (1—x^dx. Otherwise apply Formula IV. See also (1954).


2061




To find




dx

(=2+ a?y




Apply Rule V. p = —r, and increasing p by




1, we have, first, by Division,

J (+ a3)1—r dx =«3 (x2 Aa2)~r dx + a2(2+a3)="dz.

Integrating the new form by Parts, J x (x2 + a2)~r dx, we next obtain [ « (x’ + a^-'dx = ^^XF “ 24-75 f (3+a6y—ras.



Substituting this value in the previous equation, we have, finally,

2062 dx _         a          .   2r—3   | dx

(x^-y^y 2(r—1) a‘(a?+a‘)r-1 a‘(2r—2) J (a4+a?)™-1

This equation is given at once by Formula V. Thus r is changed into r — 1, and by repeating the process of reduction, the original integral is ultimately made to depend upon (1935) for its value if r be an integer.

Another formula for this integral is

9009 f da _   (—1) 1 d‘ 1 ( 1 tan"1 a \

J ~ i. 2... (r-1) WB a VB/

PROOF.—Write (3 for a2 in (1935), and differentiate the equation 7-1 times for ft by the principle in (2255).

2064 To find § (a?+22)!” dx. Apply Rule VI. By Division, we have (a3 +x)"n dx = a’ (a‘+a2)1-1 dx +a(a‘+«)1n=1d.v.

The last integral, by Parts, becomes

I ^ (i^ + x^y^dx = — x (a?+43)4n - 1(a?+43)4n.

J                       n                  n J

Substituting this value in the previous equation, we obtain

2065 ((a3+4Bynd. - a(a + )--L na? ( (c3+4P)M-1d2, •            n-1    7— J a result given at once by Formula VI.

If n be an odd integer, we arrive, finally, by successive reduction in this manner, at § (a2+a2)* dx (1931).

2066 The integral J sinm@ cosp0d0 is reducible by the foregoing Rules I. to VI., if, in applying them, n be always put equal to 2; if p be changed into p + 2 instead of p + 1; and if Division be always effected by separating the factor cos20 = 1 — sina0.

Proof. § sin" 9 cos” 6 dB = ^ xm (1 — «?)*©-1) dx, where x = sin 0. Thus n = 2 always, and the index 2 (p— 1) is increased by 1 by adding 2 to p.

Thus, Rule I. gives the formula of reduction

2067

sin"@cospede — sin"*16 cos” 1642-1 Gsinm42@ cosp-sede. •              m-1     m—1.

But the integral can be found by substitution in the following cases :—

If r be a positive integer,

2068 J cosertla sin’ad. = J(1-z)"zPdz, where z=sinz.

2069 sin?"tla cosPada = — I (1—22)"zPdz, where z = cose.

If m+p = — 2r,

2070 sine cos” a dx = I (1+%)" ^^dz, where z=tanz.

FUNCTIONS OF a+ba—L ca2.

The seven following integrals are found either by writing 2071 a+b+az = {(2cz+6)?+4ac— 68} + Ac, and substituting 2cx + b ; or by writing

2072 a+bz— ex2 = {4ac+b2— (2cx— 6)2} + 4c, and substituting 2cx—b.

9079  ( da —    1 i . 2ca+b—(b2—4ac) J a+ba+cat  V(b‘— 4ac) °8 2cx+b+ V(b- 4ac}

	
2    141  2e^+b or ^(^ac-V) a“ ^(iae-b1)’ according as b? > or < 4ac (2071, 1935-6).



907A c da _ 1 1 •(b%+4ac)+(2cz—b)

J a+ba—cx2 b2+4ac V(b‘+4ac)— (2c^—b\

(2072, 1937)

2075

	
I ——da—,= log {2c0+b+2/c (a+ba+c?)}. • v(d-ba-ea") VC -    ( d^c         1   • _1 2ca b



2076   1 ———----, = — sin —771 19.

	
	
• v(a+ba—ca") vc v(4ac+b)





(2071-2, 1928-9)

2077 s x/(a-\-b.r-i-c^) d. = Lc I s •(y‘+4ac-b) dy. 2078 s (a-bx-cx®) dx = le" § •(Aac+8—s) dy^ where y = 2ca — b. The integrals are given at (1931-3).

00P0    (_____da_______92p-1 7—1 ( ^y J                       • (y‘+4ac—b2)P

[By (2071), the integral being reduced by (2062-3).


2080

I I

” 2c J



(la+m) dx (a+ba+ca2) (2ca—b) da    /     bl\ ( da (a-^-b^-Yc^y ‘   2c) J {a-ybx-^-^y'

The value of the second integral is (a+ba + cx2)1-P : (1— p), unless p=1, when the value is log (a +ba+ ex2). For the third, see (2079).

METHOD.—Decompose into two fractions, making the numerator of the first 2ca+b ; that is, the derivative of a/-bx + ox2.

2081 (- Pe +9—- dx may be integrated as follows :— • a+ba2+cat •      6

	
I.    If 62 > 4ac, put a and 3 for —b±v(b---4ac), and, by Partial Fractions, the integral is resolved into e(algy?Seg±a dr—Sz£± ar}. <■»>


	
II.    If b2 < ^ac, put — = 72 and 2v(ac)—b = m^3 and the c                    c integral may be decomposed into



2082 1$((-p)a+qmaa L ((-p)a-qm 3, 2mnc C J x + M0 + n      • oc—M2—n> the value of which is found by (2080).

	
III.    If b2 = 4ac,



2083 s— dr-- = ,—_ tan-1(a/ b). (2062) J a-^b^-yceV4, 2a-\-b^2~ y/(2ab)     \ V 2a/

2 x

a do


2a



a + ba2 + ca     b (2a + b^)'

a’da        2a 5   1    + -i

a+ba”+ca* = b (2ab) ten

, REDUCTION OF § a™ (a + bx11 + ca?")P dx.

Note.—In the following Formulae of Reduction, for the sake of clearness, am (a+ba"+cx?n)P is denoted by (m,pf and the integral merely by J (m, p).

2086

(1).


2087



bn{p-\-V) I (m, p) = (m—n+1,p+1)


. —(m—n




m— n,p+1) — 2cn




2088

— (m



2cn(p-\-l) | ^n,p) = (m-2n+1, p+1)

—2n+1) s (m-2n,p+1)-bn(p+1)§ (m- n,p) .,.(3).

2089

(4).

2090

(5).


2091 b(

— a (m— n




m—n, p)—c




(6).



2092 bn (p+1) J (m, p) = — (m- 241, P+1) +(m+2np+n+1) I (m— n, p+1)— 2an (p+1)(m—n^p) •                                  • ......(7).

2093   cn(p-^-l) | (m, p) = (m—2n+1, P+1) +an(p+1) ! (m—2n, p)—(m+np—n+1) |(m— 2n, p+1) •                                  •             (8).

2094 an (p+1) J (ni, p) = -(m+1, p+1)

+(m+np+n+1) j (m ,p +1) + cn {p +1) s (m + 2n,p)... (9).

2095 2an (p—1) J (m, P) = — (m+1, P+1) +(m+2np+2n+1) | (m, p+1)— bn (p+1) ) (m-[-n, p)

•                                      (10).

2096   a(m+1) J (m, p) = (m+1, P+1) —b(m+np+n+1)(m+n,p)—c^m-^^np-^^n^X^^m-^-^n^p)


2097 c



(m+2»p+1) J(m, p) = (m- 2n+1, p+1)

—b(m-\-np—n+1) ( (m— n,p) — a(pn— 2n+1) I (m— 2n,p)

•                             • ......(12).

Proof.—By differentiation, we have 2098

5 (m,p) = m) (m— l^^Fbnp s (m + n—l,p — l) + 2cnp j (m +2n— 1, p — 1).

Formula (1), (2), and (3) are obtained from this equation by altering the indices m and p, so that each integral on the right, in turn, becomes 5 (m, p).

Again, by division,

2099  §(m,7) = a ^m,p— 1) + b s (m+n,p — 1) +c^(m + 2n,p~ 1),..(A).

And, by changing m into m—n, and p into p +1,

(8), from (4), by changing m into m—2n, and 2 into p+1 ; (9), from (4), by changing p into p+1; (10), from (5), by changing p into p+1 ; (11), from (6), by changing m into m+n; (12), from (6), by changing m into m—n.

If a and 3 are real roots of the quadratic equation a+ba"+ca2n = 0, then, by Partial Fractions,


	
2101
	
("dr _   1   { C ocmdoc F ocmdoc .

J a+ba"+ca?n = c (a—3) U a"— a J a"—s 5 ’




and the integrals are obtained by (2021-2). But, if the roots are imaginary,


	
2102
	
f a"da _ 1(a\i G"dz

J a+ba"+ca2n a\c) J1—2z" cosnf+z2"'


	
where
	
cose = — _—b—_ and z = (c)2e.

2v(aC)            \a /


	
2103
	
^a+t^piS reduced to (2070-80) by (2097).


	
2104
	
(          da               ( dy

J {oc^h)^/^a-Yboo-^-ca^) =   J (A+By+Cy‘20


	
where
	
y = («+1)-1, A = c, B^b — SiCh, 0 = a—bh^ch2.


	
2105
	
da        1     _1—ha    1    —1—ha

J (x+h) va‘— 1 1— h3 a+h vh2—1 x+h


	
2106
	
f----da .......... =..... 1 sin'11+1            [By (2181).

J (z+h) v1—x2 Vh^-1 a+h




METHOD.—Substitute (x+h)-1, as in (2104). Observe the cases in which h=1.

9107 (_________da________ _ _ (____y” ldy____

J (a+h)"(a+ba+ca2) J V(A+By+Cy’)’

with the same values for A, B, C, and y as in (2104). The integral is reduced by (2097).


2108



(loc-\-m) doc

(a2 +32) V(a + ba + ca?)

Method.—Substitute 6 by putting a = 3 tan (6+), and determine the constant y by equating to zero the coefficient of sin 26 in the denominator. The resulting integral is of the formLcos@+M sin 6 fid.

8    8                J (P+Q cos 20)

Separate this into two terms, and integrate by substituting sin 0 in the first and cos 0 in the second.


2109



p (w) dx

F (a) V (a + ba + ca2) ’ where $ (x) and F (x) are rational algebraic functions of a, the former being of the lowest dimensions.

Method.—Resolve F(e) into partial fractions. The resulting integrals are either of the form (2107), or else they arise from a pair of imaginary roots


of F (x) = 0, and are of the type



—----„(As+B)dr,----,. Substitute {(a — a)2+2} • (a+ba + ca2)

a — a in this, and the integral (2108) is obtained.

INTEGRATION BY RATIONALIZATION.

In the following articles, F denotes a rational algebraic function. In each case, an integral involving an irrational function of a is, by substitution, made to take the form 5 F (z) dz. This latter integral can always be found by the method of Partial Fractions (1915).


F 3 an.



4 /a+b^y & ? ,

	
9 5 J 9 CO. ( Uc • f+ga) )



Substitute d—bx = zl, where I is the least common de-J+ge

nominator of the fractional indices; thus,


x = •----- b-gzl




dx_lzl 1 (bf—a




dz




g) (a+ba\a_

\f+gx)




lp

z", &c.,



the powers of z being now all integral.


X^F




~mn




(a+ ba" ‘ f+ga"




% (a-\-^n' ‘ \f+ga”




8, &c. ( dx.



Reduce to the form of (2110) by substituting a".

2112 | F {(a+v m^-}-n)} dx.  Subs. v(a+ 1mx+n)

2113    F{^}   (ba-cw?)} dx. Substitute =-.

	
	
•                                                % — c





And therefore .(ba + cx^ = 4z, de = — ■ ,20%.,.

Z"Hc dz (2"Fc)2

2114 J F {a, v(a+ba+ca2)} da.

Writing Q for a+ba—cx2, F may always be reduced to the form A-BvE, in which A, B, G, D are constants or rational functions of a. Rationalizing this fraction, it takes the form L+M • Q. Thus the integral becomes Ldx+MvQdav, the first of which two integrals is rational, while the second is equivalent to is of the form in (2075).


Me dx, which v Q




2115 OTHERWISE.—(i.) When c is positive, the integral may be made rational by substituting




a—cz2

• = 2cz — b




dx _ 2c (bz—cz^—a) dz (^cz — b)2




•(a + bx + ex2) = Fc




a—cz2 ,

202-6+*



(ii.) When c is negative, let a, 3 be the roots of the equation a + bx—ca‘== 0, which are necessarily real (a, b, and c being now all positive), so that a + bx—ex2 = c (x — a) (3—x). The integral is now made rational by substituting

caz2 + A da 2 (a—3) CZ ,    9.   (3 — a) cz

CZ2 + 1 dz (cz2 + l)2 ’                 J cz+1 In each case the result is of the form J F (z) dz.

2116 J «"F {a", • a+ba"+cadn} d^t when ms - is an integer, is reduced to the form (2114) by substituting a".

2117


| F {a, • (a+bz), • (fA-g^)} da.



Substitute 22 = d-bx, iAg^

INTEGRALS RERUCIRLE TO ELLIPTIC INTEGRALS. 343

—           a—      /izv(ag— bf) and, therefore, 2 = —, *,     (C-02) = —7",—73 g^—b               \/(9^ —b)

) _ . _ V^I-bf} da _ 2 (bf-ag) z

^{gz2_b^   dz     (922—b)2 '

The form ^ F {z, V'(g^-b)} d^ is obtained, which is comprehended in (2114).

2118 J F’lF {a", •(a+b’a®"), ba"±V(a+b‘a3)} da, when ns is an integer, is reduced to the form S F (-) dz by substituting z = bxn ± • (a+b2a2n), and therefore
[image: ]

P

a" (ciF^F1) I F ^n) dx is rationalized by substituting either (a+bax")7 or ^ax~nFbY according as " 7 or " 71 + 7 is integral, whether positive or negative.

a"-1F{om, a", (a—ba")I} da, when — is either a n positive or negative integer, is rationalized by substituting (aFbxny.

INTEGRALS REDUCIBLE TO ELLIPTIC INTEGRALS.

2121    ( F {a, •(a+ba+ca+da+ex)} da.

Writing X for the quartic, the rational function F may always be brought to the form + 2 MX, and this again, by rationalizing the denominator, to the form

M+NvX, where P, Q, P', Q', M, N are all rational functions of a. J Mdx has already been considered (1915).

[image: ]

, CR dx dx or ) VX‘





where R is rational.



By substituting « = 147", and determining p and I so that the odd powers of y in the denominator may vanish, the last integral is brought to the form


2122



Rdy •(a+by‘+cy‘)

R being a rational function of y, may be expressed as the sum of an odd and an even function; thus the integral is equivalent to the two


2123



yF^y^dy ( F^ (y2) dy x/{ci+by2+cy^'t J ^/(a-Pby'Pcy^'

The first integral can be found by substituting • y.

The second, by substituting —for y2, can be made to C -I Clel depend upon three integrals of the forms

[image: ]



•1-ka? da

•1 —a? ‘

dx

(1 + na2) VI —02.1 — k2

By substituting p = sin 1 a, the above become

	
2125   “ - do., (1-lsin*p do, •    v1—k" sin’•



C do

	
•    (1+n sin?) VI- R sin*$



These are the transcendental functions known as Elliptic

Integrals. They are denoted respectively by

2126   F(k,^,     E(k,^,     U{n,k,^.

APPROXIMATION'S TO F (Ji, 4) AND E (Ji, p) IN SERIES.

When k is less than unity, the values of F (k, ) and F (Ji, «), from the origin 4 = 0, in converging series, are , . , ,k2 1.3. k* ,  1.3.5.16 , , 2127 F (Ji, $) — $ 22 4+ 2 4 2344 2.4.6 25 461*

...—(—1)’".....----- 2—An, &C. ‘    7    2.4.6 ... n 2" 1

.  , , k2 , 1.k4 , . 1.3.76 ,

2128  E (k, %) — $+ 22 A,  2 4 25 44+ 2 4 6 25 46 ••


where

A,=sin,2£-4,




+(—1)+n*1




1.3.5 ... n—3 kn A

2.4.6..n 2n-1




&c.,




[n being an even integer.



sin 46  4 sin 20 , 4---2— OP, sin 6p 6 sin 4 15 sin 2c 6*6    4  +  2

A _ sinnd n sin(n—2) $ C (n, 2) sin (n— 4) $ " n      n—2   " n—4 _ C(n, 3) sin (n-6) $4 ... +(-1)!- ic (n, In) 4.

Proof.—In each case expand by the Binomial Theorem ; substitute from (773) for the powers of sin d, and integrate the separate terms.

The values of F (Ji, $) and F (Ji, $), between the limits $ = 0, p = 27, are therefore

2129

pj, 7) = 7 {1+(3)*1+(}-3)1+(}-3-5)*18+&c. 5.

2130


E(*,2)=2




77




2131

F(k,




But series which converge more rapidly are




1.3.5 V

2.4.6)



2132

TT\ T ( /1\2      1 ¥      1.3 ¥ e । 9  1

E (h, 2)=2(1+n)1+(2)n +(2.4)n +(2.4.6)n +8c.


where



1—(1—k2)

1+.(1—k2)°


2133




F (x) da

V(a+ba— ca2 + bF + aF) ’




when F (x) can be ex-



pressed in the form (z—f( x ---), is in

1 \ 2 / \ 2 /

substituting 2---.

If b is negative, and F (x) of the form (a-—

1e

substitute x--.


2134



	
•    (a + ba + cF + dF + cF + bF + ax€)


Substitute




Hence




dx




+1

J

1




dZy





and the integral takes the form

(_PQ2-4____ V2+2-12-2ds,

A [a {F—3F)-Fb ^—^-FczFd}   2 •2-4

where P, Q are rational functions of z. Writing Z for the cubic in z, we see that the integral depends upon

( Pdz .   (Q(z±2) dz

J VZ(z±2)       • vz^±2y the radicals in which contain no higher power of z than the fourth. The integrals therefore fall under (2121).


2135



F (a) dx________

(a+ba?+ca‘+ bxG+ax^) ’

Expressing F (x) as the sum of an odd and an even function, as in (2123), the integral is divided into two; and, by substituting x2, the first of these is reduced to the form in (2121), and the second to the form in (2134) with a = 0.


2136




F (x) doc




V(a+ba— ca2 + dF}



Put x = y — a, a being a root of the equation a — bx + ex2 + dx5 = 0; and, in the resulting integral, substitute zy for the denominator. The form finally obtained will be

1

 If l = n, the value of the integral is simply — log (xn—1).

2

 sin r, with odd or even integral values of r. (See 480, 481; 2r and 2r+1 of those articles being in each case here represented by r.) The first two terms on the right in (2021) arise from the factors a ± 1; the remaining terms from quadratic factors of the type

(x — cos r/3 — i sin rB) (a— cos r3 + i sin r/3) = (x— cos 7)2+sin2r.

/ These last terms are integrated by (1923) and (1935). Similarly for the cases (2022-4).


§(P+Q • a+B: ) dz,

which falls under .(2.1 34), P and Q being rational functions of z.

9197               ( F (x) da J V^boc2+cFY

Expressing F{x) as the sum of an odd and an even function, as in (2123), two integrals are obtained. By putting the denominator equal to z in the first, and equal to xz in the second, each is reducible to an integral of the form

s (P + Q • a+8:7) dz, which falls under (2121).

2138 S71", =-"(} 4) C-ppua! can. 2139      (-Ar=1r(1,.6)

	
•    v1-a* A A /



Proof.—Substitute costla in (2138), and 2tan-la in (2139).

2140

da 2/ l^a ,\    /24//b,\

V(2ur-a*)(6—x) =vo"6‘%) or V a FN 2a‘ 4) according as b is > or < 2a.

Proof.—Substitute accordingly, a = 2a sin2 d or a = b sin2 p.

2141 f_______da________ _   2__F(. a—b g).

JV(a—a)(a—b)(a+c) v(a+c) Ua+c’*)

Proof.—Substitute a = a—(a—b) sin2 p, a being <a and >b.

SUCCESSIVE INTEGRATION.

2148 In conformity with the notation of (1487), let the operation of integrating a function v, once, twice, ... n times for a, be denoted either by

I v, I v,... v,   oi by d_z, d_ 27 ••• d_n, ex e)2x • nx the notation d_, indicating an operation which is the inverse of dx. Similarly, since yxi 225 y^ &c. denote successive derivatives of y, so y_x, Y-22, Y-32, &c. may he taken to represent the successive integrals of y with respect to x.

2149 Since a constant is added to the result of each integration, every integral of the nth order of a function of a single variable a must be supplemented by the quantity

“4—+“4+..+a,a+a,= 0, 2—1   2—2                Jnx where a, a23 a3 .•• a, are arbitrary constants.

Examples.

The six following integrals are obtained from (1922) and (1923).

When p is any positive quantity,


na




p7+n




" (p+1)(p+2) ••■ (p+n)



When 2 is any positive quantity not an integer, or any positive integer greater than n.


2151 (1 =

J nx O




(p—1)(p—2) ... (p—n)al




0.

nx



When p is a positive integer not greater than n, the following cases occur—


2152




( 1 _ (-1)71 Jp aP p—l

1   (-1)p-1 1




loga— 0.

• px




(»+1) X aP      p—1




0,

e (p+1) X



2154 s lends" (wloga)—} +6  0.

	
	
• (2+r) x X P—1 \.J^r—1) a             I 7 ) G {p+r)x





For the integral within the brackets, see (2166).

The following formula is analogous to (1461-2)

2155   ( sin a=1 sin 2 (—11m)+ ( 0,

Jnx COS )       a” COS)2Jna

SUCCESSIVE INTEGRATION OF A PRODUCT.

Leibnitz’s Theorem (1460) and its analogue in the Integral Calculus are briefly expressed by the two equations

2157 D.(uv) = (d,+8.)"uv, DL(uv) = (d,+8)—"uv; where D operates upon the product uv, d only upon u, and 8 only upon v. Expanding the binomials, we get

2159 D.(uv) ==u,® +nu-1.e, +"(n-1u,-2,%%, +&c.


2160 D_nx{uv) =unv— nu-(n+1)a®



_(n+1), . . , _%e

। 1.2 "- (n+2)s “2x —x*

PROOF.-—The first equation is obtained in (1460). The second follows from the first by the operative law (1483) ; or it may be proved by Induction, independently, as follows—

Writing it in the equivalent form

	
G. f , n (n+1) f      o ..



I (I0) — uv—n UVa--—-—-      UV2 — &c.......(i.),

Jnx          J nx         J (n + 1) X           1.2 J (n+2)x make n = 1; then (uv) = uv— uv+ ......................... (ii.),

Ja J x J 2x J 3x

a result which may be obtained directly by integrating the left member successively by Parts. Now integrate equation (i.) once more for a, integrating each term on the right as a product by formula (ii.), and equation (i.) will be reproduced with (n+1) in the place of n.


2161

2162



e“"a" = eax (a + d.) n^m — 0.


Or, by expansion,

am-2—&c. 2+ 0.

) J nx



nx                           Jnx eaxa,m _ ear Gm  M -1 _ n(n+1) m (m—1) na a” (      a              1.2a2

If m be an integer, the series terminates with ( — 1)“ n'")—: a™.

Similarly, by changing the sign of m,

2163

e"2 _ e": { 1 . nm . n(n+1) m(m+1) 4&0)4s 0

J nx xm an lam axm+1 lAah^2         J Jnx

PROOF.—Putting u = ear, v = a" in (2158), the formula becomes

| eaxxm = (d,+3,)-nedzam = (d,eQ.+e03,)-74m = ed. (a+3,)-"am.

J nx

Here eax is written before Za within the brackets, because 3 does not operate upon eax. Observe, also, that the index —n affects only the operative symbols dx and ^j but it therefore affects the results of those operations. Thus, since dxeax produces aeax, the operation dx is equivalent to aX, and is retained within the brackets, while the subject ed", being only now connected as a factor with each term in the expansion of (a+3)-7, may be placed on the left.


	
(              pax

2164 I eda" dx = —

•            a
	
§am—Mam-14m(m; 1) am-2—&c.?

Ca          )


	
2165 . dx^^
	
(1  m  1 m(m+1)_ & ?

2 gem 1 aom+ 1 1    C 2,m+ 2          §




Proof.—Make n=1 in (2162) and (2163).


2166



a®(loga)" = e(ptn)"am.


[Subs. log x.



nx               J nx

Hence the integral of the logarithmic function may be obtained from that of the equivalent exponential function (2161).

For another method, see (2003-5).

HYPERBOLIC FUNCTIONS.

2180 Definitions.—The hyperbolic cosine, sine, and tangent are written and defined as follows :—

2181       cosh a = 1 (e"+er) = cos (ia).            (768)

2183      sinh & =} (e®— e-r) = —i sin (ix).

2185     tanha = es—ess =itan(ia).        (770)

By these equations the following relations are readily obtained.


	
2187

2191
	
cosh 0=1; sinh 0 = 0;   cosh C = sinh @= %.

cosh2a—sinh2a = 1.


	
2192

2193
	
sinh (a+y) = sinh a cosh y— cosh a sinh y. cosh (x—y) = cosh a cosh y— sinh a sinh y.


	
2194
	
1 tanha—tanh y tanh(a--Y) = ———-)—.

1 — t anli 0 tanh y


	
2195

2196

2197
	
sinh 2x = 2 sinh a cosh a.

cosh 2a = cosh2a—sinh2a.

= 2 cosh3 a- 1 = 1+2 sinh?a.


	
2199

2200
	
sinh 3a = 3 sinh a+4 sinh3 a.

cosh 3a = 4 cosh3 a— 3 cosh a.


	
2201
	
tanh2, = 2tanha


	
2202
	
, -   3 tanh D — tanh3 a

tanho — —-————--.

1+3 tanh"a


	
2203
	
. , a /cosh a — 1       , a /cosh a—1

sinh — = V--9--; cosh— = V --9—


	
2205
	
, i a     /cosh z— 1   cosh a—1     sinh a

tanh— = 1  -— = ——--=  -.

A * cosh 2—1 sinh o    cosh 2—1


	
2208
	
, 1+tanh2la . , 2tanh }a cosh a = ————— ;   sinh a = -—,——3 —.

1 — tanh’za              1—t anh2 20




INVERSE RELATIONS.

2210 Let u = cosh a , .. a = cosh la= log (u+ vu2— 1).

2211 v = sinh a, • • a = sinh 1.= log (v+vv2+1).

2212 w = tanha, := tanh-lw = }log(]±t).

GEOMETRICAL INTERPRETATION OF tanh S.

2213 The tangent of the angle which a radius from the centre of a rectangular hyperbola makes with the principal axis, is equal to the hyperbolic tangent of the included area.

Proof.—Let 9 be the angle, r the radius, and S the area, in the hyperbola a2 — y2 = 1 or 72 = see 29; then

re

S = 2 sec 20 de = 2 log tan (47+0).           (1942)

Therefore 628 = 1+ tan 0 ; therefore tan0 = ^—6 = tanhS.    (2185) 1—tand                     es+le-8              v •

VALUE OF THE LOGARITHM OF AN IMAGINARY QUANTITY. 2214    log (a+i) = {log (a?+63)+itan-ib .

C

Proor— log (3483y = log V —8 = i tan" & By (771).

DEFINITE INTEGRALS.

SUMMATION OF SERIES BY DEFINITE INTEGRALS.

2230 Sf(x) d= [f(a)+f(a+da)+..+f(a+ndx)] dx, where n increases and dx diminishes indefinitely, so that ndx = b~a in the limit.

2231 Ex. 1.—To find the sum, when n is infinite, of the series 1   1   ----- 4  —. Put n=; thus, n  n+1 n—2      7+7          dx da + dx +  dx +......+4 =— = lOg 2. a a+ dx a+2da         2a J a a 2232 Ex. 2.—To find the sum, when n is infinite, of the series —n--1--—--1--7--p....... ,        Put n = 1, then n2+12 73+22  22+32    "n2+n2           dx’ da__I__da____    +___dz---= C dz, = i (1935) 1+(da)21+(2dx)2T...... 1 + ^ndxf Jo1+a2 4

THEOREMS RESPECTING THE LIMITS OF INTEGRATION.


2233




(x) dx =

0



°d

o (a — w) do. [Substitute a—x. o


2234



[image: ]



or zero, according as p(x) = ± $ (a—a) for all values of a between 0 and a.


Ex.—




sin a d = 2

0




7

2 sin xdx.

o




cos a dx = 0.

o



If $ (x) = $ ( — a), that is, if p(x) be an even function (1401) for all values of a between 0 and a.

Given a < c < lo, and that x — c makes $ (x) infinite, the cb value of $ (x) dx may be investigated by putting u = 0, after integrating, in the formula

(b (c-u (b 2240        $(x) doc = 1   $ (oc) doc-]-1 $ (oc) doc. Oa          .       • a                   tCc+fj.

If the function $(x) changes sign on becoming infinite, this expression, when u is an indefinitely small quantity, is called the principal value of the integral.

	
2 z


Ex.—





[1 de = -H de [1 da _ _ 1 1 _ 1 1 J-1 x3 JA1a8TJuas 2/+ 2  22u3 which is the principal value. If, however, u be made to vanish, the expression takes the indeterminate form co — co.

2241 Given a < c < b, the integral I V() de


will always be



Ja (2— C)" finite in value while n is less than unity.

PROOF.—Let u in (2240) be taken so near to c in value that J (x) shall remain finite and of the same sign for all values of a comprised between c - u. Then the part of the integral in which the fraction becomes infinite, c+u dr


and which is omitted in (2240), will be equal to



79 multiplied by - c-u V

a constant whose value lies between the greatest and least values of 1 (x) which occur between 1 (c—u) and 1(c+u). By integration it appears that the last integral is finite in value when n is < 1.

2242     ( f(x)dx = (b—ajfla + Otb—a)},

	
	
• a





where 6 lies between 0 and 1 in value.

The equation expresses the fact that the area in (Fig. 1901), bounded by the curve y = f(x), the ordinates f (a\ f(b), and the base 1) — a is equal to the rectangle under b—a and some ordinate lying in value between the greatest and least which occur in passing from f (a) to f (b).

If 1 (a) does not change sign while a varies from a = a to a = b,

2243 I f(a) y (a) da —/{^-^-^(b—a)} f v (a) do.

METHODS OF EVALUATING DEFINITE INTEGRALS.

2245 RULE I.—Substitute a new variable, and adjust the limits accordingly.

For examples, see numbers 2291, 2308, 2342, 2345, 2416, 2425, 2457, 2506, 2605, &c.

2246 RULE II.—Integrate by Parts (1910), so as to introduce a known definite integral.

For examples, see numbers 2283, 2290, 2430, 2453, 2465, 2484-5, 2608-13, 2623, 2625, &c.

2247 RULE III.—Differentiate or integrate with respect to some quantity other than the variable concerned; if a knoion integral is thus obtained, evaluate it, and then reverse the operation of differentiation or integration before performed with respect to the secondary variable.

For examples, see numbers 2346-7, 2364, 2391, 2417, 2421-4, 2426, 2428, 2497-8, 2502-4, 2571, 2575-6, 2591, 2604, 2614, 2617-8, 2632, &c.

2248 RULE IV.—Substitute imaginary values for constants, and thus transform the expression into one capable of integration.

For examples, see numbers 2490, 2494, 2577, 2594, 2598, 2603, 2606, 2615, 2641-2.

2249 RULE V.—Expand the function, if possible, in a finite or converging series, and integrate the separate terms.

For examples, see numbers 2395—7, 2402—3, 2418—9, 2479, 2506, 25 71, 2593, 2598, 2614, 2620, 2625, 2629, 2630-2, 2639.

2250 RULE VI.—Decompose the integral into a number of partial integrals, and change all these by some substitution into integrals having the same limits. By summing the resulting series, a new integral is obtained which may be a known one.

For examples, see numbers 2341, 2356-61, 2572, 2638.

2251 RULE VII.—Separate the function to be integrated into two factors, and replace one of them by its value in the form of a definite integral taken between constant limits zvith respect to some new variable. The double integral so obtained may frequently be evaluated by changing the order of integration as explained in (2261).

For examples, see numbers 2507, 2510, 2573, 2619.

2252 RULE VIII.—Multiply a known definite integral which is discontinuous between certain values of a constant which it contains, by some function of that constant, such that the integral of the product with respect to the constant is known. A new definite integral may thus be obtained.

For examples, see numbers 2518, 2522.

Particular artifices not included in the foregoing rules are employed in 2293, 2305, 2310, 2314-5, 2317, 2367-9, 2404-15, 2422, 2429, 2456, 2495, 2514, 2518, 2585, 2600, 2626, 2635, 2637.

Additional formula for integration will be found at 2700, et seep

DIFFERENTIATION UNDER THE SI GN. OF INTEGRATION.

Let u = f(x) dx, where a, b, and f(x) are independent

of each other; then

2253             and — =~f^. cio                           da

Proof.—Let          u = d(b)—p(a).

Therefore ub = $‘ (b) = f (b) and ua = —f (a) = —f(a). rb

Let u — f (x, c) dx. Then, when a and b are inde-J a

pendent of c,

2255 w= {f(a,c)} da and uno=( [f^, c)}ncdw. U a                                J a fl, c±1)—fle, C) dx (since h is constant relatively to x) =r^fST' c) da. h                                                             J a dc


Proof.—




da = 5f G, c + %) dz — he C J a




b

f (x, c) dx

a




-^L



But if a and b also are functions of c, 2257 J =fsAF(r. e)] dr+/(0, od—/(u, c^-

Proof.—The complete derivative of u with respect to c will now be uc + ubbc + uaac. But u = f (b, c) and ua = —f {a, c), by (2253-4).

INTEGRATION BY DIFFERENTIATING UNDER THE SIGN OF INTEGRATION.

2258 Ex. 1.— Ja"e"“dl = (e")nadz = dal eeda (2256) = d„a(e"fac!) = e4F(+d,)"anl, by (1464), a and a being transposed.

2259 Ex. 2.— Je"e“sin bzdz = dale"" sinbzdz.

The last integral is given in (1999), putting n= 1.

2260 Ex. 3—

xuA^dx — ((ax)adx = (a“da) = ( ——) = a (,——). J                 /a log a a log a log C/

INTEGRATION UNDER THE SIGN OF INTEGRATION.

When the limits are constant,

"22 Ryu                        Cy* (xa

| f(x, y) dady = | f(x, y) dydx. 21                           Ayi 0X1

That is, the order of integration may be changed.

But an exception to this rule occurs when, at any stage of the integration, an infinite value is produced. The double integrals above will not then have the same value.

APPROXIMATE INTEGRATION.

BERNOULLI’S SERIES.

{a

2262 /W da = af (a)—>f‘(a)+9 f" (a)-...


(—1)"ala"

1.2 ... n




f” 1(a)+




(~l)w

1.2... n




a"f" (a) dx.

0



Proof.—Integrate successively by Parts, ^dx, [xdx, &c. Or change f'^x) into f(x) in (1510).

2263 f/W dx = (p-a)f^ + (6—9)4 f‘(a)+(50) f"(a)+&c.

	
• a                                     1. a              L . A . •



Proof.— Putf(a) for ©‘ (a) in the expansion of the right side of equation (1902), by Taylor’s theorem (1500) ; viz., f(x) dx = 4 (b) — 4 (a) = (b—a) o' (a) + (b- g)2 q" (a) + &c.

The following is a nearer approximation :—

Let (b — a) = nh, where n is an integer; then

2264 f/W dx = 1{f(6)+} f(a)+f(a+1)+...+f(—1)}

-13,5f‘(6)—f‘(a)}+"B+{f"(6)—f"(u)}

—             —    76 P

-6"lf"(b)-f"(a)]+&c.

Proof.—Expand (e""dx — 1) : (ends — 1) by ordinary division, and also by (1539), and operate upon f with each result; thus, after multiplying by h, we obtain, by (1520), h{f (x)+f (x+h) +f(+2) + ... +f(+- 1 h)} /       7 727         74R s = {f (o+nh)—f(e)} (d-s—2+1.2 4-1.2.3.44+.), which expression, by changing a? into a and a+nh into b, is equivalent to r a + nh

the above, since d_x{f(x + nh)—f(x)} = f(x) dx.


2265

a+1 >. 7    2hf[a—l^

dx — —•—-—-

,    1.2



, 32h2f(a—2h) , ^Jff'^-^ . 0 +   1.2.3 ' + —12.3.4+ &0-


Proof.— Assume x = cehr.

in the expansion of —log (1 —




Then x is equal to the coefficient of 1

ha \                                                  2




o \

— . Thus

X /




ce



NiC ^UU 43h3c4

T 1.2 T 1.2.3 T 1.2.3.4"

Substitute dx for x, and therefore dxe “ for c in this equation, and operate with it upon J 0 (x Ah) dx, employing (1520). Finally, write f(x) for o' (x), and a for x.

A more general result, obtained in the same way, is


Pa+nh 2266 f^x)

• a



dx = nhf^a—li^-^-n (n+2) —f (a—2h)

78

+(n+3)2 f"(a—3h)+&c.

THE INTEGRALS B (l, m) AND T(n).

EULER’S FIRST INTEGRAL B (I, m).

The three principal forms are—

	
	
2280 I. B(l,m) = (al-1(1—2)-lda= B(m,l). [By(2233) • o





2281 II. B(l,m)= -—Wda. [By substituting—int.

(0 „m-1                           -1

2282 III. B(l,m)=——— da. [By substituting C in I.

Jo (1-a)i"                2

When I and m are positive, and I is an integer,


2283




B (l, m) =




10-1



If m be the integer, interchange I and m. If both I and m are integers, the forms are convertible.

PROOF.—Integrate (2280) by parts, thus, 1g-1/1—2)m-ld = — g‘-2(1-=)m Jo                       m J 0 Repeat this step successively.

EULER’S SECOND INTEGRAL T(n).

n being a real and positive quantity. (0                 (1/     1 \n-1

2284 T (n) — I e-fan-lda = I (log —) dx.

Jo               J0 \    0 /

The second form being obtained by substituting e~x in the first.

2286       T(1) = 1,          r(2) = L

2288 r (n+1) = nT (n) = n (n—1) ... (n—r) r (n—r).

2290 r (n+1) = \n , when n is an integer.

r00                         A —| co      1 (o

Proof.—By Parts,  e“a"-da= =- +—- e-a"da.

Jo             we®Jo n Jo The fraction becomes zero at each limit, as appears by (1580), differentiating the numerator and denominator, each r times, and taking r>n.

,             T‘()     (1     /     1 \n-1

2291 I e Rcxac" ldz = 2 = | al 1(log —) da.

Jo              kn 00 Pa/

Proof.—Substitute ka in the first integral, and so reduce it to the form (2284). In the second integral, substitute — log®, reducing it to the former. When n is an integer, (2291) may be obtained by differentiating n — 1


e-kda = —.




times for k the equation



When u is an indefinitely great integer,


2293



—     1.2.3...M    ,

r In) — — ---—---—---u".

n (n+1) ... (n+u)

Proof.— log— = lim. u (1 — au) (1583). Give it this value in (2285), and then substitute y = zu ; thus, in the limit,


r (w) = u"-1



(1 — wn)"-ldz =M" y"-1 (1-y)"-ldy. Then, by (2283),

	
0.                 . Jo changing u finally into u+1 in the fraction.



logT(1+n) IN A CONVERGING SERIES.

2294 Let n be <1, u an indefinitely great integer, and s,=1+*+*+ 7 then

log r (1+n).

2295 = (log -S,)n+H1S,n‘-}S,n*+1S,n4-}S,n®+&c.

2296 = 4log-”T+(logu-S)n—{S,n-{S,n—&c. sin 777

2297 =\loggn#Th+n(+loga—5,) +7(1-s)+"(1-S,)+&.

2298   =4 log "_ -} log 1±n + -4227843n sin mr      1—n

-0673530n- 0073855n5-0011927n‘-0002231n‘- &c.

Proof.—By (2293), T(1+n) = —") — v

(n+1)(n+2) ... (ntH)

since ------- = 1, when u = co . Whence

	
	
n + p + L





log r (1+) = nlu—l(1+n)—l(1+2)-1(1+3)- (1+7). \     2 /     \     0/           \ u /

Developing the logarithms by (155), the series (2295) is obtained. The next series is deduced from this by substituting

S2n2 + }S,n* + JSn° + 4S,n8 + &c. = log nr — log sin nr, a result obtained from (815) by putting 6 = n and expanding the logarithms by (156).

The series (2297) is deduced from the preceding by adding the expression 0 = -}log]±" ++ ” + ” +&c., from (157).


2305




B (I, m)




I() T(m) r (l+m)



PROOF.—Perform the integrations in the double integral

.CO PC

I e-«lu*leltm-ly‘-ldzdy, 0 J 0

first for x, by formula (2291), and then for y, by (2281), and the result is B (Z, m) r (l+m). Again perform the integration, first for y, by (2291), and the result is I’(Z) I(m), by (2284).

NOTE.—The double integral may be written by the following rule :— Write xy for x in I (Z), and multiply by the factors of T(m+1). We thus obtaine-ou (ey)‘-lxe-a"dady, Jo Jo

which is equivalent to the integral in question.

2306 b (L, m) B {l-\-my n) = B (m, n) B (^n-f-n, I)

= B (n, I) B (^n+1, m)

2307                   = r@r(n) r(), [By (2305). r (--M-n)

2308      ( a‘-1(a—a)m-lda = al+m~r B (L, m). [Substitute —.


27+1 2g



Ifp and q are positive integers, p^g, and if m =


2309




2310



a2P J,__ T

0 1+02 " 2q sin mm

* a2p ,          7

o 1 — a2d      2q tan ma

PROOF. — (i.) In (2023) put I = 2p+1, 1 = 2q, and take the value of the integral between the limits ±0 . The first term becomes log 1 = 0; the second gives the series 7 ( • la . 3lz . , • (2q— 1)la )        7

	
— 3 sin —sin ——-... sin — — -— - = —;---,



g-    2 3      24              24 J q sin MT

by (800). The integral required is one-half of this result, by (223 7). (ii.) (2310) is deduced in a similar manner from (2021).

	
	
3 A


2311




°0an-1 , TT

—— da = ——-,

0 1-0     sin mT




00 am-1 , TT I -----(a — -------,

0 1-00      tan ma







where m has any value between 0 and 1.


=2*1, by



PROOF. — By substituting a2d in (2309-10). taking the integers p and q large enough, the fraction may, in the limit, be made equal to any quantity whatever lying between 0 and 1 in value.


Also, since



2313         T(m) T(1— m) = _T-, m being <1. sin mrr

PRoor.—Put l+m = 1 in the two values of B (Z, m) (2282) and (2305) ; thus,          r (m) r (1-m) =   “--da = ——, by (2311).

Jo 1+a     sin mi


2314 COR.—




TQ2) = VT.



The following is an independent proof:

Co                     00                r^

T (I) = e -x * dx = 2 e~y dj =2 e-zdz.

Jo                 Jo             Jo

Now form the product of the last two integrals, and change the variables to r, 6 by the equations y _ 7 sin 6 ? from which, by (1609), dy dz = d (yz) drdd = rdrdO. Hence

co ne                        no c}T {TG)}2=4 e-l ^^dydz =4 erdrd= ; Jo Jo                       J0 J0 the limits for r and 0 being obtained from

72 = y^ + z1, tan 0 = — z


27-1




, by (814).



[image: ]



ANa

2316 _

Proof.—Call the expression on the left d(x). Change a to a+r, where r is any integer, and change each Gamma function by the formula T(z+r) = x"T(x) (2288). The result after reduction is p(x). Hence d (x) = © (x+r), however great 7 may be. Therefore p (2) is independent of «. But, when w = —, # (x) takes the value in question by (2315). Therefore 0 (x) always has that value.

The formula may also be obtained by means of (2294).

NUMERICAL CALCULATION OF T(x).

2317 All values of T (x) may be found in terms of values lying between T(0) and T(2).

When a is >1, formula (2289) reduces T (x) to the value in which a is <1; and when x lies between 1 and 2, formula (2313) reduces the function to the value in which a lies between 0 and 3.

Values of r(^), when x lies between 0 and 1, can also be made to depend upon values in which x lies between 8 and 3, by the formulas,, s

2318 T)=2-%!/m-T(2r)., r()= m--2).

T (28)         21—cos"? r/

2 \ 2 /

Proof.—To obtain (2318), make n = 2 in (2316). To obtain (2319), put m = 2 (1+x) in (2313), and change a into 2: in (2318), and then eliminate T (1—e) .

\ 2 /

Methods of employing the formulae—

2320 (i.) When x lies between 3 and 1, reduce T(^) to T(1—a), by (2313).

2321 (ii.) When x lies between } and 3, reduce by (2319), the limits on the right of which will then be s and 3.

2322 (iii.) When x lies between 0 and }, reduce by (2318); T(2-a) will then involve the limits 2 and 3, and will be reducible by case (ii.)

If 2 is <^, reduce T(2x) by (2318), writing 2x for x. If this gives 4 < 8, reduce again by the same formula, writing 4x for a, and so on.

2323 The figure exhibits the curve whose equation in rectangular coordinates is y=T(x). Let the unit abscissa be OA = AB = 1. Then the ordinates AD, BG are also each = 1 by (2286-7).

[image: ]



The minimum value of T (x) is approximately0-8556032,cor-responding to a = 14616321.

The values of logF(®) in the table at page 30 correspond to ordinates taken between -AD=T(1) and BC=T(2).   •

INTEGRATION OF ALGEBRAIC FORMS.

(1    1 9m 1


2341



| —---C— doc = B (l, m).

Jo (1+a)+n        ‘   •

Proof.—Add together (2281) and (2282). Separate the resulting in


tegral into



and substitute — in the last part.

33

9919      (1 a’ 1(1 a)na1,   B(l, m)             x + ax

6026     |         \i+m dec— a Uhue [Substitute


[Substitute a".




[Substitute be—-a+ bx



Jo (a+ba)"*1 = nabn'


2346




on lda




1 (m—1)




o ^a-\-bu)m+n n^




1

cFlbn'




PROOF.—Differentiate (2345) m — 1 times for




a.




(2255)




2347



0 ~m+n—1                    —

—.......1 da = C (m, n) ----.

o (1-j-aj                   sin M7

PROOF.—Substitute x = ay in (2311), and then differentiate n times for a.


2348




am lda 7 M7

-——— = — cosec—,




"a" xda o '1-^




77 j 7778 — cot--,



where m and n are any positive quantities, and m is < n. i

PROOF.—Change m into — in (2311-2), and then substitute a".

n

When n is positive and greater than unity,







Proof.—Substitute xm in (2311—2) and change m into —.


2352




1 do




77           78

— — cosec—.




05




do     7  ja

------ = — cot—.

- n  n n




PROOF.—Substitute




-  . in (2350), and

7/1+a”




— . in (2351).




When M lies between 0 and 1




77     777

2 sec —,




a da     7 , M7

----, — — — tan ——.

o 1— a^     2     2




PROOF.—Make n = 2 and write m+1 for m in (2348—9).




2356




1am 1—a m ,      77

)   1+2       sin mm




"a" 1—a 7   7T o l— •  tanmT



where m lies between 0 and 1

PROOF.—Separate (2311—2) each into two integrals by the formula no

=   +   , and substitute arl in the last integral.

Jo Ji

Otherwise, in (2601) substitute e-T«, and change a into -a- J7.


	
2358 '

PROOF.
	
(la”—a m j   77   Ma  (1am — D m   77 ,  M7

———,C = - sec—.  —--C = - tan—.

h 1—a"      2    2   Jo 1 — a2      2    2

—From (2354—5) by the method of (2356).


	
2360

2361

PROOF.-
	
—In the
	
C1am 1an m 1 ,    77     ma

--—----CO — — cosec —.

Jo   1"      n    n

“lgm-1 — gn-m-1 ,     77   , -

-----------CO — — cot--.

0    1 — a"         n     n

j same way, from (2348-9).


	
(1 on m 1 _ on +m 1        —     , —

G0U8          ?       1 . 9, Cil — 3 DUC 6

Jo    I-af"         2n    An

(1 on m 1 „n+m 1       —     —

2363       -—7—4—— dr = T tan‘".

Jo    1 — a2"          2n An

PROOF.—In (2601) substitute e 2" and put a = 27. In (2595) substitute e 7 and put a = 77. n


	
2364

PROOF, r dx _ Jo a*+a2
	
-By

7

= —, n' 2a
	
to da 19=1) m , . . ,

—----— — ——— --—=, n being an integer,

o (a 2+a2)"    2,” 1) 2aM

successive reduction by (2062), or by differentiating

—1 times with respect to a2.                        (2255)


	
Q26K (
	
•1
	
an-lda       77 cosecmir    rc. 1+bx 29911


	
•J 008   9
	
o (1+bw) (1 — a)"    (1+b)" '   -     1—




PROOF.—The value when a = 1 is log n. The difference, when the value ri „a-l__i          fi „na—l on-1

	
•           ■                                          I CV              JL -T              I 0J               CO         7



is a, is             —----ax—7 — -----ax,

jo 1—2 Jo l~xn

which, by substituting xn in the second integral, is seen to be zero.

F(x) being any integral polynomial,

(+1 F‘ (%)

2368    —V%— = AT, where A is equal to the constant

term in the product of F{A) and the expansion of (1--9) 2.


2367



[image: ]

na"d 1

1—an





da = log n.



PROOF.—By successive reduction by (2053), we know that


"“24 = •w y(1




dx




.(1),




where d (x) is some integral polynomial and A is a constant. Therefore the integral in question = AT. To determine A write the last equation thus,




—       ■ I

dx = ix $ (x) ( 1 —




dx.



Expand each binomial; perform the integrations and equate the coefficients of the two logarithmic terms in the result.

F (a) being an integral polynomial of a degree less than n.


"6 FM ,

-——— Co — a (x—c)n




—V" dx == (z— c)n




1

| n — 1

1

| n — 1




dcn 1




F(c) logba

a—c




dx.




(2255)




But F (e) = f (c, c) + F"’(c), where f is of a dimension lower than n—1 X—c          x—c

(421), and therefore d^n^cf (x, c) = 0. Hence the integral on the right




dn~x

den-1




b F (c) 7

——dx = a C—c




b+c)’



INTEGRATION OF LOGARITHMIC AND EXPONENTIAL FORMS.


2391



‘1              —1 oP log a dx — -—. o °        (P + 1) 4dr = log (p+1).

0 log X

Proof. — These are cases of (2292). Otherwise; to obtain the first integral differentiate, and to obtain the second integrate, the equation «” dx = p+1 with respect to p (2255 and 2261).


2393



o®"(1oge)nda = (-1)" (7+1)41

Proof.—See (2292). Otherwise, when n is either a positive or negative integer, the value may be obtained, as in (2391), by performing the differentiation or integration there described, n times successively, and employing formulas (2166), and (2163) in the case of integration.

‘1aP—2% ,    1   p + 1 ----dx = log—.


[By (2392).



o log        ^+1 \2n—1             62n—2                 {


2395



--doc^-^—B,n^ = -\ \2n—1            Q2n—1 1

I-- doc = — 4--- B2,m2n = oc               An


3oo ~2n—1

------ doc.

o e —1

C ~2n—1

------- doc.



PROOF.—Expand by dividing by 1-a, and integrate by (2393) ; thus


2n-1




1—

(log a) zn-1



dz — “ 2n-1 (1+2. +3+ 4+&c.), do = - 2»-1 (1-2. +31—4] + 8c.).

The first series is summed in (1545). The difference of the two series multiplied by 22n-lis equal to the first; this gives the value of the second series.


2399

(lloga .__ (

I ------ C • —— s

• 0 1 — 0       J 0




(0




111672

22 32 42      ■        6*




2400




lloga




111

22 32 42




72

12




PROOF.—As in (2395-7), making n = 1.

The series (2399) may also be summed by equating the coefficients of 63 in (764) and (815).




0^              32    52   7              8




PROOF.—The integral is half the sum of those in (2399, 2400).




2402




1 1 , 1+a , 72

— iOg^--- do = —.

0 C 1—00        4




PROOF.—Expand the logarithms by (155) and (157) and integrate the terms. The series in (2400-1) are reproduced.




2404 Let




da = $(a).




Substitute 1 — a = y ; therefore, writing I for log,

4 (a) = P ly dy = f1 ^JJA _ l-dly dy J1-al-y Jo 1—9 jo ^-y'

The second integral by (2399), and the third by Parts, make the right side




1 + 1a I (1 - a) -




Therefore




2405    $(a)+o(1—a) = log a log (1— a) — 872.




If a =2,




*1 log(1—x)




Again,




SC




0       •

p m-x)

Jo w

= —l - (1-2)2

1 dx




da = l(log2)2—T.




dx, .. (by 2253) #‘ («) = 1 (1—2)

s() =za-2‘11,by G),




dx




. 1—al Jo 1—X X (x—1)

=1{l(1-2)}"-9 (c).

Put _ for a ; then 1a

2406




1—x 1—2




" 7 1 dx 0 1—a x




Also,



[image: ]

p(x) =

Hence • () +9 (-#) = - 2 (*+ %

Eliminate $ (—x) by (2406) ; thus





1+ >+ — + $+&c.) 2    3     4       /




3 * 4 +8c.):

+8 +&c.) = 3o().




Let --- = a2, and therefore a = —— + — 15 = 6 say,

.. by (2407),       3 f (82) -(8) = } {I (1 +8) },

or 3,(1-8)-#(9) =} (18)3;  [8= 1-/3 and 1+8 =1




and by (2405)




•(1-8)+. (8) = 2 (18)- 8 r‘




p (8) = (13)2- 1 m3 and $ (1— 8) = (18)2— 1 m3, that is, LV                          10

V5-1




2408




0

3- J5



[image: ]




2409



[image: ]




-ly 772

2 ) 15°




2410

value is




Let a be >1, then p (a) contains imaginary elements, but its determinate. We have




o(a) =‘l(1—)z+"l(1—)z =z+" mi+l(x-1), Jo X                   a?                 6       , X



the integration by 2399, and I (— 1) = mi by (2214). The last integral =mia+ r § ix+i (1-1)2 d.=rila+1 (3)+ (CL (1-1) de.

Jit \ x / J x     2 1 x ) x

Substitute — = y in the last integral, and it becomes a

f LQ- iy = f 1(-v) Ay - f “ 1(- Ay = - r‘ - A1) Jj. y 3 Jo y J. y             6 r\a I a

Hence, when a is >1, 2411 $(a)+$ (—) = — 7+miloga+}(loga)2.

If a — 2, this result becomes, by employing (2405),

2412     ( log(1—a) dELT +i log 2. Jo 03

The constant vanishes, by (2403) and (2401), putting x = 1.


Let x =




1—2

1+2




, and therefore x =   2—1; then, by (2414),




2415 Clog‘±8 dr = - {log (72-1)}2.

2416         (1og(]+0) da = T log2. Jo ±+^      8

PROOF.—Substitute $ = tan-la ; then, by (2233),

* l (1 + tan 4) d4 = “l‘1 +tan ( T —) ? do = “l---2---dtp.

Jo              Jo C 4 /) Jo 1+tan p

2417 By differentiating or integrating the equations (2341) to (2363) with respect to the index m, the integrals of functions involving loga are produced; thus, from (2356), by integrating for m between the limits 2 and m, we have

2418 (Lam—o- da = log tan ".      (1043)

•0 (1—2) logo 2

Otherwise, this result may be arrived at by forming the expansion of the fraction in powers of x, and integrating the terms by (2392) ; the reduction is then effected by 815-6.

In a similar manner, we obtain the more general formula


2419



[image: ]




(a” 1— a" 1) doc (1 +aP) loga




_ 1 m n—P m—2p n—3p P n m+p n+2p m-HAp




2420



71 a" 1 — 3Cn m 1       1 M7

----------doc — log tan —— • 0 (1+a") loga        > 2n

PROOF.—Integrate (2360) for m from 2n to m.


2421



‘laP— a"+a‘(r— p) loga J o           (log a)2 =(p+1) log (p+ 1) — (r+1) log(r+1) + (r —p) { 1 + log@+ 1) }

PROOF.—Integrate (2394) for p between the limits r and p.


2422



(1 (q—r) a?+(r—p) x^+^p—q) xr J Jo              (log a)2

= log{(p+1)(p+1Ka-r) (q+1)a+1)0—p) (r+1)"+1)(p-9} .

PROOF.—Write (2421) symmetrically for r, p ; p, q and q, r. Multiply the three equations, respectively, by q, r, p, and add, reducing the result by (2394).


2423



S.105414082 d.=T log (1+ab).

PROOF.—Differentiate for a, and resolve into two fractions. Effect the integration for x, and integrate finally with respect to a.

2424

s log(1+4)log(1+5) * = 2m(1+]\log(1+5)_2m

	
	
•0   \   a"/   2/ a" \a bj \ a/ a





PROOF.—In (2423) put a = I, and substitute — = y ; multiply up by b, and integrate for b between limits 0 and —, and in the result substitute by.


2425



[image: ]




[Substitute Jex2.



(001142 9, 1.3... (2n—1)-2n±1 /

2426 I e-"r a""da = -—- J----’-k 2 VTT.

PROOF.—Substitute h^. Otherwise, differentiate the preceding equation n times for k.

(00 2—bx _ax

2427 I --------dx = log a—log b.

2428 s"(eTEpes=tod)e)d» =c-b+log4,

- -0 - J0 x

The indeterminate fraction is evaluated by (1580) and the integral by (2427).


2430



[image: ]




(a — b) e d




a2



= i {a2+3b2—4ab+2b2(loga— logb)} •

PROOF.—By two successive integrations by Parts, \x~3dx, &c., . 1 (be-bx—a?e-ax, + —  ----------dx.

2 J € x

p ax


-ae
[image: ]





Also



-da

22

Substitute these values, and make e = 0. The vanishing fractions are found by (1580), and the one resulting integral is that in (2427).

In a similar manner the value of the subjoined integral may be found.


2431



[image: ]



(a— b)e g (a—b)2e “ {a—bYe “? J, 23          1.222       1.2.323 5

INTEGRATION OF CIRCULAR FORMS.

Notation.—Let a^ signify the continued product of n factors in arithmetical progression, the first of which is a, and the common difference of which is b, so that

2451     a,") = a (a+b) (a+2b) ... {a+(n- 1) b}.

Similarly, let

2452 a“ = a (a-b) (a-2)... {a-^n-l^b}.

These may be read, respectively, " a to n factors, difference b"; “ a to n factors, difference minus b.”


(27             m — 1 C 27

I sin’ada = —--- I sin"-2xdx.

Jo              n Jo



2453

Proof.—By (2048) ; applying Rule VI., we have, by division, sin"adz = sin"-ad- sin""3o cos’adr, and by Parts, | sin”-2 a cos2 x dx = ——z cose +--1 f sinnedz. J                 n—1 n— Cam                           1 “Am Therefore             sin” -2 a cos2 a dx =---— sin” adz. Jo                         n I J 0 The substitution of this value in the first equation produces the formula.

If n be an integer, with the notation of (2451), AAT 2(n) or 1 (n) 2454 I sinatladz = 22, and I sin?ada = 12 T. Jo                  3." Jo                2,") 2

Proof.—By repeated application of formula (2453).

Wallis’s Formula.—If m be any positive integer, we have


2456




2m




2(m-1)

1 (m)

-2



[image: ]




3>(2m—1)




2(m-1) ) 2

+(m) § '

—2 •



And since the ratio of these limits to each other constantly approaches unity as m increases, the value of either of them when m is infinite is 27.

Ex.—With m = 4i, 2i lies in magnitude between

22.42.62.822.42.62.7

1.32.52.72 an 1.32.52.72*


PROOF.—Put 2m = n, then



[image: ]



[image: ]




“Am and ---- sin”-ladz

n Jo



are in descending order of magnitude; the firstand second because sin a? is < 1 ; the second and third by (2453) ; then substitute the factorial values by (2454-5).


2457




tan2m-1 odd =

0




77

2 sin MT




[Subs, a = tan2p in (2311).




2458




[By (2234).



2463 I sin2mtla cos’ada = -—20.      (2451) do               .     (P-1),

PROOF.—Transposing the indices by (2461), we have, by Parts (206 7), [1 sin”a cos2'" +1 a dx = 2m ■ s* sin”+2e cos?m-lada. Jo                  2+1 Jo

By repeating the reduction, the integral finally arrived at is 0464sin” ^m a cos x dx = ---------. P—F         Jo            p+2m+1

If both the indices are even, then CHm                               1 (m) 1 (p) , 2465sin a cos ada 23(43 2 *        (2 4 51)

Ch . ,

PROOF.—Reduce by Parts as before. The final integral is sin2m*2Pa de, Jo

the value of which is given at (2455).

2466 Should either of the indices be a negative integer, the value of the integral is infinite, as the foregoing reduction shows, for the factor zero will then occur somewhere in the denominator.

2467      sin na sin pada = I cos na cos pada = 0, Jo                    Jo when n and 2 are unequal integers.

2469          f sinna cospada = 2n or zero, Jo                 n^—p2 according as the difference of the integers n and p is odd or even.                                                    [By (1973-5).

AT              AT 2470         sin’nxda = I ao^nxdev = }a, •0 when n is an integer.

The following four integrals (2473-9) all vanish for integral values of n and p excepting in the cases here specified. sin”a ^mnxdac = ( — 1) 2 C(p,2,") 3, when p and n are both odd, and n is not greater than p. 2475 But if p be even, and n odd, the value is

(1% n § 1 _ C(», 1) , C (p, 2) 27 2 In2—p2 n2—(p~2)2" n2—(p—4)2

L1C(»,1p)2 ***)    >     2n2 y 2476 ("sinpa cosnads = (-1)c(p,P—n)T, when p and n are both even, and n is not greater than p. 2477 But if p be odd and n even, the value is

1115 p _ C(p,1)(p—2) , C(p,2)(p—4) 2P 2lp2—n2   (p—2)2—n2 T (p— 4)2— n2 _0{p1(p-1)))

***1—22 r

2478 I cos? a cos nxdx = C (p, 22) T, Jo                          \     2 / 2P when p and n are either both odd or both even, and n is not greater than p.

2479 cosP a sin nxdx, when p ~n is odd, takes the value Jo

n5_1_C(p,1)___C(p,2)8. ? 20-2 li^-p2^ n2-{p-2)2 T n2-^-^)2 T S’ the last term within the brackets being

A ( P — 1\          • P ( p \

V P ’—2)) when p is odd and V P ‘2) when p is even ----,—        n even, or ----,  and n odd. n — 1

AT

2482 sin2na cosZnada = ( — 1)".,,

I sin?n+la sin(2n—1) xdoc = (—1).". \ 1 /            \ / 22n+1

2484    cos%a cos nxdm = P(P—,2 i cos” 2x cos nxdx. Jo                 p—n Jo

2485

( cosPesinnede = P(p—1) ( cosp—2a sinnzdz—,? . p^—n1 Jo                p^—iF

PROOF.— (For either formula) By Parts, J cos a da; and the new integral of highest dimensions in cos a, by Parts, Scosp-la sinada.

AT


*27

cos"72




a sin n/ dx —



2486 1 cos"-2a cos nxdx = 0. Jo

PROOF. — Make p = n in (2484-5).

When k is a positive integer,

2488       I cos"-2a cosnxdx = 0, Jo

2489      £ costa, cos nxdx = ^A^L1 p.T-r

PROOF.—The first, by putting 2 = n—2, n—4, ... n— 27 successively in (2484) and employing (2486). The second, by putting p = n + 2, n+4, ... n+2k successively and employing (2481).

When k is not an integer,

ci-

2490 1 cosn-2a cos nxdx = 22 -7+1 sinkirB^n—2k+1, k). Jo

Proof.—In (2706) take f^ay.— an-2", and transform by (766). The coefficient of i vanishes by (2239), and the limits are changed by (2237).


2491



[image: ]

Proof.—By successive reduction by (1970), making m = n, and the integral definite.




2492 When p and n are integers, one odd and the other even,

[image: ]

cOsPa cosnxdx —





(.— 1)’ (+n±1) 1()




(n—p),*1




+ , with p odd, —, with p even.



Proof.—Reduce successively by (2484). The final integral, according as p is odd or even, will be


cose cosnede = cos JnT = 0                    1 — n2



(— 1)±n “AT 7 sin }nT ( — 1)±(n 1)

—---— or cosna da —--2— = ---——.

1—n     Jo              n         n 3 c

(T                        m(n) (r 2493 cosPa cosnade = 19%) sin""e cos? "ade, where n and p are any integers whatever such that p—n is > 0.

PROOF.—When p—n is odd, each integral vanishes, by (2478) and (2459).

When p — n is even, let it = 2k ; then, by (2488),


hm

cos"*2x cosna dx

0



_ (n+2%)"1 T _ (n+21)" 1/"1,m 10) 2n*2/*1        19n) 2n+1) 2

= (n+ 2/6)41 * sin?np cos"ada, (by 2465). J o

But n + 2L—p, and by (2234) the limit may be doubled. Hence the result.

(Az

2494 I a cos” 20 svunxdx = —--- Jo                        2" (n — 1)

Proof.—Tn (2707), put l= 1 and f(x) = xn~2. Give e’”9 its value from (766). The imaginary term in the result vanishes, and the limits are changed, by (2237). Finally, write a instead of 6. 2495

f’(cosa) sin2adx = 1.3 ... (2n—1)f(cosa) cos nadx.

Jo                                     Jo

Proof.—Let z = cos®. By (1471), we have d-)(1-2y-*= (-ly-H.s... (21—1) ....................(i.)

n

Also, by integrating n times by Parts,

1 f"(2)(1—22)"=}dz = (-)[‘ f^d„(i-^-iaz

= -1.3 ... (2n-l) 1                  by (i.)

J -i         \ n /

Then substitute z = cos a.

Otherwise.—Let f(z) = A,+ A^+ A,z?+ &c. = ZA, zp, . fnC) = Sp (p-1) ... (p-n+1) 4,27", CT                                          (TT

..    /(cos®) cos na de = ^Ap cos” a cos nxdx

Jo                             Jo = —---J---— f”(cosa) sin2" dx, by (2493). 1.3 ... (an—1) Jo

2496 f -— d="      (1982) J o cu COS" a’ — b" sin" a 2ab

2497 s "—---cosked...—4 = T. [Differentiate (2 49 6) for a. Jo (a" COS" a —o" sin" w)"    44b

(AT    sinada       7T  .  .- 7

2498  | —,---,--; ,—To = -- [Differentiate (249 6) for b. Jo (a’cos’a—bfsin’a)"   4ab‘

Jo (a2 cos2 a— 62 sin2 x)2 4ab\a2 b2 /

[Add together (2497-8)

"r____da____ ET(3 , 243) o {a2 cos2 a+b‘ sin” a)3 l^abya^ a2 2 b^)

C ____da____ _ _T/53_ 3 _5)

Jo (a2 cos‘a+b2 sin’a) 32abas a b2 T ab^ ' b'"/ (2500) and (2501) are obtained by repeating upon (2499) the operations by which that integral was itself obtained from (2496).


2502




[by (2008)

(1928)



PROOF.—Differentiate for a. Integrate for x by partial fractions, and then integrate for a.

2504 Ctan-1— tan-12 di = T log 5(1 + a y( 1 + b) M ■

Jo a b a" 2 C b J \ a / )

PROOF.—From (2503) we obtain

p tan-la 7   - log (1+a)

Joa (a‘+«2) "    2 a3

Integrate for a between limits 4 and co , and in the result substitute bx.


2505




since lx is infinite and therefore tan' integral. Hence the required value is




(ba) = 7 in every element of the



7 1 CL

= 2 log 6.


2506



(ii.) Otherwise, expand by dividing by the denominator, and integrate each term of the result by Parts. Employing (2478) we obtain the series

*(1-1+1-1+&....) = T [By (2945).


2507



[image: ]



Proof.—By the method of (2251), putting


the integral becomes



[image: ]



C (0 rC                          0 ~0 A0

—— e=""cosa dady = —- | e-w cos a dy da     (2261)

	
• T Jojo                • T Jojo



= 2.0Ydy (2610) =/T (2348)

VTT Jo !+r          v 2

The second integral is obtained in a similar manner.


2509




cos y’dy

0



[image: ]



Proof.—Substitute y2, and (2507-8) are produced.

When n and p are integers,

2510 ("sin"e da = __—1---- ( ( 2P-le = sinnadzda.

Jo wP 1.2 ...   — 1) Jo Jo

The integration for a in the double integral is given in (2608-9), and the original integral is thus reduced to the integral of a rational fraction.

PROOF.—By the method of (2251), putting

— = —1 "e-xz2p-1dz.           [By (2291).


	
2511
	
(sin2a,        dz    T     —

1 -- dx — 2] — = —.    [By (2510).

Jo a"         Jo %4+4    2


	
2512 j
	
sin’a J, _ 6 (       ______ [By (2510)

o X "Jo (=‘+1)(‘+9)  4    & (2081).


	
2513
	
cos qx—cos nx ,    , p

1 --2------— dX — 10g . Jo       x                q




PROOF.—By (2700). Transforming the numerator by (673), and putting \ ^P~I ^ — a^ 2 {p~~ q) = b, this becomes


	
2514
	
( sin ax sin bx , _11 a — b

1                CO - ,108    7'

Jo     x         2 a—b




2515 r cos qa—cos pa do = T ^qY

PROOF.—Integrate (2572) for r between the limits 2 and q.

If a and b are positive quantities, 2516          r sinaa cosb. d = t or o

according as a is > or < b.

PROOF.—Change by (666), and employ (2572).


2518



[image: ]




sin ax sin bx 7 ma

-----2----dx = —-

22               2




or




7b

2‘



according as a or b is the least of the two numbers.

Proof.—From (2515), exactly as in (2518).

Otherwise, as an illustration of the method in (2252), as follows. Denoting the integral in (2516) by u, we have, (i.) when b is > a,

udb = 0 7ab+"0ab =

J o 2 J a 2

Proof.— sin2 x cos ax = } sin a {sin (1 + a) x + sin (1 — a) x } ; and the result then follows from (2518), the value of the integral being in the two cases T— T = 0 and T—— (a— 1) = T (2 — a). 4  4       44


UTT

2
[image: ]




Proof.—Denote the integral in (2520) by u; then, when a is > 2, the present integral is equal to I uda =T(2- a)da+ Qda=~.

Jo Jo 4                J2 -


And, when a is <2,



f“ 7 (dr, \ 7 ^a ra3

I uda — I — (2 — a) da =  ---0.

Jo Jo 4

INTEGRATION OF CIRCULAR LOGARITHMIC AND EXPONENTIAL FORMS.


2571




(" e ax sin rx

Jo x



Proof.—Differentiate for r, and integrate by (2584).

Otherwise.—Expand sin rx by (764), and integrate the terms by (2291).

Gregory’s series (791) is the result.


2572



sm Y° 7     77 ---CO =-.

00    2

PROOF.—(i.) By making a = 0 in (2571).

(ii.) Otherwise. By the method of (2250). First, observing that the integral is independent of r, which may be proved by substituting rx, let r = 1. —            (“sin a 7      CT sin x 7 . (2T sin a - . (3"sin a 7 , p Then      --da =  --C2— ---C2 - ---Ca — oc. J o 2 Joe J T x J2m

Now, n being an integer, the general term is either r sin « de _ j —siny dy— by substituting x = (2—1)#+,, Jen-ym « Jo (2n-1) m+y‘ J °"

r(2n—1) T sin & , Ci a or       ----da =  ——29--, by substituting x = (2n— 1) ir—y ;

J(2n-2) m x Jo(2n 1)7 —y

sin y 3---— + s--o + 7--&c. : dy

CT—y 7 I oTT — y  JT—Y  07—y )

sin y tan " dy (2913) = i sin2 % dy — —.

o 2                    J 0      2          2


2573



[image: ]



[image: ]

r cos O 72—42





da.



— PROOr.—For (2575) differentiate, and for (2576) integrate equation (2573) with respect to r.


2577




f e Gta" 1 sin (ba) da =

00 COs




T(n) sin/ , _6\ --------         Y tan - — (a2+62)‘n CoS. a J




Proof.—By (2291),




e-kzgn-1 dx = I(n)

Jo                    k"



Put k = aA-ib, and a = r cos 6, b=rsin 6; thus

e-(a+ib)aa”-lda = (cos ne—i sin ne) E(n), o                                r by (757). Substitute on the left side for esibe from (767), and equate real and imaginary parts. Otherwise, as in (2259).


2579



("an-1 sin (ba) da =


T(n) sin/ni 6al cos 2



Jo COS 7

Proof.—Make a =0 in (2577).


2581



[image: ]



Proof.—Put n = 1 — m in (2579), and employ

Tn T(l-n) = —T— = —. sin n sin T

(DC                                7 2583 e ax ^inbxdx — ——„.  I e Gcosbada =",. Jo                 a"+64 Jo                a"+b4 Proof.—Make n = 1 in (2577-8).

Otherwise.—Directly from (1999), putting n = 1, and —a for a.

2585 ( cosp-n-10 sin-'e sin (pO, d& = E(p—n)F(n) ^tnA Jo                cos           T(p) cosy 2 where n is a positive integer > 1.

Proof.—In (2577), put tan-1— = 0, thus, writing p for n, a e-axgp-1 sin bada = I(p) cosp 0 sinpe. Jo                          aP Multiply this equation by bn~} db = a" tan”-10 secbdO. and integrate from b = 0 to co , by (2579). Then the corresponding limits in the integration for 0 will be 0 and AT. 2587 S,"sive"t 6 dol(p6) 40 = +9R(T2),—1

Proof.—Put n=p — 1 in (2585).

2589 ( e=gn=1 sin ? (a tan 6) da = T(n) cosn@ sin? nO. J0 COS)7                   COS) Proof.—In (2709), let $ (x) = cos (x tan 0) ; ..by (705),  A,=1,   A,=-tans®, A,=tgnt0,, &c; A, A,, &c. vanishing. Therefore I e-xxd-1 cos (x tan 6) dx 1-(tltan‘0+q tan*@-9stan®6+ - = J—---------- 12         -                             . e-Ega-1 dx J o

The series on the left = } (1 +i tan 6)-o + } (1—itan 6)-a, which by the values (770) and (768) reduces to cos a0 coso 6. Then change a into n. Similarly, with sine in the place of cosine.

(C p ax . ■ - > Bx                              2              ,

2591     €----E- sin bx dx = tan 12 —tan-1". 00    2                     b        b

Proof.—Integrate (2583) for a between a = a and a = . 2592               e ke cos ax sin” x dx, where n is any positive integer.

See (2717-20) for the values of this integral.


2593




°C C3 I —aa

---‘----sin mxdx — o e" — e-me




1 e"—enm

2 em+2 cos a+e—m‘



a being < T.

Proof.—The function expanded by division becomes (e"«+e-QF) sin ma (e-T+e-3#+e-5#+&c.)

Multiply in and integrate by (2583). The result is

2 _______m         . y_______m________ { (2n—1) T — a}2+m2  4 { (2n— 1) *+a}3+m2 ' But this series is also produced by differentiating the logarithm of equation (2953). Hence the result.

3 D


2594




e“ — e




0 E "—e




I  as

— cos mocdoc —

. — 1TX




sin a




e"+2 cos a+e-m



PROOF.—Change m into id in (2593), thus r (-92+0-0) (e6.—e=Or) 7


sin 0



J. ere — e-me cos a + cos 0

Now change a into im and write a instead of 0.


2595




eax,

Tx




tan za

2




sin mx dx




o eT—e-"e




—m



PROOF.—Make m = 0 in (2594), and a — Q in (2593).


2597




e""—e-"e .

---!---- sin mx dx — e"—e-me




1 elm—e-km




2 elm___ im



PROOF.—Make a=i in (2593).


2598




oc-n~xdx 22" — 1




0 e"“ — e-Te




4n




B2.




PROOF.—Expand sin mx on the left side of (2596) by (764). The right side is = — ^i tan dim) by (770). Expand this by (2917), and equate the coefficients of the same powers of m.




"0 edc__e- ax

-------— sin moc doc =

0 e’ms—e are




-m) sin a




e2n+2cos2a+e 2m




t—ax

_ cos mocdx = ,—27e




PROOF.—To obtain (2599), put a+2m




^m + 2 co s 2a + e 2n

and a— 3i successively for a in




equation (2593), and take the difference of the results. (2600) is obtained in the same way from (2594).




2601




° odc i e-dx

——' —— doc = sec a.

0 ea"“—e-zme




PROOF.—Make m = 0 in (2600).




2602




sin (ca)2 dx =

0




cos(ca)®d = 28.72



PROOF.— By (2425)        e-d2« dz= 4T .

Jo

Put a = T c. Substitute on the left from (766), and equate real and

V 2

imaginary parts.


2604



[image: ]



PROOF.—Denote the integral by u. Differentiate the equation for a, and substitute — in the resulting integral to prove that — = — 2u, and there-

2                                       Ol

fore u = Ce~2a. When a = 0, we get co

es’da = C, .. C=1vr (2425).

0


2605



[image: ]

MT - 2ak

2.k




PROOF.—Substitute avk, and integrate by (2604).

Ac / „, a2,— /          9 \         —i GRAP a —(x +22) cos@ COS ( 9 । C \ A 7

5006 e 7   • (a“-—sin 0 dx

Jo        S_ w"/

A / 7 __ COS/  •  A I 0

— Me . (2a sin d-— .

2 sin 1 2)

PROOF.—In (2605) put T = cos 0 + i sin 6 ; substitute from (766), and equate real and imaginary parts.


2608




e Csin""hada =



	
	
1.2.3    ... (2n+1)





(a?+1)(a?+32) ... (a”+2n+17)


2609




e ax sin2n a dx ==

0



	
	
1.2.3    ... 2n





a (a?+22) (a”+4?) ... (a?+2n2)

2610

( e~ax 00.22+1 rdv _ _____a__I__a (2n+ 1) 2n______

•o                a*+(2n+1) (a2+2n++1)(a*+2n—I2)

+ a (2n+1) 2n (2n—1) (2n-2) : | | al2n±1 (a3+2n+14) (a?+2n =14) (a?+2n—32)       (a?+2n+1)... (a?+1)

. (° _    7    a   a 2n (2n—1)

2611 I e cos 0 da = -s——->  _____,X—--------9-

Jo                       {a2+2n)(a2+2n-^)

+ a2n (2n-1) (2n—2) (2n-3) + + a 12n

(a?+2n3) (a?+2n=z) (a?+2n= 42)        (a?+2n2) (a?+22)

PROOF OF (2608-11).—Reduce successively by (1999). The integral part after each reduction disappears between the limits in the cases (2608-9), but not in the cases (2610-1). See also (2721).

2612

[image: ]

cosntlada




	
1.2.3 ...(an+l) ez—Le-z



(a2+1)(a2+32)...(a2+2n+12)

2613

[image: ]

cosada





_________1.2.3 ... 2n________

a (a?+2%)(a?+4%)... (a?+2n3)




An (e2—e




CT
[image: ]




PROOF.—By successive reduction by (1999).


2614



[image: ]




cos 2bxdx = M— e a2. 2a



Proof.—Denote the integral by u, then

du = - I e-a?q2 22 sin 2bc da = - [’ 2b e-a22 cos 2be de = db Jo the second integration being effected by parts, Ce-a22 2e da. log u = log G--, ; and b = 0 gives G = —" (2425).


_ 2bu

a2 ’

Therefore




2615




(2181)



Proof.-—Change b into ib in (2614).

2617 r e—a sin %bxdx = bvz e b\

2618 £ ep2a"t sin (2br+nm) dz=yn GE- (bec"7).

Proof.—To obtain (2617), put a — 1 in (2614), and differentiate for b. To obtain (2618), differentiate, in all, n +1 times for 6.


2619



[image: ]

COS a—e de





dx = log a.




1      (

Proof. — By (2251) putting — = order of integration, the integral becomes




e^dy (2291), o




and changing the



[image: ]




	
	
• CD                                          0 (g





(cos a— e-dr) e-vv dy dx = (e“E cos a—e-at")g) dy de

°                                  Jo Jo

= T ( —1) dy (2584,2291) = log a.

Jo ^+v a+y>




2620        | log (1—2a cos a—a2) dx = 0,

Jo

when a is equal to, or less than, unity; but is equal to 27 log a, when a is greater than unity.




Proof.— (i.) a =1. By (2635), since

log 2 (1—cos a) = log 4+2 log sin 2x.

(ii.) a < 1. By integrating (2922) from 0 to x.

(iii.) a > 1. As in (2926), integrating from 0 to T.




2622             | log (1 —n cos a) dx.

J 0

When n is less than unity, the values of this integral depend on those of (2620). See (2933).

_ ("T a sin x dx 7  a (1\

2623  —==-log(1-a), or —log(1—-),

oo l EC COS 2 । C C                  C    \ C/

according as a is less or greater than unity.




Proof.—Integrate f log (1—2a cos x + a?) dx by Parts, ^dx, and apply

	
20).                 Jo






(2620).




2625




i cos rx log (1—2a cos x + a2) dx = — —, or — me. 0                                             r            r




according as a is less or greater than unity.



PROOF.—Substitute the value of the logarithm obtained in (2922). T integral of every term of the resulting expansion, excepting the one in which u — r, vanishes by (2467).


2627 £



sin a sin ra doc _Ta‘1            a (r+1)

1-2a cos w+a‘ 2 3           2 s according as a is less or greater than unity. PROOF.—Integrate (2625) by Parts, s cos rx dx.


2629



"T cos roc doc _ Ta"


a being < 1.



0 1 — 2a cos a+a2 ~ 1—a8’

PROOF.—The fraction = cos rx (1+2a cos a+ 2a2 cos 2w +2a3 cos 3a+ ...) :(1— a?), by (2919), and the result follows as in (2625).


2630



1       doc _T 1+ae C o 1+42 1 — 2a cos ca-a‘   2(1—a2) 1—ae~c

PROOF.—Expand the second factor by (2919), and integrate the terms by (2573).

c ( log (1—2a COSCA-a2) doc -   -    _ 2631    —---——2—1-—= 7 log (1— ae c). Jo         I -i

PROOF. — Expand the numerator by (2922), and integrate the terms by (2573).


2632



oc sin coc doc

0 (1+a2)(1— 2a COS ca+a2) 2(e‘—a)

PROOF.—By differentiating (2631) for c.

Otherwise.—Expand by (2921), and integrate the terms by (2574).

2633 1log(l+ccosa) d = 1 ^_(cos-ic)d.

00       COS a             (4            )

Proof.—Put a = 1 in (1951), and take the integral between the limits 0 and ^ir, then integrate for b between limits 0 and c; the result is

ri’ logl+ccosz) dz = 2 [' — tan-' Jo cos a Jo 1—62 and the integral on the right is found by substituting cos-1 b. ... (rlog (1—c cos a) , 2634       ! —P --- da — TT Sill C. Q) 0


Viz




db,



2638 | a log sin2 xdx = —n2m2 log 2, n being an integer. Jo

Proof.—Method of (2250),

(ni                   (T                  (27                         ~AT xl sin2 a dx = xl sin2 a dx+ al sin2 a dx + ... + xl sin2 a dx

Jo                    Jo                  JT                         J(n-1)T

= al sin2a da+| (x+y) l sin3y dy+ ... + {(n—1)r+y}lsin‘y dy. Jo                     J 0 Each integral reduces by (2635) and (2637) ; for example, (T                            (T                             (T (~+y)l siny dy = 2 (T + y) l sin y dy = 2m lsinydy+2 ylsin y dy Jo                          Jo                           Jo = — 2r2 log 2—m2 log 2 = - 3T2 log 2.


2639




2640



------ dx =---------

e +1 Am e”T—e

PROOF.—Develops sin mx by (764) ; integrate the terms by (2398). The resulting series is = o--- — cosec imr, by (2918), which is equivalent to the above by (769).

2641 f1 cos (m log a)—cos (n loga) da = 1 log 1-m3. Jo          log a                    1+n"

2642 (‘sin (m loga)—sin (n loga) d = tan-1 m-tan-1 n. Jo           log a

PROOF.—Put p = im and q — in in (2394), and equate corresponding parts. See (2214).

2643 (lsin(nlogx), , _1 |   ----—- CO — tan n Jo logo


11 vers (nloga) 0 log a




-11

ax — 2 log ——



PROOF.—Put m — Q in (2641) and (2 642).

MISCELLANEOUS THEOREMS.

FRULLANI’S FORMULA.

2700 ("$(ax)- $(ba) d» = *(0) logb+(6 $(ba) d

Jo x                      a J A 00

“ a

h being = co , and the last term generally = 0.


Proof.—In the integral and equate the results thus,




% = ba.



2701 ("p(aa)—$(ba) d. ^^a_b) r Ple) da Jo a"                       10 e . +*(0)(log“:-a+z)-(a-s*()+2*C)de, a with h = 0.

Proof.— d. § (* p(an),, ? = (d 6‘(q.z) de - 0(1) "Ug«3 bJe h

(2257) — I 9 (x) &z— (0) 1a—0(h),

by making b = 1 in the proof of (2700). Integrate for a between limits h             h a and b, thus           1, dx—  -—, dx Jo «e" Jo = (- )% 6) dx + y (0) {ala —bib — a + b} — (---) 0(h) , and the left is = q (az)—0 (br) de _ J 0

POISSON’S FORMULA}. 2702 S"Cf2ts482 d =12f(a+c). c being < 1.

Proof.—By Taylor’s theorem (1500), and by (2919), the fraction is equal to the product of the two expansions 2 § f (a) +f‘ (a) cos x +    f" (a) cos 2 + - 1 f" (a) cos 3. + ... and              {1 + 2c cos x + 2c2 cos 2x + 2c3 cos 3a + ...} divided by (1 — c2). By (2468) the integral of every term of the product vanishes, except when it is of the form 2 f cos2 nx, and this is = T, by (2471). Hence the result.                 Jo

2703 s "±—±8 (1-ccosa)d= m {/(«+«)+/(“)} • a) 0   —=U UUPeTC

2704 ^/(a+e^—ffa-^-e ix) .   , in (. . x . I

•--——•—!—-—2 sin ada — — f(a—c)— f (a) r • o 1—2c cos a — c2           CY 7 2V


unity to each side of (2919), and employing



Proof.—As in (2702), adding (2921, 2467, 2470).

ABEL’S FORMULA.

Given that F(x+ a) can be expanded in powers of e ai then


2705



“"if±FC—itt) dt = TF(r+a).

PROOF.—Assume F^ + a) = A+Ae-d+Age-2d+ Age"3+&c.,

:. F (z+ iat) + F (x— iat) = 2A+2A, cos at+2 A, cos 2at+&c.

Substitute and integrate by (1935) and (2573).

Ex.—Let F   = 1, then ( ——- dt,--, = -—T---.

a Jo (1+t2) (a2+a2t2) 2x (x + a)

KUMMER’S FORMULA.

DAT


(1-)% 1f(az) d^.



2706  | f(2a costed) eailede = sin kir

	
	
• —27





PROOF.—If h = we2ie, then a+h = 2x cos 6eid by (766). Substitute these values in the expansion of f (x + h) by (1500) ; multiply by e2ik@ and integrate ; thus, after reducing by (769),

( f (2.cos 6446) e^iliedd = sin {£ (x) — «f (x) 4-----—L'J----- ?

‘                C k     k + \    1.2. (k+2)       )

Again, putting h= — $ in (1500), multiplying by gh-1 dd, and integrating, we have I q"-f (a — ad) d = the foregoing series within the J0

brackets. Equating the two values and changing $ into 1 — 2, the formula is obtained.

For an application see (2490).

2707 When k is an integer, f(2a cos SeiQ) e2ike0d0 = T cos kz ( (1 -2)-lf(az) ^Zt —}%                                    2e 00

PROOF.—Divide equation (2706) by sin korr, and evaluate the indeterminate fraction by (1580), differentiating with respect to k.

For applications see (2490), (2494).

2708 If X be a function of a so chosen that

I Xf(x, X) dx = Cx I Xf(a, 0) dx ............ (i.),

	
•    a                        a and if the series



A,f(z,0)+A,f(,1)+A,f(r, 2)+&c. ... = 4(a) ... (ii.), where p is a known function, then

AC+ A{C1— A,C,+ &c. •

PROOF.—Multiply (ii.) by X, and integrate from a to b, employing (i.) 2709 If the sum of the series

A+A,x+Aga2+Aga3+&c. = $(x)

be known, then

A,+ A, a+ A,a (a+ I) +A,a (a+1) (a-+ 2) + &c....

Ac I e- “xd-1 $ (x) da


$ er"at-1 da

Proof.—Differentiating (i.) independently for a and y, f' (x + iy) = Px + iOx, if' (x + iy) = P,+ i@,,

	
•    • Px + iQ. — Oy ^Py) ■ • Px — Oy and Ox — Py‘



Hence by (2261) the equalities (ii.) and (iii.) are obtained.

Ex.—Let f (x + iy) = e-(o+iv"2 = e=se"3 (cos 2xy—isin 2xy).

Here P = e-d’e"" cos 2xy, Q, = — e-s’e" sin 2®y, therefore, by (iii.),

ers (ef’cos 2a-e"cos 2aa)dz = e" (e-82 sin 2by— e-d sin ^ay} dy.

CAUCHY’S FORMULA.


2712




Let ) a""F‘(w) da = A2nm»




n being an integer, then




do



\ x /  \     2 / C x 1 ) x

	
	
• 0

[image: ]



Let the integral sought be denoted by C2n, then
[image: ]

This is proved by substituting 1 in the first integral. Therefore by addition






Now, in the expansion of cos (2n+1) 0 (776), put 2 cos 0 = z+--and 1                             .                  '                            .                           ? 2isin =--» where 2 = e"e by (768-9), and multiply the equation by F 2 (o--5 —, and integrate from a = 0 to a = co . Then, by (i.) and (ii.), the required result is obtained.

2713 Ex.—Let F (x) =e ax, then ,        2m -ax9 ?    1.3... (2n— 1) ,     .

FINITE VARIATION OF A PARAMETER. 2714 Theorem (2255) may be extended to the case of a finite change in the value of a quantity under the sign of integration.

Let a be independent of a and b, and let A be the difference caused by an increase of unity in the value of a, then

Jo                   a(a+1)

Also, by repeating the operation,

A"e-a da — A71, that is a

2716   ("e-d(e--1)» dx =___(-1)"In__

•0                  a(a+1) ... (a+n)

2717 Ex. 2.—In (2583-4) put k for a and (2a— m) for b, then

I e-kz A g^ (2a — m) 0 da = A -—2a ...............(i.).

Jo                        k‘+(za — m)21

e kx Acos (2a — m) xdx = A .---"----, ..................

Jo              7        k3+(2a-m)4

In (ii.) let m = 2p, an even integer, then

A2P cos (2a — 2p) a = cos (2a +2p) a—2p cos (2a +2p—2) x + ... + cos (2a — 2p) x

= cos 2ax [cos 2pa—2p cos (2p— 2) a+C (2p, 2) cos Qlp-~ 4) x—... ... + cos 2pa]

	
— sin 2ax [sin 2pa — 2p sin (2p — 2) a+ ...



— sin 2px].

The coefficient of cos 2ax, in which equidistant terms are equal, is = (-1)P 22P sin’Pa (773) ; while the coefficient of sin 2ax vanishes because, the equidistant terms destroy each other. Therefore

A2P cos (2a — 2p) x = ( — 1)P 22P cos 2ax sin?P«,

Hence (ii.) becomes

	
	
2718 ( e-lz cos 200 sin?ada = (-1)2 A?p —  k—. •0                     2"    K—(2a— 2py 2719 Again, in (i.) let m = 2p+1, an odd integer, then A?p*1 sin (2a — 2p~ 1) a = sin (2a+2p+1) x— (2p+1) sin (2a+2p— 1) x + 0 (2^ + 1, 2) sin (2a+2p— 3) x -.- sin (2a — 2p — 1) x





= sin 2ax [cos (2p+1) x— (2p+1) cos (2p — 1)a+ ...—cos (2p+1) x] + cos 2ax [sin (2p +1) x— (2p+1) sin (2^ — 1) a+ ... + sin (2p+1) «].

The coefficient of sin 2az vanishes as before, while that of cos 2ax is = (—1)P 227*1 sin?p*1 x (774).

Therefore equation (i.) becomes

2720


e re cos 2aa sin’tada = o




( 1)P A2+1 2a ^p 1 22*1     k2+(2a—2p—1)2



To compute the right member of equation (2718), we have

A2»______k________ 7 P_______1______ k2 + (2a — 2p)3     LR2+(2a+2p)3

_2(2,2)_ _ 1 -

k3+(2a+2p—2)2 72+(2a+2p—4)2 " k2 +(2a-2^]'

Let a=0, then the equidistant terms are equal, and we obtain in this case 9791 AS_____I_____ _ ______( 1)P 1 .2...2p.2%______ k*+(2a—2p)2 - k (k2+4)(*2+16) ... {n^+^pY}'

Thus formula (2609) is proved.

Similarly, by making a = 0 in (2720) after expansion, formula (2608) is obtained.

Let p be any integer, and let q and a be arbitrary, but ‘ q<2p in (2722), and <2p+1 in (2723).

2722

("cos2ax sin?Pa ,      (—1)P   (A% 27*1 J.

Jo ^        2PPT(4+1) Jo 22+(2a—2p)2"

2723

(C cos2ad sin?p+l ,

Jo —a"—de

(-1? GPA2+1 (2a—2p—1):.

= 2‘+T(q+1) Jo z‘+(2a—22)2 ’

where △ has the signification in (2714).

PROOF.—Employing the method of (2510), replace

1 by — 1—e-azz? dz,

« T(z+1)J

q being integral or fractional; therefore ( cos 2az sin—-------— f f cos2azesin?Pgpe===,4d2dz,

Jo x . r(a+1) Jo Jo by changing the order of integration. Substitute the value in (2718) for the integral containing a, writing the factor zI under the operator A, since it is independent of a.

Similarly, with 2p+1 in the place of p, we substitute from (2720).

It may be shown that, whenever a > p, formula (2722) reduces to

2724 r eos^sin^^ = ---(-1)P41m A2(20-27)7. •o a"*           22p+1r(q+1) sin ITT

For a complete investigation, see Cauchy’s " Memoire de I’Ecole Polytechnique,” tome xvii.

2725   Ex.—Let a = 2, p = 1, 2 = |, cos 42 sin2 x 7           7 -----;-----dx = ------------A" (2a — 2)3, xs 81 (4) sin T 3      6

and   A2 (2a —2)® = (24+2)3—2(2a)8+(2a—2)* = 6$-2.4%+2%.

FOURIER'S FORMULA.


2726



[image: ]

sin aa sin a





$(a) da = 3 $(0),



when a= c and h is not greater than 27.

Proof.—(i.) Let d (x) be a continuous, finite, positive quantity, decreasing in value as a increases from zero to h.


rh . .

sin a , - 7

I —.— (b (x) dx

Jo sin a
[image: ]




"T being the greatest multiple of " contained in h. The terms are alternately positive and negative, as appears from the sign of sin ax. The following investigation shows that the terms decrease in value. Take two consecutive terms

(n+1)T


(n+2)i

d sin ax

(n+1)T sin x

a




q (x) dx.



a sin ax -

—---O (x) dx, na sin x

Substituting' a--in the second integral, it becomes

(n+1) T

' a sin ax

[image: ]



—7--

77 sin I x ---I a          \ a / and since p decreases as a increases, an element of this integral is less than the corresponding element of the first integral.


(n+1) Tsin 2

--—du y '




mr



when a is infinite, because then 4 ( %) = 4 (0) and a sin — = y.

Hence the sum of n terms of (i.) may be replaced by 0(0) " Sin J dy, Jo y which, when n is infinite, takes the value 0(0) 27 by (2572) ; while the sum of the remaining terms vanishes, because (the signs alternating) that sum is less than the n+1th term, which itself vanishes when n is infinite.

(ii.) If p(x), while always decreasing, becomes negative, let C be a con-stant such that C+<p (x) remains always positive while x varies from 0 to h. The theorem is true for O+$ (x), and also for a function constant and equal to C- and it is therefore true for the decreasing function 0 whatever its sign.

If d(x) is a function always increasing in value, — d (x) is a decreasing function. The theorem applies to the last function, and therefore also to 4(x).

2727 Cor.—Hence the same integral taken between any two limits lying between zero and 27, vanishes when a is infinite.

2728              ("sin @2 4(a) da

	
•0 sin a



= m(+(0)+.(m)+o(2m)+...+$(»-1) m+$(nm)}, when a is an indefinitely great odd integer, and NT is the greatest multiple of T less than h. But when a is an indefinitely great even integer, the second and alternate terms of the series have the minus sign.


PROOF.




* sin ax sin x




0 (x) dx —




nm sin ax sin x




rh

(x) dx + J na




sin ax sin x




• (x) da



decompose the second integral into 2n others with the limits O.to 37, 37 to T, T to 37, ... (2m —1) AT to N7 ; and in these integrals put successively x = y, T—y, T+y, 2r—y, 2T+y, ••• nm—y. The new limits will be 0 to 37, ]T to 0 alternately, with the even terms negative, so that, by changing the signs of the even terms, the limits for each will be 0 to 37. Also, if a is an odd integer, sin de is changed into sin "% by each substitution, so that (i.) becomes sin a                       sin y‘


sin ay



{00 + 0 (r— 9)+p(r+y)+ •■• + 0 (nr— y}} dy h

sin ax -—.----0 (3) dx


.........(iii.)



. sin a

But, when a is even, the substitution of rT = y for x makes sin “% minus sin y

whenever r is odd. The limit of the first part of (iii.) is

T {4 (0)++2 (m) +2 (27) + ... +2 (n—1) *++ (nr) }, by (2726).

In the last part of (iii.) put x = nr+y, and the integral becomes sin ay (nr+Y) dy = T 4 (nT), if 1—r is $ T, by (2725). sin         2           2

If k—ni lies between 47 and 7, decompose the integral into two others ; the one with limits 0 to 27 will converge towards 274 (nz), while the other with limits Az to h—nr becomes, by putting y = T— z,

AT sin azA I —---‘ (n+1) T— 7. dz — 0, J(n+1) r-h sinz the limit by (2727). Hence the last term of (iii.) is 3x0 (n). Substituting these values, (2728) is obtained.

2729   Ex.—By (2614),   e-a%2 cos 2la da = v’e G3.

J 0                        20

Rut b=0, 1, 2 ... n successively, and add, after multiplying the first equation by 1, thus

I e-Gx (1+cos 22+cos 4x+...+cos 2na) dz


,  - _i _4         _n2)

= UT 3 }+e a+e a2+...+e “s ‘

= 1 ("e-oesin (2n+1) % d by (801), Jo sin a •7




The left side



and, if n =0, becomes

~ 13+e-r3a2+e-4r32+e-9m2+...}, by (2728) ;

/  _149

T{1+e-ma2+e-4m2a2+e-9ma2+.l = MT{}+e a2+Le a2+e a

Put ra = a and 1 = 3 ; therefore a

2730 a{l+e=*+e-4+e-%+...}

=vB(+e-8+en*F+e-08+...},

with the condition a= T.


2731



C"sin,“2 p(e) da = 7 4(0),

3 F therefore, by (2726), when h is > Jr, and by (2 728), if h is >3r, the value is }r© (0), since in (2728) $ (r), $ (2r), &c. all vanish. But • (0) =4 (0). Hence the theorem is proved.

When a and 3 are both positive,

2732 r sinaz *@)dz== (- sin az $ () dr.

2733 C sin ar $ () d» = m (0). •—a

PROOF.—(i.) =   -   = 3 p(0)—%$ (0), by (2729).

by substituting —a in the second integral.


2734




$ (a) cos ux du da = T $ (0),




when a = oo .



PROOF. —— =  cos ua du. Substitute this in (2731).

J o

When a and 3 are positive, the limit when a is infinite of


2735



[image: ]




cos tu cos uxdudw,




or of



Ca (8

| I o(x) sin tu sin uxduda, • Ova

is 2m (t), if t lies between a and 3, Imp (t) if t = a, and zero for any other value of t.

PROOF.—When a—oo we have, by (668), and integrating with respect to u, 8 | , () cos ux cos tu dx du=± "A sin a («—t) 4 () de + i P sina@+t) 0 (6) Ee aJ,                       Ja a—t            2Ja a+t

_ 1 [B-’sin az, 8+‘sin az .       . .

	
— 2     -----$ (2—t) dz—2 I ------ $ (%—t) dz .........(i.),



Ja-1 2 Ja+t % by substituting z = a — t and z = a+t in the two integrals respectively.

When a is infinite, the limit of each integral is known.

When a and / are positive and t lies between them in value, the limit of (i.) is AT $ (t\ by (2732-3)............................................. (ii.)

When a and 3 are positive and t does not lie between them, the value is zero, by (2732).................................   (iii.)

If a = t in (i.), the first integral becomes = 27d (t) by (2731), and the second vanishes as before; so that the value, in this case, is 47 P (t) ... (iv.)

The same demonstration applies in the case of (2736), transforming by (669) instead of (668).

Hence, by (ii.), if t be always positive,

00                                            —

$ (x) cos tu cos ua du dx =”$ (t)

[image: ]



[image: ]




^>^) sin tu sin uxdudx.



Replacing $ (x) by $ ( — x), and afterwards substituting —a, these equations become

I p (x) cos tu cos ux du dx = To (—t^)

J — CO J — CO                                    ~C F0

= —         $ (x) sin tu sin ux du dx.........(ii.)

J — CO J ~ CO

From (i ) and (ii.), by addition and subtraction, we get no co

2740            $(x) cos tu cos ux du dx = T [p (t)+$ ( — t) ],

	
• - CO • —CO



CO ~C

2741          $ (x) sin tu sin ux du dx = r [o (0-^ (-04

J —CO J —CO

Whence, by addition,


2742



[image: ]

a) dudx = 2md (t),




the original formula of Fourier’s.

THE FUNCTION v(x).


1(x).

1 a+u‘



The function dx\ogT(x) is denominated 2743 v()=lg,-l—1—1,-w C- C—2 when u is an indefinitely great integer.

Proof.—By differentiating the logarithm of (2293).

2744 Con. *(l) = log-1---—1, when u = c,

= -0577215,664901,532860,60 ... (Euler).

All other values of 1(x), when x is a commensurable quantity, may be made to depend upon the value of (1).

When a is less than 1,

2745          • (1 —a) —v (a) = m cot ma.

Proof. Differentiate the logarithm of the equation

F ()T(1-) = r - sin mx (2313).

2746 v (a)+y (a+ —)+(+ 2)4 ...+(+ 2—-\           \ nJ        \ n = n1 (na) — n log n.

Proof.—Differentiate the logarithm of equation (2316).

2747 To compute the value of •() when 2 is a proper fraction.                        9/ d

Find V( 2) from the two equations


2748

2749



y(1—2)—(2) = mcot Pm,


(2745)



\ q/ \qJ q

J (1  2)+v(2) = 25 y(1)- logq + cos 2p7 log (2 vers —

\ qJ \q J I           I q

+ cos ‘r log (2 vers 47) + cos Sp” log (2 vers 67) + &c. 3

The last term within the brackets, when q is odd, is cos (1—1) Pr log ( 2 vers^—1) r) ;

I I /

and when q is even, the last term is + log 2 according as p is even or odd.

PROOF.—Equation (2743) may be written

•() = 1+12- -1+13-1+1--1+1*±2, a 2+1 a + 2          &+H H — 1 a being an indefinitely great integer.

	
	
Replace x successively by —, —, — ... I—-, 1 ; where q is any integer ; thus                     I I I I (1)    = - q +12--I+13-%+14-9+15-g/ 1       I+1      24+1     34+1 /2\   — q 79 q 73 q _ 7 4 — q Z5 — *7) -  21"  q+21"f 2+21" 3+21**     (i)





v(I-1) =- -0+12-50-+1-9+14-4-+I4-\ q /     q — 1      24—1      3g—1      41 — 1 •(1) =- 1 +12- } +1- } +4- 1 +1— Now, if 4 be any one of the angles —, —, — ... 2(I—1)7, we shall have I I I I 1 = cos qo = cos 2qc = cos 3g = &c......................(ii.), cos $ = cos (4+1) $ = cos (2q+1) $ = cos (34+1) $ = &c.......(hi-)? cos $ + cos 24 + cos 34 + ... + cos (q— 1) 9+1= 0 by (803)

	
-—) = —3 cos 39 + ccs 3912--43 cos (2+ 3) 9+ cos 34 U3-,


cos




(-1)91 (171) =




--21cos(- 1) 9+cos (2-1)912




—I cos 2q— 1




(2g — 1) $+cos (g—1) pl?—,




1 (1) = -1




Z2 -      2      +  ^ -•




Upon adding the equations, the coefficient of each logarithm vanishes, by (iv.) The remaining terms on the right form a continuous series, and we have





cos 9V (—) +cos 20 (— ) + ... + cos (g—1) •• (---) +• (1)

= q{ cos $ + 2 cos 20+3 cos 80+in inf.}

= 1q log (2 - 2 cos $) by (2928).............................. (v.)

27

Let — = w. Then, by giving to $ in equation (v.) its different values w, 20, 30 ... (q — 1) w, we obtain q— 1 linear equations in the unknown quantities 1 (1), J (2) J (I—1). To solve these equations for J (2) I/ I /I /            .             \g/ p being an integer less than q, multiply them respectively by

cos po, cos 2po ... cos (q — 1) po,

and join to their sum equation (2746), after putting a = — and n = q. f k \                           .

The coefficient of 1 (—) in the result, k being any integer less than q, is cos po cos ko+cos 2po cos 2ko+ ... + cos {q — 1) po cos (q— 1) ko + 1. By expanding each term by (668), we see by (iv.) that this coefficient vanishes excepting for the values k — q—2 and k = p, in each of which cases it becomes = ^q. Hence, dividing by ^q, we obtain

	
	
• (4—2) +• (P) = 2 (1)-2lq+cos pul (2-2 Cos 0)





+ cos 2pb)t (2 — 2 cos 20) +......+cos {q — 1) pol {2—2 cos^ — 1) o}.

The last term = cos pol(2—2 cos o) = the third term; the last but one = cos 2pol(2—2 cos 20) = the second term, and so on, forming pairs of equal terms. But, if q be even, there is the odd term cos 1qp0 log (2—2 cos ^q^) = = 2 log 2, according as p is even or odd.

EXAMPLES.—By (2748-9) we obtain

2750 @)=()-3log2+5-  v@) =(1)-3log2-3 2752 4G) = + (i)-|iog3+ ’  1@)=v(1)-{log3-T, 2754             1() = V(1)-2log (2).

DEVELOPMENTS OF J (a+a).

When a is any integer,

2755 •(+o)=v()+1+ 1+1+ d a-1 a-2   1 a-a— 1

PROOF.—By (2289), putting n = a + a — 1 and r=z— 1,

r (a+x) = (a+a-1) (a+a— 2) ... (a+2)(a+1) a T(a).

Differentiate the logarithm of this equation with respect to a.

2756 v(a+a) = •(a)+=-20—1) + «(-1-2) a 2a(«+l) 3a (a-1)(a+2) _a(x-l)(-2)(a-3)_..

4a (a+1)(a+2)(a+3) T

If a be a positive integer, the number of terms in this series is finite, and the value of 1(a+x) can be found from that of 1(a).

Hence, by this or the preceding formula, in conjunction with (2747), the value of 1(N), when N is any commensurable quantity, may be found in terms of 1(1).

PROOF.—Let V (a+a) = A + Bx + Cx (x— 1) + Dx (x—1) (x— 2) +&c.

Change x into a+1 ; then,

Al (a+«) = V (a+z+1)—! (a + x) = ^{logT (a+2+1)-logT {a + x}} = 4 log (a+z) (2288) = l..

Az = 1, Az (z—1) = 2, Az (x — 1) (x — 2) = 3z (a— 1), &c. Therefore - = BE^0x + 3Ex (x—1)+4Ea (-1)(-2)+, a+a

A = 20+2.3Dx + 3.4Ex(x-F + , a + x

A21= 2.3D+2.3 A.Ex + , a+x

A31=2.3.47+. a + x

Put x = 0 in each equation to determine the coefficients A, B, C, D, &c.; thus A = ^(a\ B = -, 20=Al= 11=--1-, a         a a+1 a a (a+1)

2. 3D = A2 — = A _1 =----2----, a a (a+1)   a (a+1) (a + 2)


2.3.4E = △’— = A a



2       ___2.3_________ a (a + 1) (a + 2) a (a + 1) (a + 2) (a + 3)


and so on.



SUMMATION OF SERIES BY THE FUNCTION v(x).


2757 Formula I.



a a a | a b b—c 6—20 *6+nc

a     a ■ / 6           a i (b I       \ = ----1 -4-1H—1 (— —n—1 . b    c \c    / c \c /

Proof.—Let Sn denote the n terms of the series to be summed. We have Sn+,-Sn = ^<- (8+n+1) =9 [• (8+n+2)—v (2+n+1)] (2288) or       S.. - a 4 (b+n+2) =Sn-^^(l+n + l}.

Hence the difference is independent of n, and therefore S,-Q.(b+n+1) =s-1,(b+1) =aa,(b+1). c \ c /            c \ c / b c \ c / 2758 Ex. 1+1+1+..+ 51 = 1-1 (3)+ (n + ^. 2759 Formula II. 4 _ + “ - ... _ — b b-\-c b+2c 6—(2n—1) c b(b+c)2c l" 2c/ \ 2c / \ 2c / \2c /) PROOF.—The series is equivalent to a _   a  _   a   I    I    a      ya  _    a      _    a    ? b b+2c 6+4c      6+2nc (b+c b + c + 2c b + cA2ncj and the result follows by Formula I.

2760 Formula III.—

	
6 b+e + b+2c in inf.



- e + 1 k (b+3c)-(b+2c) 1

b(b+c)2cC" 2c J 2c U

PROOF.—Make n = c in Formula II. The last two terms become equal. 2761 Ex. 1.—In (2760) let b = c=l, then 1-+}- 4+&c. =}+} tv (2)—v (4)} = log 2. For 4 (2) = 1+y (1), by (2755) ;   ()=2+v (1)—2 log 2, by (2754-5).

	
	
276% Ex. 2.—in (2 760) let b=1, c=2, then 1-1+-++&. = 4+W @-W ( = I 2763       1(1+a) = f a--1da+y(1). • 0 O — 1 Proof. V(+c) =v()+a-850])+00,10132)-&o. [by (2756) But    1-(-)EaLa @-1),4a (—1) 0-2),_80, 2             1.2          1.2.3 therefore          y (1 + a) = [1 1-(1—a) da + y (1).





Substitute 1 — x in the integral.

2764      •(1+a)—1(1+%) = (‘ad a" dx. [By (2 763) Jo 2—1

Ex.—Put b = — a; then y (1 +a)- v (1—a) = 1 +(a)—1(1-a) (2756) = 1 - - cotra (2745). O


2765 Therefore




2766




v% 1




Proof. • (x) = log u——




\log U

1




1— v




---—- with u=c (2743). «+ A—1




But




1+1 2 2+1




„a— 1   c+u—1

---------------dz,

1 — %



by actual division and integration.


Also




1—% 1—z




) da (2367).




Put 2 = y" in the first integral, therefore

(1 1 _ „ux—u

I u---J----y" 1dy = u

Jo 1—y"




1 { ze*u-1 _ uz"1 a 1-z 1—2




1 y"-1—y"s-1, •-------•-----Cy.

0   1—y"




— oo



Replace y by z, and suppress the term common with the second integral

of (i.), and we


1—z"



• 0

Put z" = u, and this becomes


1           1

(u(1—u")




du.



But when u =c the product u (1— u1^) has — log u for its limit (1584) ; and uM = 1. Hence the result.

2767


da

a




Proof.




e-zze-1dz .

0




But, by (2427),




IT (x) = I e=z8:1 log z dz. J 0

° e~a — e~az , ----

o a

3 G



(d(         p — c.   p — as

.. d,T (x) = e-zze-1 ----------- dzdci

Jo Jo

= | e-a e-zz-lda- e-(+n) *2e-1 I

Jo - Jo              Jo

=r()[e--aly]dt (2291),

which establishes the formula since

dT (w) - P(z) = dlog P() =v (x).


2768




log r (x) =




-1) e-_-ede




2769




2770




_ 1—3

-e-t e-kx




dz




dl




PROOF.—Integrate (2767) that log r (1) = 0 ; thus




for a between the limits 1 and a, observing




e-a- (1±a)1-(1+a)7 2 da. log (1 + a)      5 a




Subtract from this the equation obtained from it by making a = 2, and multiplying the result by z—1. We thus obtain




log r (e) = I [(-1) (1+.)—- (149270140)5]




da

log (1+a)




Substitute 5 = log (1+a), and (2768) is the result. To obtain (2769), substitute z = (1 + a)-1. Lastly, (2770) is the result of differentiating (2768) for x.




NUMERICAL CALCULATION OF logF(».




2771 The second member of (2768) can be divided into two parts, one of




which appears under a finite form, and the other vanishes with x.




1 ————) enf, and Q =




1 Kl-e-0’




If we put




then




logT^) =  (P+Qe-^d^ ........................ (i.)

J 0




If Q be developed in ascending powers of &, the terms which contain




negative indices are — + —- = h s' 25




say.



Put "() = (P+RenE)d6

	
- IL(-- 11) - (+1) -] Fd),



and «() = (Q-R)e-kd}= (11-1) e-tr 45... (iii.)

Jo                Jo-e-f 6   2 /     6

Then, by (i.),             log r (x) = F (x) + o (x) ........................(iv.) F (x) can now be calculated in a finite form, and a (x) will have zero for its limit as 2 increases.

First, to show that F (2) and a (4) can be exactly calculated.


	
«() =
	
___1—1)e-ked5 oi-e-$ 5 2/ r




and, by substituting 25,


	
«@) =
	
,(1-9=% 2 2) LE        •   "(v.)





	
Again, putting a = 1 in (iii.), we have
		

		
1     1 \    . cK

—--es —..........

42/  4
	
........(vi-);


	
and, by substituting 35,
		

	
-@)=[(-la-
	
1_1) ._9dz

24 2/ 4
	
.........(vii.)


	
The difference of (vi.) and (vii.) gives
		

	
0 =(*/12-e

J, 1—e-2 25
	
t 1-e—f).-4dE

2 /      4
	
......(viii-),


	
.                            e—t e—28
	
e-t
	

			

	
1—e-8 1— e-28
		



Subtract (viii.) from (v.), thus

	
• a = a (“2* - 5) a =} - 1952 (2429).



Also, by (iv.), F()+G(}) = ir() = #lr, .. F() = llog (2n)—!...(ix.)


F (F) may now be found by calculating F (x) — F (2) as follows:—
[image: ]

"e-g—e-6+4 (2—1) e-E 7 1 ("e-k—e-ls 82                                                 E

o                     7                                    J o 7




= 2—a+ (x— 2) loga (2427-8), .. F(x)= 2 log(2r)+(a— 2) log a — x, by(ix.);

.. by (iv.) logT (x) = 2 log (2r)+(«— 2) loga— «+o ..................(x.) ; 2772             .. r (2) = e Tax 1//(2m) en (e) .............................

When x is very large, ew (a) differs but little from unity. For o (x) diminishes without limit as a increases, by the value (iii.)

Replacing a (x) in (x.) by its value (iii.), and observing that

log T(x+1) = log a + log r (x). we get log r (a+ 1) = 2 log (2m) + (x+3) log a—w

(xii.)

Now, by (1539),

( 1 _1_11.B_ B,42 +        &B^n

1—e-8 E 2/8 1.2 1.2.3.4       1...2n T1...2n+2‘

where 6 is < I. Also

"e-tag2udl = 1...2H, &2u+1

[image: ]

6e-sog2ndE = 0,





1... 2n g2n +1



So that equation (xii.) produces


2773




logT(a+1)=108,2m)



[image: ]




B2 B, 1.2 3.403




0B2,+2




(2n+1)(2n+2) a2n+1"



This series is divergent, the terms increasing indefinitely. The complementary term, which increases with n and is very great when n is very great, is, however, very small for considerable values of n. For instance, when x = 10, the values obtained for log T (11), by taking 3, 4, 5, or 6 terms of the series, are respectively,

16'09082009 6, 16-104415343, 16-104412565, 16104112563.

CHANGE OF THE VARIABLES IN A DEFINITE MULTIPLE INTEGRAL.

2774 Let a, y, z be connected with &, 7, Z by three equations u — 0, v =0, w== 0.

Then, when the limits of the integral containing the new variables can be assigned independently, we have

[image: ]



d {ww)

Cklagdydy, a (Mew) d (ayz)

where H is what F becomes when the values of a, y, z, in terms of E, 7, Z, obtained by solving the equations u, v, w, are substituted.

Proof. J F(x, y, 2) dxdydz = N[ • (z, y, 2) dz d% dz d^ dr] d^.

To find Eg, consider n and 4" constant, and differentiate the three equations u, v, w for 6, as in (1723). To find y , consider % and a constant, and differentiate for 7). To find Zy, consider a and y constant, and differentiate for %. We thus obtain

d {uvw} d (uvw) d (uvw) d (uvw)

da dy dz__d {tyz} d (yz^) d (^n) _ d (E73) dE di] d^     d (uvw) d {uvw} d (um) d, (uvw) ’

d (xyz) d {yz€) d (zEn) d (xyz) observing that two interchanges of columns in a determinant do not alter its value or sign (559).

Similarly in the case of any number of independent variables.

When, however, the limits in the transformed integral have to be discovered from the given equations, the process is not so simple,

In the first place, we shall show how to change the order of integration merely.

2775 Taking a double integral in its most general form, we shall have

$ (x)                             (B r$ (v)

F(x, y) dxdy — 2 \       E‘(a, J) dydx...............(i.)

•(x)                    JaJv(y)

The right member will generally consist of more than one integral, and % denotes their sum. The limits of the integration for x may be, one or both, constants, or, one or both, functions of y.is the inverse of the function 1, and is obtained by solving the equation y = 1 (x), so that x = Y (y). Similarly with regard to d and H.

An examination of the solid figure described in (1907), whose volume this integral represents, will make the matter clearer. The integration, the order of which has to be changed, extends over an area which is the projection of the solid upon the plane of xy, and which is bounded by the two straight lines a = a, x = b, and the two curves y = 1 (x), y = d (x).

The summation of the elements PQpp extends from a to b, and includes, in the one integral on the left of equation (i.) the whole of the solid in question.

But, on the right, the different integrals represent the summation of elements like PQqp, but all parallel to OX, between planes y = a, y = 3, &c. drawn through points where the limits of x change their character on account of the boundaries y =1 (x), y = 0 (x) not being straight lines parallel to OX.

2776 Example.—Let the figure represent the projected area on the xy plane, bounded by the curves y = 1 (x), J = $ (x), and the straight lines x = a, x = b. Let y = d (x) have a maximum value when a — c. The values of y at this point will be p(c), and at the points where the straight lines meet the curves the values will be p(a), p(b), 1(a), 1(b).

According to the drawing, the right member of equation (i.) will now stand as follows, U being written for F (x, y),

Y (a) rb                   C$ (a) (b              C$ (6) rb

Udydx-}-\     U dy dx +         Udydx +

J (b) J y (y) J v(a) J a J $ (a) J4 (y)

[image: ]



The four integrals represent the four areas into which the whole is divided by the dotted lines drawn parallel to the X axis. In the last integral, <!>! (y) and H,(y) are the two values of x corresponding to one of y in that part of the curve y = p (x) which is cut twice by any x coordinate.

2777 To change the order of integration in a triple integral, from z, y, a to y, a, z, we shall have an equation of the form

Cx2 (V2(x) ($2(x,y)                                (zp (Y2 (z) ($2 (z,«)

F (a, y, z) dxdy dz = 2                F (x, y, 2) dzdxdy

J21 JVi(x) • p1(x,3)                                  J 21 J Y1 (2) J $1 (z, 2)                      (ii )

Here the most general form for the integrals whose sum is indicated by Z is that in which the limits of y are functions of z and a, the limits of a functions of z^ and the limits of z constant. Referring to the figure in (1906), the total value of the integral is equivalent to the following. Every element dxdydz of the solid described in (1907) is multiplied by F(xyz), a function of the coordinates of the element, and the sum of the products is taken.

This process is indicated by one triple integral on the left of equation (ii ) ; the limits of the integration for z being two unrestricted curved surfaces z = 01 (a, y), z = ©2 (x, y~) ; the limits for y, two cylindrical surfaces y = 11 (x), y = 12 (x) ; and the limits for a, two planes x = 21, x = 22.

But, with the changed order of integration, several integrals may be required. The most general form which any of them can take is that shown on the right of equation (ii.) Solving the equation 2 = $1 (x, y), let Y, = , G, a), y^ = H2 (z, a) be two resulting values of y; then the integration for y may be effected between these limits over all parts of the solid where the surface z = ^ (x, y) is cut twice by the same y coordinate.

The next integration is with respect to x, and is limited by the cylindrical surface, whose generating lines, parallel to OY, touch the surface z = ©1(x, y). At the points of contact, x will have a maximum or minimum value for each value of z ; therefore d^^ (a, y) = 0. Eliminating y between this equation and that of the surface, we get a = Y1 (z), x = Y2 (z) for the limits of x.

Lastly, the result of the previous summations is integrated for z between two parallel planes z = 2, 2 = z^, drawn so as to include all that portion of the solid over which the limits for a and y, already determined, remain the

same.

The remaining integrations will take place between z = 22 and similar successive parallel planes ; and, according to the portion of the solid which any two of these planes intercept, the limits of a for that integral will be one or other of the bounding surfaces, curved or plane, the limits of y, one or other of the curved surfaces.

The general problem to change the variables in a multiple integral, and determine the limits from the given equations, may now be solved.

2778 First, in the case of a double integral,

(C2 (L2 (x)

F (x,y) dxdy .................. (iii).,

	
	
• 21 • Mi (x)





to change from a, y to E, n, having given the equations =0, v=0, involving the four variables.

To change y for n, eliminate 5 between these equations ; thus y = f (a, n) and dy = fv (a, n) d^. Substituting these values, we shall have

F(x, y) ^y = F{x,f(x, »)}5 (x, ») dq = F (x, r]) dq.

Also, if 71 corresponds to y^ the equations 31 = M1 (x) and Y1 ~ f (x, q^ will give n = 11 (x). Similarly n = 1,(x).

Hence the integral (iii.) may now be written

(x2 (V2(x)                          (12 (Y2(n)

F1 (x, q) dxdq = 2          F1 (x, q) dq dx......... (iv.), J EiJVi(x)                          J 71 J Y1 (n) the form on the right being obtained by changing the order of integration, as explained in (2775).

Next, to change a for E, eliminate y between the equations u = 0, v = 0; thus, a = g (4, q) and dx = g^^,, q) d^. Substituting as before, we shall have

	
F, (=, n) dx = F2 (E, q) d^.



Also, E1 corresponding to 21, the equations 21 = , (q) and 21 = g (51, q) produce 51 = m^ (qf and in the same way ^ — m201f  Hence, finally,

(xa (u2(x)                         (12 (m2(n)

F (x, y) dx dy = 2 \       F2^, q) dq di,............ (v.)

J E1.i(x)                    • J mi(n)

In the last transformation from x to 6, the most general form of the integrals which may be included under 2 has been chosen. When any of the limits of x are constants, the process is simplified.

2779 Again, to change the variables from a, y, % to 5, n, Z,. in the triple integral,

“aa (2 G) (X2 (x, y)

Ftyty^dxdyda...............(vi.),

-21041 (a) X1 G,y)

having given the equations 1=0, v=0, w — 0 between the six variables a, y, z, K, n, Z.

First, to change from z to s, eliminate E and r] between the three equations, and let the resulting equation be z =f(a,y, Z). From this dz = fz (x, y, $) d^; therefore

F (x, y, ^jdz — F {«, y, f (r, y, 2) } * («, y, 2) d^ = E (x, y, 2) d^.

Also, if $1 corresponds to the limit 21, the equations zx = X1 (, y) and 21 =f(x, y, Z) give % = $1 (a, yY Similarly %2 = (2(x, y).

The integral (vi.) may therefore be written


‘x2 CU2(x) Mv.y)

F (x, y, %) dxdyd^ = 2

21 J J1(x) J di(x,3)




$2 (Y2(§) ($2(%, *)

F1(x,y, ^) d^dxdy

fi JY10) J91(,2)     '    .........(vii.).



the last form being the result of changing the order of integration, as explained in (2777). We have now to change from y to » ; we therefore eliminate z and 5 from the equations u, v, w, obtaining an equation of the form y = f ^, a, n), and proceed exactly as before. The result, as respects the general form of integral in (vii.), will be

$2 cY2() M,^

F,(a, n, G) dda dn ..................(viii.)

SJY1() J A1 (s,a)

The order of a and n has now to be changed by (2775). Since % is a constant with respect to integrations for a and r), Y(Z), Y2(%) will also be constants, while A(%, a), X(, x) will be functions of the single variable x.

Suppose 1=X(, a) gives a= A,(%, n). Similarly, a = A,(%, n) maybe the other limit.

At the point where a =(Z) and n = X (%, a), we shall obtain by eliminating a, say, »= u(%). Similarly, from a =Y(%) and n=h(%,a) suppose, we get n=u,(%) for the next limit; then a general form for the transformed integral will be

^ Cu2() r^^v)

I F, (x, n, Z) d^dr/dx.....................(ix.) fi JuiG) J A1(3,n)

It now remains to change from the variable x to E. Eliminating y and z between the equations u, % w, we have a result of the form x=f^, n, %). Substituting for x and dx as before, we arrive finally at the form

C$2 Cu2(3) Cv^tl)                                                . .

F,(E, n, Z) dzdydh ..................... (x.) J fl J M1() J vi(G,n)

It should be noticed that the limits x = A,(L, n), a = A,(Z, n), in (ix.), are not necessarily different curves. They may, in some of the partial integrals, be different portions of the same curve. This was exemplified in the last integral of (2776).

MULTIPLE INTEGRALS.

The following theorems, (2825) to (2830), which are given for three variables only, hold good for any number.

Let a, y, % be quantities which can take any positive values subject to the condition that their sum is not greater than unity; then


2825



1 " "1-1 m-1*-1d24,4> _ I T I(m) T(n) o " 3 6 ""‘ - r(l+m+n+ly

Here a+y+z = 1 is the limiting equation.

PRoor.—Integrate for z ; then for y by (2308) ; finally for a by (2280), and change to the gamma function by (2305).

m-19-ldsdnd% = “9 -PQr T

when

PROOF.—Substitute c = 2827 When the limiting equation is simply & + n + Z = h, the value of the last integral becomes

14m4n _£(j^myr(^

T(l+m+n+1)

2828 The value of the same integral, taken between the limits h and h + dh of the sum of the variables, is

j^l+m+n-A. I(l) I(m) T(n) 4

T(l+m+n)

PROOF.—Let u be the value in (2827) ; then, by Taylor’s theorem, the value required is

=(++,) y^n-i rQ)r(m) r(n) an, dh "      7      F(+m+n+1)  ’

which reduces to the above, by (2288).


2829 s



a' xym lz" f(a+y+6) dxdydz

_ r(m) r(n) (, 14m+nE1 j if x-fy-\-z — h and h varies from 0 to c. In other words, the variables must take all positive values allowed by the condition that their sum is not greater than c.

PROOF—-For each value of h the integration with respect to a, y, % gives, by (2828),          /(A) 72+m+n-1 EC) E(n) T(n) cTh

T     T(+ m+n) the variations of a, y, z not affecting h. This expression has then to be integrated as a function of h from 0 to c.

2830 Ne—npnf{(&)+(z)+(5)} dgdndz

[image: ]



with the limiting equation

[image: ]



Proof,—From (2829) by substituting x = (5 ) , &c.

2831 If x, y, z be n variables, taking all positive values subject to the restriction a2+y2+z2+ ... $ 1; then

dadydz.&c. _ mlnt"

v(l-a‘—y‘—z‘—&c.) — 2T{1(n+1)}

But, if negative values of the variables are permitted, omit the factor 2” in the denominator.


Proof.—In (2830) put l=n=&c.=1; a = /3 = &c. =1; p=q=&c.




$0) =V(-n




= 2;




c=l; and the expression on the right becomes

{rGMn zn-l 2"1(n).,(1-1" ’




The integral is = B ^n, 4) (2280) = EGn)rG) (2305).

Hence the result.                      12(1+ )5



But if negative values of the variables are allowed under the same restriction, x2 + if + A + ... $ 1, each element of the integral will occur 2" times for once under the first hypothesis. Therefore the former result must be multiplied by 2".

2832 If n positive variables, a, y, z, &c., are limited by the condition a2+y2+22+&c. $ 1, then

$ {ax — by — Cz — &c.). da dy dz


—2(n-1)




2"-1T{1(n+1)}




(1$(kg)(1—8)*0-Ndg,




where k2 = a2+62+c2+&c.




Proof.—Change the variables to &, n, Z by the orthogonal transformation (1799), so that

a? + 62 + d + &c. = 72, and ax + by + cz + &c. = 1A.

The integral then takes the form

J[]o («) dqdndz... with *++22+8c. * 1.

Now, integrate for n, %, &c., considering 4 constant, by adapting formula (2826). The limiting equation is

(7(/g)‘+ (-g)+ &o. to #-1 torts.




2 y ...







Therefore put I = m = &c. = 1 ; 2 = q = &c. =2; a = 3 = &c. =

,                    n-1

The result is4 (k^ (1—5)2 ---------d^,

Jo" " 2n-1 r {1(^-1)+ 1} "

which is equivalent to the value above.




(1-4).




2833 With the same limiting equation for n variables and the same value of kc.




ssc_lua-by-cs±&c.) dadyd.

JJJ v(1— a"— y1— z‘— &c.)    •




2n A i

= - 1 . $(k§)(l—g)n-ldg.

2"-1T(2n)J0‘ 7 •




Proof.—Making the same orthogonal transformation as in (2832), the

.                  ।                    4 (%E) dE dr) d^...

integral changes to JJ ] ... V(-P-7—&y

Considering 5 constant, the integration for the remaining variables is effected by (2830). Adapting the integral to that formula, we have

p (1A) d& "                dr)d^.,.

0-07{1-r-2-&c}’




with




7

•(1—42)




for the limiting equation.




Z 7(1-0




2

+ &c., to n—1 terms, > 1



Here l = m = &c. =1; p = q = &c. = 2; a = 3 = &c. = v/(1—8); c = 1 ; and the reductions are similar to those in (2832). 2834 If in (2832-3) negative values of the variables are admitted (since the limiting equation is satisfied by such), each element of the integral with respect to n, L, &c. will then occur 2n-1 times, and therefore the result in each case must be multiplied by 2"-1, and the limits of the integration for 5 will be —1 and 1 instead of 0 and 1.


f()=—

V(1— iC



EXPANSIONS OF FUNCTIONS IN CONVERGING SERIES.

The expansion of a function by Maclaurin’s theorem (1507) can be at once effected if the nth derivative of the function is known, or if merely the value of the same, when the independent variable vanishes, is known. Some nth derivatives of different functions, in addition to those given at (1461-71), are therefore here collected. When the general value would be too complicated, the value for the origin zero alone is given.

DERIVATIVES OF THE nth ORDER.

The following is a general formula for calculating the nth derivative of a function of a function.

If y be a function of z, and 2 a function of a, 00^0 ^y_- a” dry d" /z \ 200 da"“[r da' dana where r — 1,2,3, ... n successively, and a is put = z in each term of the expanded binomial, after differentiation.

A A         4

Proof.—Assume ynx = A^y^ 232* 3 93 * 7 ynz'

To determine any coefficient Ar, form r equations from this by making y = z, 23, z3, ... z" in succession : multiply these r equations respectively by z"1, —C (r, 2) z-2, C (r, 3) z=8, ... (—1)"tlar", and add the results. All the coefficients excepting Ar disappear. This is shown by differentiating the equation (1-*)" = 1—rx + C (r, 2) a'— C (r, 3) «*+ ... = xr

successively for a, and making x zero after each differentiation. Thus, finally,


C (p 3) ^ ,3
[image: ]




[image: ]


[image: ]

_O(r, 2) (22) _ ,2


with a put = z, after expanding and differentiating the binomial.

2853 EXAMPLES.—The formula may be applied to verify equations (1416-19).

Jacobi’s formula (1471) may also be obtained by it.

2854                  C(n+v) sin 1a

_ 1.3... (2n—1) §1 n z 1.3C (n, 2) 72 2"(1— a)"(l— a?)* ( 2n— 1 "2n—1.2n—3

	
1.3.5 C (n, 3)    773 ।    L72 — _ 7 1 ®



2n-1.2n-32n-5"t r" V where "F1+

Proof. (sin—le)u.1 = 1(1-c) } (1+.)"1}n (1434).

Expand the right member by (1460).

2855 d, tan"1 oc. This derivative is obtained in (1468). The following is another method, which also includes the result in (1469).

dx tan-1 x = - 1 - = i §     --1. ? ;

1+a2   2 (a+i x — i)

	
	
, . , | _ n—1 (-1)" 1      1 )      — • by (1425) de tan " =      ---- i (+i)" -       5 .........(1).





Put x = cot 9, therefore x = i = v(1+«2) (cos 0 = i sin 0), which values substituted in (1) convert the equation, by (757), into

(tan-1 «)no = ( — I)”-1 | n—1 sin" 0 sin nd.

2856 dnx {e"cosdcos (x sina)} = e=cosa cos (a sin a+na).

Proof.—By induction.

LAGRANGE'S METHOD.

2857 Lemma.—The nth derivative of a function u =f(x) will, by Taylor’s theorem (1500), be equal to 1.2 ... n times the coefficient of h" in the expansion of f(a+h) in powers of h by any known method.

1

 (x) AS A DEFINITE INTEGRAL INDEPENDENT OF J (1).


Let u = a + ba + ex2, and therefore ", = b+2cx; then d,(a+ba+ca2)n is equal to either of the following series, with the notation of (2451-2).

OQKO 1(r),n—rr) "-1 "-1 CE ।    1       ।

6000 - " "2(1(7) T1(r-2)22T*1()1(r-2p)a2p T*5‘

2859 or, putting 2n = m and 4ac—b2 = q2,

2"7ri"s+nngd"s *+.+C(np)mp?”*s"+. 5.

PROOF.—Changing a into a+h in u", it becomes (u+ugh+ch2)". Then, by (2857), drxun will be =r times the coefficient of If in the expansion of this trinomial. (2858) is the result, and it may be obtained by expanding {(u + uxh) +cU]n as a binomial, and collecting the coefficients of if from the subsequent expansions. The value (2859) is found by taking

(u+u,h+cm2y=u$ (1+%-1)‘+ (41)’)",

(. \      21 /     \2u/ j

expanding, collecting coefficients of if, and multiplying by 1.2... r, as before.

2860 Ex.—To find dnx (a2 + «3)". Applying formula (2859), we have u = a3+a2, ux = 2^, q = 2a, r = n. Therefore

d, (a’ + ^r = (2»)“ 5 «*+ y‘("-1) a3z=-2

- an (2n — 1)

n3(n-1)2 (n—2) (n—3)


a‘x”-4+&c.



1   1.2.2n... (2n-3)

2861 d„e"*= e!"{a"(2x)"+...+15 a"="(2x)" *r+&c.

with r = 1, 2, 3, &c. in succession.

PROOF.—By the method of (2857). Putting ed(e+7)2 = ed2 eaosh eh, expand the factors containing h by (150), and from the product of the two series collect the coefficients of If.


2862 d„s“D a



=(2)"“NL(a*+"7)+...

VUDAd /

[image: ]



Proof.— dnx (cos a2+isin a2) = dnzeix2. Expand the right by (2861), putting in~r = el(n-r)l", since, by (766), elir = i sin T = i. Also pnt

342 , ;      1- __ (  9 I (n r) 7 ) I ..   (  9 (n T) 7 ‘e _ COS 3 xc" — --------- - - sin 3 ac“ — -----— (2)  (  2

and then equate real and imaginary parts.

2864 d— = (-1)” e+ U+1-2”} e(n-T).

+{0 (n+1, 2)—2" (n+1)+3n] e(n-3)%0

+|0 (n+1, 3)—2"C (n+1, 2) +3" (n+1) -4"} e"-3),+&c.]

Proof.—Let u be the function. By differentiating u it is seen that (e*+1)"1„= A,e"9+A,-1e"-1)*+A,-e"-0)*+...+A,e", the A’s being constants. To determine their values, expand u = (e“+1)1, and also (e“+1)"*1, by the Binomial theorem; thus

unx = (—1)" {e-z—2"e-22+3"e-3r—4"e-4+&c.}, (e"+1)n*1 = eln*1)«+ (n+1) e”z+ C (n+1, 2) eln-1)«+ C (n+1, 3) e“n-2)%+&c. From the product of the two expansions the coefficients An, A^, &c. may be selected.

n-1

2865 d„zo tanla = (—1) 2 n—1 or ^ro, according as n is odd or even.

Proof.—By Rule IV. (1534). The first and last differential equations (see Example 1535) are, in this case,

(1+a2) J2,+2xy, = 0......(i.);     Jn+2).o++n (n+1) Ynco = 0......(ii.); with Y.o = 1 and 920 = 0.

Otherwise,—By (1468), putting a = 0.

2867 d,osin“la = 1.32.52... (n- 2)2 or zero, according as n is odd or even.

Proof.—By differentiating (1528).

Othenuise.—-As in (2865) where equations (i.) and (ii.) will become in this case (1-2) Y2 = KY......(i.)       Y(n-2) .0 == n’Jnao......(ii.)

2869 d,co (sin-1a)? = 2.2.4.62... (n—2)2 or zero, according as n is even or odd.

Proof.—As in (2865) ; equations (i.) and (ii.) being identical with those in (2867).

2871                 dnx0 cos (m sin 1 w) n

= (—1)2 m2 (m2— 22)(m2—42) ... [m2 — (n—2)2], or zero ; according as n is even or odd and > 0 if even. 2873                daao sin (m sin 1a)

= (—1) 2 m(m2—1)(m2— 32) ... [m2 — (n— 2)2], or zero ; according as n is odd or even and > 1 if odd. 2875 d,o cos (m cos 1a)

= (—1) 2 m(m2—1)(m2- 33) ... [m2 — (n- 2)8] sin"", 2876 or

= (—1)2 m2 (m2- 22)(m?- 42) ... [m2 — (n— 2)2] cos’T, according as n is odd and > 1, or even and > 0.

2877                dnx() sin (m cos 1 a)

= (—1)m2(m2—2)(m?—42) ... [m2— (n—2)2] sin 4mm, 2879 or

n+1

= (—1) 2 m(m2—1)(m2—32) ... [m2 — (n—2)2] cos 2mm, according as n is even and >0, or odd and > 1.

Observe that, in (2871-3), sin-10 = 0, and in (2875-9),


cost 0 = 5,



are the only values admitted.

PROOF.—For (2871-9). As in (2865) ; equations (i.) and (ii.) now becoming in each case

(1—a;2) Y2—«Y+m‘y = 0......(i.)     Y(n+2) co = (n2-m^ ynM......(ii.)

Otherwise.—By the method of (1533).

2880 Let y — x cot a, then

n cos—o T = y^ sin TH...—Yrao C (n,r) sin — TH... ...+(-1)ao n sin 7,

with integral values of r, from 0 to n — 1 inclusive.

2881 Thus, denoting Ynzo shortly by yn, we find, by making n = 1, 2, 3, &c. successively in the formula,

2          8        32         128

3‘"F 15‘ "= 21‘ % =15

PROOF.—Take the nth derivative of the equation x cos a = y sin x by (1460), reducing the coefficients by (1461-2), and putting a finally = 0.

2882 The derivatives of an odd order all vanish. This may be shown independently, as follows :—

Let y = d (x), then d (x) is an even function of a (1401) ; therefore 2n*l (x) = — $?n*l (—«) ;

.. q?n:l (0) = - q?n*1 (0);   .. ^^(0) = 0.

2887 d„ao{(1+a2) 2 cos(mtan-la)} = ( — 1)2 ml") or zero, according as n is even or odd.

Proof.—Change the sign of m in (2885).

NOTE.—In formulae (2883-7) zero is the only admitted value of tan~l 0.

2889         do(—4 ) = (—1)2 B, or zero^ \e —1/ according as n is even or odd ; by (1539).

2891 When p is a positive integer, d,12o (xPeds cos ba) = n!(a2+b2) 2 cos 3 (n—p) tan-1— « or zero, according as n is > or < p.

Proof.—Put y = ear cos ba and z = aP in (1460), employing (1465).

3 I

MISCELLANEOUS EXPANSIONS.

The following series are placed here for the sake of reference, many of them being of use in evaluating definite integrals by Rule V. (2249). Other series and methods of expansion will be found in Articles (125-129), (149-159), (248-295), (756-817), (1460), (1471-1472), (1500-1573). For tests of convergency, see (239-247).

Numerous expansions may be obtained by differentiating or integrating known series or their logarithms. These and other methods are exemplified below.

2914 cosec oo =------------ 00 7T — 00   7—W   ZTT—00

2T+a3T—a 3T+a 47—a"

Proof.—By adding together equations (2911, 2913), and changing a? into Jx.

2915 —=------- — sin mn m 1—m 1 +m

For proof see (1545). The reference in that article (first edition) should be to (1541) not (1540). 2917 ,      22(22—1), 2*(2‘—1)> 3 / 2(2%—1) p tan " = — 2—‘ Bx — 4—L BT — 6—-    SC: o            1 , 2(2-1) P 2918 cosec 00 = ———-2(23—1) ,2(2—1) ,C — ——- B,a------B,X"—ec.

Proof.—By (2916) and the relations tan x = cot a?—2 cot 2x,    cosec x = cot la — cot a. 2919

------------5 = 1+2a cos a—2a? cos 2x—2a3 cos 3w—&c.

1 — 2a cOSa—a"


2920




1—a2



COS C

1 — 2a cos a— a2

- — (cosa-a cos2a—a‘cos3—a3 cos4+&c...) 2921

-—■ Sine---- = sin a— a sin 2x—a2 sin 3a—a3 sin 40—&C.

1 — La COS a—a"

Proof.—By (784-6) making a = 3 = x and c = a.

When a is less than unity and either positive or negative, 2922

1                                                    &2

— log(1—2a cosa—a2) = a COSa — — cos22— cos SA — &c.

2923 tan-1 „ sin @= a sina @‘sin 2+S sin3— &c. 1—d cosa          2        3

PROOF.—Putting % = a (cos x+i sin x), we have log (1+z) = log (1+a cosa+ia sin a) = J log (1+2 cos c+ a?) +i tan-1 ■ a sin a (2214),

1 + a COS 3 and also          log (1 + z) = z— 2. + 2.---21+ &c. 2    3    4

Substitute the value of z and equate real and imaginary parts. 2924 Otherwise,—To obtain (2922), log (1+2a cos a + a?) = log (1 + ae1^ +log (1 + ae-E). Expanding by (154), the series is at once obtained by (768).

2925 Otherwise.—Integrate the equation in (786) with respect to a, after changing a and 3 into a, and c into — a.

2926 When a is greater than unity, put log (1+2a cos a-a%) = log a’+log (1+2a-1 cosa+a-2), and the last term can be expanded in a converging series by (2922). 2927 log 2 cos a = cos a—^cos 22+3 cos 3a— 4 cos4a—&c. 2928

log 2 sin }w = —cos a — 3 cos 2a — 3 cos 3a—A cos 4w — &c.

2929     }0 =  sin a—2 sin 2a+3 sin 3a—4 sin 4a+&c.

2930 } (iTr—x) =  sina+1 sin 2a+} sin 30+ sin 4x+&c.

Proor— (2927-30) Make a= = 1 in (2922-3).

2931    47 = sin a+3 sin 3w+} sin 5a+&c.

2932    =22 (1+}-}-} ++-&.). Proof.—Add together (2929-30), and put z = 4r.

When n is less than unity, and a =1(1+n2),

2933 log (1+n cosa) = log (1+2a cosa+a‘)—log (1+a?), and is therefore equal to twice the series in (2922), minus log (1 +a2). But if a be greater than unity, expand, as in (2926), by

2934              log (1+n cosa)

= log (1+2a-1 cos a—a-2)+log a2—log (1+a2).

2935

(1+2a cos a)n = A+A, COS a—A, COS 2a—A, COS 3a+&c., where

A = 1 + 0 (n, 2) 2a‘+ ... + 0 (n, 2p) C (2p, p) a?+ ...,

A1 = 2a {n+ 0 (n, 3) 3a2 + ... + C (n, 2p+1) C (2p+1, p) a?+

.         ,     A,_1 (n—7—1) a—rAr

and        Ar+1 = 2—7.....-I- 1----‘.

(A-T-1)a

If n be a positive integer, the series terminates with the n+1th term, and the values of A and Ax are also finite.

PROOF.—Differentiate the logarithm of the first equation; multiply up and equate coefficients of sin rx after transforming by (666) ; thus Ar+1 is obtained.

To find A and A1} expand (1 + 2a cos x)" by the Binomial Theorem, and the powers of cos a afterwards by (772).

LEGENDRE’S FUNCTION X,.

2936 (1 — 2ax+a3) *=1+X,a+X,a+...+X,a"+ with           Xn = —---— (a?— 1)”.

" 2" n da", •

PROOF.—Expand by the Binomial Theorem, and in the numerical part of each coefficient of an express 1.3.5 ... 2n — 1 as | 2n : 2" | n .

Consecutive functions are connected by the relation

2937 d,XH1 (2n+1) X,+d,X,-1

Proof.—Differentiate the factor once under the sign of differentiation in the values of X2+1 and Xn_x given by the formula for Xn in (2936).

A differential equation for X, is

2938    (1—a2) d.X,—2ad,X,+In (n+1) X, = 0.

2939 When p is any positive integer,

12+27+37—...—(n—1)P

5 n2*1 np _ B2np 1 Bpip 3 B6np~° c 7+1  2 \p | 2 | p — 1   4 7-3 T 6 p-5

concluding, according as n is even or odd, with

(- 1)+1 B,n or (—1)(+1) B,-172?.

2                     P—1 2.)

______ ______ 2

PROOF. ----- =----- .-----. Expand the left side by division, and ex— 1     2    e"— 1

each term subsequently by (150). Again, expand the first factor of the right side by (150), and the second by (1539), and equate the coefficients of aP in the two results.

See (276) for the values of the series when p is 1, 2, 3, or 4. But the general formula there is incorrectly printed.

Let the series (2940-4) be denoted by S2n, S2n, s2n, s2n+1) as under, n being any positive integer; then

2940 S.=1+2+3+4+&o..= [2n """Ben

2941 S& = 1- 2 + 3 - 4 +8c. ... = -2n m""Bzn
2942 **=1+s*+5=+=+&c..= 22n """Ban"

PROOF.—(i.) S2n is obtained in (1545).

(ii.) s.-s = 2 (1+ 1+&c.) = 2& This give S'in.

(iii.) $2, = 2 (S2n+S%).

9049 . _1 11 %   md(2n-1)% cot Ta 5* 8*=35*n7""o=--4"2n—1‘ ~ ■ — 1 ‘ — 4 •

90AA .   = 1 _ 1 I 1     1  . _ ^d^nx cot TTa 20*   2n*1      32n*t1T 52n+1  72n±1T70* — 42*1 j 2n ‘

--- 4 •

PROOF.—By differentiating equation (2912) successively, and putting a = 4 in the result. To compute dnx cot Ta, see (1525).

2945 The following values have been calculated by formula (2940-4).


	
Q __ 7T 456’
	
90‘
	
g_T6 c“ 945'
	
s,=
	
TT8 9450'
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127ft8
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4 720'
	
6   30240’
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2946

2947



cos E—cos a _ /1 _ 23 \ 1 a? 1 a2 1

1 — cos a \    a1 / L    (2T— a)?. L    (2r+a)’

* [1-cr£,y] [1-78=427] de,

cos a? + cos a _ 1__x21 _ a2 [_   221

1+cos a L (r— a)3 L (r+a)’ L (3r- a)3 x[1-gs4ay][1—zs.£a)]-. %o.

Proof. cosa—cosa = sin (a+z)sinl (a—a), Expand the sines by 1 — cos a            sin"20

	
(815). The two n+ 1th factors of the numerator divided by the corresponding ones of the denominator reduce to



/ 1 2ax + a2 \ (1_ 2ax—x2 \ k ^cV-a1) 17473m2—a2)

= C W1 d x ) + x )(1- x \ 2nr — a/ \   2n7+al \   2nr— a) \ 2nm+a = (1 -___^___) ___£ \ (2nT—a)2/ \ (2nm+a)2/

PROOF.—Change 0 into ix in (815) and (816).

e"-2cosa-er 5>06                  2(1-008 a) = [1+ (s)] [1+ fell' [1+ (%.)] [1+ (4%)] - -o                   e“+2 cos a+ens 8953                    2 (1+ cos a) =[+ fell [+ (.£.)] [+ (s*.)] [1+ ten

PROOF.—Change x into ix in (2946-7).

FORMULA FOR THE EXPANSION OF FUNCTIONS IN TRIGONOMETRICAL SERIES.

	
2955 When a has any value between I and — l, *() = }0+ (e) de+ 1=70* (e) cos"(z—4) do ... (i.), where n must have all positive integral values in succession from 1 upwards



But, if a = I or —l, the left side becomes lo(l)+lp(—l).

Proof.—By (2919) we have, when h is <1,

----1—h-----, = 1+27 cos 0 + 272 cos 26 + 273 cos 30+&c....

1—2h cos 0 + h2

Put 0 = T (7 42 ; multiply each side by $ (v), and integrate for v from

— Z to Z; then make h = 1. The left side becomes, by substituting z=v x,

C (1-13) 0 (v) dv _ (‘— (1-13)9 (a+z) dz

J-l 1—2h cos " ("—«)+1 J-/-o (1—1)2+47 sin?77

When h = 1 each element of the integral vanishes, excepting for values of v which lie near to x. Therefore the only appreciable value of the integral arises from such elements, and in these z will have values near to zero, both positive and negative, since x has a fixed value between Z and — Z. Let these values of z range from — 3 to a. Then between these small limits we shall have            sin3,z = T”, and o+2)=7 (e).

and the integral takes the form

=Vn4eco)(tnn"isT-h+tun‘1-1) =219 (e), when h is made equal to unity, which establishes the formula.

In the case, however, in which a = I, sin2 "A vanishes at both limits, that is, when z = 0 and when 2 = — N. We have therefore to integrate for z from — ft to 0, and also from — 2l to —2l+a, a and ft being any small quantities. The first integration gives lo (I) as above, patting a = 0. The second integration, by substituting y = z + 27, produces a similar form with limits 0 to a, and with 0 (x — 21) in the place of d (x) giving li (—) when a = I Thus the total value of the integral is lo (I) + lo ( — l). The result is the same when a = — I.

That the right side of equation (i.) forms a converging series appears by integrating the general terms by Parts; thus

n7 (v—2) , I ( , - . . A7 (v—x) ) 1

O COS---------- av — — • O (v) sin  ------ c J _ z                    I                 n7 (                     I ) -1

l \ • nr (v—x) 7 --O (v) sin---—----- dv, n7 J z                  I

which vanishes when n is infinite, provided o’ (v) is not infinite.

Hence the multiplication of such terms by h" when n is infinite produces no finite result when h is made = 1, although 1" is a factor of indeterminate value.

2955a A function of the form $(x) cosna, with n infinitely great, has been called " a fluctuating functionfl for the reason that between any two finite limits of the variable x, the function changes sign infinitely often, oscillating between the values $ (x) and — $ (x). The preceding demonstration shows that the sum of all these values, as x varies continuously between the assigned limits, is zero.

By similar reasoning, the two following equations are obtained.

2956 If x has any value between 0 and l,

4()=l( $(e) do—1 27($() cos”m(e—— dv ... (2).

But if x = 0, write 1o(0) on the left; and if a = I, write 1 ().

If x has any value between 0 and I,

2957 0 = 1 f 4(6) de+12 I $(0) cos nT (v+x) dv...(3).

But if 2=0, write 20(0) on the left; and if a = l, write 19 ()._____________________________________________

2958 $ (a) = 1 f $(v) dv+ 227 cos^^ (cos"T" 4(e) du

l Jo              ‘            I Jo I (4)

This formula is true for any value of a between 0 and l, both inclusive.

But if 2 be > I, write $ (x ~ 2ml) instead of $(x) on the left, where 2ml is that even multiple of I which is nearest to 2 in value.

If the sign of a be changed on the right, the left side of the equation remains unaltered in every case.

2959      4 (a) = 2 x7 sinnm.r ( sin "TU (v) dv......... (5).

I            I Jo I

This formula holds for any value of x between 0 and I exclusive of those values.

If x be > I, write — $ (x ~ 2ml) instead of p (a) on the left, — or — according as x is > or < 2ml, the even multiple of I which is nearest to x in value.

But if x be 0 or I, or any multiple of I, the left side of this equation vanishes.

If the sign of x be changed on the right, the left side is numerically the same in every case, but of opposite sign.

Proof.—For (2958-9). To obtain (4) take the sum, and to obtain (5) take the difference, of equations (2) and (3). To determine the values of the series when x is > I, put x = 2ml = x, so that x is < k

EXAMPLES.

For all values of x, from 0 to T inclusive, - a 4 (      1 cos 3a , COS 50 , 0 ?

2960 a = —--]cos^+-—- + ——+&C.L 2 TT (             •         5

For all values of x, from — 7 to AT inclusive. .          4 ( •     sin Zx , sin 52   0 > 2961    00 — — 3 sin 00 — —75——-- — &C. c • 77 (                              0"             J

Proof.—Change a into 2T— x in (2961).


2962




AT ear — e ax

2 ________



sin a 2 sin 2  3 sin 32 &e

a?+1 a?+22 T a?+32

PROOF.—In formula (5) put $ (x) = edr—e ax and I = 7 ; then

‘AT                                              7 (pair__p-arrA (e“—e-av) sin nvclv = (—1)+1 ——,---,—2 "            a2 + nJ

0

2963 If $(x) be not a continuous function between a =0 and a=l, let the function be $(x) from 2 =0 to x = a, and 1 (x) from x = a to x = l; then, in formulae (4) and (5), we shall have $ (x) or 1 (x) respectively on the left side, according to the situation of x between 0 and a, or between a and I. But, if x = a, we must write 2{p(a)—(a)} for the left member.

Pjroof.—In ascertaining the value of the integral in the demonstration of (2955), we are only concerned with the form of the function cl)se to the value of a in question. Hence the result is not affected by the discontinuity unless a = a. In this case the integration for z is from —3 to 0 with d (x) for the function, and from 0 to a with Y (x) for the function, producing 30 (a)+}v (a).

2964 Hence an expression involving a in an infinite

series of sines of consecutive multiples of — may be found,

such that, when x lies between any of the assigned limits (0 and a, a and b, b and c, ... k and Z), the series shill be equal respectively to the corresponding assigned functions

file), .../.(), provided that the integrals

(a - / N72\ -     f 6 • nirx -sin I I ji^x) ax,      Sin—J2(2) C, ... sin Jo/        J a Z        J T can all be determined. 2965 The same is true, reading cosine for sine throughout, with the additional proviso [as appears from formula (4)] that the integrals


Imrr\ 2/7 i)Jn(e) de



ra                    rb                     cl

f^x) dx, f^x) dx, ... fn(x) dx

	
	
• 0                   • a                   J k





can also be determined.

2966 Ex. 1.—To find in the form of a series of cosines of multiples of x a function of a which shall be equal to the constants a, , or y, according as a lies between 0 and a, a and b, or b and 7.

Formula (4) produces, putting l=n


+2 x T

1 f Z




;   — cos nx

n=1 n




rb

a cos nx da— /3 cos nx dx +




ycos nx dx

b




B)+b (3- »)+Ty}

H--2"5 — cos N2 { (a — 3) S^naE (3—y) sin rL + y sin nz?. 7=1                   •



2967 Ex. 2.—To find a function of a having the value c, when x lies between 0 and a, and the value zero when a lies between a and Z.

By formula (4), we shall have

— n7v -     (a nTv - cl • nira cos —— O {v) dx = c cos —— dv = —- sin-- Jo ‘                 Jo      1 "T 1 since $ (v) = c from 0 to a, and zero from a to Z. _ ca , 2c ( . 7a    7tx , 1 . 27a    272 iherefore ( (x) = — H--3 sin — cos — + — sin -—• cos--- 7 C     2 Z Z । 1 . 37a 372 , 9 T 3 sin di cos di T EC-

When x = a, the value is 2 [$ (a) +0] = 3c, by the rule in (2963). This may be verified by putting a = — 1 in (2923).

2968 Ex. 3.—To find a function of x which becomes equal to Lx when x lies between 0 and ^Z, and equal to I (Z—a) when x lies between 2l and Z.

By formula (4),


, / -       X70 -

$ (y) cos—— dv —

o                       -




kv cos

J 0




7 (l—v) cos "T" dv.

47                      ‘




This reduces to —— 72n2




o N7

2 cos —--cos n7

2




47l3




7212




or 0,



according as n is, or is not, of the form 4m+2. Also


7l2

4 ’




/ 7l 87l

•)=4-4



27 008 I" + 62 cos T + 102 cos -+&c.5-

APPROXIMATE INTEGRATION. 2991 Let j f (a) dx be the integral, and let the curve y =f(x) be drawn. By summing the areas of the trapezoids, whose parallel sides are the 2+1 equidistant ordinates

Yo, Y1, ... yn, we find, for a first approximation, f() d.r = 620 (y.+2y.+2y.+...+2y.—1+».)......(i.)

SIMPSON’S METHOD.

2992 If y} be the ordinate intermediate between y^ — f (a) and y.2=f{b), then, approximately,

Sf(e) d. = 68" (J.+49,++y.) ............(ii.)

PROOF.—Take n = 3 in formula (i.) ; write Y2 for Y3, and suppose two intermediate ordinates each equal to 7/1. The area thus obtained is equal to what it would be if the bounding curve were a parabola having for ordinates Y0, Y1, Y2 parallel to its axis. Otherwise by Cotes’s formula (2995).

2993 A closer approximation, in terms of 2n+1 equidistant ordinates, is given by Simpson’s formula,

[image: ]



	
(a) dz = — [3.+J..+4 (y+y,+ ... +J.41)



+2 (ya+ty,+ • • • +J2n-2)] ......(iii.)

Proof.— We have

1          2 f (z) dx =   f{x)dx-\~\ f (c) dx+ ...+ Jo


•1

f(x) dx. n 1



Apply formula (ii.) to each, integral and add the results, denoting by yr the

value of y corresponding to a = 2994 When the limits are a and b, the integral can be changed into another having the limits 0 and 1, by substituting a = a+(b— a) y.


r

2n



COTES’S METHOD.

Let n equidistant ordinates, and the corresponding abscissse, be

	
	
- - 1 2 n 1 -





30» 31 32-. Jn-1 Vn and 0, —, 7 ...        1.

2995 A formula for approximation will then be


	
Fe)
	
dx = Ay+A y+..+A,y,+...+ Anyn (iv.),


	
where
	
(-ir- (‘(.2)12/,.         (2352)

7 2—7 00 R—T




PROOF.—The method consists in substituting for f (x) the integral function

+() = (-1)r(ne)@,.+(-1y- (ne)"" y...

Lnxn            (nx — r) | r n —

...+(—1)" -

(112 — n) J n J

r taking all integral values from 0 to n inclusive. When x = r, we have 1 (r) = y,; so that 1 (x) has n+1 values in common with f(x). The p approximate value of the integral is therefore V (x) dx, and may be written as in (iv.)                                            J0

By substituting 1—a, it appears that

and therefore Ar = An_r. Consequently it is only necessary to calculate half the number of coefficients in (iv.)

2996 The coefficients corresponding to the values of n from 1 to 10 are as follows. Every number has been carefully verified, and two misprints in Bertrand corrected; namely, 2089 for 2989 in line 8, and 89500 for 89600 in line 11.

1=1: A, =4, =)


	
n~ 2: A=4,=6,
	
A

153
			

	
1=3: A=A,=3,
	
A = A ,= 3

1       2     8
			

	
7

n = 4 : A. — A. = ——,
	
A =A.. = — ,
	
A, - 2
		

	
0     4    90
	
3    45
	
2    15
		

	
? — 5: A = A - — --,
	
A*A= 25,
	
A-, — A„ —
	
25
	

	
0 5 288’
	
1     *    96’
	
2       3
	
141
	

	
.  A  41

Il = b : A — A. = -—,
	
A. = A. = 9,
	
A., — A. —
	
9 A,=
	
34


	
0      6 840’
	
1      5     35 ’
		
280    3
	
105


	
A _ a _ 751
	
A 2577
			

	
"         0     7   17280’
	
1    6   17280’
			

	
A,= A,=49,
	
A,=A,=,2989.
			

	
2     5   640
	
3     4   17280
			

	
989
	
, La _ 2944
	
A — A —
	
464
	

	
0    8   28350’
	
"07=14175'
	
—2 — —6 —
	
14175’
	

	
Aj=A = 5248,
				

	
3          14175'
	
4     2835
			




	
n = 9 : 4o — 4=
	
2857

89600'
	
_. _ 15741  A - A - 27

89600’    2 ” 7 T 2240’


	
As As =
	
1209

5600’
	
2889

4 5 44800


	
n 10. Ao A10
	
16067

598752’
	
__ 26575 , - A - _ 16175 '1   9 “ 149688’ "508-   199584’


	
4=4=
	
5675

12474'
	
___ 4825    A - 17807

11088’     4 5 ~  24948




GAUSS’S METHOD.

2997 When f (x) is an integral algebraic function of degree 2n, or lower, Gauss’s formula of approximation is

f/W = A,f(x,)+...+A,f(x,)+...+A, f(x„) (v.), • 0

where a ... a, ... a, are the n+1 roots of the equation

v(x) = dom-{a"(r- 1)41} = 0 ......... (vi.),

and Ar = C(x—2)..(a—2,-1)(a—a,+)...(a—,) da

Jo ^r— &o) ... (a,— &,-1)(a,— a,1) ... (a,—a,)...(vii.)

The formula is evidently applicable to a function of any form which can be expanded in a converging algebraic series not having a fractional index in the first 2n terms. The result will be the approximate value of those terms.

PROOF.—Let    1 (x) = (a?— 2) (a— a,) ... (x— an),

and let                    f (x) = Qy (%)+R ........................... (viii.), where f(x) is of the 2nth degree, Q of the n—1th, and R of the nth, since 1(x) is, of the n+ Ith degree.

Then the method consists in choosing a function 1 (a) of the n+1th degree, so that Q 1 (x) dx shall vanish ; and a function R of the nth degree, which .J °.

shall coincide with f(x) when a is any one of the n+1 roots of 1 (x) = 0.

(1

(i.) To ensure that Q 1 (x) dx = 0. We have, by Parts, successively, J °

writing N for 1 (x), and with the notation of (2148),

xpN = «” I N-p(«p-1 | N)

=x” N—px1^1N+p{p — 1) (ap-2 N)

J x               J 2x                                   J 2a: /

=           &c.             &c.

=2” N— pa”-1 N+p (p — 1) a” 2 N~... A ]y> N (ix.) J2x                        J 3xJ(p+1)x

Now Qy (x) is made up of terms like a i (x) with integral values of p from 0 to n — 1 inclusive. Hence, if the value (vi.) be assumed for 1 (x), we fi

see, by (ix.), that Qv (x) da will vanish at both limits, because the factors J o

a and x—1 will appear in every term.

(ii.) Let R be the function on the right of equation (v.) Then, when a = a,, we see, by (vii.), that Ar = 1, and that the other coefficients all vanish. Hence R becomes f(x) whenever a is a root of 1 (x) — 0.

The values of the constants corresponding to the first six values of n, according to Bertrand, are as follows. The abscissas values, only, have been recalculated by the author.


	
n = 0 :
	
20 = 5,           A, = 1.


	
n = 1 :
	
«, = 21132487, Jo = A=’5, log = 9-6989700;

a, = 78867513.


	
n = 2 :
	
& = -112 7016 7, A, = A,=Y5s,  log=9A^C)9 75-,

a, = '5 ;

^=•88729833, A, = 4,         log = 9-64^78175.


	
n = 3 :
	
«, = 06943184, A, = A, = 1739274, log = 9:2403681 ;

a, = -3300094 8, A, = A, = 3260726, log = 9:5133143 ;

«, = -66999052 ;

a, = -93056816.


	
n=4:
	
2, =04691008,  A, = A, = -1184634,  log = 9'0 7358 34 ;

«, = -23076534,  A. = As = -2393143,  log = 9-3789687 ;

22 = -5,               A2 = -2844444,  log = 9-4539975 ;

«, = *76923466;

«a = -95308992.


	
n = 5 :
	
«, = -03376524,  A, = A, = -0856622,  log = 8-9327895 ;

a, = -16939531,  A, = A, = -1803808,  log = 9-2561903 ;

«, = -38069041,  A, = A, = -23395 70,  log = 9-3691360 ;

«, = -61930959;

«, = -83060469;

a, = -96623476.




As a criterion of the relative degrees of approximation obtained by the foregoing methods, Bertrand gives the following values of


		
(1 log(l+e) da = r log 2 = -2 721982613.

L 1+22       8




Method of Trapezoids,      n — 10,    ‘2712837.

Simpson’s method,          n = 10,    *2722012.


	
Cotes’s

Gauss’s
	
„            n = 5    -2722091.

„              = 4,     2721980.




For other formulas of approximation, see also p. 357.

CALCULUS OF VARIATIONS.

FUNCTIONS OF ONE INDEPENDENT VARIABLE.

3028 Let y =f(x), and let V be a known function of a, y, and a certain number of the derivatives Y., y2x, y3x, &c. The chief object of the Calculus of Variations is to find the form of the function f(x) which will make

U= ..........................(i.)

	
• xo



a maximum or minimum. See (3084).

Denote y^y^, Y3 &c. by p, q, r, &c.

For a maximum or minimum value of U, 8U must vanish. To find 8U, let cy be the change in y caused by a change in the form of the function y —ftxf and let ^p, ^q, &c. be the consequent changes in p, q, &c.

Now,               p = yx.

Therefore the new value of p, when a change takes place in the form of the function y, is

2+8p = (J+8y), = y,+(3y)., therefore ^p = ^y^; that is, 8 ( dy) = d(8y),

	
	
1                     \dxj da





Similarly, ^q = (Wx,

5 = ^qf, &c...............................(ii.)

Now 8U= ^Vdx (1483). Expand by Taylor’s theorem, J xo rejecting the squares of 3y, 8p, ^q, &c., and we find

^TJ =(V,8y+V,8p+V,8q+...) dz, J To

or, denoting V„, Vp, V,... by N, P, Q, ...,

8U= (N^y -\~P^>p-\~Qfq~h...)           ,,,(iii.)

Integrate each term after the first by Parts, observing that by (ii.)8p dx = 8y, &c., and repeat the process until the final integrals involve ^ydx. Thus

N^ydx is unaltered,

Pcpdx = P&y—P^ydx,

Q^p dx = Q,^p — Qx^y +Q2 ^y dx,

R 87 dx = B^q — B^ + ^-ix^y — I R, ^y da.

3029 Hence, collecting the coefficients of ^y, ^p, 84, &c.3

8U=(N—P.+Q2—R+...) 8ydw

• To

+8y1 (P-Q+R,—..)1-8y (P-+R.—.)

+8p,(Q—R,+S—..)—8p (Q—R+S.—.)

+ 8q1 (R-Sx + T- ...)— 8qo (R-Sx +7— )+ &c. (iv.)

The terms affected by the suffixes 1 and 0 must have x made equal to 21 and 2 respectively after differentiation.

Observe that Px, Qx, &c. are here complete derivatives; y, p, q, r, &c., which they involve, being functions of x.

Equation (iv.) is written in the abbreviated form,

3030       8U= K .......................... (v.)

The condition for the vanishing of 8U, that is, for minimum value of U, is

3031       K = N-P,+0.-R,+&c. = 0.........(vi.),

3032          and Hr-H, = 0........................ (vii.)

Proof.— For, if not, we must have

Kzydz = H—H;

	
	
	
• Ko







that is, the integral of an arbitrary function (since y is arbitrary in form) can be expressed in terms of the limits of y and its derivatives ; which is impossible. Therefore Sy—H. = 0. Also K = 0 ; for, if the integral could vanish without K vanishing, Axe form of the function Sy would be restricted, which is inadmissible.

The order of K is twice that of the highest derivative contained in V. Let n be the order of K, then there will be 2n constants in the solution of equation (vi.) and the same number of equations for determining them. For there are 2n terms in equation (vii.) involving 3y1, lyw dp^ &c. If any of these quantities are arbitrary, their coefficients must vanish in order that equation (vii.) may hold; and if any are not arbitrary, they will be fixed in their values by given equations which, together with the equations furnished by the coefficients which have to be equated to zero, will make up, in all, 2n equations.

PARTICULAR CASES.

3033 I.—When V does not involve a explicitly, a first integral of the equation K = 0 can always be found. Thus, if, for example,

y={y,P, q, 7, s), a first integral will be

V = Pp

+ Qpx —Q^p

+Rp,—R.p, +R,p

+ SPse — S, Pix " I S2, Px — SsP -- C •

The order of this equation is less by one than that of (vi.)

PROOF.—We have   Vx = Np +Pg+ Qr+Rs.

Substitute the value of N from (vi.), and it will be found that each pair of terms involving P, Q, R, &c. is an exact differential.

3034 II.—When V does not involve y, a first integral can be found at once, for then N = 0, and therefore K = 0, and we have       Px— Q.+R—&c. = 0;

and therefore P—Q.—R2, — &c. = A.

3035 III.—When V involves only y and p,

V= Pp-VA, by Case I.

3036 IV.—When V involves only 2 and q,

V = Q7+Ap+B. See also (3046).

PROOF. K = — P,+ Q2 = 0, giving, by integration, P = Qx + A.

Also            V, = Py + Qr = Aq + Q.4 + Qr.

Integrating again, we find V = Qq + Apl-R, a reduction from the fourth to the second order of differential equations.

3037 Ex.—To find the brachistochrone, or curve of quickest descent, from a point 0 taken as origin to a point x^, measuring the axis of y down-wards.2

Velocity at a depth y = '^'^gy.

Therefore time of descent =1 21+2 dx, J %o • ^gy

Here v = /1+p = - 23 — +A, by Case III.

V y v{y (!+/)}

By reduction, y (1 +p?) = l, = 2,


an arbitrary constant.



That is, since p = tan 0, y = 2a cos2 6, the defining property of a cycloid having its vertex downwards and a cusp at the origin


reduces to




- {^y\~ ^j\} = 0.



If the extreme points are fixed, ^yT and SY0 both vanish.

The values 21, yv at the lower point, determine a.

Suppose 21, but not yv is fixed. Then 3y1 is arbitrary ; therefore its coefficient in (3) (P— Q+&c.)1 must vanish; that is, (V>)1 = 0, or ——P - - = 0, therefore 7. = 0, which means that the tangent at the •y(1+p2))1.                  . lower point is horizontal, and the curve is therefore a complete half cycloid.

3038 In the example of the brachistochrone, it is useful to notice that— (i.) If the extreme points are fixed, ^yw ^yx both vanish.

(ii.) If the tangents at the extreme points have fixed directions, ^p^ ^px both vanish.

(iii.) If the curvature at each extremity is fixed in value, ^pw ^gm 371, Sq1 all vanish.

(iv.) If the abscissa 2, 21 only have fixed values, ^y0, 2Y1 are then arbitrary, and their coefficients in H— H, must vanish.

3039 When the limits 20, 21 are variable, add to the value of 8U in (3029) Vdz,- Vodz.

PROOF.—The partial increment of U, due to changes in 21 and To, is ~dxx+ dx. = V,da,—V,dz,.        By (2253). Ci1 Cwo 3040 When 21 and y^ 2 and y^ are connected by given equations,         Y1 = • (^), J = x (ro).

RULE.—Put

8y, = WM— pi} da, and 8y. = ix‘(r)— Po} da,,

and afterwards equate to zero the coefficients of da and dx^ because the values of the latter are arbitrary.

PROOF.—Y1 + 2y, being a function of 21,

(2/1 + ^1) + d,, (J1 + ^1) dz, =!(,+ dx^ = • («,) + 1‘ (x,) d'^; therefore ZY1 +P1 dxx = V (21) da, neglecting ^pdxv

Ex.—In the brachistochrone problem (3037), the result thus arrived at signifies that the cycloid is at right angles to each of the given curves at its extremities.

3041 If V involves the limits 2, 21, Y0, yx, P^ P^ &c., the terms to be added to ^U in (3029), on account of the variation of any of these quantities, are

1

        \ a / \    27—al \    21— X (1+2) (1-2 ) (1+2 ).. &c. \   47—al \   47ra/ \ b7r—al

Proof, cos x + tan — sin x = cos Gd——. Expand the cosines by (816), 2            cos 2d

and reduce. Similarly with (2949), employing 815.

2

 The Calculus of Variations originated with this problem, proposed by John Bernoulli in 1636.


da, {V,,+V,P1+V,4,+...} dx

	
•    To



(21 r                                        1

do {Vx—VPo—Vpdo—...} da

	
•    To



+ {V8Jo+Vy8y1+Vp8p.+V78p1+&c.} dx.

	
•    To



in the last integral, 8Y0, 3y1} ^p^, &c. may be placed outside the symbol of integration since, they are not functions of x.

Hence, when V involves the limits 2, 21, y^ yr, p^, p^ &c., and those limits are variable, the complete expression for 8U is

3042 SU= {N—P+Q2— R,=+&c.} Sy da

	
•    To


	
+{V+ (Va,+VPi+V,q+...) da} da, •    To



- { v,- s (V,,+ V,po+ V,4.+ ...)d^} d^0

	
•    To



	
+{(P—Q+R—..)1+ Vda} ^yi •    To



—{(P-Q+R—..)— Vuda} 8y0

	
•    To



+{(Q—R,+ S—...)1+ Vpda} 8pi

	
•    To



— {(Q-R,+s-...)- s V,da} 8p.+&c.

	
•    Te



3043 Also, if Y1 = 1 (21) and Yo = X (x) be equations restricting the limits, put

8J1 = {V(r)—P1} dz, and 8Jo = {/(w)—Po} dzg. (3040)

The relation K = 0 is unaltered, and, by means of it, the additional integrals which appear in the value of H1— H become definite functions of a.

3044 Ex.—To find the curve of quickest descent of a particle from some point on the curve Y0 = X (x) to the curve Y1 = 1 (x1).

As in (3037), t = _1 - s . /1 +1 da, V = ./1+P , and contains y, V(29) J^v y-y. yy-y^

p, and y^. Equation (3042) now reduces to

CX1                                               C X1

3U = (N—Pz) lydz+Vida—{V— VVopodx} da J xo                                              J To

+ P,By, -{P- V, dz } 3y,


(1).



J To

Now K— 0 gives N—Fx = 0; therefore V = Pp + A (3035) ;

/1+p2 =       73       + A


therefore



V y— VCj-y^^+p1)

i

Clearing of fractions, and putting A = - •   —, this becomes v (20)

da,, dz being arbitrary, their coefficients must vanish; therefore

PA' (x,) = “ 1 and Pi X (x) = -1.

That is, the tangents of the given curves 1 and X at the points TYo and 2Y1 are both perpendicular to the tangent of the brachistochrone at the point x^y^. Equation (2) shews that the brachistochrone is a cycloid with a cusp at the starting-point, since there y = y^ and therefore p = 0 .

OTHER EXCEPTIONAL CASES. (Continued from 3036.)

3045 V.—Denoting 3,33 32 ... Y by J, P1,22 ...pn; and Y, Y,,, V, VPn by N, P P ... P; let the first m of the quantities y^p^p.^ &c. be wanting in the function V; so that

	
V    f (x, Pm> Pm+1 • • • Pn) • Then K = d„P. dm*n)P»++... ( 1) d„P, 0, which equation, being integrated m times, becomes



Pm d, Pm+1+d2Pm+2  ••• (  1)   ^{n-m^x-^n

= Co+G«+...+©„-1071 ...... (i.), a differential equation of the order 2n— m.

3046 VI.—Let x also be wanting in V, so that

	
V    f ^Pmi Pm+1 ■ • • ?.) ; then K = 0 is the same as before, and produces the same differential equation (i.) From that equation take the value of Pm, and substitute it in



V « — Pm P m+1 + ^m+1 Pm+2 + • • ■ + P, Pn+1‘

Each pair of terms, such as Pm+2 2+3—d2, Pm+2 2m+1, is an exact differential; and we thus find

V '— c + Pm+1 Pm+1 + (Em+2 2m+2-— dx Pm+2Pm+l) + • •. +(PnPn dxPnpn-i~[~ d^P„P,-2)  ... ( 1) d-m-v .Pn?m+1 + (c+cz+...+ G„-1a"-1) Pm+1 dz.

The resulting equation will be of the order 2n—m— 1, or m+1 degrees lower than the original equation.

3047 VII.—If V. be a linear function of pn, that being the highest derivative it contains, Pn will not then contain pn. Therefore d„TP„ will be, at most, of the order 2n—1. In-deed, in this case, the equation K = 0 cannot be of an order higher than 2n—2.                                  (Jellett, p. 44.)

3048 VIII.—Let pm be the lowest derivative which V involves ; then, if Pm —f{x), and if only the limiting values of a and of derivatives higher than the mth be given, the problem cannot generally be solved.                          (Jellett, p. 49.)

3049 IX.—Let N = 0, and let the limiting values of a alone be given; then the equation K = 0 becomes

P. — Q2+Ra — &c. = 0, or, by integration, P—Q+R2— &c. = e, and the two conditions furnished by equating to zero the coefficients of 8J1, 8J0, viz.,

{P— Q.+&c.), = 0,    (P- Q.+&c.), = 0, are equivalent to the single equation c = 0, and therefore H— H = 0 supplies but 2n— 1 equations instead of 2n, and the problem is indeterminate.

(21

3050 Let U= VdxpV, where

•To

V =l(a, y, 2, q ...) and V’ =ffa, &1» Y0» 311 Po, P1, &c.)

The condition for a maximum or minimum value of U arising from a variation in y, is, as before, K = 0; and the terms to be added to H— H, are

VE,dz,+ V£,8y+ V7,8p+ ••• +V,dz,+V,8y1+&c.

If the order of V be n, and the number of increments dx0, ^yQi &c. be greater than n+1, the number of independent increments will exceed the number of arbitrary constants in and no maximum or minimum can be found.

Generally, U does not in this case admit of a maximum or minimum if either V or V contains either of the limiting values of a derivative of an order = or > than that of the highest derivative found in V.                     (Jellett, p. 72.)

FUNCTIONS OF TWO DEPENDENT VARIABLES.

3051 Let V be a function of two dependent variables y, z, and their derivatives with respect to x; that is, let

V =f{x,y,p>q...x,p,q ...)...............(1), where 2, q, ... , as before, are the successive derivatives of y, and p', q , ... those of z.

Then, if the forms of the functions y, z vary, the condition for a maximum or minimum value of U or   V dx is

	
• To



8U= ("(KSy+K‘8z) da+H,—H,+H,/-H,= 0 ... (2).

oxo

Here K', H‘ involve z, p', q, ..., precisely as K, H involve y, p, q, ...; the values of the latter being given in (3029).

3052 First, if y and g are independent, equation (2) necessitates the following conditions :

K=0, K‘= 0,  H,-H,+H, ‘—H,‘= 0......(3).

The equations K — 0, K‘ = 0 give y and z in terms of a, and the constants which appear in the solution must be determined by equating to zero the coefficients of the arbitrary quantities 8J0, ^yt, 3p0, 8P1 ... 82,, 821, ^pf 3p^} ..., which are found in the equation

0004 NOTE.—The number of equations for determining the constants is not generally affected by any auxiliary equations introduced by restricting the limits. For every such equation either removes a term from (4) by annulling some variation Uy, dp, &c.), or it makes two terms into one; in each case diminishing by one the number of equations, and adding one equation, namely itself.

3055 Secondly, let y and z be connected by some equation 3 M

$ (xyz) = 0. y and z are then found by solving simultaneously the equations

$ (x, y, z) = 0 and K : $, = K' : pa.

PROOF.—p (x, y, z) = 0, and therefore p (x, y + ^y, z+3z) = 0, when the forms of y and z vary. Therefore $„y+z8z = 0 (1514). Also Ky+ K'^z = 0, by (2). Hence the proportion.

3056 Thirdly, let the equation connecting y and z be of the more general form

(x, y,p,{ ••• %,7,q —) = 0...............(5).

By differentiation, we obtain

%„8J+*,8p+028q+ ... $,8z++*,8p+p,84 + ... = 0... (6). If (which rarely happens) this equation can be integrated so as to furnish a value of 8z in terms of 8y, then 8p‘, 8q‘, &c. may be obtained, by simple differentiation, in terms of 8y, 8p. Generally, we proceed as follows :—

	
	
3 V = N^y + P8p + Q^q + ... + N' 8z + P8p + Q'^  ......(7).





Multiply (6) by X, and add it to (7), thus

8V= (N + X4,) 8y + (P + X4,) 8p + • • •

... +(N‘+A.) 82+(P‘+A,) 8p‘+.........(8).

The expression for ^U will therefore be the same as in (2), if we replace N by N+X,, P by P+Xp,, &c., thus

3057 8U= C"L{(N+N4.)—(P+x,).+...} 8y +{(N‘+N.)—(P+N,).+...} 8zdz

+ {P+N,-(Q+N,).+...}18y,

- {P+1,-(Q+N,).+...}.8yo

+ {Q +N, -(R+N) .+...} 18p,

— {Q+A,—(R+A.).+...}o 8po

&c.                       &c.

+ similar terms in P, Q ... p', q ... &c. ...(9). 3058 To render 8U independent of the variation 8z, we must then equate to zero the coefficient of 8z under the sign of integration; thus

N‘+A.—(P‘+N,).+(Q+A.).—&c. = 0......(10), the equation for determining X.

3059 Ex. (i.)—Given V = F(x, y,p, q ... 2), where

z = vdx and v = F(x, y,p, q ,,.). A* The equation $ is now z— ^vdx = 0 or v—zx = 0,

$u = vy,      P» = v, ,       $.= "4, &c.,

2 = 0,     07= —1,     P7= 0, the rest vanishing.

Substituting these values in (9), we obtain

^U= "L{N+Nu,—(P+X,),+(Q+X),- ...}^y + {N’+N,} 8:]da

J To

+ IP +X,-(Q+Au) +...}1 8y— {F +Xv,— (Q+Nv,),+...}3J0

+ { Q+AU, — (R+Au,),+    ^i — { Q+ Av, — (R+Av,),+ ..•} 2p+ &c.

For the complete variation DU add Vida—Vodx. To reduce the above so as to remove oz, we must put N' + N— 0, and therefore X =- J N'dx. Let X = u be the solution, u being a function of x, y, p, q ... z. Substituting this expression for X, the value of 2 U becomes independent of dz.

Ex. (ii.)—Similarly, if 2 in the last example be = Sv (2148), 0 becomes v- Zp* = 0 5 and, to make N' + Xpx vanish, we must put X = ~^xN'.


3061 Ex. (iii. )—Let

Here N^0-, N' = 0 ;



U=\ vl+y+zdx ..............................(1).

J xo

P =     2___________• P = _ 2    • Q=0.

•1+p+p2‘     vl +pz +p" ‘

Q‘ = 0; and the equations K = 0, K‘ = 0 become

Px = 0, P, = 0, or —.  2  — = a,             = b.

•1+p2+p2      1+p+p2

Solving these equations, we get y = m; z, = n; or y=-mx + A’, % = na+B.

3062 First, if xv y^ 21, xw y0, 20 be given, there are four equations to determine m, n, A, and B.

This solves the problem, to find a line of minimum length on a given curved surface between two fixed points on the surface.

3063 Secondly, if the limits a, x0 only are given, then the equations (P),=0, (P),= 0, (P\ = 0, (P),=0, are only equivalent to the two equations m — 0, n = 0, and A and B remain undetermined.

3064 Thirdly, let the limits be connected by the equations

$ (2,, Y1 z,) = 0, 1 (Ko, Jo, %0) = 0.

We shall have (pz,+9u?1+p= Pi) da,+py,3y1+1232, = 0.

Substitute 0,,= M1dz,, $z, = 21 pz,, P1 = m, p[ = n- thus

(1 + mm, + nn^ dxx + m, Syx + n, 321 = 0.

Eliminate da, by this equation from

	
V, dx, + ( P^ By, + (P'\ 8z, = 0, and equate to zero the coefficients of Syx and 3z, ; then



M1V1 = (PXC1 +mm, + nn^) ; ' 21 V1 = (P)1 (1+ mm, + nn,) •

Replacing 71, P by their values, and solving these equations for m and n, we find m = M1, n = nv

Similarly from the equation i (xo, yw z,) = 0 we derive m = mo, n = 7o. Eliminating 21, yv 21, x0, y^, % between these equations, and

J1 = ma,+ A’, 71 = n+B; Y = mz+A; % = na+B;

P (a, Y1 z) = 0 ; ^(^ y^ z) = 0; four equations remain for determining m, n, A, and B.

3065 On determining the constants in the solution of (3056). Denoting p, q, r ... by px, p.2,ps , we have

V=F(a, y, PiP2 ^,pn, %, pis p2 ... p); and for the limiting equation,

$(a, y. Pis P2, ... Pw, 2, pi ps, ... p.) = 0.

V is of the order n in y and m in z.

p is of the order n in y and m in z.

3066 RULE I.—If m be > m‘, and n either > or < n‘, the order of the final differential equation will be the greater of the two quantities 2 (m+n‘), 2 (m’+n); and there will be a sufficient number of subordinate equations to determine the arbitrary constants.

3067 RULE II.—If m be < m‘, and n < n‘, the order of the final equation will generally be 2 (m‘+n‘); and its solution may contain any number of constants not greater than the least of the two quantities 2 (m‘—m), 2 (n’—n).

For the investigation, see Jellett, pp. 118—127.

3068 If V does not involve a explicitly, a single integral of order 2(m+n)—1 maybe found. The value of V is that given in (3033), with corresponding terms derived from z.

PROOF.— dV = Ndy + P1 dpx + ... + Pndpn + N'dz + P^dp^A ... pP’mdpm.

Substitute for N and N' from the equations K = 0, K' = 0, as in (3033), and integrate for V.

RELATIVE MAXIMA AND MINIMA.

3069 In this class of problems, a maximum or minimum value of an integral, U1 = Vida, is required, subject to the

	
	
• To





condition that another integral, U2 = V^dx, involving the

• Xq

same variables, has a constant value.

Rule.—Find the maximum or minimum value of the function U1+aU2; that is, take V = V1+aV2, and afterwards determine the constant a by equating U, to its given value.

For examples, see (3074), (3082).

GEOMETRICAL APPLICATIONS.

3070 Proposition I.—To find a curve s which will make | F (x, y) ds a maximum or minimum, F being a given function of the coordinates x, y.

The equation (5), in (3056), here becomes

r‘+m=1;

where p = a,, p = ys, a and y being the dependent variables, and s the independent variable.

In (3057), we have now, writing u for F (x, y),

N = ux, N — uv, $» — 2p, P» — 2p ;

the rest zero. The equations of condition are therefore

ux—ds(XXs) — 0 and uy—ds(Xys) = 0..................(1).

Multiplying by «„ ys respectively, adding and integrating, the result is

X = u, the constant being zero.1

Substituting this value in equations (1), differentiating uxs and uys, and putting u, = uxxs + uyys, we get

yFuxys~ uyc) = U22,..............................(2),

«,(u,s,— u,y.) = U2s..............................(3).

Multiplying (2) by y , and (3) by 2, and subtracting, we obtain finally

u (y C2— xsy^ = u,y,— u,E,, or


3071




u   du dy du doc p da ds dy ds




(4),



P being the radius of curvature.

To integrate this equation, the form of u must be known, and, by assigning different forms, various geometrical theorems are obtained.

3072 PROPOSITION II.—To find the curve which will make

J E(a, y) ds +Jf(a, y)dx .................. (1) a maximum or minimum, the functions F and/being of given form.

Let             F (x, y) = u and f(x, y) = v. Equation (1) is equivalent to f(u+vx,) ds. In (3057) we now have V = u + vp ; and for 4, p2+p = 1, as in (3070).

Therefore N=u +pvx ; P = VP = v; P» = 2p ;

N' = Uy FpVy ;                     P7 = ^p ; the rest zero. Therefore, equating to zero the coefficients of 3e and Sy, the result is the two equations               ux+pvx — (v + Xp)s = 0, uy+pv—Qp), = 0;

or d,(Xa,) +v, = ux + xsvx, d,(Ay,) = u,+a,U, Multiplying by xs, ys respectively, adding, and integrating, we obtain, as in (3070), X — u, and ultimately,

9079       1 _ 1 (du ^y du da , dv\ p u \da ds dy ds dy)

3074 Ex.—To find a curve s of given length, such that the volume of the solid of revolution which it generates about a given line may be a maximum.

Here J(y2a,— a^ds must be a maximum, by (3069), a2 being the arbitrary constant. The problem is a case of (3072), u = cd, ux = 0, u^ = 0, v = y3, v, = 2y.

Hence equation (3073) becomes — = 0 a

Giving p its value, - 1+P )8 (where p = du), and integrating, the result

PPy \

— 1   = 9 +5 ; from which c =


(y^ + F) dy • a*—(y?+62)



•1+pa a3

FUNCTIONS OF TWO INDEPENDENT VARIABLES, 3075 Let V= f(o, Y, ^,p,q, 7,8, t), in which a, y are the independent variables, and p, q, r, s, t stand for Z,, z„, 222, Zgy, Z2, respectively (1815), z being an indeterminate function of a and y.

Let          U= I Vdxdyy

	
	
• xo • Jo





and let the equation connecting a and y at the limits be 4 (x, y) = 0. The complete variation of U, arising solely from an infinitesimal change in the form of the function z, is as follows :—

Let V2, Fp, &c. be denoted by Z, P, Q, B, S, T.

Let        $ = (P—Bs —^SV) ^zP^S^q+B^p,

V=(Q-T, -iS^ 82 +iS8p + T^q, x= {.Z—P^—Qyp B2x + Sxy + T2y) Sz.

The variation in question is then


3076



8U =S(y,--V,-„+$,-„d% -$,-„4z) dz


r ("Ji e=xi (21 pvi

+ 1 $dy + xdxdy.

—• Yo     . =To  • To • Yo




Vo




To




To




V0



pl pl           pl (Y1

PROOF.— 3 Vdxdy = SVdxdy

J xo J Vo                J xo J Jo

(x1 pi

= (Z8z+Pp+ Q^AB^'AS^s+TSt^dxdy

J xo J Jo

[image: ]

di +x } dxdy,




as appears by differentiating the values of $ and 1. But


V1

Jo




d dy = -dx dx




"ody+9,-v,du

J Yo                Cr




_ dyi

P-3i dx ‘




by (2257), and

Hence the result.



"d dy= •,-„,-,-»;

J Yo ay

3077 The conditions for a maximum or minimum value of U are, by similar reasoning to that employed in (3032),

4 =0, 1=0, x = 0

GEOMETRICAL APPLICATION’S.

3078 Proposition I.—To find the surface, S, which will make JJ F(x, y, z) dS a maximum or minimum, Fbeing a given function of the coordinates a, y, z.                  [Jellett, p. 276.

Here, putting F (x, y, z) = u, V = u v1 +p2 + q3; z=11+p+qdu; p= —up, -; Q=-u dz       1+p2+q       1 +p2 + q and Vr, Vs, Vt are all zero. dP =    2            du) + u (1 + q^r-pgs

dx V1+p2+q‘\dz dz 1    (1+p2+2)4‘


dQ _ q

dy VI +p? + q^




/ du . du\

— +I—)

‘ dy dz 1




! u(l+p2) t-pqs (1+p2+22)% '



The equation X = 0 or Z—Px— Q, = 0 gives

(1+92) r — ^pqs+^l. Fp^ t +      1


du - du du\

Pdtldy—dz)



(1+p2+22)4 uV1+p2+q

If R, R' be the principal radii of curvature, and Z, m, n the direction cosines of the normal, this equation may be written

3079  1+1+1(4+md+»d)=o, and according to the nature of the function u different geometrical theorems may be deduced.

3080 Proposition II.—To find the surface S which will make

JJ F (r, y, z) dS + Jf (r, y, z) dxdy a maximum or minimum; F and f being given functions of the coordinates x} y, z.

Let F (x, y, z) = u and f (x, y, z) = v. Proceeding throughout as in (30 78), we have         V = uV\ +22+ 73+v,

Z = •1+p+q‘u,+v,, and the remaining equations the same as in that article if we add to the resulting’ differential equation the term — % on the left.

This equation may then be put in the form

2091 11_ 1/dudu„du dv \ 200 RTR-ud "dzdz)’ where I, m, n are the direction cosines of the normal to the surface.

3082 Ex.—To find a surface of given area such that the volume contained by it shall be a maximum.

By (3069), the integral J (z—avl+p+s) dxly

must take a maximum or minimum value. The problem is a case of (3080). We have u = — a, v = z, u, = 0, u, = 0, u, = 0, v, =1; and the differential equation of the surface (3081) reduces to

(1+92) 7— 2r>qsA (1+p2) t 4--(1+22+92)2 = 0 ; a

3083        or 1+4=1

APPENDIX.

ON THE GENERAL OBJECT OF THE CALCULUS OF VARIATIONS.

3084 Definitions.—A function whose form is invariable is called determinate, and one whose form is variable, indeterminate.

Let du be the increment of a function u due to a change in the magnitude of the independent variable, Su that due to a change in the form of the function, Du the total increment from both causes; then

Du = du + Su.

Thus, in (3042), the terms involving da^ and da constitute du, and the remaining terms Su; the whole variation being Du.

Su is called the variation of the function u.

3085 A primitive indeterminate function, u, of any number of variables is a function whose variation is of arbitrary but constant form; in other words, S2u = 0.
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3086 Let v = F .u be a derived function,—that is, a function derived by some process from the function u; F denoting a relation between the forms, but not between the magnitudes, of u and v.

The general object of the Calculus of Variations is to determine the change in a derived function v, caused by a change in the form of its primitive u.

The particular derived functions considered are those whose symbols are d and j , denoting operations of differentiation and integration respectively.

SUCCESSIVE VARIATION.

3087 Let the variation of the variation, or second variation of V due to a change in the form of the involved function, y =f(x), be denoted by 8 (8 V) or 82 V; the third variation by 837, and so on.

By definition (3085), y being a primitive indeterminate function, and Sy its variation, Fy = 0......   (1).

3088 The second variation of any derivative of y is also zero, i.e., 82p, Fq, &c. all vanish.

Proof.— ^{y^ = 3 ^ynx) = 43 ^y)}nx = (B%y),e = 0 by (1).

3089 If V =f(x, y, p9 q, r, &c. ...), where y is a primitive indeterminate function of a, then

8" V = {3ydy + 8p dp+^q dq + ...)" V, where, in the formal expansion by the multinomial theorem, Sy, ^p, &c. follow the law of involution, but the indices of dy, dp, &c. indicate repetition of the operation dy, dp, &c. upon V.

Proof.—First,   3V = ^yd,+3pd,+3qd,+ ...) V.

In finding ^V, each product, such as Sy dvV, is differentiated again as a function of y, p, q, &c. ; but, since the variations of Sy, Sp, &c. vanish by (2), it is the same in effect as though Sy, Sp, &c. were not operated upon at all. They accordingly rank as algebraic quantities merely, and therefore

a‘v= ^yd!/ + Spdp + Sqdq+...yV.

Similarly for a third differentiation ; and so on.

IMMEDIATE INTEGRABILITY OF THE FUNCTION V.

3090 DEF.—When the function V (3028) is integrable without assigning the value of y in terms of a, and therefore

integrable whatever the form of the function y may be, it is said to be immediately integrable, or integrable per se.

3091 The requisite condition for V to be immediately integrable is that K = 0 shall be identically true.

PROOF.— V dx must be expressible in the form

J «o

$ (-131P111 •..)—$ (ooVoPogo ••), where $ is independent of the form of y. Hence, a change in the form of y, which leaves the values at the limits unaltered, will leave

3 Vdx = 0; that is, { Key — 0.

J So

But the last equation necessitates K—Q, since oy is arbitrary. And K= 0 must be identically true, otherwise it would determine y as a function of x.

DIFFERENTIAL EQUATIONS.

GENERATION OF DIFFERENTIAL EQUATIONS.

3050 By differentiating ordinary algebraic equations, and eliminating constants or functions, differential equations are produced. Some methods are illustrated in the following examples.

3051 From an equation between two variables and n arbitrary constants, to eliminate the constants.

RULE.—Differentiate r times (r<n), and from the r+1 equations any r constants may be eliminated, and thus C (n, r) different equations of the rth order (3060) obtained, involving dry dr ly                                                 .

Txt-1, &c. Only r+1, however, of these eqziations will be independent. By differentiating n times and eliminating the constants, a single final differential equation of the nth order free from constants may be obtained.

3052 Ex.—To eliminate the constants a and b from the equation


(iii., iv.)



a? d‘4.-2a d1+2y = 0 dx dx


(v.)



The same equation is obtained by differentiating (iv.) and eliminating a.

3053 To eliminate the function $ from the equation % = $ (v), where v is a function of a and y. We have

z,= t‘(v) v,, z, = t‘(v) v.


Therefore




Za"y — Zu"x-



3054 To eliminate p from u = $ (v), where u and v are functions of x, y, z.

Consider x and y the independent variables, and differentiate for each separately, thus

u,+u,%, = ‘ (v) (v,+v,2),

^y + Vy = ‘(v) (v,+v,2u), and, by division, p‘ (v) is eliminated.

3055 To eliminate $1, $2, ... $, from the equation

E {a, V, 2, (1 (ai) , (2 (a,) 5 • • • $» ^an) }     0, where a1, a2, ... an are known functions of x, y, z.

RULE.—Differentiate for x and y as independent variables, forming the derivatives of F of each order, up to the (2n — l)th in every possible way; that is, F; F,, F, ; F2e, Fay, F2,; ^c. There will be 2n2 unknoion functions, consisting of $1, $2, ... $, and their derivatives, and 2n2+n equations for eliminating them.

3056 To eliminate 5, $1(5), (2(5), ... $»(5) between the equations

F (x, y, z, E, $1(E), (2(5) — 4„.(5)} = o, fl^y,^ %, $1(5), 92(5) ... $„(%)} = 0.

RULE. — Consider z amd E functions of the independent variables x, y, and form the derivatives of F and f up to the 2n—1th order in the manner described in (3055). There will be 4n2+n functions, and 4n2+2n eqi^ations for eliminating them.

3057 To eliminate $ from the equation

F {x, y, 2, w, (a, )} = 0, where a, 3 are known functions of x, y, z, w.

RULE.—Consider x, y, z the independent variables. Differentiate for each, and eliminate p, $a, $8 between the four equations.

DEFINITIONS AND RULES.

3058 Ordinary differential equations involve the derivatives of a single independent variable.

3059 Partial differential equations involve partial derivatives, and therefore two or more independent variables are concerned.

3060 The order of a differential equation is the order of the highest derivative which it contains.

3061 The degree of a differential equation is the power to which the highest derivative is raised.

3062 A Linear differential equation is one in which the derivatives are all involved in the first degree.

3063 The complete primitive of a differential equation is that equation between the primitive variables from which the differential equation may be obtained by the process of differentiation.

3064 The general solution is the name given to the complete primitive when it has been obtained by solving the given differential equation.

Thus, reverting to the example in (3051), equation (i.) is the complete primitive of (v.) which is obtained from (i.) by differentiation and elimination.

The differential equation (v.) being given, the process is reversed. Equations (iii.) and (iv.) are called the first integrals of (v.), and equation (i.) the final integral or general solution.

3065 A particular solution, or particular integral, of a differential equation is obtained by giving particular values to the arbitrary constants in the general solution.

For the definition of a singular solution, see (3068).

3086 To find when two differential equations of the first order have a common primitive.

Rule.— Differentiate each equation, and eliminate its arbitrary constant. The two results will agree if there is a common primitive, which, in that case, will be found by eliminating y, between the given equations.

Ex.—Apply the rule to equations (iii.) and (iv.) in (3052).

3067 To find when two solutions of a differential equation, each involving an arbitrary constant, are equivalent.

RULE.—Eliminate one of the variables. The other will also disappear, and a relation between the arbitrary constants will remain.

Otherwise, if V= G, v — c be the two solutions : V and v being functions of the variables, and C and c constants; then

dV dv _ dV dv

dcc dy dy doc

is the required condition.

Proof.—V must be a function of v. Let V= p (v) ; therefore Va = $,v, and 7,= $,v,; then eliminate p,.

Ex. — tan l(x+y)+tanl(x—y) = a and a2+2ba = y‘+1 are both solutions of 2xy Y. = a2+y2+1. Eliminating y, a disappears, and the resulting equation is b tan a = 1.

SINGULAR SOLUTIONS.

3068 DEFINITION.—" A singular solution of a differential equation is a relation between x and y which satisfies the equation by means of the values which it gives to the differential coefficients yxi y^x, &c., but is not included in the complete primitive.” See examples (3132-3).

3069 To find a singular solution from the complete primitive • (x, y, c) = 0.

RULE I.-—From the complete primitive determine c as a function of x, by solving the equation y.=0, or else by solving xc = 0, and substitute this value of c in the primitive. The result is a singular solution, unless it can also be obtained by giving to c a constant value in the primitive.

3070 If the singular solution involves y only, it results from the equation y.= 0 only, and if it involves x only, it results from X.=0 only. If it involves both x and y, the two equations X. = 0, ye = 0 give the same result.

3071 When the primitive equation $ (xyc) = 0 is a rational integral function, •. == 0 may be used instead of x, = 0 or J. = 0.

When c is constant, the differential equation of which (1) is the primitive is satisfied by the value of yx in (2). But it will also be satisfied by the same value of yx when c is variable, provided that either fc = 0 or *. = 0, and in either case a solution is obtained which is not the result of giving to c a constant value in the complete primitive; that is, it is a singular solution. But fc = 0 is equivalent to yc = 0, and fx = 0 makes Y, = T, and therefore x == constant.

GEOMETRICAL MEANING OF A SINGULAR SOLUTION.

3072 Since the process in Rule I. is identical with that employed in finding the envelope of the series of curves obtained by varying the parameter c in the equation $ (x, y, c) = 0; the singular solution so obtained is the equation of the envelope itself.

An exception occurs when the envelope coincides with one of the curves of the system.

3073  Ex.—Let the complete primitive be

y = cx+1—c, therefore yc = a--—.....= ; yc = 0 gives c = —= —

“1— c2                 vl+a2

Substituting this in the primitive gives y = V1+a3, a singular solution. It is the equation of the envelope of all the lines that are obtained by varying the parameter c in the primitive; for it is the equation of a circle, and the primitive, by varying e, represents all lines which touch the circle. See also (3132-3).

3074  " The determination of c as a function of x by the solution of the equation yc — 0, is equivalent to determining what particular primitive has contact with the envelop at that point of the latter which corresponds to a given value of x.

“The elimination of c between a primitive y = f (x, c) and the derived equation yc = 0, does not necessarily lead to a singular solution in the sense above explained.

" For it is possible that the derived equation yc = 0 may neither, on the one hand, enable us to determine c as a function of a, so leading to a singular solution ; nor, on the other hand, as an absolute constant, so leading to a particular primitive.

" Thus the particular primitive y = ec being given, the condition yc = 0 gives ecx = 0, whence c is + 0 if 2 be negative, and —0 if a be positive. It is a dependent constant. The resulting solution y = 0 does not then represent an envelope of the curves of particular primitives, nor strictly one of those curves. It represents a curve formed of branches from two of them. It is most fitly characterised as a particular primitive marked by a singularity in the mode of its derivation from the complete primitive.”

[Boole’s ^Differential Equations,’’ Supplement, p. 13.

DETERMINATION OF A SINGULAR SOLUTION FROM THE DIFFERENTIAL EQUATION.

3075 RULE II.—Any relation is a singular solution which, while it satisfies the differential equation, either involves y and makes p, infinite, or involves x and makes (1) infinite.

P/x

3076 " One negative feature marks all the cases in which a solution involving y satisfies the condition py = oo . It is, that the solution, while expressed by a single equation, is not connected with the complete primitive by a single and absolutely constant value of c.

" The relation which makes py infinite satisfies the differential equation only because it satisfies the condition yc = 0, and this implies a connexion between c and a, which is the ground of a real, though it may be unimportant, singularity in the solution itself.

" In the first, or, as it might be termed, the envelope species of singular solutions, c receives an infinite number of different values connected with the value of x by a law. In the second, it receives a finite number of values also connected with the values of a by a law. In the third species, it receives a finite number of values, determinate, but not connected with the values of a."

Hence the general inclusive definition—

3077 "A singular solution of a differential equation of the first order is a solution the connexion of which with the complete primitive does not consist in giving to c a single constant value absolutely independent of the value of

[Boole's 11 Differential Bquations,', p. 163, and Sz^pplement, p. 19.

RULES FOR DISCRIMINATING A SINGULAR SOLUTION OF THE ENVELOPE SPECIES.

3078 RULE III. — When py or (1) is made infinite by equating to zero a factor having a negative index, the solution " may be considered to belong to the envelope species.”

3079 “In other cases, the solution is deducible from the
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complete primitive by regarding C as a constant of multiple value,—its particular values being either, 1st, dependent in some way on the value of a, or, 2ndly, independent of a, but still such as to render the property a singular one.”

[Boole’s " Differential Equations,” p. 164.

3080 RULE IV.—A solution which, while it makes P, infinite and satisfies the differential equation of the first order, does not satisfy all the higher differential equations obtained from it, is a singular solution of the envelope species.

m-1

Ex.: yx = my m has the singular solution y = 0 when m is >1.

m - T

Now           yrx = m (m— 1) ... (m—r + l)y m ,

and, when r is > m, the value y = 0 makes yrx infinite. The solution is, therefore, by the rule of the envelope species.

3081 RULE V.—" The proposed solution being represented by u = 0, let the differential equation, transformed by making u and x the variables, be U+f(x, u) = 0. Determine the in-

ru du •                              •          •          • •

tegral — as a function of X and u, in which U is either Jo U

equal to f (x, u) or to f (x, u) deprived of any factor which neither vanishes nor becomes infinite when u = 0. If that integral tends to zero with u, the solution is singular^ and of the envelope species.                         [Boole, Supplement, p. 30.

3082 Ex.—To determine whether y = 0 is a singular solution or particular integral of             yx = y (log yf.

	
	
—         ( dy 1 Here I = y, and       ---•—— =--.





Jo3 (10g 3)7      10g J As this tends to zero with y, the solution is singular.

Verification.—The complete primitive is y = e°~x, and no constant value assigned to c will produce the result y = 0.

3083 Professor De Morgan has shown that any relation involving both x and y, which satisfies the conditions py = 0 , P.= ®, will satisfy the differential equation when it does not make Y20, as derived from it, infinite; that it may satisfy it even if it makes y2x infinite ; and that, if it does not satisfy the differential equation, the curve it represents is a locus of points of infinite curvature, usually cusps, in the curves of Complete primitives.                       [Boole, Supplement, p. 35.

FIRST ORDER LINEAR EQUATIONS.

3084 M+Nd = 0, or Md.v+Ndy = 0,

M and N being either functions of a and y or constants.

SOLUTION BY SEPARATION OF THE VARIABLES.

3085 This method of solution, when practicable, is the simplest, and is frequently involved in other methods.


Ex.

therefore



xy (1+a2) dy = (1+y2) dx, y dy _ dx ^Ay2 a (1+22)’ and each member can be at once integrated.

HOMOGENEOUS EQUATIONS.

3086 Here M and N, in (3084), are homogeneous functions of x and y, and the solution is affected as follows :—

Rule.—Put y = vx, and therefore dy = vdx+xdv, and then separate the variables. For an example, see (3108).

EXACT DIFFERENTIAL EQUATIONS.

3087 Mdx-\-Ndy = 0 is an exact differential when

M, = N. and the solution is then obtained by the formula

§Md»+S{N—d„(S max')} dy = c.

Proof.—If V = 0 be the primitive, we must have Va = M, Vy = N; therefore Vxy = Aly = Nx. Also V = J Mda+c (y), $ (y) being a constant with respect to x. Therefore            N= Vy = dy JMda+$‘ (y), therefore          9(y) ={N—d,[Mdx}dy+C.

3088 Ex.       (- ^y} dx + Qf— «3) dy = 0. Here M, = — 322 = Nx. Therefore the solution is C= a- a‘y+ (‘- a- dy (2 -*v) } dy

24     , f 3 7     24+94    3 = 4 -+ y dy =   —*

3089 Observe that, if Mdx-\-Ndy can be separated into two parts, so that one of them is an exact differential, the other part must also be an exact differential in order that the whole may be such.

3090 Also, if a function of x and y can be expressed as the product of two factors, one of which is a function of the integral of the other, the original function is an exact differential.

PAP- —  12-22 x ydx — xdzi a

	
	
	
309]    EX.— — cos — dx • COS - dy = cos— . •  —2 = 0. y y y y y y







Here — is the integral of the second factor. Hence the solution is y

sin — = O. y

INTEGRATING FACTOR FOR Mdx-\-Ndy — 0.

When this equation is not an exact differential, a factor which will make it such can be found in the following cases.

3092 I.— When one only of the functions Mx+Ny or Mx — Ny vanishes identically, the reciprocal of the other is an integrating factor.

3093 n.-J/, when Mx+Ny = 0 identically, the equation is at the same time homogeneous, then x™In+1) is also an integrating factor.

3094 III.—If neither Mx + Ny nor Mx—Ny vanishes identically, then, when the equation is homogeneous, M+N is an integrating factor; and when the equation can be put in the form $ (xy) xdy+x (xy) ydx = 0,   1— is an integrating

JLA — y

factor.

Proof.—I. and III.—From the identity

Mdx + Ndy = } ‘ (Me + Ny) d log xy + QMx — Ny) d log 3 } , assuming the integrating factor in each case, and deducing the required forms for M and N, employing (3090).

IL—Put v = 2, M = xn([) (v), N = any (v), and dy = xdv+vdz in

ALdxANdy and Alx + Ny.

3095 The general form for an integrating factor of Mdx+Ndy =0 is

f M,-N, do, p=e Nesp"tev

where v is some chosen function of x and y; and the condition for the existence of an integrating factor under that hypothesis is that

3096 WEN must be a function of v.

	
2 J



PROOF.—The condition for an exact differential of Mp.dx + Np.dy = 0 is (Mp.\ = (N[J.)X (3087). Assume u = 4 (v), and differentiate out; we thus


obtain



$v = M,—N .

$v Nvx—IIv^

The following are cases of importance.

3097 I.—If an integrating factor is required which is a function of x only, we put u = p (x), that is, v = x; and the necessary condition becomes

"NN mus^ be a function of w only.

3098 II.—If the integrating factor is to be a function of xy, the condition becomes, by putting xy = v,

M — N

	
	
—MS must be a function of xy only.





3099 III.—If the integrating factor is to be a function of

	
	
—, the condition is x



	
2 (N,—must be a function of y.



Ma/+Ny         •        a

If Ma+Ny vanishes, (3092) must be resorted to.

In this and similar cases, the expression found will be a function of v = — if it takes the form F (v) when y is re-placed by vx.

3100 IV. — Theorem. — The condition that the equation Mda+Ndy=0 may have a homogeneous function of a and y of the nth degree for an integrating factor, is

«*(N,—M,)+IN= F(M), where =z Mx+Ny”         a

3101 The integrating factor will then be obtained from

F(u) du I — a"e‘

Proof.—Put L =v ==" (u) in (3097), thus

14 M,—N,

v Nv^—Mv.j

Perform the differentiations, and, by reduction, we get

V (u) _ 23 (N, — M,) + nNx

1 (u) Mx + Ny

The right member must be a function of u in order that 1 (u) may be found by integration.

3102  Ex.—To ascertain whether an integrating factor, which is a homogeneous function of a and y, exists for the equation

(y3+azy2) dy—ayz dx + (x + y)(x dzj—ydx') = 0.

Here   M =—{ayz + xy Ay2\   N — {yz + axif+xyA^}.

Substituting in the formula of (3100), we find that, by choosing n = — 3, the fraction reduces to aEUTTBEy", and, by putting y = ux, it becomes @—3u 3       u2 ’ a function of u.

I a—Zu - a --9— au —---3 log u,

_(Ax+3log 2) _ax .. u = are • “‘= y3e " ‘ the integrating factor required. It is homogeneous, and of the degree — 3 in x and y, as is seen by expanding the second factor by (150).

3103 If by means of the integrating factor u the equation pMdxFpNdy = 0 is found to have V= G for its complete primitive, then the form for all other integrating factors will be uf (V), where/is any arbitrary function. 8

PROOF.—The equation becomes

pMf (V) d^+^Nf(V) dy = 0.

Applying the test of integrability (3087), we have

(u(v)= (NF(V)s..

Differentiate out, remembering that

W. = ^N\, Vy = PN, V, = MM, and the equality is established.

3104 GENERAL RULE.—Ascertain by the determination of an integrating factor that an equation is solvable, and then seek to effect the solution in some more direct way.

SOME PARTICULAR EQUATIONS.

3105 (axA-hyA-^) da+(a‘x+b‘y+c‘) dy = 0.

This equation may be solved in three ways.

	
I .—Substitute a == *— a, y = n—3, and determine a and 3 so that the constant terms in the new equation in E and n may vanish.


	
II .—Or substitute axA-byA-c = 5, a‘a+b‘y+c‘= n.



3106 But if a : a = b : b', the methods I. and II. fail. The equation may then be written as a function of ax + by.

Put z = ax-\-by, and substitute bdy — dz—adx, and afterwards separate the variables x and z.

3107 III.—A third method consists in assuming (4^4-0^+^^+^) d„ =0, and equating coefficients with the original equation after substituting 5 = a+my, n = x-\-m^y.

M1, m2 are the roots of the quadratic

am2 + (b + a') m-\-b' = 0.

The solution then takes the form

{(am, — a) (w+^hy)+CM, — d} ami—a    ,

{{am.z—a){xA-^y) +cm2 — c }^~a'

3108 Ex. (3y — 72 + 7) dx + (.^y—3x + 3) dy — 0. Put a = 4— a, y = n—3, thus

(3»—7) ^+(7^-30 dn = 0........................(i.), with equations for a and B, 7a—3+ 7=0; 3a — 7(3 +3=0; therefore                    a = —1,   3 = 0.................................(ii.) (i.) being homogeneous, put n = v5, and therefore dn = vd4+{dv (3086) ;

.  (71*—7) 544+(7v-3) "dv = 0, or 4+793dv = 0.

The second member is integrated, as in (2080), with b = 0, and, after reduction, we find     5 log (n + 5) + 2 log (n — 5) = C.

Putting 5 = «— 1 and n = y, by (ii.) the complete solution is (y + x—I)5 (y — «+1)2 = C.

1

 See Todhunter’s “History,” p. 405.


3109 When P and Q are functions of a only, the solution of the equation

d+Py=0 is y= CerSr ......... (i.) by merely separating the variables.

3110 Secondly, the solution of

&z +Py = Q is y = esn {c+ Q-5""d.r) .

This result is obtained by the method of variation of parameters.

RULE.—Assume equation (i.) to be the form of the solution, considering the parameter C a function of x. Differentiate (i.) on this hypothesis, and put the value of y, so obtained in the proposed equation to determine C.

Thus, differentiating (i.), we get yx— Ce JPdr —Py, therefore Q = Ce JP"e, therefore C =Qe ^dx+O'.

Then substitute this expression for O in equation (i.).

Otherwise, writing the equation in the form (Py—Q~)dxAdy = 0, the integrating factor e- may be found by (3097).

3111            J.+Py = Qyn

is reduced to the last case by dividing by yn and substituting z = yx~n.

*3212 Pida+P,dy+Q ^dy—ydx) = 0.

P1, P2 being homogeneous functions of a and y of the pth degree, and Q homogeneous and of the qth degree, is solved by assuming
[image: ]

Put y = va, and change the variables to x and v. The result may be reduced to


dx + av (v)    _ _ x(v) «—p12

dv $ (v) — v (v)       $ (v) — v (v) ’ which is identical in form with (3211), and may be solved accordingly.

3213    (A, + Ba + C^j) (xdy—y dx) — (A2 + B,a + C2y) dy

	
— (As + B^+Osy'jdA^O.



To solve this equation, put a = 5+a, y = n+ fl, and determine a and fl so that the coefficients may become homogeneous, and the form of (3212) will be obtained.

RICCATI'S EQUATION.

3214                u,+bu? = CXm........................(A).

Substitute y = ux, and this equation is reduced to the form of the following one, with n = m+2 and a = 1. It is solvable whenever m (2t—1) = — 4t, t being 0 or a positive integer.

3215              ajyx—ay-\-by- — avn...................... (B).

	
	
I .—This equation is solvable, when n = 2a, by substituting y = vad, dividing by x2a, and separating the variables. We thus obtain              dy , = aa-lZa.





c—bv^

Integrating by (1937) or (1935), according as b and c in equation (B) have the same or different signs, and eliminating v by y = vad, we obtain the solution

__      2,"(bc)

3216       y = V£aC,011..................W.

° Ce d—1

3217 or y = /(- C)aitan § C— —v(— .........(2).

V \ b /        (            a j

3218 II. — Equation (B) may also be solved whenever n—2a ,    ...

——— = t a positive integer.

RULE.—Write z for y in equation (B), and nt+a for a in the second term, and transpose b and c if t be odd.

Thus, we shall have

az — (nt-[-a) 2+bz2 = cxn (when t is even) (3), az—(nt+a) z+cz2 = ba" (when t is odd)  (4). Either of these equations can be solved as in case (I.), when n = 2(nt + a), that is, when —.....— —- t. z having been de-termined by such a solution, the complete primitive of (B) will be the continued fraction a an an y — — -- ---- -- b I 2—4 I            — (t— ' c b where k stands for b or c according as t is odd or even. 3219 III. — Equation (B) can also be solved whenever n -1 20

	
—9—- = t a positive integer. The method and result will be the same as in Case II., if the sign of a be changed throughout and the first fraction omitted from the value ofy. Thus



on

CV              CU                              CU

n—a . 2n—a .    . (t—1) n— a . ^n


(6).



----7---. h--7---- c b                k z

Case III.—Taking the second value, A=0, the first transformed equation differs from the above only in the sign of a; and consequently the same series of subsequent transformations arises, with —a in the place of a. The successive substitutions produce (5) and (6) in the respective cases for the values of y.

3220 Ex.               u,+u2 = CX 8.     (3214) Putting M = A         du ay-, a               dx x

and the equation is reduced to xyx—y +y2 = cx^ of the form (B). Here 0=1, b = 1, 2=2, and 7+2@ = 2, Case III. By the rule in (3218), 2n

changing the sign of a for Case III., equation (3) becomes

TZ2—32Z— CO3.

Solving as in Case I., we put z = vas, &c.; or, employing formula (1) directly,

, = as Qe • +1, and then, by (6), y = 44

Ce6.cxs — 1                             1 as

3c

is the final solution.

FIRST ORDER NON-LINEAR EQUATIONS.

3221 Type

Proof.—Taking n = 3, assume the last equation. Differentiate and eliminate c. The result is

(V- K3)2 (,- PJ2 (V- VpAdV,dv,aV, = 0...............(5). By (2), dV1 = M1 (J.—P1) da, &c., where M, is an integrating factor. Substitute these values in (5), rejecting the factors which do not contain differential coefficients, and the result is

(y—p) ^Jx-p^{yx~P^ = 0, which is the differential equation (1).

3223 Ex.—Given       J2+3J.+2 = 0. The component equations are Y, +1 = 0 and y.+2 = 0, giving for the complete primitive

(y +2— c) (y +2a— c) = 0.

SOLUTION WITHOUT RESOLVING INTO FACTORS.

3224 Class I.—Type $ (x, p) = 0.

When a only is involved with p, and it is easier to solve the equation for x than for p, proceed as follows.

RULE.—Obtain x = f(p). Differentiate and eliminate dx by means of dy = pdx. Integrate and eliminate p by means of the original eguation.

Similarly, when y =f(p), eliminate dy, &c.

3225 Ex.—Given a = ay,+by2, i.e., a = ...........................(1), da = a dp + 2bp dp, therefore dy = pdx = apdp + ^bp^dp, therefore                   y = ap? + 2bp” + C.

2 3

Eliminating p between this equation and (l),the result is the complete primitive {ax + Qby — bcf = (Qay - 43- ac) (a2 + 4<bx').

3226 Class II.—Type

ad(»)+y(p) =x^pY

Rule.—Differentiate and eliminate y if necessary. Integrate and eliminate p by means of the original eguation.

If the equation be first divided by 1 {p'), the form is simplified into

3227             y = ac {p) +x (p).

Differentiate, and an equation is obtained of the form a,+Px = Q, where P and Q are functions of p.

This may be solved by (3210), and p afterwards eliminated.

3228 Otherwise, a differential equation may be formed between y and p, instead of between a and p.

3229 Or, more generally, a differential equation may be formed between a or y and t, any proposed function of p, after which t must be eliminated to obtain the complete primitive.

3230 Clairaut’s equation, which belongs to this class, is of


the form




y =px+f{p}.



RULE.—Differentiate, and two equations are obtained—

(1)......px — 0, and p = c;   (2).......... {p) = 0.

Eliminate p from the original equation by means of (If and again by means of (2). The first elimination gives y = cx+f (c), the complete primitive. The second gives a singular solution.

PROOF.—For, if Rule I. (3169) be applied to the primitive y = cx+f (c), we have x +f' (c) = 0; and to eliminate c between these equations is the elimination directed above, c being merely written for p in the two equations.


3231 Ex. i.




y = px + x vl +p2.



This is of the form y = ad (p), and therefore falls under (3227). Differ


entiating, we obtain




adp+dzvl+p+



since dy — pdx\ thus

•(1+p2) 1+p

in which the variables are separated.

Integrating by (1928), and eliminating p, we find for the complete primitive x2 + y2 = Gx.

3232 Ex. 2.         y —px + VlT—a^.

This is Clairaut’s form (3230). Differentiating, we have dp { _ ^P ) _ o dx V

The complete primitive is y = cx + ^QT— a?^} ;

and the elimination of p by the other equation gives for the singular solution ahf—Ux2 = aV, an hyperbola and the envelope of the lines obtained by varying c in the complete primitive, which is the equation of a tangent.

3233 Ex. 3.—To find a curve having the tangent intercepted between the coordinate axes of constant length.

The differential equation which expresses this property is y/1+2--c I +73 = a,

P

3234 CLASS III.—Homogeneous in x and y.

Type           a"$ (%, p^ = 0.

RULE.—Put y = vx, and divide by x". Solve for p, and eliminate p by differentiating y = vx; or solve for v, and eliminate v by putting v=; and in either case separate the variables.

3235 Ex.          y = pa+av1+p.

Substitute y = vx, and therefore p = v + av,. This gives v = p + v1 +p2. Eliminate p between the last two equations, and then separate the variables, mi 1 •                    dx . 2vdv -The result is                  --— ----- = 0, a 1+v2 from which         a (v2+1) = C or a2+y‘= Cx.

The same equation is solved in (3131) in another way.

SOLUTION BY DIFFERENTIATION.

3236 To solve an equation of the form

F { (a, y^ yxY v (a, y, y^} = 0.

Rule.—Equate the functions $ and 1 respectively to arbitrary constants a and b. Differentiate each equation, and eliminate the constants. If the results agree, there is a common primitive (3166), which may be found by eliminating yx between the equations $ = a, $ = b, and subsequently eliminating one of the constants by means of the relation F (a, b) = 0.

Ex.                -y y. +f (y - y^x) = 0.

Here the two equations x—yijx = a, f(y2—yy2) = b, on applying the test, are found to have a common primitive. Therefore, eliminating Y., we obtain

f{y2-^-^2} = b.

Also, by the given equation, a +b =0.

Hence the solution is      f{y2~ (2+6)2} = b.

HIGHER ORDER LINEAR EQUATIONS.

3237 Type d.3+P,4.44+.+Po-n)-dz+P, = Q where P... Pn and Q are either functions of x or constants.

LEMMA.—If y^ y2, ... yn be n different values of y in terms of x, which satisfy (3237), when Q = 0, the solution in that case will be y = Cy1—C2y2— ... + Cny^

Proof.—Substitute yv 92, ... yn in turn in the given equation. Multiply the resulting equations by arbitrary constants, C^ O^ ... On respectively; add, and equate coefficients of P1, P2, ... Pn with those in the original equation.

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS.

If the auxiliary equation (2) has a pair of imaginary roots (a Fib), there will be in the value of y the corresponding terms

3241            Aed cos ba—Bed sin boc..................(4).

If any real root m' of equation (2) is repeated 7 times, the corresponding part of the value of y will be

3242    (A,+A,+A,+...+A,-1a*1) e"r.

And if a pair of imaginary roots occurs r times, substitute for A and B in (3241) similar polynomials of the 7— 1th degree in x.

PROOF.—(i.) Substituting y = Cemx in (1) as a particular solution, and dividing by Cemx, the auxiliary equation is produced, the roots of which furnish n particular solutions, y = Oemi", y = Cqe’a", &c., and therefore, by the preceding lemma, the general solution will be equation (2).

(ii.) The imaginary roots a = ib give rise to the terms Ceds+ibe— C’eds-ibe, which, by the Exp. values (766), reduce to

(0+ O') eas cos ba + i (0 — 0') e"« sin ba.

(iii.) If there are two equal roots 1, = 71, put at first M2 = m+h. The two terms Ce‘is+Ce(mth), become e’nx" (C1+Ce‘e). Expand ens by (150), and put C+C, = A, C,h = B in the limit when h = 0, C1=c, C, = — co . By repeating this process, in the case of r equal roots, we arrive at the form

(A,+ A,+A,a*+ ... +A,-1c‘ 1) e"#F ;

and similarly in the case of repeated pairs of imaginary roots.

3243 Case II.—When Q in (3238) is a function of x.

First method.—By variation of parameters.

Putting Q — 0, as in Case I., let the complete primitive be y = Aa+B3+Cy+&c. to n terms ............(6),

	
	
a, 3, y being functions of a of the form emx. The values of the parameters A, B, C, ..., when Q has its proper value assigned, are determined by the n equations


3244





	
A,a
	
+B.3
	
+to
	
n terms = 0,


	
A, a.
	
+B.3.
	
+
	
„     = o,


	
A. a2.
	
+B,Pa
	
+
	
„     = 0,


	
Az@(n-1) ;
	
.+B,B,.
	
-1) a —
	
„ = Q,










Ax, Bx, &c. being found from these equations, their integrals must be substituted in (6) to form the complete primitive.

PROOF.—Differentiate (6) on the hypothesis that A, B, 0, &c. are functions of a; thus

	
3. = (Ac,+BB,+ ...) + (Aga+B,,+ ...).



Now, in addition to equation (1), n—1 relations may be assumed between the n arbitrary parameters. Equate then the last term in brackets to zero, and differentiate y, in all, n—1 times, equating to zero the second part of each differentiation; thus we obtain

yx = Aax + BP3a +&c. and Axa +B,3    + &c. = 0,

32   = Aa, + BB2, +&c. and Axax +BBa +&c. = 0,

J(n-Y) — Ad(-1) «+ BB(-Y)a + &c. and Aa (n- 2) x + BaBo- 2)« + &c. — 0.

The n quantities Ax, Bx, &c. are now determined by the n—1 equations on the right and equation (1). For, differentiating the value of Y(2-1)2, we have

'll nx — {Aa,+BBn+ &C.} + {A,@(-n+ B,‘(-ya+&c.}, and if these values of yx, y2x, ... ynx be substituted in (1), it reduces to

Aw@n-Y)a+Ban-x+&c. = Q) for the other part vanishes by the hypothetical equation

Ju+C,9n-ya+... +any = 0,

since the values of Ya, ... Y(n-1)«, and the first part of ynx, are the true values in this equation.

3245 Case II.—Second Method.—Differentiate and eliminate Q. The resulting equation can be solved as in Case I. Being of a higher order, there will be additional constants which may be eliminated by substituting the result in the given equation.

3246 Ex.— Given     y-- 7y,+12y = « .............................. (1).

1st Method.—Putting a = 0, the auxiliary equation is m‘— 7m+12 = 0 ; therefore m = 3 and 4. Hence the complete primitive ofy:— 7yx+12y = 0 is                       y = Ae^+Be^....................................(2).

The corrected values of A and B for the primitive of equation (1) are found from

A.e*+ B,e" =0)   .. A,=-xe-= and A= 8g1e-+a.

3A,e*+4B,e* = x5‘

Bx = xer* and B =--"e-*+b.

Substituting these values of A and B in (2), we find for its complete primi-tive                y= ac?+be+1217.

3247 2nd MethoL, J2—7y.+12y = « ..............................                (1). 3 Q

Differentiating to eliminate the term on the right, we get

Y4 7y:+12J2 0.

The aux. equation is m‘— 7m3+12m2 = 0; therefore m = 4, 3, 0, 0. Therefore              y = Ae**+Be*+ Cx + D...........................(2)

therefore, substituting in (2), y = Ae*+Be*r+ 4 + -7 as before.

3248 When a particular integral of the linear equation (3238) is known in the form y =f(a), the complete primitive may be obtained by adding to y that value which it would take if Q were zero.

	
	
Thus, in Ex. (3247), J=+ 7 is a particular integral of (1) ; and -the complementary part Aeix + Be^ is the value of y when the dexter is zero. 3249 The order of the linear equation (3238) may always be depressed by unity if a particular integral of the same equation, when Q = 0, be known.





Thus, if          3+P,32++P,y.+Py = Q...........................(1), and if y = z be a particular solution when Q = 0; let y = vz be the solution of (1). Therefore, substituting in (1),

(zx+P,%+P,%,+P2) v+&c. = Q, the unwritten terms containing va, 1227 and vae.

The coefficient of v vanishes, by hypothesis ; therefore, if we put v, = u, we have an equation of the second order for determining u. u being found,

v = J u da + C.

3250 The linear equation

(a+ba)"y,+A (a+ba)"-‘yo-1.+B (a+ba)"-2J6-2)4+...

•Ly = Q, where A, B, ... L are constants, and Q is a function of 2, is solved by substituting a+ba = et, changing the variable by formula (1770), and in the complete primitive putting t = log (a + ba).

Otherwise, reduce to the form in (3446) by putting a+ ba = AE, and solve as in that article.

HIGHER ORDER NON-LINEAR EQUATIONS.

1

PROOF.—Case II.—In equation (B), substitute y = A+-—, and equate • • CL                              J1 the absolute term to zero. This gives A= or 0.

Taking the first value, the transformed equation becomes c d _ (n + a) J1 + cy? = ba".

Next, put yx = 71" t —, and so on. In this way the th transformed equation (3) or (4) is obtained with z written for the tth substituted variable yt.


3251 7we E(n222242)=0.

SPECIAL FORMS.

3252          F(a, yrxi y^^x “’ ynx) 0.

When the dependent variable y is absent, and yrx is the derivative of lowest order present, the equation may be depressed to the order n— r by putting yrx = z. If the equation in z can be solved, the complete primitive will then be

y =2+ 0   (2149).

3253            F(y5 yrxi y{r+X)x ••• ynx} — 0.

If a be absent instead of y, change the independent variable from a to y, and proceed as before.

Otherwise, change the independent variable to y, and make 2 (= yx) the dependent variable.

For example, let the equation be of the form

3254               F Qj, y„ 7. y^ =0..............................(1). (i.) This may be changed into the form

F(y, «„, x2y, 23/) = 0 by (1761, ’63, and ’66) ; and the order may then be depressed to the 2nd by (3252). The solution will thus give a in terms of y.

3255  (ii.) Otherwise, equation (1) may be changed at once into one of the form                  F (y, p, py, p2y) = 0, by (1764 and’67),

the order being here depressed from the 3rd to the 2nd. If the solution of this equation be p = $ (y, C1, c2), then, since dy = pdx, we get, for the com-pleto primitive of (1),     • = J           +

3256             ynx=F^)-

Integrate n times successively, thus

y = ( F^^c^^-^c^-2-^

J nx

3257               32 = F(y).

Multiply by 2y, and integrate, thus

(du) =2(F()d/+c,, =---—dy-----+c, \dee/ J               -V{2 JF() dy+c}

3258 y. — F {.=»)} , an equation between two successive derivatives.

Put Y(2-1)e = z, then 2, = F(z), from which

»=1&+e........................0).

If, after integrating, this equation can be solved for z so that z = $ (x, c), we have y(n-DX = $ (a, c), which falls under (3256).

3259 But if z cannot be expressed in terms of a, proceed as follows:—

( 7 f dz

J(-1)s — 2 i   y {n-^x — j    — J F (z) % j

_ f dz s dz 30-2)977 J F(z) J F(z)"3     ...... —. 1                  ( dz ( dz ( dz finally,        y = — , — ----- ... —--- z;

J         •   J F{z) J F(z) J F(z) the number of integrations and arbitrary constants introduced being n— 1.

3260              y-nx — F {(-2)=} •

Put J(2-2) = z; then z^^F^z^ which is (3257), the solution giving a in terms of z and two constants. If z can be found from this in terms of a and the two constants, we get

z or y^x^ ^{^^^\ which may be solved by (3256).

3261 But if z cannot be expressed in terms of a, proceed as in (3259).

DEPRESSION OF ORDER BY UNITY.

3262 When F (a, y, J. 32 ...) = 0 is rendered homogeneous by considering

	
a, y, Ye, y^ y^ &c.



to be of the respective dimensions 1, 1, 0, —1, —2, &c. ; put

a = e®, y = ze®, &c.

The transformed equation will contain the same power of e in every term, and will reduce to the form

F‘.(z, %o, 2293 = 0, the order of which is depressed by unity by putting 2. = u.

3263 When the original equation is of the 2nd order, the transformed equation in u and z may be obtained at once by changing a, y, yx, y2x into 1, %, u+3, u-\-uuzi respectively. The solution is then completed, as in example (3264).

PROOF.—We have        a = e°; y = ze® ;

Y. = 2+R; J2 = e= (29+2); Y3 = e-2 (23—%); and so on.

The dimensions of a, y, yx, &c. with respect to e, are 1, 1, 0, —1, —2, &c. Therefore the same power of e® will occur in every term of the homogeneoris equation.

3264 Ex.:           ^y2x = (y-xyx^.

Making the above substitutions for a, y, ym and y2x, the equation becomes

%2,+%, = — 23.

Put z = u; thus

u*+u = —u6 = —uuz, therefore u‘+1 = -1, 41 = — dz, therefore tan a = a—% (1935), therefore z, = u = tan (a—z), therefore dO = cot (a— z) dz, therefore 0 = —log b sin (a — z) (1941). But                    6 = log x and z = -3_,

x

therefore bx = cosec ( a— — ), or bx = sec ( c+ —), 2/        \ x / by altering the arbitrary constant.

3265 When F (a, y, yxi J2 ...) = 0 is made homogeneous by considering a, y, yxi Y23 &c. to be of the respective dimensions 1, n, n—1, n—2, &c.; put

a = e°, y — ze"°, and depress the order by putting %e = u, as in (3262).

3266 When the original equation is of the 2nd order, the final equation between u and z may be obtained at once by changing

a,y, Y.» Y2e into 1, s, u-\-n^ uu,—(2n— 1) u+n (n— 1) z, respectively.

3267 Ex.:             JJ. = »y....................................(i).

With the view of applying (3265), the assumed dimensions of each member of this equation, being equated, give

n—2+n— 1 = 1+n, therefore n = 4.

Thus «=e; J = z*; J. = e*(z,+4z); J2 = e(=»+ 7z,+12x). Substituting in (1), e disappears; and by putting %, = u, 229 = uuz, the equation is reduced to

(u‘+4uz) du + (7u3+ 40uz+ 48z2— z) dz = 0, which is linear and of the 1st order. This equation is also obtained at once by the rule in (3266).

3268 When F(a, y, yxi y^, ...) = 0 is homogeneous with respect to y, yxi y2xi &c., put y = el"d", and remove e as before by division. The equation between u and x will have its order less by unity than the order of F.

3269 Ex.:           7+Py.+ Qy = 0 ..............................(1), P and Q being functions of a.

Here           y = elnde; yx — Uy\ y2x = (u,+13) y.

Substituting, the equation becomes ux + u,2+Pu + Q = 0, an equation of the 1st order. If the solution gives u = $ (x, c), then J p (a, c) dx = log y is the complete primitive of (1).

EXACT DIFFERENTIAL EQUATIONS.

3270 Let dU= $ (x, y, yxi J2» ... J)&z = 0 be an exact differential equation of the nth order. The highest derivative involved will be of the 1st degree.

3271 RULE FOR the Solution (Burrus).—Integrate the term involving ynx with respect to y(n-1)> only, and call the result U1. Find dU1} considering both x and y as variables. dU—dU will be an exact differential of the n —1th order.

Integrate this with respect to y(n-2)x only, calling the result U2, and so on.

The first integral of the proposed equation rvill be

U =U,+U,+...+U = C.

3272 Ex.: Let dU = {2+(2wy—1) y.+aJ2+a"J±} da = 0.

Here         U1 = a3J2, dUx— (222+a‘Jsa) dx;

dU—dUx = {y2+(2xy—1) Ya—2Y2c} dx = 0 •,

.. U2 = —xyx, dU,==(,+ay2) da, dU—d^ — dU^—^f + ^xyy^dx', therefore       Us = xif, and U=x‘y2—ay,+ay?= C

is the first integral.

3273 Denoting equation (3270) by dU = Vdx, the series of steps in Rule (3171) involve and amount to the single condition that the equation

N-P,+@„-R.+&c. = o, with the notation in (3028), shall be identically true. This then is the condition that V shall be an exact 1st differential.

3274 Similarly, the condition that V shall be an exact 2nd differential is

P—20.+3R,—4S.+&c. = 0.

3275 The condition that V shall be an exact 3rd differential

is       Q-3R,+ 3.4 s,- 3.4.5 T,+&c. = 0,

and so on.                              [Euler, Comm. Fetrop., Vol. viii.

MISCELLANEOUS METHODS.

3276         JzPyIy: = 0.....................(1), where P and Q are functions of a only.

The solution is y =e JP"e (2 Qe 2^Fdx dxfi-ulx.

Proof.— Put e”“ =z, and multiply (1) by 2; then, since z, = Pz, zy.+ Q^x = 0- Put ^yx = u~Xi .. uu, = Qz"2, •’• « = v(2 J QrN’dx), &c.

3277           Ja+Qy:+R =0........................(1), where Q and R are functions of y only.

The solution is c = jedd (2 ReBO"dy)-dy.

PROOF.—Put e odv = z, and multiply (1) by z.

.. (zy,), = Rz, .. zyx (zy.,). = Rz\jx, .. (29,)2 = 2 J Rz^dy, &c.

3278          3.+ Py^ Qy^ = 0, where P, Q involve a only.

Put yx = z, and the form (3211) is arrived at.

3279          y^Py^Qynx = ^-This reduces to the last case by changing the variable from 2 to y by (1763).

3280 For a few cases in which the equation

y.+Py+Qy+R = o

can be integrated, see De Morgan’s " Differential and Integral Calculus,” p. 690.

3281              y2x = a^+by.

Put ax-]-by = t (1762-3). Result t,, = bt. Solve by (3239) or (3257).

3282         (1 -a) y.—ay.+a'y = 0. Put sin-la = t, and obtain J2+q2y = 0.

Solution, y = A cos (q sin-la)+B sin (q sin-1a).

3283        (1+ax3) 32+axy.±q‘y = 0. f dx

Put "---—= t, and obtain Y2—q'y = 0 as above.

WU + ax")

3284 Liouville’s equation, Y2+f(x) yx~pP (y) y2 = 0. Suppress the last term. Obtain a first integral by (3209), and vary the parameter. The complete primitive is

§elrol"ay = A^fMaxdx+B.

3285 Jacobi’s theorem.—If one of the first integrals of the equation y.2x —f^, y) is yx = $ (a, y, c).........(i., ii.), the complete primitive will be J.(dy-da) = c.

PROOF.—Differentiating (ii.), we obtain da+pdy = f (x, y\ and differentiating this for c, dac—d.d.+p d. = 0. But, by (3187), this is the condition for ensuring that (pcdy— odda = 0 shall be an exact differential; therefore de is an integrating factor for equation (ii.), yx— p (x, y, c) = 0.

Equations involving the arc s, having given

3286 ds = dx+dy? or s,=V1+y. 3287                s = a^-]-by.

Here V1+y?= a-^-by^. Find yx from the quadratic equation. 3288            •        a,, = a.

Change from s to a by (1763); .‘. — S3S2, = a, •'• s,2 = 2az+c, or 1+*= l, .. j=(--l\dx+c'.

202—c J Y 2a-c /

APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS BY TAYLOR’S THEOREM.

3289 The following example will illustrate the method :—

Given 32 = ^yx+y, .. Y3 = (2+2) 3,+y.

Generally, let ynx = Anyx+Bny; y{n+^x = An+1yx + Bn+1y.

But, by differentiation,

36+1) x = (A,«+ A, + B„) yx + (A, + B,) y,

.. A,+1 = A„a+A,+B, and Bn+i = A,+B,.

But A2 = a, B2— 1, .. A, = a+2, Bs = a;

A,=*+5x, B,=z+3, &c.

Now, when x==a, let y = b and J,= P; then, by Taylor’s theorem (1500),

y = a +p (e -c)+(Ap+ B,B) (go) + (^p+B,8) (eg?"

+ &c.,

which converges when a— a is small. [De Morgan, p. 692.

3 R

SINGULAR SOLUTIONS OF HIGHER ORDER EQUATIONS.

DERIVATION FROM THE COMPLETE PRIMITIVE.

3301 Let ynx =(e, y, yx, 32 ... J6-1) J ............... (1) be the differential equation, and let its complete primitive be

y =f(x,a, b, c ... s).....................(2), containing n arbitrary constants. 3302 Rule.—To find the general singular solution of (1), eliminate abc ... s between the eguations


		
y = t
	
yx — f.
	
Y2
	
= t
	
•••J J(n-f)x — f (n-1) x ••
	
....(3)


	
and
			
f
	
fax
	
-a2x • • •
	
fa (n—1) x
		

					
for
	
fb2x • • ■
	
fp (n-1) x
	
= 0..........
	
■■ (4).


				
4,
	
£,,
	
±s2x • • •
	
€

-S (11 — 1) X
		



The result is a differential equation of the n — 1th order, and the integral of it, containing n — 1 arbitrary constants, is the singular solution.

Proof.—Differentiate (2), considering the parameters a, b ... s variable, thus yx = fx-\-fa^xA ...+fssx. Therefore, as in (3171),

	
Vx =fx if fa Ux+fb L+ ...fs sx = 0,


	
Y2. f^x if fax ^xAfbx b, + ... f8, = 0, as well;



and so on up to ynx — fnx. Eliminating ax, b„ ... sx between the n equations on the right, the determinant equation (4) is produced with the rows and columns interchanged.

3303 Ex. :      y—ay,+}x‘yz— y2- Qjx—^yuf = 0...............


The complete primitive is




J = %*+b+a‘+62 ...........................




(1).

(2).



Eliminating a and b from (2), (3), and (4), we get the differential equation 4dy+(2+) d= (+4)ds ..................... (5),

•(16y+4x2+a4) "" the integral of which, and the singular solution of (1), is

	
• (16y + 4x3 + «4) = z •(1+2?) +log {«+ • (1 + 23) } + 0.



[Boole, Sup., p. 49.

3304 Either of the two • first integrals’ (3064) of a second order differential equation leads to the same singular solution of that equation.

3305 The complete primitive of a singular first integral of a differential equation of the second order is itself, a singular solution of that equation; but a singular solution of a singular first integral is not generally a solution of the original equation.

Thus the singular first integral (5) of equation (1) in the last example has the singular solution 16y + 422 + a= 0, which is not a solution of equation (1).

DERIVATION OF THE SINGULAR SOLUTION FROM THE DIFFERENTIAL EQUATION.

3306 RULE.—Assuming the same form (3173), a singular solution of the first order of a differential equation of the nth order will make -(Yn)— infinite; a singular solution of the d (y(n-i) A second order will make „d (Ynx)


-d(Ynx) both infinite; d (Y(n-2) x)

[Boole, Sup., p. 51.



d (n-1)x) and so on.

3307 Ex.—Taking the differential equation (3303) again, V - ay, + Ja'yz “ y}x ~ (J.—%92.)2 = 0....................


••(I),



and differentiating for yx and y2x only, {a2+2x (y.,-^)-^} d(y2x')-{x+2 Qyx-xy2A} d (yA = 0.

The condition d(92) = co requires dQjA


Je2+2x (J:—WJ2)—22 = 0.

Substituting the value of Y2x obtained from this in equation (1), and rejecting the factor (a2+1), the same singular integral as before is produced (3303, equation 5).



EQUATIONS WITH MORE THAN TWO VARIABLES.

3320         Pda+Qdy+Rdz = 0.................. (1).

P, Q, R being here functions of a, y, z, the condition that this equation may be an exact differential of a single complete primitive is

3321 P (Q.-R,)+ Q (R.-P^+R {P.-Q^ = 0.

Proof.—Let u be an integrating factor of Pda+ Qdy A Rdz = 0. Then — uPda = pQdy + pRdz, and, by (3187), for an exact differential, we must have {pQi)z = {ixR^y. Write this symmetrically for P, Q, and R, differentiate out, and add the three equations after multiplying them respectively by P, Q, and R.

To find the single complete primitive of equation (1).

3322 Rule.—Consider one of the variables z constant, and therefore dz = 0. Integrate, and add 4 (z) for the constant of integration. Then differentiate for x, y, and z, and compare with the given equation (1). If a primitive exists, $(z) will be determined in terms of z only by means of preceding equations.

The complete primitive so obtained is the equation of a system of surfaces, all of the same species, varying in position according to the value assigned to the arbitrary constant.

3323 Ex.: (a- 3j- 2) dxA (2y — 3.) dy + (z- «) dz = 0 ...............(1).

Condition (3321) is satisfied; therefore, putting dz = 0, we have

(a— 3y—z) dxA (^y—3.) dy = 0.

Applying (3187), My = 3= Nx, and integration gives

}a‘— 3xy—zx+y^p^ (z) = 0.

Differentiating now for a, y, and z,

(a—3y—z) dx+ (2y — 3x) dyp{f (z) —2} dz = 0.

Equating coefficients with (1), f(z)=z, therefore $(z) = 322 + C. Hence the single complete primitive is

«3+2y2+#2- 6xy—2zx = G, the equation of a system of surfaces obtained by varying the constant G.

3324 When the equation Pdx-[-Qdy-\-Rdz = 0 is homogeneous, put x = uz, y — vz. The result, when the coefficient of dz vanishes, is of the form


3325




MdupNdv = 0,



solvable by (3184). Otherwise it is of the form

3326           dz = Mdu+Ndv, and the right will be an exact differential if a complete primitive exists.

3327 Ex.:         yz dx + zx dy + xyd% = 0.................................. Condition (3321) is satisfied. Putting

x = uz, y—vz, dx — udz+zduf dy — vdz-}-zdv, dz . du . dv -

	
	
(1)    becomes              --- — + —- = 0,





% 6u 3v and the solution is log (zu^v^) = C or xyz = 0.

Mdx+Ndy = 0,

can be integrated, and the solution taken with (2) constitutes a solution of equation (1), and represents a system of lines (by varying the constant of integration) drawn on the surface 4 (x, y, z) = 0.

3329 Ex.:    (1 +2m) xdx+ (1 -a) ydy + zdz = 0. The condition (3321) not being satisfied, assume a2 + y2 + 22 = 72 as the function d, therefore x dx + y dy + z dz = 0 ; and by eliminating z and dz, 2mdx—ydy = 0, the integration of which gives y2~4<mx = C, a cylindrical surface intersecting the spherical surface in a system of curves (by varying O'), whose projections on the plane of xy are parabolas.

The condition that

3330 Xdx+Ydij+Zdz+Tdt = 0, where X, Y, Z, T are functions of x, y, z, t, may be an exact differential, may be shewn, in a manner similar to that of (3321), to be expressed by any three of the equations

3331  Y(Z—T)+Z(T,—Y)+T(Y,—Z,) = 0,

Z (T, -X,) +T(X-Z) +X(Zt - T) = 0,

T (X,— U) +X( Y - T,) + Y^-Xt) = 0,

X (Y, - Z,) + Y{Z, -X)+Z(X- Y,) = 0,

the fourth being always deducible from the other equations.

If this condition is fulfilled, the solution of equation (3330) is analogous to (3322).

Integrate as if z and t were constant, and therefore dz and dt zero, adding for the constant of integration $ (z, t).

Differentiate next for all the variables, and determine $ by comparison with the original equation.

3332 If a single primitive does not exist, the solution must be expressed by simultaneous equations in a manner similar to that of (3328).

SIMULTANEOUS EQUATIONS WITH ONE INDEPENDENT VARIABLE.

GENERAL THEORY. *

3340 Let the first of n equations between 7+1 variables be Pdx+Pdy+P,d:+ ... +Pndiv = 0 ......... (1), where P, P ... Pn may be functions of all the variables.

Let x be the independent variable. The solution depends upon a single differential equation of the nth order between two variables.

Solving the n equations for the ratios da : dy : dz : &c., let dx  dy   dz     dw

Q      01     Q2           Qjn

dy _ Q1    dz _ Q2 dw _ Qn ' ' dx Q‘   dx Q ‘ dx Q Differentiate the first of these equations 2—1 times, substituting from the others the values of zx ... 1, and the result is n equations in yx^ y2v ... ynx, and the primitive variables a, y, z ... w.

Eliminate all the variables but a and y} and let the differential equation obtained be

F(x,y,%, ... J„) = 0.

Find the n first integrals of this, each of the form F (a, y,yx ... y{n_^«) = C, and substitute in them the values of Y., Vzx, ... 922 in terms of a, y, z ... w, found by solving the n equations last mentioned. Thus a system of n primitives is obtained, each of the form F (a, y, z ... w) = G.

3341 The same in the case of three variables. Here n = 2. Let the given equations be

Pida+Qidy+Rdz = 0, P,da+Q,dy+R,dz = 0.


3342




Therefore




dx

dy
[image: ]





dz



From these let J = P (a, y,^), &, =1 (a, y, 2).

Therefore         Y2 = $.+$uy+$,2,.

Substitute the value of 2,, and eliminate z by means of yx = $ (x, y^ z). An equation of the 2nd order in a, y, yx, y2x is the result. Let the complete primitive of this be y = X (a, a, b). Then we also have $ (a, y, 2) = dx (a, a, b). These two equations form the complete solution.

FIRST ORDER LINEAR SIMULTANEOUS EQUATIONS WITH CONSTANT COEFFICIENTS.

3343 In equations of this class, the coefficients of the dependent variables are constants, but any function of the independent variable may exist in a separate term.

Such equations may be solved by the method of (3340), but more practically by indeterminate multipliers.

3344 Ex. (i): de+7—! = 0, d+2+5J = 0. M                  Cl

Multiply the second equation by m and add. The result may be written

"a+(2m+7)“+2m+795=0...............(1).

To make the whole expression an exact differential, put 2—+7 = m. This

(1) now becomes d C 373) +(2m+7)(+my) = 0, and the solution is 2+my = ce-(2m+7)t and x+m'y = c‘e-2n‘+7)t. Solving these equations, and substituting the values (2), iy = ce-(6+it—c‘e-(6-5t = e-bt | (c—c) cos t—i (c+c) sin t], .         ( /c—c , .c + c\ , , (c—c   .c+c\ • ,) ia = e 3  —- i—-- cost + —---1—o) sint(, or y = e-Ot(C cost— C’sin t), x = Je-O{(0+C) cost+(0- C') sin t}. 3345 Ex. 2 : xt + 5x + y = et, yt + 3y—x = e2t. Multiply the second equation by m, and add to the first d(x + my) >    (  । 1 + 3m )    + . of ——-—"  (J— m) 3 2 — —--y c = e^+me-. dt              (     5—m  )

Put t 37 = m, thus determining two values of m, and put x + my = »; thus 2+(5- m) % = ^Ame^. This is of the form (3210).

Note.—The equations of this example, written in the symmetrical form of (3342), would be _de---= , dy o = dt.

et — bx—y  e^ + x—3y

3346 General solution by indeterminate multipliers.


Let

be given with



dx _ dy _ dz PFP, EP,

Pi = aa+by+12+d1,

P2 = a,a+b,y+0,2+d2, P, = a^x^l)pj^c^-\-dz.

Assume a third variable t and indeterminate multipliers Z, m, n such that

dt  Idx + mdy+ndz  idxpmdy + ndz


(1).



t IP^ + mP2 + nPs X (lx + my + nz + r)


' The last fraction is an exact we have

al+am+aan = XI, b1l+b,m+ban = Xm,

C1 Z + C2 m +c&n = Xn, dil+dm+dan = Xr,




differential, and, to determine X, Z, m, n, r,




a1— X b,

C1




Co b- X

C2




C3 ba c,— X




= 0.



The determinant is the eliminant of the first three equations in I, m, n. The roots of this cubic in X furnish three sets of values of Z, m, n, r, which, being substituted in the integral of (1), give rise to three equations involving three arbitrary constants ; thus,

1                           1

ct = (la + my + 72 + r)", c2t = (l,2 -|- m2y + n2z + 72)32,

i

cA = (laa + msy + 732 + 7a) A3.

Eliminating t, we find for the solution two equations involving two arbitrary constants.

A similar solution may be obtained when there are more than three variables.

3347 To solve —de = —l = —d = &c. ...(1),

where P = ax + by + c, P = a+by+C1, &c.

Assume p =a+bn+cs, px = a^ + b^ + c^, &c., and take               died —d................................. (2),

Pi P2 P the solution of which is known by (3346). Substitute 4 =zz, n = y^, and these equations become adz + ^dx _ yd^ + ^,dy  d‘

P1           Pi P ‘

,                     ^dx ^chi d^ and therefore            -----—---" — —.

P1—8P p-z-yp P Dividing numerators and denominators by %, the first equation in (1) is produced, and therefore its solution is obtained by changing 4, n in the solution of (2) into al and yC

Certain simultaneous equations in which the coefficients are not constants may be solved by the method of multipliers. Thus,

3348 Ex. (1): xt+P (ax + by) = Q, 3,+P(«r+Uy) = R,

	
	
F, Q, R being functions of t. Multiply the second equation by m, add, and determine m as in (3344). The solution is obtained from





-(a+manPdt Oa+manPat— . 000

x + my = e • 10 e • {Q,AmR)dt\, (3210) with two values of m.

3349 Ex.(2): 04+2 (-{) = 1, yt+ 1 («+5y) = t are equations solvable in a similar manner, and the results are 1/6\  % 1/066

•+=0(0+4+ A' "+2 =e(0+5+6)

[Boole, p. 307.

REDUCTION OF ORDER IN SIMULTANEOUS EQUATIONS.

3350 Theorem.—n simultaneous equations of any orders between n dependent variables and 1 independent variable are reducible to a system of equations of the first order by substituting a new variable for every derivative except the highest.

3351 The number of equations and dependent variables in the transformed system will be equal to the sum of the indices of order of the highest derivatives. This will, therefore, in general be the number of constants introduced in integrating those equations. If, after integrating, all the new variables be eliminated, there will remain n equations in the original variables and the above-named constants. These equations form the complete solution.

In practice, such reduction is unnecessary. The following are methods frequently adopted :—

3352 RULE I.—Differentiate until by elimination of a variable and its derivatives an equation of a higher order in one dependent variable only is obtained.

3353 RULE II.—Employ indeterminate multipliers. 3354 Ex. (1):    226 = ax Aby, yu= a'xAb'y.

By Rule I., differentiating twice for t and eliminating y and y2^ we obtain aat—(a+b‘) 22t+ (ab‘—«‘b) a = 0, which may be solved by (3239).

Otherwise by Rule II., exactly as in (3344), we find

a‘m2 + (a — b‘) m— b = 0, and for the exact differential

(a+y)2 = (a+ma) (xAmy), the solution of which, by (3239), is

x + my = Ce“tatma)t+Ce-"tatma)t in duplicate with the two values of m.

3355 Ex. (2): az — 2ay+ba—0, Y2+2az+ by — 0. Differentiate, and eliminate y, yt, y2t; thus

44+2 (2a3 Ab) 22+b‘» = 0, and solve by (3239). Otherwise assume

a = 8 cos at+ y sin at,    y = n cos at— & sin at, and the given equations reduce to

^t^—^Ab)^,   ^-—{a^Ab^y, which are solved in (3257).                                   [Boole, p. 311.

3356 Ex. (3).—Let u = 0, v = 0, w = 0 be three equations in c, y, z, t, involving derivatives of t up to T3t y6t, zn.

To obtain an equation between a and t. Differentiate each equation 6+7 = 13 times, producing 3+13 x 3 = 42 equations involving derivatives of t up to 216t, yw, zm. Between these 42 equations eliminate y, yt, ... yw, z, zt, ... 2201, in all 41 quantities, and an equation of the 16th order in a and t is the result.                                                 [De Morgan.

3357 If a number of equations involve the quantities a, &2t, 24t, &c., Y, J36, Y5t, &c., all in the first degree, these quantities may be eliminated by assuming

a = L sin pt, y = M cos pt.

3358 If there be n linear homogeneous equations in n variables a, y, z, ... and their derivatives of the 2nd order only, the equations may be solved by putting

a = L sin pt, y = M siopt, z = N sin pt, &c.

3359 Ex. :       22 = axpljy,    y2t — gxpfy. Putting           a = L sin pt,    y = M sin pt,

(a+p) L+WM = 0)   . a+p, b |_0 9l + (f+p) M = 0 5 ‘ ” । 9, f+p21 p and the ratios L : M are thus found.

Suppose        L = —Fb and M = k (p2pa), then            a = kb sin pt,    y =k(p+a) sin pt, and k and t are arbitrary constants.

PARTIAL DIFFERENTIAL EQUATIONS.

3380 An equation is termed a general primitive or a complete primitive of a partial differential equation, according as the latter is obtained from it by eliminating arbitrary functions or arbitrary constants, as illustrated in (3150—7).

LINEAR FIRST ORDER P. D. EQUATIONS.

3381 To form the P. D. equation from the primitive u = $ (v), where u and v are functions of a, y, z.

RULE.—Differentiate for x and y in turn, and eliminate $‘ (v). See (3054).

Otherwise.—Differentiate the equations u=a, v =b; thus u,dx+u,dy+u,dz = 0, v,dx+v,dy+v,dz = 0.

Therefore 4 =4= d, where P = a (yy), ^c'

Then the P. D. equation ivill be

Pz,+Qz, = R.

Proof.—Since z is a function of a and y, z„da+z„dy = dz. But dx = IP, dy = IQ, dz = IR, therefore IPzx+IQz^ = IB.

3382  Ex.—The general equation of a conical surface drawn through the point (a, b, c) is             y—b = 4 (2—C),

	
2— a V2—-C/ the form of p being arbitrary.



Considering z as a function of two independent variables a and y, differentiate for a and y in turn, and eliminate f as in (3154). The result is the partial differential equation

(x—a) zx + (y—b) %y+z— c = 0.

3383 To obtain the complete primitive; that is, to solve the P. D. equation, Pz,+Qz, = R,

P, Q, R being either functions of a, y, z or constants.

RULE.—Solve the equations

dx — dy dz PQ-R

Let the two integrals obtained be u = a, v = b; then                          u =z </)(ff) will be the complete primitive.

Propositions (3381) and (3383) extended to any number of variables.

3384 To form the partial differential equation from the primitive            $(u, v, ... w) = 0 ..................... (1), where u, v, ... w are n given functions of n independent variables a, y, ... % and one dependent t.

RULE.—Differentiate for all the variables thus,

pu du + pvdv+ ... +owdw — 0...................

Therefore, since $ is arbitrary, du,dv... dw must separately vanish, giving rise to the n equations

du = u,dx+u,dy+ ... +udt = 0, dv = v,dx+v, dy+ ... +v{dt = 0,

dw = wxdx + wydy + ... + wdt = 0.

Solving these for the ratios, by (583), we get

3385            Pt,+ Qty~f... + ^tg = s.

3386 If u,v ... w be n functions of n variables, x, y ... t, the condition of interdependence of the functions or existence of some relation expressed by equation (1) is J (u, v ... w) = 0 (see 1606); that is, the eliminant of equations (2) must vanish.

3387 Conversely, to integrate the partial differential equation                 Pt,+ Qty~\~ • • • ~f-^tz = S ......................

RULE.—Solve the system of ordinary equations and let the integrals obtained be u = a, v = b, ... w = k; then p(u,v, ... w) = 0 icitl be the complete primitive.


“=“= &c.

L o’.




dz_dt RES




(2),



If P,Q...R,S are linear functions of the variables, the integrals of equations (2) can always be found, by the method, of (3346).

NOTE.—Suppose, in equation (1), that any coefficients P, Q vanish; then, by (2), da = 0, dy = 0, and therefore the corresponding integrals are a = a, y = b. The complete primitive thus becomes

(a, y, u, v ... w) = 0.

3389 When only one independent variable occurs in the derivatives of the partial differential equation, the equation may be integrated as though the others were constant, adding functions of the remaining variables for the constants of integration.

3390 (Ex. 1) : 42 = — . Integrating for c as though y were con-Ce vy‘—22 stant, the complete primitive is

a = V sins’ +9(y).

Some equations are reducible to the above class by a transformation. Thus:

3391 Ex. (2) : Kxy = «*+y. Put zx = u, therefore uy = a2+y2, therefore ^^ = zx —x^y + ^A^ QF), therefore           z = ^xsy + ^xy^ + J $ (x) da+y Qy), or                 z = } QFy + ay3) + x (x) + V Qp.

3392 Ex. (3):    (x-a)zx+Qy-E)zy = c—z. Solving by (3283),       dz = dy, = —.

	
	
• •x-a y — b  z — c





The integrals are

log (y—b)—log (a—a) = log 0?, or y—b _ q^ -0, log (z— c) —log (x—a) = log C‘) ‘ x — a ’ x — a ‘ therefore 3—b = 4 (2—€) is the complete primitive.

x—a 2—a/

For the converse process in respect of the same equation, see (3382). 3393 Ex. (4).—To find the surface which cuts orthogonally all the spheres whose equations (varying a) are

a+y?+2—2az = 0 ........................... (1).

Let d (x, y, z) = 0 be the surface. Then

(x— a) 9.+J$y+2$z = 0 by the condition of normals at right angles. Substitute the value of a from (1), and divide by dz; thus,

(F—y^—z2) zx + 2xyzy = 2zx.

By (3383),      -_2—===4, dy dz y -       .     .

77 = — gives e for one integral.

Substituting y = cz, we then have

____dx _ dz x1— (c2+l) z^ 2zx

which, being a homogeneous equation in x and z, may be solved by putting z = vx (3186). The resulting integral is ----2---— = C. Hence the com-

Z

22 — — g2 /A\ plete primitive is '---9---- = $() and the equation of the surface sought.

The system of ordinary equations (3283) is dx _ dy _ dz xys — 2x4 2y4—xy 9 (a- ys) z

The first of these equations is identical with (1) (and such an agreement always occurs). Its integral is 3+ a = C.

A1               ____ydx + x dy     _ dz

«y*—2x‘y+2xy‘—a‘y   9 (F—y^) z

.      ,             3dx , 3dy . dz -which reduces to         --1--* q--= U;

x y z and thus the second integral is x^y^z = c.

Hence the complete primitive and integrating factor is

Z = —9s(—4). \y F /

Any linear P. D. equation may be written as a homogeneous equation with one additional variable; thus, equation (3387) may be written

3395 Pu, + Qu, +...+ Ru, = Su,.

SIMULTANEOUS LINEAR FIRST ORDER P. D. EQUATIONS.

3396 Prop. I.—The solution of such equations may be made to, depend upon a system of ordinary 1st order differential equations having a member of variables exceeding by more than one the number of equations.

Let there be n equations reduced to the homogeneous form (3395) involving one dependent variable P and n-pm independent. Select n of the latter, x, y ... z, and let the remaining m be E, n ... Z. From the n equations find Px, Py ... Pz in terms of P^, Pv .... P^ and arrange the results as under :

P,+4,P,+b, P,...+1 P,= 0) Py-Ya^P^pb^P^ ... pl^P=0 ............ (1).

P.+a,P,+1,P, ••• +1,P, =0)

Multiply these equations by X1, X2, ... X, respectively, and add; thus,

X,P.+X,P, ... +X„P,+x (fa) P,+z (AD) P, ... +2 (AZ) P, = 0 (2).

From this, as in (3387), we have the auxiliary system

dx _ dy _ dz _ d^ _ dn _ dt (2\ X,5A2107 X, TZ(Aa)TE (A) z(A)......

and, by eliminating A15 A2 ... X,

d^—axdx— ady ...—andz = 0)

dn— bxdx—b^dy ... — bndz = 0 (            (4)

dt — kdx—lc2dy ...— k,ch = 0^

Then, if u = a, v = b, &c. be the integrals of (4), they will be values of P satisfying the equivalent system (1), and the integral of that system will be F (u, v, ...) = 0.

3397 PROP. II.—To integrate a system of linear 1st order P. D. equations.

Let           △ = ad, F^fj ... + kdz,

so that NP = 0 represents a homogeneous linear P. D. equation of the 1st order.

RULE.—^Neduce the equations to the homogeneous form (1); express the result symbolically by

A,P =0, A,P = 0, ... A,P =0,

and examine whether the condition

(A,A,-A,A) P =0

is identically satisfied for every pair of equations of the system. If it be so, the equations of the auxiliary system (Prop. li) will be reducible to the form of exact differential equations, and their integrals being u = a, v = b, w =c,., the complete value of P will be F (u, v, w, ...), the form of F being arbitrary.

" If the condition be not identically satisfied, its application will give rise to one or more new partial differential equations. Combine any one of these with the previous reduced system, and again reduce in the same way.

" With the new reduced system proceed as before,and continue this method of reduction and derivation until either a system of P. D. equations arises, between every two of which the above condition is identically satisfied, or, zuhich is the only possible alternative, the system Px = 0, Py = 0, ... appears. In the former case, the system of ordinary equations corresponding to the final system of P. D. equations, will admit of reduction to the exact form, and the general value of P will emerge from their integrals as above. In the latter case, the given system can only be satisfied by supposing P a constant.”

3398 “Ex.: P,+(++2+22) P,+(y+:-3) P,= 0,

Py+(xzt + y — «y) Pz + (zt-y) Pt=^ 0.

Representing these in the form A,P = 0, A,P = 0, it will be found that (A,A, A,A,) P = 0 becomes, after rejecting an algebraic factor, xPz + Pt = 0, and the three equations prepared in the manner explained in the Bule will be found to be

P.+(3z3+6) P, = 0, Pv + yPz = 0, Pt + xPs = 0.

No other equations are derivable from these. We conclude that there is but one final integral.

	
“ To obtain it, eliminate Px, Py, Pz from the above system combined with



P^dx + Pydy+P^z+Ptdt = 0,

and equate to zero the coefficient of Pz in the result. We find

dz~(t + 3x2) dx—ydy—xdt = 0,

the integral of which is z—«t—«8—2y2 = c.

	
" An arbitrary function of the first member of this equation is the general value of PF                                        [Boole, Sup., Ch. xxv.



For Jacobi’s researches in the same subject, see Grelle’s Journal, Vol. ix.
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NON-LINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS.

3399 Type F(x, 3, 2, 2„, 2) = 0..................... (1).

Charpits’s Solution.—Writing p3 q instead of Zx and Zy, assimie the eguations

doc _. _ dz _ dp

—Tp ~  ~ T—P^p ~ T^PTz

Find a value of p from these by integration, and the corresponding value of q from the given equation, and substitute in the equation

dz = p dx Wqdy........................(3), and integrate by (3322) to obtain the final integral.

Proof.—Since dz = pdx-\- qdy, we have, by the condition of integrability, p, = q.. Express p, and qx on the hypothesis that z is a function of a, y ; p a function of a, y, z ; q a function of a, y, z, p ; considering a constant when finding py, and y as constant when finding qx. Equating the values of pu and qx so obtained, the result is the equation

.                   Apx + Bpy + Cpz = D,

in which A, B, C, D stand for —q^ 1, q~pqp, qx+pqz.

Hence, to solve this equation, we have, by (3387), the system of ordinary equations (2).

3400 Note.—More than one value of p obtained from equations (2) may give rise to more than one complete primitive.

The first two of equations (2) taken together involve equation (3).

DERIVATION OF THE GENERAL PRIMITIVE AND SINGULAR SOLUTION FROM THE COMPLETE PRIMITIVE.

Rule.—Let the complete primitive of a P. D. equation of the 1st order be

Proof.—By varying a and b in (1),

P —f + faa+ fb^m q — fu+fal,+fob.

Therefore, reasoning as in (3171), we must have

fa^+fb^x = 0 and faa,+fb, =0 .................. (3), therefore either fa = 0, f = 0, leading to the singular solution; or, eliminating fa, fb,                  a, by—aybx — 0,

and therefore, by (3167), b = p (a). Multiply equations (3) by dx, dy re-spectively, and add, thus fada+fbdb = 0. Substitute b = p (a) in this and in (1), and the equations (2) are the result.

SINGULAR SOLUTION DERIVED FROM THE DIFFERENTIAL EQUATION.

3403 Rule.—Eliminate p and q from the differential elation by means of the eqziations

Zp 0, Zq 0.

Proof.—Let the D. E. be z — f(x,y,p, q^, and the C. P. z = F(x, y, a, b). Now p and q being implicit functions of a and b, we have, from the first equation,            Za = zvpa + Za qm 2, = z^pb +EZo-

Hence the conditions za = 0, zb = 0 in (3) involve, and are equivalent to, zp = 0, z, = 0.

3404 All possible solutions of a P. D. equation of the 1st order are represented by the complete primitive, the general primitive, and the singular solution.               [Boole, p. 343.

3405 To connect any given solution with the complete primitive.

Let z = F(a, y, a, b) be the complete primitive, and z = p(a,y) some other solution.

Determine the values of a and b which satisfy the three equations F = $, F = $.,   F,= $,.

If these values are constant, the solution is a particular case of the complete primitive; if they are variable so that one is a function of the other, the solution is a particular case of the general primitive; if they are variable and unconnected, the solution is a singular solution.

3406 Cor.—Any two solutions springing from different complete primitives are equivalent.

	
	
• dp = 0, p = a ; • q = a=7 Substituting in dz = pdx + qdy, dz = adx+ %—ax dy(3). a + y





By (3322), making z constant, ads + _dy_ = 0, z — ax  a + y

therefore            —log (z— ax) + log (a + y) = p (z) .....................(4).

Differentiate for a, y, z, and equate with (3), thus p‘ (z) = 0, therefore d (z) = constant (say — log b); therefore, by (4), z = ax + by + ab, the C. P. of (1).

3408 To find a singular solution by (3402), we must eliminate a and b between za = 0, ^ = 0; that is, x + b = 0 and y + a = 0, therefore             z = —xy—xy + xy = —xy is the singular solution.

To find the general primitive by (3401), eliminate a between the two equations z = ax+ (y + a) d (a) and x + (y + a) O’ (a) + d (a) = 0.

NON-LINEAR FIRST ORDER P. D. EQUATIONS WITH MORE THAN TWO INDEPENDENT VARIABLES.

3409 Prop.—To find the complete primitive of the differential equation

F^,^ ... a,, 2, PiP2 ...p^ = 0............(1), ,                            dz            dz 0 where         01 — —, pz — —9 CC.

C21 clx^

3410 RULE.—Form the linear P. D. equation in H denoted by

	
	
	
- (/dF , dF\d®   dF /d© , do\) n 2,3 H-----— ---Pr— ( — 0,







( \Qx, dz / dpr   dpr \Qx, dz / )

the summation extending from r = l to r=n. From the auxiliary system (3387) n—1 integrals

(1 = a1, H, = a,, ... $,-1 = a,-1

may be obtained. From these equations, together with (fffind Pi, P2... pn in terms of X1; X, ... Xn, substitute the values in

dz = P1dx1+p,dx, ... +P„dxn, and the integral of this last equation will furnish the solution required in the form

f (X1, X2 • • • Xn, Z, a1, a... an) = 0.

[Poole, Diff. Eq., Ch. xiv., and Step., Ch. xxvii.

SECOND ORDER P. D. EQUATIONS.

3420 Type F (a, y, s, %,, %„, %2, zxy, %2y) = 0.

The derivatives 22, 2,, 22, Rgy, ^y are briefly denoted by p, q, r, s, t respectively.

z being a function of the two independent variables x and y, the following values are of frequent use

3421 dz = pdec-^qdy; dp = rdo -ffsdy; dq = sdx-\-tdy.

If u be any function of a, y, and z, the complete derivatives of u are indicated by brackets, thus

3422 M = uv -ffpus, (uy) = uy + quz.

A linear 2nd order P. D. equation is of the type

3423           Rr+Ss+Tt= V..................... (1), in which B, 8, T, V are functions of a, y, z, p, q,

	
PROPOSITION.—Any P. D. equation of the 2nd order which has a first integral of the form u =f(v), where u and v involve x, y, z, p, q, is of the form



3424       Rr+Ss + Tt+U{rt-s2) = V...............(2), where B, 8, T, U, V are functions of x, y, z, p, q, and

3425              U = upvq—iQVp ........................(3).

Proof.— Differentiate u = f (v) for a and y separately, considering a, y, z, p, q all involved in u and v, and eliminate f'UT The result is equation (2), with the values

3426 aR = uP (") — (u,) ",, sT = "4 (u,) ~ (v.) u^ uS = v, (1.) _ (v.) up~vq (u,) + (v,) u, u U   Up^q —1,",,   a V = (u,) (v.) - (u,) (v,) 5 with the notation (3422), u being an undetermined constant.

3427 Cor.—The condition to be fulfilled in order that equation (1) may have a first integral of the form u =/(O is unvn—uavn = 0.

SOLUTION BY MONGE’S METHOD OE

3428           Rr+Ss+7 = V.

Rule.—Write the tzuo equations

Rdif-Sdady^-Td^ = 0..................(1),

Rdq) dy— Vdxdy-\- Tdq dx — 0...............(2).

Resolve (1) into its factors, producing the two equations dy—mdx = 0 and dy—m,dx = 0.

From dy — mdx and eqibation (2) combined, if necessary, with dz = pdx+qdy, find tivo 1st integrals u=a, v=b; then u = f (v) will be one 1st integral of the given equation. Similarly from dy = m,dx find another 1st integral.

3429 The final 2nd integral may be found from one of the 1st integrals by Lagrange's method (3383).

3430 Otherwise, determine p and q in terms of a, y, z from the two 1st integrals; substitute in dz = pd^-qdy, and then integrate by (3322) to obtain the final integral.

3431 If equation (1) is a perfect square, there will be only one 1st integral, and Lagrange’s method only is applicable.

PROOF.—By (3427) we may put uq = mup, v, = v,; and also dz = pdx + qdy (8321) in the complete derivatives

(du) = ux dx + uy dy + uz dz + up dp + u^ dq = 0, (dv) = &c. = 0;

.. by (3422) (ux) dx+ (Uy) dy +u, (dp + mdq) = 0 )

(va) dxA (v,P dy + vp (dpAmdq) = 0 )        !**"*   2

Solving these equations for the ratios dx : dy : dp + mdq, we obtain at once dx   dy + mdx _ mdy _ dp-{-mdq

R ~ ' S T — V .................. (4), with the values of R, S, T, V in (3426).

Equations (1) and (2) are the result of eliminating m from (4). These two equations with dz = p dx + q dy suffice to determine a first integral of (3428) when it exists in the form u =f(v).

3432 Ex. (i.) : q (1+q) r— (p+q+2pq) S+P (1+p) t = 0.

Solving the quadratic equation (1), we find

pdx + qdy = 0, or (1+p) dx+ (1+g) dy = 0 ...............(5). First,           dz = 2 da + q dy = 0,    /. z = A.

Monge’s equation (2) is q(^ + q) dpdy+p (1+p) dqdx = 0, which, by pdx = — qdy, gives 1=142; and, integrating, 142= B.

Hence a first integral is 147 = 9 ......................................(6).

Next, taking the second equation of (5) with *

dz = pdx + qdy,  dx + dy + dz = 0,  .. xpy+z = C.

Also, by (5), equation (2) now reduces to qdp = pdq, and by integration, p = qD ; therefore the other first integral is 2 = qi (a +y + z).

For the final integral integrate p—qV = 0; i.e., 2—1z, = 0, by (3383) ;


dx = —




dy _ dz

1(x+y+2)   0’




.. z = A,




and




dx + dy + dz

1—(x+y+z)



d (x + y +z) 1— (x + y+z)


= F(x+y + z)+E.



Hence the second integral is x—f (x + y + z) = F (z). 3433 Ex. (ii.) :      E2—@8%u = 0.

(i.) Here, in (3428), R = 1, S = 0, T=-a, V= 0 ; therefore (1) and (2) become dy^ — a^dx- = 0, dpdy — a?dqdx = 0.

From (1) dy + adx = 0, giving y + ax = c, and converting (2) into dp + adq = 0, which gives p +aq = c ; therefore a first integral is

p + aq = d (y + ax) .............................. (3).

Similarly, from (1), dy — adx = 0 gives rise to another first integral p — aq = 1 (y — ax) ..............................(4). Eliminatingp and q by means of (3) and (4) from dz = pdx + qdy, we find dz = (2a)'1 {$ (y + ax)(dy + adx) — 1 (y — ax)(dy — adx)}, therefore, by integrating, z = H (y + ax) +Y (y—ax).

For the symbolic solution of the same equation, see (3566).

SOLUTION OF THE P. D. EQUATION.

3434        Rr+Ss+rt+U^rt-s'-') = V...............(1).

Let 713 72 be the roots of the quadratic equation

3435         m2 - Sm + R T+ UV = 0..................(2).

Let 11 = a, 71 = b, and u2 = a, 72 — b' be respectively the solutions of the two systems of ordinary differential equations.

3436  Udp = m2 dy—Tdx^      Udp = m^y —Tdx^ Udq = m^dx—JRdy - (3),    Udq = m^dx —Ndy ( (4).

dz = p da+ qdy)         dz = p dx + qdy)

Then the first integrals of (1) will be

	
1,    =f(v), 1, =f(v,).



To obtain a second integral:

3437 1st.— When 71, 72 are unequal, assign any particular forms to fi and f2, then substitute the values of p and q, found from these equations in terms of x and y, in dz = pdx^qdy, which integrate. Otherwise, assign the form of one only of the functions fi, 2, involving an arbitrary constant C, solve for p and q, and integrate dz = pdx-\-qdy, adding an arbitrary function of G for the constant of integration.

3438 2ndly.—When 11, M2 are equal, and therefore, by (2),

Here py = qx, and therefore the last equation is integrable if the values of 2 and q^ obtained by integrating (6) and (7), be substituted in it. Let u = a, v = b be the integrals of (6) and (7); and let z — (j> (^x, y, a, b, c) ..................... (9) be the integral obtained from (8).

The general integral is found by making the parameters a, b, c vary subject to two conditions b = f(a)} c — F (a) ; that is, by differentiating

z ={a, y, a, f^), F(a)} for a, and eliminating a.

3440 The general integral therefore represents the envelope of the surface whose equation is (9).

PROOF.—(Boole, Sup., p. 147.) Assuming a 1st integral of the form u =f(v), eliminate u and v from equations (3426) by multiplying (i.) by (u^u^, (ii.) by (u„) up, (iv.) by (u^Q^), (v.) by upua, and adding. Again, eliminate u and v by multiplying (i.) by (Ux)2, (ii.) by (u^2, (iii.) by (u^Qb^), (v.) by (u,) u,+(u,) Uq, and adding. The two resulting equations are

R (U,) u^pT (uy) up—U (u,)(u,) + Vupua = 0


(10).



R (Ug)2 + S (^) (u,) + T (uvy+ V { (ux) up + (u,) u} = 0 Multiply the 2nd of these by m, divide by V, and add to the 1st equation ; the result is expressible in two factors either as (11) or (12),

	
	
{B (u^+mi (u^ + Vup} {Mi (u^ + T (uy) + Vuq} = 0 .........(11), {B (uS+m-2 (Uy) + Vup} {m2 (uC) + T (u,y) + Vuq} = 0 .........(12), 71,    M2 being the roots of the quadratic (2). By equating to zero one factor of (11) and one of (12), we have four systems of two linear 1st order P. D. equations. Taking each system in turn with the equations





(u^ + rup + su^ = 0, (u,) + Su, + tuq = 0, and eliminating (ux~), (Uy), up, Uq, we have the de-    B  M1 terminant annexed for the case in which the 1st   m9   T factor of (11) and the 2nd of (12) are equated to    1   0 zero. In this case, and also when the 2nd factor of (11) and the 1st of (12) are chosen, trans- 0 posing M1, M2 in the determinant, the eliminant is equivalent to

V {Br+SspTtAU (rt—s^ — V] = 0, having regard to the values of m^n^ and M1+2 from (2).

When the 1st factor of both (11) and (12) is taken, the 2nd order P. D. equation produced by the elimination is

Vt-B{rt~s^ = 0,

and when the 2nd factor of each is taken, the elimination produces

Vr-TQ-t-s^ = 0.

Hence the hypothesis of a 1st integral of (1), of the form u = f (v), involves the satisfying one or other of the systems of two simultaneous equations, (13) or (14), below :

	
R(u,)+mi(u,)+Vu, = 0 ?  (13).    R MPm^Uy^ + VUp = 0 )  (14) m,    (u,) + T {uy} + Vuq = 0 5 ‘' ’        m, {u^ + T (uy) + Vuq =05"



Now multiply the 2nd equation of (13) by X and add it to the 1st. In the result, collect the coefficients of ux, uy, up, u(1, uz. The Lagrangean system of auxiliary equations (3387) will then be found to be

dx _ dy          dip  __________dz _________ du

R+Am, m+XT‘  V XV  Rp+m,q+X(Tq+m,p)   O'

Eliminating X, equations (3) are produced. Treating equations (14) in the same way, equations (4) are produced.


3 u

POISSON’S EQUATION.

3441            P = {rt—s^Q, where P is a function of p, g, r, s, t, and homogeneous in r, s, t; Q is a function of a, y, 2, and derivatives of z, which does not become infinite when rt—s2 vanishes, and n is positive.

RULE.—Assume q =$ (p) and express s and t in terms of qp and r; thus, rt—s2 vanishes, and the left side becomes a function of p, q, and qp.

Solve for a 1st integral in terms of p and q, and integrate again for the final solution.

Proof.— S = qx = qppx = qpr-, t — qy = qppv = fir therefore rt—s2 = 0. Also P is of the form (r, s, t)m = rm (1, qp, qp)m. Hence the equation takes the form (1, qp, qp)m = 0.

LAPLACE’S REDUCTION OF THE EQUATION.

3442 Rr+Ss+Tt+Pp-fQq+Zz = U............(1), where R, S, T, P, Q, Z, U are functions of x and y only.

Let two integrals of Monge’s equation (3428)

Udy2—Sdx dy + Tdx2 = 0 be                 p (x, y) = a,(x, y) - b. Assume         ‘ = ^ (x, y), n =1(x,y).

3443 To change the variables in equation (1) to 6 and n, we have

?    % =— %t 5. + 2, n, s    q — Z, — % 5, + z, ny;

	
7    — Z2, — 22482+2%6„5,1„+22,72+252,+2„"2;       (17 01)



t %2y = %250+2%„5yny+%z„"3+2:52,+2„"2y;

	
8    : Zay    Z24 6. 6, + 22, n, ny + %6„ (E n, + Z, n,) + Ze ^xy + %, ^xy • The transformed equation is of the form



%, + La + Ms, + Nz - V.................. (2), where L, M, N, V are functions of 5 and n. This equation may be written in the form

(d^M^d^+L^zp^N-LM-L^^V.........(3). If          N-LM-L^O ..................... (4), we shall have

(d^ + M) A = V with (d, pL)z — %, and the solution by a double application of (3210) is obtained from

: =et" ( ()+[*e™"dn),

*=sWG)+[v."a).

By symmetry, equation (1) is also solvable, if

N-LM-M,=0 ..................... (5).

But if neither of these conditions is found to hold, find z in terms of %‘ from (3). It will be of the form

z = A¥+B: +0, where A, B, C contain 5 and n. Substitute this for z in (d,+L) z=z, and the result is of the form

%, + L 4 + M % + N z = V •

The same conditions of integrability, if fulfilled for this equation, will lead to a solution of (1), and, if not fulfilled, the transformation may be repeated until one of the equations, similar to (4) or (5), is satisfied.

3444 Cor.—The solution of the equation %gn + azg + bz, + abz = V

is z = e-dn 4 (E) + e-bty (n) + e-c-bE " edn+8k Vein d^. 3445 For the solution of equation (2), when L, M, V contain also z, see Prof. Tanner, Proc. Lond. Math. Soc., Vol. viii., p. 159.

LAW OF RECIPROCITY. [Boole, ch. xv.

3446 Let a differential equation of the 1st order be

$ (a, y, %, p, q) = 0.....................(1). Let the result of interchanging a and p, y and q, and of changing z into pa+qy—%, be

$(p, q,px+qy—z, ae, y) = Q...............(2); then, if z = 1 (a, y) be the solution of either (1) or (2), the solution of the other will be obtained by eliminating 5 and n between the equations

a = de (§, 7), y = d,1 (s, 7), z= ^+yy—^ (§, n).

3447  Ex.—Let   z = pq ......(1),   px + qy — z = ay ......(2), be the two reciprocal equations.

The integral of (2) is = xy + xf ( M), .. v (En) = k^Fxf ( 7

	
8,    n have now to be eliminated between


«=r-f(z)+f(7), y =4+f(), a =8   (3).




f(7)=az+b.





Each form assigned tof gives a particular integral of (1). If the equations (3) become a = n+b, y = ^+a, % = sn. and the elimination produces z = (<x — l)^(y~a').

3448 In an equation of the 2nd order, the reciprocal equation is formed by making the changes in (3446), and, in addition, changing

	
	
7 into —-—s into ---t into —; rt—s2        rt—s^        rt—s2 then, if the 2nd integral of either equation be z = 1 (x, y), that of the other will be found by the same rule.





3449 The above transformation makes any equation of the form ^(iDq^r^^^^^s-^x^P’Q^ — ^ dependent for solution upon one of the form

X (a, y) r—V (a, y) s+c (a, y) t = 0.

3450 And, in the same way, an equation of the form Rr+Ss+Tt= VXrt-s2)

is dependent for solution upon one of the form

Rr+Ss+Tt = V.

See De Morgan, Camb. Phil. Trans., Vol. VIII.

SYMBOLIC METHODS.

FUNDAMENTAL FORMULA.

Q denoting a function of 0,


3470



(d.— m) 1Q = e’ese-me QdO.

PROOF.—The right is the value of y in the solution of doy — my = Q by (3210). But this equation is expressed symbolically by (d,—m) y = Q (see 1492), therefore y = (d,—m)1Q.

Let a = e6, therefore de = xdx and xdti = dx. Hence (3470) may be written

3471        (wd,—m)-1 Q = a" Sa=n-1 Qdx. 3472 Cor— {d-my^ = Cem\

3473 or     {^dx—my10 = Cxm.

Let F (m) denote a rational integral function of m; then, since dge™ = me™°, d2 emd = m2e™°, &c., the operation de is always replaced by the operation m X . Hence, in all cases, 3474              F (de) eme = e"no F (m).

3475         F ^de} em6 Q = e"o F(d,+m) Q. Formula (2161) is a particular case of this theorem.

3476         emeF(de) Q = F{de-m) eno Q.

Also, by (3474-6),

3477        F (m) = e~mdF (de) eme.

3478 F (dd-{-m) Q = e~meF (de) e"o Q.

3479        F (de) Q = e~m8F (de-m) e"o Q.

To the last six formulas correspond

3480 F (xdy xm = xmF (m).

3481        F (xdx) xmQ = xmF (xdx-\-m) Q.

3482       ^mF (xd^ Q = F (xdx—m) xmQ.

3483       F (m) = x~mF (xd^ xm.

3484       F (xd,+m) Q = x~mF (xd^) xmQ.

3485       F (xdx) Q = x~mF (xdx—m) xmQ.

If U =a+bz+cz‘+&c., then, by (3480), 3486 F(xdx) U= F(0) a+F(l) bx^F(2) co?+&c.

3487 Fl(ad,) u= F-1^ a+F-^l) b^+F-1^) ca*+&c.

3488 F(xd„,yd, zdz, ...) xmynzp... = F^m, n,p ...) ocmyn%P...

3489 a"u, = d9{dQ—1) (d,-2) ... {de—n+1) U, or, more succinctly, writing D for d9i

D(D-1) (D-n + l)u or D^u (2452).

3490 Otherwise Flunx = ad(xd— 1) ... (ad,—n—1) u.

PROOF.—As in (1770). Otherwise, by Induction, differentiating again, and remembering that 2, = a.

NOTE.—In the symbolic solution of differential equations, we may either employ the operator ad, directly, or the operator de after substituting ed for a. Formulas (3480—5) or (3474-9) will be required accordingly.

3491             {4(D) eA"Q

= e"rp(D+nr) $(D+n- 1.7) ... (^{D+r'jQ

= $(D) ^(D-r) $(D-2) ...^{D-(n-\)r} e"r? Q.

PROOF.—By repeated application of (3475) or (3476).

For ready reference, formulae (1520, ’21) are reprinted here.

3492 f(x+h) = eldzf(a).

3493        f^-\-h, y-\-F) = eldatid,f(a,y).

Let ao+aa+aa2...+aa" =f(x), then, denoting de by D,

3494 /(») wo = uf(D) v+u.f^ 6+ ^f\D) 0+&c., where f' (D) means that D is to be written for a after differentiating f(F).

PROOF.—Expand uv, D.uv, D2 .uv ... Dn.uv by Leibnitz’s theorem (1460); multiply the equations respectively by Co, a1, C2 ... an, and add the results.

3495 uf'(D), = f(D).w—f‘(D)u,v+1 f"D.u,v- &C.

PROOF.—Expand uv,, uv29, "03 ... uvnS by theorem (1472), and proceed as in the last.

3496       F (d,) sin    = F(- m1) sin mm. v " cos         v 7 cos

A more general theorem is

3497    F(m)(u,+u-m) = F(-m2)(u,+u_m), where u and T have the meanings assigned below (3499), and i = V — 1.

Theorem.—If $ and 1 denote any algebraic functions of 2 and y, it may be shown, by (3474) and (3475), that

3498 v (d^y) $(r) = $ {dy+^) ^y). 3499 Let u, or, more definitely, un = (a, y, 2, ...)", represent a homogeneous function of the nth degree in severable variables, and let

3500         T = ad,+yd,+zd,+&c.

Then, by (3480),

3501 Tu = nu, T2u = iTu, rTu = ^u, &c.

3502 Hence F(m) u = F^i)u.

REDUCTION OE F^ TO f (m) .

3503 Let u be any implicit function of the variables, and let T = T1+T2, where T1 operates only upon a as contained in u, and T2 only upon a as contained in Tu, &c. after repetitions of the operation T. Then

3504        qu = Tu, mu = (T— 1) ITU, 3506 mu = (m— 7+1) ... (m-2)(m-1) iTu. Proof.—              7" = (z — 72) u = u, since 72 has here no subject to operate upon.

7[u = (7 — 72) Tu = (T— 1) Tu, for, ru being of the 1st degree, 72 and 1 are equivalent as operators. In the next step, 72 and 2 are equivalent, and so on.

Cob.—When u is a homogeneous function, we have, by (3501), 7Tru = nrU', therefore T and n are equivalent operators upon u. Hence (3506) may be written

3507 mzu = (n- 7+1) ... (n-2)(n-1)nu = n^u, which is Euler’s theorem of homogeneous functions (1625), since in that theorem the operator is confined to u.

3508 As an illustration, let Tu = (xdx + ydy) u = TU, then Tu = («2d2,+2ay da,+y2d,,) ",   T2u = (T1+T,) ^u = zu+T, Tu.

Here                 7r,Tu = {xdx + yd^Q (xdx + yd^) u,

the operation being confined to a and y in the second factor (3503), and therefore producing (xdxAydu) u merely.

Hence ^u = Q^d^ + ^xy dxy + y^d^A xdxA y dy} u, which proves (3505).

If U = Uo+u+u— ..., a series of homogeneous functions of dimensions 0, 1, 2, ..., then, by (3502),

3509 F W U = F (0) u+ F (1) U.+F (2) u,+ ...,

3510 F-^n)U= F-1(0) u,+F-1(l)u,+F-1(2)u,+...

3511 Ex. 1:   a^U = Uo+au+a2u,+ ...,

3512        a-TU=1+a-1u,+a-2u,+...

Ex. 2: If u have the meaning in (3499),

3513

2                          3

F^) e" = F(0) 1+F(n) u+F(2n) "0+F(3n)—8 +&c„

and similarly for the inverse operation F'1 (T).

PROOF.—By (3502) applied to the expansion of the subject by (150).


3514

where



C (n, m) un _ sa”d,y‘dayz"d,z... m!          p\ q\ r\ "‘

2+q+7+ ... = m, and pl = 1.2...p.

PROOF.—Equate coefficients of am in the expansion of

(1 + ap U = (1 + ayd^ (1 + a)"dv (1 + c)s" ...U, reducing by (3490).

3515 The general symbolic solution of the equation F (d.) v = Q is

u = F ^dg) Q+F^^dg) 0, by (1488-90).

3516 The solution of the equation (3238), viz.,

Yn+dio- ve-- • • • -+(- v3+a„y — Q.........(1), where Q is a function of a, is most readily obtained by the symbolic method. Thus 71, 72, ... mn being the roots of the auxiliary equation in (3239), and A,B, 0 ... N the numerators of the partial fractions into which (m"+am"-1+ ... +an)™1 can be resolved, the complete primitive will be

3517

y = {4 (d,— m)-1+B(d- m,)—1...+N(d,— m,)-1}(0+0), where         (dx—m)~lQ, = e" Se-n«Qda, (3470)

and the whole operation upon zero produces, by (3472), for the complementary term,

3518           Ce"+ C2 e"a"... + Cnem-X.

PROOF.—Equation (1) may be written

(dna+01C(n-1)«+C,d(n-2)«... +an) y Q, or              i^-m^ (d— m^ ... (d,—m„) y = Q,

. by (3515), J= I(d,-m,)(d,-m,) ... (d,-m„)}H1(Q+0), which, by partial fractions, is converted into the formula above.

If r of the roots M1, m2i ... are each — m, those roots give rise in (3517) to a single term of the form

3519     (A+Bd,+04,.... + Rd,) en e-moQ.

	
	
	
• rx







PROOF.—By (1918), the r roots equal to m will produce

{A'^d^—mB^'+D'^—m)-+1 ... +R‘(d,-m)-1} Q, or             (A+Bd,+Cd... + Rd,)(d,—m)“"Q.

3520 But, by (3470), (dx—m)"2 Q = (d,-m)-le"e="Qda

	
	
= e"s { 616" Je-" Qd } d = e"F e-ne Qd, and so on. 3521 Ex. (1):      Ja—y»—5J.-3 = Q





Here            m3— m2— 5m — 3 = (m—8)(m+1)2,

and ___1___ = __1___1___1 (m — 3)(m+1)3   16 (m — 3)   16 (m+1)  4(m+1)2

therefore y = *‘ (d,-3)-10—(d,+1)-1 Q- 4 (d.+1)-2 Q

	
= +ge”r Se-3Qdz—Tge"fe="Qda—le= SSe" Qdal. (3520) 3 x



3522 Ex. (2):         ux+td’u = Q, therefore                  u = (d2+a2) 1Q.

Here (m2+a?)-1 = (2ia)-1 {(m- ia)-1- (m+ia)-1}, therefore u = (2ia) 1{(d,— ia) -1 Q— {dx + ia) -1 Q }

= (2ic)-1 {eiax Se-ias Qdx— e~iax Setuz Qdx} (3470)

= a-1 sin az "cos ax Q dx — a’1 cos ax Jsin ax Qdx, by the exponential values (766-7).

3523 Cor. 1.—The solution of Uz+a’u = 0 is u — A cos aa+B sin ax.

3524 Cor. 2.—The solution of u, — cOu — 0 is u = Aeax -\-Be~ax.

Change a into ia in the fifth line of (3522), and put Q = 0.

3525 When Q is a function whose derivatives of the nth and higher orders vanish, proceed as in the following example.

Ex. (3) :               12+a‘u = (1+2)2,

therefore u = (d2+a?)-1 (1+4)2+ (dz+a?)-1 0

= {a~2 — a-4d2+a-d,- &c.)(l +2+a3) + (dz,+a?)-1 0 = a'2 (1+a)2—2a 4+A cos az + B sin ax, the last two terms by (3523).

Exceptional Case of the Inverse Process. 3526 Ex. (4) :          "2 + a2u = cos nx, .. u = (d2x+a2)^ (cos 22+0) = | (d2,+a?)-1 (einz+e-inz+0)

= 1 C^Fe-^^-^ + a^ + Ac^ax + DAaax by (3474) and (3523) = cos na (a2—2)-1+&c.

Now, if n = a, the first term becomes infinite. In such cases proceed as follows :—

Put A = A' — (a?- 23)-1, and find the value of cosnz—cos az, when a —n"

n — a. By (1580) it is = - sin "e. Thus the solution is

20

_a sin ax . ,,     .

I-----A cos ax + D sin ax. 20

The same result is obtained by making Q = cos ax in the solution of (3522), For another example, see (3559).

3527 Ex. (5) :        y— 9y, + 20y = ales",

therefore y = {(1,—4)(d,—5)}-123e*+{(d,-4)(,—5)}-10

= e={(d,—1)(d,—2)}-12?+Ae4+Be™. (3475, 3517, 3472)

Now (m- 3m+2)—1 = } (1- 3m7"2)

=*+/2 (20) +8c.5

Hence the solution becomes

y = e" { + 2d, + zd, + &c.} 22 + Ae" + Be5x

= ea + 32+7 + Ae4*+Be5. ( 2     2    4 )

3528 Ex. (6) :          (dx-a)nu = ed., therefore u = (d,—a)"e~ = e“ (d,)-"1 (3476) = ed(—+ 0 ).   (2149)

\n ! Jnx /

3529 Ex. (7):       (d,+a)‘y = sin ma,

therefore           y = (da+ a)-2 sin ma —(da +a)-20

= (d,—a)2 (d,,—a?)-2 sin ma+e-do (d,)-2 0 [by (3478) with Q =0] = ( — m3- a2)-2 (dx—a)? sin mz+e-d (Ax+B) (by 3496)

= (m2+a2)-2 ( — m2 sin ma— 2am cos ma + a2 sin mx) +ende (Ax + B).

REDUCTION OF AN INTEGRAL OF THE nth ORDER.

3530 f Q =—1{a"-1(Qda—(n—1) a"—2Quda

+ C (n, 2) a"—3 j Qa^dx... ±. Qa-1 dx^ where n —11 = 1.2 ... n.

Proof.—By (3489) dnxQ — e~n\ds—n+1)(,-n+2) ... deQ.........(1), therefore d_nxQ,= {(^—n+ 1)(d,— n+2) ... d^'^e^Q,

= -1{(d,-+1)-1-(n-1)(,—n+2)-1

7—1                +O(n,2Xd-n + 3y1-&c.}ensQ (3517)

=       $e(n-1)e (d,)-1e-(n—1) e‘n-2)0 (d,)-1e2+&c.} Q.

Then replace e® by a.

The equation

3531 ax"yn+ba"y,,—&c. = A+Ba—Ca‘+&c. = Q may, by (3489), be transformed into

{a (ud,)E+b (ed,)2+&c.} y = Q or F(,)J = Q.

The solution is then obtained from

3532          y = F-1 (xdj Q + F-1 {xdx) 0.

The value of the 1st part is given in (3487).

3533 If a, 3, y, &c. are the roots of F(m) = 0, the second part gives rise to the arbitrary terms

C^-]- C,a”+&c.

3534 If a root a is repeated r times, the corresponding terms are

«" { C (log «)"-+ C, (log «)"—*+ ... + C,} .

PROOF.—The partial fractions into which F~l (adz) 0 can be resolved, as in (3517), are of the type C (xdx—m)-1 0, m being a root of F (F) = 0. But Qcdx—m)-1 0 = Gxm (3473), 0 being an arbitrary constant.

For a root m repeated r times, the typical fraction is C (xdx—m)-P, p being less than r. Now

(xd,- my1' Cxm (log a)p-1 — (dg— m)p Cem9 6p-1 = e"9 (.dQp CF'1 (3475) = 0, therefore             (ad,—m)-0 = Cxm (log 2)p-1

The equation

3535 ayne+by,o+&c. = f{F, sin 6, cos 6) is reducible to the form of (3531) by a = ee; or, substituting from (768), it may be written

F{de)y = z (A.„e"8), and the solution will take the form

3536 y = ZA„e"F-(m)+P-(d,) 0, for the last term of which the forms in (3533-4) are to be substituted with a changed to ee.

3537 Ex. (1) :          «Bys = axm + bxn ad, (xdx — l) (xda—2) y = axmA bxn,

.. y = {xdx (ad,—1)(d,-2)}-1 (axm + bxn) A {xdx (xdx—1) Qcdx— 2)}-1 0 ax" । ba” 9

	
	
= —7---—---o- H--7--—--— + A + Ex + Cx ,





m (m—) (—2) n (n — 1)(n — 2)

by (3180) and (3533). A result evident by direct integration.

3538 Ex. (2) :     a3y2,+3y+J = (1-)-2.           By (3490) {xdx (xdx — 1) +32d,+1} y = (xd,+1)2y = 1 +22+3x2+ &c.,

. J = (,+1)~(1+2+32+) = (0+1)=+2 (1+1):‘2+3 (2+1)=+

	
(3480) = 1+ g +&c.+ AlogB =-llog (!-») +&c. 2    3             2       2       2



3539 Ex. (3): 32+(4—1) 3+(422—2+2) J = 0.

Let 7 = d.+2x. Then the equation may be written

T (T—1) y = 0,   .. y = {r (r — 1)}-10 = (r-1)-10 — m-10.

Let (r- I)-10 = u, .. (T — 1) u = 0, or ,+ (2z— 1) u = 0, .. u = Ae"*-«.

3540 The solution of a P. D. equation of the type amz + bma + & c. = u+u,+&c.,

where 11, 12, &c. are homogeneous functions of the 1st, 2nd degrees, &c. in a, y, and 71 = ad+yd, (3503), is analogous to (3531), and is obtained from that solution by substituting 11, 12, &c. for Bx, Ox2, &c.; and, for such terms as Cxa, an arbitrary homogeneous function of x and y of the same degree.

3541 Solution of F (m) u = Q,

where F(m) = m"+A,m"-1+A,m"-2+A,,

and           Q = u+u—u,+&c.,

a series of homogeneous functions of x, y, z, ... of the respective dimensions 0, 1, 2, &c.

Here        u = F-1(m) Q+F-1(m) 0.

3542 The value of the 1st term is given in (3510). For the general value of the last term (see Proof of 3533), let F (m) = 0 have 7 roots = m; then

3543 C(m—m)"0 = C [u (log a)p-1+v (log a)p—2... +w} , where u, v, ... w are arbitrary functions of the variables all of the degree m.

3544 Cor.—   (r-m)-10 = («, y, ...)m, that is, a single homogeneous function of the variables of the degree m (1620).

3545 Ex.: a222,+2ayz,y+y2z,,—a («z+yz,)+az = u+u,, um, " being homogeneous functions of the mth and nth degrees. The equation may be written         (m?— am+a) z = Un+un ;

or, by (3505),          (x— a)(r— 1) z = um + un,

therefore z = {(r—a)(r—1)}1(um+un)+{(m—a)(r—1)}10

— ________I__Un__

(m— a^Qn— 1)  (n—a)(n—1)   "   1

The first two terms by formula (3502) ; the last two terms are arbitrary functions of the degrees a and 1 respectively, and result from formula (3543) by taking p = 1 and m = a and 1.

3546 To reduce a P. D. equation, when possible, to the symbolic form

(Il"+A,I-1+A,HT"-3...+A) =? .........(1), where           II = Md,+Nd,+&c., and Q, M, N, &c. are any functions of the independent variables.

Consider the case of two independent variables,

{Mdx + Ndy)2 u = Mug + 2MNuxy + N^u^y

^^Mx+NMy) ux^^Nx^Ny) Uy... (2).

Here the form of II is obtainable from the right by considering the terms involving the highest derivatives only, for these terms are algebraically equivalent to (Mdx-\-Ndyy2.

The reduction being effected, and the equation being brought to the form of (1); then, if the auxiliary equation

3547       m"+ A,m"-1+Am"-2... +A, = 0 ............(3) have its roots a, b, ... all unequal, the solution of (1) will be of the form

3548 U = (n-ayiQ+(n-b)-1Q+&c.............(4). The terms on the right involve the solution of a series of linear first order P. D. equations, the first of which is

3549         Mu, + Nuy + ... — au = Q, and the rest involve b, c, &c.

If equal or imaginary roots occur in the auxiliary equation, we may proceed as in the following example.

3550 Ex.: (1+22)2%—4y (1+22) 2, -i-^Yifz^ +2 (1+22) z„+2y (2—1) z„+a‘z = 0.

Here II = (1+22) dx — 2zy d,, and the equation becomes (112+a2) z= 0.

Let the variables a, y be now changed to 4, 7, so that II = d^. Therefore, since II (£) = 1, I (4) = (1+22) 4- 2vyE, = 1.

Also, since II (n) = ng = 0, (1+a2) n.—2ay n, — 0.

Therefore               „dz = du = do),

1+a2 —2xy 0 the solution of which is equation (1). Thus

E = tan-1 a and n = x^y + y.

The transformed equation is now (d2g +a2) z = 0, and the solution, by (3523), is

z = d(n) cos az+i (n) sin as, arbitrary functions of the variable, which is not explicitly involved, being substituted for the constants (3389). Therefore finally,

z = d (aPy + y) cos (a tan la)+i (x2y+y) sin (a tan"1a).

MISCELLANEOUS EXAMPLES.

3551             u,+u,,+u2, = 0.

Put d2y+d2z = a2. Thus U2 + a’u = 0, the solution of which, by (3523), is                    u = p (y, z) cos az+i (y, z) sin ax, arbitrary functions of y and z being put for the constants A and B. Expand the sine and cosine by (764-5) ; replace a2 by its operative equivalent, and, in the expansion of sin ax, put ai (y, z) = X (y, z) ; thus

"= $(3,2)—9! (day+d2z) $ {y, 2)4! (dzy+dzz) $ oy^ 2)—&c.

+ ax (y> 2) - 4 (d,,+d2z) X (J, 2) + $” (d, + d.,^ x {y, 2) - &c.

[See (3626) for another solution.

3552             u,+uy+u, = ays.

Here             u = (dx +d,+dz)-1 (xyz + 0)

= {d-—d_2 (du+d,) +d-3 (dyAd^—...} (=yz+0).

Operating upon xyz, we get

u = 2x2yz — Za8 (z + y) + 1224, the rest vanishing. For symmetry, take 3rd of the sum of three such expressions; thus

u = } { t 2 («4 +/+:)—} ^y+qyj3 + y"a + y 28 + 2z + z23) + i^E ( + y+2)} •

Operating upon zero, we have, in the first place, d_x0 = d (yz) instead of a constant, therefore d_20 = ad {y^\ &c.

The result is

{1- (1,+1,)+1a2 (1,+d,)’- ...} $ Q)^ = e-wtdn"9)p {yz) = p (y—«, z—x) (3493) the complementary term.

3553 Otherwise, putting d^ + d^ = 9, we have, by (3478),

(d,+9)-1 xyz = e-«Dd_ge=®ayz = e-«® d_x{x (J+2) (=+%)}, (3493) = e-«® {i^yz + }e8 {y + z) + 224}

= }2 (y—^^—^+i^ (y+2-2)+2a*, which agrees with the former solution.

3554           au^buy-^cu^ = xyz.

Substitute a = a^ y = bn, z= c‘, and the equation becomes «:+u,+u, = abckn%, which is solved in (3552).

The same methods furnish the solution of

3555            aux-\-bUy-^-cus = xmynzp.

3556          az,+yz, = 2xyv a^—z^.

Put                          z = a sin v,

	
.-. tvz = a cos v. Tv, .'. Tv = 2xy, .'. z = a sin {xy he).



3557          axux-\-byuy-\- czu^nu = 0.

Put            a = s, y = », z=;

Eu,+nu,+Zu— nu = 0,  .. by (3544) u = (xa, y 6, zc)’1.

3558 The solution of any P. D. equation of the type

F (ad,, ydyi zdsi ...)u = ^Axmynzv

is, by (3488) and (3557),

	
- Axmynz^ .          1         -



F (m, n, p, ...) F (xdv, ydyi zdzi ...)

3559 Ex. ■        &u,+ yUy ct/t i = Q„, where Q, = (x, y)m (1620).

Here u = (m—a)“Qn+ Ua. When a = m, this solution becomes indeterminate. In that case, as in (3526), assume

Ua = Va- -Qu, .. u = -+Va. m—a        m—a

Differentiate for a, by (1580), putting Qa first in the form Aer(z )+/z(F)} thus                  u = 1Qm (log a + log y) + Vm-

Similarly, the solution of 3560        au,+yu,—zu,—mu = Qm is                 u = iQm (log « + log y + log z) + Vm-

3561             au,+tyu,+zu, = c.

The solution, by (3560), is u = 3c (log a+log y+logz) + Vo.

3562 %2—2a%,y+a‘%, = 0 or (d,—ad,)2% = 0.

	
	
• = (d,=ad,)~20 = (d,-ad,)-19() ensdv (3472) by putting ad, for m and p (y) for C. The second operation produces, by (3476), z = eaedy {ap (y) + (y)} = aq (y +az)+1 (y + ax). (3492)


3563




a3%2—y2%,y—as—y%, = 0.







This reduces to (xd, + ydu} ^xdx~ydy) z = 0.

Here r =zd,+yd,, and m = 0 in (3544),

therefore                 2 = (e, y^Y (E, —) ,

the second term being obtained by substituting y“x = y, and so converting the second factor into (xdz+y’d,). The above may also be written

z = f(—) +f(ey),

F and f being integral algebraic functions.


3564



%2— a2%2,+2abz,+2a2bz, = 0.

Putting y = aT]} this equation is equivalent to (dx — dv + 2ab) {dx + dv) 2=0; 3 Y

putting a = log a’ and n = log n‘, this gives, by (3544), z = (e", e-n)-2a0+(e", e^o = e-2ub«p (es*7)+y (e=-7)

= e-2ub«F(J +ax) ^^y^.^^ the functions being algebraic and integral.

3565           u— a^y = $ (a, y).

.. U = (d,—a‘z)-1 0 («, y) (3515)

= (2ad,)-1 { (d,—ad,)-1-(,+ad,)-1 } 0 (a, y) (3470) = (2ad,)-1 { eaxdv e-dod, # («, y~) da — e-dad,eaxciy q («, y^ dz |   (3470)

= (2a) "1{, (x, y + ax) - d, («, J— ax) } dy, since                    eaxdy c (x, y) = $ (x, yA^x) (3492). Here               T1 (x, y) = ^ (a, y— ax) dxF"^ (y), T {^y} = Jo(m, y + ax) dx+xQj).

3566 If $ (a, y) = 0, the solution therefore becomes u = 11 (y+ax)+x ^ — a^ [Boole, ch. 16.

For the solution in this case by Monge’s method, see (3433).

3567            zx—azy = e" cos ny. z = [dx — adj) -le" cos ny = e"d, j e'axdu e" cos ny dx (3470)

= edod, e" cosn [y — ax) dx (3492), and this by Parts, or by (1999), is

= eaxdi/ e"® { m cos n (y — ax') — an sin n [y — ax) } (m2 + aV) -1 + e axdv p (y) .. z = emx { m cos ny — an sin ny } (m- + azn2) -1 + (y + ax), by (3492).

3568              z— az, = 0.

z — {dt—ad2x) -10 = e"t"zsp (p), by (3472), $ (x) taking the place of the constant O.

Therefore z = $ (x) + ats2+a‘tp.+&c. (3492)

Otherwise, to obtain z in powers of x, we have, putting 62 = a-1, z- Uzt = 0,

.. a={(d,+b(,+bc)}-10 = ebdip (t)+e-bzd (€) (3518);

then expand by (150).


3569




%2,—%2, = cos na cos my.



z = (d2+ Ly) -1 cos na cos my.

Treating d2y and cos my as constants, we have, by (3526), putting d2v for a2, z = cos na (d2,—n2)-1 cos my + A cosax + B sin ax, or by (3496), = cos na cos my (— m2— n2) 1+p (y) cos (ad,)+1 (y) sin (xdy),

A and B becoming d (y) and 1 (y).

3570     32+2:4+22+a2z = COS (mo—nv).

Therefore (z + icc) (r - ia) z = 2 {eitns+nv)+eritme*n)}.


where r = d^, + dr Therefore, by (3510), with x = e", y = e*.




ei(m$+nv)         Q-i^m^+n^}

— (m+n)2  a2—(m+n)




+(et, e‘)-id+(et, e‘)id.




or



= cos (mp+n) + (et, e+) -ia+^ e+yda. a"—(m+n)

3571 PROP. I.—To transform a linear differential equation of the form

(a+ba+ca2...) U—(a‘+b‘x+c‘a2...) U(n-1)a+&c. = Q ... (1) into the symbolical form

$(D) "+f(D) eu+/(D) e"u+&c. = T ...... (2), where Q is a function of a, T a function of 0, a = e® and D = de.

Multiply the equation by a"; then the 1st term on the left becomes, by (3489),

(a+be®+ce”+ ...) D(D- 1) ... (D- n+1) u.

This reduces, by the repeated application of formula (3476) with the notation of (2451), to

3572 aDMu+b (D-l)^ eu+c (D-2)0) e-u+&c.

The other terms admit of similar reductions.

3573 Conversely, to bring back an equation from the symbolic form (2) to the ordinary form (1), employ formula (3475) so as to transfer eme to the left of the operative symbol.

3574 Ex.: a3 (x2u,++7xu,+5u) = e?{D(D-1)+7D+5}u

= e3 (D2+6D+5) u = e39 (D+1)(D+5)u

= {D-^D + ^e26u (3476).

For the converse reduction, the steps must be retraced, employing (3475). See also example (3578).

3575 PROP. II.—To solve the equation

u+a, (D) e°u+a, (D) $ (D- 1) eu ...

+a„$ (D) $ (D- 1) ... $ (D-n+1) e"u = U, where U is a function of 0.

By (3491)

(D)#(D-1) ...*(D-+1) e", = {4(D) e}"u.

Putting o"u for this, the equation becomes

(1+a,9+a,2...+a,") = U.

3576 Therefore u = {A1(1-11p)-1+A,(1-4)1..+A,(1- Q„p)-1} U, where (1, (2 ... Q, are the roots of the equation q"+a,2*-1+0,2"-2 ... +a, = 0, on-1 and         Ar = ------—---"—.---------

(I»—I1)(I»—(2) ••• ^r~Qn)

The solution will then be expressed by

u = Aju,+Agu, ... + A„U,, where ur is given by the solution of the equation 3577          1,—4,4(D)e*, = U. 3578 Ex.: (x2 + 528 + 624) 22 + (4x +2522+ 36.3) u,+(2+ 20a + 3622) U = 20.3.

Putting a = e®, and transforming by (3489), (1+5e+ 6e29) D (D - 1) u + (4 + 25e° + 36629) Du + (2 + 20e° + 3 6e2e) u = 20e39.

The first term = D(D-1) u + ^ (D-1)(D-2) eeu + 6 (D-2)(D-3) e”u by applying (3476). The other terms similarly; thus, after rearrangement, (D+1)(D+2) u+5 (D+1)2eu+6D (D+1) e"u = 20e".

Operating upon this with {(D+1)(D+2)}-], we get

2+5 D+1 e%1+ 6 _D    =    20e3----= e39, by (3474) ;

D+2      D+2 (3+1)(3+2) ‘ "‘ or       (1+5p+6p2) u = e", if p = (D+1)(D+2)-le; therefore      u = {3 (1+3p)-1- 2 (1+2)-1} e"9 = 3y—2%, if           y = (1+3)-1e3 and z = (1+2)-le.

Hence (1+3p) y = e3 or y+3(D+1)(D+2)ley = €3; therefore         (D+2) y+3 (D+1) e’y = e (3+2), by (3474), or                 (D+2) y+3e (D+2) y = 5e3, by (3475); that is,               (x+3.2) 92+2 (1+3x) y = 528. Similarly             (x + 203) 2,+2 (1 + 2x) z = 5a3. Solve these by (3210), and substitute in u = 3y—2z.

3579 PROP. III.—To transform the equation

«+$ (D) ereu = U into v+$(D+n) er6v = V, put             u = e"0, and U = enB V.

Proof.—By (3474), because $ (D) etn*r)°, = e"®, (D + n) er6v. 3580 Prop. IV.—To transform the equation u-^-^^D) er9u = U into v+y (D) er9v = V, put • - P.$EB, • and U - Pr $&B, V,

3581 where P , (D) — , (D) , (D—r) , (D—2r) ... 20 " lr^(D) ^{D^(D-r)^{Dr2r) •

Proof.—Put u =f(^D)v in the 1st equation, and e"f (D)v = f (D-7) e"v (3476). After operating with f-1 {D) it becomes

v+9 (D) f (D-,)51 (D) e^v = $-1 (D) U, therefore              p (D) f (^D—r) f-1 (D) = J (D) by hypothesis ; therefore /() = $5B,/(D- = $&B)$-27(D-2), and so in inf. Also U — f (D) V.

3582 To make any elementary factor X (D) of $ (D) be-come, in the transformed equation, X (D + nr), where r is an integer; take 1(D) = ^(^D+nr) xi(D). See example (3589). 3583 To make any factor of + (D) of the form X(D)

X(Di nr) disappear in the transformed equation, take 1 (D) = X1 (D), where xx(D), in each case, denotes the remaining factors of p(D). See example (3591).

3584 In the application of Proposition IV., differentiation or integration will be the last operation according as P, 102) (3581) has its factors, after reduction, in the • ()

numerator or denominator, and therefore according as 1 (D) is formed by algebraically diminishing or increasing the several factors of 4 (D). However, by first employing Proposition III., the given equation may frequently be so prepared that the final operation with Prop. IV. shall be differentiation only. See example (1).

For further investigation, see Boole's Diff. Eq., Ch. 17, and Supplement, p. 187.

3585 To reduce an equation of the homogeneous class (3531) to a binomial equation of the same order of the form

3,=+4y = X.

The general theory of such solutions is as follows. Let the given equation be

1+q {(D+a)(D+a,)  (D+a„)}-e0, = U (1), 01, C2, ... an being in descending order of magnitude. Putting u = e-de v, by Prop. III.,

v+4 {D (D-a,—a,) ... (D- q- a„)}—1e"0, = e"° U ... (2). To transform these factors, regarded as $ (P), by Prop. IV. into 1 (D) =D(D— 1)... (D— n +1), we convert D into D + rn (3582), r being an integer.

Hence for the pth factor we must have

D-\-rn— 01+a, = D—p+1.

3586 and therefore a,—a, = m-\-p — 1 .................. (3).

If this relation holds for each of the constants 01 ... an, equation (1) is reducible to the form

3587 y+q{D{D-l)... (D-n+1)}‘e"y = Y......(4), which, by (3489), is equivalent to Y,+qy = Y, = X.

y being found in terms of a from the last equation, and, v being = P„$(D) y (3580), the solution will result from

3588 „ = X-p, (D-1)(D-2)..(D-n+1) .

(D-a+a2) ■■■ (D-a+a„) 9

while U and Y are connected by the same relation as u and y. 3589 Ex. 1: Given a"u3,+18w‘u,,+842u,+96u+3x‘u — 0.

Putting a = e and employing (3489), this becomes

{D (D-1)(D-2)+18D (D-1) +84D+96} u+3e%u = 0, or             (D+8)(D+4)(D+3) u+3e2u = 0, therefore       u+3{(D+8)(D+4)(D+3)}Heu = 0  Employing Prop. III., put u = e-8ev, therefore (3476)   v+3{D(D-4)(D-5)}-le = 0 

D (D-1) (D-2) y+3e"y = 0, or, by (3489), J5+3y = 0.

If, however, Prop. IV. were used to pass directly from (1) to (3), we should have

P p(D)_D (D-1)(D-2)(D-3)(D-4)(D-5) ...

^(D)  (D+8)(D+4)(D+3)(D+5)(D+1) D ...

1

(D+8)(D+5)(D+4)(D+3)(D+2)(D+1)’

and equation (4) would involve integrations of y as high as D-6y.

3590 NOTE.—By the literal application of Rule IV., the right side of equation (3) ought to be V = {{D — l)(D — 2)}-1 0 ; but no such term is required when the original and transformed equations are of the same order, for in such cases the arbitrary constants introduced by the operation upon zero disappear with the terms containing them in the final differentiation a The result is the same as if the operation upon zero had not been performed.

In the following example, V has to be retained.

We have        u= P,"±4,= (D+4)(D+2)v,

V={(D+4)(D+2)}0 = Ae^ + Be~ie (3518).

The operation upon zero is required in this example (see 3590), because (3) is of a lower order than (2); but only one term of the result need be retained, because only one additional constant is wanted. Hence (3) becomes

(D+1) v-(D+3) e?0, = (B + 1) Ae-29 = - Ae-2.

Changing again to a, this equation becomes

(x3—a5) v— 4x‘v+A = 0.

The value of v obtained from this by (3210) will contain two arbitrary constants. The solution of (1) will then be given by

u = (D+4)(D+2) v.

3592 Ex. 3 :       u—n (n+1) a-2u— c^u = 0, [Boole, p. 424. n being an integer.

Multiplying by a2 and employing (3489), this becomes

u—q‘{(D+n)(D—n—1)}le, = 0.

This is changed by Prop. III. into

v — q? {B (B — 2n- I)}-1 e29, = 0, with u=er"y, and this, by Prop. IV., into

y-*{D(D-1)}1e"J =0 or J2—*y = 0 (3489). y being found from this by (3524), we then have

«= e="P,D5L y = e-r (D-1)"y = o-" («d,—1)"2y.

But, by (3484), F (ad,—m) = xmF (xd^ x~m,

:. u = x~n a (xd^ arl. a8 (ad,) a-3 ... a2n-1 (xd^ x“2n+xy,

or                  u = a-‘n+1) (a”d,)"a=2n*ly

= a—-1 (x8d,)n «—2n*l (Ae?“+Be-7) (3525).

This may be evaluated by substituting z = a-2. (See Bduc. Times Reprint, Vol. xvii., p. 77.)

3593 Ex. 4 :     uz— cdu2v—n(n+1) a-u = 0.

The solution is derived from that of Example (2), by putting q = adv, and arbitrary functions of y after the exponentials instead of A and B; thus u = a—"-1 (a®d,)" a~2n*l {edxdvp (y) + er axd v [y)}

= x=-1(«d,)"ac?n*l{9(y+az)+1 (y+az)}, by (3492).

[Boole, p. 425.

3594        (1+ aa2) U,,+laxu,n2u = o.

To solve this equation or its symbolical equivalent obtained by (3489), viz.,

। a (D-2)24 n2 20    -

3595      «+ —PRAT e"U=0.

Substitute t = — dr—- in the solution of u^t^-^u = 0, by (3523-4). 3596 Similarly, to solve the equation

(a2+a) a‘u2—(2x2+a) xu,—nu = 0, or, the same in its symbolical form,

3597       u+(D-D)(D-2)"u =0. aD’xn"

Substitute t = — de—- in the solution of u>. + %u = 0. J av(x"a)

	
(3596)    is obtainable from (3593) by changing 6 into — 0. 3598 Pfaff^s equationi



(a+ba") alu2+(c+ex") xu,+(f+ga") u= Q.

When Q = 0, the symbolical form becomes

b(D—)(D—n—1)+e(D—)+9


(1).



	
	
1    aD(D-l) + cD+f





If n be not =2, substitute 20‘= n0, and therefore 2d, = nd^,. 3599 Thus u+(P—=9eu = 0.....................(2). where au a, are the roots of the equation

b (^na—Ti}^na— n—1) +e dna — n) +g = 0...............(3), and 31, 3a are the roots of

a }ns (Jn-1)+c Jn+f = 0.

Four cases occur—

3600 I.—If a— a, and B— 3a are odd integers, (2) can be reduced by Prop. IV. (3581) to the form 7+ b(D-a)(D-a—1) e20‘, = 0, and then resolved into two equations of the first order.

3601 II.—If any one of the four quantities a,— 31, a,— 32, a,—31, 42—/32 is an even integer, (2) can be reduced by Prop. IV. to an equation of the first order.

3602 III.—If 3,— S, and a,+a,—,—3, are both odd integers, then, by Props. III. and IV., (2) is reducible to (3595).

3603 IV.—If a,— a, and a,+a,— B.— Pi are both odd integers, (2) is reducible in like manner to (3597).                           [Boole, p. 428.

NOTE.—The integers may be either positive or negative, and when even may be zero.

SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS BY SERIES.

3604 CASE I.—Solution of the linear differential equation $ (D) u-f (D) er8u = 0 or f (ad,) u-f (xd^ xr u = 0, in which fo (D), fi (D) are polynomial expressions of the form ao+aD+a,D2...+a„D" and *(D) = (D— a)(D—b)(D~ c).... 3605 Let q (D) =f (D) +f (D), and let

3606 • (a) =1+ (a+7) «"+$ (a+2r) q (a+r) a?r

+ (a +3r) q (a+2r) q (a+r) a3r+&c.

Then the solution will be

3607 u = A<vai^ (a)-\-Borb^ (b) + Ca° 4 (c) + &c.

PROOF.—Operating with fr1 (D) and writing p for $ (D) er°, u -pu = A1 (D) 0 = Aea9 + Bebo + &c. (3518)

Therefore, by (3515), a = (1-p)-1(Ae90+Bebo+...)

= (1+p+p*+ ...) Ae"+(1+p+p2+ ...) Beb+&c.

Now in each term substitute for pn the value in (3491), and remove D by formula (3474).

CASE II.—Solution of

3608 f. (D) u+f (D) e8u+f. (D) e^du ...+fn (D) eno u = 0 ......(1), where f(D) — (D-a)(D-b)(D—c) •••

Let T (a) = 1+F, (a+1) «+F, (a+2) «?+&c., where the coefficients F(a+1) or 71, F2(a+2) or 72, &c. are determined in succession by the formula

3609 f (m) v„+fi (m) 2,-1 ... +f, (m) 2_n = 0 and vo = 1 ......(2).

The solution will then be expressed by

3610 u = Aa" (a)+Ba‘* (b)+Cxc^ (c)+8c.

Proof.—From (1)

u = {1 + ft (D) e°... + ^ (D) e“} -11 (D) . 0......... (3), where                9, (D) = fr (D) - (D).

Here f-^D) 0 = {(D-aXD-b) ...3-10 = Aea6 + Eebe+ ... (3518); and {1+4, (D) e° ... +p, (D) eno}-1 = 1+F, (D) ee + F, (D) e20+...

To determine Fv Fv &c., operate upon each side with {1+p (D) e°+&c.}, and equate coefficients of powers of e; thus formula (2) is obtained. (3) now becomes

a = {1 + F^D) eQ + F^D')e^+...}(,Aeae+Beba + ..Q.........(4).

Multiply out; apply (3474), and put a for e®.

3611 Ex.: a’uz— (a+6— 1) wx + abu~qx^u = 0, or, by (3489),       (D-a)(D-b) u—qeu = 0.

Here fQ{D} = QD-a}{D-b\ fA^ = ^ f(D) = -q. Therefore (2) becomes (m— a)(m— b) vm = qvm_2, therefore F, Fs, &c. vanish, and Fo (a) = 1,

# 9) _ ______qF (a)____' — _____

2        (a+2— a)(a+2— b)   2(aA^‘ — ^y qF,(a+2) _ Q?.

(a+4 — a)(a+4 — b) 4.2(a+4 — b)(a+2 — b)

Therefore v ()=1+ — q—— + —--,   --— + ... 2(a+b— 2)  4.2 (a— b+4)(a— b+2)

Similarly we find F, (b+2), Fi(l> + 2), &c., and thence Y (b) ; and, substituting in (3610), we have

A a . Aqx^^Aq?aa+4          , 2 (a+-b—2)  4.2 (a—b+4)(a—b+2)

1B By2b-2 + —___Bo?zb"a______+ 2(b—a+2) 4.2(b—a+4)(b—a+2) 3612 The solution is arrived at more quickly by formula (3607). We havo •() = (-GXD-By


" 9 00+9)=z(ar=sy 90144)-a(a4=Ty do, producing the same series by the value of © (a). Similarly with H(b). 3613 When f(D) has r factors each = D—a, the corresponding part of the value of u in equation (4) will produce

3614 A,+ A, log a+ A 2 (log a)3... + Ar^ (log a)r-1, where the coefficients Ao, A1, ... are each of the form

C,a"+C,a**1+C,a**2+ ...

3615 But if any one of the quantities Fr(a + r) = 0 (3608), then Cr — 0 also.

Proof.—-f1 (D) now contains a term of the form

e40 (co+c,0 ...+c,@7-1) = eaov, say.

The corresponding part of u in (4) is

11+F,(D) e-+... } ed®,

= {e9o+e(a1h)9F,(D+a+1)+ea12)° F,(D+a+2)+... } v by (3475).

Expand each function F by Taylor’s theorem in powers of D, operate upon v, and arrange the result according to powers of 0.

In practice, proceed as in the following example.

3616 Ex. :      Tu,+u,+2xu = 0.

Multiplying by C and changing by (3489), this becomes

D'u+q'eu = 0. D2u = 0 gives u — A+Bd.

Substitute this value and operate with D, considering A and B as variables, and equate to zero the coefficients of the powers of 0; thus

D^A + q'e'oA + 2DB = 0, D^B + q^B = 0.

Then change D into m, and ereA into am.r, to obtain the relations m'a, + q2am_2 + 2m bm = 0; mibm + qzbm_ 2 = 0, which determine the constants successively in terms of aQ and b0 (which are arbitrary) in the equation

u = ao + a,a3 + a,x4+...+ log x (b,+b,22+ b^ +...),

which thus becomes the solution sought.            [Boole, Diff. Eq., p. 439.

SOLUTION BY DEFINITE INTEGRALS 1

3617 Laplace’s method.—The solution of the equation «d(d) u+y(d,)u=0  is             u= csse“t5$““(ot)=1] dt 

Proof.—Assume u=e extTdt, and substitute in (1), putting $(d,) ext = p (t) ext (3474), thus

xext(^ () Tdt +e"tv (0 Tdt = 0.

Integrating the first term by parts, this becomes

e"tp (6) T- J e"t ^dt {^^T}-^ (6) z] dt = 0 ............ (4), an equation which is satisfied by equating each term to zero. The second term thus produces a value of T by integration by (3209), and this value substituted in the first term, and in the value of u, gives the results (3)

and (2).

3618 Ex. (1) : au,+au,-qxu =02 .................. (4).

Here p (dx) = d2=—72, 1 (d^ = adx, $ (t) = t2—92, V (t) = at. Hence (2) and (3) become

u=Oext (f—q3)% 'ldt; eet (0-4***= 0;

a being positive, the limits are t = = q, and, putting t = q cos 0, we find u = 0 "eacoso sina-1020 ...........................(5).

	
3619 The solution in series by (3608) is as follows. Equations (1) and (2)    of that article are in this case



D(D+a—l)u—qe = 0 and m (m + a—1) v— ^vm_2 = 0.

Thus, a in (3608) =0, and b = 1 — a. Therefore (3610) becomes

	
	
“ = a { 1 + 2 t + satafisats, + a. } +D- { 1 + s&E + £20=. + de } ......





Both series are convergent by (239 ii.).

The results deduced by Boole are these—

3620 (5) is equivalent to the particular integral represented by the first series of (6).

3621 A second particular integral, by assuming u = edl-a)®», is found to




3623 But, if a=1, the solution becomes

u =6096099 { A + D log (» sin® 6) } de ..................(9).

3624 If a does not lie between 0 and 2, then, if a be negative, put a = a — 2n, and replace the first term of (8) by

C, (xd,+a—1) (ad,+c—3) ... (xdx + a—2n+1) | excos® sin@‘-1d0 ... (10), the transformation being effected by (3580).

3625 And if a be positive and > 2, put v = el-0)0, = x1-dv. This converts a into 2 —a, a negative quantity, and the case is reduced to the last one.

See (3551) for another solution.

3627 If u be the potential of an attracting mass at an external point, and if u = F (z) when r = 0; then, since log 7 = c, 1 (z) must vanish;


therefore




Hence (4) reduces to



F(F) = p (z) d0 = md (z). 1 (T <      ,          1

U — — i F ? z + ir cos 0 % dd. 7 Jo’ 5

ParsevaVs Theorem.

3628 If, for all values of u,

A + Bu + Ou2 + ... = c (u) and         A‘+B‘u-1+C‘u-2+.=V(u) ............ (1),


then

AA+BB +



[image: ]




$ (eit) 1 (e46) + $(e 16) 4 (




e-i6) d@.



PROOF.—Form the product of equations (1), and in it put u = e"e and erie separately, and add the results. Multiply by dd, integrate from 0 to_r, and divide by 27.

P. D. EQUATIONS WITH MORE THAN TWO INDEPENDENT VARIABLES.

3629 By means of Fourier’s theorem (2742), the solution of the equation

up — h2 (U2, + "2, + "2) = 0 may be deduced by a general method in the form

u=(+d)ssssss eHA+B7it) • ^a^ b, c) dadbdcd\dp.dv, the limits of each integration being — oo to co , and the function 1 being arbitrary and different in the two terms arising from the operator (1 + d^.

Boole, Ch. xviii., and more fully in Cauchy’s Exercice d’Analyse Mathe-matique, Tom. I., pp. 53 et 178.

3630 Poisson’s solution of the same equation in the form of a double integral is

u=(1+dt) tsin s(e-tht sins sinn, 3+tsin4cos, 2+ht cose) dgdn with the same latitude in the interpretation of 1.

[Gregory's Examples, p. 504.

DIFFERENTIAL RESOLVENTS OF ALGEBRAIC EQUATIONS.

3631 Theorem I. (Booled—"If y^ Y2 ... n are the n roots of the equation

yn~ ay":1+1 = 0 .............   (1),

and if the mth power of any one of these roots be represented

by u, and if a = e®, then u as a function of 0 satisfies the differential equation

u=(n-1p+m_1)“D(D _m—1)D07-1gw, =0,

I n /   \ n n / —   — and the complete integral of the same will be

u=C1y^C^-V...^Cny:.

3632 " CoR. I.—If m = — 1 and if n be > 2, the differential equation

1/_1     1    \(n-1)

D^u—-("D--1)  e”u == 0

n n      n   / has for its general integral

u = Cy?1+C,y21... +C„-13,1,, y,y ... yn^x being any n—1 roots of (1).

“ If 0 be changed into —0, and therefore D into —D, the above results are modified as follows :—

3633 " Cor. II.—The differential equation 1—(D-1)0) r (n-1 d-m)"-" (D+m1)7H1em0u=o

n / n n has for its complete integral

*= G,*+C.y..+C.s:

Yi, Y2... Y, being the roots of the equation

ay"—y"-1+a = 0 ..................... (2).

3634 " Cor. III.—The differential equation


u—n (D-2)-1)




n—1

n




1 \ (n-1)




enOu = 0,



supposing n > 2 has for its complete integral u = Gsr‘+ Cays’ ... +C,-1922,, Y1, Y2 ... Vn-i being any n—1 roots of (2).

" Theorem II. (Harley).—

3635 " The differential equation ar(d,©a—(n—2a4,+M_1)  (» ad, m — 1) xru

\ n        n / \n n / = 0

is satisfied by the mth power of any root of the equation y"—ocyn~r-\-a = 0, w being considered as a function of x.

3636 " Cob.—The differential equation „ (n—r ad,—m)   (ycd^u

_(n-1(1.4,-M_1) zri =0

is satisfied by the mth power of any root of the equation yn—nyn~r-\-(n — 1) a = 0.”

\Boo1e, Diff. Eq., Sup. 191—199.

3637 See also Boole, Phil. Trans., 1864; Harley, Proc. of the Lit. and Phil. Soc. of Manchester, Vol. II.; Rawson, Proc. of the Bond. Math. Soc., Vol. 9.

CALCULUS OF FINITE DIFFERENCES.

INTRODUCTION.

3701 In this branch of pure mathematics a function $ (x) is denoted by ux, and p(a+h) consequently by ^+7^ The increment h is commonly unity. If Ax denotes the increment h, and Al, the consequent increase in the value of ux) we have

3702               Au, ug+Ae u,.

3703 When Ax diminishes without limit, the value of

Au, — U+Ac- “, ;. du, A,          Ax         dx ’

3704 The repetition of the operation △ is indicated as follows:

AAu, = A2u,, AA2u, = and so on.

3705 Ex.: Let "g = a?, «=1 2 3 4 5 ... «‘= 1 4 9 16 25 ... Aa2 = 3 5 7 9 ...... △V= 2 2 2 .........

FORMULA FOR FIRST AND n"h DIFFERENCES.

If         u, = ax"+ba"-1+ca"-2+&c.,

3706 A"u, = an (n—1) ... (n—7+1) a"—r+c,a"-r-1+&c.,

3707          A"u,= an (n—1) ... 3.2.1.

3708 Hence the nth difference of a rational integral function of the nth degree is constant.

3709 So also      A"a" = 1.2.3 ... ».

3710 NOTATION.—Factorial terms are denoted as follows :— 1,",-1 ••• ",-m+l = u, ),

3711           ------------=u-m).

3712 Thus x(x—1) ... (- m+1) =zt"),

3713     _--—=«(-»). 2 (2—1) ... (2——

Hence m, m!, and m^n) are equivalent symbols.

3714 According to (2452), «®m) would here be denoted by «.. The suffix, however, being omitted, it may be understood that the common difference of the factors is always —1.

3715 Az(m) = ma(m-1), Nn^m) = mw^m~n\ A"a(n) = m%"), and, if m < n, A"a(n) = 0, since Ac = 0 if c — constant.

3718 ^{~m} = —ma(=n-1),    A"x(-") = (—m)®)a(-m—»).

3720 Aug") = (u,+—u,—n+1) ug"—", Au,m) = (u— u+m) u,-"-1.

3722 Ex.:

A(az+b)@) = am (ax+b)‘-1), A (ax+b)(-m) = — am (az+b)(-m-1.

3724 A log u, = log 51+— 2, △ log u^ ») = log "a*1_ ( Cx >                            “z- m+1

3726 Aa" = (a— 1) a\ A"a" = (a”—1)"a™. .  — sin /    7      • a’sin (   . , , n (a—T) ) 3728 A" cos (ax+b) = (2 sin 2) cos 2 da+b+ 200 5 • PROOF.— A sin (ax +b) = sin (ax + a + b) — sin (ax + 6) o • a .

2 sin — sin

2

That is, A is equivalent to adding 3..... to the angle and multiplying the 3729 Conversely, the same formula holds if the sign of n be changed throughout.


sine by




0 • O

2sin 2



EXPANSION BY FACTORIALS.

3730 If A"p (0) denote the value of ^n^{x) when 2=0, then $ (a) = $ (0) + Ad (0) «+ - 6(0) a®9) + 4,699) w®9) + &c.

3731 If Az=h instead of unity, the same expansion holds good if for A" p (0) we write (A"p(x): h").=o; that is, making a = 0 after reduction.

Proof.—Assume $ (a) = aQ + a + a^ + aga"3) + &c.

Compute Ad (x), A2d (a), &c., and put a = 0 to determine ao, an a2, &c.

GENERATING FUNCTIONS.

3732 If uxtx be the general term in the expansion of $(t), then p(t) is called the generating function of ux or o(t)= Gu.

Ex.: (1-t)-2= G (+1), for «+1 is the coefficient of t in the expansion.

3733 Gux = ^, Gu„n=UA, ... GuM = iEl.

/ 1  \           /In

3734 GAu=(--1) $(t), ... GA‘u,=--1)$(t).

Proof.—           GAu,= Gug+1—Gug, &c.

THE OPERATIONS E, A, AND dx.

3735 E denotes the operation of increasing a by unity, Eux — U+1 — u,+Au, — (1+A) u,.

The symbols E and A both follow the laws of distribution, commutation, and repetition (1488-90).

3736         E = 1+A = e" or eP.3

PROOF.— Eux — Ugui — u4+d,0+}42ug+ - q dau, + &c.

= (1+0,+10,,+ da+&c.) u, = eaxux.

By (1520), Ax being unity.

3737 Hence A = e—1 and D = log E.

3739 Consistently with (3735) E-1 denotes the diminishing a by unity; thus E-1u, = 1,-1.

For Nux_1 = ux, .‘. ux^ = F'^u^

U,+n in terms of U, and successive differences.

3740 ux+n = ux+n^ux-\-C (n, 2) A‘u,+C (n, 3) A‘u,+&c.

PROOF.—(i.) By induction, or (ii.) by generating functions, or (iii.) by the symbolic law:

+) (6) = -1) 5 P(6).

Expand by the Binomial theorem, and apply (3734).

(iii.)               ux+n = Fnux = (1 + A)"ag.

Apply the laws in (3735) by expanding the binomial and distributing the operation upon ux.

Conversely to express ^nux in terms of uxi 1+1, 1,+2, &c.

3741 A‘*= «-- nu^^+C(n,2)ux+n_z ... (—1)"u,. Proof.—          A"ug = (E- 1)"2, (3736).

Expand, and apply (3735) as before. Putting a = 0, we also have

3742 A"u, = u,—nu,-i+C„,zu,-2 ... (-1)"u,.

3743   N:1^ = (x+n)"— n (x+n— 1)" +C (n, 2) (»—n— 2yn—&c.

3744 ^m = nm-n (n—1)"+C(n, 2)(n-2)m

— C (n, 3) (n—3)"+&c.

3745 Ex.: By (3717) A"Q" = n! Hence a proof of theorem (285) is obtained.

3746          A"u,e, = (EE-1)" u,e, where E operates only upon ux and E' only upon v,.

Proof. Aug", = ",+1",+1— uxvx = Eug.Ev,—u,v, = (EE— 1) uxvx.

Applications of (3746).

3747 Ex. (1): Anuxvx = (-1)"(1-EE)"u,v. Expand the binomial, and operate upon the subjects ",, vx; thus

3748 A"u,v = (— 1)"{u,v— nu,-1"+1+C (n, 2) ug+2V2+2—&c. I.

3749 Ex. (2) : To expand al sin a by successive differences of sin x.

A" a" sin « = { F (1 + A’) — 1} n ax sin x = {[A + EN } a" sin x

= { A"+nA"-IEA‘+ C (n, 2) A"-2 E2 A" + &c.} ax sina

= A" a".sinz+nA"-la**1A sin«+0 (n, 2) A"-Za**2A2 sina+&c.

= ax { (a—1)" sina+n(a-1)"-laA sina + 0 (n, 2) (a — 1)"-2a3A2 sina+&c. } , by (3727), while A" sin a is known from (3 728).

3750 Ex. (3) : To expand ^nuxvx in differences of ux and v, alone : put E=1+A, E' = 1+A‘ in (3746), thus

A"u,v, = (A+A+AA)"u,v, which must be expanded.

A"u, in differential coefficients of U.

3751 A"u, = d‘u,+A,4["+A,d.*u,+&0.

Proor—          A"u, = (e"—1)"u, (3737).

Expand by (150) and (125) as if dx were a quantitative symbol. See also (3761).


dnu dxn



in successive differences of u.


3752




4" = {log (1+A)}




l.



The expansion by (155) and (125) will present a series of ascending differences of u.


PROOF.—




e“ = 1+A,




.*. d = log (1+A).



3753 Ex.: If *= 1, d = Au-A"+A" - A+&c.

If C be a constant,

3754 $(D)C=*(A)C=s()C and $(E) C =4(1) C, Since every term of $ (B), or of $ (A) C, operating upon C, produces 0; and every term of $ (E) operating upon 0 produces C.

HERSCHEL’S THEOREM.

3757   $(e) = $(E) e0.

3758      = d(1)+$(E)0.t+$(E)02.+&c.

PROOF.—Let $ (e‘) = A+A,et... + Anent

= Age".t+ A,Teo.t ... +A„E"e0.t = (A,+ A.E ... +AnEn) eb.t (242          ,

= P (E) ee.’ = P (E) { 1 + 0. t+     +&c.} , and o(E) 1 = 0(1) by (3756).

A THEOREM CONJUGATE TO MACLAURIN’S (1507). 3759   $(t) = *(D) eo.t

3760      = $(0)+$(d,)0.t+$(d,) 02. +&c.

Proof.—          0 (f) = p (log ef) = q (log E) e0.4 (3757) =p(D) e0" (3738) =9(D) (1+0.4+ +&c. }, and                   0(D) 1 = 0(0) (3754). n being a positive integer, 3761 ., dnu .     A"O±1 d"±lu A"0n+2 dn+2 dxn 1.2  (n+1) da"11.2...(n—2) da/11^

Proof.—By (3758), putting 0 (ef) = (^et—V)n,

(et—1)'= (E-1)0.t+(E—1)n 02. 44 + &c. = A"0.t+A"02.12+&c.

Put t = dx, and employ (3736) and (3737).

INTERPOLATION

Approximate value of U, in terms of n particular equi-distant values.

3762 If ux is an integral algebraic function of the degree n— 1, A”ux vanishes, and therefore by making a = 0, and writing x for n in (3740),

3763 u, = u,+aAu,+C.2A"u, ... +C,-1A"Hlu,. This is formula (265). The given values are u^ (Au^ ^u^ &c., corresponding to a, b, c, ...

3764 For an application of the formula to the problem of interpolation, see (267), in which example a = 1:54 and uz = log 72’54.

3765 When the term to be interpolated is one of a set of equidistant terms, employ (3741). A"ig = 0, as in (3 762) ; therefore

3766 u,—nu,-1+CzU,-2—C„su,-3 ...+(—1)"u, = 0. 3767 Ex.: From sin 0, sin 30°, sin 45°, and sin 60°, to deduce the value of sine 15°.

The formula gives sin 0—4 sin 15°+ 6 sin 30°—4 sin 45°+ sin 60° = 0, or             -4 sin 15°+3-21/2+13 = 0, from which sin 15° = } (6 -4/2 + 13) = -2594. The true value is 2588 ; the error 0006.

LAGRANGE’S INTERPOLATION FORMULA.

3768 Let a, 1), c, ... k be n values of a, not equidistant, for which the values of ux are known; then generally

3769

_ (x—b)(x—c)...(a—k) , (x—a)(a—c) ...(a—k)

'“{a-b^a-c) ... (a—k)   \b-a)(fi-c) ... (b—k)

,  (.v-a^v-b^x-e)...

Proof.—Assume    ux = A (x — b) (x — c) ... (x—k)

+B (a— a)(a— c) ... (a— k) + C (a — a)(x—b)(a— d) ... (x — k) + &c., and determine A, 13, C, &c. by making a = a, b, c, &g., in turn.

If the values of a,b, c, ... k are 0,1, 2, ... n—1, (3769) reduces to


3770




le —



a(a— 1) ... (x—n+2)

1.2.3 ... (n—1)


a(a— 1) ... (a—

1.1.2.3




n+3) (a— n+1) ... (n— 2)




—U,-3




a(x—1) ... (a— n+4)(x— n+2)(a— n+1)

2.1.1.2.3...(n—3)




— &c., or




3771

u, =




a"") § “,-1

(n—1)! t a — n+1




C»-1,1Un-2 I C2-1,2Un-s %. ? a— n+2 a— n+3 S’



MECHANICAL QUADRATURE.

The area of a curve whose equation is y =l, in terms of n+1 equidistant ordinates u, U1, ... un, is approximately

। n2 a i / 23 n^X^u . / n* s . ,\A3u 3772 "+2 "*+(3 2)1.2 +(4—"+")3!

. /n5 3n* . 1123 o A’u

-(-------9-3n2)—,

। (16 0 5 . 35n* 5013 A’u

+06-214+12")31

+ (* - 15,6 +17- 223"’ + 274" -GO„) 4‘"

Cn

Proof.—The area is = uxdx. Take the value of ux in terms of J 0.

	
10, 11 ... un^x from (3/63) and integrate.


3775

3776

n = 6




n = 4,




‘6




‘4

uxdoc =

0




14 (u — u^) — 64 {ux — u,) + 24u,




45




3

uxdx = 10 {u+u,+u+u,+5 (ui+us)+6us} .





In the last formula, which is due to Mr. Weddle, the coefficient of A6u is taken as 1o instead of 140, its true value. These results are obtained from (3772) by substituting for each A its value from (3742).

COTES’S AND GAUSS’S FORMULA.

3777 These give the area of the curve directly in terms of fixed abscissa.

They are obtained by integrating Lagrange’s value of ux (3769-71), and are fully discussed in articles (2995-7).

4 B

LAPLACE’S FORMULA.

3778 "u,da =“,+u,+u,... +",

-L^u„- Au,) + (Au,— AX) — &c., the coefficients being those in the expansion of t {log (1+t)}"1

PROOF.—          Aw, = d,% ;—A — ‘ wx, by (3736), (10g (14) )

(.A A2 A3 19 =d,1+2—12 + 24—720 4*+&c.5‘g

Hence, putting ux = Aw,,

(1  7    2+2,   A21, I Au, 0

J‘ad«=“2-12+24‘-&c..

[image: ]




U1 + 12 Nu-^ .

2 T 12T




A'U, _ 24




&c.,



and so on; then add together the n equations.

3779 Formula (3778) contains Au,, A2U,, &c., which cannot be found from 10, 11 ... ",.

The following formula does not involve differences higher than Nun_lt

3780        ("u,da== “+u,+u,...+%

Jo         -                 -

- To (△“»-! - AMo) - oT (△%-! - A2uo) ~ &c.

A                _AT?*1

	
Proof.—In the proof of (3778), change   —---- into E——— — , 1.    8 log (1+A)       log(1—AE-1)' and put E~1wx = wx.x (3739) after expansion, and proceed as before.



SUMMATION OF SERIES.

3781 Definition: Zu,= U,+u,+1+U+2...+u,—1 3782 Theorem: ^ux = A-lu, +C, where G is constant for all the assigned values of 2.

Proof.— Let p (x) be such that Ad (x) = Ug, then p (x) = A-lug, therefore ua = d (a+1)— d (a). Write thus, and add together the values of ua^ Ua+1, ... u,-1. Therefore, by (3781), ^ux — $ (x)—p (a) = A-lu,—p(a), and $ (a) is constant with respect to x.

Taken between the limits x = a, x = b — li we have the notation,

a = 5—1

3783 Zu, or Z2-u, = tub-^ua = A-lu— A-lu,. a = a

Functions integrable in finite terms :

3784 Class I. Sal) = «" + C.

3785 S (az+B) . = (aa++-Z)tn» + c.

m+1) | - By (3718),

5706  • lass            ==m+1TV and notation (3711).

3787     2 (42+6) - = C- (+2)1—4"),

Formulas (3785) and (3786) are equivalent to the rules (269) and (271). They are the direct results of theorem (3782).

3788                 Zar = "".             [By (3726). Cl — 1

Class III.—If ux be a rational integral function, 3789   z*-‘u, = {a+C,,A+C,A?+

Proof.—By (3735) and (3736),

24+14.1... +14.4-1 =(1+E+E.. +F-1) = ==lu,=Ql±A)-1., = the expansion above.

3790 The formula has been given at (266) and an example of its application. The series there summed is 1 + 5 +15+ 35 + 70 + 126 + to 100 terms. The function ux which gives rise to these terms is found by (3763) to be

u, = («4 + 1023 + 354? + 50. + 24) - 24.

3791 If this function be presented as ",, and 28 lu, be required, we first find U= 1, 1= 5, w,= 15, &c.; then the differences Au,, A2u0, ... N^u^ = 1,4, 6, 4, 1, and then, by (3789), the required sum, as in the example referred to.

3792 For another example, let “7a‘=1+2 ... + n3 be required. Here Aa3 = 32+3:+1, A‘z3 = 62+6, A323 = 6, therefore             A0‘= 1, A20‘= 6, A308 = 6........................(1), a3 may now be expressed in factorials, and the summation may then be effected by (3784). First, by (3730),

	
	
a3 = 2+3 (a— 1) +2 (a— 1)(z— 2) j therefore, by (3784),       2723 = S ^ + l)s (3783), ,2 ,n(n+1)  3(n+1) n(n—1) I (n+1) n (n—1)(n-2) _ 22(n+1)3 —1 2 —---«--T ---------c------— i             7---7----• 2             3                    4                4 3793 Otherwise, by (3789), taking a =0, we have ", = a3, M, = 0, Au, = 1, A2u, = 6, A’u, = 6, as above. Therefore





yn-i _ n (n— 1) Qn (n—1)(n— 2) . Qn (n—1)(n— 2)(n— 3) _ n2 (n—1)2 "   2   1     1.2.3 T 1.2.3.4--4   ’ therefore, changing n into + 1, z'u, = (n±1) n .

3794 Class IV.—When the general term of a series is a rational fraction of the form

A + Bx + Ox2 +     i             . ,

—!where uv = ax + o, lxlz+1 •*• ^x+m and the degree of the numerator is not higher than a+m— 2 ; resolve the numerator into

A' + B'ux + C UU+1 + ' • • + D' U,",+11,+2 • • • u,+m- 2, by (3730). The fraction then separates into a series of fractions with constant numerators which can be summed by (3787).

3795 If the factors ux... U+n are not consecutive,introduce the missing ones in the denominator and numerator, and then resolve the fraction as in the foregoing rule.

3796 Ex.: To sum the series 1 + - + - + to n terms.

1.4 2.5 3.0


The nth term is



1 _ (n+1)(n+2) n(n+3) n (^n + l)(n-^2)(n + 3)

3 n+3/12 2 3 (n+2)(n+3)/13 2.3 (n+1)(n+2)(n+3) _ 11      3n‘+12n+11 18 3 (n+1)(n+2)(n+3)°

If the form in (3787) is used, the total constant part 0 is determined finally by making n = 0, which gives C =l.

3797 Theorem. f{E) a"d (x) = axf(aE) $ (x), f being an algebraic function.

PROOF.—Let a = e", then the left

-f^ e"zp («) = f{eD} e"c, (a) (3736) = e"af(e”*m) 4 (x) (3475) = axf (aE) $ (x).

Class V.—If $ (x) be a rational integral function,

3798

Sa"$ (c) = 4E1 5 $ (x) - 4“1 At (e) + (aS1yA®$ w - &c.} •

The upper limit is understood to be a—1, and a constant is to be added, (3781-2).

PROOF.— Zasp (x) = A-la"p (x) = (E—1)-la®p (x) = ax {aE—Y)~x^ (x)


{a(1+A)—1]7 () = O",




(3797) -ax



[image: ]

p (x).




Then expand the binomial.

Sa^(x) in successive derivatives of $(x).

3799 Za*p() =4£{1+A,$(e)+ % $"()+&c.3, where A„ = (aE -1) 0=(1+ «A ) 0”.

\ a—1 /      \   a — 1/

Proof.—By (3757), V (eP) = • (E} e".D; therefore (see last proof) ax (aE—I)-1 p (a?) (putting E = eD) = a"(aE-1)Hle0.Dp (x) =a(1+ aA.)"1 § 1+0. D+ 02,D3+8c. 1 p().

a—1 \   a—1/ C         1.2       )

3800 Ex.: To sum the series 2.1+4.8+8.27+16.64+ to n terms.

We require 2*23+52%3 = 2423+2% (a— 2A28+2A?*- 23A323) = 2%2*+2% { m3—2 (3z?+3+1)+4(62+6)- 8.6 } = 29(22*—62‘+182—26).

3801 If A-"I, be known for all integral values of n, and if v, be rational and integral, ^urvr = 2‘u,.c._—2u..A0,—2u,.A20_3—&c.

Proof. Zug,= (EE-1)-lu, = (AE+A)-lu,v, (3746) and (3 736). Expand the binomial operator, observing (3738).

3802

tnUxVx = u,z" - nAu,2**14,+1+C„,2A‘u,5"*86,+2—&c.

Proof. Z"u,v = (A‘ + AE')~n ugva, as in (3801), = A-"o„u,- n (A-"-1E) v„Au,+ Cnt2^~n~2E2) v„A°u,—&c., producing the above by (3735) and (3782).

Observe that, in (3801) and (3802), two forms are obtainable in each case by expanding the binomial operator from either end of the series.

3803 Ex.: To sum the series sin a+ 22 sin 2a+32 sin 3a + to a terms.

The sum is = a2 sin ax+Zx2 sin ax. Taking ux = sin ax and v, = x2, we know A-" sin ax, by (3729) ; therefore (3801) gives

Za2 sin ax = (2 sin Ja)-1 sin { ax — 2 (a+7) } (® —I)2

— (2 sin Ja)-2 sin { ax— (a+r) } (22—3)+(2 sin }a)3 sin { ax—3(a+r) } 2.

APPROXIMATE SUMMATION.

	
3820 The most useful formula is the following 2=c+(,L-1+5, du,_B, «‘u,+&c. •           2    2 ! (Lv 1 ! das



—       _u__l du^>___ d’u, I 1 d’u, T 212 da 720 da"30240 da5 1 d1ux .      1 dhU o 1209600 da‘47900160 ~d^   °

Proof.— Zu, = (e7 — I)-1 ux. Expand by (1539) with D in the place of X.

Ex. 1: The value of Zap at (2939) is given at once by the formula.

11  1

3821 Ex. 2 : To sum the series 1++...H--approximately,


— +x1 = 2     2



1 21   1 11


&c.



--F 0 — 1og 2 — n--409 — - 4

2              22 1222 12024

Put x = 10 to determine the constant; thus

1+11. C+10,10 + —--— +&c.}

23* 10 I 8   20 1200

from which 0 = 577215, and the required sum is


-577215+lg+1-3+1-&c.



3822 Ex. 3:    1+7+3 + 4+&c,

9B, xA          2x2    2a3    2x4    2x°    2x8    2x10’

	
	
1    Xs 224  1212  20 ' 12





The convergent part of this series, consisting of the first five terms, is an approximation to the sum of all the terms.

	
3823 A much nearer approximation is obtained in this and analogous cases by starting with the summation formula at a more advanced term. ng.:         1+2+3+4+53 - 2035 113B,5B,.



1728 2.532.582.54 2.567 " _ 2035    1      1       1         1       „ . 17281501 250 12500 187500+ ‘ The converging part now consists of a far greater number of terms than before, and the convergence at first is much more rapid.

3824 Ex. 4: The series for log T (x+1) at (2773) can be obtained by the above formula when a is an integer. For, in that case,

log T (x +1) = log 1 + log 2 + log 3 ... + log a = log a + % log a, and (3820) gives the expansion in question, the constant being determined by making a infinite.

3825 Formula (3820) may also be used to finduxdx by the process of summation, and thus answers the purpose of Laplace’s formula (3778).

Zhu, in a series of derivatives of Uy.

3826 Lemma.— n — 1! (e‘— 1) ‘ = (-1)"-1(d,+n—1)(d,+n—2) ... (d,+1) {e‘-1}"1.

Proof.—Put on for n—1! (e‘— 1)-". Then

"+l = —(d,+n) vn = (d,+n)(d,+n—1) ",-1-X’u, may now be developed.


3827



Ex.—To develope ZBu,, (Boole, p. 97)

2 (e^-l)’8 = (d,+2)(d,+1) { U-1} -4


— (d2+30,+2) 51--




1 + A^A A2t5A&c.



with A2r = 0, and

= (—1)"B2.1 + (27+2) ! = 2 - 3 + 2 +(24,+34,—1) +3 { (r+2)(r+ 1) Ar+2A3 (r+1) 4,41+24, } tr. Therefore, changing t into dx, we get

Su, =u,dz-3 u,de +uxdx— 3 ux + 19 dus — J J 8      240 dx 3828 Z"u, in a series of derivatives of Uy_n. 2


&c.



Let a" cosec"a = 1—C2+Ca*—&c., then

f'u, = D-‘ 3 1+C2( +G (%) +&C. u,_n.

[Boole, p. 98.


3829

$ (0)—#(1)+#(2)—&=)




21-4+4-&c.]+(0).



By this formula, a series of the given type may often be transformed into one much more convergent.

PROOF.—The left ==**(0)=>  9(0) = 7 —1$ (0), the expansion of which is the series on the right.

3830 Ex.—To sum 1— —---+ &c. Summing the first six terms, it becomes — + —---— + &c. Taking $(0) = (0+7)1, 7 o

PLANE COORDINATE GEOMETRY.

SYSTEMS OF COORDINATES.

CARTESIAN COORDINATES.

4001 In this system (Fig. 1)6 the position of a point P in a plane is determined by its distances from two fixed straight lines OX, OY, called axes of coordinates. These distances are measured parallel to the axes. They are the abscissa PM or ON denoted by x, and the ordinate PN denoted by y. The axes may be rectangular or oblique. The abscissa x is reckoned positive or negative according to the position of P to the right or left of the y axis, and the ordinate y is positive or negative according as P lies above or below the x axis conformably to the rules (607, ’8).

4002 These coordinates are called rectangular or oblique according as the axes of reference are or are not at right angles.

POLAR COORDINATES.

4003 The polar coordinates of P (Fig. 1) are r, the radius vector, and 0, the inclination of r to OX, the initial line, measured as in Plane Trigonometry (609).

4004 To change rectangular into polar coordinates, employ the equations a = r cos 0, y = r sin 0.

4005 To change polar into rectangular coordinates, employ r = 122+ iN 0 = tan-1 ( J

TRILINEAR COORDINATES.

4006 The trilinear coordinates of a point P (Fig. 2) are a, 3, y, its perpendicular distances from three fixed lines which form the triangle ofreference, ABC, hereafter called the trigon. These coordinates are always connected by the relation

4007             da+68+cy — S,

4008 or a sin A + B sin B +y sin C = constant, where a, b, c are the sides of the trigon, and 2 is twice its area.

4009 If x, y are the Cartesian coordinates of the point a’y, the equations connecting them with the trilinear coordinates are, by (4094),

a = a cos a-y sin a— P1, B= a cos ftpy sin B—-pa y = a cos y-py sin 7~Pa

4010 Here a has two significations. On the left, it is the length of the perpendicular from the point in question upon the side AB of the trigon. On the right, it is the inclination of that perpendicular to the x axis of Cartesian coordinates. Similarly 3 and y.

4011 The angles a, 3, y are connected with the angles A, B, C by the equations

y—B=T—A,   a—y = 77—B,   a—B=T+C, only two of which are independent.

4012 Pu Pa Pa are the perpendiculars from the origin upon the sides of the triangle ABC.

AREAL COORDINATES,

if A, B, C (Fig. 2) be the trigon as before, the areal co-ordinates a', 3‘, y‘ of the point P are


4013




_ a _PBC

" ABC



3 _PCA _y_PAB p, — ABC’ 7 p, ABC'

The equation connecting the coordinates is now 4014            «‘+8+y = 1.

4015 To convert any homogeneous trilinear equation into the corresponding areal equation.

4016 Substitute aa = Za‘, 68 = z8‘, cy = Zy.

Also any relation between the coefficients I, m, n in the equation of a right line in trilinears will be adapted to areals by substituting la, mb, nC for I, m, n. Similarly for a, b, c, f, g, h, in the general equation of a conic (4656), substitute aar, bb2, co2, fbc, gca, Mb.

In either the trilinear or areal systems, a point is determined if the ratios only of the coordinates are known.

Thus, if a : 3 : y = P : Q : R, then, with trilinear co-ordinates,

PE                         P

4017 “ = aP+bQ+(R ’ with arenle “ = P+Q+R-

TANGENTIAL COORDINATES.

4019 In this system the position of a straight line is determined by coordinates, and the position of a point by an equation. If la+m+y — 0 be the trilinear equation of a straight line EDF (Fig. 3); then, making a, 3, y constant, and I, m, n variable, the equation becomes the tangential equation of the point 0 (a, 3, ) ; whilst I, m, n are the co-ordinates of some right line passing through that point.

Let X, u, v (Fig. 3) be the perpendiculars from A, E, C upon EDF, and let 21, 22, p^ be the perpendiculars from A, E, C upon the opposite sides of the trigon; then, by (4624), we have

4020 RX = ipi, Ru = ^Pz, Rv = np^, where E = V(l2 + m2 + n2 — 2mn cos A — 2nl cos B — 2 im cos C).

Hence the equation of the point 0 becomes

4021

X&+L8+,%=0 or xsin 6+usin 62—„sin 0, = 0,

Pl P2 Pi                P1 pi Pi

where P1 = OA, 0, = ABOC, &c., and 2NBOC = papasin 0.

Formula (4021) shows that, when the perpendiculars X, u, v are taken for the coordinates of the line, the coefficients become the areal coordinates of the point referred to the same trigon.

4023 Any homogeneous equation in Z, m, n as tangential coordinates is expressed in terms of X, u, v by substituting for Z, m, n, A, A, — respectively.                      By (4020).

Pi Pi Ps

4024 An equation in X,u, v of a degree higher than the first represents a curve such that X, u, v are always the perpendiculars upon the tangent. The czerve must therefore be the envelope of the line (, u, v).

TWO-POINT INTERCEPT COORDINATES.

Let X = AD, u = BE (Fig. 4) be variable distances from two fixed points A, B measured along two fixed parallel lines, then

4025               aXA-^P'-^c = 0

is the equation of a fixed point 0 through which the line DE always passes. This may easily be proved directly, but we shall show that it is a particular case of the system of three-point tangential coordinates.

Let one of the vertices (O) of the trigon in that system be at infinity (Fig. 3). Then equation (4022) becomes

X sin 6. . u sin 6, , . - • A -----— — c----2 + sin COE sin 63 = 0.

Pi P2

For » : Pa = sin COE always. Divide by sin COE ; then X + sin COE = AD, &c., and the equation becomes

sin 6, A7+sin @,AR+sin e,= 0.

Pi 02

The only variables are AD and AE. Calling these X and u, the equation may be written             aX + bp + c = 0, the form taken by aX+bu+c’v = 0 when v = 0 and c vanishes.

ONE-POINT INTERCEPT COORDINATES.

4026 Let a, b be the Cartesian coordinates of the point O (Fig. 5) ; and let the reciprocals of the intercepts on the axes

of any line DOE passing through 0 be E = —,

Then, by (4053),


_ 1

— AD'




4027



as+bn = 1

is the equation of the point 0, the variables being 5, n.

This is a case of the system of three-point tangential coordinates in which two of the vertices (B, 0) of the trigon are at infinity. Equation (4022) now becomes Asinei + sin BOD sin 0, + sin COE sin 0, = 0, Pi


sin 61 . sin 02 sin 63 _ 0 7T T AD TAE)




or



which is of the form al+bn = 1.

TANGENTIAL RECTANGULAR COORDINATES.

4028 This name has been given to the system last described when the two fixed lines are at right angles (Fig. 6).

The coordinates E, n, which are defined as the reciprocals of the intercepts of the line they determine, have now also the following values.

4029 Let a, y be the rectangular coordinates of the pole of the line in question with respect to a circle whose centre is the origin and whose radius is I ; then

F = 4 and „ = J,

since a. OM = y. ON = N; for M, N are the poles of y = 0, & = 0.

4030 The equation of a point P on NM whose rectangular coordinates are OB = a, OS = b, is

a^pbr) = 1, by (4053),

this equation being satisfied by the coordinates of all lines passing through that point.

4031 In all these systems an equation of a higher degree in 5, » represents a curve the coordinates of whose tangents satisfy the equation.

ANALYTICAL CONICS

IN

CARTESIAN COORDINATES.

LENGTHS AND AREAS.

Coordinates of the point dividing in the ratio n : n the right line which joins the two points ay, x'y'.


4032



nx' -\-n oc _ny ' A~n y n-n‘ ‘ " n+n‘

PROOF.— (Fig. 7.) E = a+AC = a?4--—, (x— a).  Similarly for 7. 4033 If » =n, }= a",  , = J%. 4034 Length of the line joining the points xy, xy

= • (a— x‘)2+(y— y'}\

The same with oblique axes 4035 • (a— a‘)?+ (y—y)2+ 2 (a—a’) ^y~y) cos o.

PROOF.—By (Fig. 7), Euc. I. 47, and (702).

Area A of a triangle in terms of the coordinates of its angular points x^y^ x^y^ x3y3.

4036 A =2{a1Y2—2291+22Y3—2sy2+2,Y1—2y3}.

PROOF.—(Fig. 8.) By considering the three trapezoids formed by Y1, y^ ys and the sides of the triangle, we have

A = 2 (J1+J2)(2,—21)+2 (J2+Js) (a,—22)—2 (Js+Y1) (x,—2).

Area of the triangle contained by the x axis and the lines

y = 7, — C1, y = m2x — C2,          (4052)

151      2(m,—m,) iB.B^A^-A^y’

PROOF.— (Fig. 9.) Area = 2 (c1—c,) p, and p is found from pmt~ 211 = ^—c^. The sign of the area is not regarded.

CoR.—Area of the triangle contained by the lines

	
	
J = m+Ci, J = m,+€2, J = mg+Cs, 4038 A = 1 {(G—c)2 । (c, C,)2 । (c, C)2 } . 2 C m— m, m,—m3  m3— M, )





4039      = {C1 (m, — m^ + C, (m, — 211) + C, (m, — m^}2. 2 (m, — M,) (m2 — m3) (m3—M1)

4040     =   (B,C,-B,C,)   + &o 2B,B,(A,B,—A,8)7

A0A1 _ Square of Determinant (A|B,Cs) ” 2(A,B,—A,B,)(A,B,—A,B,)(A,B,—A,B,)

Proof.—(Fig. 10.) AEG = AEF+GDE—BED. Employ (4037).

Area of Polygon of n sides.

First in terms of the coordinates of the angular points ai, ^y-2, ••• &„Jn-

4042 2A = (ay2—«,yi)+(a,ys—2,y2)+...+(a,y—a,y„)

= ai (J2 —y)+ a, (y,—yi)+......+a, {yi—yn-if

Secondly, when the equations to the sides are given, as in (4037).

4043   2A = (G—c)2 + (ca—c)2 ++ (c„—c)2.

M,—m2  72—M3 i mn—mf

4044 Also three values similar to (4039, ’40, ’41).

Proof.—By (4367), adding the component triangles.

4047 Each expression for the area of a triangle or polygon will be adapted to oblique axes by multiplying by sin o.

TRANSFORMATION OF COORDINATES.

4048 To transform the origin to the point hlc.

Put         a = a’+h, y = y’+k.

To transform to rectangular axes inclined at an angle 6 to the original axes.

4049 Put

a = a’cos@—y‘sin 6, y = y cos@+a‘ sin @. (Fig. 11.)

Proof.—Consider a’ as cos $ and y' as sin d. Then a = cos (d +0) and y = sin ($+0) (627,‘9).

Generally (Fig. 12), let o be the angle between the original axes; and let the new axes of a and y make angles a and (3 respectively with the old axis of x.

4050 Put a sin o = a’ sin (o—a) Hy‘ sin (o — 3) and         y sin o = a’ sin a+y‘ sin 3.

Proof.— (Fig. 12.) The coordinates of P referred to the old axes being OC = X, PC = y, and referred to the new axes, OM = a, PM = ", we have, by projecting OCP and OMP at right angles first to CP and then to OC,

CL = MF—MN,  PN = ML + PK, which are equivalent to the above equations.

To change Rectangular coordinates into Polar, hlc being the pole 0, a the inclination of the initial line to the x axis (Fig. 13), and ay the point P.

4051 Put a = h+r cos (6+a), y = k+r sin (6+a).

THE RIGHT LINE.

EQUATIONS OF THE RIGHT LINE.


4054

4055



a cos a+ y sin a — p ................(3).

Aa+By+C = 0 ..................... (4).

PROOF. — (Fig. 14.) Let AB be the line. Take any point P upon it, coordinates ON = a, PN = y. Then, in (1), m = tan 6, where 6 = BAX, the inclination to the X axis ; therefore mx = — 00, and c is the intercept 0B. In (2), a, b are the intercepts OA, OB. In (3), p = 08, the perpendicular from 0 upon the line ; a = 2 AOS.

p = OR + LP = a cos a + y sin a.

	
(4)    is the general equation.



4056 m = tan @-=b=- cot a.

B a

4060 sin@= — A cos @=- —.....B—. •A2+B2         Va^b^

4062 P = C sin a —    — = — • •1+m2    •A2+B2

Oblique Axes.

1

 This method of solution is merely indicated here, and the reader is referred to Boole’s Diff. Eq., Ch. xviii., for a complete investigation.

2

 The method by definite integrals is elucidated by Boole chiefly in the solution of this

3

 The letter d is reserved as a symbol of differentiation only, and the suffix attached to it indicates the independent variable. See (1487).

4

   1 , 9 _ 1 ( 1 ,   1   ,    2    ,     2.3    .)

5

7  8 * "   2 7 *2.7.814.7.8.9 * 8.7.8.910*805

The sum after six terms converges rapidly by this formula, and more rapidly than if the formula had been applied to the series from its commencement.

6

 See the end of the volume. 4 0


Equations (4052, ‘53, ’5 5) hold for oblique axes, but (4054) must be written

4065             a cos a-y cos P = p-            (Fig. 14) 4066 tan 6 = . m sin M = Asino 1-m cos w A cos w — B to being the angle between the axes.

PROOF.—From m = sin 0 : sin (w —9).

	
	
- >               c sin to                    C sin to 4068 p = —.....---.............. = -----------------------------V1+2m cos o+m2  VA2+B2— 2AB cos to





PROOF.—From p = c sin (o— 6) and (466).

The equations of two lines being given in the forms (4052) or (4055), the angle, p, between them is given by -    , j M — m‘ AB —AB 4070 tan o = —---, or — 1+mm A A -\~ B B Proof.—(Fig. 15)   tan^) = tan (0—0). Expand by (632). 4 D


To oblique axes:




4072 tan d =




(m — m‘) sin w 1+(m+m‘) cos o+mm‘



PROOF.—As in the last, employing (4066).

Equation of a line passing through a’y’:

4073              y~y = m (a—a’),             (Fig. 8)

4074 or         y — ma = y'— ma’,

4075 or Ax-\-By = Ax-{-By'.

PROOF.—From Figure (13), m being = tan 9.

Condition of parallelism of two lines : 4076 m = m', or AB = AB.

Hence the equations differ by a constant.

Condition of perpendicularity :


	
4078
	
mm‘= — 1 or AA -\-BB‘= 0.
	
(4070)


	
The
	
same to oblique axes :
	

	
4080
	
1+(m+m‘) cos o+mm‘= 0.
	
(4072)


	
4081
	
or AA‘+BB‘= (AB' A~A'B) cos c.
	

	
4082
	
,    1—m cos a

or           m =--!--------.

m—COS •
	



A line passing through the points 21 91, x^y^:

4083          ,—9 = 9—M2 = m. 2 — 2 1    w 1 2 2

PROOF.—(Fig. 16.) By the similar right-angled triangles PCA, ALL.

4084 Or ,=m+€J—a,y,, 002

4085 or (a-a)(y-y) =(-a,)(y-yi).

Proof.—This equation represents a straight line because it is of the first degree; and the coordinates of each of the given points satisfy the equation.

A line passing through xy and perpendicular to a given line (m) :

4086          y—y‘= — 1(-z).          (4073, ’78) m

4087 or       Ba — Ay — Bx—Ay.

The two lines passing through xy and making an angle 3 (= tan 112) with a given line (m^:

4088     y-% = ^h^h ana m,+m,   (4073,70) a — 2   1 — M1M2 1 — M1M2

A line passing through hk and dividing the line which joins 2Y1 and x2y2 in the ratio 1 : n.2:

4099        y—k _ n, {y^zG+^ (Ji—k) (4073’32) a — h   21 (d, — h) + n2 (21 — h) ’

Coordinates of the point of intersection of two lines: A000         , — C1 C2 — B1C2—B2C1

"  m2-m1 AxB2-A2B^

4092 y = qm,—c,n, = _ AC.-A.C. (4ii6) m2—71      41b2—H2b1

Length of the perpendicular from a point x'y' upon a given line

4094          = a' cos a+y‘sin a— p.

PROOF.—Let AB (Fig. 14) be the line, and Q the point xy'. Then, by (4054), x cos a Ay' sin a = OT, the perpendicular from 0 upon a parallel line through Q, and 2 = OS.

Otherwise, the same perpendicular

4095              = Ax +By -C          (4060, ’61, ’94) •A2+B2

The same with oblique axes A006         _ (Ax'+By'+C) sina>

y/^+B^-'iABcosuy obtained in a similar way from (4065-69).

Condition of three lines intersecting in one point:

4097 c,m,—c,m1+cma—cam,+cm,—cm3 = 0.

The area in 1009 must vanish.

4098 Otherwise.—If certain values of the constants l, m, n make the expression

I (Aa+B,y+C,) + m (A,a+B,y+C,) + n (A,+B,y+ C,) vanish identically, the three lines indicated intersect in one point.

PROOF.—By (4099), for then values of a and y which make (1) and (2) vanish also make (3) vanish.

A line passing through the point of intersection of the lines Ax + By + C = 0 and A’z+By+C = 0 is

4099 A^+ByA-C = k(A'^+B'yA-C'), 4100 or I (Ax+By+C)- m (A’z+B’y+C) = 0, k, I, and m being any constants.

4101 RULE.—If the equation of a right line contains a third variable k in the first degree, the line always passes through a iixed point.

PROOF.—For the values of x and y, which satisfy simultaneously the given equations, also satisfy (4099), whatever k may be. See (4604).

4102 If in the equation of a line Az+By+C = 0, the coefficients A, B, C involve x', y', the coordinates of a point which moves along a fixed right line, then the first line passes through some fixed point.

PROOF.—By means of the equation of the fixed line, y' may be eliminated, and x then remains a third variable in the first degree (4101).

4103 To find the point in which the line Ax+By+C intersects the line joining the points xy, xy; substitute

Ax+By+C for n, and Ax+By+C for n in (4032).

PROOF.—By (4095), since the segments intercepted are in the ratio of the perpendiculars from xy, xy upon the line AxYEy + C.

Equations of the line with I, m for direction-ratios, hlc a fixed point on the line, and 7 the distance of the variable point ay from hk.


	
4104
	
a—h

*= I
	
_—k m ‘


	
4105 where
	
7 _ sin (o—0)
	
sin 0           2.   .

m — —---,          (Oblique)


		
sin o
	
Sin to


	
4106 or
	
I = cos 0,
	
m = sin 0.       (Rectangular)




Polar Equation of a Straight Line.

4107              r cos (6—a) = p.

(Fig. 17.) Here p is the perpendicular to the line from the pole 0, and a is the inclination of p to the initial line OA.

	
When the line passes through the pole, the equation is •4108                0 = constant.



A line passing through the two points r^, 1202.

4109 rrx sin (6—6)+rr2 sin (61—6,)+rr sin (6,—6) = 0.

PROOF.—(Fig. 18.) ^POA + AOE-POE = 0. Then by (707).

EQUATIONS OF TWO OR MORE RIGHT LINES.

The homogeneous equation of the nth degree,

4110     a"+p,a"‘y++pa"—‘y‘+ ... +pnyn = 0, represents n right lines, real or imaginary, passing through the origin.

For it is resolvable into n factors of the form (a— ay), by (405).

For the case of two right lines represented by the general equation of the second degree, see (4469).

Equation of two right lines through the origin :


4111




ax2+2hay—by2 = 0.



If $ be the angle between the lines, 4112 tans = M(h2—ab) or 2sinov(h‘—ab), a+b        a+b—2h cos w

according as the axes are rectangular or oblique.

Proof.—Assume (y — ma)(y— m,a) = 0, and apply (4088).

Equation of the bisectors of the angle $ :

4113        h^—^a—b^y—hy^ — O.

Proof.—Let y = ux be a bisector (u = tan 1) ; then, since 21 = 61+02, 2m 2 m,+m, =2h., by (4111) ; and u = 1

1—p.   1 — m-pn^   a — b                       2

The roots of this eqnation are always real.

GENERAL METHODS.

APPLICABLE TO ALL EQUATIONS OF PLANE CURVES.

4114 Let F (a, y) = 0......(i.) and f(x, J) = 0......(ii.) be the equations of two curves of any degree.

4115 To find the intercepts on the a and y axes.

Put y = 0 in (i.), then x becomes the intercept on the x axis. Similarly, put x = 0 for the intercept on the y axis.

4116 To find the points of intersection of (i.) and (ii.).

Solve as simultaneous equations. Each pair of values of x and y so obtained gives a point of intersection. Imaginary values give an imaginary point.

4117 To determine equation (i.) so that the line may pass through certain fixed points, xxyx, x^y^, &c.

Substitute X1Y1, X,y2, 9c. for xy successively, so forming as many equations as there are points. From these equations the constants in (i.) must be determined in terms of X1,Y1, ^,y^ ^c.

4118 The number of arbitrary points cannot exceed the number of constants in the equation.

4119 Condition that (i.) and (ii.) may touch.

At a point of contact two or more points of intersection must coincide, and therefore the equation for x or y, obtained as in (4116), must have two or more equal roots for each point of contact. The contact is said to be of the second order when there are three coincident points; of the third order when there are four, and so on.

4120 To find the equation of the tangent at a point xy' on the curve f{x,y) = 0.

Form the equation to the secant through two adjacent points x Y1, X2y2 (4083), and determine the limiting value of 21—

X1 X2 when the points coincide by means of the equations f (X1, yj = 0, f(x»» y.) = 0.

4121 Otherwise m = dy, by (5101).

4122 For the equation of the normal, change m of the tangent into —— (4086).

4123 To express the equation of the tangent, or normal, in terms of m and the constants of the curve.

From the equation of the tangent or normal, the equation to the curve, and the equation furnished by the value of th, eliminate x y‘, the coordinates of the point of contact of the tangent.

THEORY OF POLES AND POLARS.

4124 Let F (a‘, y', a, y) = 0 represent the equation to the tangent of a curve at the point xy'.

Then F(x, y, x, y') = 0, the equation obtained by interchanging the constants x ,y' with the variables x, y, represents the polar of any fixed point xy' not on the curve.

Let 2Y1, WyY, (Fig. 19) tie points A, B on the curve, and let the tangents at those points intersect in xy'. Consider the equations

F(„J„t,y) =0...(1), F(,y„ «,y) = 0.(2), F(a,y,«1) =0.(3).

Here (1), (2) are the tangents, and (3) is some straight line or curve according to the dimensions of a and y. Also (3.) passes through the points of contact 21Y1, 2,92, and may therefore be called the curve of contact; or, if a right line, the chord of contact of tangents drawn from a’, y', i.e., the polar.

4125 Hence the coordinates of the points of contact of tangents from an external point xy' will be determined by solving (3) and the equation of the curve simultaneously.

4126 Again, let x'y (Figs. 20 and 21) be any point P not on the curve. Then, from the equations

F(«,y,,y) =0.(4), F(a,3,4„93) =0.(5), I(a,y,*„y) =0.(6), we see that (4) is some straight line; that, if xsy3 and 24Y4 are any two points upon it, (5) and (6) are the curves of contact of tangents from those points ; and that these curves of contact pass through the point x'y'.

4127 If the points 2333, xiyi are taken at A, B, where (4) intersects the curve, (5) and (6) then become curves touching the given curve at A and B, and passing through x'y'. We may call these lines the curve tangents from x'y'.

4128 Lastly, let x'y in (3) be a point within the given curve (Fig. 22), then the equations

F(x,y, x',y') = 0... (7), F (,, 7 x, y) = 0 ... (8), T(s„J.«,v) =0.(9) show that (7) is the locus of a point, the curve tangents from which have their chord of contact always passing through a fixed point. When x'y' is without the curve, as in Fig. (19), the same definition applies to every part of the locus (3) from which tangents can be drawn.

4129 If the given curve be of a degree higher than the second, the line of contact of the tangents from a point is a curve, and the line of contact of the curve tangents from a point is a straight line (Figs. 19 and 20). A similar converse relation is exhibited in Figures (21) and (22).

If the curve be of the second degree, equations (8) and (4) become identical. The line of contact or the polar is always in this case a straight line, and so is the locus (7).

Figures (19) and (20) now become identical, as also (21) and (22).

4130 The polar of the point of intersection of two right lines with regard to a conic passes through their poles.

PROOF.—As in (4124). Let (1) and (2) be the two lines, (a,31), («,y2) their poles, and x'y' their point of intersection.

4131 To find the ratio in which the line joining two given points ay, xy' is cut by the curve f(x,y) = 0.

Substitute for x and y, the supposed coordinates of the point of intersection, the values


na’+n’a, ny/+n‘y,            by (4032)

n—n n—n

and determine the ratio n : n‘ from the resulting equation. The real roots of this equation correspond to the real points of intersection.

4132 To form the equation of all the tangents that can be drawn to the curve from a point x'y'.

Express the condition for equal roots of the equation in (4131), and consider xy a variable point.

4133 To form the equation of the lines drawn from x'y' to all the points of intersection of two curves.

Substitute nx prix, ny' priy for x and y in both curves, and eliminate the ratio n : ri.

PROOF.—Take any other point ay on the line through x'y' and a point of intersection. The ratio n : n (4131) is the same for each curve, and therefore may be eliminated.

4134 To find the length, r — AP or AP' (Fig. 23), of the segment intercepted between the point A or x'y' and the curve f (x, y) = 0 on a straight line drawn from A at an inclination 0 to the X axis. That is, to form the polar equation with x'y' for the pole and the initial line parallel to the x axis.

Substitute for x and y, the assumed coordinates of the point of intersection, the values x = ON or ON', y = PN or P'N', that is, x =x+r cosb, y = y ‘+r sin 6, and determine r from the resulting equation. That is, put a — 0 in (4051).

The real values of r are the distances of the points of intersection from x'y'.

4135 When an equation has been obtained for determining x the length of a line, important results may frequently be arrived at by applying theorem (406) respecting the sum and product of the roots.

THE CIRCLE.

Equation with the centre for origin.

4136                     a?+y? = 73. (Fig. 24.)

Equations of the tangent at the point P or x'y'.

4137            y—y= _(—&).       (4120) 3

4138                aa‘+yy‘ = 78. Also, by (4124), the polar of xy', any point not on the curve.

/

4139 y = mx +7V1+m2; m = —4.     (4123) y

4140            a cos a-y sin a = r, a being the inclination to the x axis of the radius to the point / /

Equation of the circle with a, b for the coordinates of the centre Q.                                                    (Fig. 24.) 4141            (»- a)2+(y- by = 78.

Tangent at xy', or Polar,

4142       (w—a) (a—«) + (y—b) {y'—b) = 78,       (4138) 4143 or (a— a) cos a+ (y— b) sin a=r, a being the inclination of the radius to the point x'y'.

General equation of the circle :

4144         a?+y‘+2ga+2fy+c = 0.

4145 Centre (—g, —f).    Radius V(g? +f2 — c). PROOF.—By equating coefficients with (4141).

Equation of the circle with oblique axes :          (Fig. 25.) 4146 (w—a)?+(y—6)2+2 (a—a)(y—b) coso = r, (702) 4147 or a2+2ay cos o+y?—2(a+b cos o) a —2 (b+a cos o) y +a?+2ab COS 0+62 = 72.

General Equation.

4148 a+2ry cos o+y?+2ga+2fy+c = 0.

The coordinates of the centre are


4149



_ fcos o—g 7 _ g cos o— f

C • 9 9 O • 9 • sin” ()                  sin” (


4150




Radius —



• {g2 — 2fg cos o+f2 — c sin2 c } sin o

PROOF.—By equating coefficients with (4147).

Polar Equation.

4151           72+P- 2rl COS (6- a) = c,         (Fig. 26)

4152 or r2—21 cos a r cos 6— 21 sin a r sin 0+l2—c2 = 0.

PROOF.—By (702), the coordinates of P being r and 6.

General form of the polar equation:—

4153       73+2g cos 6+2fi sin 6+c = 0.

4154 tan a = $ l=vg*+f. 8

PROOF.—By equating coefficients with (4152).

4156 Equation of the circle passing through the three points 2,91, 2,92, 2sy3.


a2+y2) 21 ^i 1




A2 Y2 1




23 y^ 1




—(a?+y?)




22 32 1

as 33 1

a y 1




+(a3+y2)




23331 a y 1

a, Y11




—(a3+y3)




a y 1

a, Y1 1

22 y^ 1



Proof.—Eliminate g, f, and c from (4144) by (4117).

Equation of the chord joining 21Y13 2,92, two points on the circle a2 + y2 = 12 :

415 7   a(a+a,)+y(3i+32) = 2102+3132+", (4083,4136) 4158 or a cos } (0,+6,)+y sin } (0,+6,) = y cos } (6,-6,), where r cos 01 = 21, r sin 01 = y^ &c.

4159 NOTE.—The coordinates 2, y of a point on the circle a2+y2 = 73 may often be expressed advantageously in this way in terms of 6, a single variable.

4160 Let S = ^-ay+^j-by-r2 = 0 be any circle (Fig. 27). Then, if xy be a point P outside the circle, S becomes the square of the tangent from P. If xy be a point P' within the circle, S becomes minus the square of the ordinate drawn through P' at right angles to the radius through Pf.

CO-AXAL CIRCLES.

(See also 984 and 1021.)

4161 If s = a?+y‘+2ga +2fy +c = 0, S‘= a?+y‘+2g‘a+2f‘y+e = 0 be two circles, the equation to the radical axis is

S—S‘= 0.

If x = 0 be taken for the radical axis, the equation to any circle (radius 7) of the system of coaxal circles (1021) is 4162  a+y‘- 2kw ±8=0 and k- 72 = ± 83, + in Figure (1), — in Figure (2). Here 8 = IB a constant, and k = IO a variable.

4164 The polar of x'y' for any circle of the system passes through the intersection of

ocP +yy‘482 = 0 and a+a‘= 0.

PROOF.—Its equation is xx + yy'— k (x+a‘) ± 32 = 0 (4121). Then by (4099).

4165 When 7 = 8, then 7 = ID = ID'.  D and D' are Poncelet’s limiting points.

4166 The polar of D with respect to any of the circles passes through D', and vice versa, by (4164).

4167 Tangents from any point on the radical axis to all circles of the system are equal (4160, ’61).

4168 The radical axes of three circles, S1, S2, S3, meet in a point called their radical centre.

4169 The reciprocals with respect to the origin D or D' of the system of co-axal circles are all confocal conics (4558).

The equation of the circle, centre Q, cutting the system of circles orthogonally is, putting IQ = h,

4170            a?+y?—2hy—8 = 0.         (1230,1236) This circle passes through D and D'.

The common tangents to the two circles

(— a)2+ {y— b)2 = 72 and (x—a)+(J—b)2 =72

(See also 1037.)

The equation for a in (4143) is

4171    (a—a) cos a+(b—b) sina+F*‘= 0.

Proof.—Assume (4143) in a, b, r, a, and also in a', b', , a' as coinciding lines. Then tan a = tan a’; therefore a’ = a or r+a. Take the difference of the two equations.

The chords of contact are

4172 (a—a)(-a)+(b-b)(-b)+r(*r) = 0,

4173 (a—a)(-a)+(b-6)(y-)+r ("Er) = 0, with — for exterior tangents, — for transverse.

Proof.—For these are straight lines, and they pass through the points of contact of each pair of tangents respectively, by (4171).

The centres of similitude 0, Q are the intersections of the external and transverse tangents respectively.


br—br'

° — yo‘ b'r-\-br



4174 Coordinates of O, ar—ar y° —-. Y

4175 Coordinates of Q, dr+ar

Proof.—By equating coefficients in (4172) and (4142), the polar of O or Q,.

4176 The six centres of similitude of three circles lie on four straight lines called axes of similitude. See the figure of (1046).

PROOF.—The coordinates of the three centres of the forms (4174, ‘75) will in each case satisfy equation (4083).

4177 The equation of the external axis of similitude is, in determinant notation (554),

(1r,ba) x—(1r,as) J+(rb,aa) = 0.

PROOF.—By forming the equation of the right line passing through two of the centres of similitude whose coordinates are as in (4174).

4178 The remaining three axes are found by changing in turn the signs of 71, 12; 72, 73 ; 73,

4179 If one of the circles touches the other two, one axis of similitude passes through the points of contact.

4180 The angle 0, at which the circle F (x, y) = 0, radius r (Fig. 29), intersects the circle whose centre is hk, and radius R is given by the equation

R‘-2Rrcos@ = F(h, k).

PROOF: 9=OQP, R?-2Rr cos 0+= PT+= F(h, k)+7, (702) and (4160).

4181 COR. 1.—If the circles are given by the equations a?+3?+2/%+2f‘y+c‘ = 0, «2+y2+2j2+2fy+c = 0, the equation for cos 0 becomes, since h = — g, k = f,

2Rr cos 0 = 2gg‘ + 2ff‘ —c—c.         (4145)

4182 COR. 2.—The condition that the two circles may cut orthogonally is

2gg‘+2ff‘— c—c' = 0.

4183 COR. 3.—By solving three such equations, we can find the circle cutting three given circles orthogonally (4186).

4184 Cor. 4.—The condition that four circles may have a common orthogonal circle is the determinant equation


c g f 1

G1 gi fi 1

C2 g2 f 1

cs gs f§ 1




= 0.



4185 CoR. 5.—If the circle a2+92+2Ga+2/y+C = 0 cuts three other circles at the same angle 0, we have, by (4081), three equations to determine G, F, 0. The resulting determinant equation may be written


	
a2+y2
	
—x —y 1
		
0
	
—x
	
-y 1
	

	
Gi
	
gi fi 1
	
+2R COS 0
	
n
	
gi
	
A i
	
= 0.


	
C2
	
g2 f 1
		
12
	
82
	
f2 I
	

	
c3
	
g3 f 1
		
73
	
g3
	
f§ 1
	



4186 The first determinant, put =0, is the orthogonal circle (4183), and the second, expanded, is the axis of similitude.

4187 The locus of the centre of a circle cutting three given circles at equal angles is a perpendicular from their radical centre on any of the four axes of similitude.

PROOF.—By eliminating R and cos a between three equations, like (4180). 4188 Each of these four perpendiculars contains the centres of two circles touching the three given circles.

PROOF.—Consider a = 0 or 180°, in (4180).

To draw the eight circles which touch three given circles, see (946) and (1049).

4189 The equation of the fourth degree of two of the touching circles is

23 VS,± 31 S, ± 12 S, = 0, where 23 signifies the length of the common tangent of the second and third circles, &c.

PROOF.—By first showing that, if four circles are all touched by another circle, the relation

4190            12.34=14.23 ±31.24 = 0 will subsist, and then supposing the fourth circle to reduce to a point.

THE PARABOLA.

4200 DEF.—A conic is the locus of a point which moves in one plane so that its distance from a fixed point S, the focus, is in a constant ratio (e) to its distance from a fixed right line XM (the directrix).

When e = unity, the curve is a parabola. (See also p. 248, et seq.)

Equation of the Parabola with origin of coordinates at the vertex A.

4201 y2 = 4ax.

Here a = AS, x = AN, y = PN.

[image: ]



PROOF. — Geometrically, at (1229). Analytically, from

ps2 =y‘+(- n = PM3 =(+ a)?.

The equations with the origin at S and X respectively are

4202 y‘ = 4a (a+a), y2 = 4a ^ — a). (4048)


	
Equations of the tangent at x'y':
	
(4120)


	
4204
	
y-y


	
4205
	
yy = 2a (x+a‘).
	

	
4206
	
. a           2a

Q — M0 — —, m — —.

•       m       y
	
(4123)




4207 (4204) is also the polar of any point x'y', by (4124). Its intercepts are — x and ^y.


	
Equations
	
of the normal at xy :
	

	
4208
	
y-y' = -Z(—a).
	
(4122)


	
4209
	
y‘a+2ay—(y‘a‘+2ay) = 0.
	

	
4210
	
y = ma — 2am— am\
	
(4123)




Equation of the parabola with a diameter and tangent for axes of coordinates.

[image: ]

Otherwise, let VQ=- VQ be equal (4221), V being the point x'y',




4211 y‘ = 4a‘a, where

4212 a = a cosec2 0 = SP;

x = PV; y = Qv.

PROOF.—Geometrically, at (1239). roots of opposite signs of the quadratic since y2 — 4iaX abscissa of P. 4213 Equations (4204-10) hold good for these axes, with a written for a in each.


y2 or 73 = (y2—^ax) cosec2 0 = 4a cosec2 9.x,




therefore



For the polar equation of the parabola, see (4336).

4214 Quadratic for 71 : 22, the ratio of the segments into which the line joining two given points aY1, 2292 is divided by the parabola y2—4az = 0,

n? (y?—4ax,)+2n,n2 {y1y2—2a (a,+a,)} +n? (y?—4aa) = 0.

(4131)

Equation of a pair of tangents from any point x'y':

4215 (y?—4ax)(y?—4ax) = {yy' - 2a (x+«)}2 = 0. The condition for equal roots in (4214).

Quadratics for the coordinates of the points of contact of tangents from x'y':

4216         az’- (y‘- 2ax') w—ao? = 0. 4217            y- 2yy‘+4az‘ = 0.

Proof.—Solve simultaneously the equations of the curve and the polar (4205) and (4125).

Coordinates of the point of intersection of tangents at 2Y1 and @22 :

4218          a = y^^ y = Ji+ya

4 F

Quadratic for m of the tangent from x'y':

4220 m?a‘—my+a = 0.             (4206) 4221 General polar equation of the parabola, or quadratic for T, the segment intercepted between a point, x'y', and the curve on a line drawn from that point at an inclination 0 to the x axis (4134),

72 sin26+2r (y‘ sin 0—2a cos 6)+y?—4aa‘ = 0.

Quadratics for the coordinates of the points of intersection of the line Ax-\-By -\-C and the parabola y2 = 4ax :     (4116) 4222      A‘s—2 (2B2a-AC) a+C2 = 0.

4223         Ay2+^Bay+^Ca = 0.

Length of intercepted chord,

4224     ^{(BW-AC^^+B^-^A2.     (4034)

Equation of the secant through xxy^ x^y^ two points on the parabola:

4225           y (y,+y.) = 3131+4a.,             (4083) 4226 or y (M1+M2) = 2a+2m,m,a.

4227 The subtangent NT = 2a.             Fig. of (4201)

4228 The subnormal NG = 2a.

PROOF.—Put y=0 in (4205) and (4208).

4229 The tangent PT2 = 4a(a+a).

4230 The normal PG= 4a (a+x).

The perpendicular p from the focus upon the tangent at xy: 4231           p = •a (a+a) = • aa .      (4212), (4095)

The part of the normal intercepted by the curve is equal to 4233 Aa (1+m2) = —a—,    (1221), (4135) m" sin 0 cos 6

4234 The minimum normal = 6a 3 and m = V2.

Length of a chord through the focus

4235              = 40, = 4a.               (4212)

Coordinates of its extremities, with the focus for origin : A        __ 2a cos 0 , _ _ 2a sin 0

200 9      •   A.7 9     V   A — 1 • cOSO F1 cOSOF

Coordinates of its centre :

4239 a = 2n.cost@, y = 2a cot e. sin” 0

THE ELLIPSE AND HYPERBOLA.

(See also p. 233, et se^

4250 Referring to the definition (4200); when e is less than unity, the conic is an ellipse; when greater than unity, an hyperbola.

Equation of the ellipse with the origin of coordinates at X and SX = p.

4251            y‘+(a—p)2 = ear.

PROOF.—By the definition in (4200).

Abscissae of vertices :         (Supply A’ in the following figure.)

4252      XA=P, XA‘=P      (4ii5) 1-e        1— e
[image: ]

SA = SA' = „P.         (4251)

1—e        1—e

12

4256 SL = I = ep = a (1—e2) = 2        (4251)

4260 V = a3 (1-2%) ; e3 =


	
4262
	
CX =P= . 1—e3   e


	
4264
	
CA = ^ = a.

1— e2


	
4266
	
CS = „e‘p, = ae.      •        (4252)

1—e3


	
4268
	
If b = a tan a, then e = sec a in the hyperbola.




Equation with the origin at A :


	
4269
	
72

y^ = — (2aa— a2) Ell.


	
4270
	
y2 = (2ax+a2) Hyp.




Proof.—By (4200), y^+^x-SA^ = e2 (a+AX)3, &c.

Equations with the origin at the centre C:


	
4271
	
72

y = —(a2—x2) = (1—e%) (a2—x%).      (4269)





4273



a2 i y2 — 1

a2 T62 — '

Proof—By (4200), y^P {xpGS^ = e2(x + CX)2, &c.

[image: ]



4275 DEF.—QON is the eccentric angle, p, of the point P. a and y in terms of the eccentric angle :


4276

4278




y = b sin $. (Ell.)

y — b tan $. (Hyp.)



a = a cos $, a = a sec p.

Five forms of the equation of the tangent or polar of the


	
point xy':

4280
	
,      b2P,
			
(4120)


	
4281
	
a2 b2T '
			
(4123)


	
4282
	
y = ma+v a‘m2+62.
		

	
4283
	
a cos $ y sin $ _ 1 a         b
	
(Ell.)
		
(4276)


	
4284
	
a sec $ y tan $   1

a        b - ‘
	
(Hyp.)
		
(4278)


	
4285     a cos y+y sin y = • a2

y being the inclination of p.
	
cos‘y+b3
	
sin2 y, (4054) & (43 72)




Five forms of the equation of the normal at x'y':


	
4286
	
3- =bal@e—78):
	
(4122)


	
4287
	
a’zb’y = a>—b®, or hx—ky — a^—b^,

• y
	

	
where h
	
and k are the intercepts of the tangent.
	

	
4289
	
m (a2 — b2)

Y — mx— ——-------—

• a2-\-b2m2
	
(4123)


	
4290
	
ax sec <l>—by cosec $ = a2—b2.
	
(4276)


	
4291
	
^—yiy = (aa‘—yiy‘).
	
(4352)




where 2Y1 is the extremity of the conjugate diameter.


	
Intercepts of the tangent or polar on the axes:


	
4292
	
a2 - b2

— and ■—.

•        y
	
(4115), (4281)


	
Intercepts of the normal:
	
(4287)


	
4294 On the x axis,
	
a2-b2

—3— x or a2
	
e2a.


	
4296 On the y axis,
	
a2-b2

V 3 or
	
e?

1-43:




Focal distances r, r' of a point xy on the curve:

4298             (a ±ex) in E11.

4299            (ex±a) in Hyp.

Proof.—From 73 = (ae±«)2+y, and (4272).

Perpendiculars from the foci upon the tangent:


4300



[image: ]



[image: ]




(4095, 4282)




4302 .. (p. 588) sin SPTED2 = _b_ = b. (4365) T T Mrr b

---

4306                    62 = pp.                    (4300)
[image: ]

Right Line and Ellipse.




Quadratic for the ratio n±: n2i in which the line joining two given points x^, x2y2 is cut by the ellipse (4131).


4310

n? /

n5\




>2




E102 . ,Wi




62




2__y

262




0.



Equation of the two tangents drawn from xy':

1 \a3b /ab 1) a’b—)— PROOF.—By the condition for equal roots of (4310).

Quadratic for abscissae of points of contact of the tangent from x'y':

4 312 a? (b?a2+a?y?)—2u‘b‘xa/+a* (b3—y?) = 0. (4282,4125)

Quadratic for m of the tangent from xy :

4313 m2 (a? — a?)-2may+y‘—b = 0.        (4282)

General polar equation of the ellipse, or quadratic for r, the segment intercepted between the point xy' and the curve on the right line drawn from that point at an inclination 0 to the major axis and x axis of coordinates.

4314               (a? sin? 0 + 62 co s? 0) 72 +2, (a’y sin 6+b‘a cos^) + (a‘y+ba/2— a?b?) = 0.

4315 Length of intercepted chord = difference of roots.

4316 Distance to middle point of chord = half sum of roots.

4317 Rectangle under segments — products of roots.

Cor.—If two chords be drawn to a conic at two constant inclinations to the major axis, the ratio of the rectangles under their segments is invariable.

For, if x'y' be their point of intersection, the ratio in question becomes a2 sin20 + b2 cos20 : a2 sin20‘+b2 cos20‘, which is constant if 0 and 0‘ are constant.

Locus of centres of parallel chords :

4318           a’y sin 0+b3w cos 0 = 0.             (4314)

Quadratic for abscissae of points of intersection of the line Az+By+0=0 and the ellipse b2a2+a‘y?—a‘b2 = 0.   (4116)


4319

4320



{A2a^B2b^ ^+^ACa^^W^B^b2 = 0.

-ACa± BabVA^A-B2^-C2

A2a2A-B2b2

4321 For the ordinates transpose A, B and a, b.

Length of intercepted chord :


4322




^abV^+B^AV+BV-C2)




A2a2+B262




(4034)



Hence the condition that the line may touch the ellipse is


4323




A2a2—B262 = C\



The chord through two points 2Y1, 2292 is


4324




a (21—W2) a2



j_ y (Y1+y2) _ 2102 , y^h _ 1 .

1 62 — a2 7 62 T 3 or, denoting the points by their eccentric angles a, 3, the chord joining a is

4325 z cos a+8y sin a+8= cos a—8. CL         A O         A               A

The coordinates of the pole of the chord or intersection of tangents at 2Y1, 2292 (or a as above).

4326 a = 2132—0231 _ ^^yp-y^ _ acos‘(a+B), Y1+Y2    ^1 — ^2   cost (a— B)

4329 , _ 2132+2,31 _ b (a—a,) _ 6 sin + (a+B)

	
	
• 21+22 A1Y2—22Y1 cos} (a— B)





The following relations also subsist


4332



a^b2 _ a2 sin a sin B _ 62 cos a cos B b2a?+a‘y?       a’— a?            E^—y2,

b (sin a+sin B) _ a (cos a+ cos B)

2y — 2a

" which are of use in finding the locus of (x, y) when a, 3 are connected by some fixed equation.”

(Wolstenholme’s Problems, p. 116.)

4334 If a, 3, y, 8 are the eccentric angles of the feet of the four normals drawn to an ellipse from a point ay, then a+B+y+8 = 37 or 57.

PROOF.—Equation (4290) gives the following biquadratic in z = tan 10, by:4+2 (az+a—b2) 23+2 (az—a+62) z — by = 0.

Let a, b, c, d be the roots. Eliminate d from ab + ac + &c. = 0 and abed = — 1 (406). Thus ab + bc+ca = 1 + — + 1; from which, since a = tan }a, be ca ab &c., we get sin (3 + ) + sin (y + a) + sin (a + 3) = 0 ; and, since            1— (ab+ac+&c.) Aabcd = 0,

tan ] (a+3++3) = c, .. a+3+y +3 = 37 or 57.

4335 The points on the curve where it is met by the normals drawn from a fixed point x'y' are determined by the intersections of the curve and the hyperbola

a2x'y — Tryw = c^xy.                (4287)

POLAR EQUATIONS OF THE CONIC.

The focus S being the pole (Fig. of 4201), the equation of any conic is

4336               7 (1+e cos 6) = I,

0 being measured from A, the nearest vertex.

For the parabola, put e = 1.

Proof.—

r=SP-, d = ASP-, l = SL-, r=e(SX+SN) (4200) = l+ercos 0.

The secant through two points, P, P', on the curve, whose angular coordinates are a+3 and a — 3 (Fig. 28), is

4337 r {e cos 0+ sec 8 cos (a— 6)} = I.

Proof.—Let ASQ, = a, PSQ, = ESQ, = p.

Analytically. Take (4109) for the equation of PP'. Eliminate Y1 and Y2 by (4336),* and substitute 2a for 61+0, and 23 for 0,— 6,

Geometrically. Let PP' cut the directrix in Z; then Q,SZ is a right angle, by (1166). Take C any point in PP’ • SC = r; ASC = 0. Draw CD, CD, CF, CG parallel to SL, SP, 8Q, SX, and DH parallel to XL. Then

1= SL = SH+HL.


SE=-^SD = er cos 0. SX



CF _ SP _ SL _HL _ HL CG PM SX DX GG’

.*. HL = GH = r sin GSF sec 3 —r cos (a— 6) sec 3, .‘. l = er cos B+r sec 6 cos (a—6).

The equation of the tangent at the point a is, consequently,

4338          7 {e cos 6+ cos (a- 6)} = I.

A Focal Chord.

4339 Length = ---2,.              (4336)

P 1—e’cos’O

Coordinates of the extremities, the centre 0 being the origin :

4340 w = a(escos €), y = Isin@... 1e cos0 Ime cost

4342 The lines joining the extremities of two focal chords meet in the directrix.                                 [By (4337)

Polar equation with vertex for pole :

4343          . 72(1 — C2 COS2 6) = 21 cos 6.            (4200)

Polar equation with the centre for pole :

4344          72 {a2 sin2 6+63 cos2 6) = a2b2,

4345 or 7V(1-e cos2 6) = b.

Proof.—By (4273). Otherwise, by (4314), with «‘=y‘=0.


CONJUGATE DIAMETERS.
[image: ]




Equation of the ellipse referred to conjugate diameters for coordinate axes:


4346



a2 । y2 a2T62 —


where

4347




a? sin? a—b2 cos2 a’




a2b3

a2 sin? 8+62 cos2 B



Here a' = CD, b' = CP, a is the angle DCB, and 3 the angle PCB.

Proof.—Apply (4050) to the equation (4273), putting

tan a tan =- b3, by (4351). a

When a = V, a+3 = T, and equation (4346) becomes


4349




a2+y‘= a= 2(a2+b2).



Let the coordinates of D be x, y', and those of P x, y; the equation of the diameter CP conjugate to CD is


	
4350
	
. ad‘__Yy_0 a'T be
		

	
4351
	
62

tan a tan 3 or mm' ---,

a2
		
(4318)


	
xy in
	
terms of x'y', &c.
		

	
4352
	
a ,                   b ,

"=-6" "=a"
	
Ell.
	

	
4354
	
a ,               b ,

00 —  —?,     1 — --oc .

b J      • a
	
Hyp-
	

	
Proof.-
	
-Solve (4350) with (4273).
		

	
4356
	
ao=dR, P=pN.
	
(4274, 4352)


	
4358
	
a?+a/2 = a', 3/‘+y? = b2.
	
Ell.
	
(4352)


	
4360
	
a?—00^ = a',    y/'—y = b3.
	
Hyp.
	
(4354)


	
4362
	
a‘+b2 = a'^+b"1. Ell.
		
(4358)


	
4363
	
a'- V = a^-b'2. Hyp.
		
(4360)


	
4364
	
a'2 = 63+ea?.
	
(4271, ’61)


	
4365
	
62 = a? — ea2 = rr.
		
(4298)




The perpendicular from the centre upon the tangent at xy is given by

4366             1=4+9.          (4281,4064)

p" a" o

The area of the parallelogram PCDL (Fig. of 4307) is 4367             pa' = ab = a'b' sin c,

where p = PF, a' = GD} b' = CP, • = L PCD.

Proof.—From (4366), and (4352), and a* «2+y”.

Other values of p2:


	
4369        p‘=‘l= zb ,

" a2 a2-[-b2—b2
	
(4362)


	
4371            p2 = a3 sin2 6+68 cos3 0.

Proof.—From (4344, ’67), putting r = a.

4372           p2 = a cos? y+62 sin?y.
	
(4371)


	
y being the inclination of p.

4373            p?= a(1—e? sin?y).
	
(4372, 4260)




Equations to the tangents at P and P', the coordinates of D being a’, y':

4374      ay’—ya’ = ±ab (4073) m = -,.

DETERMINATION OF VARIOUS ANGLES.


	
4375
	
pCd = J.         Fig. p. 595. (4356)


	
4377
	
tan PCD = — -,,      (40 70, 43 52-3)

C CY




where c = (a2— F) = CS.

4378 tan (SPT) = b 1+ecos @, (4070, 4256, 4336) cy e sin 0

where 0 = PST.                          [See figure on page 588.

If 1 be the inclination of the tangent to the a axis, 4380        tany—Lb e+eosg        (1290) a’y sin •

Proof: v = Q + SPT. Then by (631) and (4379).

4382              tan SPS' = 2b2cy, (652,4378) 4383 tan APA' = - 28; tan CPG = 4%

If OPt 0P' are tangents to an ellipse,

4385       cospoPE CO’—-OS. OS

Proof.—By figure and construction of (1180), POP'— MOS'. Therefore cos _ 0S2+OS-SMI _ 200^+20^-^  & 2OS.OS'        2OS.OS'

If a, y' are the coordinates of 0, 4386 tan POP’ - 2VWs+437U5,

Proof.—By (4311), taking terms of the second degree for the two parallel lines through the origin and tan p from (4112).

It is worthy of remark that the substitutions (4276-8) may also be usefully employed when the axes of reference are conjugate diameters: though, in that case, the geometrical signification of $ no longer exists.

THE HYPERBOLA

REFERRED TO THE ASYMPTOTES.

4387               ay = t (a*2+b2).

Proof.—By (4273) and (4050). Here a = CK, y = PK.
[image: ]


Equations of the tangent at P, (x‘, y').

4388           ay+a’y = l(a‘+b).            (4120)

4389           y = ma+ • m (a‘+62).           (4123)

4390             m = -^r.

4391 intercepts on the axes Cl = 2a‘, CL = 2y‘.

THE RECTANGULAR HYPERBOLA.

4392 Here a — b, e = v2; and the equation with the ordinary axes is

4393                  x^—y2 = a".                  (4273)

4394 Tangent      xx' —yy = a?.                (4281)

Equation with the asymptotes for axes:

4395                   2xy = a3.                    (4387)

4396 Tangent ocy +d‘y = a3.                 (4388)

THE GENERAL EQUATION.

The general equation of the second degree is

4400 az? +2hvy + by? + 2g2 + 2fy + c = 0,

4401 or az?+by?+c22+2fy2+2g22+2h2y == 0, with z = 1.

The equation will be denoted by u or $ (x, y) = 0.

THE ELLIPSE AND HYPERBOLA.

When the general equation (4400), taken to rectangular axes of coordinates, represents a central conic, the coordinates of the centre, O' (Fig. 30), are

4402    • - h^~bg -G , - gh~af- I    (4665) 40    • - ab-v - C’ J — ab-h^ - C*    (4000

Proof.—By changing the origin to the point x'y' and equating the new g and/each to zero (4048).

For the case in which ab = A2, see (4430).

4404 The transformed equation is a^-^-^haty-^-by^-^-c = 0,

4405 where c = ax+2ha/‘y+by‘+2ga+2fy+c.

4406          = g^-}-fy'-\-c.

4407        _ abc+2fgh-af-b^-c^ ^ A (4468)

ab—li1           C

The inclination 0 of the principal axis of the conic to the a axis is given by

4408              tan 20 = 2h,. a—b

Proof.—(Fig. 30.) By turning the axes in (4404) through the angle 0 (4049) and equating the new h to zero.

The transformed equation now becomes

4409           «a‘+by‘+c = 0,

4410 in which a' = } {a+b+14h?+(a—b)2} ,

4411        bf = } {a+6—14+(a—6)3} , a and b' are found from the two equations

4412         a -[-b' = a-^-b, a'b' = ab—h\ [See (4418).

The semi-axes and excentricity are 4414 J_C, /_C, and e = ./ (1 — «/). (4273) (4261) ‘ a • b                   • \ b /

For the coordinates of the foci, see (5008). 4416 NOTE.—If 0 be the acute angle determined by equation (4408), we have to choose between 0 and 0+ for the inclination in question, since tan 20 is also equal to tan (20+m).

RULE.1—For the ellipse, the inclination of the major axis to the x axis of coordinates will be the acute angle 0 or 0+9T, according as h and c' have the .same or different signs. For the hyperbola, read C{ different or the same.”

PROOF.—Let the transformed equation (4409) be written in terms of the semi-axes p, q; thus qV-Up^y2 = p2f, representing an ellipse. Now turn the axes back again through the angle —0, and we get

(q2 cos2 0 +p2 sin2 6) a’— (p?—2) sin 20 ay + (23 sin? 0 +p2 cos? 0) tf = P^f-Comparing this with the identical equation (4404), ax3 + 2hxy + by2 = —• c, we have         (p?—q) sin 20 = 2h, p1‘f — —d\

. sin 20 = ^. p’o.          Hence 0 is < i

c p—p                   2 when h and c' have the same sign, p being >q. A similar investigation applies to the hyperbola by changing the sign of f.

INVARIANTS OF THE CONIC.

4417 Transformation of the origin of coordinates alone does not alter the values of a, h, or b, whether the axes be rectangular or oblique. This is seen in (4404).

When the axes are rectangular, turning each through an angle 0 does not affect the values of

4418        ab—h2, a+b, g*+f, or c.

When the axes are oblique (inclination w), transformation in any manner does not affect the values of the expressions

4422      ■ ab—h and a+b—21 cosc.

sin" •                 Sill •

These theorems may be proved by actual transformation by the formula in (4048-50). For other methods and additional invariants of the conic, see (4951).

4424 If the axes of coordinates are oblique, equation (4400) is transformed to the centre in the same way, and equations (4402-6) still hold good. If the final equation referred to axes coinciding with those of the conic be


4425




a‘x‘+b‘y2+c‘ = 0,



and 0 the inclination of the new axis of a to the old one, we shall have d unaltered,


4426

4427



tan 90 _ 2h sin o—a sin 20 . 2h coso—a cos20 — b ‘

	
•_a-\-b—2h cos o+ • Q. P/_a -\-b—2h cos o— • Q . 2 sin2 c ‘                 2 sin2 c ’ where Q = a2+62+2ab cos 20+4h (a+b) cos 0+4h2.



PROOF.—(4404) is now transformed by the substitutions in (4050), putting 3 =0+90°, and equating the new h to zero to determine tan 20. a and b' are most readily found from the invariants in (4422). Thus, putting the new h = 0 and the new w = 90°,


ab — h2




sin2 w ’



_a + b — 2h cos o     . ,7, a + b =----—---- and ab = sin” w

equations which determine a' and b'.

The eccentricity of the general conic (4400) is given by the equation


4429



e* _ (a—b— 2h COS 0)3 _4 1—e =  {ab—h2) sin? co

PROOF.—By (4415), and the invariants in (4422).

THE PARABOLA.

4430 When ab — h2 = 0, the general equation (4400) represents a parabola.

For x‘, y' in (4402) then become infinite and the curve has no centre, or the centre may be considered to recede to infinity.

Turn the axes of coordinates at once through an angle 0 (4049), and in the transformed equation let the new coefficients be a, 2h‘, b', 2g', 2f, c'. Equate h' to zero; this gives (4408) again, tan 20 =---E if 0 be the acute angle determined by this equation, we can decide whether 0 or 0+3T is the angle between the x axis and the axis of the parabola by the following rule.

4431 RULE.—The inclination of the axis of the parabola to the x axis of coordinates will be the acute angle 0 if h has the opposite sign to that of a or b, and 0+2T if it has the same sign.

Proof.—Since ab — U = 0, a and b have the same sign. Let that sign be positive, changing signs throughout if it is not. Then, for a point at infinity on the curve, a and y will take the same sign when the inclination is the acute angle 0, and opposite signs when it is 0+27. But, since ax^ + bif =+0, we must have 2.hxy =-0, the terms of the first degree vanishing in comparison. Hence the sign of h determines the angle as stated in the rule.

/------------------- /-------------------- •

4432 sin 0 = V       cos 0 = V -

	
	
• a-\-b               ‘ a-fb





Proof.—From the value of tan 20 above, 6 being the acute angle obtained, and from h2 = ab.

4434 Also a = 0 and b' = a+b.

For a'b' = ab — h2 = 0, and we ensure that a and not b' vanishes by (4431). Also a' + b' = a+b (4412).

4436     g‘ = g cos 0+f sin 0 = Evd+fvb.

4438     f"’ = f cos 0—g sin 0 =Lvd—gb. v(d+b)

4440 But if h has the same sign as a and b, change 0 into 0+3T.                                                  (4431)

PROOF.—By (4418, 4432-3).

The coordinates of the vertex are


4441




/A f2—b‘c Wg



Obtained by changing the origin to the point xy and equating to zero the coefficient of y and the absolute term. The coefficient of a then gives the latus rectum of the parabola; viz.:


4443



r/e2g‘_ ^Va^fVb


(4437)



- b‘ - V(a+b)8 *

METHOD WITHOUT TRANSFORMATION OF THE AXES.

4445 Let the general equation (4400) be solved as a quadratic in y. The result may be exhibited in either of the forms

4446       y = ax + 3 ± • u (a2—2pa+q),

4447       y = ar+ 8 ± Ve{(o-p)2+(q-p2)},

4448 y = a+B± Ve (x-Y)(-8),

4449 where c=h, 8 = _£, u = hi —ab bob

4452 p = If be or G, (1642) q = &c—£ or A. ab—K‘ C           ab—h2 C

4454   _7 _ 6 (abc+2fgh-afl-b^-eV) _ b^

4456        y and 8=p±V(p- q).

4458 Here y = a+3 is the equation to the diameter DD

(Fig. 31), 7 and 8 are the abscissae of D and D', its extremities, the tangents at those points being parallel to the y axis. The surd = PN = P'N when a = CAP The axes may be rectangular or oblique.

When ab — h2 = 0, equation (4446) becomes

1

 This rule and the demonstration of it are due to Mr. George Heppel, M.A., of Hammersmith.


4459        y = a+B± } 7- 2p‘a,

4460 where p' = bg—lif, q = f^—bc.

4462 In this case, 277 is the abscissa of the extremity of the diameter whose equation is y = axp(3 and the curve has infinite branches.

RULES FOR THE ANALYSIS OF THE GENERAL EQUATION.

First examine the value of ab—h2, and, if this is not zero, calculate the numerical value of c' (4407), and proceed as in (4400) et seq. If ab—h2 is zero, find the values off and q‘ (4459). The following are the cases that arise.

4464 ab—hf positive—Locus an ellipse.

Particular Cases.

4465 △ = 0—Locus the point x'y'.

See (4402). For, by (4404), the conjugate axes vanish.

4466 bA positive—No locus.

By (4447-54), since q—p2 is then positive.

4467 h = 0 and a = b—Locus a circle.

By (4144). In other cases proceed as in (4400-14).

4468 ab—F negative—Locus an hyperbola.

Particular Cases.

4469 △ = 0—'Locus two right lines intersecting in the point xf.

By (4447), since q—p2 then vanishes. In this case solve as in (4447).

4470 bA negative—Locus the conjugate hyperbola.

4471 a+b = 0—Locus the rectangular hyperbola.

By (4414), since a’ = —b'.

4472 a = b = 0—Locus an hyperbola, with its asymptotes parallel to the coordinate axes. The coordinates of the centre

are now -/ and — $, by (4402). the centre, and the equation becomes


Transfer the origin to




4473



2f^—ch

* 212 •

In other cases proceed as in (4400-14).

4474 ab — h2 = 0—Locus a parabola.

Particular Cases.

4475 # = 0—Locus two parallel right lines. By (4459).

4476 p‘={ = 0—Locus two coinciding right lines.

By (4459).

4477 p' = 0 and (‘ negative—No locus.

&z By (4459). In other cases proceed as in (4430-43).

Ex. 1.:           2x2— 2xy +y2+3a— y — 1 = 0.


1 2‘




-1,



Here the values of a, h, bt g, f, c are respectively 2, —1, 1, ab-V = 1; c‘ = A = abc+2fqh—af,bg3—ch2 = _ 9  (4406) C           ab — h2             4

The locus is therefore an ellipse, none of the exceptions (4465-7) occurring here. The coordinates of the centre, by (4402), are


, _ hf—bg = ab — 'P




-1,




, qh—af 1

J =2-1=2



Hence the equation transformed to the centre is

2‘—2y+y‘—2 = 0.

Turning the axes of coordinates through an angle 0 so that tan 20 =-2 (4408), we find the new a and b from a' + b' = 3, aV = l; (4412)

therefore          a = 2 (3— 15), b‘ =2(3+.5),

and the final equation becomes 2 (3— V5) 22+2 (3+ 15) y2 = 9.

The inclination of the major axis to the original a axis of coordinates is the acute angle 2 tan"1 (—2), by the rule in (4416).

Ex. (2):      12x2+60xy+75y2—12z-8J—6 = 0.

The values of a, h, b, g,f, c are respectively 12, 30, 75, —6, —4, —6,

ab — *3=0; p‘ = bg — if = — 330 ; q—f^ — bc. (4460) Since p does not vanish (4475-7), the locus is a parabola. Proceeding, therefore, by (4430-43), we have tan 20 = 2h, =-2; sin 0 =         cos 9 = -2. (4432) a — o    21          V2.          VA By the rule (4431), we must take 0+]z for the angle, instead of 6. There-.            ,       .—g\/b+f\/a    22

fore        g - -9 sin 6+fcos 6 =   %(a+b)  = 1729


32

~/29°



f' = —f sin ^—g cos o = fob—IMa = J •       9            (a+b) and b’ = a + b = 87 (4435).

Consequently the transformed equation is

87,+-48,0+64J-6 = 0.

V Ev VV 20


The coordinates of the vertex are equation with the vertex for origin is




computed by (4441), and the final




_ 44

3 ~ 87^/29




x.



Ex. (3):        «2+6xy +9y2+5x+15y+6 = 0.

5 15

The values of a, h, b, g,f, c are respectively 1, 3, 9, —, —, 6,

ab — h2 = Q and p'=.bg — hf — Q, therefore, by (4475-7), if there is a locus at all, it consists of two parallel or coinciding lines. Solving the equation therefore as a quadratic in y, we obtain it in the form (x + 3y + 2) (a + 3y + 3) = 0, the equation of two parallel right lines.

The equation of the tangent or polar of xif is 4478 ua+uy+u,z = 0 or u,a‘+u,y+u,% = 0 ; (4401, 1405) obtained by (412 0) in the form

4479 (aa’+hy+g) w+(ha‘+by+f) yA-g^-Vfy-V^ = 0, 4480 or {ax+hy+g} a’+(ha+^y +f )y'-^g^ ~^fy + c = 0, 4481 or a^+h ^'+^-[-byy+^ (a+a‘) +f(y+y) +c = 0.

When the curve passes through the origin, the tangent at the origin is

4482               g^+fy = 0.                 (4479)

And the normal at the same point is

4483              f^—gy = 0.

4484 Intercepts of the curve on the axes, — —, -Z.

4486 Length of normal intercepted between the origin and the chord

= Vg+f             (4483-4) a—b

Hight Line and Conic with the general Equation.

4487 Quadratic for n : A, the ratio in which the line joining xy, xy' is cut by the curve.

Let the equation of the curve (4400) be denoted by $ (x, y^ — 0, and the equation of the tangent (4479) by 1 (a, y, x', y') — 0; then the quadratic required will be found, by the method of (4131), to be

n?$ (x, y) +2nn‘y (a, y, a, y') + n‘$ (a, y) = 0.

The equation of the tangents from xy' is 4488      $ (a, 3) $ (a, y) = (v (a, y, a, y)V-PROOF.—By the condition for equal roots in (4487).

COR.—The equation of two tangents through the origin is


4489




Bw2—2Hxy-\-Cy2 = 0.




(4665)



The equation of the asymptotes of u (4400) is


4490




au?+2huu,+ bu2 = 0.



The equation of the equi - conjugates of the conic ax2-}-21ixy -\-by2 = 1 is

4491 (a+b)(ax?+2/vy+by?) = 2 {ab—h2)(a?+y?).

PROOF.—When the conic is ax^Abif = 1, the similar equation is (a+b) (az2+by?) = 2ab (x2 + y^ or (az‘— by^) = 0, given by the intersections of the conic and a circle. Transformation of the axes then produces the above by the invariants in (4418).

4492 When the coordinate axes are oblique, the equation becomes

(a— b^ax1—by2) +2a (hx + by)(h—a cos o) + 2y (ax+hy)(li,—b cos w) = 0.

General polar equation:

4493 {a cos2 0-[-2h sin 6 cos 0-\-b sin? 6) r2 +2 (g cos 6+fsin 6) 7+c = 0.

Polar equation with (a, y) for the pole :               (4134) 4494 (a cos2 6+ 2h sin 0 cos 6+ b sin2 6) 72 +2 {(ax+hy+g) cos O-^-^by-^-h^+f) sin 6} 7+F (ay) = 0.

Equation of the line through x'y' parallel to the conjugate diameter:

4495 (a—a)(ax‘+hy+g)+(y—J)(la‘+by+f) = 0.

PROOF.—By the condition for equal roots of opposite signs (4494).

Equation of the conic with the origin at the extremity of the major axis, L being the latus rectum.

4496              / = La- (1 — e2) x2.           (4269, ’59)

Equation when the point ab is the focus and

Ax-^-By-\-G = 0 the directrix :

4497    {(a ay+{y-by} = e Ax+By+C 4095)

V{A+B2}

INTERCEPT EQUATION OF A CONIC.

The equation of a conic passing through four points whose intercepts on oblique axes of coordinates are s, s' and t, t', is 4498 4$+2ay+J—a(1_1)_y(1 +1)+1 = 0. ss‘ • 'tt ts‘ s / "\t 1 t‘)

Equation of a conic touching oblique axes in the points whose intercepts are s and t:

4499   48+2hay+=_2-241=0, s^      vs t

4500 or

Comparing with the general equation (4400), we have


4501 s==, t=-£,

g f




07   2   ohc?—

0 = 2h--= 2---.0%.

st            c2



Perpendicular p from xy, any point on the curve, to the chord of contact:


4505




2 _ vsH2xy sin2 w P 32+t2— 2st cos d)




(4096, 4500)



Equation of the tangent at x'y':

4507 2(4+%-1)(2+%-1)+(y+ay) = 0. S l /S l /

4508 The equation of the director-circle is (1 + istv) (x2 Ay2 + 2xy cos w) — h (x + y cos o) — k (y + a cos w) + hk cos w = 0.

The parabola with the same coordinate axes as in (4499) : 4509  (£+M_1)= 4y or J&+.%=1. \S t / st          • S v t

Proof.—From (4500), putting =1 (4474), and therefore v — — — st                                       st

Equation of the tangent at a ,y :


4510




•     , y

V(sa’) T v(ty)



[image: ]



[image: ]

as = y^/1.





(4509)

(4123)

(4122)



4511 or y = ma+ ——, msA-t

Equation of the normal at x’y’ : । s’t— n^sU 4512 y = "* (mt+s)”’ 4513 Normal through the origin

The equations of two diameters are, with any axes, 4514   <-%=1 and -=-1.

S t         st

Proof.—Diameter through Ot, 2— = — by the property OR = RQ, in the figure of (4211).                "

Coordinates of the focus :

4516 ^^^Xeos.’  »= 74F+%/c09. (09)

Equation of the directrix :

4518 a (s+t cos o^-Yy (t-\-s cos c) = st cos c.

Proof.—Expand (4509), and form the equation of the polar of the focus by (4479) and (4516).

When the axes are also rectangular, the latus rectum

4,242

4 519                L = -",.          (4095, 4516-8)

(s4+t2)2

4520 Locus of the centre of the conic which touches the axes at the points sO, Ot:

^ = sy.                 (4500, 4402)

4521 To make the conic pass through a point ^y' \ substitute ^y' in (4500), and determine v.

SIMILAR CONICS.

4522 DEFINITION. — If two radii, drawn from two fixed points, maintain a constant ratio and a constant mutual inclination, they will describe similar curves.

4523 If the proportional radii be always parallel, the curves are also similarly situated.

If there be two conics (1) and (2), with equations of the form (4400), then—


similar and similarly



The condition of their being situated is


4524



a _ h _ b

ci       li       b'

PROOF.—By (4404), changing to polar coordinates, r : r' = constant.

The condition of similarity only is

4525           (+4)0 - («+6;          (4418-9) h—ab h—ab or, with oblique axes,

4526   (a+6—2h cos c)2 _ (d‘+b—2h cos c)2.    (4422-8) h^—cib              li2—a'b'

CIRCLE OF CURVATURE.

CONTACT OF CONICS.

4527 DEF.—When two points of intersection of two curves coincide on a common tangent, the curves have a contact of the first order; when three such points coincide, a contact of the second order; and so on. To osculate, is to have a contact higher than the first.

4528 The two conics (Fig. 32) whose equations are aa2+21 wy+b y3+2g% = 0..................(1),

a'x2 + ^h'xy + b'y2 + 2 g'x = 0..................(2), touch the y axis at the origin, 0, by (4482). Eliminate the third terms from (1) and (2), and we obtain a = 0, the line through two coincident points, and

4529 (ab’—ab) a+2 (hb’—Yb) y~^ (bg’—bg) = 9, the equation to LM, the line passing through the two remaining points of intersection of (1) and (2).                 (4099)

Again, eliminate the last terms from (1) and (2), and we obtain

4530 (ag‘ — ag) a® + 2 (hg - h'g) ay + (bg' - b'g) y^ = 0, the equation of the two lines OL, OM. [By (4111) and (4099) 4531 If the points L, M coincide, the conics have contact of the first order. The condition for this is that (4530) must have equal roots; therefore

4532      {ag-a'g)(bg — b'g) = (hg-h'g)\

4533 If the conics (1) and (2) are to osculate, M must coincide with 0. Therefore, in (4529), by' = b'g.

If in (4532) bg' = b'g, the conics have a contact of the third order.

CIRCLE OF CURVATURE.

(See also 1254 et seq.)

The radius of curvature at the origin for the conic ax2 + %hxy — by1+2ga = 0, the axes of coordinates including an angle o, is

4534          P = ~ir^— b sin •

Proof.—The circle touching the curve at the origin is a2+2ay cos o+y2— 2rx sin o = 0, by (4148), and the geometry of the figure, 2r sin o being the intercept on the x axis. The condition of osculating (4533) gives the value of p. p is positive when the convexity of the curve is towards the y axis.

Radius of curvature for a central conic at the extremity P of a semi-diameter a'} the conjugate being b'.

4535 p= "=l=s=X    (4367) a sin ct) p p^ ab

Proof.—Take the equation and figure of (4346) (a = CP). Transform to parallel axes through P. Then by (4534).

The same in terms of a, y, the coordinates of the point P.


4539




_ (b“a2+a‘y?)%

P a?62



Proof.—By (5138), or from (4538) and the value of 5 at (4365).

The coordinates of the centre of curvature 0 for P, the point xy, are

4540 g=Ca", „==&, where c=a- b\ a*               b

PuOO%.—(me. 33.) Tom 8P - * = 5 and EP = 177 = % with the values of p, PG, and PG' at (4535) and (4309).

Radius of curvature for the parabola.

Taking the diameter and tangent through the point for axes,

2a‘ 2a   2SP2 — .

4542         p = -- = —37 = —a. (Fig. of 4201) sin •    sin’ 6    Si

By (4534), and equation (4211).

Coordinates of the centre of curvature at xy (rectangular axes):

4545      $ = 3 +2,  »=- X

Proof.—Prom y—n : p = y : PG and p = 2a cosec3 6, PG = 2a cosec 6 and y = 2a cot 0.

The evolute of a central conic (Fig. 33) :

4547           (az)$+(by)3 = (a*-b)3,

4548 or (a‘a2+b‘y?—c)9+27a”b?c‘a”y? = 0, where c2 = a2—b2.

PROOF.—Substitute for a, y in the equation of the conic (4273) their values in terms of 5, n from (4540). Otherwise as in (4958), or by the method of (5157).

The curve has cusps at L, H, M, and K.

The evolute of the parabola :

4549          a(zY=(t-2a).

PROOF.—As in (4548), from the equations (4201) and (4545).

CONFOCAL CONICS.

4550   43+‘=1 and 4 + 4=1 a2 1 b2                       a2 1 b2

are confocal conics, if

a?—a2 = b?—6"2, or the sign of b‘2 may be changed.

For the confocal of the general conic, see (5007).

4551 Confocal conics intersect, if at all, at right angles.

PROOF.—If u, u are the two conics in (4550), changing the sign of b"2 to make the second conic an hyperbola, u— u =0 will be satisfied at their point of intersection ; and (by a’—a = b’+b") this proves the tangents at that point to be at right angles (4078, 4280).

Otherwise geometrically by (1168).

4552 Tangents from a point P on one conic to a confocal conic make equal angles with the tangent at P. [Proof at (1291)

4553 The locus of the pole of the line AxpBy pC with respect to a series of confocal conics in which a2—b2 = X, is the right line perpendicular to the given one,

BCx-ACy+AB\ = 0.

Proof.—The pole of the line for any of the conics being xy ; Aa2 = —Cx and Bb2 = — Cy (4292) ; also a2—b2 = X. Eliminate a2 and b2.

4554 Cor.—If the given line touch one of the conics, the locus is the normal at the point of contact.

4555 Graves' Theorem. — The two tangents drawn to an ellipse from a point on a confocal ellipse together exceed the intercepted arc by a constant quantity.

PROOF. — (Fig. 132.) Let P, P' be consecutive points on the confocal from which the tangents are drawn. Let fall the perpendiculars PN, P'N'. From (1291), it follows that L PP'N = P'PN', and therefore P'N = PN'. The increment in the sum of the tangents in passing from P to P' is

RR'-QQ' + P'N-PN'= RR'-QQ'.

But this is also the increment in the arc Q,R, which proves the theorem.

4556 If the tangents are drawn from a confocal hyperbola, as in (Fig. 133), the difference of the tangents PQ, PB is equal to the difference of the arcs QT, BT.

The proof is quite similar to the foregoing.

4557 At the intersection of two confocal conics, the centre of curvature of either is the pole of its tangent with respect to the other.

PROOF.—Take — + ~ = 1 (i.) and — — * =1 (ii.) for confocal conics. a2 62                     a2 b 2

2/2               727/2

At the point of intersection, a= —— and y‘=--7 (where c2 = a?—b2);

C                    C

by a?—a"2 = 62+b‘2. The coordinates of the centre of curvature of x'y' in (i.) are a =—4, y =--ia (4540-1). The polar of this point with respect to (ii.) will be “", + 3% = 1. Substitute the values of x", y”; and a " o 4

we see, by the values of x', y', that this is also the tangent of (i.) at P.

4558 A system of coaxal circles (4161), reciprocated with respect to one of the limiting points D or D‘, becomes a system of confocal conics.

PROOF.—The origin D is one common focus of the reciprocal conics, by (4844). The polar of D with respect to any of the circles is the same line, by (4166). D and its polar (both fixed) reciprocate (4858) into the line at infinity and its polar, which is the centre of the conic. The centre and one focus being the same for all, the conics are confocal.

ANALYTICAL CONICS

IN

TRILINEAR COORDINATES.

THE RIGHT LINE.

For a description of this system of coordinates, see (4006). The square of the distance between two points ay, a’B’y’ is, with the notation of (4008),

4601 abr {a (8-8)(y-7)+b (y—7)(-c)+r(a-c)(8-8)},

4602

= abr {a cos A (a— «/)2+b cos B (8-B)2+r cos C (y-y)2) .

Proof.—Let P, Q be the points. By drawing the coordinates (3y, 3 ‘y, it is easily seen, by (702), that

PQ‘ = [(B-B‘)2+ (y-%)2+2 (B-6)(y-) cosA] cosecU......(1). Now, by (4007), a (a —a') + 6 (3-/) + C (y- %) = 0, from which 6 (- ‘)2 = —a (a — «)(3 — 3)—C (3- 3)(y-%), and a similar expression for c (—7)2. Substitute these values of the square terms in (1), reducing by (702).

Coordinates of the point which divides the straight line joining the points ay, a‘‘y‘ in the ratio I : m :

4603       la+ma, !B+m, ly+ny By (4032). l+m l+m l+m

ABC being the triangle of reference, and a == 0, 3 =0, y = 0 the equations of its sides, the equation of a line passing through the intersection of the lines a = 0, 3 = 0 is

4604        la- m3 = 0 or a- kA = 0.

4 K

PROOF.—For this is the locus of a point whose coordinates a, 3 are in the constant ratio m : l or I (4099).

When I and m have the same sign, the line divides the external angle C of the triangle ABC ; when of opposite sign, the internal angle C.

The general equation of a straight line is

4605            la+m3+ny = 0, and it may be referred to as the line (l, m, n).

PROOF: la + mft = 0 is any line through the point C, and (la+m)+ny = 0 is any line through the intersection of the former line and the line y = 0 (4604), and therefore any line whatever according to the values of the arbitrary constants I, m, n.

The same straight line in Cartesian coordinates is

4606         (l cos a+m cos B+n cos y) a +(l sin a+m sin 3+n sin y) y—(lp1 +mp2+nps) = 0.

Proof.—By substituting the values of a, 6, y at (4009).

Or, if the equations of the sides of ABC are given in the form Aa+By+C = 0, &c., the line becomes

4607 (lAiA-mA^nA^ «+(LB,+mB,+nB})y

-^-IC.+mC.A-nC^O.

Proof.—By (4095), the denominators like V^A^+B^) being included in the constants l, m, n.

4608 If u = 0, v = 0, w = 0 are the general equations of the lines a, 3, y, then it is obvious that lu-]-mv = 0 is, like (4604), a line passing through the intersection of u and v, and lu + mvA-nw = 0 represents any straight line whatever.

To make an equation such as a—p (a constant) homogeneous in a, 3, y; multiply by the equation E = Qa+63+(y (4007), thus

(ap~^) a+bp3+cpy = 0,

which is of the same form as (4605). 4610 The point of intersection of the lines la+m+y = 0 and l‘a+m‘3+‘y = 0

is determined by the ratios

a _ B _ y


and (4017).



mn—m’n  nt'—nl  lm—I'm

The values of a, 3, y are therefore


4611




2 (mn—mn) D




2 (nl' — n'l) D




Z (1m—I'm) D



where D = a (mn'—m‘n)+b (nl'—n'l)-\-t (lm'—I'm).

PROOF.—By (4017), or by solving the three equations

aa + b + cy = Z, la+m+ny = 0, l’a+m’+n’y = 0.

The equation

4612 aa+13+ty =0 or a sin A +8 sin B+y sin C = 0 represents a straight line at infinity.

PROOF. — The coordinates of its intersection with any other line la+mfl+ny = 0 are infinite by (4611).

4613 NOTE: aa+63+cy = E, a quantity not zero. The equation aa+63+y = 0 is therefore in itself impossible, and so is a line infinitely distant. The two conceptions are, however, together consistent; the one involves the other. And if, in the equation la + m(3 + ny = 0, the ratios I : m : n approach the values a : b : c, the line it represents recedes to an unlimited distance from the trigon.

4614 The equation corresponding to (4612) in Cartesian coordinates is 0x+0y+0 = 0, the intercepts on the axes being both infinite. Cartesian coordinates may therefore be regarded as trilinear with the x and y axes for two sides of the trigon and the other side at an infinite distance.


4615 The condition that three points a Y1, a,2Y2, a,33Y3 may lie 011 the same straight line is the determinant equation,




di a, a.




71

72

73




= 0.



Proof.—For it is the eliminant of the three simultaneous equations, la+m+ny, = 0,   la,+m2+1Y2   la,+m3++n = 0. (583)

4616 Cor.—The above is also the equation of a straight line passing through two of the fixed points if the third point be considered variable.

4617 Similarly, the condition that the three following straight lines may pass through the same point, is the determinant equation on the right,

la+m,8+n y — 0




la+m,8+ngy = 0

la+m,3+ny = 0,

4618 The condition of parallelism of the two straight lines

I a—m B+n = 0,


n

/ n

r




= 0,



VaA-m'^A-ny = 0, is the determinant equation

Proof.—By taking the line at infinity (4612) for the third line in (4617). 4619 Otherwise the equations of two parallel lines differ by a constant (4076). Thus

la+2+ny+k (aa+13+ry) = 0      (4007) or       (l+ka) a+(m+kb) 8+(n+kt) y = 0 represents any line parallel to la+m+y =0 by varying the value of k.

The condition of perpendicularitv of the two lines in (4618) is

4620 ll’+mm’+Inn’ — (mn'Am'n) cos A—(nl’+n’l) cos B —(lm’—l’m) cos C = 0,

4621 or V (I—m cos C—n co^B^-^-m' (m—n cos A—I cos C) +n‘ (n—l cos B—m cos A) = 0.

Proof.—Transform the two equations into Cartesians, by (4606), and apply the test AA' + BB' = 0 (4078), remembering that

cos (3—Y) = - cos A, &c. (4011).

When the second line is AB or y = 0, the condition is 4622           n = m cos A+l cos B.

It also appears, by (4676), that (4620) is the condition that the two lines may be conjugate with respect to the conic whose tangential equation is

4623 l2+m?+n2-2mn cos A —2nl cos B — ^lm cos C = 0.

The length of the perpendicular from a point a’B’y’ to the line la+i+y = 0 :

4624 ____________la/+m.+ny__

Vv {l2+m2+n2—2mn cos A — 2nl cos 11—21m cos C;

PROOF.—By (4095) the perpendicular is equal to the form in (4606), with a’, y' in the place of x, y, divided by the square root of sum of squares of coefficients of a and y. The numerator — la' + mp' + ny'. The denominator reduces by cos (B— y) = —cos A, &c.

4625 Equation of the same perpendicular : a a I—m cos C—n cos B

3 B‘ m—ncosA—lcosC y y n—l^^B—m^^A


= 0.



PROOF. — This is the eliminant of the three conditional equations La + Mf3-\-Ny = 0, La‘+M‘+ Ny' = 0, and equation (4621).

4626 Equation of a line drawn through a'j3'y' parallel to the line (Z, m, n):

a a  Im—hn

B ft ^.n — tl y y hl — am

PROOF. — It is the eliminant of the three conditional equations la+m +ny = 0, la‘+m‘+ny‘ = 0, and the equation at (4618).

4627 The tangent of the angle between the lines (Z, m, n) and (Zz, m‘, n) is

______(mn —mn} sin A+(nl‘—n‘l) sin B+(lm‘—l‘m) sin C______ ll‘+Imm‘+nn‘—(mn‘+m‘n) cosA — (nl' -\-nl) vosB—(1m +lm) cosC

PROOF.—By (4071) applied to the transformed equations of the lines, (4606), observing (4007).

EQUATIONS OF PARTICULAR LINES AND COORDINATE RATIOS OF PARTICULAR POINTS IN THE TRIGON.

4628 Bisectors of the angles A, B, C:

	
8- y =0, y — a = 0, a — 8 = 0.



4629 Centre of inscribed circle (or in-centre) 1 1:1:1.

The coordinates are obtained from their mutual ratios by the formula (4017).

4630 Bisectors of the angles A, tt — B, tt — C:

B-y= 0, y+a= 0, a+B = 0.

Centre of the escribed circle which touches the side a (or a ex-circle)             —1:1:1.

4631 Bisectors of sides drawn through opposite vertices:

	
	
3    sin B = y sin C, y sin C = a sin A, a sin A = B sin B. 4632 Point of intersection (or mass-centre) : cosec A : cosec B : cosec C.





Proof.—Assume m/3—ny = 0, by (4604), as the form of the equation of a line through A, and determine the ratio m : n from the value of y : 3 when a = 0.

The coordinates of the point of intersection may be found by (4610), or thus :

a:= sin B : sin A = cosec A : cosec B,

3 : y = sin C : sin B = cosec B : cosec C, therefore          a : 3 : y = cosec A : cosec B : cosec C.

4633 Perpendiculars to sides drawn through opposite vertices :

	
	
3    cos B = y cos C, y cos C = a cos A, a cos A = 3 cos B. 4634 Orthocentre: sec A : sec B : sec C.





If the Cartesian coordinates of A, B, G be 2191, &,92, Tz3, the coordinates of the centre of the inscribed circle are

4635 a = ax,+ba,+cas = ayi+by.+cys a+b+c ’ • a+6+c

PROOF.—By (4032). Find the coordinates of D where the bisector of the angle A cuts BC in the ratio b : c (VI. 3), and then the coordinates of E where the bisector of B cuts AD in the ratio b + c : a.

4636 For the coordinates of the centre of the a ex-circle, change the sign of a in the above values of a and y.

4637 The coordinates of the mass-centre are a = $ (x,+a,+as), y = $ (Ji+y,+ys).

4638 The coordinates of the orthocentre are obtained from the equations of the perpendiculars from x^y^ xyy^ viz.,

(x,—as) a+(y— ys) y = a, («,—2)+y2 (y,—ys), (21—22) x+(y,—Y2) y = a, (21—T2)+ys (Y1—y2).

Perpendicular bisector of the side AB:

4639 a sin A— 3 sin B+y sin (A — B) = 0, 4640 or a cos A - Bcos B— S sin(A - B) = 0,

	
4641 or / . asmBsinC\ .  / b sin C sin A \   „   -a — ———i— COS A — 6---—.——— cosB — 0. \       2 sin A /         \       2 sin B /



4642 Centre of circumscribed circle (or circum-centre) : cos A : cos B : cos C.

Proof.—A line through the intersection of Y and a sin A—(3 sin B (4631) is of the form a sin A— 3 shiB + ny = 0, and, by (4622), n = — sin B cos A + sin A cos B = sin (A— B).

Otherwise, by (4633) and (4619), a cos A — (3 cos B + k = 0

is any line perpendicular to AB; and the constant k is found by giving a : (3 the value which it has at the centre of AB.

4643 Centre of the nine-point circle (or mid-centre) : cos (B—C) : cos (0- A) : cos (A — B).

PROOF.—By (955) the coordinates are the arithmetic means of the corresponding coordinates of the orthocentre and circum-centre. Therefore, by (4634, ‘42) and (4 017),

a =

	
- ( sec A . COs A )



R 3 -----------------------.--7--r —.----------------------7----------------------7-------------- ( ,

( sinA sec. +sinB secB+sinC aecC sinA cosA + sinB cosB +sinC COSC ) which reduces to cos (E — C) x constant. 4644 Ex. 1.—In any triangle ABC (Fig. of 955), the mass-centre IB, the orthocentre 0, and the circum-centre Q lie on the same straight line ;2 for the coordinates of these points given at (4632, ’34, ’42), substituted in (4615), give for the value of the determinant

cosec A (sec B cos C— cos B sec C)+&c., which vanishes.

Similarly, by the coordinates in (4643), it may be shown that the mid-centre N lies on the same line.

Equation of the central line :

Ex. 2.—To find the line drawn through the orthocentre and mass-centre of ABC. The coordinates of these points are given at (4632, ’34). Substituting in the determinant (4616) and reducing, the equation becomes

a sin 2A sin (B— C) +/3 sin 2B sin (C— A) +y sin 20 sin (A—B) = 0.

Ex. 3.—Similarly, from (4629, ’42), the line drawn through the centres of the inscribed and circumscribed circles is

a (cos B—cos 0)+^ (cos C — cos A) + y (cos A — cos B) = 0.

Ex. 4.—A parallel to AB drawn through C:

a sin A -f-/3 sin B = 0.

For this is a line through a, by (4604), and the. equation differs only by a constant from 7 = 0, for it may be written

(a sin A+, sin B + y sin C)—Y sin C = 0.

Ex. 5.—A perpendicular to BC drawn through C is

a cos C + d = 0.

For a perpendicular is 3 cos B — y cos C = 0 (4633) ..................... (1),

and a line through C is of the form la+m = 0. Hence, by (4619), the constant k (a sin A +/ sin Bly sin C) must be added to (1) so as to eliminate y. Thus

3 sin 0 cos B + a sin A cos 0 + 3 sin B cos C = 0, [ sin (B + C) + a sin A cos 0 = 0 or 3 + a cos 0 = 0.

ANHARMONIC RATIO.

For the definition, see (1052).

4648 The three ratios of that article are the values of the ratio k : k' in the three following pencils of four lines respectively—

a =0, a—kB = 0,  3 =0,  a+k=0... (i.) (Fig. 34), a = 0, a- k/3 = 0, a- K8 =0,   8=0... (ii.) (Fig. 35), a = 0, .8 = 0, a+k. =0, a+K‘8 = 0...(iii.) (Fig. 36). 4649 The anharmonic ratio (i.) becomes harmonic when k = k'. Hence the lines a-]-k(3, a — k(3 form a harmonic pencil with the lines a, 3, the first dividing the external and the second the internal angle between a and 3 (Fig. 37).

4650 Similarly, the anharmonic ratio of four lines whose equations are

a—MB = 0, a— MB = 0, a— Ms. = 0, a—MB = 0,

is the fraction          —#2) (a—"4).

(i T^j (2 M3)

[image: ]



Proof.—Let OL be the line a = 0, and

OR, 3 =0.

M,—ug = difference of perpendiculars from A and B upon OL, divided by p.

Similarly, us—M4, &c. These differences are proportional to the segments AB, CD, AD, BC, and p is a common divisor.

4651 Homographic pencils of lines are those which have the same anharmonic ratio. Thus the two pencils

a Ml, a M2, a us, a -M4, and a—Ml’, a' — u23‘, a—Ps^ , a’ — u. s are homographic pencils.

THE COMPLETE QUADRILATERAL.

4652 DEF.—Any four right lines together with the three, called diagonals, which join the points of intersection, make a figure called a complete quadrilateral.

4653 Let 0 be any point in the plane of the trigon ABC. Draw AOa, BOb, COc, and complete the figure. The equations of the different lines may be written as under, with the aid of proposition (4604), the ratios l : m : n being arbitrary and dependent upon the position of 0.
[image: ]


		
Aa, m^—ny = 0,
	
AP,
	
m3+ny = 0,


		
Bb, ny —la = 0,
	
BQ,
	
ny A-la =0,


		
Cc, la —m^ = 0,
	
CR,
	
la +m8 = 0 ;


	
bc,
	
m3+ny —la — 0,
	
OP,
	
m/3-\-ny —2la = 0,


	
ca,
	
ny +la — m3 = 0,
	
OQ,
	
ny +la — 2m = 0,


	
ab,
	
la +m—ny = 0,
	
OR,
	
la +m3—2ny = 0,




PQR, la+mB+ny = 0.

PROOF.—Aa, Bb, Cc are concurrent by addition, bc is concurrent with Bb and 3, and with Cc and y, by (4604). AP and OP are each concurrent with bc and a. PQR is concurrent with each pair of lines bc and a, ca and 3, ab and y. Similarly for the rest.

4654 Every pencil of four lines in the above figure (supplying AP, BQ, CB) is a harmonic pencil.

PROOF.—By the test in (4649), the alternate pairs of equations being the sum and difference of the other two in every case.

Otherwise by projection. Let PQRS be the quadrilateral, with diagonals RP, QS meeting in C. (Supply the lines AC, BC in the figure.) Taking the plane of projection parallel to OAB, the figure projects into the parallelogram pqrs; the points A, B pass to infinity, and therefore the lines AC, BC become lines harmonically divided by the sides of the parallelogram, the centre, and the points at infinity.
[image: ]

4655 Theorem (974) may be proved by taking a, 3, y for the lines BC, CA, AB, and V aAm(3Any, la+m‘3 +ny, la+m+n’y for &c, ca, al), the last form being deduced from the preceding by the concurrence of Aa, B1), and Cc.

THE GENERAL EQUATION OF A CONIC.

The general equation of the second degree is

4656   aa?+b8*+cy+2f 8y+2gya+2ha. = 0. This equation will be denoted by $(a,,y) = 0 or u = 0.

Equation of the tangent or polar:

4657 u„a+u,B+u,y = 0 or u,a‘+u,B+u,Y = 0, the two forms being equivalent and the notation being that of (1405). The first equation written in full is

4659

(aa‘+h/+gy) a+(ha’+bS’+fy) 3+(ga+f3‘+cy) y = 0.

Proof. — By the methods in (4120). Otherwise by (4678) ; let a’y be on the curve ; then $ (a, 3, y) = 0. Next let the point where the line cuts the curve move up to a. Then the line becomes a tangent and the ratio n : n vanishes; the condition for this gives equation (4658).

Cor.—The polars of the vertices of the triangle of reference are 4660 aa+hi+8% = 0, ha+bp+fy = 0, ga+fB+cy = 0. 4661 The condition that u may break up into two linear factors representing two right lines is, by (4469), A = 0, where

4662       △ = abc+2fgh—af?—bg?—ch.       (4454)


a h g X hbf u g f c v

X u v




= 0.



4663 The general tangential equation of the conic (4656) expresses the condition that the line Xa + M3 + vy may touch the curve and is the determinant equation annexed. The same written in full is

4664     (bc—f2) A2+(ca—g2) ^^(ab-h^

+2 (gh—af) pv+2 (hf— bg) v+2 (fg—ch) A, = 0, 4665 or AX?+Bu?+Cv+2Fw+2G+2HM = 0; writing, as in (1642),

A = bc—fA    B = ca—g3,


C = ab-h\ H =fg—ch.



F = gh—af,   G = hf— bg,

The tangential equation will be denoted by H (X, u, v) = 0 or U = 0, to correspond with (4656).

Proof. — The determinant is the eliminant of the equation of the line Xa+u+vy = 0, and the three equations obtained by equating X, u, v to the coefficients of a, , y in (4659).

Otherwise.—Assume Aa+u+vy = 0 for the tangent. Substitute the value of the ratio 3 : y obtained from it in the equation of the curve, and express the condition for equal roots (4119).


A H G a H B F ^ G F C y a y



4666 Conversely, if the line Xa+ui +vy has the coefficients X, u, v connected by the equation of the second degree U = 0 (4664), then the envelope of the line is the conic in the

determinant form annexed corresponding to (4663), or in full 4667  (BC-F2) a‘+(CA-G) 8+(AB-H)y

+2 (GH-AF) By+2 (HF—BG) ya+2 (FG-CH) as = 0.

4668 or A (aa?+68‘+cy?+2fBy+2gya+2ha8) = 0.

Proof.—Eliminate v from U = 0 and the given line. The result is of the form LX2 + 2RXp. -]- Mp2 — 0, and therefore the envelope is LM = R2, by (4792). This produces equation (4667). The coefficients are the first minors of the reciprocal determinant of A (1643), and therefore, by (585), are equal to aA, b A, &c.

4669 The condition that U may consist of two linear factors is, as in (4661), D = 0, where

4670 D = ABC^2FGH-AF2-BG2-CH2 = AB. (1643) In this case U becomes the equation of two points, since the line Aa+u+vy must pass through one or other of two fixed points. See (4913).

4671 The coordinates of the pole of Aa+u+vy are as

AX+H+ Gv : HX+ Bp-]-Fv : GA+F+ Cv,

4672 or          U:U: U,.

Proof.—By (4659) we have the equations in the c±"±9% = / margin, the solution of which gives the ratios of a : B : y. (a+f+c = TV 4£P9 a _ B _ y — k

AX + Hp + Gv HX + Bp + Fv GX + Fp + Cv A

Hence the tangential equation of the pole of X’a + p(3 + v’y, i.e., the condition that Xa+u+vy may pass through the pole; or, in other words, that the two lines may be mutually conjugate, is

4674 AU+U,+vU,=0 or XU+U+vU, = 0, the two forms being equivalent, and each

4676           = AXX'+Bpp'+Cw' +F(uv+)+G (X‘+)+H (Xp + Xu).

The coordinates of the centre a0, 3o, Y0 are in the ratios

4677 A^+m^Gt : H^ + Bb+Ft : Ga+Fb+Ct, where a, b, C are the sides of the trigon.

PROOF.—By (4671), since the centre is the pole of the line at infinity aa+b3 + cy = 0 (4612).

The quadratic for the ratio n : n of the segments into which the line joining two given points ay, a‘‘y‘ is divided by the conic is, with the notation of (4656-7),

4678

$ (a, 8, y) n2+2 (.a+.8+$Y) nn+4 (a, 8, y) n2 = 0.

PROOF.—By the method of (4131).

The equation of the pair of tangents at the points where y meets the general conic u (4656), is

4679           au}+2hu,1,+bu? = 0.

PROOF.—The point a’B’, where y meets the curve, is found from aa"2+2ha‘B‘+b/3‘2 = 0 [Y = 0 in (4656)]. The tangent at snch a point is ua‘+ug‘ = 0 (4658). Eliminate a , ‘.

The equation of a pair of tangents from a’B’y is

4680    $ (aW) $ (a8y) = ($.a/+$,8+$,%).

PROOF.—By the condition for equal roots of (4678).

By actual expansion the equation becomes

(]3y2 + C^-2F[3y) a2+(C«+Ay-2Gya) +(A32+Ba-2H«3) y2

+ 2 ( - Ay + Hya + Gap - Fa2) B’y

4681          4-2 (H[3y - By a + Fa ft-G^2) y'a'

+2 (G(3y + Fya-Ca(3-Hy2) a (3' = 0.

In which either a', [3', y' or a, (3, y may be the variables, for the forms are convertible.

Otherwise the equation of the two tangents is

4682      4 (By—B’y, ya’— a, as’—a 8) = 0.      (4665)

PROOF.—By substituting (3y' —3‘, &c. for X, u, v in (4664), the condition that the line joining a'fj'y' to any point a(3y on either tangent (see 4616) should touch the conic is fulfilled. The expansion produces the preceding equation (4681).

The equation of the asymptotes is

4683       ^^, ^,y) = ^^, ^,y^— 1^ ............ (1), where a,, 3o, y0 are the coordinates of the centre.

Otherwise the equation, in a form homogeneous in a, 3, Y, is

4684 (aa,+18,+ty.) $ (a, 8, 7) = I (aa+68+ty)9......(2), where a, b, C are the sides of the trigon.

And, finally, if the tangential equation (4664) be denoted by H (X, u, v) = 0, the equation of the asymptotes may be presented in the form

since the line at infinity (4612) is the pole of the centre.

From (4) and (5), by eliminating k, equation (1) is produced; and by dividing (4) by (5), we get equation (2).

Again, taking the values of a, , y from (4673), we have

Aa+u6+vy = • A, u, ») and therefore aao+b+cy, = d (a, b, c).

k             A ‘                      k              A

By the last equation, (2) is converted into (3). See also (4966).

CoR.—Since the centre (a,, 3o, y0) is on the asymptotes, we have

4686        $(a,,8,, ) = 2’1 + * (a, b, c).

4687 The semi-axes of the general conic (4656) are the values of r obtained from the quadratic


as cos A

I,

g,

a.




h, bs cos B y2




8,




Is cos C

72

r.




= 0,



where a,b, I are the sides of the trigon, and

s = abrA — H (abr).

Proof.—The centre being a,oYo, put a — a, = a, (I—^ — y^ 7—Y = z. afty being a point on the conic, and 7 the radius to it from the centre, we have, by (4602),

4688 The area of the conic — ----------. {d (a,b,r)}*

Proof.—If the roots of the quadratic (4687) are =11, =122, the area will be TrY. The coefficient of r-4 reduces by trigonometry to — Z2s2, and the absolute term is — (a, b, c). Hence the product of the roots is found.

4689 The conic will be an ellipse, hyperbola, or parabola, according as H (a, b,c) (4664) is positive, negative, or zero.

Proof.—The squares of the semi-axes have opposite signs in the hyperbola. Therefore the product of the roots of the quadratic (4687) must for an hyperbola be negative, and therefore d negative in (4688).

d (a, b, c) = 0 makes the curve touch the line at infinity (4664), a property which distinguishes the parabola.

The condition that the general conic (4656) may be a rectangular hyperbola is

4690 a+b+c = 2f cos A+2g cos B+2h cos C.

Proof.—Let the asymptotes be

la+m+y = 0,   l’a+m'3+n’y — 0.

Forming the product, equating coefficients with (4685), and denoting $ (a, b, .c) by (p, we get the proportions

IV _ mm' _ nn' _ mn' + m'n

aq — a’A bo—FA co—2A 2 (fo—6.A)

~ nV + n I _ 1m + Vm

2 (gp—@aA)   ^(^ — db^y

We may therefore substitute these denominators in (4620) for the condition of perpendicularity of the asymptotes. The result reduces to the equation above, by (837).

For another method, see (5002).

4691 The general conic (4656) will become a circle when the following relation exists between the coefficients :

b sin°C +c sin?B-2f sinB sinC

= c sin2A+a sin2C — 2g sinC sin A

= a sin2B+b sin2A — 2h sin A sin B.

PROOF.— Equate coefficients of the equation of the conic (4656) with those of the circle in (4751).

4692 The equation of the pair of lines drawn from a point a’B’Y to the points of intersection of the conic $ and the line L = Aa+u+vy = 0 is, writing L' for Aa’+u’+vy, with the notation of (4656-7),

L'^ (a, 8, 7) - 2LL/($.a+ $.8+6,7) +L$ (a, 8, Y) = 0.

Proof.—By the method of (4133).

4693 The Director-Gircle of the conic, that is, the locus of intersection of tangents at right angles, is, in Cartesians,

C (x2+tf)-2Gx--2Fy+A+B = 0.

Proof.—Let the equation of a tangent through xy be

m— n + (y — ma) = 0.

Therefore in the tangential equation (4665) put X = m, u = -1, V = y— ma, and apply the condition, Product of roots of quadratic in m = — 1 (4078).

The equation of the same circle in trilinears is

4694 (B + C + 2F cos A) a2 + (O + A + 2G cos B) 82 + (A + B + 2H cos C) y2

+ 2 (A cosA—H cos B — G cos G— F) Gy

+2 (-H cos A+B cosB— F cos G-G) ya

+2 { — G cos A- F cosB+G cos G—H) a = 0;

or, in the form of (4751),

1

 This nomenclature is suggested by Professor Hudson, who proposes the following:— “In-circle, circum-circle, a ex-circle ... mid-circle for inscribed circle, circumscribed circle, circle escribed to the side a, and nine-point circle; also in-centre, circum-centre, a excentre, ... mid-centre, for the centres of these circles ; and in-radius, circum-radius, a ex-radius, ... mid-radius, for their radii; central line, for the line on which the circum-centre, mid-centre, ortho-centre, and mass-centre lie ; and central length for the distance between the circum-centre and the ortho-centre.”

2

 The central line. See note to (4629).


4695

(aa+63+cy)(B+C+2FcosA a+&c.) = d (a, b, c) (a8y+6ya+c@8).

4 M

Proof.—The equation of a pair of tangents (4681) through a point afty in trilinears, when the tangents are at right angles, represents the limiting case of a rectangular hyperbola. Therefore the equation referred to must have the coefficients of a"2, B‘2, &c. connected by the relation in (4690), which thus becomes the equation of the locus of the point a^y; i.e., the director-circle.

4696 When the general conic is a parabola, C = 0 in (4693) and • (a, b, c) = 0 in (4695), by (4430) and (4689), and these equations then represent the directrix.

PARTICULAR CONICS.

4697 A conic circumscribing the quadrilateral, the equations of whose sides are a = 0, 3=0, 7 — 0, 8=0, (Fig. 38)

ay = *88.

Proof.—This is a curve of the second degree, and it passes through the points where a meets 3 and 3, and also where y meets 3 and &

4698 The circumscribing circle is ay = BS; + or —, as the origin of coordinates lies without or within the quadrilateral.

Proof.—Transform (4697) into Cartesians (4009) ; equate coefficients of a and y and put the coefficients of xy equal to zero.

4699 A conic having a and y for tangents and 3 for the chord of contact:                                         (Fig. 39) ay = kB2.

Proof.—Make 3 coincide with ft in (4698).

4700 A conic having two common chords a and 3 with a given conic S :                                            (Fig. 40) S = ka/3.

4701 A conic having a common chord of contact a with a given conic S :                                            (Fig. 41) S = ka.

4702 Cor.—If RPQ be drawn always parallel to a given line, PN2 gc RP.PQ, by (4317).

4703 A conic having a common tangent T at a point x'y' and a common chord with the conic S:              (Fig. 42)

S = T (Ix-^-myAf-nz).

4704 A conic osculating S at the point x'y' where T touches at one extremity of the common chord I (x—x) +m (J—y) :

(Fig. 43)

S= T(l^-\-my—lx — my').

4705 A conic having common tangents T, T' at common points with the conic S :                                (Fig. 44)

s = kTT.

4706 A conic having four coincident points with the conic

S at the point where T touches :                      (Fig. 45)

S = kT\

4707 The conics S+L2 = 0, S+M2 = 0, S+N2 = 0,

(Fig 46) having respectively L, M, N for common chords of contact with the conic S, will have the six chords of inter-SeCbI on

L±M=0, M±N=0, N±L=0, passing three and three through the same points.

Proof.—From (S+ M?) - (S+ N?) = (M+NXM-N), &c.

By supposing one or more of the conics to become right lines, various theorems may be obtained.

4709 The diagonals of the inscribed and circumscribed quadrilaterals of a conic all pass through the same point and form a harmonic pencil.

Proof.—(Fig. 47.) By (4707), or by taking LM = Ri and L'M.' = R'2 for the equations of the conic by (4784).

4710 If three conics have a chord common to all, the other three chords common to pairs pass through the same point.

Proof.—(Fig. 48.) Take S, S + LM, S + LN for the conics, L being the chord common to all; then M, N, M—N are the other common chords.

4711 The hyperbola ay = (0a+Oy+tp)2

is of the form (4699), and has for a chord of contact at infinity 0z+0y+p = 0, a, y being the tangents from the centre.

4712 The parabola y2 = (0a+0y+p) a has the tangent at infinity 0x+0y+p = 0.

4713 So the general equation of a parabola may be put in the form of (4699). Thus

(ax+By)*+(2g=+2fy+c)(0.+0y++1) = 0.

Here ax + fty is the chord of contact, that is, a diameter; 2gx + 2fy + c is the finite tangent at its extremity, and Ox + Oy + 1 the tangent at the other extremity, supposed at infinity.

4714 The general conic may be written

(a^2-]r2h^y-\-by2)-]r(<2gcV-{-2fy-{-c')(0^-]-0y-\-l) = 0.

For this is of the form ay+k3, 3 being at infinity.

4715 The conics s and S—k (0x+0y+1)2 have double contact at infinity, and are similar.

4716 The parabolas s and S—k have a contact of the third order at infinity.

PROOF.—For S and S— (0x + 0y +k)2 have the line at infinity for a chord of contact; and, by (4712), this chord of contact is also a tangent to both curves.

4717 All circles are said to pass through the same two imaginary points at infinity (see 4918) and through two real or imaginary finite points.

PROOF.—The general equation of the circle (4144) may be written

(x + iy)(x—iy) + (2gx + 2fy + c)(0x + 0y + l) = 0;

and this is of the form (4697). Here the lines x^ziy intersect 0x+0y+1 in two imaginary points which have been called the circular points at infinity, and 2gx + 2fy + c in two finite points P, Q ; and these points are all situated on the locus a2 + y2 + 2gx + 2fy + c = 0.

4718 Concentric circles touch in four imaginary points at infinity.

PROOF.—The centre being the origin, equation (4136) maybe written (x+iy^x—iy) = (0x+0y +7)2, which, by (4699), shows that the lines x ± iy have each double contact with the (supplementary) curve at infinity, and the variation of r does not affect this result. Compare (4711).

4719 The equation of any conic may be put in the form a?+y? = e%y?.

Here a = 0, y = 0 are two sides of the trigon intersecting at right angles in the focus ; =0, the third side, is the directrix, and e is the eccentricity.

The conic becomes a circle when e = 0 and y = oo , so that ey = r, the radius, (4718).

4720 Two imaginary tangents drawn through the focus are, by (4699),

(x+iy)(a—iy) = 0.

These tangents are identical with the lines drawn through the two circular points at infinity (see 4717). Hence, if two tangents be drawn to the conic from each of the circular points at infinity, they will intersect in two imaginary points, and also in two real points which are the foci of the conic.

All confocal conics, therefore, have four imaginary common tangents, and two opposite vertices of the quadrilateral formed by the tangents are the foci of the conics.

4721 If the axes are oblique, this universal form of the equation of the conic becomes

a2+2zy cos o+y2 = e2y2.

The two imaginary tangents through the focus must now be written

{a+y (cos o+i sin o)} {a+y (cos o— i sin o)} = 0.

4722 Any two lines including an angle 0 form, with the lines drawn from the two circular points at infinity to their point of intersection, a pencil of which the anharmonic ratio is ei (m-20)

Proof.—Take the two lines for sides (3, y of the trigon. The equation of the other pair of lines to the circular points will be obtained by eliminating a between the equations of the line at infinity and the circum-circle, viz.,         aa+63+cy = 0 and I+1+c=0.       (4738)

a B Y

The result is             2+2y cos@+y = 0 ; or, in factors,             (3 + eboy) (/ + e-i) = 0.

The anharmonic ratio of the pencil formed by the four lines 3, 3+est y, y, B+e-iy is, by (4648, i.),

_____ : e-ie —______ = ei(r-2e).

4723 Cor.—If @=zr, the lines are at right angles, and the four lines form a harmonic pencil. [Ferrers’ TNI. Coords., Ch. VIII.

THE CIRCUMSCRIBING CONIC OF THE TRIGON.

4724 The equation of this conic (Fig. 49) is

18y+mya-nas — 0 or 4+3+1 =0

PROOF.—The equation is of the second degree, and it is satisfied by a = 0, 3 = 0 simultaneously. It therefore passes through the point a. Similarly through /3y and ya.

The tangents at A, B, and G are

4726 m+n=0,  "+L=0, L+"=0. Y     Ya     a P

PROOF.—By writing (4724) in the form

mya+3 (ly+na^) = 0, ly+na = 0 is seen, by (4697), to be the tangent at ay; for the intersections of a and y, with the curve, now coincide, and 3 (now ly+na) passes through the two coincident points.

4729 The tangent, or polar, of the point a^'y is, by (4659), (my+n‘) a+ (na-\-ly) B+(lB‘+ma‘) y = 0.

4730 The tangents at A, B, G (Fig. 49) meet the opposite sides respectively in P, Q, R on the right line

&LB_Y=0        By (««*)•

I m n

4731 The line -P passes through (D), the intersection of the tangents at A and B.

4732 The diameter through the intersection of the tangents at A and B is

naa— nb3+(la— mb) y = 0.

PROOF.—The coordinates of the point of intersection are Z : m : ~n, by (4726-7), and the coordinates of the centre of AR are b : a : 0. The diameter passes through these points, and its equation is given by (4616).

4733 The coordinates of the centre of the conic are as

I (— la+mb+nr) : m(l%—mb+nt) : n (la+mb— nt).

PROOF.—By (4610), the point being the intersection of two diameters like (4732). Otherwise, by (4677).

4734 The secant through (a11Y1), (a,32Y2), any two points on the conic, and the tangent at the first point are respectively, lamB.ny.E0 and la+m8+ny =o.

d,d, AA %1%2              ai Bi Y

Proof.—The first is a right line, and it is satisfied by a = a1, &c., and also by a = a,, &c., by (4725). The second equation is what the first becomes when a2 = a1, &c. For the tangential equation, see (4893).

4735 The conic is a parabola when l‘a?+m2b2+n‘c2—2mnbt~-2nlt^—2lmab — 0,

4736 or • (la) + V(mb)+ V(nt) = 0.

Proof.—Substitute the coordinates of the centre (4733) in act +6+Cy =0, the equation of the line at infinity (4612).

Otherwise, the conic must touch the line at infinity; therefore put a, b, c for X, u, v in (4893).

4737 The conic is a rectangular hyperbola when

I cos A+m cos B+n cos C = 0, and in this case it passes through the orthocentre of the triangle.

Proof.—By (4690), and the coordinates of the orthocentre (4634).

THE CIRCUMSCRIBING CIRCLE OF THE TRIGON.

4738 By sin A+ya sin B+a, sin C = 0, sin A , sin B . sinC , or         --——pH--= 0.

a P Y

Proof.—The values of the ratios I : m : n, in (4724), may be found geometrically from the equations of the tangents (4726-8).

For the coordinates of the centre, see (4642).

THE INSCRIBED CONIC OF THE TRIGON.

4739 W+m’B’+n’y- 2mny— 2nlya- 2lma/3 = 0.

4740 or (la) + • (m8) + (ny) = 0.

Proof.—(Fig. 50.) The first equation may be written ny (ny — 2la—2m) + (la—mfty = 0.

By (4699) this represents a conic of which the lines y and ny—2la—mi are the tangents at F and f, and la—mi the chord of contact. Similarly, it may be written so as to shew that a and 3 touch the conic.

4741 The three pairs of tangents at F,f, &c., are


2m/3-}-2ny — la and a



2ny—2la— m/3 ?   2la-\-2m^—ny

and B ) ’ and y and they have their three points of intersection P} Q, R on the right line la+m+y.                      By (4604). 4742 The coordinates of the centre of the conic are as nh+mt : lr+na : ma+lb.

Proof.—By putting a and 3 = zero alternately in (4739), we find, for the coordinates of the points of contact,

i — a _ 2An       .  , —   _ 2An at D, p = —----; and at a = -----;

nb + mc                  nd + Zc therefore the equation of the diameter through C bisecting DE is, by (4603), a _ 3 nb +mc k + nd

Similarly the diameter bisecting LF is —7 = —d—. ma+lb nb + mc

Therefore the point of intersection, or centre, is defined by the ratios given above.

Otherwise, by (4677), and the values in (4665), writing for a, b, c,f, g, h the coefficients in (4739).

4743 The secant through afi^^ a,32Y2 any two points on the curve.

avl (• Biy2+v 3,y1)+8vm (• yia,+ • ya,) +• n (• a,8,+ • a,8,) = 0.

Proof.—Put a,1Y1 for ay, and shew that the expression vanishes by (4740).

4744 The tangent at the point a,1Y1 :

/lo/m/ n -ay--3v+YM— = 0. • di ‘           • Y1

Proof.—Put a,= a,, &c., in (4743), and divide by 2(a Y1).

4745 The equation of the polar must be obtained from (4739) by means of (4659).

4746 The conic is a parabola when

[image: ]



Proof.—Similar to that of (4736).


4747



THE INSCRIBED CIRCLE OF THE TRIGON.

a2 cos4 4+8 cos4 B + y cos4 C

l : m = 3 ; a = r cot — sin A : r cot —- sin B = ± cos2 2 A : cos2 2B ;

+ for the inscribed; — for the escribed circle and T— B instead of B. 4750 The tangent at «.‘Y, by (4744), is

Aa BB C, . C052 ve *eos 2 VB +eos 277=0

The polar is obtained as in (4745).

GENERAL EQUATION OF THE CIRCLE.

4751 (la+mB+ny) (a sin A+8 sin B+y sin C) +k {^y sin A+ ya sin B +a‘ sin C) = 0 4 N

PROOF.—The second term is the circumscribing circle (4738), and the first is linear by (4609) ; therefore the whole represents a circle. By varying k, a system of circles is obtained whose radical axis (4161) is the line laA-mftAny, the circumscribing circle being one of the system.

4752 If l’a + m'3+n’y be the radical axis of a second system of circles represented by a similar equation, the radical axis of any two circles of the two systems defined by k and k' will be

k‘(la+m+ny)—k(la+m‘B+n‘y) = 0.

PROOF.—By eliminating the term

Gy sin A + ya sin B + a/3 sin C.

4753 To find the coefficient of a2+y2 in the circle when only the trilinear equation is given.

RULE.—Kake a, 3, y the coordinates of a point from which the length of the tangent is known, and divide by the square of that length; or, if the point be within the circle, substitute iQhalf the shortest chord through the point” for Qithe tangent.”

PROOF.—If S = 0 be the equation of the circle, and m the required coefficient ; then, for a point not on the curve, S : m = square of tangent or semi-chord, by (4160).

THE NINE-POINT CIRCLE.
[image: ]

4754 a2 sin 2A +3‘ sin 2B+Y2 sin 2C

-2 (By sin A + ya sin BA-a^ sin C) = 0.


Proof.—The equation represents a circle because it may be expressed in the form

(a cos A + 3 cos B + y cos 0) (a sin A + B sin B + y sin 0) |

— 2 (By sin A + ya sin B+a sin C~) = 0.

See Proof of (4751). Now, when a = 0, the equation becomes

(B sin B — y sin 0} (3 cos B — y cos C) = 0, which shews, by (4631, ’3), that the circle bisects BC and passes through B, the foot of the perpendicular from A.

4754a The equation of the nine-point circle in Cartesian coordinates, with the side BC and perpendicular on it from A for x and y axes respectively, is

a?+y—R sin (B-C) «—R cos (B—C) y = 0, where R is the radius of the circum-circle.

THE TRIPLICATE-RATIO CIRCLE.

47546 1 Let the point S (Fig. 165) be chosen, so that its trilinear coordinates are proportional to the sides of the trigon. Draw lines through S parallel to the sides, then the circle in question passes through the six points of intersection, and the intercepted chords are in the triplicate-ratio of the sides.

[The following abbreviations are used, a, b, c, and not a, b, c, being in this article written for the sides of the trigon ABC.]

K=a2 + U + c2-, X =(bc+ca+ab);  A = ABC; =M;   • = 2 BFD = DB'F', &c.;  6 = DFB' = DB'D', &c.

By hypothesis,  a = ~ = % = 424—, (400 7) = 24 ..................(1)

’   a b c a2+62+c21    K              v h

BD'_ a _ a 1 _BF' BFcy ‘” W’ therefore BF.BF' = BD.BD', therefore F, F', D, D' are concyclic.

If AS, BS, OS produced meet the opposite sides in I, m, n,

Bn   a sin BCn _ aa _ a2 1 1\


(2).



An   bAnACn I ft b2’ X


SF' = BB =




2cA




sin B K sin B




(1) = Similarly BF' =    &c. ... (3).



LD' = DP^^ =—.— = —, &c.


(4).




(5).



sin C K c K’

BB' = BE + BE' = a (c±a2), &c. .


COS W —




BF2 + FL2-BE2  a2 + c2 + F

2BF.FE       2X




(5 & 6) = X




(9).



sin •=V(-4)= (708) ...............(10).

cose = cos (^A — u), &c. = a cosA + bc ..............  (11).

AFE' + BEF' + CEE' = ArAF sinA + &c. = p’A = EEF, by (6) ... (12).

Or, geometrically, by Euclid I. 37.

THE SEVEN-POINT CIRCLE2

4754c Let lines be drawn through A, B, 0 (Fig. 165) parallel to the sides of the triangles DEF, D'E'F', as in the figure, intersecting each other in P, P', L, M, N. Let Q be the circum-centre; then the seven points P, P', L, M, N, Q, S all lie on the circumference of a circle concentric with the T. R. circle.                                                       (16)

The proof depends on Euclid III. 21, and the similar triangles BEF, L'E'F'.

The radius p' of the seven-point circle is

p' = E „/(K?312) = 2PP‘sin2e .......... A                 1 — 3 tan" w


§ (V), ( (18),



obtained from p'2 = p2 + SDP—2SD cos (B-TLD').

Expand and substitute cos TDL' = 0 = A8r by (3) and (5),


sin TDD’ = cos 0 (11), cos B =




c2+a‘— b3 2ca




2 sin B ——, COS A = ac




F + c2-^




3p + p'= R2, by (17) and (13) ;




cos 3c, by (17) and (9) ..

COS w




2bc

§ (19), ' I (20).



The point S has been called the Symmedian point of the triangle. It has also this property. The line joining the midpoint of any side to the mid-point of the perpendicular on that side passes through S.

Proof.—Let X, Y, Z (Fig. 166) be the feet of the perpendiculars ; a, y, z the mid-points of the same, and X, Y', Z' the mid-points of the sides. Now the trilinear coordinates of X, S, and x in order are proportional to

0, c, b           This determinant vanishes;

	
a, 1), c . therefore the three points are on 1, cos C, cos B the same right line, by (4615). That the three lines X’x, T'y, Z'z are concurrent appears at once by (970), since CX = 2Y‘x, &c.



The Symmedian point may also be defined as the intersection of the three lines drawn from A, B, G to the corresponding vertices of the triangle formed by tangents to the circumcircle at A, B, G.

Let Ba, G(3, Ay be taken = GX, AY, BZ respectively. Then Aa, B(3, Gy meet in a point Z, by (976), and this point by similarity of figure is the Symmedian point of the triangle formed by lines through A, B, G parallel to the sides BG, GA, AB.

If the sides of X'Y'Z' be bisected, similar reasoning shews that o, the Symmedian point of the triangle X'Y'Z', lies on S^.

It can also be shewn that, if A'B'G' be any triangle having its sides parallel to those of ABG and its vertices on SA, SB, SG, the sides of the two triangles intersect in six points on a circle whose centre lies midway between the circum-centres of the same triangles. When A'B'G' shrinks to the point S, the circle becomes the T. R. circle.

A more general theorem respecting the triangle and circle is the following—

Take ABC any triangle, and let BD'FF'FF' be the points in order, in which any circle cuts the sides.

Let         BF = pc, CF = qa, AF = rb 2             (26)

CF' — p'b, AF' = qc, BF' = r'a 5

From BB.BD' = BF. BF', &c., Euclid III. 35, we can write three equations which are satisfied by the values

p = r' = tac, q = p = tab, r = q = tbc ............ (27), and from these equations it appears that

BF=ac’, F'F' = aa, &c., where c = v(t‘X2- tK+1) ...... (28), so that DFF and D’E’F are both similar to ABC.

Also EF' = tabc, therefore EF' = FE' = EE'.............................

From sin BEE = tac sin we can obtain

CONIC AND SELF-CONJUGATE TRIANGLE.

When the sides of the trigon are the polars of the opposite vertices, the general equation of the conic takes the form

4755          la?+m8:—n‘y = 0.

Proof.— (Fig. 51.) The equation may be written in any one of the three ways,

l2a2 = (ny+m)(ny — m),     m232 = (wy Ala)(n,y—la),

n2y2 = (la+im)(la—ims).

Hence, by (4699), a or BC is the chord of contact of the tangents ny F mS (AQ, AS) drawn from A, and 3 is the chord of contact of the tangents ny = la (BR, BP) drawn from B. Hence a, 6 are the polars of A, B respectively ; and therefore y or AB is the polar of C (4130). Also y may be considered to be the chord of contact of the imaginary tangents la=Lim drawn from C.

4756 If the points of intersection of a and 3 with the conic be joined, the equations of the sides of the quadrilateral so formed are

QR, la+m3+ny = 0,   SP, la+mB—ny = 0,

PQ, —la+m8+ny = 0,   RS, la-~mR-\-ny = 0.

Hence QB, SP and PQ, RS intersect on the line y in A' and B'.

4757 Each pencil of four lines in the diagram is a harmonic pencil, by the test in (4649).

4758 The triangle A'B'C is also self-conjugate with regard to the conic.

PROOF.—The equations of its sides CB', CA', A'B' are

la—m/3 = 0, la + m/3 = 0, y = 0.

Denote these by a', B‘, y, and put a, 3 in (4755) in terms of a, B‘. The equation referred to A'B'C thus becomes a‘2+"2— 2n2y2 = 0, which is of the same form as (4755).

4759 It is clear that the triangles AQS and BPR, formed by a pair of tangents and the chord of contact in each case, are also self-conjugate.

4760 Taking A'B'C for the trigon, and denoting the sides by a, 3, y, the equations of the sides RS, PQ, QR} SP of the quadrilateral become respectively

ny la = 0,     m^ i ny = 0.

Ex.—As an example of (4611), we may find the coordinates of P from the equations

da+ 6+ y =2)           ( a = 2lm—(amn-+bnl+elm)

0+mM ny = Q ( from which 3 3=Xmn—:(amn+bnl+clm)

	
	
— la+ 0 + =0)           (y = Znl—: (amn+bnl+clm).





To obtain the coordinates of Q, R, and S, change the signs of m, n, and I respectively.

ON LINES PASSING THROUGH IMAGINARY POINTS.

4761 Lemma I.—The right line passing through two conjugate imaginary points is real, and is identical with the line passing through the points obtained by substituting unity for •— 1 in the given coordinates.

Proof.—Let (a+ ia', b+ib‘) be one of the imaginary points, and therefore (a— ia', b—ib') the conjugate point. The equation of the line passing through them is, by (4083) and reducing, b’z — ay + a'b — ab' = 0, which is real.

But this is also the line obtained by taking for the coordinates of the points (^a+a', b + b') and (a— a, b — b'y

Lemma II.—If P, S and Q, R are two pairs of conjugate imaginary points, the lines PS and QR are real, as has just been shown, and, therefore, also their point of intersection is real. The other pairs of lines PQ, RS and PR, QS are imaginary. Bnt the points of intersection of each pair are real, and are identical with the points which are obtained by substituting unity for v—1 in the given coordinates, and drawing the six lines accordingly.

PROOF.—Let the coordinates of the four points be as under—

P......a Fid, b+ib',        Q......a Aid, 3 + ip3

.......a—id, b — ib',        R......a — id, ^—ip.

The equations of PR and QS, by (4083), are L+iM and L—iM, where

L = (b—p a—(a—a) y + afl—db + dp—db', M = (b' + P) x—(d—d) y + dfi—db — aP +ab‘.

Now the lines L±iM=Q intersect in the same real point as the lines L ± M = 0, because the values L = 0, M = 0 satisfy both equations simultaneously. Hence, to determine this point, we have only to take i as unity in the given coordinates.

LEMMA III.—If P, S are real points, and Q, R a pair of conjugate imaginary points, the lines PS and QR are both real, by Lemma I., and consequently their point of intersection is real. The remaining pairs of lines PQ, RS and PR, QS and their points of intersection are all imaginary. But the line joining these two imaginary points of intersection is real, and is identical with the line obtained by substituting unity for •— 1 in the given coordinates and drawing the six lines accordingly.

PROOF.—Let the coordinates of the four points be as under—

P......^y^        Q......a + id, 3 + ip,

S...... @22,        R......a — id, 3 — ip.

Since the coordinates of R are obtained from those of Q by merely changing the sign of i, the equations of the four imaginary lines will take the forms

PQ ...... A—iB,       SQ...... O—iD,

PR......A + iB,      SR...... C+iD.

Now let the coordinates of the point of intersection of PQ and SR be L+iM, L' A iM', then will L—UH, L' — iM‘ be the coordinates of the intersection of PR and SQ, for the equations of this pair of lines are got from those of PQ and SR by merely changing the sign of i. The points of intersection are therefore conjugate imaginary points, and the line joining them is real, by Lemma I. Also, since that line is obtained by writing 1 for i in the co-ordinates of those points, it will also be obtained by writing 1 for i in the original coordinates of Q and R and constructing the figure as before.

4762 To find a common pole and polar of two given conics :

(i.) If the conics intersect in four real points P, Q, P, 8, construct the complete quadrilateral (4652). Then A'B'G (Fig. 51) is a self-conjugate triangle for each conic, by (4758), and therefore each vertex and the opposite side form a common pole and polar to the conics.

(ii.) If the conics do not intersect at all in real points, the triangle A'B'G is still real, by Lemma II. (4761), and can be constructed in the manner shown.

(iii.) If two of the points (P, 8) are real, and two (Q, R) imaginary, then, by Lemma III., the vertex A' and the side B'G are real, and may be constructed, and they form a common pole and polar of the given conics.

Returning to the triangle of reference ABG,

4763 Let la = ny cos , m=y sin $ ; then the chord joining two points $1, $2 is

la cos 1 ($i+$.)+mB sin * ($i+c.) = ny cos 2 (pi— «.), and therefore the tangent at the point $‘ is

4764          la cos $‘+mB sin $‘ = ny.

4765 Putting P = L, m2 = M, ^ — —N, the conic (4755) becomes

La2A-M^+Ny2 = 0.....................(1).

4766 The tangent or polar of a/3'y is

Laa+M83+Nyy = 0.................. (2).

4767 Hence the pole of Xa+us+vy = 0


is




X M v \

L‘ M‘ N)




(3).



4768 The tangential equation is

X2_M__»2


(4),



and this is the condition that the conic (1) may be touched by the four lines

Xa-ul-vy = 0.

4769 In like manner,

La+MB2+Ny‘= 0.....................(5)

is the condition that (1) may pass through the four points (a, ±8, ±y).

4770 The locus of the pole of the line Aa+ui+vy with respect to such conics is

Aa2 _ u.2 _ 7A_o a B 7

Proof.—By (3), if (a, B, y) be the pole, a = A &c., .•. L = A, in (5), the equation of condition.

4771 The locus of the pole of the line la-\-mB-[-ny, with respect to the conics which touch the four lines Xa — u — vy

Proof.—By (3), if (a, , y) be the pole, a = ‘ &c., .. L =", &c., in (4), the equation of condition.

4772 The locus of the centre of the conic is given in each case (4770, ’1) by taking the line at infinity

a sin A + 3 sin B+y sin C for the fixed line, since its pole is the centre.

4773 Thus the locus of the centre of the conic passing through the four points (a‘—B‘A%) is

a3 sin A 82 sin B | 72 sin C _ 0 aaBTy "

4774 The coordinates of the centre of the conic (1) are

	
-i             La MB N, given by          — = —A— — -—L.



0        "                 a b r

Proof.—Let the conic cut the side a in the points (0,Y1), (0,Y2). The right line from A bisecting the chord will pass through the centre of the conic, and its equation will be 3: =3+3: 71+72. Now 3.+B, is the sum of the roots of the quadratic in 3 obtained by eliminating y and a from the equations La2 + M^ + Ny2 = 0, a = 0, and aa+6+cy = 2. Similarly for 7Y1+Y2 eliminate a and B. The equation of the diameter through A being found, those through B and 0 are symmetrical with it.

4775 The condition that the conic (1) may be a parabola is a? b2c2 — 0

LT MT N “

PROOF.—This is, by (4), the condition of touching the line at infinity aa+6+cy = 0.

4776 The condition that (1) may be a rectangular hyperbola is L+M+N=0, and in this case the curve passes through the centres of the inscribed and escribed circles of the trigon.

PROOF.—By (4690), (a, b, c are now L, M, N). (1) is now satisfied by a ==3==y, the four centres in question.

4777 Circle referred to a self-conjugate triangle :

a2 sin 2A +32 sin 2B+y2 sin 2C = 0.


PROOF.—The line joining A to the centre is




N=N‘ (4774).




b cos B C cos O’




the condition of perpendicularity to a by (4622).




Therefore

Similarly




N _ L

c cos C a cos A’




therefore (1) takes the form above.



IMPORTANT THEOREMS.

CARNOT’S THEOREM.

4778 If A, B, G (Fig. 52) are the angles of a triangle, and if the opposite sides intersect a conic in the pairs of points a, a ; b, b'; c, d \ then

Ac.Ac'.Ba.Ba'.Cb.Cb' = Ab .Ab' .Be.Be' .Ca.Ca'.

Proof.—Let a, 3, y be the semi-diameters parallel to BC, CA, AB; then, by (4317), Ab. Ab' : Ac : Ac = 2 : 72. Compound this with two similar ratios.

4779 Cob.—If the conic touches the sides in a, b, c, then

Ac\Ba\ C& = A62. Be. Ca\

4780 The reciprocal of Carnot’s theorem is : If A, B, G (Fig. 52) are the sides of a triangle, and if pairs of tangents from the opposite angles are a, a'; b, b'; c, c'; then

sin (Ac) sin (Ac') sin (Ba) sin (Ba') sin (Cb) sin (Cb')

= sin (A b) sin (Ab) sin (Be) sin (Bc') sin (Ca) sin (Ca'), where (Ac) signifies the angle between the lines A and c.

PROOF.—Reciprocating the former figure with respect to any origin 0, let A, B, 0 (i.e., RQ,, Q,P, PR) be the polars of the vertices A, B, C. Then, by (4130), Q, R will be the poles of AB, A0; and b, b', the polars of the points b, b', will intersect in R and touch the reciprocal conic. Similarly, c, o' will intersect in Q. A, b' are perpendicular to OA, Ob', and therefore L Ab' = L A Ob', and so of the rest.

PASCAL’S THEOREM.

4781 The opposite sides of a hexagon inscribed to a conic meet in three points on the same right line.

PROOF.—(Fig. 53.) Let a, 3, , y‘, ‘, a' be the consecutive sides of the hexagon, and let u be the diagonal joining the points aa' and Y. The equation of the conic is either ay—ku = 0 or a'y'— k'ft'u = 0, and, since these expressions vanish for all points on the curve, we must have ay — kpii = a'y'—k'/3'u for any values of the coordinates. Therefore ay— a'y' = u (k/3 — k'/3'). Therefore the lines a, a and also ,‘meet on the line k—k‘B‘; and 3, (3' evidently meet on that line.

Otherwise, by projecting a hexagon inscribed in a circle with its opposite sides parallel upon any plane not parallel to that of the circle. The line at infinity, in which the pairs of parallel sides meet, becomes a line in which the corresponding sides of a hexagon inscribed in a conic meet at a finite distance (1075 et seq.).

4782 With the same vertices there are sixty different hexagons inscribable in any conic, and therefore sixty different Pascal lines corresponding to any six points on a conic.

Proof.—Half the number of ways of taking in order five vertices B, 0, D, E, F after A is the number of different hexagons that can be drawn, and the demonstration in (4781) applies equally to all.

BRIANCHON'S THEOREM.

4783 The three diagonals of a hexagon circumscribed to a conic pass through the same point (Fig. 54).

PROOF.—Let the three conics S+L1, S+M2, S + N2, in (4707), become three pairs of right lines, then the three lines L— M, M—N, N—L become the diagonals of a circumscribing hexagon.

Pascal’s and Brianchon’s theorems may be obtained, the one from the other, by reciprocation (4840).

THE CONIC REFERRED TO TWO TANGENTS AND THE CHORD OF CONTACT.

Let L = 0, M= 0, R = 0 (Fig. 55) be the sides of the trigon ; L, M being tangents and R the chord of contact.

4784 The equation of the conic is LM = R2.        (4699)

4785 The lines AP, BP, and CP are respectively

fL = R, (jlR — M, ^L = M. [By (4604).

Since the point P on the curve is determined by the value of u, it is convenient to call it the point u.

4788 The points u and —u (P and Q} are both on the line /AL = M drawn through C.

4789 The secant through the points u, / (P, P') is

MM'L— (u+u) R-]~M = 0.

Proof. — Write it u (CL — R) — (u'R— M), and, by (4604), it passes through the point p'. Similarly through u. Otherwise, determine the co-ordinates of the intersection of pL—R and pR — M, and of p'L—R and p'R—M by (4610), and the equation of the secant by (4616).

4790 COR.—The tangents at the points u and — u (P, Q,) are therefore

u2LF2uR+M= 0.

4791 These tangents intersect on B. [Proof by subtraction. 4792 Theorem.—If the equation of a right line contains an indeterminate u in the second degree, it may be written as above, and the line must therefore touch the conic LM = R2.

4793 The polar of the point (L', M', B') is

LM—2RR—LM = 0.

PROOF.—For u+u‘ and uu‘, in (4789), put the values of the sum and product of the roots of u‘L‘—2uR‘+M‘ = 0 (4790).

4794 Similarly the polar of the point of intersection of aL—R and bR-M is

abL—2aRpM = 0.

4795 The line CE joining the vertex C to the intersection of two tangents at u and /, or at — u and —/, is

uu’L — M = 0.

Otherwise, if two tangents meet on any line aL—M^ drawn through C, the product of their u’s is equal to a.

PROOF.—Eliminate R from the equations of the two tangents (4790).

4796 The chords PQ!, P'Q and the line CE all intersect in the same point on R.

Proof.—The equations of PQ', P'Q, are, by (4789),

H‘L=(u—M‘) R—M = 0,

and, by addition and subtraction, we obtain p.p.'L—M = 0 (4795), or R = 0. 4797 The lines fifTL-CK (.CD) and R intersect on the chord PP' which joins the points N, /; or—The extremities of any chord passing through the intersection of aL-\-M and R have the product of their u’s equal to a.

4798 The chord joining the points u tan p, u cot p touches a conic having the same tangents L, M and chord of contact R.

PROOF.—The equation of the chord is, by (4789),

p’L-uR (tan 4+ cot 4)+M= 0,

and this touches the conic LM sin2 2p = IN at the point u, by (4792).

4799 The tangents at the points u tan p, u cot $ intersect on the conic LM = R2 sin2 2p.

PROOF.—Write the equations of the two tangents, by (4790), and then eliminate u.

4800 Ex. 1.—To find the locus of the vertex of a triangle circumscribing a fixed conic and having its other vertices on two fixed right lines.

Take LM = R2 for the conic (Fig. 56), aL+M, bL + M for the lines CP, CE. Let one tangent, LE, touch at the point u ; then, by (4795), the others,

PD, PU, will touch at the points ", —, and therefore, by (4790), their equations will be                   " "

Eliminate u, and the locus of P is found to be (aPb^LM. = 4abR2.

[Salmon, Art. 272.

4801 Ex. 2.—To find the envelope of the base of a triangle inscribed in a conic, and whose sides pass through fixed points P, Q,.

(Fig. 57.) Take the line through P, Q for R; LM—B2 for the conic; aL— M, bL — M for the lines joining P and Q to the vertex C. Let the sides through P and Q meet in the point u on the conic; then, by (4797), the other extremities will be at the points —— and--—, and therefore, by (4789), the

u u

equation of the base will be abL+ (a+ b) uR P [PM = 0. By (4792), this line always touches the conic lab LM = (a + b)2 B2.                  [Ibid.

4802 Ex. 3.—To inscribe a triangle in a conic so that its sides may pass through three fixed points. (See also 4823.)

We have to make the base abL+ [a + b) pB+p2M (4801) pass through a third fixed point. Let this point be given by cL = B, dB = M. Eliminating L, M, B, we get ab + {a Ab') /ic + iPcd = 0, and since, at the point u, pL — B, /PL = M, that point must be on the line abL + (a+ b) cB + cdM. The intersections of this line with the conic give two solutions by two positions of the vertex.                                                       [Ibid.

RELATED CONICS.

4803 A conic having double contact with the conics S and S' (Fig. 58) is

u‘E2—2u (S+S')+F2 = 0, where E, F are common chords of S and S', so that S—S' = EF

PROOF.—The equation may be written in either of the ways

(pE+Fy = 4pS or (pB-Fy = 4pS', showing that pE = F are the chords of contact AB, CD. There are three such systems, since there are three pairs of common chords.

4804 Coe. 1.—A conic touching four given lines A, B, C, D, the diagonals being E, F (Fig. 59) :

^E2-2ix ^ACA-BD^F2 = 0.

Here S = AG and S' = BD, two pairs of right lines.

Otherwise, if L, M, N be the diagonals and L + ALNN the sides, the conic becomes

4805      ^L2-/ju (L+M-N2)+M2 = 0.

For this always touches

(E + M^-Ny-^PP or (L+M+N)(M+N-L)(N+L-M)(L+M-N).

[Salmon, Art. 287.]

4806 Cor. 2.—A conic having double contact with two circles C, C' is

u?—2u (C+C)+(C—C)2 = 0.

4807 The chords of contact become

u+C- C' = 0 and M — C + C — 0.

4808 The equation may also be written

VC-VC=Vu,

which signifies that the sum or difference of the tangents drawn from any point on the conic to the circles is constant.

ANHARMONIC PENCILS OF CONICS.

4809 The anharmonic ratio of the pencil drawn from any point on a conic through four fixed points upon it is constant.

Proof.—Let the vertices of the quadrilateral in Fig. (38) be denoted by A, B, C, D, and let P be the fifth point. Multiplying the equation of the conic (4697) by the constants AB, CD, BC, DA, we have

.AB.CD _ ABa. CDy = PA.PB sin APB.PC.PD sin CPD

BC.DA BCA.DA^ PB.PCAnBPC.PD.PAAnDPA

_ sin APB. sin CPD sin BPC. sin DPA"

Compare (1056).

4810 If the fifth point be taken for origin in the system (4784, Fig. 55), and if the four lines through it be

L—^R, L — p,,R, L—p.3R, L—^R, 4 p

the anharmonic ratio of the pencil is, by (4650), _ (Mi—u,)(u,—u.).

(M—u,)(u,—us)°

4811 Cor. 1.—If four lines through any point, taken for the vertex LM, meet the conic in the points H1, L2, u3, H4, the anharmonic ratio of these points, with any fifth point on the conic, is equal to that of the points — U1, —^ —u3, —H4, in which the same lines again meet the conic.

4812 Cor. 2. — The reciprocal theorem is—if from four points upon any right line four tangents be drawn to a conic, the anharmonic ratio of the points of section with any fifth tangent is equal to the corresponding ratio for the other four tangents from the same points.

4813 The anharmonic ratio of the segments of any tangent to a conic made by four fixed tangents is constant.

PROOF.—Let u, H1, u,, H3, H4 (Fig. 60) be the points of contact. The anharmonic ratio of the segments is the same as that of the pencil of four lines from LM to the points of section; that is, of p^L—M, p.p.2L—M, /xp3L—M, ppJj — M, a pencil homographic (4651) with that in (4810).

4814 If P, P' are the polars of a point with respect to the conics S, S’, then P+1P will be the polar of the same point with respect to the conic S + kS'.

4815 Hence the polar of a given point with regard to a conic passing through four given points (the intersections of S and S’) always passes through a fixed point, by (4101).

If Q, Q‘ are the polars of another point with respect to the same conics, Q+kQ‘ is the polar with respect to PpkS'.

4816 Hence the polars of two points with regard to a system of conics through four points form two homographic pencils (4651).

4817 The locus of intersections of corresponding lines of two homographic pencils having fixed vertices (Fig. 61) is a conic passing through the vertices; and, conversely, if the conic be given, the pencils will be homographic.

PROOF.—For eliminating k from P + kP'= 0, Q + kQk', we get PQ'= P'Q. 4818 Coe.—The locus of the pole of the line joining the two points in (4816) is a conic.

Proof.—For the pole is the intersection of P + TcR' and Q+kQ‘.

4819 The right lines joining corresponding points AA', &c. (Fig. 62) of two homographic systems of points lying on two right lines, envelope a conic.

Proof.—This is the reciprocal theorem to (4817) ; or it follows from (4813). 4820 If two conics have double contact (Fig. 63), the an-harmonic ratio of the points of contact A, B, C, D of any four tangents to the inner conic is the same as that of each set of four points (a, b, c, d) or (a‘, b', d, d') in which the tangents meet the other conic.

Proof.—By (4798). The u’s for the points on the latter conic will be equal to the u’s of the points of contact multiplied by tan $ for one set, and by cot d for the other, and therefore the ratio (4810) will be unaltered.

4821 Conversely, if three chords of a conic ad, bb', cd be fixed, and a fourth dd' moves so that {abed} = {db'dd}, then dd' envelopes a conic having double contact with the given one.

For theorems on a right line cut in involution by a conic, see (4824-8).

CONSTRUCTION OF CONICS.

THEOREMS AND PROBLEMS.

4822 If a polygon inscribed to a conic (Fig. 64) has all its sides but one passing through fixed points A, B, ... Y, the remaining side az will envelope a conic having double contact with the given one.

Proof.—Let a, b, ... z be the vertices of the polygon, and a, a’, a", a" four successive positions of a. Then, by (4811),

	
	
a, a', a", a" |    : b, b', b", b'" } = &c. = • z, z , z", z" Therefore, by (4821), the side az envelopes a conic, &c. 4823 Poncelet’s construction for inscribing in a conic a polygon having its n sides passing through n given points.





Inscribe three polygons, each of n+1 sides, so that n of each may pass through the fixed points, and let the remaining sides be a’z’, a"z", ^'t!" , denoted in figure (65) by AD, CF, EB. Let MLN, the line joining the intersections of opposite sides of the hexagon ABCDEF (4781), meet the conic in K; then K will be a vertex of the required polygon.

PROOF.— { D. RACE | = { A .KDFB } , each pencil passing through K, P, N, L-, therefore the anh arm onic ratio { RACE }={ KLEE} for any vertex on the conic, by (4809) ; i.e., {Kaa'a" }={ Kz‘z"z" } . But, if az be the remaining side of a fourth polygon inscribed like the others, we have by (4811), as in (4822), { a a’a’a" }={ zzz'z"} . Hence K is the point where a and z coincide.

4824 Lemma.—A system of conics passing through four fixed points meets any transversal in a system of points in involution (1066).

PROOF.—Let u, u be two conics passing through the four points ; then u + ku will be any other. Take the transversal for a axis, and put y = 0 in each conic, and let their equations thus become ax1 + 2ga + c = 0 and a‘x?+2g‘x+c‘= 0. These determine the points where the transversal meets u and u. It will then meet u + ku in two points given by ax2+2gx+c+ k (a‘x2+2g‘x+c’) = 0, and these points are in involution with the former, by (1065).

Geometrically (Fig. 66),

{ a. AdbA'} = {c. AdbA'} (4809), therefore { ACEA'} = { AE'O'A'} = { A'C'B'A } , therefore by (1069).

4825 Coe. 1.—One of the conics of the system resolves itself into the two diagonals ac, bd. Hence the points B, B', G, G' are in involution with D, D', where the transversal cuts the diagonals.

4826 Coe. 2.—A transversal meets a conic and two tangents in four points in involution, so as to meet the chord of contact in one of the foci of the system.

For, in (Fig. 66), if b coincides with c, and a with d, the transversal meets the tangents in G, G', while B, B', D, D', all coincide in F (Fig. 67), one of the foci on the chord of contact.

4827 The reciprocal theorem to (4824) is—-Pairs of tangents from any point to a system of conics touching four fixed lines, form a system in involution (4850).

4828 The condition that Xa+uy+vz may be cut in involution by three conics is the vanishing of the determinant
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belong to the first conic and have the values




in (4988).

PROOF.—The quadratic A^ + 2Hxy + B1yi = 0, obtained in (4987), determines the pair of points of intersection with the first conic. The similar equation for the third conic will have As = A1+XA,, &c., if the points are all in involution (1065). The third equation is therefore derived from the other two; therefore the determinant vanishes, by (583).

By expanding and dividing by v3, the second determinant above of the sixth order is obtained.

Newton’s Method of Generating a Conic.

4829 Two constant angles aPb, aQb (Fig. 68) move about fixed vertices P, Q. If a moves on a fixed right line, b describes a conic which passes through P and Q.

Proof.—Taking four positions of a, we have (see 1054),

{P.b-b'U'U"} = {p.aa'a'a"} = {Q.aa‘a”a‘} ={Q.bb‘b"b" Therefore, by (4817), the locus of b is a conic.

Maclaurin’s Method of Generating a Conic.

4830 The vertex V of a triangle (Fig. 69), whose sides pass through fixed points A, B, 0, and whose base angles move on fixed lines Oa, Ob, describes a conic passing through A and B.

Proof.—The pencils of lines through A and B in the figure are both homographic with the pencil through G, and are therefore homographic with each other. Therefore the locus of V is a conic, by (4817).

Otherwise, let a, 3, y be the sides of ABC; la+m+y, 1'a+m'fl Any the fixed lines Oa, Ob ; and a = u the moving base ab.

Then the equations of the sides will be

(lu+m) 3+ny = 0, (I'li-^-m) a+npy = 0.

Eliminate u; then Im afl — (m3+ny)(l‘a +n‘y), the conic in question, by (4697).

4831 Given five points, to find geometrically any number of points on the circumscribing conic, and to find the centre.

Let A, B, C, D, E (Fig. 70) be the five points. Draw any line through A meeting CD in P. Dr azo PQ through the intersection of AB and DE meeting BC in Q; then QE will meet PA in F, a sixth point on the curve, as is evident from Pascal’s theorem (4781).

To find the centre, choose AP in the above construction parallel to CD, and find two diameters, as in (1252).

4832 To find the points of contact of a conic with five right lines.

Let ABODE (Fig. 71) be the pentagon. Join D to the intersection of AC and BE. This line ivill pass through the point of contact of AB, and so on.

Proof.—By (4783), supposing two sides of the hexagon to become one straight line.

4833 To describe a conic, given four points upon it and a tangent.

Let a, a', b, b‘ (exterior letters in Fig. 52) be the four points. Then, if AP is a tangent, c, A coincide, and Carnot’s theorem (4778) gives the ratio Ac2 : Be2. Then by (4831). Since there are tzvo values of this ratio, ± (Ac : Bc), two conics may be drawn as required.

4834 To describe a conic, given four tangents and a point.

Let a, a’, b, b‘ (interior letters in Fig. 52) be the four tangents. Then, if Q be the given point on the curve, the lines c, A must coincide in direction, and (4780) gives the ratio sin2 (Ac) : sin2 (Bc), by zvhich the direction of a fifth tangent through Q is determined. Then by (4832). The two values + (sin Ac : sin Bc) furnish two solutions.

Otherwise by (4804), determining u by the coordinates of the given point,

4835 To describe a conic, given three points and two tangents.

Let A, A’, A" be the points {Fig. 67, supplying obvious letters'). Let the two tangents meet AA‘ in the points C, C‘. Find F, F, the foci of the system AA‘, CC‘ in involution (1066) determining the centre by (985). Similarly, find G, G‘, the foci of a system on the line A A". Then, by (4826), the chord of contact of the tangents may be any of the lines FG, FG‘, FG, FG‘. There are accordingly four solutions, and the construction of (4831) determines the conic.

4836 To describe a conic, given two points and three tangents.

Let AB, BC, CA {Fig. 167) be the tangents, and P, P‘ the points. Draw a transversal through PP‘ meeting the three tangents in Q, Qz, Q". Find F, a focus of the system PP‘, QQ‘ in involution (1066, 985); G a focus for PP‘, QQ", and Dfor PP‘, Q’Q". Construct a triangle with its sides passing through F, G, H, and with its vertices L, M, N on BC, CA, AB, by the method of (4823), which is equally applicable to a rectilineal figure as to a conic. L, M, N will be the points of contact. The reason for the construction is contained in (4826). There will, in general, be four solutions.

If the conic be a parabola, the foregoing constructions can be adapted by considering one tangent at infinity always to be given.

4837 To drawaparabola through four given points a, a , b, b'. This is problem 4833 with the tangent at infinity.

In figure (52), suppose cc to coincide and AB to remove to infinity so as to become the tangent at c, the opposite vertex at infinity of a parabola, and therefore to be perpendicular to the axis. Cc then becomes a diameter of the parabola, and Carnot’s theorem (4778) shows that

Ca.Ca' _ Ad Ba2_ sin? ACc

Cb. Cb' ~ AU' Bd ~ sin'BCc' since the points C, a, a, b, b' are all on the axis of the parabola relatively to the infinite distance of AcB. This result, however, is at once obtained from equation (4221), Ca.Ca' : Cb. Cb' being the ratio of the products of the roots of two similar quadratics. Thus a diameter of the parabola can be drawn through C by the known ratio of the sines of ACc and BCc.

Next, describe a circle round three of the given points a, a, b. By the property (1263) and the known direction of the axis, the other point in which the circle cuts the parabola can be found.

Five points being known, we can, by Pascal’s theorem, as in (4831), obtain two parallel chords, and then find P, the extremity of their diameter, by the proportion, square of ordinate oc abscissa (1239).

Lastly, draw the diameter and tangent at P, and then, by equality of angles (1224), draw a line from P which passes through the focus. By obtaining in the same way another pair of parallel chords, a second line through the focus is found, thus determining its position.

1

 The theorems of (1 to 36) are for the most part due to Mr. R. Tucker, M.A. The original articles will be found in The Quarterly Journal of Pure and Applied Mathematics, Vol. xxx., No. 76, and Vol. xx., Nos. 77 and 78.

Other and similar investigations have been made by MM. Lemoine and Taylor and Prof. Neuberg, Mathesis, 1881, 1882, 1884.

Radius of T. R. circle, p = /nB, by (6) (B = circum-radius)...........

The trilinear equation of the T. R. circle is

abc (c?+2+92) =    .............................(14),

or (b?+ c2) a2 + (c2 + a?) 2 + (a? + 62) y2 ={(a+ 62) (a2 + c2) + b2c2 } ‘                                    • be

+ j (b?+c3) (b?+02)+c%2) Ya + £ (c?+a?) (c?+02)+a?62) ^... (15). ‘                             > ca                                  • ab

Obtained by substituting the trilinear coordinates of L, E, F, through which points the circle passes, in (4751), to determine the ratios I : m : n and k. The coordinates of D are

0 a (a2 + b2) sin C ac2 sin B ‘ K 7 K

Similarly those of E and F.

2

 This circle was discovered by M. H. Brocard, and has been called « The Brocard Circle,” the points T, P‘ being called the Brocard points.


4838 To draw a parabola when four tangents are given.

This is effected by the construction of (4832, Fig. 71). Let AB, B0, AE, ED be the four tangents, and CD the tangent at infinity. Then any line drawn to C will be parallel to BC, and any line to D will be parallel to ED.

4839 To draw a parabola, given three points and one tangent.

This is effected by the construction of (4835, Fig. 67). Let b0' be the tangent at 0 ; then the centre of involution 0 must be at 0, so that CO. CO' = 0. oo = 0A. OA' = CE2, determining F. F', another point on the chord of contact, being found by joining AA" or A'A", FF will be the diameter through a, since the other point of contact b is at infinity.

4840 To draw a parabola, given one point and three tangents.

This is the case of (4834), in which one of the given tangents b' is at infinity. R must therefore be at infinity, and QR, PR and the tangent b, since they all join R to finite points, must be parallel. The ratio found determines another tangent, and the case is reduced to that of (4838).

4841 To draw a parabola, given two points and two tangents.

This is problem (4836). Suppose A0 in that construction to be the tangent at infinity. F, G, H will be determined as in (4839) by mean proportionals. The chords LAf, NAI will become parallel, since M is at infinity; and we have to draw LN and the parallel lines from L and N to pass through F, G, H in their new positions, so that the vertices L, N may lie on BC and AB.

Otherwise by (4509), the intercepts s and t can readily be found from the two equations furnished by the given points.

4842 To describe a conic touching three right lines and touching a given conic twice.

Let AD, CF, EB (Fig. 65) be the three lines as they cut the given conic. Join AB, AF, BC, BE, and determine K by the Pascal line MLN. K will be one point of contact of the two conics, by (4822) and the proof in (4823), since AD, CF, EB, and the tangent at K are four positions of the ‘ remaining side" in that proposition. The problem is thus reduced to (4834), since four tangents and K the point of contact of one of them are now known.

4843 To describe a conic touching each of two given conics twice, and passing through a given point or touching a given line.

Proceed by (4803), determining u by the last condition.

To describe a conic touching the conics S-\-L2, S-\-M2, S-\-N2 (4707) and touching S twice.          [Salmon, Art. 387.

THE METHOD OF RECIPROCAL POLARS.

Def.—The polar reciprocal of a curve is the envelope of the polars of all the points on the curve, or it is the locus of the poles of all tangents to the curve, taken in each case with respect to an arbitrary fixed origin and circle of reciprocation.

4844 Thus, in figure (72), to the points P, Q, B on one curve correspond the tangents gr, rp, and chord of contact pg on the reciprocal curve; and to the points p, g, r correspond the tangents QB, BP, and chord PQ.

The angle between the tangents at P and Q is evidently equal to the angle pOg, since Op, Og, Or are respectively perpendicular to QB, BP, PQ.

4845 Theorem.—The distance of a point from a line is to its distance from the origin as the distance of the pole of the line from the polar of the point is to its distance from the origin.

Proof.— (Fig. 73.) Take 0 for origin and centre of auxiliary circle, PT the polar of c, pt the polar of C, CP perpendicular on polar of c, cp perpendicular on polar of C. Then

	
	
72 — OC. Ot = Oc. OT ) Therefore, by subtraction, OC.mt = Oc.MT, and 00.Om = Oc. OM) '               or OC.cp =Oc.CP-, that is,                      CP : CO :: cp : cO.                   Q. E. D.





Cor.—By making CP constant, we see that the reciprocal of a circle is a conic having its focus at the origin and its directrix the polar of the circle’s centre.

	
4 Q



GENERAL RULES FOR RECIPROCATING.

4846 A point becomes the polar of the point, and a right line becomes the pole of the line.1

4847 A line through a fixed point becomes a point on a fixed line.

4848 The intersection of two lines becomes the line which joins their poles.

4849 Lines passing through a fixed point become the same number of points on a fixed line, the polar of the point.

4850 A right line intersecting a curve in n points becomes n tangents to the reciprocal curve passing through a fixed point.

4851 Two lines intersecting on a curve become two points whose joining line touches the reciprocal curve.

4852 Two tangents and the chord of contact become two points on the reciprocal curve and the intersection of the tangents at those points.

4853 A pole and polar of any curve become respectively a polar andpole of the reciprocal curve; and a point of contact and tangent become respectively a tangent and its point of contact.

4854 The locus of a point becomes the envelope of a line.

4855 An inscribed figure becomes a circumscribed figure.

4856 Four points connected by six lines or a quadrangle become four lines intersecting in six points or a quadrilateral.

4857 The angle between two lines is equal to the angle subtended at the origin by the corresponding points.          (4844)

4858 The origin becomes a line at infinity, the polar of the origin.

4859 Two lines through the origin become two points at infinity on the polar of the origin.

4860 Two tangents through the origin to a curve become two points at infinity on the reciprocal curve.

4861 The points of contact of such tangents become asymptotes of the reciprocal curve.

4862 The angle between the same tangents is equal to the angle between the asymptotes.                            (4857)

4863 According as the tangents from the origin to a conic are real or imaginary, the reciprocal curve is an hyperbola or ellipse.

4864 If the origin be taken on the conic, the reciprocal curve is a parabola.

For, by (4860, ’1), the asymptotes are parallel and at infinity.

4865 A trilinear eguation is converted by reciprocation into a tangential eguation.

Thus ay = k33 is a conic passing through four of the intersections of the lines a, 3, y, 3. Reciprocating, we get a tangential equation of the same form AC = kBD, and this is a conic touching four of the lines which join the points whose tangential equations are A = 0, B = 0, 0 = 0, D = 0. See (4907).

4866 The equation of the reciprocal of the conic a^-Yb^ = aW with the same origin and axes is

aa?+b‘y? = k4", where k is the radius of the auxiliary circle whose centre is the centre of the conic.

Proof.—Let p be the perpendicular on the tangent, 0 its inclination; then k*-2 = p2 = (p cos2 9 + b2 sin2 0 (4732).

4867 The same when the origin of reciprocation is the point x'y',

(aa‘ +yy+k)® = a? ap +b‘y2.

Proof : k^r^ = p = •a2 cos2 9 + b2 sin2 6—(a‘ cos 0+y‘ sin 0).

4868 The reciprocal curve of the general conic (4656), the auxiliary circle being a2+y2 = IP or a2+y2+z = 0 in tri-linears, will be symmetrically

AF+By‘+C[+2Fn+2G(+2H6 = 0, replacing Z by — IP.

Proof.—Let En be a point on the reciprocal curve, then the polar of En, namely, al+yn— l‘= 0, must touch the conic, by (4853). Therefore, by (4665), we must substitute E, n, —k2 for X, u, v in the tangential equation AX2+&c. = 0.

4869 From the reciprocal of a curve with respect to the origin of coordinates, to deduce the reciprocal with respect to an origin x'y', substitute in the given reciprocal equation


IPy ax +yy‘+k2




for y.



—,--——— for oc and ococ -fyy A-k

PROOF.—Let P be the perpendicular from the origin on the tangent and PB = k2. The perpendicular from x'y' is P—x cos 0—y' sin 0,

k2 It2 , a a k2 xx + yy‘ + k2 .. —= — — x cosO—y sin 0,   .. — =--------;

p L       Bp


.*. Bcos6




k2p cos 0 ax’ + yy' + k2



TANGENTIAL COORDINATES.

4870 By employing these coordinates, theorems which are merely the reciprocals of those already deduced in trilinears may be proved independently. See (4019) for a description of this system.

The following proposition serves to transform by reciprocation the whole system of trilinear coordinates of points and equations of right lines and curves, into tangential coordinates of right lines and equations of points and curves.

THEOREM OF TRANSFORMATION.

4871 Given the trilinear equation of a conic (4656), the tangential equation of the reciprocal conic in terms of X, u, v, the perpendiculars from three fixed points A', B', O' upon the tangent (Fig. 74) will be as follows, 0 being the origin of reciprocation and OA', OB', 00' = p, q, r:—


4872



aX2 b/B cB   2fuv   2gvX   2h\fJL _ 0

D"—Y qr rp  pq

Proof.—Let a = 0, 3 = 0, y = 0 be the sides of the original trigon ABC. The poles of these lines will be A', B', G', the vertices of the trigon for the reciprocal curve. Let BS be the polar of a point P on the given conic; a, 3, y the perpendiculars from P upon BG, OA, AB ; i.e., the trilinear co-ordinates of P. Let X, u, v be the perpendiculars from A', B', O' upon BS’, i.e., the tangential coordinates of the polar of P referred to A', B', G'. Then, by (4845),   =,=%=% Substitute these values

of a, 3, y in (4656) and divide by OP2.

4873 The angular relation between the trigons ABC and A'B’O' is

B'OC'^tt-A, O'OB' = V-B, A'OB' = ir-O.

4874 If ABC be self-conjugate with regard to the circle of reciprocation, it will coincide with A'B'C'.

4875 Now let 0 be the circum-centre (4629) of AB'O' (Fig. 74), then it will be the in-centre of ABC, and, by (4873),

2A‘= T-A, 2B‘= T-B, 2C'=tt-C.

Also p = q = 7 in (4872), which becomes $ (X, u, v) = 0, so that the conic and its reciprocal are represented by the same equation. Consequently any relation in trilinear coordinates has its interpretation in tangential coordinates. We have then the following rule :—

4876 RULE.—To convert any expression in trilinears into tangentials, consider the origin of the former as the in-centre of the trig on, change a, 0, y into X, u, v, and interpret the result by the rules for reciprocating (4846-65). If the angles of the original trigon are involved, change these by (4875) into the angles of the reciprocal trigon, of ivhich the origin will now be the circum-centre.

4877 Referring trilinears and tangentials to the same trigon ABC, the equation of a point, as shown in (4021), becomes

—+—u+—v=0;

Pi Pi P^

4878 or, by multiplying by 22,

BOCX+COAijl+AOBv = 0.


(Fig. 3)



The equation of a point can generally be obtained directly from the figure by means of this formula.

EQUATIONS IN TANGENTIAL COORDINATES.

For direct demonstrations of the following theorems, the reader may consult Ferrers' Trilinear Coordinates, Chap. VII.

4879 The point dividing AB in the ratio a : b, that is, the intersection with the internal or external bisector of C, is

ax±bu = 0. Centre of AB A+u = 0.

The point 0 in (4878) is now on the side AB.

4881 Mass-centre, A+u+v = 0. [For B0C= COA = AOB.

4882 in-centre, al+hu+Iv = 0. — By (4878), for

±BOC _COA_AOB 4883 a ex-centre, —al+bu+[v = 0. L a b c

4884 Circum-centre X sin 2 A +u sin 2B+v sin 2C = 0.

Proof.—For BOG = }R2 sin 2 A, &c. in (4878). Otherwise.—By reciprocation (4876), a sin A+ /3 sin B +7 sin C = 0 is the line at infinity referred to the trigon ABC ; therefore

X sin A + u sin B + v sin G = 0

is the eqnation of the pole of that line referred to A'B'O'; that is, X sin 2A‘+u sin 2B‘+v sin 20‘, by (487 5).

4885 Foot of perpendicular from C upon AB,

X tan A+u tan B = 0.

4886 Orthocentre X tan A+u tan B+v tan C = 0.

4887 Inscribed conic of ABC,                  [Proof below. Luv+ MvX+NAu = 0.

4888 Point of contact with AB, MA+Lu = 0.

4889 In-circle (4629), (s—a) pv+(s — b) v+(s—r) Ap = 0.

4890 Point of contact with AB, (s—b) 1+(s— a) u = 0.

4891 a ex-circle, (s—b) Nu+(s—t) v— Suv = 0.

Proof.—Since the coordinates of AB of the trigon are 0, 0, v, the equation of the inscribed conic must be satisfied when any two of the coordinates X, u, v vanish, therefore it must be of the form (4887). Otherwise by reciprocating (4724).

If the circle touches AB in D (Fig. 3), X : — u = AB : BB = — a : 8—6 (Pig. of 709), which proves (4890).

	
	
(4888)    is the equation of the point of contact, because the line (0, 0, v) passes through it and also touches the conic (4887).


	
(4889)    is the in-circle by (4887) and (4890) and what precedes. 4892 Circumscribed conic, [By (4876) applied to (4739, ’40).





L^A-MYA-^-2MNiiv-2NLvX-2LMXil = 0, (4740) 4893 or v(LA)+.Mu+.Nv = 0. 4894 Tangent at A, Mu = Nv.

4895 Circum- circle

a‘x?+b‘u?+t‘v‘—2b‘c‘uv—2r‘a‘vX—2a®b®Nu = 0;

4896 or a A+b vu+t v = 0.

Proof.'—By (4876) applied to (4747, ’8), and by cos4 = sin A‘ (4875) 4897 Relation between the coordinates of any right line : a2 (A-p)@-v)+b2 (u—v)(u-»)+r (v—X)(»—u) = z.

4898 Coordinates of the line at infinity:

X = u = v.

Proof.—The trilinear coordinates of the origin and centre of the reciprocal conic are a = 3 = , (4876). It is also self-evident.

4899 The point A+mu+v = 0 will be at infinity when +m+ = 0.

Proof.—By (4876), for the line 1a + m3 + ny = 0 will pass through the origin a = 3 = y when l + m + n = 0.

4900 A curve will be touched by the line at infinity when the sum of the coefficients vanishes.

Proof.—By (4876), for this is the condition that the origin in trilinears, a = 3 = y shall be on the curve.

4901 The equation of the centre of the conic $ (A, u, v) is

$,+Pu+p, = 0,

4902 or (a+h+^ A+(1+6+f) #+(g+f+c) v = 0.

Proof.—The coordinates of the in-centre of AEG (4876) are a‘=3‘= ‘, therefore the polar of this point with regard to the conic p (a, 3, y) is $a+$s+,= 0 (4658). This point and polar reciprocate into a polar and point, of which the former, being the reciprocal of the in-centre, or origin, is the line at infinity, and therefore the latter is the centre of d (X, u, v), while its equation is as stated.

4903 The equation of the two points in which the line (X‘, /, v‘) cuts the conic is

$ (X, /, v) $ (A, p, v) = (A.X‘+4.u‘+4„v)2.    (4680) 4904 The coordinates of the asymptotes are found from the equations

$ (A, u, v) = 0 and $A+$u+$. = 0.

PROOF.—These are the conditions that the line (X, u, v) should touch the curve and also pass through the centre (4901).

4905 The equation of the two circular points at infinity is

a- (- p)@- v)+be (- v)(n—X)+e (y — x)@v- M) = 0.

PROOF.—Put X‘= L‘= v' in (4903) to make the line at infinity, and for the conic take the in-circle (4889).

4906 The general equation of a circle is

a a- „)a- »)+be (- »)(- »)+e (- x)(v- H)

= (l+mu+nv)......(1),

where A+mu+nv = 0 is the equation of the centre.

PROOF.—The general equation of a conic in trilinears may, by (4601), be put in the form

a(B- B)(y-%)+6 (- 7(a- a,)+e (« — ao)(s- B.) = (la + m^ + nyY, where la+m+ny = 0 is the directrix, and a,o%Yo the focus. Now let the focus be the in-centre of the trigon, and therefore a =s=%= J28-1 (709). By this relation and aa+.+y = Z, the equation is expressed as

a (s— a)(a— B)(a— Y) + &c. = (l‘a+m‘3+n‘y)2,

or           (a— B)(a— 7) cos2 2A+ &c. = (l‘a+ m'fi +n'y)2.

Reciprocating by (4876), this becomes

(X —u)Q- v) sin? A‘+&c. = (IX + mix+nv)2, the constant factor introduced on the right being involved in I, m, n; and sin A' = cos ^A, by (4875). And we know that this is a circle by (4845 Cor.), and that the directrix of the conic reciprocates into the centre of the circle.

Otherwise.—The left side of (1) represents the two circular points at infinity (4905), and, if for the right we take the equation of a point, the whole represents a conic, as in (4909), of the form AC = L2. In this case, A, C, the points of contact of tangents from B, being the circular points, the conic must be a circle with B = 0 for its centre.

Abridged Notation.

4907 Let A = 0, B = 0, 0 = 0, D = 0 (Fig. 75) be the tangential equations of the four points of a quadrangle, where A =0X+bu—Cv, B = aA+bu+C2v, and so on. Then the equation of the inscribed conic will be AC = kBD.

PROOF.—The equation is of the second degree in X, u, v ; therefore the line (X, u, v) touches a conic. The coordinates of one line that touches this conic are determined by the equations A = 0, B = 0. That is, the line joining the two points A, B touches the conic, and so of the rest.

4908 If the points B, D coincide (Fig. 76), the equation becomes A0 = kB2; and A = 0, 0 = 0 are the points of contact of tangents from the point B = 0.

4909 Referring the conic to the trigon ABC (Fig. 78), and taking AC = k2B'2 for its equation, let a tangent ef be drawn, and let Ae : eB = k : m. The equations of the points e and f will be

m A + kB = 0, mkB + C = 0.

PROOF.—The first equation corresponds to (4879). For the equation of/, eliminate A from MA+kB = 0 and AC = k^B2.

4910 Let e, h (Fig. 77) be two points on AB whose equations are mA-\-kB = 0, m'A-CkB = 0. The equation of the point p, in which tangents from e and h intersect, is

mm A — (m— m) kB — C = 0.

Proof.—The equation may be put in the form

(mA + kB)(m'A + kB) = 0,

because k2B2=AO if the line touches the conic. The equation being of the first degree in A, B, C, must represent some point. That is, the relation between X, u, v involved in it makes the straight line Aa+u+vy pass through a certain point. But the equation is satisfied when mA + kB — 0, a relation which makes the straight line pass through e. Hence a tangent through e passes through a certain fixed point. Similarly, by m'A + kB = 0, another tangent passes through h and the same fixed point.

4911 Cor.—Let m' = m, then the equation of the point of contact of the tangent joining the points ma-\-kB and mkB-\-0 (4909) (e and/, Fig. 78) will be

m2A+2mkB+ C = 0.

4912 If in Fig. (78) the trilinear coordinates of the points 4 R

A, B, C are 21, y^ 21, 2,, y2, 22, 23, y^ 23, the coordinates of the point of contact p of the tangent defined by m will be

m221+2mka,+23, m2Y1 + 2mlcy2 + y^ m221+2m/22+23, and the tangent at p divides the two fixed tangents in the ratios k : m and mk : 1, by (4909).

4913 NOTE.—The equation U or $ (A, u, v) = 0 (4665) expresses the condition that Xa+u+vy shall touch a certain conic. When U is about to break up into two factors, the minor axis of the conic diminishes (Fig. 79). Every tangent that can now be drawn to the conic passes very nearly through one end or other of the major axis. Ultimately, when the minor axis vanishes, the condition of the line touching the conic becomes the condition of its passing through one or other of two fixed points A, B. In this case, U consists of two factors, which, put equal to zero, are the equations of those points. The conic has become a straight line, and this line is touched at every point by a single tangent.

4914 If B and B' (Fig. 80) be two conics in tangential coordinates, IU+U’ is then a conic having for a tangent every tangent common to U and U'; and kU-\-AB is a conic having in common with U the two pairs of tangents drawn from the points A, B.

The conic B' in this case merges into the line AB, or, more strictly, the two points A, B, as explained in (4913).

4915 If either kU-BB' or k U+ AB breaks up into two factors, it represents two points which are the opposite vertices of the quadrilateral formed by the four tangents.

ON THE INTERSECTION OF TWO CONICS.

INTRODUCTORY THEOREM.

Geometrical meaning of v(—1).2

4916 in a system of rectangular or oblique plane coordinates, let the operator •— 1 prefixed to an ordinate y denote the turning of the ordinate about its foot as a centre through a right angle in a plane perpendicular to the plane of xy. The repetition of this operation will turn the ordinate through another right angle in the same plane so as to bring it again into the plane of ay. The double operation has converted y into — y. But the two operations are indicated algebraically by v—l.—1.y or (~—1)2y = — y, which justifies the definition.

It may be remarked, in passing, that any operation which, being performed twice in succession upon a quantity, changes its sign, offers a consistent interpretation of the multiplier • — 1.

4917 With this additional operator, borrowed from the Theory of Quaternions, equations of plane curves may be made to represent more extended loci than formerly. Consider the equation a2+y2= d1. For values of x< a, we have y = ± va?— a2, and a circle is traced out. For values of a > a, we may write y = =i V^—a2, where i=— 1. The ordinate vx?— a2 is turned through a right angle by the vector i, and this part of the locus is consequently an equilateral hyperbola having a common axis with the circle and a common parameter, but having its plane at right angles to that of the circle. Since the foot of each ordinate remains unaltered in position, we may, for convenience, leave the operation indicated by i unperformed and draw the hyperbola in the original plane. In such a case, the circle may be called the principal, and the hyperbola the supplementary, curve, after Poncelet. When the coordinate axes are rectangular, the supplementary curve is not altered in any other respect than in that of position by the transformation of all its ordinates through a right angle ; but, if the coordinate axes are oblique, there is likewise a change of figure precisely the same as that which would be produced by setting each ordinate at right angles to its abscissa in the xy plane.

In the diagrams, the supplementary curve will be shown by a dotted line, and the unperformed operation indicated by i must always be borne in mind. For, on account of it, there can be no geometrical relations between the principal and supplementary curves excepting those which arise from the possession of one common axis of coordinates. This law is in agreement with the algebraic one which applies to the real and imaginary parts of the equation a2—(iy)2 = a2. When y vanishes, a = a in both curves.

If either the ellipse b222 + a2y2 = a2b2 or the hyperbola b2x2 — a2y2 = a2b2 be taken for the principal curve, the other will be the supplementary curve.

It is evident that, by taking different conjugate diameters for coordinate axes, the same conic will have corresponding different supplementary curves. The phrase, “supplementary conic on the diameter DD,” for example, will refer to that diameter which forms the common axis of the principal and supplementary conic in question.

4918 Let us now take the circle 22+y2 = a2 and the right line x = b. When b is > a, the line intersects the supplementary right hyperbola in two points whose ordinates are ±i WF — a2. By increasing b without limit, we get a pair of, so-called, imaginary points at infinity. These lie on the asymptotes of the hyperbola, and the equation of the asymptotes is (x+iy)(a— iy} = 0.

We can now give a geometrical interpretation to the statements in (4720). The two lines drawn from the focus of the conic 62x2 + a‘y2 = a2b2 to the " circular points at infinity ” make angles of 45° with the major axis, and they touch the conic in its supplementary hyperbola b2x2— a2 (iyfi = a2b2. An independent proof of this is as follows.

Draw a tangent from S (Fig. 81) to the supplementary hyperbola, and let x, y be the coordinates of the point of contact P. Then


x —=




a2

OS




(1170) =V(983y;




and




y = b • (e’-a) =




b2

•(a?—b2)’



by the value of a. Also


b2

(a?—b2)°



UN =x-CS= a — - va—ba = v(a2—b2)

Therefore y = SN, therefore SP makes an angle of 45° with ON.

The following results are required in the theory of projection, and are illustrated in figures (82) to (86). Two ellipses are taken in each case for principal curves, and the supplementary hyperbolas are shown by dotted lines. As the planes of the principal and supplementary curves are really at right angles, the intersections of the solid lines with the dotted are only apparent. The intersections of the solid lines are real points, while the intersections of the dotted lines represent the imaginary points.

4919 Two conics may intersect—

(i.) in foibr real points (Fig. 82) ;

(ii.) in two real and two imaginary points (Fig. 83);

(iii.) in four imaginary points (Fig. 84).

[When the two hyperbolas in figures (83) and (84) are similar and similarly situated, two of their points of intersection recede to infinity (Figs. 85 and 86). Hence, and by taking the dotted lines for principal, and the solid for supplementary, curves, we also have the cases]

(iv.) in two real finite points and two imaginary points at infinity;

(v.) in two imaginary finite points and two imaginary points at infinity ;

(vi.) in two imaginary finite points and two real points at infinity;

(vii.) in two real finite points and two real points at infinity.

4920 Given two conics not intersecting, or intersecting in but two points, to draw the two supplementary curves which have a common chord of intersection conjugate to the diameters upon which they are described, or in other words, to find the imaginary common chord of the conics.

Poncelet has shewn by geometrical reasoning (Proprietes des Projectives, p. 31) that such a chord must exist. The following is a method of determining its position—

Let (abcfghZ=yl)2 = 0 and {aPb'cf'gli'^xyY)2 = 0............(i.) be the equations of the conics C, O' (Fig. 89), the coordinate axes being rectangular. Suppose PQ to be the common chord sought. Then the diameters AB, A'B' conjugate to PQ, bisect it in D, and the supplementary curves on those diameters intersect in the points P, Q. Now, let the coordinate axes be turned through an angle 6, so that the y axis may become parallel to PQ, and therefore also to the tangents at A, B, A', B'. This is accomplished by substituting for a and y, in equations (i.), the values

a cos 6 — y sin 6 and y cos 0+a sin 0.

Let the transformed equations be denoted by (AB OFGH^xy I)2 = 0 and (A'B' C'F' G'H'^xy 1)2 — 0, in which the coefficients are all functions of 6, excepting c, which is unaltered. Solving each of these equations as a quadratic in y, the solutions take the forms

y = ax+ ± Vu QF'-^px-^-qQ, y = a’x+B‘ ± • u‘ (a2—2p‘x+g)...(ii.), with the values of a, 3, ^,p, q given in (4449-53), if for small letters we substitute capitals. Thus, a, 3, u, p, q are obtained in terms of 6 and the original coefficients a, h, b,f, g, h.

Now, the coordinates of D being 5 = ON, n = DN, we have n=a+I and n = as+3‘, therefore as + 3 = aQ + (3' .............................. (iii.).

The surd in equations (ii.) represents the ordinate of the conic conjugate to the diameter AB or A'B'. For values of x in the diagram > OM and < 0 R, the factor •— 1 appears in this surd, indicating an ordinate of the supplementary curve on AB or A'B'. Hence, equating the values of the common ordinate PD, we have

M (B-2p4+q) = u‘ (2- ...........................(iv.). Eliminating 5 between equations (iii.) and (iv.), we obtain an equation for determining 6; which angle being found, we can at once draw the diameters AB, A'B'.

THE METHOD OF PROJECTION.

4921 PROBLEM.—Given any conic and a right line in its plane and any plane of projection, to find a vertex of projection such that the line may pass to infinity while the conic is projected into a hyperbola or ellipse according as the right line does or does not intersect the given conic; and at the same time to give any assigned proportion and direction to the axes of the projected conic.

Analysis.—Let ECKD be the given conic, and BB the right line, in Fig. (87) not intersecting, and in Fig. (88) intersecting the conic. Draw EK the diameter of the conic conjugate to BB. Suppose 0 to be the required vertex of projection. Draw any plane ECGD parallel to OBB, intersecting the given conic in CD and the line EK in F, and draw the plane OEK cutting the former plane in E, F, G and the line BB in A; and let the curve ECGD be the conical projection of ECKD on the plane parallel to OBB.

By similar triangles,

Now, since parallel sections of the cone are similar, if the plane of ECKD moves parallel to itself, the ratio on the right remains constant; therefore, by (1193), the section ECGK is an ellipse in Fig. (87) and an hyperbola in Fig. (88). Let a, b be the semi-diameters of this ellipse or hyperbola parallel to EG and CD, that is, to OA and BB; then, by (2),


b2 _ 32 EA.AK

a2 a2 OA2 ‘




.. 0A2 = ^ EA..AK b1 a




(3).



But 4 EA. AK = AB2, where AB in Fig. (88) is the ordinate at A of the a

given conic, but in Fig. (87) the ordinate of the conic supplementary to the given one on the diameter conjugate to BB. Therefore

A0‘= $AB ................................. (4).

Hence A0, AB are parallel and proportional to a and b. And, since AB is given in magnitude and direction, we have two constants at our disposal, namely, the ratio of the semi-conjugate diameters a and b and the angle between them, or, which is the same thing, the eccentricity and the direction of the axes of the ellipse or hyperbola on the plane of projection.

4922 The construction will be as follows :—

Determine the point A as the intersection of BB with the diameter HK conjugate to it. Choose any plane of projection, and in a plane through BB, parallel to it, measure A0 of the length given by equation (3) or (4), making the angle BAO equal to the required angle between a and b. 0 will be the vertex of projection, and any plane LMN parallel to OBB will serve for the ptlane of projection.

4923 CoR. I. —-If A0 = AB, the projected curve in Fig. (88) will in every case be a right hyperbola.

4924 CoR. 2.—If BAO is a right angle, the axes of the projected ellipse or hyperbola are parallel and proportional to AO and AB. Hence, in this case, the eccentricity of the hyperbola will be e = OB : OA.

4925 Cor. 3.—If A0 = AB and BAO = a right angle, the ellipse becomes a circle and the right hyperbola in Cor. 1 has its axes parallel to AO and AB.

4926 To project a conic so that a given point in its plane may become the centre of the projected curve.

Take for the line BB the polar of the given point, and construct as in (4922). For, ifF be the given point, and BB its polar [Fig. 87 or 88), p the projection ofF will have its polar at infinity, and will therefore be the centre of the projected ellipse or hyperbola, according as P is within or without the original conic.

4927 To project two intersecting conics into two similar and similarly situated hyperbolas of given eccentricity.

Take the common chord of the conics for the line BB [Fig. 88), and project each conic as in (4922), employing the same vertex and plane of projection. Then, since the point A and the lines AB and AO are the same for each projection, corresponding conjugate diameters of the hyperbolas are parallel and proportional to AO and AB; therefore, ^c.

4928 To project two non-intersecting conics into similar and similarly situated ellipses of given eccentricity.

Take the common chord of a certain two of the supplementary curves of the conics (4920), in other words, the imaginary common chord of the conics, for the line BB, and proceed as in (4927).

4929 To project two conics having a common chord of contact into two concentric, similar and similarly situated hyperbolas.

Take the common chord for the line BB, and construct as in (4922). The common pole of the conics projects into a common centre and the common tangents into common asymptotes.

4930 To project any two conics into concentric conics.

Find the common pole and polar of the given conics by (4762), and tahe the common polar for the line BB in the construction of (4922). The common pole projects into a common centre.

4931 Ex. 1. —Given two conics having double contact with each other, any chord of one which touches the other is cut harmonically at the point of contact and where it meets the common chord of contact of the conics.

[Salmon's Conic Sections, Art. 354.

Let AR be the common chord of contact, PQ, the other chord touching the inner conic at C and meeting AR produced in D. By (4929), project AR, and therefore the point B, to infinity. The conics become similar and similarly situated hyperbolas, and C becomes the middle point of PQ, (1189). The theorem is therefore true in this case. Hence, by a converse projection, the more general theorem is inferred.

4932 Ex. 2.—Given four points on a conic, the locus of the pole of any fixed line is a conic passing through the fourth harmonic to the point in which this line meets each side of the given quadrilateral. [Ibid., Art. 354.

Let the fixed line meet a side AR of the quadrilateral in D, and let ACRD be in harmonic ratio. Project the fixed line, and therefore the point D, to infinity. 0 becomes the middle point of AR (1055), and the pole of the fixed line becomes the centre of the projected conic. Now, it is known that the locus of the centre is a conic passing through the middle points of the sides of the quadrilateral. Hence, projecting back again, the more general theorem is inferred.

4933 Ex. 3. — If a variable ellipse be described touching two given ellipses, while the supplementary hyperbolas of all three have a common chord AR conjugate to the diameters upon which they are described; the locus of the pole of AR with respect to the variable ellipse is an hyperbola whose supplementary ellipse touches the four lines CA, OR, C'A, C'R, where C, C' are the poles of AR with respect to the fixed ellipses.

(Salmon, Art. 355.)

PROOF.—Projecb AR to infinity and the three ellipses into circles. The poles P, C, C' become the centres p, c, c of the circles. The locus of p is a hyperbola whose foci are c, c. But the lines Ac, Rc now touch the supplementary ellipse of this hyperbola (4918). Therefore, projecting back again, we get AC, RC touching the supplementary ellipse of the conic which is the locus of P. Similarly, AC', RC' touch the same ellipse.

4934 Any two lines at right angles project into lines which cut harmonically the line joining the two fixed points which are the projections of the circular points at infinity.

PROOF.—This follows from (4723).

4935 The converse of the above proposition (4931), which is the theorem, in Art. 356 of Salmon, is not universally true in any real sense. If the lines drawn through a given point to the two circular points at infinity form a harmonic pencil with two other lines through that point, the latter two are not necessarily at right angles, as the theorem assumes.

The following example from the same article is an illustration of this—•

Ex.—Any chord BB (Fig. 88) of a conic HGKD is cut harmonically by any line PKAH through P, the pole of the chord, and the tangent at K.

The ellipse BKB here projects into a right hyperbola; B, B project to infinity. The harmonic pencil formed by PK and the tangent at K, KB and KB projects into a harmonic pencil formed by pk and the tangent at k, kb and kb, where b, b are the circular points at infinity : but pk is not at right angles to the tangent at k of the right hyperbola. The harmonic ratio of the latter pencil can, however, be independently demonstrated, and that of the former can then be inferred. (Note that k is G in figure 88.)

If we may suppose the ellipse to project into an imaginary circle having points at infinity, the imaginary radius of that circle may be supposed to be at right angles to the imaginary tangent. The right hyperbola, however, is the real projection which takes the place of the circle in this and all similar instances; and it is only in the case of principal axes that the radius is at right angles to the tangent.

INVARIANTS AND COVARIANTS.

4936 Let I = (ab cfgli^xy^, A = {a'b'c'fg'h'^xy^ be two conics as in (4401) with the notation of (1620).

The three values of 7, for which lu+ u' = 0 represents two right lines, are the roots of the cubic equation


4937




Ak3+Ok+®k+A‘= 0,



4938 where △ = abc-\- ^fgh—af — bg2 — ch2,

4939   © = Aa'-{-Bb' + Cc'^Ff'+2Gg +2HM,

and A^bc—f2, F=gh—af, &c.          (4665)

For the values of A’ and O’ interchange a with a, b with b', &c.


ka + a', kh + h', kg + g' kk + k', kb+b', kf+f' kg+y, If +f', kc+c'



PROOF.—The discriminant of kupu, which must vanish (4661), is evidently the determinant here written, and it is equivalent to the cubic in question.

4940 A, 6, O, and △ are invariants of the conic ku-u .

4 s

That is, if the axes of coordinates be transformed in any manner, the ratios of the four coefficients in (4937) are unaltered.

PROOF.—The transformation is effected by a linear substitution, as in (1794). Let u, u thus become v, v‘. Then ku + u becomes kvAv, and k is unaltered. If the equation ku± u' = 0 represents two right lines, it will continue to do so after transformation; but the condition for this is the vanishing of the cubic in k; and k being constant, the ratios of the coefficients must be unalterable.

4941 The equation of the six lines which join the four points of intersection of the conics u and u‘ is

Aus — 0 uu + O’uu — A’u = 0.

PROOF.—Eliminate k from (4937) by ku + u = 0.

4942 The condition that the conics u and u‘ may touch is (00‘-9AA/)2 = 4 (6?-3A0)(02-3A‘0),

4943 or 440*+44‘@‘+2742A”-18A A‘00-0’02.

PROOF.—Two of the four points in (3941) must coincide. Hence two out of the three pairs of lines must coincide. The cubic (4937) must therefore have two equal roots. Let a, a,be the roots; then the condition is the result of eliminating a and 3 from the equations

A(2a+3) =-o, A (a+23) = •‘, Ac8 = -A’ (406).

4944 The expression (4943) is the last term of the equation whose roots are the squares of the differences of the roots of the cubic in k, and when it is positive, the cubic in k has two imaginary roots; when it is negative, three real roots; and when it vanishes, two equal roots.

PROOF.—By (543) or (5 79). The last term of f(x) in (543) is now = 27F (a) F(JT), a, 3 being the roots of 3Aa2+202+0‘ = 0. When this term is positive, f(x) has a real negative root (409), and therefore F (x) has then two imaginary roots; for, if (<a—byi — —c, a—b = ic, and a and b are both imaginary. » When the last term of f(x) is negative, all the roots of f (x) are positive, and therefore the roots of F (x) are all real.

INVARIANTS OF PARTICULAR CONICS.

4945 When u = az2 + by2 + c22 and u' = a?+y2+22,

A = abc, 0 = bc-j-ca-k-ab, ®‘ = a+b+c. A’ = 1.

4946 When u = (ab cfg iz^xy z)2 and u‘ = a2+y2+22, 0=A+B+C, •‘ = a+b+c, A‘= 1.

	
	
	
4947 When u = «+y‘- 72 and Y = (r—a)2+(J—B)2—s, A = -r\ A’ = —s, • = a?+82—2,3—s,  •‘ = a2 + ^_r2_2s\







4948 The cubic for k reduces to (*+1) {s?k+(,2+s2- a2— 82) k+72} = 0.

4949 When u = bBx?+a‘y?—a‘b? and v = (r—a)?+(y—8)2—78, A = -a^, 0 = a”b? {a‘+B‘—a‘—62—72}, •‘ = a8*+b‘a‘—a?b?—7 {a2^b^, A’ = -72.

4950 When i=y- 4mz and u = ^x—ay-V^y—^)2—^, A=—Am2, 0 = —Am (a-j-m), O’ = 32—Ama—r2, A‘=-r.

4951 When u= (abcfghyayz)2 and ib = a2+2xy cos i^A-y2,

A, A‘= 0, 0 = c {a-\-b) -f-g+2 {fS~c^1} cos c, ®‘ = c sin?c.

Hence the following are invariants of the general conic, the inclination of the coordinate axes being o.


4952




4953



abc-\-2fyh—af2—bg2—ch2  A


(1),




•(2),



For these are what (1) and (2) become when the axes are transformed so as to remove f and g.

If the origin be unaltered, c is invariable, and transformation of the axes will then leave invariable

4956 2fh—«f"—bee ana #+e-2f coso, Sin" ®                       sin" w

as appears by subtracting (3) from (1) and (2) from (4).

4958 Ex. (i.)—To find the evolute of the conic b2a2+a2y2 = a?b3. See also (4547).

PROOF.—Denote the conic by u, and by u the hyperbola c^xy + lAy'x—a?x'y (4335), which intersects u in the feet of the normals drawn from x'y'. Two of these normals must always coincide if x'y' is to be on the evolute, u and u must therefore touch. We have

A =-ab, 0 = 0, Q' — —a2b2 (a2x2 AKy2—^, N ——2a2b2dxy. Substitute in (4942), and the equation of the evolute is found to be

(a’z? + lAy2—c^ + 27a?b?c"”y? = 0.

4959 Ex. (ii.)—Similarly the evolute of the parabola is obtained from

u = y2—4<mx, u = 2xy +2 (2m—x') y—lmy',

A = —4m2, 0 — 0, O’ = —4 (2m—x), A’ = 4my, producing the equation 27my- = 4 (x—2m)s. See also (4549).

4960 Ex. (iii.)—The locus of the centre of a circle of radius R, touching the conic W-\-a\f—a?b2, is called & parallel to the conic. Its equation is

W-2W {c2 (a‘+b2) + (a?—2b2) x2+ (2a2-b2) y2}

+R {e (a* + 4a?b2 + b^ - 2 (a - d2b2 + 364) a? + 2c2 (3a”—a?b? + 04) y2

+ (a‘—6a‘b?+6b) a*+(6a‘- 6a2b2 + b^ y + (6a‘ -10a”b2 + 664) x2y2}

+R2 { -2aW (a2 + b2) +2? (3a‘—a?b?+6%) a?—22 (c^-a^ + Sb^ y2

—(6a‘—10a?b2+664) (bP.4+a‘y‘) + (4a°—6a‘l‘—6a‘b4+460) «‘y?

+2 (a?—26%) b2.®+2 (b2—2a?) a‘y°—2 (a—a‘b?+364) x^y2

-2 (3a‘—a‘b2+64) a‘y“}

+(”±ay- a?b?){@- c)?+u} {(+c)2+/} = 0.

PROOF.—If the curves in (4949) be made to touch, a will be a point on the curve parallel to u at a distance r. Therefore put the values of A, 0, •‘, and A’ in equation (4942).                                 [Salmon, p. 325.

4961 When u of (4936) represents two right lines, A’ vanishes, and

4962 0’= 0 is the condition that the two lines should intersect on u;

4963 Q — 0 is the condition that the two lines should be conjugate with regard to u.

PROOF.—Transform u' = 0 into 2xy = 0, so that the axes a, y are the right lines. This will not affect the invariants (4940). We now have, by (4937),          A‘= 0, e = 2(fg-ch), e‘=-c

c = 0 makes u pass through the origin ay; fg = ch makes a and y conjugate. For in (4671), if Aa+uy+v becomes y = 0, then X = v = 0, and the pole is given by H : B : F. But a = a = 0 at the pole, therefore II = fg-ch = 0.

4964 The condition that either of the lines in u should touch u is, by (4943),

©2 = 440 or AB = 0, with the above values of O and O’.

4965 The equation of the two tangents to u, when Xa+uy+v is the chord of contact, is, with the notation of (4665),

u“ (X, u, v) = (Aa+uy+v2)2 A.

PROOF.—The conic of double contact with u, ku + (Xa + py + v)2 (4699), must now become two right lines. In (4937) A‘= 0 and O’ = 0, therefore kA+O = 0. But 0 = { (X, u, v). Hence eliminate k.

4966 COR.—Taking the line at infinity az+by +Cz, we obtain the equation of the asymptotes (4685).

The invariant 6 of the conic ku—u‘ vanishes—

4967 (i.) Whenever an inscribed triangle of u‘ is self-conjugate to u.

4968 (ii.) Whenever a circumscribed triangle of u is self-conjugate to u.

4969 O’ vanishes under similar conditions, transposing u and u' in (i.) and (ii.)

Proof.—(i.) u becomes az2 + by2 + cz2 (4765), and f= g = h — 0. Therefore 0 in (4937) vanishes if a‘=b‘= =0; i.e., if u' is of the form fyzFg'zxFh'xy (4724).

(ii.) In this case, f'— g'— h‘= 0 and 0 vanishes if be = f2, &c., i.e., if the line a = 0 touches u, &c.

4970 If u, u' be two conics, and if 02 = 4A0‘, any triangle inscribed in u' will circumscribe u, and conversely.

PROOF.—Let u = a2+y2+z2— 2yz— 2za — 2xy and u = 2fyz+2gzx+2hzy, both referred to the same triangle, (4739) and (4724). Then

A=-4,  0 = 4 (f+g + h), Q'=—(f+g + hy, N=2fgh-, therefore 02 = 4AO‘, a relation independent of the axes of reference (4940).

4971 Ex. (i.)—The locus of the centre of a circle of radius r, circumscribing a triangle which circumscribes the conic b2a2 + a2y2 = aN?, is («?+y‘—a?—b2+72)2+4 4632?+a‘y?—a?b?—2 (a‘+62)} = 0,

from 02 = 4A0‘ and the values in (4949).

4972 Ex. (ii.)—The distance between the centres of the inscribed and circumscribed circles of a triangle is thus found, by employing the values of 0, O', and A in (4947), to be D = • (r"± 2r/), as in (936).

4973 The tangential equation of the four points of intersection of the two conics u = 0, u' = 0 is

V2 = ^UU',

with the meanings

4974 U=^AB CFGHX^)2;


(4664)



U'= (A'B'C'F'G'HyX^v)2.

4976 V = (A"B"C"F"G"H"^kiiVy.

4977 A = bc-f2, &c.; A‘=bc-f", &c.5


as in (4665), and

4978 A'^bc'+Fc^ff,

4979 B" = ca'+da—2gg,

4980 C"=ab+ab—2hh,




F" = gK+g'h - af—a'f, G" = hf+h’f- bg' - Vg, H"=fg' +f'g-ch' -c'h.



PROOF.—The tangential equation is the condition that Aa+u+vy may pass through one of the four points of intersection of u and u. The tangential equation of the conic u+ ku’ is obtained by putting a+ ka‘ for a, &c. in U (4665), and is U+kV+kU‘= 0. The tangential equation of the envelope of the system is V2 = 4IUU' (4911). This is the condition that the line (X, u, v) may pass through the consecutive intersections of the conics obtained by varying k. But these conics always intersect in the same four points, The above is therefore the tangential equation of the four points.

4981 The equation of the four common tangents of two conics u, u' is

F2 = 4AAuu,

where           F = (a”b"cf"g”h" x aBy), and        a”= BC+BC—2FF, &c.,

f " = GH'+G'H-AF -A'F, &c., as in (4978-81).

PROOF.—This is the reciprocal of the last theorem. U+kU‘ is a conic touching the four common tangents of the conics U and U‘. The trilinear equation formed from this will, by (4667), be uA+ ItF-VT^u N = 0. The envelope of this system of conics is the equation above, which must therefore represent the four common tangents.

The curve F passes through the points of contact of u and u with the locus represented by (4981).

4982 Hence the eight points of contact of the two conics with their common tangents lie on the curve F.

4983 The reciprocal theorem from equation (4973) is—■ The eight tangents at the intersections of the conics envelope the conic V.

4984 F = 0 is the locus of a point from which the tangents to the two given conics u, u' form a harmonic pencil.

Proof.— Putting= 0 in (4681), we get a quadratic of the form aa2 +2ha,+632 = 0, which determines the two points in which the line y is cut by tangents from a’, S’, . Let the similar quadratic for the second conic be a‘a2+2h‘a/+b‘B2 = 0. Then, by (1064), ab' + a'b = 2hh' is the condition that the four points may be in harmonic relation. This equation will be found to produce F = 0.

4985 The actual values of a, h, b} suppressing the accents on a , 3‘, Y, are

CB: + By2 - 2F^y, G^y + Fy a - Gaft - Hy\ Ay2-\-Ca2-2Gya', and similarly for a, h', b', with A' written for A, &c.

4986 If the anharmonic ratio of the pencil of four tangents be given, the locus of the vertex will be F2 = kuu'. If the given ratio be infinity or zero, the locus becomes the four common tangents in (4981).

4987 V = 0 is the envelope of a conic every tangent of which is cut harmonically by the two conics u, u‘; i.e., the equation is the condition that Xa+u+vy should be cut harmonically by the two conics.

PROOF.—Eliminate y between the line (A, u, v), and the conics u and u separately, and let Aa‘+2Ha+B32 = 0 and A‘a*+2H‘a+B‘2 = 0 stand for the resulting equations. Then, by (1064), AB' + A'B = 2HH' produces the equation V = 0, which, by (4666), is the envelope of a conic.

4988 The actual values of A, H, B are respectively

av? + ch2 — 2gvX, hv? -guv - fil+ chu, cu? + bv? — ^f^; and similarly for A', H', B', with a for a, &c.

4989 F2 = 4AA‘uu‘ is a covariant (1629) of the conics u, u'.

For the four common tangents are independent of the axes of reference.

4990 U = 0 and V = 0 (4973) are both contravariants (1814) of v and u'.

PROOF.—For U = 0 is the condition that Aa+u+vy = 0 shall touch the conic u; and V = 0 is the condition that the same line shall be cut harmonically by u and u‘; and if all the equations be transformed by a reciprocal substitution (1813, ‘14), the right line and the conditions remain unaltered.

4991 Any conic covariant with u and u' can be expressed in terms of u, u1, and F; and the tangential equation can be expressed in terms of U, U' and V.

4992 Ex. (1).—The polar reciprocal of u with respect to u'

is                     Ou = F.

PROOF.—Referring u, u to their common self-conjugate triangle, u = a®2 + by? + cz", u = a?+y‘+ 23,

F = a (b + c) a2 + b (c + a) y’+c U + b) 22.

The polar of 5, n, % with respect to u is &a+ny+z, and the condition that this may touch u is bc^ + carj^ + ab^ = 0 (4664), or, which is the same thing, (bc + ca + ab^tx^-Ay^ + z-) = F or Ou' = F (4945).

4993 Ex. (2).—The enveloping conic V in (4987) may also be written

Ou‘+® u = F.

Proof.—With the same assumptions as in Ex. (1), V in (4973) becomes (b+c) A2+(c+a) u2+(a+b) v2 = 0. The trilinear equation is, therefore, by (4667),

(c + a) (a + b) a2 + (a + b) (b + c) y2 + (b + c) (c + a) z2 = 0, or       (be + ca + ab) (a2 + y2 + 22) + (a + b + c) (ax2 + by2 + cz2) = F.

4994 Ex. (3).—The condition that F may become two right lines is          AA (00‘- AA) = 0.

Proof.—Referring to Ex. (1), A = be, B =ca, C = ab, F— G = H=b, A'— B'= C'= 1; therefore, in (4981), a" = B+C = a (b + c), &c. Hence the discriminant A of F = abc (b + c)(c + a)(a + b), or abc { (a+b + c)(bc + ca + ab) — abc^ = the above, by (4945).

4995 To reduce the two conics u, u‘ to the forms a?+y?+22 = 9,    az?+By?+y22 = 0.

By (4945), a, (3, y will be the roots of the cubic

A/—Ol2+e‘-A‘ = 0 ..................(1), and a2, y2, z2 will be found in terms of u, u' and F, by solving the three equations a2 + y2 + 22 = u, ax2 — By2 + 22 = u‘ and (by 4994), a (8+y)2?+3(y+c) y?+y(+3)= F ...... (2).

4996 Ex. (1) : Given «2+y2+2y +2+3 = 0 ; a2 + Nj2 + 4y + 2w + 6 = 0; to be reduced as above. To compute the invariants, we take


			
a
	
b
	
c f
	
g
	
h


			
= 1
	
1
	
3 1
	
1
	
0 in the first equation.


		
and
	
= 1
	
2
	
6 2
	
1
	
0 in the second.


	
therefore
		
A
	
B
	
C F
	
G
	
H


			
= 2
	
2
	
1 -1
	
-1
	
1 in the first equation.


		
and
	
= 8
	
5
	
2 -2
	
-2
	
2 in the second.




Therefore (4938, ’9) A = 1, 0 = 6, 0'= 11, A' = 6. The roots of equation (1) are now 1, 2, 3. Therefore (2) becomes 5X2+8 Y2 +9Z2 = F. Computing F also by (4981) with the above values of A, B, &c., we get the three equations as under, introducing z for the sake of symmetry,

X2+ Y2+ Z2= 22+ y2+ 3z2+ 2yz+ 2^, X2+2Y2+372 = x2+2y2+ Qz2+ +yz + ^zx, 5X2+8Y2+9Z2 = 5a2+8y2+2222+16J2+10za,

The solution gives X=x+1, Y=y + 1, Z — 1, and the equations in the forms required are (x+1)2+ (y +1)2+1 = 0, (x+1)2+2 (y+1)2+3 = 0.

4997 Ex. (2).—To find the envelope of the base of a triangle inscribed in a conic u' so that two of its sides touch u.

4 T

Let        u = a2+y2+z2—2yz—2za—2ay—2hkay, and                    u = 2fys + 2gza + 2hay, a and y being the sides touched by u. Then u + ku will be a conic touched by the third side z. By finding the invariants, it appears that 02—440’ = 4AA‘k, whence k is determined, and the envelope becomes

(62— 4A0‘) u' + 4iANu = 0.

Compare (4970).

4998 The tangential equation of the two circular points at infinity (4717) is

A2+u2 = 0.

PROOF.—This is the condition that Xz+uy+v should pass through either of those points, since a ± iy = c is the general form of such a line.

4999 U = 0 being the tangential equation of a conic, the discriminant of IU+U’ is

A3k3 + AO k + A’Ok + A".

PROOF.—The discriminant of kC-\-N' is identical in form with (4937), but the capitals and small letters must be interchanged. Let then the discriminant be NW-\-Qk2+ O'k +N = Q. We have

A = A2 (4670), e = (BC~F2)A' + &c. = A'a^ + &c. (4668) = A®.

Similarly O' = A’e, A’ = A".

5000 If 9, O’ be the invariants of any conic U and the pair of circular points X2+u2 (4998); then 0 = 0 makes the conic a parabola, and O’ = 0 makes it an equilateral hyperbola.

Proof.— The discriminant of *U+X3+u? is R2A2+ k (a+b) A +ab- h2. Por, as above, A = A2; 0 = A'a^ + B'bA = (a+b) A since A' = B' = 1, C' &c. = 0 ; 6’= {A'B'-N^ C=C = ab-N-, and A’ = 0. The rest follows from the conditions (4471) and (4474).

5001 The tangential equation of the circular points is, in trilinear notation (see the note at 5030),

X2+u‘+v‘- 2uv cos A -2vX cos B—2Nu cos C.

PROOF : X2+u2 = 0, in Cartesians, shows that the perpendicular let fall from any point whatever upon any line passing through one of the points is infinite. Therefore, by (4624).

5002 The conditions in (4689) and (4690), which make the general conic a parabola or equilateral hyperbola, may be obtained by forming 9 and O’ for the conic and equation (5001) and applying (5000).

5003 If O‘2 = 40, the conic passes through one of the circular points.

5004 When u' in (4984) reduces to X2+u2, that is, to the circular points at infinity, F becomes the locus of intersection of tangents to u at right angles, and produces the equations of the director-circle (4693) and (4694).

5005 The tangential equation of a conic confocal with U is *U+X+u?= 0;

5006 And if the left side, by varying k, be resolved into two factors, it becomes the equation of the foci of the system.

PROOF.—Since X2 + u2 represents the two circular points at infinity (4998), kU+X2+ u2 = 0, by (4914), is the tangential equation of a conic touched by the four imaginary tangents of U from those points. But these tangents intersect in two pairs in the foci of U (4720) ; and, for the same reason, in the foci of kU+A2+u2, which must therefore have the same foci.

If kU +X2 + u2 consists of two factors, it represents two points which, by (4913), are the intersections of the pairs of tangents just named, and are therefore the foci.

5007 The general Cartesian equation of a conic confocal with u = 0 (4656) is

k^u+k {C (x+y‘)—2G.—2Fy+A+B}+1 = 0.

PROOF.—(5005) must be transformed. Written in full, by (4664), it becomes (kA+1) A2+(kB+1) u2+kCv2. Hence, by (4667), the trilinear equation will be

{(LB+1) RO—RF} a2+&c. = k2 ^RC-F^ a2+1Oa?+&c.

=kaAa+lCa2+&c.,        (4668) and so on, finally writing a, y, 1 for a, 3, y.

TO FIND THE FOCI OF THE GENERAL CONIC (4656).

(First Method.)

5008 Substitute in kU+A2+u2 either root of its discriminant k‘A2+k (a+b) A+ab—h2 = 0 (5000), and it becomes resolvable into two factors (Ax — uy1 — v) (Xx, — HY2 — v). The foci are XY1 and x2y25 real for one value of k and imaginary for the other.

PROOF.—By (5006) the two factors represent the two foci, consequently the coordinates of the foci are the coefficients of X, u, v in those factors.

(Second Method^

5009 Let xy be a focus; then, by (4720), the equation of an imaginary tangent through that point is (E— x)+i (n—y) = 0 or 5+in— (x+iy) = 0. Therefore substitute, in the tangential equation (4665), the coefficients X = 1, u = i, v = — (x+iy), and equate real and imaginary parts to zero. The resulting equations for finding x and y are, with the notation of (4665),

1

 That is, with respect to the circle of reciprocation, and so throughout with the exception of (4853).

2

 [The fiction of imaginary lines and points is not ineradicable from Geometry. The theory of Quaternions removes all imaginariness from the symbol —1, and, as it appears that a partial application of that theory presents the subject of Projection in a much clearer light, I have here introduced the notion of the multiplication of vectors at right angles to each other.]


5010 2(C»-G)= A [a-b+.{4%3+(a—b)2}].

5011 2(Cy-F) = A [b-a+(41+(-b)}].

5012 If the conic is a parabola, C=0, and the coordinates of the focus are given by

(F+ GP) w = FH+1 (A-B) G,

(P+ G2) y = GH^ {A-B) F.


5013 Ex.—To find the foci of 2x2+22y+2J2+2 = 0. method, we have







By the first

from which A = 2. The quadratic for k is

I2A2+47A+3 = (2%-3)(2k—1) = 0,

therefore k = 2 or }.



Taking 2, kll+X2 A f" = 3 (—u3+3v2+2uv—4v)+2+u2 = 0,


2X2—12vA—u2+9v2+6uv = 0.




or



Solving for X, this is thrown into the factors

{2+u 2-3 (2+ v/2)»} (2A—uV/2-3(2-V2) »}.

Therefore the coordinates of the foci, after rationalizing the fractions, are 2-/2    72-1   ,   2+2   2+1

--3,--3 and--3, -3—

5014 Otherwise, by the second method, equations (5010, T) become, in this instance, (32+2)2 = ± 2, (3y—1)2 = = 2, the solution of which produces the same values of a and y.

5015 When the axes are obliqiLe, the coordinates x, y of a focus are found from the equations

{C (a+y cosa)- Fcoso- G}2 = }A (• P- 4J+2a-1)

{Cy-Ff sin? o = }A (^F-^J-2a+If where I and J are the invariants (4955) and (4954) respectively. The equations may be solved for x‘ = x+y cos o and, y‘= y sin o, which are the rectangular coordinates of the focus with the same origin and x axis.

Proof.—Following the method of (5009), the imaginary tangent through the focus is, by (4721), 4— a + (n— y)(cos o+i sin o). The two equations obtained from the tangential equation are, writing Aa for BC—F2, &c. (4668),

X’— Y2 = —A (a+b— 2h cos o— 2a sin2 w), XY = A (h sin o— a sin o cos w) ; where X= C(x+y cos o)— Fcos o— G and Y = (Cy — F) sin o.

5016 If the equation of the conic to oblique axes be

aa^-Y^hwy-^-by^-^-c = 0, the equations for determining the foci reduce to y (x+y cos w) _x(y+a cos®) _ c acoso—h b cosco—h    ab — h^

5017 The condition that the line \x + yy + vz may touch the conic u + (X’a + yy + v‘z)2 is

U+p (yv'—yfy, vX‘ —vh, Xy — Xu) = 0.    (4656, 4936, ’74) 5018 or          (A+U) U= IT,             (4938) where         2l =XU+H‘U+vU,.          (4674)

Proof.—Put a+X‘2 for a, &c. in U of (4664). The second form follows from the first through the identity

Ap (uv‘ — u'v, &c.) = UU'—n2.

5019 Otherwise, let P‘=ur+uyy+u,%, the polar of x, y', / (4659), then the condition that P' may touch u+P"2 becomes, in terms of the coordinates of the poles,

5020       (1+v) • = $„a"+$,3‘+%.=".    (See 465 7).

PROOF.—If we put u,, u,, Uz, from (4659), for X, u, v in U to obtain the condition of touching, the result is Au' ; and similar substitutions made in II give A (daa”+&c.), therefore (5018) becomes (1+u") u = (9aa"+&c.). 5021 The condition that the conics u + (Na + yy + 1z)2, u + (N"a + y'y + vz)2 may touch each other is

(A+ U')^ U) = (A ± D)2.      (4938-74) Proof.—Make one of the common chords

(X’a + p.'y + v'z) ± (X"x + p."y + v"z) touch either conic by substituting X’ ± X" for X, &c. in (5018). The result is (A+ U‘)(U‘± 211+ U") = (U‘± 1)2, which reduces to the form above. 5022 The condition, in terms of the coordinates of the poles of the two lines, is found from the last, as in (5019), and is

(1+1)(1+w) = {1±(ua”+4,y‘+$2)}3.

5023 The Jacobian, J, of three conics u, v, w, is the locus of a point whose polars with respect to the conics all meet in a point. Its equation is


q@+hy+g15, ha+by+fi z, ga+fy+c z.




a,2—h,y+82%, h,a+b,y+fx, g20+fz y+cz.




aza+hy+g3% h,a+by+f % gza+fy+cs




= 0.



Proof.—The equation is the eliminant of the equations of the three polars passing through a point En%, viz., u,4 + u,n + Ugs = 0, va5 + vyn + v,Z = 0, w,4+w„n+w,% = 0. See (4657) and (1600).

5024 The equation of a conic passing through five points a,1Y1, a,32Y72, &c. is the determinant equation annexed; and the equation of a conic touching five right lines X1HV, N2ugV2, &c. is the same in form, X, u, v taking the place of a, 3, y.


a2 B2y2 B y y a a B a B: % B.y YQ, «1A az B 72 B.Y2 Ya, at, a3 A ya Ays yaa, ^s a A 7 Ay* y^ ^A

A A 73 Ays Y5a5 ^A



Proof.—The determinant is the eliminant of six equations of the type (4656) in the one case and (4665) in the other. By (583). 5025 If three conics have a common self-conjugate triangle, their Jacobian is three right lines.

Proof.—The Jacobian of a,22+b1 y2+C1z2, a,22+b2 y2+C22, 0322+ba y2+C3z2 is, by (5023), xyz — 0.

Por the condition that three conics may have a common point, see Salmon’s Conics, 6th edit., Art. 389a, and Proc. Land. Math. Soc., Vol. IV., p. 404, J. J. Walker, M.A,

5026 A system of two conics has four covariant forms u, u, F, J, connected by the equation

J2 = F3—F2 (Ou‘—O‘u)+F (A’Ou’+AO’u?) +Fuu‘ (08‘—3AA‘) — AA"u3 - A’A’u’* + A’u’u’ (2A0‘—02)+Au‘u (24’0-0’2).

PROOF.—Form the Jacobian of u, u, and F. This will be the equation of the sides of the common self-conjugate triangle (4992, 5025). Compare the result with that obtained by the method of (4995).

5027 By parity of reasoning, there are four contravariant forms U, U' V, r where I is the tangential equivalent of J, and represents the vertices of the self-conjugate triangle. Its square is expressed in terms of U, U‘, V and the invariants precisely as J2 is expressed in (5026).

5028 The locus of the centre of a conic which always touches four given lines is a right line.


PROOF.—Let U — 0, U' = 0 be the tangential equations of two fixed conics, each touching the four lines ; then, by (4914), U +kU' = 0 is another




conic also touching the four lines. The coordinates of its centre will be




G + kG' C + W'




and




F+kF' C + kC',




by (4402).




The point is thus seen, by (4032), to lie




on the line joining the centres of the two fixed conics and to divide that line in the ratio kC' : C.



5029 To find the locus of the focus of a conic touching four given lines.

In the equations (5010, ’1) for determining the coordinates of the focus, write A + kA' for A, &c., and eliminate k. The result in general is a cubic curve. If S, Sz be parabolas, 2+ k"N is a parabola having three tangents in common with 2 and X'. If C = C' = 0 the locus becomes a circle. If the conics be concentric, they touch four sides of a parallelogram, and the locus is a rectangular hyperbola.

Note on Tangential Coordinates.

5030 It must be borne in mind that a tangential equation in trilinear notation (that is, when the variables are the coefficients of a, 3, y in the tangent line la+i+ny) will not agree with the equation of the same locus expressed in the tangential coordinates A, u, v of (4019). Thus, to convert equation (5001), which, for distinctness, will now be written

I2 + m2 + n2—2mn cos A—inl cos B—Hm cos C = 0

into tangential coordinates, we must substitute, by (4023), aX, bu, cv for I, m, n. The equation then becomes

a‘A2 + bu? + e'v — 26c cos Ap.v — 2ca cos Br A — 2ab cos C Au = 0.

Put 2bc cos A = 62+c2—42, &c., and the result is the equation as presented in (4905).

Corrigenda.—In (4678) and (4692) erase the coefficient 2 ; and in (4680) and (4903) supply the factor 4 on the left of the equation.

THEORY OF PLANE CURVES.

TANGENT AND NORMAL.

5100 Let P (Fig. 90) be a point on the curve AP; PT, PNS PG, the tangent, ordinate, and normal intercepted by the a axis of coordinates. See definitions in (1160). Let Z.PTX = 1.

5101 tan J = dy, by (1403); siny= dy; cost = dx ds            ds

5104 Sub-tangent NT = ya,. Sub-normal NG = yyx. 5106 PT = y V(1+a;), PT' = X •(1+y.). 5108 PG=yVO+^), PG =«v(1+a).

Let OP = 7 (Fig. 91), u=r], AOP = 6, OPT=s; Arc AP — s. Then, by infinitesimals,

5110 sin 4=7 de, cos 4 = dr, tan 4 = r de. ds           ds             dr

5113   (dz)+ W2 = (ds)\ sx=^ +J:).

r, sin 0—r cos 0          _ 5114          tan i =  ---2--. .          (1768) re cos u—r sin 0

5115 intercepts of Normal OG — OG'—     (Fig.90)


PROOF :



og_r sin OPG _ r cos $ _ ,. Is _ , dr — sin PGN   sin NPT "a,   " dx ’

5116 s, = V^+r^, sr = •(1+1202).

PROOF.—By 70, = sin p and tan 0 = r9r (5110).

EQUATIONS OF THE TANGENT AND NORMAL.

The equation of the curve being y =f(x) or u = $ (a, y) = 0, the equation of the tangent at xy is

5118             v-y = dy (g-a),              (4120)

5119 or         sy.—n = ^yx—y,

5120 or        ku,+u, — au,+yu,            (1708)

5121 If $ (x, y) = 7+7-1+ ... +7, where vn is a homogeneous function of x and y of the nth degree, the constant part forming the right member of equation (5120) takes the value

—0,-1 — 20,42 —... — (n — 1) ", — nv^.

By Euler’s theorem (1621) and $ (x, y) = 0.

The equation of the normal at ay is

5122           y-y = - de (§—a),            (4122) ay

5123 or         a,+n = ^y+y,

5124 or         Say — r)ux = xuy—yux.             (1708)

POLAR EQUATIONS OF THE TANGENT AND NORMAL.

Let r, 0 be the coordinates of P (Fig. 91), and B, 6 those of S, any point on the tangent at P; and let u = r^, U = B~r, t = 0—6; the polar equation of the tangent at P will be

72

5125  R = ——7—-, or U = u cos 7— ud sin r. ae (r sin t)

The polar equation of the normal is

5127 R = ■Te—or U = u cos r —u20u sin 7 . ae(r cost)

— — r OP sin OSP sin (d— 7)    3 »    , p Proof.—From -—=——=——   =  ‘— , and from tan d = r9r

R          sin OP sin ‘

	
	
(5112). Similarly for the normal.



	
4 U



Let OY =2 be the perpendicular from the pole upon the tangent, then

5129            p = r sin $ = (u?+u?)-3.            (5112)


5131



2%,—% = attyty. (4064 & 5119, ’20) • (1 +y2)   • ($2 + $7)

OS, drawn at right angles to r to meet the tangent, is called the polar sub-tangent.

5133 Polar sub-tangent = r20r.


(5112)



RADIUS OF CURVATURE AND EVOLUTE.

Let &, n be the centre of curvature for a point xy on the curve, and p the radius of curvature; then

Proof.—(2) and (3) are obtained from (1) by differentiating for x, considering &, n constants.

The following are different values of p :

37  _ (1+32)% - _+*) 7 32 72.%t—“a“i—9»$

5139    _ (,+»)% =---1--- yu^t ^uyt J2s@s ^^ys

E1 — 1 _ a, _ _ y.

V^s-Yy^ yis Eg,

5144      - (78+72)8 _ (u+u)* »3+2r3+rr2 - u3 (u+ug)

5146     =s= p+pi^ = rrp.

Proofs.—Por (5137), eliminate x—E and y —» between equations (1), (2), and (3).

	
	
(5138)    is obtained from the preceding value by substituting for yx and y2x the values (1708, ’9). The equation of the curve is here supposed to be of the form $ (x, y) = 0.





For (5139) ; change the variable to t. For (5140) ; make t = s.

For (5141-3); let PQ= QR = ds (Fig. 92) be equal consecutive elements of the curve. Draw the normals at P, Q, R, and the tangents at P and Q to meet the normals at Q and R in T and S. Then, if PN be drawn parallel and equal to QS, the point N will ultimately fall on the normal Q0. Now the difference of the projections of PT and PN upon OX is equal to the projection of TN. Projection of PT = dsxg; that of PN or QS = ds (xg + x^gds) (1500); therefore the difference = dsx2sds = TN cos a. But TN : ds = ds : p, therefore px2s = cos a. Similarly py2s = sin a.

For (5144); change (5137) to r and 6, by (1768, ’9).

	
	
(5145)    is obtained from p = rrp = — " and (5129) ; or change (5144) from r to u by r — u~x.                 "





(5146.) In Fig. (93), PQ = p, PP' = ds, and PQP' = d^.

(5147.) In Fig. (93), let PQ, P'Q be consecutive normals; PT, P'T' consecutive tangents; OT, OT', ON, ON' perpendiculars from the origin upon the tangents and normals. Then, putting p for OT = PN, q for PT = ON, and d^ for L TPT' = PQP', &c., we have

q= QN = and p = PQ=p + QN = p +p^. dip            dip

(5148.) dp = r cos p dy and cos (p=rs. Eliminate cos t.

5149 Def.—The evolute of a curve is the locus of its centre of curvature. Regarding the evolute as the principal curve, the original curve is called its involute.

5150 The normal of any curve is a tangent to its evolute.

Proof.—By differentiating equation (5135) on the hypothesis that 4 and n are variables dependent upon x, and combining the result with (3), we obtain Y. n = —1.

In (Fig. 94), the normal at P of the curve AP touches the evolute at Q. Otherwise the evolute is the envelope of the normals of the given curve.

If xy and En are the points P, Q, we have the relations

5151 #-ag+?-an=dp, d_dn_edp p p                R-y p

Proof.—Take Qn = di, and ns = dp, then Qs = dp. The projection of Qn, ns gives dp in (5151) and proportion gives (5152).

5153 The evolute and involute are connected by the formulae below, in which 7, p', s' in the evolute correspond to r. Pi s in the involute.

5154 P±s' = constant;  p"2 = r^—p^; r2 = r^-}-p^2pp.

Proof.—From Fig. (94), dp = ±ds', &c., s being the arc RQ measured from a fixed point R. Hence, if a string is wrapped upon a given curve, the free end describes an involute of the curve. (3155, ‘6) from Fig. (93).

5157 To obtain the equation of the evolute; eliminate a and y from equations (5135, ’6) and the equation of the curve.

5158 To obtain the polar equation of the evolute; eliminate r and p from (5156) and (5157) and the given equation of the curve r = F (p).

C a

5159  Ex.—To find the evolute of the catenary y = F (ec + e c). Here

y=}(e_e c) = «(-€ ) ; 32, = 1 (e c + e 0) = % ; so that equations

C               AC                 C

(5135, ’6) become

(—2) + (y-„) M( -) =0 and 1+1 - +(-„) F = 0,

C                                       C"                    C"

From these we find y = 3, a = 4— 42 •(‘- 4c2). Substituting in the equation of the curve, we obtain the required equation in $ and n.

INVERSE PROBLEM AND INTRINSIC EQUATION.

An inverse question occurs when the arc is a given function of the abscissa, say s = $ (a) ; the equation of the curve in rectangular coordinates will then be


5160




y =§v(s—1) dx.




[From (5113).



5161 The intrinsic equation of a curve is an equation independent of coordinate axes. Let y = $ (x) be the ordinary equation, taking for origin a point 0 on the curve (Fig. 95), and the tangent at 0 for a axis. Let s = arc OP, and 1 the inclination of the tangent at P; then the intrinsic equation of the curve is


5162




s=5 sec ua, di ;



where a, is found from tan 1 = $‘(x).

To obtain the Cartesian equation from the intrinsic equation :

5163 Let S = F() be the intrinsic equation. Eliminate 1 between this and the equations

a =s cos yds, y = J sin 1 ds.

5165 The intrinsic equation of the evolute obtained from the intrinsic equation of the curve, s — F(^), is

—s = I, a constant. (5154) dy

5166 The intrinsic equation of the involute obtained from s' = F(), the equation of the curve, is

S = Al~FW}^.

For dy is the same for both curves (Fig. 94), 1 only differing by 27, and s = J pd^.

ASYMPTOTES.

5167 DEF.—An asymptote of a curve is a straight line or curve which the former continually approaches but never reaches. (^Vide 1185).

GENERAL RULES FOR RECTILINEAR ASYMPTOTES.

5168 RULE I.—Ascertain if yx has a limiting value when x = o. If it has, find the intercept on the x or y axis, that is, x—yX, or y—xyx (5104).

There will be an asymptote parallel to the y axis when y, is infinite, and the x intercept finite, or one parallel to the x axis when y, is zero and the y intercept finite.

5169 RULE II.— When the equation of the curve consists of homogeneous functions of x and y, of the mth, nth, ^c. degrees, so that it may be written

a"$(“)+a"x(%)+&. = 0 ............ (1) ;

put MX+I for y and expand p(u——), &c., by (1500). Divide (1) by xm, and make x infinite; then $ (u) = 0 determines u.

Next, put this value of u in (1), divide by xm-1, and make x infinite; thus Bo’ (u) + X (u) = 0 determines /3. Should the last equation be indeterminate, then

WWW W+*to = o gives two values for 3, and so on.

When n is <m— 1, 3=0, and when n is > m— 1, =c. 5170 Rule III.—If $ (x, y) = 0 be a rational integral equation, to discover asymptotes parallel to the axes, equate to zero the coefficients of the highest powers of x and y, if those coefficients contain y or x respectively.

To find other asymptotes—Substitute ux+3 for y in the original equation, and arrange according to powers of x. To find u, equate to zero the coefficient of the highest power of x. To find 3, equate to zero the coefficient of the next power of x, or, if that equation be indeterminate, take the next coefficient in order, and so on.

5171 Rule IV.—If the polar eqiLation of the curve be r =f (6) and if r=0 makes the polar subtangent r20,= c, a finite quantity, there is an asymptote whose equation is r cos (0—a) = c; ivhere a + 27 = f -1 (0 ) = the value of 6 of the curve when r is infinite.

5172 Asymptotic curves.—In these the difference of corresponding ordinates continually diminishes as x increases.

As an example, the curves y = d (a) and y = d (x) + — are asymptotic.

to zero, gives 3 = F -. Hence the equations of two more asymptotes ov 5

are 3y./3 = ± (3a— 2a).

Ex. 2.—To find an asymptote of the curve r cos @ = a cos 20. Here

a d@               a? cos 20

7 — — ---------------.-------.

dr a cos 20 sin 0— 2a sin 20 cos 0

When • = c, 6 = 37, and r20r = —a. Hence the equation of the asymptote is r cos 6 = — a.

SINGULARITIES OF CURVES.

5174 Concavity and Convexity.—A curve is reckoned convex or concave towards the axis of a according as yy2x is positive or negative.

POINTS OF INFLEXION.

5175 A point of inflexion (Fig. 96) exists where the tangent has a limiting position, and therefore where Y takes a maximum or minimum value.

5176 Hence y2x must vanish and change sign, as in (1832). 5177 Or, more generally, an even number of consecutive derivatives of y = $ (a) must vanish, and the curve will pass from positive to negative, or from negative to positive, with respect to the axis of a, according as the next derivative is negative or positive.                                   [See (1833).

MULTIPLE POINTS.

5178 A multiple point, known also as a node or crunode, exists when yx has more than one value, as at B (Fig. 98). If $ (x, y) = 0 be the curve, pa and p, must both vanish, by (1713). Then, by (1704), two values of yx determining a double point, will be given by the quadratic

$.,y:+2 .,3.+$. = 0..................(1)-

5179 If $223 $20, pa, also vanish; then, by (1705), three values of yx, determining a triple point, will be obtained from the cubic

qs„32+3pzy2+3d,2y.+sse = 0............(2).

5180 Generally, when all the derivatives of $ of an order less than n vanish, the equation for determining y. (put = z) may be written

^dy+d^tf)^, y) = 0.

PROOF.—Let ab be the multiple point. Then, by (1512),

(a+h, b+K) = 1 (Id,+Rd,)n# (x, y)

n :

+ terms of higher order which vanish when h and k are small. And k = -= d in the limit.

h y ax

CUSPS.

5181 When two branches of a curve have a common tangent at a point, but do not pass through the point, they form a cusp, termed also a spinode or stationary point.

5182 In the first species, or ceratoid cusp (Fig. 100), the two values of Y2e have opposite signs.

5183 In the second species, or ramphoid cusp (Fig. 101), they have the same sign.

CONJUGATE POINTS.

5184 A conjugate point, or acnode, is an isolated point whose coordinates satisfy the equation of the curve. A necessary condition for the existence of a conjugate point is that p. and $, must both vanish.

PROOF.—For the tangent at such a point may have any direction, therefore ~ is indeterminate (1713).

v

5185 There are four species of the triple point according as it is formed by the union of

(i.) three crunodes, as in (Fig. 102);

. (ii.) two crunodes and a cusp, as in (Fig. 103);

(iii.) a crunode and two cusps, as in (Fig. 104);

(iv.) when only one real tangent exists at the point.

5186 Ex. — The equation y2 = (a— afix—bfix— c)1 when a < b < c represents a curve, such as that drawn in (Fig. 97).

When b = c the curve takes the form in (Fig. 98). But if, instead, b = a, the oval shrinks into a point A (Fig. 99).

If a = b = c the point A becomes a cusp, as in (Fig. 100).

A geometrical method of investigating singular points.

5187 Describe an elementary circle of radius r round the point x, y on the curve $ (a, y) = 0, intersecting the curve in the point a+h, y^k. Let h = cos 6, k = r sin 0. Expand $(a+h,y+l) = 0 by (1512), and put •. = K sin y, $y = K cos y. We thus obtain

K sin (y + 0) + Z (42 cos2 0 + 244, sin 0 cos 0 + 42, sin2 0)+ =0 A                                           7

R being put for the rest of the expansion          .........(1),

According as the quadratic in tan 0,

$2 + 2a, tan 0 + $2, tan2 0 = 0, has real, equal, or imaginary roots; i.e., according as $2,— H2$2, is positive, zero, or negative, xy will be a crunode, a cusp, or an acnode. By examining the sign of R, the species of cusp and character of the curvature may be determined.

Figures (105) and (106), according as R and $2, have opposite or like signs, show the nature of a crunode; and figures (107) and (108) show a cusp.

PROOF.—At an ordinary point the circle cuts the curve at the two points given by 6 =—y, 0= T—. But, if da and d, both vanish, there is a singular point. Writing A, B, 0 for $2a, (pxy, (j>.ly, equation (1) now becomes

C cos2 0 § tan2 0 + ~ tan 0 + A ? + 2P = 0...............(2).

(i.) If B2>AC, this may be put in the form

C cos2 0 (tan 0 — tan a) (tan 0 —tan B) + 45 = 0, and the points of intersection with the circle are given by 0 = a, 3, r+a, and T+8. (Figs. 105 and 106.)

(ii.) When B2 = AO, we may write equation (1)

O cos2 0 (tan 0—tana)2 + 2 = 0.

If R and C have opposite signs, there is a cusp with a for the inclination of the tangent (Fig. 107). So also, if R and C have the same sign, the inclination and direction being T+a (Fig. 108). The cusps exist in this case because R changes its sign when 7 is added to 0, R being a homogeneous function of the third degree in sin 0 and cos 0.

(iii.) If B2<AC, there are no real points of intersection, and therefore xy is an acnode.

CONTACT OF CURVES.

5188 A contact of the nth order exists between two curves when n successive derivatives, Y,, ... ynx or Te, ... rne, corres-pond. The curves cross at the point if n be even. No curve can pass between them which has a contact of a lower order with either.

Ex.—The curve y = $ (x) has a contact of the nth order, at the point where a = a, with the curve y = $ (a) + (2— a) p‘(a)+ ... +


Gn02"q"(a).



5189 Cor.—If the curve y =f[x) has n parameters, they may be determined so that the curve shall have a contact of the (n — l)th order with y = $ (x).

A contact of the first order between two curves implies a common tangent, and a contact of the second order a common radius of curvature.

Conic of closest contact with a given curve.

5190 Lemma.—In a central conic (Fig. of 1195), tan CPG =1 de. 3 as

Proof.—Putting PCT=0, CPT=(]), CP = r, CD = R, we have, by (1211),          72+R‘= a+b, .7, =-RR, ..................... (i.).

Also Rr sin p = ab, by (1194), .’. Rr^Og = ab, by (5110).........(ii.).

Now tan OPG = —cots = - Te (5112) = =* = R'Rs, by (i.) and (ii.). r             rds ab

But p = — (4538),   ... 4 — = R2R, = tan Op^’

ab                 3 ds ab

5191 To find the conic having a contact of the fourth order with a given curve at a given point P.

If 0 be the conic’s centre, the radius r = OP, and the angle v between 7 and the normal are found from the equations


tan v —




1 dp

3 Us’




cos v  1   dv

r     p   ds}



and these determine the conic.

PROOF.—In Fig. 93, let 0 be the centre of the conic and P the point of contact. The five disposable constants of the general equation of a conic will be determined by the following five data: two coordinates of 0, a common point P, a common tangent at P, and the same radius of curvature PQ.

Since v = POT, dO = POP', d^ = TOT', and ds = PP', we have, in passing from P to P', dv = P'OT—POT = di— d6. Now rd9 = ds cos v,


and tan v has been found in the



The squares of the semi-axes of the same conic are the roots of the equation

(9+62—Zac)8a?—9a? (18+262—Z3ac)(9+b‘—3ac) a+729a‘

=0,

	
	
a, b, c being written for p, ps, p2s. The eccentricity is found from         9 (e—2)2 _ (18+26°3ac)2





1—e  — Q+^-Sac ’

Also the equation of the conic referred to the tangent and normal at the point is

Ax‘+2Bay+Cy? = 2y,

where A =—3 B=*P, 0=1+ 2o2 — P2s.

P         Op       p vp o

Ed. Times, Math. Reprint, Vol. XXI., p. 87, where the demonstrations by Prof. Wolstenholme will be found.

ENVELOPES.

5192 An envelope of a curve is the locus of the ultimate intersections of the different curves of the same species, got by varying continuously a parameter of the curve; and the envelope touches all the intersecting curves so obtained.

5193 RULE.—If E (x, y, a) = 0 be a curve having the parameter a, the envelope is the curve obtained by eliminating a between the equations

F (x, y3 a) = 0 and daF (x, y3 a) = 0.

Proof.— Let a change to a + h. The coordinates of the point of intersection of F (x, y, a) = 0 and F (x, y, a + h) = 0 satisfy the equation

F(x, y, a+hy-F^, y, a) _ 0, ie> dF (E, y, q.) _ 0.   (1404) h       ‘ da

5194 If F (a, y, a, b, c, ...) = 0 be the equation of a curve having n parameters a, b, c, ... connected by n—1 equations, then, by varying the parameters, a series of intersecting curves may be obtained. The envelope of these curves will be found by differentiating all the equations with respect to a, b, c, &c., and eliminating da, db, ... and a, b, ...

5195 Ex.—In (2) of (5135), we have the equation of the normal of a curve at a given point xy; 4, 7) being the variable coordinates, and a, y the parameters connected by the equation of the curve F (x, y} = 0. By differentiating for a and y, (5136) is found, and the elimination as directed in (5157) produces the equation of the evolute which, by (5194), is the envelope of the curve.

INTEGRALS OF CURVES AND AREAS.

FORMULAE FOR THE LENGTH OF AN ARC s.

5196 s = J ds = (1+y)da =5 •1+a; dy (5113) 5200 =§(;+y)dt=§(+r)d0       (5116)

5201 =§V(6,+1) dr = SvEdrpy         (5111)

5203 Legendre’s formula, s = pv+Jpd.

pd^f.

0

Proof.—In figure (93), let P, P' be an element ds of the curve; PT, P'T' tangents, and OT, OT' the perpendiculars upon them from the origin; OT= p, PT = q. Then ds + P'T'—PT = TL, i.e., ds + dy = pd^; therefore s + q =pdi. But qd^ = —dp-, therefore S =2+pd. Also, in integrating all round the curve, P'T'—PT taken for every point vanishes in the summa-

(                             (        (2m tion, or \ dq = 0. Therefore ds = I pdF

J                                   J J o

FORMULA FOR PLANE AREAS.

5205 If y = 4 (a) be the equation of a curve, the area bounded by the curve, two ordinates (x = a, & =b), and the x

axis, is, as in (1902),


’6

$ (x) dx. a



A =

5206 With polar coordinates the area included between two radii (0 =a, 0 =3) and the curve is

A = 1.^M=1§pds - +5 VAFpyy

Proof.—From figure (91) and the elemental area OPP'. 5209 The area bounded by two circles of radii a, b, and the two curves 0 = $(r), 0 = 1 (r) (Fig. 109).

V (r)                (b c                   ) rdrdO = I r i (r) — $ (r) j dr.

	
5 (r)                 J a



Here r {(r)— $(r)} dr is the elemental area between the dotted circumferences.

5211 The area bounded by two radii of curvature, the curve, and its evolute (Fig. 110).

	
	
— — 2





Proof.—From figure (93) and the elemental area Q,PP'.

INVERSE CURVES.

The following results may be added to those given in Arts. (1000-15). 5212 Let r, r' be corresponding radii of a curve and its inverse, so that rr' = k; s, s' corresponding arcs, and p, $‘ the angles between the radius and tangents, then

dser and <t> = d>'.

ds r

Proof.—Let PQ be the element of arc ds, P'Q' the element ds', and O the origin.

Then OP. OP' = OQ.OQ', therefore OPQ, OQ'P' are similar triangles; therefore PQ, : P'Q' :: OP : OQ' = r : r'; also L OPQ = OQ'P'.

5214 If p, p be the radii of curvature,

—— = 2 sin O.

P P

Proof.—From p = r sin p, p' = / sin $, we have

= 232, therefore dp’ = 1a z ^r- ...(i.). r             dr          r

Also                7Lk, therefore dr =(ii.). r           dr r

Now p = r dr’ (5148), therefore 1=1 dp dr = 2p —r, by (i.) and (ii.). dp                   p r dr dr rr pr Therefore            7+1=22=2 sin 4.

P P T

5215 To find the equation of the inverse of a curve in rectangular coordinates, substitute

k2x - k^y a*+y‘ al ^y^

for a and y in the equation of the given curve.

5216 The inverse of the algebraic curve

1+u,-1+u,-2+...+1+, = 0, where un is a homogeneous function of the nth degree, will be

13"u,+130"—Vu,—1 (a”+y?)++180—P)u,42 (a”+y)2+...

...+u(+y)"= 0.

5217 The inverse of the conic U,+u,+u = 0 is

R‘u,+k‘u, {^-Vy^-^-u^ {y^-^-y^ = 0.

5218 If the origin be on the curve, this equation becomes ku,+u, (x+y?) = 0.

5219 The angle $ will also be unaltered in any curve, r = f(0), if the inversion be effected by putting

r = kr'n and 0 = n6.

Proof.—

tanp‘ = r’B, (5112) = r’B’r, = r'— knr'^1 = kr'n9r = r9r = tanp.

PEDAL CURVES. 5220 The locus of the foot of the perpendicular from the origin upon the tangent is called a pedal curve. The pedal of the pedal curve is called the second pedal, and so on. Reversing the order, the envelope of the right lines drawn from each point of a curve at right angles to the radius vector is called the first negative pedal, and so on.

5221 The pedal and the reciprocal polar are inverse curves (1000, 4844.)

AREA OF A PEDAL CURVE.

5222 Let G, P, Q be the respective areas of a closed curve, the pedal of the curve, and the pedal of the evolute; then

P-Q = C, P+ Q = } Sredy, 2P = C+Grdy.

Proof.—With figure (93) and the notation of (5 204), we have, by (5206), P = } J p’dy, Q = } J q2d\p ; therefore P + Q = } J (p2 + q?) dy=} q3di. Also, taking two consecutive positions of the triangle OPT = A, we get OPT— OP'T' = A = 30+3Q—3P. Therefore, integrating all round,

(fiA = 0 = C+Q-P.

5225 Steiner’s Theorem.—If P be the area of the pedal of a closed curve when the pole is the origin, and Pf the area of the pedal when the pole is the point xy,

P'—P = Im (a+y)- ax—by,

“27                                    (2m where @= p cos Odd and b= psinOdO;

•0                                Jo

0 being the inclination of p.

Proof.—(Fig. 111.) Let LM be a tangent, S the point xy, perpendiculars 0M=p and SB=p'. Draw SN perpendicular to OM, and let ON = P1 • then P' = ipea =} (p-pi°d = } za+} ^P2fi^— zpa

= P+ T OS2— | p (x cos 0 +y sin 0) dd, by (4094), and d9 = d^.

And 9 p\d^ = twice the area of the circle whose diameter is OS.

J o

5226 Cor. 1.—If P' be given, the locus of xy is a circle whose equation is (5225), and the centre of this circle is the same for all values of P', the coordinates of the centre being a - b — and —.

TT TT

5227 Cor. 2.—Let Q be the fixed centre referred to, and let QS = c. Let P" be the area of the pedal whose origin is Q; then             Pf—P" = }mc.

For a and b must vanish in (5225) when the origin is at the centre Q, and a2+y2 then = c3.

5228 Cor. 3.—Hence P" is the minimum value of P'.2

ROULETTES.

5229 DEF.—A Poulette is the locus of a point rigidly connected with a curve which rolls upon a fixed right line or curve.

AREA OF A ROULETTE.

5230 When a closed curve rolls upon a right line, the area generated in one revolution by the normal to the roulette at the generating point is twice the area of the pedal of the rolling curve with respect to the generating point.

PROOF.—(Fig. 112.) Let P be the point of contact of the rolling curve and fixed straight line, Q the point which generates the roulette. Let R be a consecutive point, and when R comes into contact with the straight line, let P'Q,' be the position of RQ. Then PQ is a normal to the roulette at Q, and P is the instantaneous centre of rotation. Draw QN, QS perpendiculars on the tangents at P and R. The elemental area PQQ'P', included between the two normals QP, Q'P', is ultimately equal to PQR+ QRQ'. But PQR = dC, an element of the area of the curve swept over by the radius vector QP or r round the pole Q ; and QRQ' = 2r2di ; therefore, whole area of roulette =0+} Pd^ = 2P, by (5224).

5231 Hence, by (5228), there is one point in any closed curve for which the area of the corresponding roulette is a minimum. Also the area of the roulette described by any other point, distant c from the origin of the minimum roulette, exceeds the area of the latter by Tc2.

5232 When the line rolled upon is a curve, the whole area generated in one revolution of the rolling curve becomes where p, o’ are the radii of curvature of the rolling and fixed curves, and 0 is the area of the former.

PROOF.—(Fig. 113.) Instead of the angle di, we now have the sum of the angles of contingence at P of the rolling curve and fixed curve, viz., dy+dy = dy (1+8) =d (1+ 8),

since pdi — ds — p’di’, by (5146).

LENGTH OF THE ARC OF A ROULETTE.

5233 If a and Z be corresponding arcs of the roulette and the pedal whose origin is the generating point; then, when the fixed line is straight, s = Z ; and when it is a curve,

5234

Proof.—(Fig. 112.) Let R be the point which has just left the straight line, Q the generating point, N, S consecutive points on the pedal curve. Draw the circle circumscribing RQNS, of which RQ = r is a diameter, and let the diameter which bisects NS meet the circle in K. Then, when the points P, R, P' coincide, KN and RQ, are diameters, and SKN = SPN = di = QRQ'; therefore SN or d^ = rdi[/ = Q,Q' or da. When the fixed line is a curve, d<y = rdip ( 1+ L, ), as in (5232).

' P /

RADIUS OF CURVATURE OF A ROULETTE.

5235 Let a (Fig. 113) be the angle between the generating line r and the normal at the point of contact; p, p the radii of curvature of the fixed and rolling curves, and R the radius of curvature of the roulette; then,

- PP cos a—r p+P

4 Y

PROOF.— Let consecutive normals of the roulette meet in 0; then 00 = R, PQ = r, MPT=a.

R—r PM ds cos a .  ,     -.., f ds , ds\

RFogmd and do="dl*4)=‘(pfp)’ from which R is obtained. If the curvature of the roulette is convex towards P (Fig. 114), we must write R + r instead of R—r above.

5236 The curvature is convex towards P when B is positive, that is, when the carried point Q falls within the circle whose diameter measured on the normal of the rolling curve = -0. When Q falls without this circle, the curvature is p + p

concave; and when Q falls upon the circumference, the point is one of inflexion. The circle has for this reason been called the circle of inflexions.

5237 in figure (163) let PA = p, PB = p, PQ — r, OQ = B, as in (5235). Draw PCD, the circle of inflexions, with its /                                                                                      / diameter PC = -P, and therefore PD — -—cos a. From p+p      .           p+p

these values and proportion it follows that BC : BP : BA and QD : QP : Q0. Also, if the circle on diameter PB = PC be drawn, AB : AP : AB and OB : OP : OQ.

5238 A simple construction for the centre of curvature of the roulette is the following. (Fig. 164, with letters as in 5237.) At P draw a perpendicular to PQ to meet QB in N. Join NA, which will meet QP produced in 0, the required point.

PROOF.—From equation (5235), assuming 0 to be the centre of curvature, we can deduce the relation (EA : AR^PO : OQ,)(QN : NE) = 1, therefore, by (968), A, 0, N are collinear points.

THE ENVELOPE OF A CARRIED CURVE.

5239 When a curve is rigidly connected with a rolling curve, it will have an envelope. The path of its point of contact with the envelope is a tangent to both curves, and therefore the normal, common to the carried curve and its envelope, passes through the point of contact P of the rolling and fixed curve.

5240 The centre of curvature of the envelope is obtained as follows.

In Fig. (163), from P draw a normal to the carried curve meeting it in Q, and let S on PQ be the centre of curvature of the envelope for the point Q ; and 0 that of the carried curve. Then PS is found from


---—= cos a

P P




PS + PO



5241 When the envelope is a right line, the centre of curvature lies on the circle of inflexions (5236). When the carried curve is a right line, the same point lies on the circle PEF (Fig. 163), and if the right line always passes through a fixed point, that point lies on the circle PEF.

5242 if p be the perpendicular from a fixed point upon a carried right line whose inclination to a fixed line is 1; the radius of curvature of the envelope is p = 2+220, by (5147).

INSTANTANEOUS CENTRE.

5243 When a plane figure moves in any manner in its own plane, the instantaneous centre of rotation is the intersection of the perpendiculars at two points to the directions in which the points are moving; and a line from the instantaneous centre to any point of the figure is the normal to the path of that point.

Ex.—Let a triangle ABC slide with its vertices A, B always upon the right lines OA, OB. The perpendiculars at A, B to OA, OB meet in Q, the instantaneous centre, and Q,C is the normal at C to the locus of C.

Since AB and the angle AOB are of constant magnitude, OQ, the diameter of the circle circumscribing OAQB, is of constant magnitude. Hence the locus of the instantaneous centre Q is a circle of centre 0 and radius OQ.

5244 ELolditcEs Theorem.—If a chord of a given length LM moves completely round a closed curve, the area enclosed between the curve and the locus of a point P on the chord is equal to Tree where c = LK, c' = ELK.

5245 If the ends of LM move on different closed curves whose areas are X, u, while the area described by K is K, then Xc’—uc , K —-----ircc . C-FC

Proof.—(5244). Let the innermost oval in figure (134) be the envelope of LM, e its area, and E the point of contact. Let EL = I, BM^m, EK=k, l+m = a = c + c ; 0, the inclination of LM. Then, integrating in every case from 0 to 27,

+§"de = A—e) .. x^l^-m^ dd = 9 §(—m) dO=X-m.

1Sm‘d0 =p-e) Also g S(+m) de = ra

.. a 5 IdO = ra2 + X — u   (i.). Similarly c ^ld6 = rc2+A— K   (ii.), the last being obtained from 4 J (1?—k2') dd = X—k. k is then found by eliminating the integral between (i.) and (ii.).

(5245.) If the curves X, u coincide, X = u and therefore X —K = Tcc‘.

TRAJECTORIES.

5246 Def.—A trajectory is a curve which cuts according to a given law a system of curves obtained by varying a single parameter.

The differential equation of the trajectory which cuts at a

constant angle 3 the system


of curves represented by eliminating c between the



4 (a, y, c) = 0 is obtained by equations

$ (x, y, c) = 0 and the derivatives ofbeing partial, and yx referring to the trajectory.3


tan 3 = 2173, Py PzYx



PROOF. — At a point of intersection we have for the given curve m = — Ha:$y, and for the trajectory m =yx. Employ (4070).

If the trajectory is to be orthogonal, tan 3 = 0 , and the second equation becomes

p, $.Y. — 0.

Ex.—To find the curve which cuts at a constant angle all right lines passing through the origin.

Let y — cx represent these lines by varying c; then, writing n for tan 3, the two equations become y—cx = 0 and n (1+cY.) = yx—c. Eliminating e, xyx—y = n (yy^ + x). Divide by a2+y2 and integrate; thus

tan-1% = n log ./(x2 + 92) + C, which is equivalent to r = aen, the equation of the logarithmic spiral (5289).

CURVES OF PURSUIT.

5247 Def.—A curve of pursuit is the locus of a point which moves with uniform velocity towards another point while the latter describes a known curve also with uniform velocity.

Let f(x, y) = 0 be the known curve, xy the moving point upon it, 8n the pursuing point, and n : 1 the ratio of their velocities. The differential equation of the path of En is obtained by eliminating x and y between the equations

f(a,y)=0.........(i),   J—=n(-6).........(ii.),

V(at+s) = " v(1+n) ............... (“•)•

Proof.—(ii.) expresses the fact that xy is always in the tangent of the path of En.

(iii.) follows from 1 : n = v(d82+dn2) : «(dx2+dy2) ; the elements of arc described being proportional to the velocities.

Ex.—The simplest case, being the problem usually presented, is that in which the point xy moves in a right line. Let x = a be this line, and let the point En start from the origin when the point xy is on the x axis. The equations (i.), (ii.), (iii.) now become, since x* = 0,

« = a, y =n+n(a—4), J =n.(1+n2).


From the second

Putting ng = p,



Ye = n2 (a—4), therefore (a— 5) T2 = n (1+n2).

dp _ nd8

•/(1+p2) - (a—5)°

Integrating by (1928), we find

log (p+vl +A) = n log (a— 5) + n log a, so that p and 5 vanish together at the origin;

therefore I +72+ = ( -d) , and therefore 1+7- p = (d-6 \a—                             \ a


therefore




therefore



dr]  1 § / a \" /a— 5\” ? dh 2 1 \a—k) \ a / j 1 § a" (a—^)1 n , a“(a—5)1*7 ) . an

2 1 n— 1        7+1   )  1 — n^ the equation of the required locus, the constant being taken so that & = n = 0 together. If, however, n = 1, the integral is

82— 2al a a — & "=4--210gW

CAUSTICS.

5248 DEF.—If right lines radiating from a point be reflected from a given plane curve, the envelope of the reflected rays is called the caustic by reflexion of the curve.

Let $ (x, y) = 0, 1 (x, y) = 0 be the equations of the tangent and normal of the curve, and let hk be the radiant point; then the equation of the reflected ray will be

1

 Salmon’s Higher Plane Curves, Arts. 39, 40.

2

 For a discussion of the pedal curves of an ellipse by the Editor of the Educ. Times and others, see Reprint, Vol. i., p. 23 ; Vol. xvi., p. 77 ; Vol. XVII., p. 92; and Vol. xx., p. 106.

3

 For a very full investigation of this problem, see Euler, Novi Com. Petr op., Vol. xiv., p. 46, xvn., p. 205 ; and Nova Acta Petr op., Vol. i., p. 3.


$ (h, k) 1 (a, y)+v (h, k) $ (a, y) = 0, and the envelope obtained by varying the coordinates of the point of incidence, as explained in (5194), will be the caustic of the curve.

Ex.—To find the caustic by reflexion of the circle a2+y2 = 72, the radiant point being hk.

Taking for the tangent and normal, as in (4140), a cos a+y sin a = r, and x sin a— y cos a = 0, the reflected ray is

(h cos a+k sin a— r) (a sin a — y cos a)

+ (h sin a — k cos a)(x cos a+y sin a — r) = 0.

Reducing this to the form

A cos 2a+B sin 2a+ 0 sin a—D cos a = 0, and differentiating for a,

	
— 2A sin 2a + 2B cos 2a + C cos a + D sin a = 0.



The result of eliminating a is

{4 (13 + 13) (a3+y3)—72(x+1)3—(y+k)3}8 = 27 (kx - hy^ (23 + y? -h- k^, the envelope and caustic required.

5249 QueteleVs Theorem.—The caustic of a curve is the evolute of the locus of the image of the radiant point with respect to the tangent of the curve.

Thus, in the Eig. of (1178), if S be the radiant point, W is the image in the tangent at P. The locus of W is, in this case, a circle, and the evolute and caustic reduce to the single point S'.

Since the distance of the image from the radiant point is twice the perpendicular on the tangent, it follows that the locus of the image will always be got by substituting 2r for r in the polar equation of the pedal, or — for r in the polar equation of the reciprocal of the given curve with respect to the radiant point and a circle of radius k.

TRANSCENDENTAL AND OTHER CURVES.

THE CYCLOID.1               (Fig. 115)

5250 DEF.—A cycloid is the roulette generated by a circle rolling upon a right line, the carried point being on the circumference. When the carried point is without the circumference, the roulette is called a prolate cycloid; and, when it is within, a curtate cycloid.

5251 The equations of the cycloid are

a = a (6+sin 0), y = a (1 — cos 6),

where 0 is the angle rolled through, and a the radius of the generating circle.

Proof.— (Fig. 115.) Let the circle KPT roll upon the line DE, the point P meeting the line at D and again at E. Arc KP = KD ; therefore arc PT = AK = OT. Also 6 = PCT, the angle rolled through from A, the centre of the base ED. Then

« = OT+TN = ad + a sin 0 ; y = PN = a — a cos 0.

5253 If s be the arc OP and p the radius of curvature at P,

S = 2PT- V^y}, P = ^PK.

Proof.—(i.) The element Pp = Ph = 2 {OD— Ob') ultimately ; therefore, by summation, s = 20P. Also OP = PT = • (TK.TR) = v(2ay).

(ii.) Let two consecutive normals at P and p intersect in L. Then PL, pl are parallel to BA, b A ; therefore PLp is similar to PAi. But Pp = 2 Pi ; therefore p or PL = 2PA = 2PK.

5255 Cor.—The locus of L, that is the evolute of the cycloid, consists of two half-cycloids as shown in the diagram.

5256 The area of a cycloid is equal to three times the area of the generating circle, and the curve length is four times the diameter of the same circle.

Proof. — (i.) Area PpnN = PprR = RbqQ, ultimately. Therefore, by summation, DE. A0—cycloid = ma". But DE .AO = 2ma .2a = 4ra?; therefore cycloid = 3za2.

(ii.) Total curve length = 8a, by (5253).

5257 The intrinsic equation of the cycloid is

s = 4ia sin 1.

Proof : s = 2PT = 4a sin PKT, and PKT = PTN = v.2

THE COMPANION TO THE CYCLOID.

5258 This curve is the locus of the point R in Fig. (115). Its equation is

	
	
1    — COS — a





Proof.—From a = af) and y = a (1 —cos 6).

5259 The locus of 8, the intersection of the tangents at P and B, is the involute of the circle ABO.

Proof : BS = BP = arc OB.

PROLATE AND CURTATE CYCLOIDS. (5250) 5260 The equations in every case are a = a (6+m sin 6), y = a (1—m cos 6).

The cycloid is prolate when m is >1 (Fig. 116), and curtate when m is < 1 (Fig. 117), m being the ratio of GB to the radius a.

EPITROCHOIDS AND HYPOTROCHOIDS. (Fig. 118) 5262 These curves are the roulettes formed by a circle rolling upon the convex or concave circumference respectively of a fixed circle, and carrying a generating point either within or without the rolling circle.

The equations of the epitrochoid are

5263       w = (a+b) cos e- mb cos “76 e, 5264       y = (a +6) sin 6—mb sin“T 6, where a, b are the radii of the fixed and rolling circle (Fig. 118), 0 is the angle OCX, Q is the generating point initially in contact with the a axis, and m is the ratio 0Q : b. The dotted line shows the curve described. For the hypotrochoid change the sign of b.

Proof:       x= CN+MQ; ON = (a + b) cos 0;

MQ = 0Qcos OQM = - 0Q cos (+6), where © = EOR and bo = a0.

5265 The length of the arc of an epitrochoid is which is expressed as an elliptic integral E (k, $) by substituting a0 = 2bp.


{a+b)




1+m?- 2m cos@l‘de.



For the arc of a hypotrochoid, change the sign of b.

Proof : s = § sgdd = J • («3 +yT) de (5113). Find a, and ye from (5263-4).

EPICYCLOIDS AND HYPOCYCLOIDS. (Fig. 118) 5266 For the equations of these curves make m =1, in (5263, ‘4). P is then the generating point, and the curve is shown by a solid line in Figure (118).*

5267 If 1 be the inclination of the tangent at a point P on any of these curves, cos@—m cos@+6e tan J =--— = tan “340 0, if m = 1.

sin u—m sin —-— 0

b

5268 Hence, in the epicycloid, J = “52b 0, and the equation of the tangent is

. a-26 A a—26 A / . 2 . a -00 sin——— 0—Y cos —"— 0 = (a-20) sin — 2b • 2b7 2b

5269 The equation of the normal will be a—2b a .   . a+2b a        a a 00 cos ——— 0—y sin ——— 0 — ( cos — 0.

2b • 2b           2b

* Prof. Wolstenholme has investigated these curves considered as the envelopes of a chord whose extremities move on a fixed circle with uniform velocities in the ratio m : n or m : (—n).—Proc. Pond. Math. Soc., Vol. iv., p. 321.

	
4    Z



5270 The length of the arc of an epicycloid or hypocycloid included between two successive cusps is

— (a ± 6), and the included area is TP (3a ± 26).

PROOF.—Putting m = 1 into (5265) and ad = bo, the length becomes (2m 8b sin — CO = — (a=6). Jo 2 a

Otherwise by (5234) ; the pedal being the cardioid whose perimeter = 8a (5333). (ii.) The area, by (5232), is -62+1 [ 46? sin? $ (1+ b)d; since, in

Jo         2 \ a/

Fig. (118), dy of (5232) = dPOR = dcf) and 7 = PR = 2b sin P. 5271 The evolute of an epicycloid is a similar epicycloid.

Proof.—The equation of the tangent referred to an a axis drawn through the summit of the curve will be (by turning axes through an angle bT - a), a+2b 2 ,   . a + 2bn > , . a Q a cos ——— 0 +y sin----0 = (a + 2b) cos — 6.

2b • 2b "      7 2b

Comparing this with (5270), which is the equation of the tangent of the evolute, we see that the epicycloid and its evolute are similar curves having their parameters in the ratio a +2b : a; and that the radius drawn through a cusp of either of the curves passes through a summit of the other.

5272 When b = — 2a, the hypocycloid becomes a straight line, namely, a diameter of the fixed circle.


THE CATENARY.




(Fig. 119)



5273 Characteristic.—The perpendicular TP from the foot of the ordinate upon the tangent is of a constant length c, and therefore equal to OA, the perpendicular from the origin on the tangent at the vertex, c is the parameter of the curve. The equation is

5274          j=£(6+e=S).

Proof: iwaPOT =d=—— .. c = c Slog(J+ Ay2—c2)— logc) (1928), since a = 0 when y — c. Therefore X 1                                             X 1 ec ^=. — ^y-\-^/^y2—c‘‘^ therefore e c = — [y— V(y2- c2) } • C                                                   C 5275 If 8 = are AC, s = C (e? —e) = CP.

Proof:           s =§(1+y) dz (5197) = ./(1+"5€)d=zd=$(es—o %) =VG-@) = cp.

5276         The area OACT = cs.                (5205)

5277 The radius of curvature at C = —, and is therefore C equal to the tangent intercepted by the axis of x.

Proof: cos JEC ... _sinii,= —Cy, .. o = s = — (5146).

5278 The catenary derives its name from a chain, which, when suspended from its extremities, takes the form of this curve.

For the equation of the evolute of the catenary, see (5159).


THE TRACTRIX.




(Fig. 119)



5279 Characteristic.—The length of the tangent intercepted by the x axis is constant. This curve is the involute of the catenary, being the locus of P in Figure (119).

The equation of the tractrix is

5280 a = c log {+(- y)} —clogy-.(-y).

Proof.—Let the tangent PT = c, then the differential eqnation of the curve is therefore ya, = —Pc2 — y2. Substitute z = Pc2—y2, and integrate by (1937).

5281 The area included by the four branches = TC2.

Proof.—Area = 4 \ ydx = — 4 Pc2—y2dy = ttc2, by (1933). J               Jo

THE SYNTRACTRIX.

5282 This curve is the locus of a point Q on the tangent of the tractrix in Fig. (119). Let QT be equal to a given constant length d; then the equation of the syntractrix will be

5283 w = clog{d+ V(d-y^} —clogy-V(d-y).

THE LOGARITHMIC CURVE.3       (Fig. 120)

5284 Characteristic.—The subtangent is constant.

The equation of the curve is either

5285          y = aen, or a == n log—, where n = NT, the constant subtangent, and a is the intercept on the y axis.

5287 If n be an even integer, y may take negative values. The most general form of the equation may perhaps be assumed to be

y = en I cos--v sin —-- ).“ \ n n /

THE EQUIANGULAR SPIRAL. (Fig. 121) 5288 Characteristic.—The angle OPS between the tangent and radius is constant. The equation of the curve is either

0                          7

5289         r = aen or 0 — n log—. a

5291           tan $ = n, s = r sec $, measuring s from the pole.

Proof—By (5112) and (5200).

5293 Hence the length of the spiral measured from the pole 0 to a point P (Fig. 121) is equal to PS, the intercept on the tangent made by the polar subtangent OS.

5294 The locus of S is a similar spiral, and is also an involute of the original curve.

5295 The pedal curve, which is the locus of Y, is also a similar equiangular spiral.

Proof.—The constancy of the angle $ makes the figure OPYS always similar to itself. Therefore P, Y, and S describe similar curves. Hence, if ST is the tangent to the locus of S, OST =•= OPS; therefore PST is a right angle; therefore the locus of S is an involute of the original spiral. $

THE SPIRAL OF ARCHIMEDES * (Fig. 122) 5296 Characteristic.—The distance from the pole is proportional to the angle described. Hence the equation is

5297           , = a0. Also tan $ = 0. By (5112). 5299 The intercept, PQ, on any radius between two successive convolutions of the spiral, is constant and = 2am.

5300 The area swept over by any radius is one third of the corresponding circular sector of that radius.

5301 This curve is one of the class the general equation of which is

r = a0n, with tan d = —.

n

THE HYPERBOLIC OR RECIPROCAL SPIRAL. (Fig. 123)

C

5302 The equation is r =-7. 5303 An asymptote is the line y = a.               (5171)

5304 The spiral is also an asymptote to itself.

For when the radius is of the first order of smallness, the distance between two successive convolutions is of the second order. Hence the distance to the pole measured along the curve is infinite.

The area between the radiants 71, 72 is = ^a (r—r2).

CL

5305 The equation of the Lituus is r = ——

THE INVOLUTE OF THE CIRCLE. (Fig. 124) 5306 The equation is /(,- a2) = a(6+cos-1@ \

\          r /

Proof: # = OPY = cos'1— and •(‘- a2) = BP = arc AB = a (6+p). 5307 The pedal of the involute is the spiral of Archimedes.

Proof.—Let r', 0' be the coordinates of Y on the pedal curve. Then 7’= BP = arc AB = a (6‘+}m). (See 5297).

5308 The reciprocal of the involute is the hyperbolic spiral.

Proof.— (Fig. 124.) Let P' on OY correspond to P, and let r‘, 0' be the polar coordinates of P . Then 7 = OP =oy

Bnt OY = BP = arc AB = a (0‘+}7), .. 7 = „a—. See (5302). 6 + 27

THE CISSOID4 •          (Fig. 125) 5309 Characteristic. — A line drawn from the end, 0, of a fixed diameter of a circle to the end, Q, of any perpendicular ordinate intersects the parallel ordinate equidistant from the centre in a point, P, whose locus is the cissoid. The equation of the curve is

5310   y‘(24—a) =a and dy = 6a-2n) Mg.

da 2 v(2a—2)

Proof.—By similar triangles, y : a = • (2ax—a?) : 2a—a. Two mean proportionals between the radius a and CS are given by the curve, for it appears that a2 : CP :: CT : CS, and therefore a : CT : • OS. CT : CS.

5311 The tangent of the circle at B, the other end of the diameter, is an asymptote to both branches of the cissoid.

5312 The area between the curve and its asymptote is equal to three times the area of the circle.

pa

Proof: In ydx substitute a = 2a sin3 9.

THE CASSINIAN OR OVAL OF CASSINI. (Fig. 126) 5313 Characteristic.—The product PA.PB of the distances of any point on the curve from two fixed points A, B is constant ; the equation is consequently

{? + (a +x)2} {y?+(a- 2)2} = m4 or              (a?+y?+a?)?—4a‘a? = m‘, where 2a = AB. The equation in polar coordinates is

74 — 2a”,2 cos 20-}-a4,—m4" = 0.

5314 If a be > m, there are two ovals, as shown in the figure. In that case, the last equation shows that if OPP' meets the curve in P and P', we have OP. OP' =V(a5—m4) ; and therefore the curve is its own inverse with respect to a circle of radius = V(a4—m4).

5315 0 being the centre, the normal PG makes the same angle with PB that OP does with PA.

PROOF.—From (r + dr) (/ — dr) = m2 and rr' = m2 ; therefore rdr' = r'dr or r : r = dr : dr' = sin 0 : sin 6', if 6, 6' be the angles between the normal and r, r'. But OP divides APR in a similar way in reverse order.

5316 Let OP = B, then the normal PG, and the radius of curvature at P, are respectively equal to

m2R . 2m2Rs , R2+a2      SR^a^+m^'

THE LEMNISCATE. +           (Fig. 126)

5317 Characteristic.—This curve is what a Cassinian becomes when m = a. The above equations then reduce to (a2+y)2 = 2a2 (a”—y?) and 72 = 2a? cos 20.

5318 The lemniscate is the pedal of the rectangular hyperbola, the centre being the pole.

5319 The area of each loop = a2.                   (5206)


THE CONCHOID, $




(Fig. 127)



5320 Characteristic.—If a radiant from a fixed point 0 intersects a fixed right line, the directrix, in B, and a constant length, BP = b, be measured in either direction along the radiant, the locus of P is a conchoid. If OB = a, be the perpendicular from 0 upon the directrix, the equation of the curve with B for the origin or 0 for the pole is

5321 aly? = (a+y)2(b?- y2) or r=asec@+b.

5323 When a < b, there is a loop; when a = b, a cusp; and when a > b, there are two points of inflexion.

5324 To draw the normal at any point of the curve, erect perpendiculars, at R to the directrix, and at 0 to OP. They will meet in S the instantaneous centre, and SP will be the normal at P (5242).

5325 To trisect a given angle BON by means of this curve, make AB = 20N, and draw the conchoid, thus determining Q ; then AON = 3AOQ.

PROOF.—Bisect QT in S ; Q,T = AB — 20N, therefore SN = SQ = ON; therefore NOS = NSO = 2NQO = 2A0 Q.

0360 The total area of the conchoid between two radiants each making an angle 6 with OA is

a’tan 0+2630+3a • (b2—a3) or a’tan 0+2630, according as b is or is not >a.

The area above the directrix )         ,  /T0\-2

between the same radiants 5 = 2ab log tan ( 4+ A +6 6.

The area of the loop which exists when b is >a is

33 cos-14 — 2ab log a+vG- az) + a (0- 03).

b      a-SO-N)


THE LIMAQON6




(Fig. 128)



5327 Characteristic.—As in the conchoid, if, instead of the fixed line for directrix, we take a fixed circle upon OB as diameter. This curve is also the inverse of a conic with respect to the focus. The equation, with OB for the initial line and axis of & is

5328 r — a cos 6± b or («2+ty‘— aP)2 = b2 (a2+y2), where a = OB, b = PQ.

5330 With b > a, 0 is a conjugate point.

With b < a, 0 is a node.          [For = a, see (5332).

5331 The area = m (Ja?+b8).

When a = 2b, the limacon has been called the trisectrix.

THE VERSIERA.7


(Fig. 130)



(Or Witch of Agnesi.)

5335 Gharact eristic.—If upon a diameter OA of a circle as base a rectangle of variable altitude be drawn whose diagonal cuts the circle in B, the locus of P, the point in which the perpendicular from B meets the side parallel to OA, is the curve in question. Its equation is

5336           ay = 2a •(2x— a?), where a = OG the radius.

5337 There are points of inflexion where x = ^a. The total area is four times the area of the circle.

THE QUADRATRIX.f           (Fig. 131)

5338 Characteristic.—The curve is the locus of the intersection, P, of the radius OD and the ordinate QN, when these move uniformly, so that x : a :: 0 : 27, where x = ON, a = OA, and 0 = BOD. The equation is

.         —<1?

M — a tan ----. — .

5339 The curve effects the quadrature of the circle, for OG : OB :: OB : arc ADB.

PROOF: 00 : OB :: CP : BD. But CP = x in the limit when it is small, therefore CP : BD :: a : ADB.

5340 The area enclosed above the x axis = 4a2m 1 log 2.


Proof.—In the integral« tan (



a— a a


3) da substitute 7 (a—x) = 2ay,



and integrate Jytanydy by parts, using (1940). The integrated terms produce log cos Jr— log cos }7 at the limit 37, which vanishes though of the form o — 0 . The remaining integral is ) log cos ydy, and will be found at (2635).


THE CARTESIAN OVAL.




(Fig. 134)



5341 Ghar act eristic.—The sum or difference of certain fixed multiples of the distances of a point P on the curve from two fixed points A, B, called the foci, is constant. The equations of the inner and outer ovals are respectively

5342 mr^lr^ = ncs, mri— lr2 = nc^, where 71 = AP, 72 = BP, C3 = AB, and n > m > I.

5343 To draw the curve, put — = u and — = a; therefore 7, ± ur, = a, mm

where a is > AE and u < 1 (1). Describe the circle centre A, and radius AR = a. Draw any radiant AQ, and let P, Q, be the points in which it cuts the ovals, then, by (1),

5344           PR = p,PB and QR = pQB........................(2). Hence, by (932), we can draw the circle which will cut AR in the required points P, Q,. Thus any number of points on the oval may be found.

5345 By (2) and Euc. VI. 3, it follows that the chord RBr bisects the angle PBQ,.

Draw Ap through r, and let PB, QB produced meet Ar in p and q. The triangles PBR, qBr are similar, therefore qr = pqB ; therefore q is on the inner oval. Similarly p is on the outer oval. By Euc. vi. B., PB.QB = PR.QR+BR2; therefore, by (2), (1 — u?) PB. QB = BR2. Combining this with PB : Bq = BR : Br, from similar triangles, we get

5346          BQ.Bq = ?^ = ‘pi...........................(3).

5347 Draw QC to make A BQG = BAg; therefore, A, Q, G, g being concyclic, we have, by (3),

G

BQ.Bq = AB.BC =    ...............(4).

Hence G can be found if a, u, and the points A, B are given. G is the third focus of the ovals, and the equation of either oval may be referred to any two of the three foci.

Putting BC = cr, AC = c2, AB = c3, the equation between I, m, n is obtained from (4) thus : Caci(1—u2) = a2— c3; therefore cz (cz+c) = G + pc^. But c,+c = c,, a = 70s, u = —, and the result is m m 5348 l‘c,+n*c, = m”c, or lBC+m°CA+n‘AB =0...(5), where GA — — AG.

Putting 71, 72, T3 for PA, PB, PG, the equations of the curves are as follows—

Inner Oval.


Outer Oval.

mr—lr2 = nc3 ... (7), nr — lr^ =mc2... (9), nr^—mr3 = lc ...(11).



5349 mr+lr, = nc ... (6),

5351 nr, +lr, = mc, ... (8),

5353 ,mr^—nr2l= ici ...(10),

That (6) and (7) are equations of the curve has been shown. To deduce the other four, we have 4 ARE = Ag^B = ACQ (5347); therefore ACQ, APB are similar triangles. But, by (6), mAP + lEP = nAB, therefore mAGp-lGQ = nAQ or nAQ—lCQ = mAG, which is equation (9). Again, AEQ, APC are similar. But, by (7), mAQ—IBQ, = nAE; therefore mAO—TOP = nAP or nAP + IGP = mAG, which is equation (8).

Equations (10) and (11) are obtained by taking (6) from (8) and (7) from (9), and employing (5).

5355 AP.AQ= AB. AC = constant.

PROOF.—Since A, Q, 0, q are concyclic, L QOA = QqA = AEE; therefore P, Q, 0, E are concyclic; therefore AP. AQ = AB.AC = constant (12). 5356 CP. CP' = CA. CB = constant.

Proof: /.FOB = PQB = Bpq = BCq. Hence, if CP meets the inner oval again in P', GBq, CBP' are similar triangles. Again, because L BPC = BQC = BAq = BAP', the points A, B, P', P are concyclic; therefore CP. CP' = CA. CB = constant.                              Q. E. D.

Hence, by making P, P' coincide, we have the theorem :—

5357 The tangent from the external focus to a series of tri-confocal Cartesians is of constant length, and = y/(CB .CA).

5358 To draw the tangents to the ovals at P and Q. Describe the circle round PQCB, and produce BR to meet the circumference in T; then TP, TQ are the normals at P and Q.

The proof is obtained from the similar triangles TQR, TBQ,, which show that sin TQA : sin TQB =l:m,by (2), and from differentiating equation (7), which produces ~ : — = I : m8 as as

5359 The Semi-cubical parabola y2 = aa^ is the evolute of a parabola (4549). The length of its arc measured from the ...    8(//9 origin is      S--2 1-.a)—1%. °                 27a C 4 / ) 5360 The Folium of Descartes, a3—Zaxy+y3 = 0, has two infinite branches, and the asymptote a+y+la = 0.

For the lengths of arcs and for areas of conics, see (6015), et seq.

LINKAGES AND LINKWORK.

5400 A plane linkage, in its extended sense, consists of a series of triangles in the same plane connected by hinges, so as to have but one degree of freedom of motion; that is, if any two points of the figure be fixed, and a third point be made to move in some path, every other point of the figure will, in general, also describe a definite path. With two points actually fixed, the linkage is commonly called a piece-ivork, and if straight bars take the place of the triangles, it is called a link-work.

THE FIVE-BAR LINKAGE.

5401 Mr. Kempe’s fundamental five-bar linkage is shown in Figure (135). A, B, D' are fixed pivots indicated by small circles. C, D, B', G', in the same plane, are moveable pivots indicated by dots. The lengths of the bars AB, BG, GD, DA are denoted by a, b, c, d. The lengths of AB', B'G', G'D', D'A are proportional to the former, and are equal to ka, kb, kc, kd, respectively. Hence ABGD, AB'G'D' are similar quadrilaterals, and A AD'G' = ADG. P being any assigned point on BG and BB = X, P' must be taken on D'G' so that D'P' =XxC. Draw PN, P'N' perpendiculars to AB. Then, throughout the motion of the linkage in one plane, NN' is a constant length.

PRoor: NN' = BD' —(BN+N'D). But BB'= a—kd, and

BN+N'D' = X cos B— X~cos D = (2ab cosB—2Z cos D) ab         Zab

= A (a+b?-c- d?) (702). Hence
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NN' = a-kd- X(a?-Z2—c2-d2).

Zab

5403 CASE I. — (Fig. 136.) If X = „(d—1d)ab.,, then PT)P ‘         a2+b-c"—C4

NN' = — ; consequently, if the bars PO = BB and P'O =

P'D' be added, the point 0 will move in the line AB.

If, in this case, d = lea and b = c, then X = b and P coincides with C, P' with C‘, and B' with D, 0 as before moving in the line AB.

5404 CASE II. —: (Fig. 137.) If, in Case I., led = a and a2 — b2 = c2 — d2, X is indeterminate; that is, P may then be taken anywhere on BC. D' coincides with B, and NN = 0.

PP' is now always perpendicular to AB. If the bars PO, P'O be added, of lengths such that PO2—P'O2 = PB2—P'B2, 0 will move in the line AB. If, on the other side of PP', bars PO' = P'B and P'O' = PB be attached, then O' will move in a perpendicular to AB through B.

5405 CASE III.—(Fig. 138.) If, in Case L, led = a, b = d, and c = — a, the figure A BCD is termed a contra-parallelogram.

a2

BP = X is indeterminate, BC=lec = — - and BP'— — X. d

Hence BC' and BP' are measured in a reversed direction; PP' is always perpendicular to AB, and if any two equal bars PO, P'O are added, 0 will move in the line AB.

5406 If three or more similar contra-parallelograms be added to the linkage in this way, as in Figure (139), having the common pivot B and the bars BA, BC, BE, BG in geometrical progression; then, if the bars BA, BG are set to any angle, the other bars will divide that angle into three or more equal parts.

5407 If, in Figure (138), AD be fixed and DC describe an angle ADC, then B'C' describes an equal angle in the opposite direction. Mr. Kempe terms such an arrangement a reversor, and the linkage in Figure (139) a multiplicator. With the aid of these, and with a translator (Fig. 140), for moving a bar AB anywhere parallel to itself, he shows that any plane curve of the nth degree may, theoretically, be constructed by link-work.*

5408 CASE IV. — (Fig. 141.) If, in the original linkage (Fig. 135) led = a, D' coincides with B. Then, if the bars BPO, BP'O' be added by pivots at P, P', and B\ and if OP = PB = BP' and O'P' = P'B = BP ; the points 0, O' will move in perpendiculars to AB. For by projecting the equal lines upon AB, we get NL = BN and BN = N'L', therefore BL = BL' = NN = a constant, by (5402).

5409 CASE V.—(Fig. 142.) Make lea = d and X = b. Then B' coincides with D, P with C, and P' with O'. Replace D'O', C'D by the bars DK, KD' equal and parallel to the former. Also add the bars CO = DK and OK = CD. Draw the perpendiculars from 0, C and O' to AB. Then by projection, NL = N'D'; therefore BL = BN+ NL = BN+N'D' = BD' ~NN' = constant. Hence the point 0 will move perpendicularly to AB.

5410 CASE VI.—(Fig. 143.) In the last case take 7 = 1. Therefore d = a, D' coincides with B, BK = BC, and CDKO is a rhombus. This is Peaucellier’s linkage.

5411 CASE VII.—(Fig. 144.) In the fundamental linkage (Fig. 135), transfer the fixed pivots from A, B to P, 8, adding the bar 8A, so that PBSA shall be a parallelogram. Then, since NN is constant (5402), the point P' will move perpendicularly to the fixed line PS.

5412 Join AC cutting PS in U, and draw UV parallel to AD. Then UV : AD = PU : AB = CP : CB = constant ; therefore PU and UV are constant lengths. Hence it follows that the parallelism of AB to itself may be secured by a fixed pivot at U and a bar UV instead of the pivot S and bar SA.

5413 in Case VII. (Fig. 144), with fixed pivots P and S and bar SA, make b = a, d = c, ka = d, X = b. Then B‘ coincides with D, N‘ with N, P with G and L, and P' with O'; and we have Figure 145. DG, DG' are equal, and they are equally inclined to AB or GS; because, in similar quadrilaterals, it is obvious that AB and GD and the homologous sides DG' and AD' include equal angles. Therefore CG' is perpendicular to GS, and G' moves in that perpendicular only.

5414 If two equal linkages like that in (5413), Figure (145), but with the bars AS, GS removed, be joined at D (Fig. 146) and constructed so that GDy, DC form two rigid bars, then AB, aft will always be in one straight line. Let A, B be made fixed pivots, then, while G describes a circle, the motion of the bar a will be that of a carpenter’s plane.

5415 On the other hand, if the linkage of Figure (145), with AS and GS removed as before, be united to a similar inverted linkage (Fig. 147), with DG, DG' common, then, with fixed pivots A, B, D', the motion of the bar a will be that of a lift, directly to and from AB.

5416 The crossing of the links may be obviated by the arrangement in Figure (148). Here the bars C‘3, G'D, G'D' are removed, and the bars FD, FE, FG added in parallel ruler fashion.

5417 CASE VIII.—(Fig. 149.) In Case VII., substitute the pivot U and the bar UV for S and SA. Make d — a, and therefore k = 1. Then b' =b and d = c, making BGDG' a contra-parallelogram; D' coincides with B, and B' with D. The bars AB, AD are now superfluous. Take BP = A; then BP' =X£; therefore PP' is parallel to GG', therefore to BD, therefore to PV (5412); therefore V, P, P' are always in one right line. P', as in Case VII., moves perpendicularly to PU and AB. This arrangement is Flart’s five-bar linkage.

5418 When a point P (Fig. 152) moves in a right line PS, it is easy to connect to P a linkage which will make another point move in any other given line we please in the same

plane. Let QR be such a line cutting PS in Q. Make Q a fixed pivot, and let OQ, OP, OP be equal bars on a free pivot 0. Then, if the angle POP be kept constant by the tie-bar PP, PQP, being one half of POP (Euc. III. 21), will also be constant, and therefore, while P describes one line, P describes the other.

If the bar PO carries a plane along with it, every point in that plane on the circumference of the circle PQP will move in a right line passing through Q.

THE SIX-BAR INVERTOR9

5419 If in the linkwork (5410, Fig. 143) the bar AD be removed, and D be made to describe any curve, 0 will describe the inverse curve, just as, when D described a circle, 0 moved in a right line which is the inverse of a circle.

Proof.—Let EOB and CK intersect in E. Then E0.0B = EE2-OE2 = EC2 — OC2 = a constant called the modulus of the cell.

THE EIGHT-BAR DOUBLE INVERTOR.

5420 Two jointed rhombi (Fig. 150) having a common diameter AB form a double Peaucellier cell termed positive or negative according as P or Q is made the fulcrum. We have PQ.PP = PQ.QS = AP2—AQ, the constant modulus of the cell.

THE FOUR-BAR DOUBLE INVERTOR.

5421 If, on the bars of a contra-parallelogram AB CD (Fig. 151) four points p, q, , s be taken in a line parallel to AC or BD, then in every deformation of the linkage, the points p, q, r, s will lie in a right line parallel to A0; and pq. pr =^pq. qs = a constant modulus. Thus, if p be a fulcrum and 7 describes a curve, q will describe the inverse curve. If q be the fulcrum, p will describe the inverse curve.

Proof.—Let Ap — mAE, therefore pq = mEB, and pr = (1 — m) AO, therefore pq.pr = m (1—m) AC.BB = m (1—mPAB2—AE2) = constant.

THE QUADRUPLANE, OR VERSOR INVERTOR.

5422 Let the bars of the contra-parallelogram invertor (5421, Fig. 151) carry planes, and let P, Q, B, S be points in the planes similarly situated with respect to the bars which contain p, q, r, s respectively, so that A PAp = QAq and AP : Ap = AQ : Aq; and similarly at G. Then, if P be the fulcrum and B traces a curve, Q will trace the inverse curve and the angle QPB will be constant.

Proof.—Let PA = nAB and PB = n'AB, therefore, by similar triangles, PAQ, BAD, PQ = nBD. Also, by the triangles PBR, ABG, PR = hAG-,

PA PD therefore PQ.PR = nn'AG.BD = —A82—(AD- AB2), a constant.

Again, the inclination of PQ to BD = that of AP to AB, which is constant. Similarly, by the triangles PBR, ABG, the inclination of PR to AG = that of BR to BG, which is also constant; therefore QPR, the sum of these two inclinations, is a constant angle.

THE PENTO GRAPH, OR PROPORTIONATOR.

5423 Let ABGD (Fig. 153) be a jointed parallelogram, A, B fixed pivots, q a tracer placed at any assigned point in BG produced; then a pencil at p will evidently reproduce any figure traced by q diminished in linear proportions in the ratio of Bq to BG.

THE PLAGIOGRAPH, OR VERSOR PROPORTIONATOR.

5424 In the same figure, make an angle qBQ = pDP, BQ = Bq, and DP = Dp, and let a tracer Q and pencil P be rigidly connected to the arms BG and DG. Then P will produce a similar reduced figure as before, but no longer similarly situated. It will be turned round through an angle QBq. This is Prof. Sylvester’s Plagiograph.

Proof.—Let BG = k.Bq-, therefore AD = kBQ, DP = kAB, and z ABQ = PDA; therefore (Euc. vi. 6) AP = kAQ. Also PAQ, is a constant angle, for PAQ = BAD-BAQ-PAD = BAD-BAQ-BQA = BAD-D~ABQ) = BAD— r+ ABGP QBq = QBq.

THE ISOKLINOSTAT,*. OR ANGLE-DIVIDER.

5425 This linkage (Fig. 154) accomplishes the division of an angle into any desired number of equal parts. The dia-

* Invented and so named by Prof. Sylvester.
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gram shows the trisection of an angle by it. A number of equal bars are hinged together end to end, and also pivoted on their centres to the same number of equal bars which radiate, fan-like, from a common pivot. The alternate radial bars make equal angles with each other.

The same thing is accomplished in a different way by Kempe’s Multiplicator (5406, Fig. 139).

A LINKAGE FOR DRAWING AN ELLIPSE.

5426 In the arrangement of (5413, Fig. 145) the locus of any point P, on DG', excepting D and G', is an ellipse.

Proof.—Take OS, CO' for a and y axes; P the point xy ; SOD = 6, and therefore CDC' = 26; BD— h. Then we have a = (c—h) cos 6, y = (+1) sine, therefore (c- 7)2 + ( +1)2 = 1 is the equation of the locus.

Any point on a plane carried by DC' also describes an ellipse round 0; but if the point lies on a circle whose centre is D and radius DC, the ellipse becomes a right line passing through C, as appears from (5418).

A LINKAGE FOR DRAWING A LIMAQON, AND ALSO A BICIRCULAR QUARTIC*

5427 (Fig. 155.) Let four bars AP', AQ-, PG, GD be pivoted at A, P, G, D, and let AP = PG = PQ' — a ; AD = DG = DP1 = b. Take a fulcrum F on PG, a tracer at P, and a follower at Q, so that PQ is parallel to PD. Let FP = p, FQ = 7; then, if P traces out a circle passing through F, Q will describe a limagon.

Proof.—Let BQ = ma, therefore PD = mb ; r = 2m. BN, p = (m + 1). DN + (1— m) BN. Also BN2—DN2 = a2—b2. Eliminate BN and DN, and the equation between r and p is

7+(1- m) rp — mp2 = m (m +1)2 (a‘-62) = P.

If P describes the circle p = c cos 9, Q describes the locus r2+ (1 — m) or cos d — mc2 cos2 0 = k2, which is the inverse of a conic, that is, a limacon (5327).

If 0 be made the fulcrum, the equation reduces to 72—p2 = 4 (a2—U}.

5428 With the same fulcrum F, drawing FH parallel to AG, if a tracer at H describes the circle, then a follower at K on GD will trace out a bicircular quartic.

Proof. — Draw FL, LK parallel to DA, AD. Let FH = p, FK = r, GK = 3, CF = a = FB, and therefore GL = np. Now

2 (43+82) = ,34732+ (a2-/32)2.

Therefore, if H moves on the circle p = c cos 6, K will describe the curve

14+n?c372 cos2 9 -2 (a?+/2) 72+ (a2—32)2 = 0, or (a?+y2)2+(n?c?—2a?—232) a?—2 (a?+/32) y‘+(a-2)2= 0.

A LINKAGE FOR SOLVING A CUBIC EQUATION10

5429 Let the three-bar linkwork (Fig. 156) have the bars AB, DG produced to cross each other. Let AB = AD = a, BG = b, GD = c; and let b and c be adjustable lengths.

Suppose a3— qx+7 = 0 a given cubic equation.

Make ©=.((-—), b = ) a / q--- ); then deform the Y a J     Y a / quadrilateral until BG = GD; DE will then be equal to a real root of the cubic.

—               — x2+c2— 62 (x + a)2+4c2—a2

Proof :      cos E = — ---= -—--, 2C2          4c (2 + a) from which        23—2 (c?+62) a+2a (c2—F) = 0.

Equate coefficients with the given cubic. 1

ON THREE-BAR MOTION IN A PLANE.

5430 If a triangle ABG (Fig. 157) be connected by the bars AO, B0' to the fulcra 0, O', the locus of G is called a three-bar curve.

OA, O'B meet in Q, the instantaneous centre of rotation of the triangle, since QA, QB are perpendicular to the movements of A and B respectively. Therefore GQ is the normal to the locus of G.

5431 If a triangle similar to ABG be placed upon 00' (homologous to AB), the circum-circle of the triangle will pass through the node, and the vertices of the triangle are called the foci of the curve.

Figures (158) and (159) exhibit different varieties of the curve according to the relative proportions between the lengths of the bars.11

MECHANICAL CALCULATORS.

The Mechanical Integrator.^

5450 This instrument computes not only the area of any closed plane curve, but the moment and also the moment of inertia of the area about a fixed line. The principle of its action is shown in Figure (160). OP is a bar carrying a tracer at P, and a roller A at some point of its length. The end 0 is constrained to move in the fixed line ON. When the tracer P moves round a closed curve, the length OP mul-tiplied by the entire advance recorded by the roller is equal to the area of the curve.

Proof.—Let the motion of the tracer from P to a consecutive point Q be decomposed into PP' and P'Q parallel and perpendicular to ON. Let OP = a and PON = 6. When the pointer moves from P to P', the roll accomplished is PP' sin 6. The roll due to the motion from P' to Q will be neutralized by the exactly equal and opposite roll in the motion of the pointer from q to p‘, since the bar will there have again the same inclination. Consequently the product of the entire roll and the length a is equal to the sum of such terms as aPP' sin 0. But this is the area OPP'O' = NPP'N'. The algebraic addition of such rectangles gives the entire area, and the instrument effects this, for the area SN is subtracted, by the motion of the roller, from the area QN which is added.

5451 The instrument itself is shown in Figure (161). A frame moving parallel to OX by means of the guide MB carries two equal horizontal wheels geared to a central wheel which has two circumferences, such that its rate of angular motion is half that of the lower wheel and one third of that of the upper. The latter wheels carry two rollers, M and I, on horizontal axles; and the middle wheel carries an arm OP, a pointer at P, and a roller A. In the initial position, the rollers A and I are parallel, while M is at right angles to A. The frame is thus supported above the paper on the three rollers ; and if the arm OP be moved through an angle AOA', the axles of the rollers M and I will describe twice and three times that angle respectively. Putting OP = a as above, and A, M, and I for the linear circumferential advances recorded by the three equal rollers respectively, we have the following results—

	
I .—The area traced out by the pointer P


= MS.

4

= (3A+I)R




	
II .—The moment of the area about OX


	
III .—The moment of inertia about OX



Proof.—I. Since 0 moves in the line OX, while the pointer P moves round a curve, the roller A will, as shown above, make the rolling 2h sin 6, where h = PP' in Figure (160), and the area of the curve = a^h sin 6 or a X roll.

	
II.    The moment of the area about OX



= ^^ah sin 0 X ^HL^^ = % (1—Xh cos 20).

Now Zh vanishes when P returns to the starting point, and — Zh cos 20 is the roll recorded by M. For, when OP makes an angle 6 with OX, the axis of M will make an angle — (90° + 20) with OX. In this position, while P makes a parallel movement h, the roll produced thereby in M will be — h sin (90° + 20) 42

= — h cos 20. Therefore — X roll of M = moment of area.

4

	
III.    Lastly, the moment of inertia of the area about OX = 3 ^ah sin 0 X


a2 sin2 6 3




= $53(3h sin 6-h sin 30).





Now, when OP makes an angle 6 with OX, the axis of I makes —30 ; therefore — Zh sin 30 is the entire roll of I. Hence the moment of inertia

= @ x roll of A + a X roll of I.
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The Planimeter.              (Fig. 162)

5452 This instrument 12 is a simpler form of area computer. 0 is a fixed pivot; OA, AP are two rods having a free pivot at A ; C is the roller, and P the pointer. The area of a closed curve traced by the pointer is equal to the total roll multiplied by the length AP.

Proof.—Decompose the elementary motion PQ of the pointer into PP', effected with a constant radius OP, and P'Q along the radius OP', and so all round the curve. The roll of 0 accomplished while P moves from P' to Q will be neutralized by the equal contrary roll when P moves from q to p' on the radius Op' = OP. Thus the total roll recorded will be the sum of the rolls due to the movements PP', QQ', &c.

Draw OB perpendicular to AP, and, when P comes to R, let B' be the altered position of B. The area PQ,SB = } (OP2— OB2) C, where w = POQ. But OP2= OA2 + PA2-2PA.AC-2PA.BC (Euc. n. 13) ; therefore, since BC is the only varying length on the right, we have PQSB = PA(BC~BC') w. But BCw is the roll of C due to the angular motion w of the rigid frame OAP, and the subtraction of the area OSB from OPQ, is effected by the instrument, since when the pointer moves from S to B the direction of the roll must be reversed. Hence the total area = PA X the total recorded roll.

1

 The earliest notice of this curve is to be found in a MSS. by Cardinal de Cusa, 1454 See Leibnitz, Opera, Vol. in., p. 95.

2

 For other properties, see Pascal, Histoire de la Roulette; Carlo Dati, History of the Cycloid; Wallis, Traite de Cycloide; Groningius, Historia Cycloidis, Bibliotheca Univ.; and Lalouere, Geometria promota in septem de Cycloide libris; Bernoulli, Op., Vol. xv., p. 98 ; Euler, Comm. Pet., 1766 ; and Legendre, Rxercice du Calcul. Int., Tom. n, p. 491.

3

 Originated by James Gregory, Geometric Pars Universalis, 1668.

t See Euler, Anal. Infin., Vol. ii., p. 290 ; Vincent, Ann. de Gergonne, Vol. xv., p. 1 ; Gregory, Camb. Math. Journal, Vol. i., pp. 231, 264 ; Salmon, Higher Plane Curves, p. 274.

+ For additional properties, see Bernoulli, Opera, p. 497.

*_ Invented by Conon, b.c. 250.

4

 Diodes, a.d. 500,

5

 B. Williamson, M.A., Educ. Times Math., Vol. xxv., p. 81. t Bernoulli, Opera, p. 609.

+ Nicomedes, about A.D. 100.

6

 Blaise Pascal, 1643.

7

 Donna Maria Agnesi, Instituzioni Analitiche, 1748, Art. 238. f Dinostratus, 370 b.c.

5 A

8

 For the length of an arc of a Cartesian oval expressed by Elliptic Functions, see a paper by S. Roberts, M.A., in Proc. Lond. Math. Soc., Vol. v., p. 6.

9

 Since the curve described is the inverse and not the polar reciprocal of the guiding curve, it seems better to call this linkage an invertor rather than a reciprocator.

10

 M. Saint Loup, Comptes Rendus, 1874.

t The foregoing account of linkages is taken chiefly from a paper by A. B. Kempe, F.R.S., in the Proc. of the Royal Soc. for 1875, Vol. XXIII. Other results by the same author will be found in the Proc, of the Pond. Math. Soc., Vol. ix., p. 133 ; and by H. Hart, M.A., ibid., Vol. vi., p. 137, and Vol. VIII., p. 286. See also The Messenger of Mathematics, Vol. v.

11

 The curve is a tricircular trinodal sextic, and is completely discussed by S. Roberts, F.R.S., and Prof. Cayley, in the Proc, of the Lond. Math. Soc., Vol. vn., pp. 14, 136.

t Invented and manufactured by Mr. J. Amsler-Laffon, of Schaffhausen. The demonstrations (which in clearness and elegance cannot be surpassed) of the action of this instrument, and of the Planimeter which follows, were communicated to the author by Mr. J, Macfarlane Gray, of the Board of Trade.

12

 Like The Integrator, the invention of Mr. Amsler,


APPENDIX ON BIANGULAR COORDINATES* 5453 In the figure of (1178), the biangular coordinates of a point P are defined to be 0 = PSS' and $ = PS'S, or a = cot 0 and 3 = cot p.

5454 The equation of a right line YY' is

aa-Yb^ = 1, where a = cot SYS' and b = cot SY'S'.

Proof.—Supplying the ordinate PN in the figure and denoting the angle S'SY by 1, the equation is obtained from ON cos 1+PN sin y = p the perpendicular on the tangent, SS' sin i = YY' and SS' cos 1 = SY— S'Y'.

5455             coty = a—b.

5456 Equation of a line through C: a— B = const.

5457 Equation of the line at infinity : a+B = 0.

5458 Let SS' = c, then the distance between two points a131, a,32 is


C\a,+3, a,+B,/ \a,+3.




a,+3, )



5459 The equation of a line through the two points is a — a,   a — a,

B A   Bi 8,

5460 The length of the perpendicular from a 3‘ upon the line aa+‘= 1 is

p _ c aa +6 — 1

7a+BV{(a-b)+1}

5461 COR.—The perpendiculars from the poles S, S' are therefore

s y — be         & y, _ UC “ v{(a-b)2+1}’    ” 71(^7+11'

5463 When the point ap is on SS' at a distance h from S, _ (a — b) h+bc 1 v{(a-b)+1}

With two lines aa+b3 = 1, a‘a+b‘3 = 1, the condition 5464 of parallelism is    a—b = a —b', 5465 of perpendicularity {a — b^a'— 6)+1 = 0. 5466 The equation of the line bisecting the angle between the same lines is

aa+68-1 _ a’a+bB- 1

v{(a- 6)2+1} V{(a-b)+1]

5467 The equation of the tangent at a point a fl on the curve F (a, 3) = 0 is

(a—c) Fa,+^-^ F,, = 0.

5468 And the equation of the normal is a —a         _         B- 8‘

(«B-1) P,+(1+62) F, • (a‘-1) F,+(1+B2) F, 5469 The equation of a circle through S, S' is as-1 = m (a+8), where m = cot SPS' the angle of the segment.

5470 If G be the centre, the equation becomes as = 1.

5471 And, in this case, the equations of the tangent and normal at a fl are respectively .

CLB =2 and a- 8 = a — 8. a p

5472 The equation of the radical axis of two circles whose centres are S, S', and radii a, b, is

(c‘- a3+b8) a = (e+a‘- 62) 8.

Proof.—By equating the tangents from a/3 to the two circles, their lengths being respectively

c2(1+22)   , . c2 (1+82) 72 , .

(+B)Td and (+)EBzbv (5458).

5473 To find the equation of the asymptotes of a curve when they exist,—

Eliminate a and 3 between the equations of the line at infinity                 a+3 = 0,

the curve              F (a, 3) = 0, and the tangent (a—a) F,+(8-8) F^ = 0.

Ex.—The hyperbola a2+32 = m2 has, for the equation of its asymptotes, a — 3 = — m 2.

SOLID COORDINATE GEOMETRY.

SYSTEMS OF COORDINATES.

CARTESIAN OR THREE-PLANE COORDINATES.

5501 The position of a point P in this system (Fig. 168) is determined by its distances, a = PA, y = PB, z = PG, from three fixed planes YOZ, ZOX, XOY, the distances being measured parallel to the mutual intersections OX, OY, OZ of the planes, which intersections constitute the axes of coordinates. The point P is referred to as the point xyz, and in the drawing x, y, z are all reckoned positive, ZOX being the plane of the paper and P being situated in front of it, to the right of YOZ and above XOY. If P be taken on the other side of any of these planes, its coordinate distance from that plane is reckoned negative.

FOUR-PLANE COORDINATES.

5502 In this system the position of a point is determined by four coordinates a, 3, y, 8, which are its perpendicular distances from four fixed planes constituting a tetrahedron of reference. The system is in Solid Geometry precisely what trilinear coordinates are in Plane. The relation between the coordinates of a point corresponding to (4007) in trilinears is 5503        Aa+Bfi+Cy+DS =3V, where A, B, G, D are the areas of the faces of the tetrahedron of reference, and V is its volume.

TETRAHEDRAL COORDINATES.

5504 In this system the coordinates of a point are the volumes of the pyramids of which the point is the vertex and 5 o

the faces of the tetrahedron of reference the bases : viz., 3Aa, }B3, 3Cy, 3 D8. The relation between them is

5505          «/+8+y+8 = V.

POLAR COORDINATES.

5506 Let 0 be the origin (Fig. 168), XOZ the plane of reference in rectangular coordinates, then the polar coordinates of a point P are r, 0, $, such that r = 0P, 0 = ZP0Z, and $ = A XOC between the planes of XOZ and POZ.

THE RIGHT LINE.

5507 The coordinates of the point dividing in a given ratio the distance between two given points are as in (4032), with a similar value for the third coordinate Z.

5508 The distance P, Q between the two points ayz, xy'^ is

PQ ={(-«)+(-)+(=-£)}. (Enc.i.47). 5509 The same with oblique axes, the angles between the axes being X, u, v.

PQ = •{(r-4)+(y-J)+(=-£)+2 {y—3)- %) cosh

+2 (z — %)(a — a) cosu+2(w—a)(y—y) cos v} • (By702). 5510 The same in polar coordinates, the given points being rO4, ‘0‘4‘,

PQ=V[+,"2 —2rr{cos@ cos^'+sin^ sin 6 cos (— $)}].

Proof.—Let P, Q be the points, O the origin. Describe a sphere cutting OP, OQ in B, C and the z axis in A; then, by (702), PQ= OP^ + OQ? —20P. OQ cos POQ and cos POQ, or cos a in the spherical triangle ABG, is given by formula (882), since b = 9, c = 9', and A = — p‘.

DIRECTION RATIOS.

5511 Through any point Q on a right line QP (Fig. 169), draw lines QL, QM, QN parallel to the axes, and through any other point P on the line draw planes parallel to the coordi-

nate planes cutting the lines just drawn in L^M^N’, then the direction ratios of the line OP are


5512
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The angles PQL, PQM, PQN are denoted by a, (3, y; and the angles YOZ, Z0X, XOY between the axes by X, u, v.

5513 When X, u, v are right angles, the axes are called rectangular, and the direction-ratios are called directioncosines, being in that case severally equal to cos a, cos (3, cos y.

5514 When L, M, N are the direction-ratios (or numbers proportional to them) of a line which passes through a point abc, the line may be referred to as the line (^LYLN^ abc), or, if direction only is concerned, merely the line LMN.

EQUATIONS BETWEEN THE CONSTANTS OE A LINE.

5515 The relation between the constants of a line with rectangular axes is

l^Y^Y^ = 1 ; and with oblique axes, it is

5516        l cos a+m cos 8+n cosy = 1.

Proof.—The first by (Euc. I. 47). The second by projecting the bent line QLGP (Fig. 169) upon PQ, thus PQ = QL cos a + LG cos 3+ GP cos y, and QL = PQ.l, &c., by (5512).

5517 Also, when the axes are oblique, cos a = l+m cos v— n cos u, cos B = m— n cos X+ I cos v, cosy = n— l cos u—m cos X.

Proof.—By projecting QP in figure (169) and the bent line QLGP upon each axis in turn, and equating results; thus PQ cos a = QL + LG cos/3 + GP cosy, applying (5512).

5518 The relation between Z, m, n and X, u, v is l2+m2+n2+2mn cos A+2nl cos u+2lm cos v = 1.

Proof.—By eliminating cos a, cos 3, cosy between (5516) and (5517).

5519 The relation between cos a, cos 3, cos y and A, u, v is cos2 a sin2 X+cos2 3 sin2u—cos2 y sin2 v

+2 cos B cos y (cos u cos v—cos X) +2 cos y cos a (cos v cos X—cos u) +2 cos a cos 3 (cos X cos u—cos v)

= 1 — cos2 X—cos2 u — cos2 v+2 cosX cos u cos v.

PROOF.—By eliminating Z, m, n between the four equations in (5516) and (5517).

5520 The angle 0 between two right lines Imn, Vm'n', the axes being rectangular:

cos 6 = ll’+mm’—Inn’.

PROOF.—In Figure (169), let QP be a segment of the line imn. The projection of QP upon the line I'm'n' will be QP cos 6. And this will also be equal to the projection of the bent line QLGP, upon Vm'n, for, if planes be drawn through Q, L, C, and P, at right angles to the second line Vm'n, the segment on that line intercepted between the first and last plane will be = QP cos 6, and the three segments which compose this will be severally equal to QL .V, LG.m', GP.n', the projections of QL, LG, GP. Then, by (5512), QL = QP .1, &c.

5521 sin2^ = (mn'- m‘n)2+(nl‘— n'Vf-^-^lm — I'm)2.

Proof.—From

	
	
1    — cos‘0 = (p + m^ + n^^l^+m^pn'2) — Qll'-\-mm -^-nn')2 (5515,’20). 5522 With oblique axes,





cos 6 = W^-mm'-^nn'-{-(mn-^-mn) cosX

-\-{nl' -\-nl) cos u+ (Im' —lm) cos v.

Proof.—As in (5520), substituting from (5517) the values of cos a, &c.

EQUATIONS OF THE RIGHT LINE.


5523




a — a y—b %—c

L — M — N



D — a   v — b   z — c or —-— = •--—---

/ m 7

Here abc is a datum point on the line, and if r be put for the value of each of the fractions, r is the distance to a variable point xyz. L, M, N are proportional to the direction ratios of

the line, which ratios must therefore have the values

KKOA 7 —_____L__, —_____M_____

20  “ V(L2+M2+N2)’    - V(L2+ M^N2y

N

^{L2+M'2+N2y

5525 NOTE.—Instead of a, b, c in the equation we may use 1L+a, 7M+b, kl + c, where k is an arbitrary constant.

5526 The equations of a line may also be written in the forms         a = Xz+a, y = uz+B.

5527 These are the equations of the traces on the planes of az and yz, and are equivalent to

a — a  y—^  z—0

X #       1

5528 If the line is determined as the intersection of the two planes Ax-[-By-\-Cz = D and A’x -\-B'y^-C'z = D', we may write equations (5523) by taking

L^BC-BC, M=CA'-CAi N=AB'-A,B,

DB'—D'B , DA-DA

6=—C=9

PROOF. — Eliminate z between the equations of the planes, then the reciprocals of the coefficients of a and y will be L and M.

5529 The projection of the line joining the points xyz and abc upon the line Iran is

i (x—a)+m (y—6)+n {z—cy

5530 Hence, when the line passes through aba, the square of the perpendicular from xyz upon it is equal to

(x—a)*+(y—b)+(=-c)-{l(-a)+m (J—b)+n(=—c)}3

5531 Condition of parallelism of two lines LMN, L'M'N':

L : L‘ = M : M‘ = N : N‘,

5532 Condition of perpendicularity:

LL'+MM'+NN' = 0.          (5520)

5533 Condition of the intersection of the lines (LMN, abc) and (L’M’N', aVc') (5514):

(a-a') (MN' - M'N) +(- 6) (NL'-N'L) + (c-c')(LM'-L'M) = 0.

PROOF.—Eliminate a, y, z between the equations

by subtracting in pairs, and then eliminate r and r'.

5534 The shortest distance between the same lines is

(a - a) (MN' - M'N) + (b-b) (NL' - N'L) + (c - c) (LM'—L'M)

• {(MN - M‘N)?+ (NL' - N'Ly+ (LM'-L'Mf 3

PROOF.—Assume X, y., v for the dir-cos. of the shortest distance. Then, by projecting the line joining abc, ab'c upon the shortest distance, we get p = (a— a') X+ (b—b') y+(c—c) v. Also, by (5520), LX + My + Nv = 0 and L'X + M'y+N'v = 0, giving the ratios X : y : y = MN'—M'N: NL' — N'L : LM'—L'M; and (5524) then gives the values of X, y, v.

5535 The equation of the line of shortest distance between the lines (Imn, abc) and Q!m'n', ab'c') is given by the intersection of the two planes

I ^—a)+m (y—b)+n (z— y) = —9120— ... (11.),

where u = I (a' — a) +m (b‘—b)+n (c‘— c), u' = l‘(a—a‘)+m‘(b—b)+n‘(c—c),

and              cos 0 = ll‘+mm‘+nn‘.

Proof.— (Fig. 170.) Let 0 be the point xyz on the line of shortest distance AB; P, Q the points abc, a'b'c on the given lines AP, BQ. Draw BB and PB parallel to AP and AB ; BT perpendicular to BQ ; and QN, TM perpendicular to BB. Then 4 BBQ = 6, BN = u, QT = u', therefore NM = u’cos 6 and BM = BN+NM = u + u cos 6, and in the right-angled triangle BTB, BM cosec2 6 = BB, the projection of OP upon AP, that is, the left member of equation (i.). Similarly for equation (ii.). It should be observed that (i.) and (ii.) represent planes through AB respectively perpendicular to the given lines AP and BQ.

5536 Otherwise, the line of shortest distance is the intersection of the two planes whose equations are

l‘(w—a)+m‘(y—b)+n‘(z—c) _ . a I (a— a)+m (y — b)-\-n (z—c)

_ l(x—a)+m(y—b)+n(z—c) v (x—a )+m‘ (y—b)+n‘ {z—c'y

For these equations state that cos 0 is the ratio of the projections of OP or of OQ upon the given lines, and this fact is apparent from the figure.

5537 Equations of the line passing through the two points abc} a'b'c':

a — a _ y—b _ z— c a —a' b — b' c—c‘

5538 A line passing through the point abc and intersecting at right angles the line Imn:

a — a_y—b_ z— c

L - M = N‘ where L = Im (b — b^-^-nl (c—c)— (m2+n2)(a— a), and symmetrical values exist for M and N.

PROOF.—The condition of perpendicularity to imn is

Ll+Mm+Nn = 0 ;                (5520) and the condition of intersecting the line is

	
(a- a'^Mn—mN) + (6 — b')(Nl—nL) + (c—-c'^Lm—-IM) = 0. These equations determine the ratios L : M : N.



5539 Equations of the line passing through the point abc, parallel to the plane La—My+Nz = D, and intersecting the line (I'm'n , a'b'c') :

a — a_y—b_z—c

I m n ‘ where Z, m, n are found, as in the last, from

Ll-^-Mm-^-Nn = 0, and (a—a)(mn‘ —m'n) + (b — b')(nr—n'l)+(c—c')(J/m' — I'm) = 0. 5540 Equations of the bisector of the angle between the two lines l,M,21, l,m,12 :

	
a _ y _  % li+l, ~ m,+m, ~ 2+n,



Proof.— Taking the intersection of the lines for origin, let 213121, 2,9222 be points on the given lines equidistant from the origin ; then, if xyz be a point on the bisector midway between the former points, a = 3 (21+2,), &c. (4033) ; and the direction-cosines of a line through the origin are proportional to the coordinates.

5541 The equations of a right line in four plane coordinates


are



a — a  B — B‘ y—y 8 — 8


G-).



LEMNER where asy8 is a variable point, and a/3'y7^ a fixed point on the line. The relation between L, M, N, R is

5542        AL+BM+CN+DR = 0 ...............(ii.).

Proof.—For, since equation (5503) holds for aflyd and also for a‘‘y‘d‘, we have A (a —a') +B (B—B‘) + C (y — y')+D (3—3) = 0.

Substitute from (i.) a — a’ = rL, 3—A‘= rM, &c.

5543 In tetrahedral coordinates the same equation (i.) subsists, but the relation between L, M, N, R becomes, by changing Aa into a, &c.,

5544         L+M^NA-R = ^-

THE PLANE.

5545 General equation of a plane : A^A-RyA-C^A-D = 0.

5546 Equation in terms of the intercepts on the axes :

[image: ]



5547 Equation in terms of p, the perpendicular from the origin upon the plane, and Z, m, n, the direction-cosines of p :

l^A-^yA-^ = p<

PROOF.—If P be any point xyz upon the plane, and 0 the origin, the projection of OP upon the normal through 0 is p itself; but this projection is lx + my + nz, as in (5520).

5548 The values of I, m, n, p for the general equation (5545) are

	
	
7 _ A          0         _ _ D





	
- V(A‘+B‘+C2)’     7 - V(A‘+B+C2)



PROOF.—Similar to that for (4060-2) : by equating coefficients in (5545) and (5547) and employing l2 + m2 + n2 = 1.

5550 The equation of a plane in four-plane coordinates is la+m+ny+ro = 0,

with         I : m : n : r = — : — : %1:8,

Pi Pi Ps P^ where a1, 31, Y1, 81 are the perpendiculars upon the plane from A, B, C, D, the vertices of the tetrahedron of reference, and Pa Pa Pa P-i are the perpendiculars from the same points upon the opposite faces of the tetrahedron.

PROOF.—Put y = 3 = 0 for the point where the plane cuts an edge of the tetrahedron, and then determine the ratio I : m by proportion.

See Frost and Wolstenholme, Art. 81.

5551 The equation of a plane in tetrahedral coordinates is also of the form in (5550), but the ratios are, in that case,

I : m : n : r = a : 3, : Y1 : 81.

The relation between the three-plane and four-plane coordinates is         a = p—lx—my—nz.

5552 The equation of a plane in polar coordinates is r {cos 6 cos 6‘+sin 6 sin 0' cos (d— $)} — p.

PROOF.—Here p is the perpendicular from the origin on the plane, and p, 6', $‘ the polar coordinates of the foot of the perpendicular. Then, if i is the angle between p and r, we have p = r cos v and cos v from (882).

5553 The angle 0 between two planes lx-^my + nz = p and Vx + m'y + n'z = p' 5 D

is given by formula (5520), and the conditions of parallelism and perpendicularity by (5531) and (5532), since the mutual inclination of the planes is the same as that of their normals.

5554 The length of the perpendicular from the point x'yz upon the plane Ax + By + Cz + D = 0 is

Ax—By+Cz+D , / / , ± V(A-+B+C) =P-lx ~mV -7 •

PROOF.—As in (4094).

5556 The same in oblique coordinates


(A^+By + Cz+D)

P




= p—a cos a—y cos B— 2 cosy,



where p is found from (5519) by putting A, B, C for p cos a, p cos 3, p cos y. This gives


5558



§ A2 sin2 X + B2 sin2 p + C2 sin2 v + 2B C (cos u cos v—cos X) ) ( +2CA (cos v cos A—cos u)+2AB (cos X cos u—cosv) S

1 — cos2 X — cos2 u — cos2 v + 2 cos X cos u cos v

5559 The distance 7 of the point xyz' from the plane AxA~By-\-Gz-\-D = 0, measured in the direction Imn, the axes being oblique:

. _ _ Ax + By' + Cz + D AlA-BmA-Cn

PROOF.—By determining r from the simultaneous equations of the line and the plane, viz.,

	
——« = y—y = -—— = , and A.+By+ Cz+D = 0.



l M n

Otherwise, by dividing the perpendicular from Ay'z (5554) by the cosine of its inclination to Imn, viz., AltEn±Cn.

EQUATIONS OF PLANES UNDER GIVEN CONDITIONS. 5560 A plane passing through the point abc and perpendicular to the direction Imn :

I (x— a)+m (y— b)+n (z— c) = 0. 5561 A plane passing through two points abc, a'b'c':

. oo — a . y— b . z— c


0,



A---H—7v--7 a—a b—b c—c

5562 with        A+M+v = 0.

PROOF.—By eliminating n between the equations

I (ya—a) +m (.y — ^) +n (z—c) = 0, l (a— a} +m (b — b') pn (c—c) = 0, and altering the arbitrary constant.

5563 A plane passing through the point of intersection of the three planes v = 0, v = 0, w = 0 :

lu-\-mv-\-nw = 0.

5564 A plane passing through the line of intersection of the two planes u = 0, v = 0 : lu-\-mv = 0.

5565 A plane passing through the two points given by 1 = 0, v = 0, w =0 and u = a, v=b, w = c\

lu+mv+nw = 0 with la-\-mb-{-nc = 0.

5566 The equation of a plane passing through the three points 2,9121, 2,9/222, 239373 or A, B, C, is given by the determinant annexed, in which the coefficients of x, y, z represent twice the projections of the area ABC upon the coordinate planes.


00 y 8 1

A Yi 2 1 _ 0 a, 32 %2 1

I aa Y3 % 1

Ax + By + Cz = 1, and



PROOF.—The determinant is the eliminant of three similar equations. Expanded it becomes

« (J,2,—3;2+ V^ —9,2,+3122—1,7)+y (&c.)+z (&c.)+— &c. = 0.

Hence, by (4036), we see that the coefficients are twice the projections of ABC, as stated.

5567 The sum of squares of the coefficients is equal to four times the square of the area ABC.

PROOF.—For, if Z, m, n are the dir-cos. of the plane, and ABC = 8, the coefficients are = 281, 2Sm, 28n, by projection.

5568 The determinant (21, Y2, 23), that is, the absolute term in equation (5566), represents six times the volume of the tetrahedron OABC, where 0 is the origin.

PROOF.—Writing the equation of the plane ABC, Ax+By + Cz+B = 0, we have for the perpendicular from the origin, disregarding sign, »=7a+05=$(5567),

therefore D = ipS = 6xthe tetrahedron OABC.

5569 If ayz be a fourth point, P, not in the plane of ABC, the determinant in (5566) represents six times the volume of the tetrahedron PABC.

PROOF.-—By the last theorem the four component determinants represent six times (OBCP + OCAP + OABP + OABC) for an origin 0 within the tetrahedron.

5570 A plane passing through the points abc, a'b'c', and parallel to the direction Imn:

5571 A plane passing through the point abc and parallel to the lines Imn, Vmn :


	
a — a
	
I
	
V
	

	
y—b
	
m
	
m'
	
= 0


	
% —c
	
n
	
n'
	



PROOF.—The equation is of the form X (x—a)+u (y—b)+v (z—c) = 0, and the conditions of perpendicularity between the normal of the plane and the given lines are X+mu+nv = 0, l’A + m'p + nv = 0. Form the eliminant of the three equations.

5572 A plane equidistant from the two right lines (abc, imn) and (a'b'c', Vm'n') :


a— 2(a+a‘) l y—i(b+b') m z— 2(c+c) n




m' — 0.




n'




By (5571).



5573 A plane passing through the line (abc} imn) and perpendicular to the plane l’a+m’y+n’z = 2 :

The equation is that in (5571).

For proof, assume X, u, v for dir-cos. of the normal of the required plane, and write the conditions that the plane may pass through abc and that the normal may be perpendicular to the given line and to the normal of the given plane.

TRANSFORMATION OF COORDINATES.

5574 To change any axes of reference to new axes parallel to the old ones :

Let the coordinates of the new origin referred to the old axes be a, b, c; ayz and x'y'Z, the same point referred to the old and new axes respectively; then

a = a’+a, y = y'+b, z=z+c.

5575 To change rectangular axes of reference to new rectangular axes with the same origin:

Let OX, OY, OZ be the original axes, and OX', OY', OZ' the new ones,

71 M1 21 the dir-cos. of OX' referred to OX, OY, OZ, l, 12 72      do.      OY'       do.

z = n18+n2 7+n, L ..................(iii.). And the nine constants are connected by the six equations 5577 12+m?+n? = 1 ...(iv.), 1,1,+m,m,+n,n, = 0 ... (vii.), l2+m3+n2 = 1   (v.), lal+mam,+n,n, = 0 ... (viii.), 13+m3+n3 = 1 ...(vi.),  l,l,+m,m,+n,n, = 0 ... (ix.), so that three constants are independent.

Proof.—By (5515) and (5532), since OX', OY', OZ' are mutually at right angles.

5578 The relations (iv. to ix.) may also be expressed thus—

la _ m3 _ 23


(xii.).



mn2— M,n1 ~~ nil2—n,l1 l,m2—l,m.

Obtained by eliminating the third term from any two of equations (vii.—ix.). Also, by squaring each fraction in (x.) and adding numerators and denominators, we get


2+mi+ 72




= 1, by (5577).



(72 + m3 + n2) (U2 + m2 + n2) - (1273 +m,m,+ 2,223) 5579 If the transformation above is rotational, that is, if it can be effected by a rotation about a fixed axis, the position of that axis and the angle of rotation 0 are found from the equations       2 cos 0 = l+ma+n— 1,

COS2 a           COS2 3           cos2y

5000  —;j     7  . — --—       7 — 7 ;         -,

72—23—1—1  23—1—M2—1  1—M2— n^ — 1 where a, 3, y are the angles which the axis makes with the original coordinate axes.

	
Proof.— (Fig. 171.) Let the original rectangular axes and the axis of rotation cut the surface of a sphere, whose centre is the origin 0, in the points x, y, z, and I respectively. Then, if the altered axes cut the sphere in n, %, we shall have 0 = A xl^ in the spherical triangle; Ix = I& = a ; ly = I = 3; Iz = Is = y, and by (882) applied to the isosceles spherical triangles xl^, &c., l1 = cos as = cos2 a + sin2 a cos 6, M, = cos yn = cos‘3+sin2 cos 6, n, = cos z, = cos’y + sin’y cos 6. From these cos 6, cos a, cos 3, and cosy are found.



5581 Transformation of rectangular coordinates to oblique : Equations (i. to vi.) apply as before, but (vii. to ix.) no longer hold, so that there are now six independent constants.

THE SPHERE.

5582 The equation of a sphere when the point abc is the centre and 7 is the radius,

^x—a^-^-^y—by-^^z—c)2 = 73.

5583 The general equation is

a?+y‘+2+Ax+By+Cz+D = 0.

The coordinates of the centre are then - 9, — 3, — 9; and the radius =• (A2 +B+0- 4D) .

Proof.—By equating coefficients with (5582).

5584 If ayz be a point not on the sphere, the value of (x—a)2+(y—b)2+(z—c)2—92 is the product of the segments of any right line drawn through xyz to cut the sphere.

Proof.—From Euc. in., 35, 36.

THE RADICAL PLANE.

5585 The radical planes of the two spheres whose equations are u = 0, u‘ = 0, is

u—u‘ = 0.

5586 The radical planes of three spheres have a common section, and the radical planes of four spheres intersect in the same point.

Proof.— By adding their equations, and by the principle of (4608) extended to the equations of planes.

POLES OF SIMILITUDE.

5587 DEF.—A pole of similitude is a point such that the tangents from it to two spheres are proportional to the radii.

5588 The external and internal poles of similitude are the vertices of the common enveloping cones.

5589 The locus of the pole of similitude of two spheres is a sphere whose diameter contains the centres and is divided harmonically by them.

CYLINDRICAL AND CONICAL SURFACES.

5590 Def.—A conical surface is generated by a right line which passes through a fixed point called the vertex and moves in any manner.

5591 If the point be at infinity, the line moves always parallel to itself and generates a cylindrical surface.

5592 Any section of the surface by a plane may be taken for the guiding curve.

5593 To find the equation of a cylindrical or conical surface.

Rule.—Eliminate xyz from the equations of the guiding curve and the equations Xd = X—8 = 7 of any generating line ; and in the result put for the variable parameters of the line their values in terms of x, y, and z.

5594 Ex. 1.— To find the equation of the cylindrical surface whose generating lines have the direction imn, and whose guiding curve is given by b2a2+a‘y? == a?b2 and z=0.

At the point where the line L , a = J—— = % meets the ellipse, 2 = 0, I m n

a = a, y = /3. Therefore b2a2+a22 = a2b2. Substitute in this, for the variable parameters, a, 3, a=a——, /3 = y— m2; and we get, for the n          n cylindrical surface b2 {nx—U)2 +a2 (ny—mz)2 = a2b2n2.

5595 A conical surface whose vertex is the origin and guiding curve the ellipse b^-^a^y^ = a2b2, % = c, is

=+z-==o (E 1 b2 c2

PROOF.—Here the generating line is “ = V= 4. At the point of inter-I m 7

j. .     □                lc me 'b2l2ci . a?m2c2 272 section o± the line and curve Z — c, 2 =-, y — —; .. —9—I--9 — C b •

n n n 7" Substitute for the variable parameters l : m : n the values a : y : 2, and the result is obtained.

CIRCULAR SECTIONS.

5596 RULE.—To find the circular sections of a quadric curve, express the equation in the form A (x2+y2+z2+c2) +&c. = 0. If the remaining terms can be resolved into two factors, the circular sections are defined by the intersection of a sphere and two planes.

5597 Generally the two quadrics

ax^^by^-^c^-^^fy^-Y^gzx-^-^hxy = 1

and (a + X) a? + (b + X) y2 + (c + X) 22 + 2fyz + 2gzx + 2hxy = 1 have the same circular sections.

PROOF.—Let r, p be coincident radii of the two surfaces having imn for a common direction. Then 1 = al+bm?+cn?+2fmn+2g2l+-27lm and 1

7                                               p~

= the same +X. Therefore, if r has a constant value throughout any section, p is also constant throughout that section.

5598  Ex.—An oblique circular cone whose vertex is the point a, 0, b, and guiding curve the circle 22 + y1 = c2 ; z = 0; is

{az — bxy--Yd1‘f = c2 (z- b)2.

The equation may be written

b2 (x3+y?+22—c3) = z {2abz++ (b2+c—a2) z — 2bc2}, and therefore the cone has two series of parallel circular sections, z = k and 2abz+ (b2+c2— a2) z — 2bd = p2 (5583).         (Frost and Wolstenholme.)

CONICOIDS.

5599  DEFS.—A conicoid is a surface every plane section of which is a conic.

The varieties are the ellipsoid, the one-fold and two-fold hyperboloids, the elliptic and hyperbolic paraboloids, the spheroid of revolution, the cone, and the cylinder.

In any of the following equations of a conicoid, by making one of the variables constant, the equation of a section parallel to a coordinate plane is obtained, and the equation of the surface is by that means verified. Thus, in the equations of (5600) or (5617), Figs. (172) and (173), if z be put = ON, we get the equation of the elliptic section RPQ, the semi-axes of which are NQ = — • (^—ON^ and NR = — V(c- ON2), a, b, c being the

C                                       C principal semi-axes of the conicoid ; that is, OA, OR, 00 in the figure.

THE ELLIPSOID.


5600 figure



The equation referred to the principal axes of the is


a2_y212 - 1

a2 1620.27 •




(Fig. 172)



5601 There are two planes of circular section whose equations are

,2(1 ________

\62 a) \e2 62 / ’ with ay b^c.

Proof:  a(1-1)+y(1-1)+2(1-1)=0 is a cone having a common section with the conicoid and a sphere of radius r. If the common section be plane, one of the three terms must vanish in order that the rest may be resolved into two factors.

Since a>b > c, the only possible solution for real factors is got by making r = b.

5602 Sections by planes parallel to the above are also circles, and any other sections are ellipses.

5603 The umbilici of the ellipsoid (see 5777) are the points whose coordinates are

[image: ]




y = ®>



V a—C"          V a" — C"

Since, by (5602) the vanishing circular sections are at the points in the xz plane conjugate to x and z, we have, by (4352), a = — — z , z — — x.

5604 If a = b, in (5600), the figure becomes a spheroid, and every plane parallel to xy makes a circular section. Hence the spheroid is a surface of revolution. It is called prolate or oblate according as the ellipse is made to revolve about its major or minor axis.

THE HYPERBOLOID.

5605 The equation of a one-fold hyperboloid referred to its principal axes is

&+*—2£1 (Fig. 173) a2 1 b2 c2

5606 The planes of circular section, when a>b>c, are all parallel to one or other of the planes whose equations are
[image: ]

Proof.—As in (5601), putting r = a.


5607 The generating lines of this surface belong to two parallel systems (i.) and (ii.) below, with all values of 0.

5608

2 = cos@+ & sin 6)         2 = cos@— % sin 0) a     c . a

5610            .     = • 7 -2 = ±—• a sin u —b cos • c

5612 If z = 0, x = a cos 0 and y = b sin 0. Hence 0 is the eccentric angle of the point in which the lines (i.) and (ii.) intersect in the xy plane.

5613 Any two generating lines of opposite systems intersect, but no two of the same svstem do.

5614 If two generating lines of opposite systems be drawn through the two points in the principal elliptic section whose eccentric angles are 0+a, 0—a, a being constant, the coordinates of the point of intersection will be

a = a cos 0 sec a, y = b sin 6 sec a, z = e tan a, and the locus of the point, as 0 varies, will be the ellipse

5615     2 — + 7 • — = 1 ; z = ± c tan a. a" sec" a (E sec" a

PROOF. — From (i.) and (ii.), putting 6±a for 01

5616 The asymptotic cone is the surface given in (5595).

PROOF.—Any plane through the z axis whose equation is y = ma cuts the hyperboloid and this cone in an hyperbola and its asymptotes respectively.

5617 The equation of a two-fold hyperboloid is

a? 32    23 _ 1 02—62— and the equation of its asymptotic cone is


(Fig. 174)




5618



2         2         2

a2     62      ca

PROOF.—Any plane through the a axis, whose equation is y = mz, cuts the hyperboloid and this cone in an hyperbola and its asymptotes respectively.

There are two surfaces, one the image of the other with regard to the plane of yz. One only of these is shown in the diagram.

5619 The planes of circular section when b is > c are all parallel to one or other of the planes whose joint equation is


a2



1    1

c2      62

PROOF.—As in (5601), putting 72 = — 62.

5620 If b = c, the figure becomes an hyperboloid of revolution.

THE PARABOLOID.

5621 This surface is generated by a parabola which moves with its vertex always on another parabola; the axes of the two curves being parallel and their planes at right angles.

The paraboloid is elliptic or hyperbolic according as the axes of the two parabolas extend in the same or opposite directions.

5622 The equation of the elliptic paraboloid is

*2+22—a,             (Fig. 175) b c

b and c being the later a recta of the two parabolas.

PROOF : QM2 = b.OM-, PN2 = c.QN-, .. LM3 + — = 0M+ QN = c. b c

If b = c, the figure becomes the paraboloid of revolzdion. 5623 Similarly the equation of the hyperbolic paraboloid is

2         2

“,_2, = . (Fig. 176)2 5624 The equations of the generating lines of this surface are -- — — — M and -» — —— — —, O vC          VO ^/c m the upper signs giving one system of generators and the lower signs another system.

5625 The equations of the asymptotic planes are

[image: ]



CENTRAL QUADRIC SURFACE.

TANGENT AND DIAMETRAL PLANES.

[image: ]

22

c2





5626



Taking the. equation of a central quadric 2 + = 1 to include both the ellipsoid and the two hyperboloids according to the signs of 62 and c2, the equation of the tangent plane at ayz is

#+7+*=1       By (5670).

CD b C

5627 If p be the length of the perpendicular from the origin upon the tangent plane at ayz,

11 at । 32.2 p‘ — cP T 64 T e"

Proof.—From (5549) applied to (562 6).

	
5628 The length of the perpendicular let fall from any point EnZ upon the tangent plane at ayz is p(E4n9+k-1). (5554 8 5627) - a2 1 b^ c2 / 5629 Direction cosines of the normal of the tangent plane ,              , pa         py pz at ayz, --9, M = %, 7 — —. J                     a2              b2             c2 Proof.—By (5548) applied to (5626) and the value in (5627). 5630 If I, m, n are the direction cosines of p, p =l+my+nz and p2 = a2l2+62m2+cn2.


	

	
Proof.—(5630) By projecting the three coordinates a, y, z upon p. (5631)    By substituting the values of a, y, a, obtained from (5629), in (5630).







5632 The equation of the normal at xyz is (—) « = 6—») • = «-%) • ‘              ‘             • since the dir-cos. are the same as those of the tangent plane at (5626).

5633 Each term of the above equations = P • { (-)+ (»-»)*+ (—=)*} or p multiplied into the length of the normal.

Proof.—Each term squared = ——«)2 = ——3)2 = ~—z) a 64 c4 Add numerators and denominators, and employ (5627).

5634 Equation (5631) is the condition that the plane lx-\-my-{-nz = p may touch the conicoid; and if p = 0, we have for the condition of the plane lx+my-\-nz = 0 touching 2        2       2

the cone 49+4+* = 0,

5635         a^+bV+^n2 = 0. 5636 The section of the quadric made by a diametral plane conjugate to the diameter through the point xyz has for its equation          S&L_"S = 0.          By (5688).

cc b c

5637 Hence the relation between the direction cosines of two conjugate diameters is

ll' | mm nn _0 a2T62Te —

ECCENTRIC VALUES OF THE COORDINATES.

5638 These are defined to be a = ax, y = bp, z = cv, with X2+u2+v2 = 1.

5640 A, u, v are the dir-cos. of a line called the eccentric line; and 5 = rX, n = ry, % = rv are the coordinates of the corresponding point upon an auxiliary sphere of radius r.

5641 The eccentric lines of two conjugate semi-diameters are at right angles.                                    By (5637).

5642 The sum of the squares of three conjugate semi-diameters is constant and = a?+62+c2.

Proof.—Let a', V, q be the semi-diameters, and 2,3/121; 2,3,2,, 2,3323 their extremities. Put the eccentric values in the equations a?+y‘+z2 = a", &c., and add. By (5641), A7+12+X = 1, &c.

5643 The sum of the squares of the reciprocals of the same is also constant.

Proof.—Put 71 cos a1, 71 cos 1, 71 cos 7Y1 for 21, Y1, 21 in the equation of the quadric. So for 22, Y2, 22 and 23, J3, 23. Divide by 71, 72, 73, and add the results.

5644 The sum of squares of reciprocals of perpendiculars on three conjugate tangent planes is constant.

Proof.—For each perpendicular take (5627), and substitute the eccentric values as in (5642).

5645 The sum of the squares of the areas of three conjugate parallelograms is constant.

Proof.—By the constant volume of the parallelepiped 21A1 = p^ — Ps^ (5648) and by (5644).

5646 The sum of the squares of the projections of three conjugate semi-diameters upon a fixed line or plane is constant.

Proof.—With the same notation as in (5642), let (lmn) be the given line. Substitute the eccentric values (5638) in (la,+y1+22)2+ ^lx2 + my2 + nz2)2 +(lx,+M,+2s)2. In the case of the plane we shall have

a'2—(lxx + my^ +n2)2+&c.

5647 CoR. — The extremities of three conjugate semi-diameters being 2,9121, ^y^ 239373, it follows that, by projecting upon each axis in turn,

al+az+az = a?; y?+y}+y; = 62; 2+-=+= = c.

5648 The parallelopiped contained by three conjugate semi-diameters is of constant volume = abc.


Proof.—By (5568), the volume




by the eccentric values (5638). (584, I.).




= P1 J1 F1

22 Y2 22

as s Ea

But the last




= abc







determinant = 1




by



5649 COR.—If cl , b', c are the semi-conjugate diameters, o the angle between a and b', and p the perpendicular from the origin upon the tangent plane parallel to a'b', the volume of the parallelepiped is pab' sin w = abc.

5650 Hence the area of a central section in the plane of ab'

77/  •            CUC = qrab sin & — 77---.

5651 Quadratic for the semi-axis of a central section of the quadric —22 5 = 1 made by the plane la — my +%=0: C 0 c

aH2 b2m2 c^n2 _ ci2—r2 62—72Te—r2

Proof.— The equation is the condition, by (5635), that the plane lx A my A nz = 0 may touch the cone

a (49--9 ) —y ( —7--2)2 I ----7) = 0,

\a2 72/        62    72 /      \c2 Al

as in the Proof of (5600). For another method, see (1863). 5652 When the equation of the quadric is presented in the form

ax2+by?+cz2+2fy:+2gza+2hay = 1,


the quadratic for r2 takes the form of the determinant equation annexed. Or, by expanding, and writing A’ for the same determinant, with the fraction 1 erased, the

equation becomes




b-A




1

C— —

7




77




== 0



A’r* + {(b-^^P-^-^c-^a^m'2-]-^-}-^ n2 — 2fmn—2gnl — 2hlm} 72

_P_m22 = 0.

Proof.— The equation of the cone of intersection of the sphere and quadric now becomes

(     1 \ 2 li 1 )


V *+(-—,




22 + 2fyz + 2gzx + 2hay = 0,



C--, 2 + 5--- \    7 /      \    7 /

and the condition of touching (5700) produces the determinant equation.

5 F

5654 To find the axes of a non-central section of the quadric 4+4+4 = 1.

a2 62 c2

Let PNQ (Fig. 177) be the cutting plane. Take a parallel central section BOC, axes 0B, 00, and draw NP, NQ parallel to them. These will be the axes of the section PNQ, and NQ 1       j r ON2 , NQ2 , will be round from the equation — —    — 1. 1 OA2 OC2

5655 The area of the same section

_ irabc (1 _ p/2\ p \ p / where p' and p are the perpendiculars from 0 upon the cutting plane and the parallel tangent plane.

Proof.—The area = nNP.NQ = -NR. OB. 00

== (1-ON2) 0B.00 = Tab (1-72), by (5650).

\ OA2 /              p \    p2 /

SPHERO-CONICS.

DEF.—A sphero-conic is the curve of intersection of the surface of a sphere with any conical surface of the second degree whose vertex is the centre of the sphere.

Properties of cones of the second degree may be investigated by sphero-conics, and are analogous to the properties of conics.

A collection of formulae will be found at page 562 of Routh’s Bigid Dynamics, 3rd edition.

CONFOCAL QUADRICS.

5656 DEFINITION.—The two quadrics whose equations are

&2 y2 22     ,         ,       42         92        22       , «*5*e=1 and «+x*s*e+=1 are confocal. We shall assume a > b > c.

5657 As X decreases from being large and positive, the third axis of the confocal ellipsoid diminishes relatively to the others until X =-c, when the surface merges into the focal ellipse on the xy plane,

a2 ।                 i a2—e2Tb—c2. ’

X still diminishing, a series of one-fold hyperboloids appear until X = — b2, when the surface coincides with the focal hyperbola on the za plane,

a2 23 __1 a‘—6 62—c= *

The surface afterwards developes into a series of two-fold hyperboloids until X = — a2, when it becomes an imaginary focal ellipse on the yz plane.

5658 Through any point xyz three confocal quadrics can be drawn according to the three values of X furnished by the second equation in (5656). That equation, cleared of fractions, becomes

5659       X3+(a‘+b?+c—aP—y‘—%) X2 {63c?+c‘a‘+a-b8—(b2+c0) a—(c+a) y‘—(a2+b2) 23} X

+a‘bc—bca?—cay?—ab?=? = 0.

These three confocals are respectively an ellipsoid, a one-fold hyperboloid, and a two-fold hyperboloid. See Figure (178); P is the point xyz; the lines of intersection of the ellipsoid with the two hyperboloids are DPE and FPG, and the two hyperboloids themselves intersect in ELPK.

Proof.—Substitute for X successively in (5659) a2, F, c2,—0; and the left member of the equation will be found to take the signs +, —, +, — accordingly. Consequently there are real roots between a2 and 62, b2 and c2, c2 and — oo .

5660 Two confocal quadrics of different species cut each other everywhere at right angles.

Proof.—Let a, b, c ; a', b', c‘be the semi-axes of the two quadrics; then, at the line of intersection of the surfaces, we shall have
[image: ]


which, since a2 —a2 = b"2— b2 = c"2— c2 = X, becomes the condition of per-pendicularity of the normals by the values in (5629). Thus, in (Fig. 178), the tangents at P to the three lines of intersection of the surfaces are mutually at right angles.

5661 If P be the point of intersection of three quadrics 01bC1, 02b2C2, 43baC3 confocal with the quadric abc; the squares of the semi-axes, d2, ds, of the diametral section conjugate to P in the first quadric are (considering a1> 02> 03 and writing the suffixes in circular order)


® _ y 2_ z i i -422=1 and

a-             C.




C1—M b—« C1—H



are confocal quadrics. Take the difference of the two equations, and we obtain, at a common point a'y/'z', X---- + &c. = 0. a2 {a— u)


Comparing this with



(5651), the quadratic for the axes of the section of the quadric by the plane lz+my+nz = 0, we see that, if l, m, n have the values “,, &c., u is identical with 72; the plane is the diametral plane of P; and the two values of u are the squares of its axes. Let d3, d2 be these values; then, since there are but three confocals, the two values of u must give the remaining confocals, i.e., 2  2    2    - 2  2    2

	
	
	
a, —cL — C, and a. —cL — a„.







The six axes of the sections are situated as shown in the diagram (Fig. 179). Either axis of any of the three sections is equal to one of the axes in one of the other sections, but the equal axes are not those which coincide. 0 is supposed to be the centre of the conicoids, and the three lines are drawn from 0 parallel to the three tangents at P to the lines of intersection.

5662 Coordinates of the point of intersection of three confocal quadrics in terms of the semi-axes :

(ai—bi)(ai— C1) (di—bi)(bi—C1)

2 2 ______CiC2 C3______

1

 The surface of a one-fold hyperboloid, as generated by right lines, may frequently be seen in the foot-stool or work-basket constructed entirely of straight rods of cane or wicker,

2

 The curvature of this surface is anticlastic, a sort of curvature which may be seen in the saddle of a mountain ; for instance, on the smooth sward of some parts of the Malvern Hills, Worcestershire,


(di—C1)(01—C1)

The denominators may be in terms of any of the confocals •          2    -2        2    72        2    7 2 p since a1—b1 — a2—b2 — C3 — bs, CC.

22       22          22

PROOF.—The equation of a confocal may be written ~ +—2—19 4—2—79 = 1, producing a cubic in a3, the product of whose roots a3, a'^, as gives 2 . 5663 The perpendiculars from the origin upon the tangent planes of the three confocal quadrics being 21, 22, 23 :

27 2 2                           2722

,2 — A101C1       2 _ 0202C2

1 (di-a(i-ag)’     2   (dj-aj(d,-a)’

2 72 2 ,2 — _____C303€3____

73 (a?—az)(a;—az)

Proof.—By (5649), p^d^ = a^c^; then by the values in (5661).

RECIPROCAL AND ENVELOPING CONES.

5664 DEF.—A right line drawn through a fixed point always perpendicular to the tangent plane of a cone generates the reciprocal cone.

The enveloping cone of a quadric is the locus of all tangents to the surface which pass through a fixed point called the vertex.

5665 The equations of a cone and its reciprocal are respectively

Ax2+By‘+Cz‘= 0......(i.), and 4+3+5 = 0......(ii.).

Proof.—The equations of the tangent plane of (i.) at any point xyz, and of the perpendicular to it from the origin, are

A=$+Byy+Czz = 0.........(iii.), and .............(iv.).

4x By Cz

Eliminate a, y, z between (i.), (iii.), and (iv.).

5667 The reciprocals of confocal cones are concyclic; that is, have the same circular section; and the reciprocals of con-cyclic cones are confocal.

PROOF.—A series of concyclic cones is given by

Ax2 + By? +C2+X (x2 + y2 +2) = 0 by varying X ; and the reciprocal cone is

22 . y2 । 22 A+X B+XT C + X

5668 The reciprocals of the enveloping cones of the series 22                     72 of confocal quadrics —"—- — — — — 2 - = 1, with fall for 1      a’+X b2+A c2+X ’ the common vertex, P, of the cones, are given by the equation

aa”+b‘y‘+c— (fir+gy+hz)?+X (a?+y‘+2%) = 0.

PROOF.—Let lmn be the direction of the perpendicular p from the origin upon the tangent plane drawn from P to the quadric. Equate the ordinary value of p2 at (5631) with that found by projecting OF upon p ; thus

(^a^ + X) "2 + (IF + X) m2 + (c2 + X) 72 = (fl + gm + kny.

Now p generates with vertex 0 a cone similar and similarly situated to the reciprocal cone with vertex F, and I, m, n are proportional to a, y, z, the coordinates of any point on the former cone. Therefore, by transferring the origin to F, the equation of the reciprocal cone is as stated.

5669 COR. — These reciprocal cones are concyclic; and therefore the enveloping cones are confocal (5667).

5670 The reciprocal cones in (5668) are all coaxal.

PROOF.—Transform the cone given by the terms in (5668) without X to its principal axes ; and its equation becomes Ax2+ By?+ OF = 0. Now, if the whole equation, including terms in X, be so transformed, a2+y2+22 will not be altered. Therefore we shall obtain

(A + X) «‘+(B+X) y2 + (C+X) F = 0, a series of coaxal cones.

5671 The axes of the enveloping cone are the three normals to the three confocals passing through its vertex.

Proof.—The enveloping cone becomes the tangent plane at P for a confocal through P, and one axis in this case is the normal through P. Also this axis is common to all the enveloping cones with the same vertex, by (5670). But there are three confocals through P (5658), and therefore three normals which must be the three axes of the enveloping cone.

5672 The equation of the enveloping cone of the quadric

——— — — — ——— = 1 is, when transformed to its prin-a2+X b2+A c2+A

cipal axes,

a? i » । 22 _ 0 . 42 2.

X-XTA-XTA—X, X‘TX+d3X+d2

where X, X, A3 are the values of X for the three confocals through P, the vertex, and d2, d^ are the semi-axes of the diametral section of P in the first confocal (5661).

PROOF.—Transform equation (5668) of the reciprocal of the enveloping cone to its principal axes, as in (5670). Let X1, X2, X3 be the values of A which make the quadric become in turn the three confocal quadrics through P. Then the reciprocal (A+X) a2+(B+X) y+(0+):2 = 0 must become a right line in each case because the enveloping cone becomes a plane. Therefore one coefficient of x2, y2, or z2 must vanish. Hence A+X = 0, B+X, = 0, 0+>= 0. Therefore the reciprocal cone becomes

(A—X) «?+ (A—X) y2+ (A—A) 22 = 0, and therefore the enveloping cone is

22y2 । z2 --p — — —-- X—X X-A2 X — X,


= 0.



THE GENERAL EQUATION OE A QUADRIC.

5673 This equation will be referred to as f (x, y, z) = 0 or U = 0, and, written in full, is ajp + by? + cr? + 2fy: + 2gza + 2hay+ 2pa + 2qy + 2rz + d = 0.

By introducing a fourth quasi variable t = 1, the equation may be put in the homogeneous form

5674    ax? + by^ + cz? + dw2+2fyz + 2gsa + 2hay

+2pat+2qyt+2rzt = 0, abbreviated into

(a, b, c, d,f, g, h}p, q, r^, y, a, t)'2 = 0, as in (1620).

Transforming to an origin x'y'z' and coordinate axes parallel to the original ones, by substituting &‘+E, y' +n, R’+Z for x, y, and z, the equation becomes, by (1514),

5675 ae+bv2+c^+2fvi+2gU+2h^

+5U,+7U,+{U,+ U=0, where U = f (x‘, y', %/) (omitting the accents).

5676 The quadratic for r, the intercept between the point xyz and the quadric surface measured on a right line drawn from xy'z' in the direction Imn, is

72 (al2 + bm2 + cn? + 2fmn + 2gnl + ^hlm)

+r(lUximU^nU^U=^

Obtained by putting 8 = rl, n — rm, Z = rn in (5674).

5677 The tangents from any external point to a quadric are proportional to the diameters parallel to them.

PROOF.—From (5676), as in (1215) and (4317).

5678 The equation of the tangent plane at a point xyz on the quadric is

(§-a) U^+^-y) U„+(l-^ U, = 0 5679 or §U,+yU,+{U+rU, = 0, with T and t made equal to unity after differentiating.

PROOF.—From (5676). Since xyz is a point on the surface, one root of the quadratic vanishes. In order that the line may now touch the surface, the other root must also vanish; therefore Ux-\-mUy + nUz = Q. Put rl = E— x, rm = i]—y, m = 4—z; En% being now a variable point on the line, and therefore on the tangent plane.

5680 Again,      xUx + yUy +zUz + iUt = 2U, by (1624), therefore             aU+yU,+zUz = — tUt, which establishes the second form (5679).

5681 Equation (5679) also represents the polar plane of any point xyz not lying on the quadric surface. Written in full it becomes


§ (a^+hy+gz+p) +»(h+by+f+7) +‘ (ga+fy+cz+r) + px-\-qy-[-rz-\-d = 0,




or a (a§+hn+g+p)

+y (hi+6y+f+()

+: (gf+f+ c+r)

+ p&+q+r+d =0



5683 That is, the forms

£U,+yU,+{U,+U=0 and xU^yU^U^U=Q

are convertible, U standing for f(x, y, z) in the first, and for f(5, n, Z) in the second.

5685 The intersection of the polar planes of two points is called the polar line of the points.

5686 The polar plane of the vertex is the plane of contact of the tangent cone.

PROOF.—If En% be the vertex and xyz the point of contact, equation (5683) is satisfied. If a, y, z be the variables and En% constant, the second form of that equation shows that the points of contact all lie on the polar plane of the point En%.

5687 Every line through the vertex is divided harmonically by the quadric and the polar plane.

PROOF.—In equation (5684) put x = H + Rl, y = T/ + Rm, z = ^+Rn to determine R, the distance from the vertex to the polar plane. This gives n = employing (3680).

Now, if r, r are the roots of the quadratic (5676), with 8, n, 4 written for •                     277’

	
	
x, y, z, it appears that ----, = R, which proves the theorem.





T+Y

5688 Every line (Imn) drawn through a point ayz parallel to the polar plane of that point is bisected at the point, and the condition of bisection is

1U,+nU,+nU = 0.

PROOF.—The equation is the condition for equal roots of opposite signs in the quadratic (5676). Since Z, m, n are the dir. cos. of the line and Ux, Uy, Uz those of the normal of the polar plane (5683), the equation shows that the line and the normal are at right angles (5532).

5689 The last, when a, y, z are the variables, is also the equation of the diametral plane conjugate to the direction imn. Expanded it becomes

(al + hm +gn) a — (hi +bm +f) y + (gl +fm + cn) s +pl+qm+rn = 0.

	
5 G



For the point ayz moves, when a, y, z are variable, so that every diameter drawn through it parallel to Imn is bisected by it, and the locus is, by the form of the equation, a plane.

If the origin be at the centre of the quadric, p, q, and r of course vanish.

5690 The coordinates of the centre of the general quadric U=0 (5673) are


OC —




A

2A




A’

J =22




A,

2A



PROOF.—Every line through xyz, the centre, is bisected by it. The condition for this, in (5688), is U.= 0, U,= 0, and Uz= 0, in order to be independent of imn. The three equations in full are


	
ax + hy + gz +p = 0)
	
a h g p
		
a h g


	
ha + hy +fz + q = 0 - ; and A’ =
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/ — A M
	
; A=
	
h b f


	
qx+ fy + cz-\-r = o)
	
p q r d
		
g f 9


	
Solve by (582).
			



5691 The quadric transformed to the centre becomes

af+by?+cz*+2f+2gt£+215+2 = 0.

PROOF.—By the last theorem, the terms involving 5, n, Z in (5675) vanish. The value of U or f (x, y, z), when xyz is the centre, appears as follows :— U= }U, (5680) =pr+qy+rz+d=±2+"An+d (5690) = X (1647).

The last equation, being again transformed by turning the axes so as to remove the terms involving products .of coordi-dinates, becomes

5692        ar’+By’+y+A = 0,

5693 where a, 3, y are the roots of the discriminating cubic

R‘- R2 (a+6+c)+R (bc+ca+ab—f?—g?-1)—A = 0, or (R-a^R-b^R-c)-^-^/2-^-^ g2-{R-c) h -2fgh = 0.

Proof.—It has been shown, in (1847-9), that the roots of the discriminating cubic (multiplied in this case by -) are the reciprocals of the maximum and minimum values of x2 + y2 + z2. But such values are evidently the squares of the axes of the quadric surface. Let the central equation of the surface be —,43, 4—, = 1. Therefore — = — ■—", &c., producing a2 62 c2                        a2 A r the equation above.

5694 The equations of the new axis of a referred to the old axes of E, 7, Z are

(F+of) « = (G+ag) y = (H+ah) z;

and similar equations with 3 and y for the y and z axes.

PROOF.—When imn, in (5689), is a principal diameter of the quadric, the diametral plane becomes perpendicular to it, and therefore the coefficients of a, y, z must be proportional to Z, m, n. Putting them equal to Ri, Rm, Rn respectively, we have the equations

{a—R} 1+hm + gn = 0...... (1) )     The eliminant of these equations is hi A Qb—R) m+fn = 0...... (2) > .   the discriminating cubic in R al-

gl+fm-]- (c—R) n = 0...... (3) )     ready obtained in (5693).

From (1) and (2),   I : m = hf—g (b—R) : gh—f {a—R'), and from (2) and (3), m : n — fg—h (c—R) : hf—g (b — R) ; therefore {gh — af+Rf} I = (hf—bg + Rg) m = ^fg — chARK) n, which establish the equations, since a : y : z = I : m : n and F = gh—af, &c., as in (4665).

5695 The direction cosines of the axes of the quadric.

If the discriminating cubic be denoted by $ (R) = 0, and its roots by a, 3, y; the direction cosines of the first axis are


a(a) $a(a)’




(a), V $a(a)’




$.(a). $a(a)



For the second and third axes write 3 and y in the place of a.

PROOF.—Let F+af=L, G + ag = M, H+ah = N.................. (i.),

(a-b)(a—c)-f=x, (a — c^a — a)- g2 = M, (a-a)(a-b)-13 = v...(ii.). Then the equation $ (a) = 0 may be put in either of the forms

L2 = uv, M2 = vX, N2 = Xu ..................... (iii.).

Now the dir. cos. of the first axis are, by (5694), proportional to

	
1    : } k = * : VA :«, by (il).



Their values are, therefore,

	
	
•A Mu Mv





•/(+u+v)’  V(+u + v)’ V(+u+v)

But X = - de (a) and X+u+v = do (a), by actual differentiation of the da                   da cubic in (5693).

5696 Cauchy’s proof that the roots of the discriminating cubic (5693) are all real will be found at (1850).

5697 The equation of the enveloping cone, vertex xyz, of the general quadric surface U = 0 (5673) is

4 {abcfgli^ImnyU = (lUx-\-mUy-{-nU^, with &— a, v—y^ Z—z substituted for Z, m, n.

PROOF.—The generating line through ayz moves so as to touch the quadric. Hence the quadratic in r (5676) must have equal roots. The equation admits of some reduction.

5698 When U takes the form ax2+by2+cz2 = 1, equation (5697) becomes

(yaP^bm^-^cn^^asU-Uby^-^-c^—1) = {alx-UbTiny-^cn^.

5699 The condition that the general quadric equation may represent a cone is A’ = 0; that is, the discriminant of the quaternary quadric, (5 6 74) or (1644), must vanish.

PROOF.—By (5692). Otherwise A’ = 0 is the eliminant of the four equations U. = 0, U, = 0, Uz = 0, U = 0, the condition that equation (5675) may represent a cone.

5700 The condition that the plane lx — my +2% = 0 may touch the cone (abcfghXeyz)2 = 0 is the determinant equation on the right.




Proof.—Equate the coefficients Z, m, n to those of the tangent plane (5681), p, q, r being zero, and xyz the point of contact. A fourth equation is lx + my + nz = 0, which holds at the point of contact. The eliminant of the four equations is the determinant above.

5701 The condition that the plane lx — my +nz+t = 0 may touch the quadric
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(abcdfghpqr^xyzl)2 = 0

(5673) is the determinant equation on the right.

Proof.—As in (5700).

5702 If the origin is at the centre, p = ( = r = 0. In that case, transposing the last two rows and last two columns, the determinant becomes
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5703 The condition that the line of intersection of the planes

la+my+nz+ t = 0... (i.) and l’a+m’y+n’z+t = 0 ... (ii.) may touch the general quadric (abcdfghpqr^xyziy = 0, is the determinant equation deduced below.

Multiply equation (i.) by E and (ii.) by n to obtain the plane (lE+l’n) a+(m£+m‘n) y+(n4+n‘n) z+tE+t‘1 = 0......... (iii.).

passing through the intersection of (i.) and (ii.). The line of intersection will touch the quadric if (iii.) coincides with the tangent plane at a point xyz, and if xyz be also on (i.) and (ii.). Therefore, equating coefficients of (iii.) and the tangent plane at xyz (5681), we get the six following equations, the eliminant of which furnishes the required condition,


ax+ ly+gz + pw = l&+ l’n hx + by + fz+ qw = mi + mA gx+ fy+cz+ rw = n£+ nA px + qy + rz + dw = t+ t’n I x + my + nz+ tw = 0

Vx + my + nz + t'w = 0
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RECIPROCAL POLARS.

5704 The method of reciprocal polars explained at page 665 is equally applicable to geometry of three dimensions.

Taking poles and polar planes with respect to a sphere of reciprocation, we have the following rules analogous to those on page 666.

RULES FOR RECIPROCATING.

5705 A plane becomes a point.

5706 A plane at infinity becomes the origin.

5707 Several points on a straight line become as many planes passing through another straight line. These lines are called reciprocal lines.

5708 Points lying on a plane become planes passing through a point, the pole of the plane.

5709 Points lying on a surface become planes enveloping the reciprocal surface.

5 710 Therefore, by rules (5 708) and (5709), the points in the intersection of the plane and a surface become planes passing through the pole of the plane and enveloped both by the reciprocal surface and by its tangent cone.

5711 When the intersecting plane is at infinity, the vertex of the tangent cone is the origin.

5712 Therefore the asymptotic cone of any surface is orthogonal to the tangent cone drawn from the origin to the reciprocal surface. The cones are therefore reciprocal.

5713 The reciprocal surface of the guadric is a hyperboloid, an ellipsoid, or a paraboloid, according as the origin is without, within, or upon the guadric surface.

5714 The angle subtended at the origin by two points is egual to the angle between their corresponding planes.

5715 The reciprocal of a sphere is a surface of revolution of the second order.

5716 The shortest distance between two reciprocal lines passes through the origin.

5717 The reciprocal surface fibcdfghpgr\xyAf = 0 (5674), a2+y‘+z‘= k3, is
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Proof.—The polar plane of the point 3ns with respect to the sphere is ka+ny+zz— k2 = 0. This must touch the given surface, and the condition is given in (5701).

5718 The reciprocal surface of the central quadric “+1+1=1, when the a2 62 c2 point x'y'z', is


origin of reciprocation is the



(£x‘+n/+Y=/—18)a = a’F+b’+er, or, with the origin at the centre,

5719         a‘g1+b‘+er= k.

Proof.—Let p be the perpendicular from x'y'z upon a tangent plane of the quadric, and Enz the point where p produced, intersects the reciprocal surface at a distance p from x'y'z . Then

k‘p-1 = p = lx +my' + nz'— (a’l- b‘m2+ cVy          (5630) Multiplying by p produces the desired equation.

THEORY OF TORTUOUS CURVES.

5721 DEFINITIONS.—The osculating plane at any point of a curve of double curvature, or tortuous curved is the plane containing either two consecutive tangents or three consecutive points.

5722 The principal normal is the normal in the osculating plane. The radius of circular curvature coincides with this normal in direction.

5723 The binormal is the normal perpendicular both to the tangent and principal normal at the point.

5724 The osculating circle is the circle of curvature in the osculating plane, and its centre, which is the centre of circular curvature, is the point in which the osculating plane intersects two consecutive normal planes of the curve.

5725 The angle of contingence, dy, is the angle between two consecutive tangents or principal normals. The angle of torsion, dr, is the angle between two consecutive osculating planes.

5726 The rectifying plane at any point on the curve is perpendicular to the principal normal; and the intersection of two consecutive rectifying planes is the rectifying line and axis of the osculating cone.

5727 The osculating cone is a circular cone touching three consecutive osculating planes and having its vertex at their point of intersection.

The rectifying developable is the envelope of the rectifying planes, and is so named because the curve, being a geodesic on this surface, would become a straight line if the surface were developed into a plane.

5728 The polar developable is the envelope of the normal planes, being the locus of the line of intersection of two consecutive normal planes. Three consecutive normal planes intersect in a point which is the centre of spherical curvature : for a sphere having that centre may be described passing through four consecutive points of the curve.

5729 The edge of regression is the locus of the centre of spherical curvature.

5730 The rectifying surface is the surface of centres (5773) of the polar developable.

5731 An evolute of a curve is a geodesic line on the polar developable. It is the line in which a free string would lie if stretched between two points, one on the curve and one anywhere on the smooth surface of the polar developable.

5732 In Figure (180) A, A', A", A"' are consecutive points on a curve. The normal planes drawn through A and A' intersect in CE; those through A' and A" in C'E', and those through A" and A'" in C"E". CE meets C'E' in E, and C'E' meets C"E" in E'. The principal normals in the normal planes are A C, A'O', A"G", and these are also the radii of curvature at A, A', A", while C, O', C" are the centres of curvature. 4 AC A' = dy and CA'C' = dr.

The surface EC0'C"E' is the polar developable, CC'C" being the locus of the centres of curvature, and EE'E" is the edge of regression.

EA is the radius and E the centre of spherical curvature for the point A. AH, HH', E'H" are elemental chords of an evolute of the curve, AhE being a normal at A, and A'HH' a normal at A', and so on. The first normal drawn is arbitrary, but it determines the position of all the rest.

PROPERTIES OF A TORTUOUS CURVE.

5733 The equation of the osculating plane at a point ayz on the curve is

(f— a) A+(n- y)+G- z) » =0.

5734 X, u, v are the direction cosines of the binormal, and their complete values are

p {yA— y^.)> p(2,22s—222), p(x,Y2s—W2sys).

5735 The angle of contingence

di = • {(y,282s—Y242,)2+(2,22,—%2,0,)2+(asY2s—W2y,)2} ds.

Proof.—Let the direction of a tangent be imn, and that of a consecutive tangent 1 + dl, m + dm, n + dn. Since the normal of the plane must be perpendicular to both these lines, we shall have, by (5532),

lX+mu+v = 0 and (l + dl) X+ (m + dm) u + (n + dn) v = 0, therefore X : u : v = mdn—ndm : ndl—ldn : 1dm—mdl,

and the denominator in the complete values of A, u, v is ^/[(mdn- ndmY + &c.] = sin di.


by (5521) ; that is, = d^. Therefore A = (J,z2— 9237)



Also l, m, n = 2s, ys, z, and dl = x2sds, &c.


ds

dy



Similarly, u and v; and s, = p, by (5146).

5736 The radius of curvature p at a point ayz.

1 _ 2     .3 _az,+y3,+23, S2t

Proof:      d^ = {(Jszzs— 92529)2+ &c.} ds, in (5 735), therefore y, = •{(e+y;+z)(z,+v2,+z2)- (,402,43, 2,4 5,32)3}

= •(ez,+iz,+6) 5 since «+y+*=1; and differentiating this equation makes 2,229 &c. = 0.

Otherwise, geometrically, precisely as in the proof of (5141), we find the direction cosines of the principal normal to be

5737 cos a = p^2s, cos 8 = py2si cos y = pz2s.

Therefore p? («3,+y3,+23,) — cos? a + cos? B + cos? y = 1.

The change to the independent variable t is made by (1762).

5738 The angle of torsion, in terms of X, u, v of (5734), is dr = •(N+u?+v) ds = (Na3,+HJ3+V2s) pds

= • {(uv,—u,)2+(N,—v,X)2+(Nu,—X,M)2}.

Proof.—By (5745), we have (dry = (dA)2+(du)2+(dv)2 ............ (i.), which gives the first form. The third reduces to this by the method in (5 736). For the second form put u = Y,Z2s— Y2523, &c., then l=l=‘=1=d (5734), dX =du-udK, &c. u v w K di            K K2

Substitute in (i.), reducing by K2 = u2 +v2 +w2 and KdK = udu+vdv + wdw.

CURVATURE AND TORTUOSITY.

5739 Radius of curv., p = ds; Curvature - l- dv. n—dt                p ds

Radius of torsion, o =4; Tortuosity = = 4

If ts changes sign while passing through the values zero or infinity, there is a point of inflected torsion or a cuspidal point, respectively. If T, without changing sign, passes through zero or infinity, there is a point of suspended torsion or infinite torsion respectively.

If rs is zero, identically, the curve is plane.

5740 The radius of spherical curvature,

R = v(p‘+p).

Proof.—In Fig. (180) R2 — p2 + EG2 and EG = pT by analogy with q^=p^ n a plane curve (see proof of 5147).

5741 The element of arc of the locus of centres of circular curvature is

ds' = Rdr, and therefore R = s'T.

Proof.—In Fig. (180) ds' = GO' = pdr sec q = Rdr.

5742 The radius of curvature of the edge of regression

= S = RRP = p~hp2r,

S" being the arc of the edge of regression.

Proof.—An inspection of Figure (180) shows that R and p stand in the same relation to the edge of regression that r and 2 occupy with regard to a curve in the standard formula. In fact we may substitute R for r, p for p, d for 6, t for v, and $ remains d. The chosen line of reference AB being always parallel to the tangent EC, then AEO = BAE = d. Also the angle of contingence CEO' = CAC' = dr, by the right angles at C and O'. Ac-cordingly, we have the formula p = $,=*%, =p+22, from (5146-8), and the values above corresponding to them.

5743 A method of estimating the variation in direction of a right line whose position is given as depending upon the form of a tortuous curve at every point.

Let a, y, z be the direction cosines of the line referred to a fixed principal normal, tangent, and binormal of the curve [2, y, z may either be constants with respect to the varying principal normal, tangent, and binormal, or they may be functions of the angle between the binormal and the spherical radius].

5744 The complete changes in a, y, z, with respect to the fixed origin and axes, will be

Sa = da+ydi— zdv,

Sy = dy—xd^, 8z = dz+adr.

PROOF.—In Figure (180) AC, AB are the fixed axes of a and z. Let a line AL of unit length be drawn always parallel to the line in question ; then, if a, y, z be the coordinates of L, a, y, z will also be the direction cosines of AL, and therefore of the given line.

Now, suppose A to move to A', and consequently AL to take the position A'L'. Then the changes in a, y, z will be the changes dx, dy, dz relatively to the moving axes, plus the changes due to the rotations clip round the binormal and dr round the tangent. With the usual notation, we shall have ex = dx + 0,z— w^y, cy — dy A 032 — 01%, ^z = dz + oy — 00,2, with 01 = 0, w, = — dr, 03 = —di.

5745 If d^ be the angular change in the direction of the right line,

dx = v{(8x)2+(By)2+(8z)2}.

For d\ = LL' since AL is a unit length.

Examples.

5746 The angle between two consecutive radii of circular curvature being de,

(def = (d^2+{drf.

Proof.—Here, in (5744), a = 1, y = 0, z =0, therefore ^x = 0, 3y =-d, 3z = dr. Substitute these values in (5745).

5747 The angle, dn, between two conseentive radii of spherical curvature,being the inclination to the binormal,

(dy)2 = (di.sin 4)2+(dq- dr^'.

Proof.—In (5744) the direction cosines of R (Fig. 180) are x = sin p, y = 0, z = cos $, therefore 3a = cos p (do — dr), y = — dy sin p, 3z = — sin p (do — dr). Substitute in (5745).

5748 The angle of contingence of the locus of the centres of circular curvature,

(dx)?= (dy .cos 4)2+ (do+ dr)2.

Proof.—The dir. cos. of the tangent at G to the locus (Fig. 177) are

a = cos p, y = 0, z = sin $ ; therefore oa = — sin p (do+dr), zy =—d cos $, 3z = cos p (d^ + dr'). Substitute in (5745).

5749 The osculating plane of the same curve has its direction cosines in the ratios

dy sin + cos + : — ( do + dr ) : — d cos3 +.

dx \dx dx • dx

Proof.—As in the Proof of (5735), the dir. cos. of the normal to this plane are proportional to y8z — z8y, zdx—x8z, x8y—y8x. Substitute the values in last proof.

5750 The angle of torsion of the same curve is found from (5745) and (5744) as above, a, y, z being in this case the dir. cos. of the normal of the osculating plane as given in (5749).

5751 The direction cosines of the rectifying line are

0 dr  d^

‘ de ‘   de

Proof.—The rectifying plane at A' (Fig. 180) is perpendicular to the normal A'G'. Therefore its equation is a — ydi + zdr = 0. The ultimate intersection of this plane with the rectifying plane at A (that is, the plane of yz) is the rectifying line. Hence the equation of the latter is y di = zdr; and the dir. cosines reduce to the above by (5746).

5752 Cor.—The vertical angle of the osculating cone = 2 tan'1 d. dr

5753 The angle of torsion of the involute of the curve is

= v(V2.+T3) de.

PROOF.—This angle is also the angle between two consecutive rectifying lines. Therefore, taking the dir. cosines from (5751), we must put in (5744)


a = 0,




dr

J =de‘




dy . de ‘



therefore 3r = d dip— 4 dr = 0; cy = r^de ; ^0 = V2 de. 5754 The angle of torsion of an evolute of the curve

= dis sin (a—7).

PROOF.— (Fig. 180.) Let HH'H" be an evolute of the curve, AH the tangent to it in the normal plane of the original curve at A, and let a = CAH, the inclination of AH to the principal normal. At any other point H" of the evolute, where its tangent is A"H'H", let the corresponding angle be 6 = 0"A"H". Then 6 = a— t, t being the sum of the angles of torsion between A and A", or the total amount of twist of the osculating plane. Now the normal of the osculating plane of the evolute at H" is perpendicular to HH' and H'H", two consecutive tangents. Therefore its dir. cosines in (5744) must be

a = —sin (a —r), y = 0, z = cos (a — T) ; therefore ^x = cos (a — r) dr+0— cos (a —r) dr = 0, ^y = sin (a—r) di ; cz = sin (a —r) dr — sin (a — r) dr = 0.

Hence the angle required = y = dy sin (a—r).

5755 Approximate values of the coordinates of a point on a tortuous curve near to the origin in terms of the arc, the axes of x, y, z being the principal normal, tangent, and binormal, and the arc s being measured from the origin :

*=% -62:—2701-2:+pp.)+&o.,
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p and o being respectively the radii of circular curvature and torsion.

PROOF.—By Taylor’s theorem (1500), since a, y, z, s are the same as da, dy, dz, ds initially, we have a = 2,s+3x282+}2as3+&c., and similar expansions for y and z. The dir. cosines of the principal normal at the point xyz will be, from (5737),

cos (-1) = P2r2, cos (7 +v) = py2g, cos (7-r) = Pz2a;

1 =d and r = dr being estimated positive as drawn in Figure (180) for positive values of a, y, z.

Differentiate these equations for s, and in the results put the initial values

xs = zs = 0, ys = l, =*= 0, J, = —, rs = —, &c.,

P o to determine the derivatives in the above expansions.

THE HELIX.

5756 The helix is a curve traced on a cylinder of radius a, so that its tangent preserves a constant inclination, = 2T— a, to the axis. Taking the axis of the cylinder for the z axis of coordinates, the equations of the helix are

a = a cos 0, y = a sin 6, z = a0 tan a.

5757 The radius of curvature p = a sec2 a. 5758 The radius of torsion o = 2a cosec 2a.

PROOF.—p from (5806) ; since P1 = a, P, = 0, and 6 = a at every point. By (5739), o = s . But dz = ds sin a and adr — dz cos a.

5759 The helix of closest contact with a given curve may be found as follows.

Determine the constants a and a from equations (5757-8), with the known values of p and g for the given curve; then place the helix to have a common tangent with the curve at the point, and make the osculating planes coincide.

GENERAL THEORY OF SURFACES.

5770 DEFINITIONS.—A tangent plane passes through three consecutive points on a surface which are not in the same right line.

5771 The normal at any point of a surface is perpendicular to the tangent plane.

5772 A normal plane is any plane through the normal. 5773 A line of curvature on a surface is a line along which consecutive normals to the surface intersect. At every point of a surface there are usually two lines of curvature at right angles to each other; and to these correspond two principal radii of curvature. The two lines of curvature coincide with the principal axes of the indicatrix at the point. See (5778).

5774 The surface of centres is the locus of the centres of principal curvature. There are two such surfaces, for there are two centres on each normal, and the normal is a tangent to both surfaces. Either surface may be regarded as generated by the evolutes of the lines of principal curvature.

5775 A geodesic is a line traced on a surface along which the osculating plane at every point contains the normal to the surface. See (5779).

5776 The radius of geodesic curvature 2 of a curve traced on a surface is measured by the ratio of the element of arc of the curve to the angle between consecutive normal sections of the surface drawn through consecutive tangents of the curve. Geodesic curvature, being the reciprocal of this, is therefore the rate of angular deviation of the normal section per unit length of the curve.

5777 An umbilicus is a point on a surface where a section parallel to and close to the tangent plane is a circle; in other words, the indicatrix is a circle.

For a definition of Indicatrix, see (5795).

5778 In Figure (182) OCD is the normal at 0 to a curved surface ; AOA', BOB' are the lines of curvature, therefore the normals to the surface at A and 0 intersect in the centre of curvature radius 01 (5773), and the normals at B and 0, in the centre, radius P2. The normals to the line of curvature BOB' at B and 0, drawn in the osculating plane BOB', intersect in K, and those at B' and 0 intersect in H. HOD is the angle between the osculating plane of the line of curvature and the plane of normal section. Similarly for the line of curvature AOA'.

5779 If POP' be a geodesic, its osculating plane POP' contains OD the normal to the surface at 0, and therefore p = OD, the radius of curvature of this section at 0 ; but PB, the normal to the surface at P, does not intersect OD, the consecutive normal at 0, unless the geodesic coincides with one of the lines of curvature, OA or 0B. The angle DPB is the angle of torsion which vanishes in the latter case.

GENERAL EQUATION OF A SURFACE.

5780 Let the general equation of a surface be represented by P {x, y, z) = 0.

5781 The equations of any tangent at a point xyz are

= 7—3 = %—1  with  fA,+m4,+ nc, = Q

Proof.—At an adjacent point x + rl, y+m, z + rn, we have c (x+rl, y + rm, z+rn) = 0, therefore, by (1514), d (x, y, z) +r (lHx+mo,+n2) = 0, the rest vanishing in the limit. But $ (x, y, z) = 0, therefore l^x + ^n+n^g = 0.

But I, m, n are the direction cosines of the line joining the two points, which becomes a tangent in the limit; and if En% be any point on this line distant p from xyz, 4—x = pl, y—y = pm, Z—z = pn, &c.

5782 The equation of the tangent plane at xyz is - •) $.+(-») $,+(-£) 4. = 0.

Proof.—Eliminate I, m, n from loz+mo,+ndz = 0 by 4— a = pl, &c., as above.

TANGENT LINE AND CONE AT A SINGULAR POINT.

5783 If, in the expansion in (5781) by Taylor’s theorem, all the derivatives of d (x, y, z) of an order up to n inclusive vanish, we have

yn + 1

d (2+rl, y + rm, z + rn) = $ (^,y,^) + ;—— (ldx + mcL + ndz)n+1^ (x, y, z) = 0.

There are in this case n+2 coincident points at xyz in the direction Imn, and since the equation (ld,+md,+nd2)"*1p (x, y, z) = 0 is of the n+1th degree in I, m, n; n+1 tangents to the surface at xyz can, in general, be drawn in any given plane through that point. This equation now takes the place of the conditional equation in (5781).

5784 Equation (5782) is now replaced by

{(#-a) d,+(»-») d,+(J-=) dz}n^^^ y^) = 0, the equation of the locus of all tangents at the point xyz, and representing a conical surface generated by the motion of those tangents.

5785 The equation of the normal at xyz is

S—a _ y—y _ Z—% $a p, da


(5782)



5786 The equation of the tangent at a point x'y'z' on the curve of intersection of the tangent plane at xyz with the surface is

§—a‘ = —y _ (—% X M v ‘

with the two conditions

Ac.+ucy+v. = 0,   A.+uc,+v, = 0.

For these are the conditions of perpendicularity to the normals of the tangent planes at xyz and xy'z respectively.

There are three exceptional cases in which the ratios X : u : v have more than one set of values; namely— 5787 I.—When $., $,, $2 vanish simultaneously, there is a tangent cone at xyz.

5788 II.—When par, $,, $2 vanish simultaneously, x'y'z' is a singular point on the surface.

5789 III.—When *: =* = P=. In this case the point Px Py‘ P,/ xy'zi coincides with xyz, and the tangent there meets the curve in more than two coincident points, the condition for which is

(Ad,+ud,+vd,)2c (a, y,2) = 0 ............ (i.),

with                Xo, + uc, + vo, = 0.....................(ii.) •

These equations furnish two sets of values of the ratios X : u : v, giving thereby the directions of two inflexional tangents (tangents to the curve of intersection) at xyz, each meeting the surface in three coincident points. If all the derivatives of an order less than n vanish at xyz, equation (i.) will be replaced by (Ad,+ud,+vdz)"p (x, y, z) = 0, which, together with (ii.), will determine n inflexional tangents at the point.

5790 The polar equation of the tangent plane at the point rOp, r‘, 0‘, fl being the variables, is, writing u for 7-1,

U = (u cos@—u,sin@) cos@ — (usin6—u, COS^) COS ($‘—%) sin 0‘ +u, cosec 6 sin ($‘ — $) sin 0'.

5 i

PROOF.—Write the polar equation of the plane through pa, the foot of the perpendicular on the plane from the origin; thus

pu = cos 0 cos a + sin 0 sin a cos (d — 3).

Differentiate for 0 and p to find pue and pu^, and eliminate p, a, and ft. This elimination is troublesome.

5791 The length of the perpendicular from the origin upon the tangent plane at ayz.


= xd,+y$u+ao, ■ •{d&+4+$3}




ne

•{$2+43+42}’




(5782, 5549)



the second form being the value of P when the equation of the surface is $ (x, y, 2) = c, a constant, and when $ is a homogeneous function of the nth degree (1624).

5793 In polar coordinates,


1

p2




= u2+u?+u? cosec2 6 =




22+r2+r3 cosec2 6

4



PROOF.—Add together the values of the squares of pu, pue, and pu, found in (5790).

For a geometrical proof, see Frost and Wolstenholme, Art. (314).

THE INDICATRIX CONIC.

5795 DEF.—The indicatrix at any point of a surface is the curve in which the surface is intersected by a plane drawn parallel to the tangent plane at that point and infinitely near to it.

5796 The following abbreviations will be employed— The derivatives of p (a, y, z), $2, (2y ^, Pue (=, ^y, $. ^y, $., will be denoted by            a, b, c, f, g, h, I, m, n. 5797 PROP. — The indicatrix at a point xyz of a surface $ (x, y, z) = 0 is the conic in which the elementary quadric surface

5798 I. ag2+br?+c[2+2f+2gz§+2lgy = - Vl‘+m2+n‘= N p

is intersected by the tangent plane at xy^, whose equation is 5799 IL l(+mV+nC+iN = 0.

The origin of coordinates is the point ayz in both equations. R is an indefinitely small radius from the centre of the quadric (I.) to a point EnZ on the indicatrix, and p is the radius of curvature of the section of the surfaceby a normal plane drawn through R; the ratio R2 : p being constant for all such planes.

PROOF.—Let 0, in Fig. (181), be the point xyz on the surface ©; a+E, y + v, z+% an adjacent point P. Then

$ (x+5, y + y, 2+5) = $ («, y, 2)+1+my+nz+4(a8+ ...+27E7)+&c.

With xyz for origin, draw the quadric surface

at +br2+cz+ 2fnz +2g^+2hEn = ......................(i.)

and the plane             l6+m+n+}N= 0...........................(ii.).

Since 5, n, Z are very small, N is likewise. Also the unwritten terms in the above expansion may be neglected in the limit. Hence, any point En% lying on the intersection of the quadric (i.) and the plane (ii.) will also lie on the original surface p(x+5, y+7, z+%) — 0.

To determine N, we have the perpendicular from xyz upon the plane (ii.), 7 = _—N — (5549). The radius of curvature of the section of the - 2 V(f + m2+n2)7

surface <j> made by a normal plane at 0 drawn through P being p, we have p = R, and therefore N = — ~ ./(12+7?+73).

P

In the Figure, R = OP, 2 = OL, and the intersection of (i.) and (ii.) is the conic PSQ. Since p is indefinitely small, we may put N = 0 in equation (ii.). This amounts to taking the parallel section of the quadric by the tangent plane at 0 instead of the section PSQ. But these two will be equal in all respects, since the section of the quadric is a central one.

5800 If m = 0, equation (II.) becomes l&+2‘= 0, and if the inclination of the indicatrix plane to the plane of xy be a, tan a = —To obtain, in this case, the equation of the n

indicatrix in its own plane, put & = ¥ cos a, t — t sin a, and n = y} in equation (I.).

5801 When none of the three constants Z, m, n are zero, the quadric (I.) simplifies as follows—

From (II.) we have l^-{-mr] = —n% and two similar equations. Square these, and by the results eliminate the terms in n‘, ZE, En from (I.), which then becomes

5802 III. Hg^K^+L^ = N,

where H = a+—— (if— mg—nh), K=b+—(mg—nh—lfY mn                       nl

L = c+ " (nh— if—mg').

This is the equation of another quadric intersecting the plane (II.) in the indicatrix.

5803 The equation of a surface for points near an origin 0 (Fig. 182), the normal at 0 being taken for z axis, is


22




P1



y2 o

= 2%

P2

where 01, 02 are the radii of curvature of the normal sections through the x and y axes, and those sections will be proved to be the lines of curvature at 0.

Proof.—Let AC = a and DC =b be the semi-axes of the indicatrix conic at a small distance z from 0 (5795). The equation of the conic will there-fore be — + 3, = 1; but — = 20, and — = a4 IT                 z                  z required.


202, giving the equation



Secondly, on a line of curvature, the normal to the surface at a point xyz will intersect the z axis (5773). The condition for this, by (5533) [with xyz for abc, the origin for a'b'c,

	
L, M, N = 44, 4, 4, (5785) =2, X -2, and L', M, N' = 0, 0,1 ], Pi 02 gives xy (---) =0, therefore a =0 or J =0 on a line of curvature.



102    P1‘                                                 Q. E. D.

5804 If the equation of the surface with the same axes be z = ax2+2hay+by2+2fyz +2gzx+cz2+ higher powers,

then          P. =%  P.= %

Proof.—Put y = 0 and divide by z, therefore 1 = a—+ 2gx + cz + &c. z

When a and z vanish, we have 1 = 2apv

5805 For a normal section making an angle 0 with AC,

	
	
1    = 2 (a cos2 0+2h sin 0 cos 6+b sin3 6).





P

Proof.—Turning the axes in (5804) through the angle 0 by (4049), the coefficient of x'2 becomes a cos2 6 + as above.

5806 Euler’s Theorem.—If p be the radius of curvature of

any other normal section at 0, making an angle AGP = 6 with AC (Fig. 182),

1 _ cos? 0 _ sin2 6

PEP Pa.

PROOF.—Let r = CP; then x = r cos 6, y = r sin 6, and 72 = 2pz, which substitute in (5793).

5807 COR. — The sum of the curvatures of two normal sections at right angles to each other is constant; or, if p, o’ be the radii of curvature for those sections, and pa, pb the radii for the principal sections,

5808 The radius of curvature of a normal section varies as the square of the radius of the indicatrix in that section.

PROOF.—From 72 = 20z, in Figure (182).

5809 Meunier’s Theorem.—The radius of curvature of an oblique section of a surface is equal to the radius of curvature of the normal section through the same tangent multiplied by the cosine of the inclination of the planes.

—    10i  ' PN2 PN2 j . p NO

Proof.—(Fig. 183.) P FNC‘P= NO’ therefore o = NO = cos P, when NO and NC vanish.

5810 Quadratic for yx at a point on the surface z = $ (a, y) giving the direction of the principal normal sections, and, therefore, of the lines of curvature (notation 1815).

{pqt-(1+0)s} y:+{(1+p) 1-(1+y)r} y. + {(1+p2) s—pqr} = 0.

Proof.—(i.) The equations of the normals at the consecutive points xyz and x + dx, y + dy, z+dz of the surface p (x, y, z} = 0 are

4—a — 1—y _ —z and 4—(x+dx)  7—(+dy)  Z—(z+dz)

Pa $s $z $.+d%a $u + do, $z+dz


	
5811
	
The condition of intersection is, by (5533),


		
dx   dy   dz

pa    Ps    $z = 0, or
	
1      Ja   p+yy^

P      I      -1 = o,


		
doa do. dz
	
7+SY. s + tyx      0




by dividing the first row by da, and putting z,= $a+,Ya, do.= $2a + U Ya, &c. The form of $ (x, y, z) being, in this case, $ (a, y) — z, $z becomes — 1, and d<l>z becomes zero. The determinant equation produces the quadratic.

(ii.) Otherwise.—Consider En% the point of intersection of consecutive normals. The equations of a normal being

4—2 = 7—J=% ..... 2 or E- c — p (z- Z) and 7- y = q (z— z).

P I “I

Differentiate both equations for x, considering 5, n, % constant and p, q functions of a and y; the results are

1+(r+ sy^ (z - 5) +p (p + qy^ = 0 and yx + (s + tyx) (z-^ + q(p + qy^ = 0.

Eliminate z—'C to obtain the quadratic in yx.

5812 If the equation of the surface be in the form 4 (a, y, z) = 0, the quadratic for yx may be obtained in the same way. The requisite substitutions in the first determinant are found from Pa— yY2—$zZa = 0, giving Za; do. = $22+Ha,Y=+$azZ2, &c., and with the notation of (5796) the determinant equation and quadratic for yx becomes

n                    nyx


— (l+myx)

n

gn—cl+(fn—cm) yx



I                   m an—gl+ (hn — gm) yx hn—fl+(bn—fm)yx

5813 The above determinant, or the corresponding one in (5810), is the differential equation of the lines of curvature.

5814 The radii of curvature of the principal normal sections of the surface $ (a, y, 2) = 0 at a point xyz are given by the following quadratic, in which A’ is the bordered determinant in (5700), and the notation is that of (5796) and (1620).

A‘p‘+ {^a^b^c^^^m^^n^^^bcfgli^lmn)^} kp—k^ = 0, where 72 = l2+m2+72.

PROOF.—The quadratic in (5653) applied to a section of the quadric (I.) (5798) by the plane (II.), becomes

A‘R*+ {(b+c) 72+ (c+a) m2+ (a+b) n2—2fmn— 2gnl—2hlm^ NR2

-(P + m^+n2) N‘= 0,

whose roots, being the two values of R2, are the squares of the principal


semi-axes of the indicatrix.



Put R2 = NP, as in the Proof of (5797).

5815 Otherwise, the quadratic in (5651) might be applied to a section of the quadric (III.) (5802) by the plane (I.).

5816 If the equation of the surface be given in the form z = $ (x,y), the quadratic becomes [writing, as in (1815), 2, g, r, s, t for Z„> Z, 22.3 Zay> z2y],

(rt—s2) p2— {(1+p2) t—2pqs+(1+93) r} kp-^-k^ = 0, where 72 = p2 + g2 + 1.

Otherwise, this equation may be found from the two equations obtained in the second proof of (5810), by eliminating yx instead of z—%.

5817 The radius of curvature at a point ayz on the surface $ (x, y,2) = 0 of the normal section whose tangent has the direction cosines X, u, v is, with the notation of (5796) and (1620),            _ (+m*+ne)

P (abcfghy\p,v)i

Proof.—From equation (I.) (5798), since E, n, 4 are respectively equal to RX, Rp, and Rv.

5818 The curvature at any point of a surface $ (x, y, z) = 0 is termed elliptic or synclastic, hyperbolic or anticlastic, and parabolic or cylindrical, according as the indicatrix is an ellipse, hyperbola, or two parallel right lines, or according as the principal curvatures have the same signs, opposite signs, or one of them vanishes; and this will be according as the determinant A’, in (5814), or s2—rt, in (5816), is negative, positive, or zero.

Proof.—The rule follows at once from the consideration that the two values of p in the quadratic of (5814) must have the same sign in the first case, different signs in the second, and that one value must be infinite in the third case.

5819 The condition for an umbilicus is that the indicatrix must be a circle; therefore, either (III.) (5802) must be a sphere, or, if it be a quadric surface, the plane (II.) must make a circular section of it, and therefore either I, m, or n must vanish.

5820 Otherwise, the quadratic in (5814) or (5816) must have equal roots.

5821 Otherwise, the conditions for an umbilicus on the surface $ (a, y,^ = 0 are the two equations

bn2+cm2—2fmn _ cl2-\-an2 — 2gnl _ am?+bl?—2hlm m2+n2 = ++/2 =    [2+m2

PROOF.—The radius of the indicatrix, and therefore also p in (5817), is constant for all values of X, u, v. Now, by (5817),

ax?+ &c. = k ;

P

..  (a— K) X2+ ( b— —) L2+ (c— K) 73+2fur+2gX+2ANp = 0,

\ p/ and IX + mp + nv = 0, since Xuv is always tangential, and lmn is normal to the surface. As these equations are true for all values of X, u, v, the second expression must be a factor of the first. The quotient, by division, is there-tore              I a--— + lo--------- C--—.

\ p / 1    \ p / m \ p / n

Equating to zero each of the three coefficients of the remainder, and eliminating p, we obtain the above conditions.

5822 If a common factor of the three fractions in (5821) exists, that factor equated to zero is the differential equation of a line of spherical curvatzbre at every point of which there is an umbilicus. If the fractions are identically equal, the surface has an umbilicus at every point, and must therefore be a sphere.

5823 The number of umbilici on a surface of the nth degree cannot exceed n (10n2— 251+16). Salmon, p. 208.

5824 The condition that the indicatrix may be a rectangular hyperbola is

(a+6+c)(l2+m2+n2) = (abcfg'h^lmn)2.

PROOF.—The quadratic in (5814) must have equal roots of opposite signs.

Similarly, when z = $ (x, y) is the equation of the quadric, the condition becomes            (1 +p‘) t— 2pqs +(1+9)r = 0.             (5816)

5825 The condition that the indicatrix may become two coinciding lines.

Here equation I. (5798) must represent a cone, and the plane (II.) must touch it. Hence N = 0, and, if Z be eliminated, the quadratic for the ratio 5 : n obtained is

(an? + cZ2 — 2gnT) 8 + 2 (elm —fnl—gmn + hn?) En + (bn2 + cm2—2fmn~) n2 = 0, and this must have equal roots.

CURVATURE OE A SURFACE.

5826 DEFS.—Integral curvature of a closed surface is equal to the area of that part of the surface of a sphere of unit radius which is intercepted by radii drawn parallel to the normals at all points of the given surface. This area also measures the solid angle of the cone generated by the radii. The curve on the sphere is called the horograph of the curve on the original surface. In other words, integral curvature of a closed surface is the area of the horograph of its boundary.

5827 Average Curvature is the integral curvature divided by the area of the surface.

Specific curvature is the average curvature of a small element at the point; i.e., - ' - — (ds)3 =---.

0102                P1P-2

5828 The last is the usual measure of curvature at a point, and its value in coordinates of the point is given by

1 A’               p

---= — —  9 -■■-■■ or ——9—9193    (5796) P1P2 (l2+m2+n2)2      (1+p+q^ according as $ (x, y, z) = 0 or z = $ (a, y) is the form of the equation to the surface.

PROOF.—From the product of roots of the quadratics in (5814) and (5816). 5829 In a plane curve integral curvature is the plane angle contained by the terminal normals, and average curvature is the integral curvature divided by the length of the curve.

5830 Another measure of curvature at a given point of a surface is the ratio of the area of the indicatrix to the area of the indicatrix cut off by the same plane on a sphere of unit radius which touches the surface internally at the point. This measure is = VPip,.

PROOF.—Putting AC = R^, BC = R2, in Fig. (182), and 00 = 2, the area of the indicatrix of the surface is ttR^ at an ellipsoidal point. But Ri = 2prz and R^ = ^p^^ therefore TR|R, = 2mz (0102). Also the indicatrix of the sphere = 2mz since P1 = 02 = 1 for the sphere.

5831 The radius of curvature of any normal section at a point P of an ellipsoid (Fig. 184) is equal to the square of the semi-diameter parallel to the tangent of that section, 5 K

1

 Otherwise named " space curve.”

2

 Not to be confounded with the radius of curvature of a geodesic.


divided by the perpendicular from P upon the diametral plane conjugate to OP.

PROOF. — Let AOB be the plane parallel to the tangent plane at P; OA = d, the semi-diameter in it parallel to the given tangent PT. Draw PR perpendicular to OA and PN^p perpendicular to the plane A 0B. The radius of curvature at P of the elliptic section PA = — (4536). Therefore, PR

by (5809), the radius of curvature of the normal section through the same ,      ,                           PR    d2 tangent PT, will be p — — X —-- = —.

PR PN  p

5832 The principal radii of curvature at P, viz. 01, 02, are found from their sum and product thus : putting y for OP, and a, b, c for the semi-axes of the ellipsoid,


P1+P2 =




a2+62+c2—y2

P




P1P2 —




aW p*



PROOF.—Let a, G be the semi-axes of the section AOB (Fig. 184), then a?+32+ 2 = a?+62+c2 (5642) and pa^ = abc (5648). By these values eliminate a, 3 from 0,+0, =---P and 0,09 = - (5831).

5833 The lines of curvature on a quadric surface are its intersections with the confocal quadrics.

PROOF. — Let the quadric and confocal be the ellipsoid and one-fold hyperboloid in (Fig. 178) intersecting in the line DPE, and let their equations be, as in (5656),


a‘3242_1

a2 62 c2




(i.)




and




a2 । y1 ■ 22 _ a?+X 52+x c2+X




(ii.).




At any point P on the line of intersection x, y, z satisfy the three following equations :—

First, the differential of (ii.), adz + ydy + zdz = 0.

’                 " u2 + X 6 +X c2+A

Second, the difference of (i.) and (ii.), a2 + y2 ।      22 .

a2 (a?+X)   62 (b2+A) c2 (c2 + X) '

Third, the difference of their differentials, xdx 1 y dy .    z dz

a3(a‘+x) T 62 (62 +)" c2(c‘+X) =

The eliminant of these equations in x, y, z produces the determinant equation here annexed, which, by (5811), is the condition for the intersection of consecutive normals. Hence this condition holds for every point of the line of intersection of (i.) and (ii.).




dz




a2 da a2




3

62

dy 63




% c2

dz ~2




= 0.



The general method of determining the lines of curvature of a surface from the differential equation in (5811) is here exemplified in the case of an ellipsoid.

5834 The determinant just written gives for the differential equation of the lines of curvature

(b-— c2) xdydzA (c2—a?) ydzda+(a‘—b2) zdxdy = 0......... (i.).

To solve this, multiply by 4 and substitute for z and dz from the equation

C

of the quadric. The result is of the form

Axyyl+OF-Aif-B} J—{J = 0,

in which A = 93 (63—c), B = a (gi - ) ; or, multiplying by %,

U (C C )           C C                              2

A^ (=yJ=—y2)-BW +(yy.—J2) = 0,

which is of the form in (3236). Solving by that method, we find that the two equations 33 = a and xyyx—y2 = 3 have the common primitive a

ax2—y2 = 3, which, with the relation Aa—Ba+3= 0, constitutes the solution. The result is that the projections of the lines of curvature upon the xy plane are a series of conics coaxal with the principal section of the ellipsoid, and having their axes a, 6 varying according to the equation

a? (a?—c2) 62 (62—c2) _ 1 a?(a?—b2) T 62(62-a2)

At an umbilicus y = 0, therefore, equation (i.) becomes [(b2— c2) xdz + (a2—b2) zdx~\ dy = 0. Here dy = 0, being a solution, gives y = C = 0, showing that the plane of zx contains a line of curvature. The other factor, equated to zero, taken with the differential equation of the curve c^xdx + a^zdz = 0, gives the coordinates of the umbilicus, as in (5603).

OSCULATING PLANE OF A LINE OF CURVATURE.

5835 Let $ be the angle between the osculating plane and the normal section through the same line of curvature, ds an element of the other line of curvature, and p, p their radii of curvature respectively : then

tan 4 =    . _P—. as p —p

Proof.—Fig. (185). Let OA, OB be the lines of curvature; OP, AP consecutive normals along OA; and OS, BS the same along OB. Also, let BQ, CQ be consecutive normals along the line of curvature BC. Then, ultimately, OP = p, OS = p', BQ = p + dp. Also, let QP produced meet the osculating plane of AO in R. Join RO and RA, and draw QN at right angles to PS. Since the tangent to AO at O is perpendicular to the plane OBQP and that at A to ACQP, it follows that both tangents are perpendicular to QP, which must therefore be perpendicular to the osculating plane ARO. Hence $ or ROP — PQN.

Now N = S@= 2/—e-do, .t^ NP=d^ _jC_ ultimately. ds SB P' ’        T NQ ds p'-p         1 5836 At every point on a line of curvature of a central conicoid pd is constant, where d is the semi-diameter parallel to the tangent at the point and p is the perpendicular from the centre upon the tangent plane.

PROOF.—Let the first and third confocals in (5661) be fixed, and therefore C1 and as constant. Draw the second confocal through the point of contact P of the tangent plane (Fig. 178). Then, by (5663), pd, and 2ad1 are constant along the line of intersection of the first and third surface, because, by (5661), d\ = a—a2 and d^ = az— a3

GEODESIC LINES.

5837 The equations of a geodesic on the surface $ (a, y, z) = 0

.                      a 2s __ 2s __ %2s

	
c. - «, - $.



PROOF.—The osculating plane of the curve contains the normal to the surface (5775) ; therefore, by (5737) and (5785).

5838 A geodesic is a line of maximum or minimum distance along the surface between two points.

Proof.—The curve drawn in the osculating plane from one point to a contiguous point is shorter than any other by Meunier’s theorem (5809), for any oblique section has a shorter radius of curvature and therefore a longer arc. A succession of minimum arcs, however, may constitute a maximum curve distance between the extreme points ; for example, two points on a sphere can be joined by either of two arcs of a great circle, the one being a minimum and the other a maximum geodesic.

5839 A surface of revolution such as the terrestrial globe affords a good illustration. A meridian and a parallel of latitude drawn through a point near the pole are the two lines of curvature at the point. The meridian is also a geodesic, but the parallel is evidently not, for its plane does not contain the normal to the surface.

5840 A geodesic is the line in which a string would lie if stretched over the convex side of a smooth surface between two fixed points.

Proof.—Any small arc of the string POP' (Fig. 182) is acted upon by tensions along the tangents at P and P', and by the normal reaction of the surface at 0. But these three forces act in the osculating plane (5775) ; therefore the string will rest in equilibrium on the surface in that plane.

Cor.—Two equal geodesics drawn from a point and indefinitely near to each other are at right angles to the line which joins their extremities.

5841 If a geodesic has a constant inclination to a fixed line, the normals along it will be at right angles to that line.

PROOF.—Let imn be the fixed line and a the constant angle; then

lxsA~ mys +nzs = cos a, and therefore lx2s + my2s + nz2s = 0. Therefore, by (5837), the principal normal is at right angles to imn.

EXAMPLE.—The helix, the axis being the fixed line.

5842 On any central conicoid pd is constant along a geodesic, where p is the perpendicular from the centre upon the tangent plane and d is the semi-diameter parallel to the tangent of the geodesic.

Proof.— (Fig. 186.) Let AT, BT be the tangents at the two extremities of a small geodesic arc AB, and let the tangent planes at A and B be ADC and BCD. AT and BT make equal angles with CD, by the property of shortest distance, for if the plane BCD be turned about CD until it coincides with the plane ADC, ATB will become a straight line, and therefore _ ATD = BTC = i, say.

Let w be the angle between the tangent planes; let the perpendiculars upon those planes from A, B be AM = q, BN = q, and from the centre of the quadric p, p ; and let xyz and x'y'z be the points A, B. Then

q = AT sin i sin o, q = BT sin i sin w, /. q : q = AT : BT ...... (i.), z (xx .      . zz , \                , (xx . y'y . zz . \

!=? (2+2+2—1) (5628); I =P (2+2 +12—1),

therefore                        q : q = p : p................................. (ii.). Again, let d, d' be the semi-diameters parallel to AT and BT. Then, by (5677), AT : BT = d : d'; therefore p' : p = d : d' or pd =p'd'; that is, pd is constant.

5843 If a line of curvature be plane, that plane makes a constant angle with the tangent plane to the surface.

Proof.—Let PQ, QR, RS be equal consecutive elements of the line of curvature. The consecutive normals to the surface bisect PQ, and QR and meet in a point. Therefore they are equally inclined to the plane PQR. Similarly the second and third normals are equally inclined to the plane QRS, and so on. Hence, if the curve be plane, all the normals are equally inclined to its plane. Hence also the following theorem.

5844 Lancret’’ s Theorem.—The variation in the angle between the tangent plane and the osculating plane of a line of curvature is equal to the angle between consecutive osculating planes.

5845 Cor.—-If a geodesic be either a line of curvature or a plane curve, it is both, but a plane line of curvature, as in (5839), is not necessarily a geodesic.

GEODESIG CURVATURE.

Theorem.—The square of the curvature at any point of a curve traced on a surface is equal to the sum of the squares of the normal and geodesic curvatures (5776), or

5846        1=1+1 where o’ is the radius of curvature of the normal section and p" the radius of geodesic curvature. Also, if $ be the angle between the plane of normal section and the osculating plane, 5847            p = p" sin $ = p cos $.

Proof.—Let PQ, = QR (Fig. 187) be consecutive elements of any curve traced on a surface. Produce PQ, to S, making Q,S = PQ. Let Q,T = PQ be the consecutive elements of the section of the surface drawn through PQS and the normal at Q. Join RS, ST, TR. PQSR is the osculating plane of the curve PQR. PQST is the plane of normal section, and therefore PQT is a geodesic. QRT is the tangent plane, and STR is a right angle.

Then, putting SQR = dy, SQT = di’, RQT = d^1") DST = #, we have p' = ^’ p” =,           (5776)

-           P ds.d^" RT . , Therefore            = ——— = —7 = sin d.

p ds. dy RS

Also           T = ds • di‘ = ST = cos 4, as in (5809).

p ds .dip SR Thus both theorems are proved. Note that p' is the radius of curvature of the geodesic PQT, while p" is the radius of geodesic curvature of PQR.

RADIUS OF TORSION OF A GEODESIC.

5848 If 0 be the angle between the geodesic and one of the lines of curvature; 01, p2 the principal radii of normal curvature, and o the radius of torsion,

— = (---sin 0 cos U. o \pl Pi /

	
	
Proof.— (Fig. 182.) Let OP = ds be the geodesic, OA, OB the lines of curvature, and 6 = ACP. The angle of torsion dr measures the rotation of the normal to the surface round OP = ds. But this angle is equal to the sum of the rotations of the normal round OA and OB resolved along ds. For, in travelling along each of the lines CN and NP, which are in the directions of the lines of curvature, the normal rotates only about the other. Therefore, if 01, 0, be the rotations round OA, 0B, dr = ®1 cos 6+ 02 sin 0. — ,         ds sin 6 ds cos 6       1 dr    (1    1\._ p





02              P1            o ds \P1 pN

5849 The product pd has the same value for all geodesics which touch the same line of curvature.

Proof.—By theorems (5836) and (5842), since the product where they touch it must be the same as that for the line of curvature.

5850 The product pd has the same value for all geodesics drawn through any umbilicus on a conicoid.

Proof.—The semi-diameter d, in this case, is the radius of a circular section, and therefore equal to the mean semi-axis b for all the geodesics; andp is the same for all.

5851 The geodesics drawn through any point on a conicoid to two umbilici make equal angles with either line of curvature through the point.

Proof.— pd is the same for each geodesic, by the last, and p is the same for each ; therefore d is the same, that is, the diameters parallel to the two geodesics at the point are equal; therefore they are equally inclined to each axis of their section ; but these axes are parallel to the lines of curvature (5803) ; therefore, &c.

5852 Hence the geodesics joining any point to two opposite umbilici lying on the same diameter are continuations of each other.

5853 The sum of the distances of any point on a line of curvature from two interior umbilici is constant; and the difference of the distances from one interior and one exterior umbilicus is constant.

Proof.—Geometrically, as in the analogous theorem for the focal distances in a conic, if r, / are the distances and rpdr, r' + dr' the distances fora consecutive point on the line of curvature, it follows from (5851) that dr = —dr' for interior umbilici and dr = dr' for exterior ones.

5854 A system of lines of curvature and the umbilici on a quadric surface has therefore analogous properties with a system of confocal conics and their foci in a plane, the geodesics corresponding to straight lines.

5855 In the same way, every surface has a geodesic geometry proper to itself; spherical trigonometry, for instance, being the geodesic geometry of the sphere.

INVARIANTS.

INVARIANTS OF A SINGLE FUNCTION.

5856 The constancy of the ratio R2 : p in equation (5798) gives rise to the following invariant forms. Since the quadric surface I and the tangent plane II are the same for all positions of the coordinate axes, they have been called respectively the invariable quadric and the invariable plane. As a consequence,

5857             #:+#+#: is an invariant of $ (a, y, z).

Proof.— By (5791), since the perpendicular from the origin upon the invariable plane is constant. Also, the coefficients of the discriminating cubic (5693) of the invariable quadric will not be altered by transformation of axes. Therefore the following are also invariant forms :—

5858 Q2+$+$223

5859 Q2y $2= + $2= $2 + $2 ^y — ^yz (2. (&y, 5860 $2. ^Zy $2= + ^^yz Pa ^xy Q2 ^yz ^iy ^zx • $2 ^xy •

5861 A similar theorem applied to a function $ (2, y) of two variables gives the invariable conic and invariable line ; namely,

§‘o.+25yc.+n‘z, = 1 and s.+nc. = 1;

and from these the invariants,

5863       $:++#;, $.+$.„, ^xK—^ 5866          ^y—y^., ad,+yc..

Proof.—The last two invariants are obtained from the cosine of the angle between the invariable line (5862) and the fixed line yE,—an = 0, joining the point xy with the origin, or the fixed line ab+yn = 0.

INVARIANTS OF TWO FUNCTIONS.

5868 An invariant of the two functions $ (x, y), 1 (x, y) is

$.1+,

Proof. — Form the cosine of the angle between the invariable lines &9a+no, = 1 and Eya+ny, = 1, observing (5863).

Also the two following expressions are invariants,


5869

5870



H2y‘2,— 2W2y 2.yVey> $2,12+$2,12, + 24.1..

Proof.—From the invariable conics (5861) of p and y, we get

(92+AJ.) 8+2 (p.„+X.,) 6+(9.,+N4,) »2 invariable for any value of X. Hence the coefficients of the several powers of X in the invariant

(92 + Xi/2) (92 + Xupay) (P=y +Xus) are also invariants. This gives (5869). Subtracting the latter from the invariant ($2=+@2y) (12+12) produces (5870).

INTEGRALS FOR VOLUMES AND SURFACES.

5871 If V be the volume included between the surface z = p (a, y^ three rectangular coordinate planes, the cylindrical surface y = 1 (x), and the plane a — a, Fig. of (1906)


5872



V = sss dxdydz = J J zdxdy.

For the limits and demonstration, see (1906).

5874 The area of the surface $ (a, J, 2) = 0 or z =f (a, y) will be


((v($+#i+92)




dxdy or S




=syv(1 +:+*) dady.



PROOF.—The area of the element whose projection is dxdy will be dxdij secy, where y is its inclination to the plane of xy, and therefore the angle between the normal and the z axis. Therefore

secy = (.-o?,-#)+$, = •(1+2+2), by (1708).

5875 Let the equation of a surface APB (Fig. 188) in polar coordinates be 7 =f(^, $), and let V he the volume of the sector contained by the planes AOB, AOP, including an angle $ = PHC, the given surface APB, and the portion OPB of the surface of a right cone whose vertex is 0, axis OA, and semi-vertical angle 6 = AOB or AOP; then

	
V = } s s ,3 sin ededo.



0000

PROOF.—Through P, any point on the surface, describe a spherical surface PCD, with centre 0 and radius r = OP. The volume of the elemental pyramid, vertex 0, base Pe, = }r .Pf .Pg = }r .rdO .r sin Odo. Here the error of the small portions, like PE, ultimately disappears in the summation, since the volume of PE, being equal to ^dr.rdd .r sin 0<L<p, is of the third order of small quantities ; and so in similar instances.

5876 The area of the same surface APB (Fig. 188) is

	
s = ( ( r • {(,2+72) sin? 0+13} ded#. •0 Jo



PROOF.—Let the perpendicular from 0 upon the tangent plane at P to the given surface be ON = p. The element of

area PE = area Pe. OP = rdd.r sin 6 dcb. 7 = 2 sin 6 dOd(b.

ON           p p Substitute the value of p in (5793).

SURFACE OF REVOLUTION.

If y =f(x) (Fig. 90) be the generating curve, and the a axis the axis of revolution, V the volume, and S the surface included between the planes x = a, x = b;


5877




°b

Try^da}, a



s = ( 2iry (1 A-yl} da.

	
• a



Proof.—The volume of the elemental cylinder of radius y and height dx is Tty^dx. The element of the surface of revolution is

‘iiryds = 2irysxdx = 2iry v(1 Py^A da.            (5113)

(Foldin's Fules.—When the generating curve of a surface of revolution is a closed curve, and does not cut the axis of revolution, a solid annulus, or ring, is formed.

5879 RULE I.—The volume of the solid ring is egual to the area of the generating curve multiplied by the circumference of the circle described by the centroid * of the area.

5880 RULE II. — The surface of the ring is egual to the perimeter of the generating curve multiplied by the circumference described by the centroid of the perimeter.

PROOF.—Let A be the area of the closed curve, and dA any element of A at a distance y from the axis of revolution. The volume generated

= J 2rty dA = 2i J y dA = ^y A, by the definition of the centroid (5885), y being its distance from the axis. Similarly, if P be the perimeter, writing P instead of A.

Quadrature of surfaces bounded by lines of constant gradient.

5881 Defining the curve (y) as the locus of a point on the given surface at which the normal has the constant inclination y to the z axis; let F () be the projection of the area bounded by the curve (y) upon the xy plane; then the area itself will be found from the formula,


S=



Y

secjF^dy.

0

PROOF.—The element of area between two consecutive curves () and (y+dy) projected on the xy plane will be dF (y) = Ffy) dy; and, since the slope is the same throughout the curve (y), this projected element must be equal to the corresponding element of the surface multiplied by cos y.

5882 RULE. — Fguate coefficients of the eguation of the tangent plane with those of 1&+mn+nZ = p, and eliminate 1 and mfrom 12+m2+n2 = 1. The result will be an eguation in x, y and n = cos y, representing the projection of the curve (y) upon the xy plane. From this F (y) must be found.

5883 Ex. — Taking the elliptic paraboloid


22+3 = 22 ; the tangent a b



plane at xyz is 4+7 - = z l+mn+n, = p, and substituting for I and m in I' + m^ + n' = 1, we obtain for the projection on the xy plane, -2 42 = tan2y. The area of this ellipse


Equating coefficients of the last with



is F (Y) = rab tan2y, and therefore F\y) = ^ab tan y sec2. Consequently, by (5881), S = 2rab I tan y sec3 ydy = grab (secy-1).

Jo

CENTRE OF MASS.

5884 Definitions.—The moment of a body with respect to a plane is the sum of the products of each element of mass of the body and the distance of the element from the plane.

5885 The distance (denoted by a) of the centre of mass * from the same plane is equal to the moment of the body divided by its mass.

5886 Note.—If the body be of uniform density, as is supposed to be the case in all the following examples, assume unity for the density, and read volume instead of mass in the above definitions.

The definition gives the following formulae for the position of the centre of mass of a uniform body :

5887 For a plane curve,

	
	
- _ Lads _ §as/(1+»2) da _ §r cos@.(r+r)de ids ^(1+^d^     §(r4+r2) de





For y, change a into y and cos 6 into sin 6 ; but observe that in all cases, if the body be symmetrical about the axis of a, y vanishes. The formula gives the centre of volume of the portion of the curve included between the limits of integration.

For a plane area,


5890



- _ S3 wdxdy J xydx fdivdy fydoc

The area is bounded by the curve, the a axis, and the ordinates a = a, w = b, if such be the limits of integration.

For a plane sectorial area bounded by two radii SP = r, SP' = P (Fig. 28) and the curve r = F (0) ;


5892



__SSr2 cos OdGdr 3Srcosede

^rdOdr       ^r^dG

-SSr2 sin Odedr 3.73 sin Ode

3 ^rdOdr       ^r^dd

The second forms for a and y give the centroid of an area like SPP' (Fig. 28). The double integrals applied to that figure require the limits of the integration for r to be from 0 to F^d), and afterwards for 6, from 6, = ASP to 6, = ASP'. But, if applied to the area in (Fig. 109), the order of integration must be reversed, as explained in (5209).

For a surface of revolution round the x axis,

5896 - = S ay y/^^y^ dx _ S 78 sin 0 cos@ (r+r£) de

Jy •(1+y:) doc Jr sin 6 •(y3+r;) dQ

Proof.—By (5885), for the moment = j x.^mjds and the area = J ^iryds ; the second form by (5116). If a = a, x = b are the limits of integration, the surface is bounded by the parallel planes x = a, x = b ; and in the second form, the corresponding values of 6 are the limits defining the same parallel planes.

For any surface,

5898        -=Sav(1+z:+z) dady.        (5874)

SS •(1+%+%) dxdy

For a solid of revolution round the x axis,


5899



- _ J tjcy^dx SS 73 sin 0 c^OdG dr "Jyda = .----


SS72 sin OdG dr



Proof. — By (5885), for the moment =J«.J‘ds and the volume =-y’dz. The limits as in (5896).

5901 For any solid figure bounded as described in (5871), the coordinates of the centroid are given by

Va = dadydz = ssxzdxdy,

Vy = SSydadydz = Syzdady,

Vz = SS) zdxdydz = LSzdady,


where




V= § s dxdydz = ^zdxdy,



as in (5872-3), and the limits are as defined in (1906).

5902 For the zoedge shaped solid (OAPB, Fig. 188) defined by the polar coordinates r, 6, 4, as in (5875),

Va =4lr sin2 0 cos dedo.


V =1ss




74 sin2 6 sin $de d^>,



Vz = 4 I 74 sin 6 cos OdOd^,


where




V = }SS7 sin eded.



PROOF.—By (5875); multiplying the elementary pyramid 3r3 sin OdOdp separately by the distances of its centroid from the coordinate planes; viz., qr sin 6 cos $, 4 r sin 6 sin $, and fr cos 6.

MOMENTS AND PRODUCTS OF INERTIA.

5903 Definitions.—The moment of inertia of a body about a given right line or axis is the sum of the products of each element of mass and the square of its distance from the line.

5904 The square of the radius of gyration of the body about the given line is equal to the moment of inertia of the body divided by its mass.

5905 The moment of inertia of a body with respect to a plane or point is the sum of the products of each element of mass and the square of its distance from the plane or point.

5906 The product of inertia of a body with respect to two rectangular coordinate planes is the sum of the products of each element of mass and its distances from the two planes.

5907 Let A, B, C be the moments of inertia of a body about three rectangular axes ; A', B', O' the moments of inertia with respect to the three planes of yz, zx, and xy; and

F, G, H the products of inertia with respect to the second and third planes, the third and first, and the first and second respectively. F, G, H are more frequently called the products of inertia about the axes of yz, za, and xy respectively.

By the definitions we have the values


	
5908 A = Em (y‘+22), B = Em (=3+42), C = Em (a®+y‘),

5914 A‘= Ema‘= S-A^ B' = Emy? = S-B -C' = Ema = S-C)
	
F = ^myz,

G = ^mz^, H = ^mxy.

where s = A+B+C

= Em (a?+y‘+2), — ^mF.




5920 Theorem I.—The M. I. of a lamina about an axis perpendicular to its plane is equal to the sum of the two M. I. about any two axes in its plane drawn through the foot of the perpendicular axis and at right angles to each other.

PROOr.—By the definition (5903), and Euc. i. 47.

5921 Theorem II.—The M. I. of a body about a given axis, plane, or point is equal to the M. I. about a parallel axis or plane through the centroid, or about the centroid itself respectively, plus the M. I. of the whole mass, supposed collected at the centroid, about the given axis, plane, or point.

PROOF.—In the figure, p. 168, let the given axis be perpendicular to the paper at B; let A be the centroid, and m an element of mass at C; then, for every thin section of the solid parallel to the paper,

M.I. = Sm.BC= =m(AC+AB—2AB.AD) = Em.A02+Em. AB2-2 AB. Im. AD.

But 2m. AD = 0, by (5885), since A is the centroid of the body, which proves the proposition. Similarly for the plane or point.

Cor. I.—Hence, if the M. I. about any axis is known, that about any parallel axis can be found without integration. For, let I be the M. I. about a given axis, whose distance from the centroid is a, and let 12 be the required M. I. about an axis whose distance from the centroid is b; then, by Theorem

IL,                I, = I,- m (a?—b2).

Cor. II.—The M. I. has the same value for all parallel axes at the same distance from the centroid.

5922 Theorem III.—The product of inertia for two assigned axes is equal to the product for two parallel axes through the centroid of the body plus the product taken for the whole mass collected at the centroid with respect to the assigned axes.

Proof.—Let 2 = c+a‘, y = 7 +y‘ be the coordinates of an element of the body with respect to the assigned axes; c, y being the coordinates of the centroid, and a’, y' the coordinates of the same element with respect to parallel axes through the centroid, all axes being parallel to z. Then

^mxy = Zm(z+a‘)(g+y‘) = cyZm+Zma’y’+zZmy’+yEma’ = TyZm+Ema’y’.

Since ^mx' and ^my' vanish by the definition of the centroid.

5923 The M. I. of a body with respect to a point is equal to the M. I. for any plane through the point plus the M. I. about the normal to the plane through the point.

Proof.—For the origin and yz plane,

Sma? + Am (y2 + 22) = ^mr2.         (5908, ‘14, T9) 5924 Given the moments and products of inertia, A, B, C, F, G, H, as above, about three rectangular axes, the moment of inertia of the body about a line through the origin, whose direction cosines are I, m, n, will be

I = ATA-Bm2A~Cn2-2FmnA-2Gnl+2Hlm.

Proof.—(Fig. 11.) Let xyz be a point P of the body, OM the line Imn, and PM the perpendicular upon it. Then the M. I. about OM

= Em (OP2- OM^ = Sm{(+y+23)(l?+m?+n?)—(lz+my+nz)"} (5530) producing the above result, by (5908-13).

ELLIPSOIDS OF INERTIA.

5925 The equation of the Momental Ellipsoid is

Aa?+By‘+Cz- 2Fyz—2Gz- 2Hxy = Me, obtained by putting IF = Me. M being the mass of the body, and e* a constant to make the equation homogeneous. Hence the square of the radius of the momental ellipsoid for any point varies inversely as the moment of inertia of the body about that radius.

5926 If the products of inertia vanish, the axes are called the principal axes of the body.

5927 At every point of a body there are always three principal rectangular axes.

PROOF.—These are evidently the principal axes of the momental ellipsoid of the point; for if the coordinate axes be made to coincide with the former, F, G, H will vanish.

5928 The equation of the momental ellipsoid referred to its principal axes will be

Aa‘+By‘+C= = Me.

5929 The moment of inertia about a line imn will now be

I= Al^Bm^Cn\

THE ELLIPSOID OF GYRATION.

5930 The equation of the Ellipsoid of Gyration referred to principal axes is

a2 _32_2_ 1

It is the reciprocal surface of the momental ellipsoid (5719), and its property is—

5931 The moment of inertia about the perpendicular from the origin upon the tangent plane varies as the square of the perpendicular.

5932 For any other rectangular axes through the point, the equation of the ellipsoid of gyration is, by (5717),


A -H —G

-H B -F — G -F G

x y % reciprocation = 1.



= 0, being the reciprocal surface of the momental ellipsoid,

(A B, C, -F, -G, — HYay2)2

=M,


2

y z

i M



with the radius of the sphere of The equation when expanded becomes


5933




(BC-F*} a2+ ... +2 (FG+ CH) xy =




1

M°



LEGENDRE’S EQUI-MOMENTAL ELLIPSOID.

5934 The equation is

a2 । y2 । 2825

A’TBTCPM’ with the values in (5914).

5935 The mass of this ellipsoid is taken equal to that of the body, and it has the same principal moments of inertia.

THE MOMENTAL ELLIPSOID FOR A PLANE.

5936 If A', B', O' be the moments of inertia for the three coordinate planes, as in (5914), the M. I. for a plane through the origin whose dir. cos. are l, m, n, will be

B = A'l2-\-B'm2+C'n2+2Fmn+2Gnl+2Hlm.

Proof : I' = ^m (lz+ my + nz)2 = Sma2.72 + &c. = A'L + &c.

5937 The momental ellipsoid for this plane will be

A‘a?+B‘y‘+C2+2Fy:+2G=x+2Hay = Me,

and its property is—

5938 The M. I. for any plane passing through the centre of the ellipsoid is equal to the inverse square of the radius perpendicular to the plane.

5939 If r be a radius of this ellipsoid, and a, b, c its semiaxes, the M. I. about r

111 1

~d2+b2^c2  r2'

Proof.—(Fig. 11.) M. I. about 7, plus M. I. for the plane OM perpendicular to r

= ^mOD2 = Sma? + ^my2 + SM22 =l+1+1, by (5938).

Cl 0 C

EQUI-MOMENTAL CONE.

5940 The equation of the equi-momental cone at any point of a body, referred to principal axes of the body at the point,

is       ^A-I)^-\-(B-I)if-^(€-1)^=0,

its property being that

5941 The generating line passes through the given point, and moves so that the M. I. about it is a constant = I. •

PROOF.—Let Imn be the generating line in one position, then

Al2+Bm2 + On2 = I (l?+m?+72). Therefore, &c.

5942 Theorem.—If two systems have the same mass, the same centroid, principal axes and principal moments of inertia at the centroid, they have equal moments of inertia about any right line whatever, and are termed equi-momental. By (5906) and (5929).

5943 If two bodies are equi-momental, their projections are equi-momental.

PROOF.—-If the projection be from the xy plane in the ratio 1 : n, the coordinates x, y, z of a particle become x, y, nz, and the mass m becomes nm. The conditions in (5942) will then be fulfilled.

MOMENT OF INERTIA OF A TRIANGLE.

5944 The M. I. of a triangle ABD (Fig. 190) about a side BD, distant p from the opposite vertex A, is

._mp2

Proof.—Let BD = a and EF = y, I = ( C^T—lUy^dy = ap” = m? 5945 The M. I. of a triangle ABG (Fig. 190) about a straight line BD passing through a vertex B, and distant p and g from the vertices A and C, is

I = „2+vo+a‘

6

Proof.—By (5944), taking difference of M. I. of the triangles ABD, CBE. 5946 The M. I. of a triangle ABG about an axis through its centroid parallel to BD, is

I = „ p?-n+         By (5921)

5947 COR.—If the triangle be isosceles, so that p = q, the last two moments of inertia become


mp2

2




- mp2 and 18 •



5949 The M. I. of the triangle about axes perpendicular to ABC through B and through the centroid, respectively, are 3 (c2—a2)—62 - (a2+62—c2) Loo— m—-—70--- and m -—  -—-.    (5920)

12                    00


5951

190), is



The M. I. about GF of the trapezoid ACGF (Fig.

5952 The moments and products of inertia of a triangle about any axes are the same for three equal particles, each one-third of the mass of the triangle, placed at the mid-points of its sides.

PROOF.—(Fig. 190.) The M. I. of the three particles at the mid-points of AB, BC, CA about BD, any line through a vertex, will be

M § (7+0)2 I

3( 4   44)’ which is equal to that of the triangle, by (5945).

MOMENTAL ELLIPSE.

5953 If a, 3 be the radii of gyration of a plane area to principal axes Ox, Oy, where 0 is the centroid, the equation of the momental ellipse for the point 0 will be

a?a?+B‘y? = 2a38".

5954 Also the area is equi-momental with three equal particles, each one one-third of its mass placed anywhere on the ellipse so that 0 may be their centroid.

Proof.—Let xy, x'y', x"y" be the coordinates of three equi-momental particles : then

7 (*+2"+«") = ms; (y8+y?+y”) = ma; cy+x‘y‘+a”y” =0; and the two systems have the same centroid; therefore

x + a’ + a"’ = 0 and y'+y”Ay"' = 0.

Eliminating x, y', a", y" between the five equations, we find the equation of (5953) for the locus of xy.

5955 The momental ellipse for the centroid of a triangle is the inscribed ellipse touching the sides at their mid-points.

PROOF.—(Fig. 189.) The inscribed ellipse, which touches two sides at their mid-points, also touches the third side at its mid-point, by Carnot’s theorem (4779). Now DF is parallel to AC, the tangent at E ; therefore BE, which bisects DF, passes through the centre 0 of the ellipse. Similarly, AE passes through it; therefore 0 is the centroid of the triangle.

Let OE = a, and let b' be the semi-diameter parallel to AC; then ON2 + EN2 = 1. But ON = ~, therefore FN2 = 36/2. The M. I. about a 2b"               2    <262

OE, by (5954), =3mab"sin‘® = 72,2, where a, b are the semi-axes. Hence the M. I. about OD, OE, OF varies inversely as the squares of those lines, and therefore the ellipse in the diagram is a momental ellipse, since it has six points which fulfil the requirements.

5956 The projections of a plane area and its momental ellipse form another plane area and its momental ellipse. (5943)

5957 The M. I. of a tetrahedron AB CD about any plane through A is

7 (a?+8*+y‘+8y+ya+a8),

where a, 3, y are the perpendiculars on the plane from B, 0, D. 5958 The tetrahedron is also equi-momental with four particles, each one - twentieth of the mass, placed at the vertices, and a particle equal to the remaining mass placed at the centroid (5942).

5959 The equi-momental ellipsoid of a tetrahedron has the same centroid, and touches each edge at its middle point.

PROOF. — By projecting a regular tetrahedron and its equi-momental sphere (for the centroid) of radius = 13 X radius of inscribed sphere.

5960 To find the point, if it exists, in a given right line at which the line is a principal axis, and to find the other principal axes at the point.

Let 0 be a datum point in the line. Take this for origin, the given line for axis of z, and OX, OY for the other axes. Then, if h be the distance from 0 to the required point O', and 0 the angle between OX and the principal axis 0'X',

5961 I=X :—y— — 3-- and tan 20 — _--„

—my 4m0 where A, B, H are the moments and product of inertia about OX, OY.

PROOF. — At the point 0, 0, h, Zm (z—h) a — Zm (z—h) y = 0, from which h is found; and the equation for 6 is that for determining the principal axes of the elliptic section of the momental ellipsoid, whose equation is Ax2 + 2Hxy + By2 = Met, as in (4408).

5964 The equality of the two ratios in (5961) is the condition that the z axis should be a principal axis at some point of its length.

5965 If an axis be a principal axis at more than one point of its length, it passes through the centroid of the system; and, conversely, if it be a principal axis at the centroid, it is so at every point of its length.

PROOF.—For it must be indeterminate in (5961). Therefore Smyz = 0, ^my = 0, ^mzx = 0, Zma = 0.

5966 The principal axes 0'X', O'Y' are parallel to the principal axes of the projection of the body in the original plane of xy. By (5962-3).

5967 Given the principal axes of a body at its centroid, to find the principal axes and moments of inertia at any point in the principal plane of xy.

Let C in the Figure of (1171) be the centroid, CX, CY principal axes, A, B the M. I. about them, and P the given point. Find two points 8, 8', called foci of inertia, such that the X and Y moments of inertia there are equal, and therefore

BYm.C8^ = A-, giving 08 = 08'==^~——... (i.).

The internal and external bisectors of the angle 8P8' will be two of the principal axes at P, and the third will be the normal to the plane.

PROOF.—The X and Y principal moments being equal at S, the moment about every line through S in this plane is the same. [For I = Al2I-Em2 + On2 and n = 0 and A = E, therefore I = A.] Therefore the moments about SP and S'P are equal. Therefore the bisectors PT, PG of the angles at P will be principal axes.

5968 Let SY, S'Y' be the perpendiculars on PT, and SZ, S'Z' those upon PG; then the M. I. about PT and PG will be respectively,

A+mSY.S’Y' = B+m(^PfAII.

A          , fSP-S'PV

A —mSZ. S Z — B-m (-------I.

PROOF.—Draw GR perpendicular to S Y. The M. I. about OR (0 = SGR)

= A cos?6+B sin2 0 (5929) = A-(A-B) sin2 0

= A—m GS2 sin2 0 (by i.) = A—mSR2.

Therefore M. I. about PT = A-mSR2+ mRY2 (5921)

= A+m(RY+SRYRY-SR) = A+mSY.S'Y'

= A+mBC (1178) = BAmAG2 (by i.) = B + m (SP+SR).

Similarly for the M. I. about PG.

5969 Hence, if an ellipse or hyperbola be described with S, S' for foci, the tangent and normal at any point of the curve are principal axes, and the M. I. about either is constant for that curve.

5970 Similarly, for a point P in any plane through the centroid 0, it may be shown that the same construction will give the axes PT, PG about which the product of inertia vanishes, OX, OY being the axes at 0 in the given plane about which the product of inertia vanishes.

5971 The condition for the existence of a point in a body at which the M. I. about every axis through it shall be the same, is—

There must be hvo principal axes of ec[ual moment at the centroid, and the M. I. about each must be less than the third principal moment.

Two such points will then exist situated on the axis of unequal moment, and equi-distant from the centroid.

5972 Given the principal axes at the centroid of a body and the moments of inertia about them, to find the principal axes and moments at any other point.

[See (5975) for the result.]

Let A, B, 0 be the given principal moments, and let the mass of the body be unity. Then the ellipsoid of gyration at the centroid 0, and a quadric confocal with it, will be

222._1 and a? ■ »? |

A +B + C E A-*B+c+= "

5973 PROP. I.—The M. I. is constant for all tangent planes of the confocal, and is equal to the

M. I. for the origin 0 +X = S+X. (5919)

PROOF.—Let l, m, n be the dir. cos. of the tangent plane of the confocal, p the perpendicular on the plane from 0. The M. I. for this plane

= M. I. for a parallel plane through 0+p2 (5921)

= AT+B'm^+C'^+p2 (5936)

= {S-A}l2+{S-B} m2 + (S-C) n2+{A + X)l2 + (B + X)m2+^C + \)n2 (5914, 5631) = S+X, which is independent of I, m, n.

5974 PROP. II.—All these planes are principal planes at their points of contact, and if the three confocals be drawn through any point P, the tangent planes at P to the confocal ellipsoid, two-fold hyperboloid, and one-fold hyperboloid, are respectively the principal planes of greatest, least, and mean moments of inertia. The normal to the confocal ellipsoid is the axis of least moment, and the normal to the two-fold hyperboloid is the axis of greatest moment.

PROOF.-—-Draw any other plane through P. The perpendicular on it from 0 is less than the perpendicular on the parallel tangent plane to the confocal ellipse, and greater in the case of the two-fold hyperbola. Then, by (5921).

The solution of the problem at (5972) is now given by Proposition III.

5975 Prop. III.—The principal moments of inertia at P are OP^—X^, OP2—X2, OP2—X3, and the normals to the three confocals at P are the principal axes.

PROOF.—The M. I. about the a axis at P

= M. I. for the origin P— M. I. for the yz plane

= S+0P2—(S+X) = OP-X, (5921-73).

5976 The principal moments of inertia above, expressed in terms of Xx of the confocal ellipsoid and d2, d3, its principal semi-diameters conjugate to OP, will, by (5661), become

OP^-K, OP^-K+dl, OP^^+dl.

5977 The condition that the line abc, Imn, referred to principal axes at the centroid, may itself be a principal axis at some point of its length, is

a   b    b    c    c   a

I   m _ m   n _ n   I _ 1

A—B - B—C ~ C-A T

Here abc is any point on the line, and if a confocal quadric of the ellipsoid of gyration at the centroid be drawn through the stated principal point of the given line, p is the perpendicular from the origin upon the tangent plane of the confocal at that point.

Eliminate a, y, z from (i.) by means of (iii.), and from the resulting equations eliminate p, and the condition above is obtained.

Also, by (5631),

p2 = (A + X) 72 + (B + X) m2 + (C + 2) n2 = A 7 + Bm2 + On2 + X ... (iv.).

The principal point xyz is now found by eliminating X and p from equations (iii.), by means of (iv.) and (5977).

INTEGRALS FOR MOMENTS OF INERTIA.

By the definition (5903), the following indefinite integrals for moments of inertia are obtained :—

5978 For a plane curve, y =f (x), the M. I. about the a and y coordinate axes are

yds and jads; and therefore(x2+y2) ds = yds

5 N

is the M. I. about an axis perpendicular to both the former through the origin (5920).

5980 Observe that ds may be changed into dx, dy, or dO by the substitution formulas (5113, ’16).

5981 For a plane area bounded by the coordinate axes, the ordinate y and the curve y = f(x), the M. I. about the x and y axes are


Sy'dady = } sy'da




and




J ar dxdy — s apy dx.



5983 And the M. I. about an axis perpendicular to both the former drawn through the origin,

=SS(a+y) ^a^y = SSrdrde =}


r^dO,



but in the last two integrals the area has the boundaries described in (5894).

5986 The M. I. of a solid bounded by three rectangular coordinate planes and the surface z =f(x, y) about the z axis, will be

ss (a*+y) zdxdy = SSJ r4 sin3 edrdeds,

but in the last integral the solid is bounded as described in (5875).

5988 The volume, which represents the mass in all these cases, has already been expressed (5205, 5871) ; and by dividing by the volume, the square of the radius of gyration of the solid is found (5904).

Proofs.— Formula (5981-3) are directly obtainable by geometry from figures 90 and 91, and formula (5986-7) from figures 168 and 188. The transition to polar coordinates may also be effected by the formula of (2774).

5989 In expressing moments of inertia, the factor m will stand for the mass of the body, and the remaining factor will therefore be the value of the square of the radius of gyration.

PERIMETERS, AREAS, VOLUMES, CENTRES OF MASS, AND MOMENTS OF INERTIA OF VARIOUS FIGURES.

RECTANGULAR LAMINA AND RIGHT SOLID.1

For a rectangle whose sides are a, b, the moments of inertia about the sides, and an axis perpendicular to both where they meet, are respectively

. •              62 a? a?+-b2 6015         m—, m—, b Proof :            a^dx — — = m ~. The third by (5920). Jo 3

6018 Hence, for a right solid, whose dimensions are 2a, 2b, 2c,

02-62

M. I. about the axis of figure 2c = m. —I—.

ARC OF A CIRCLE.

6019 Let AB (Fig. 191) be the arc of a circle whose centre is 0 and radius r. Let the angle AOB = 0 ; then

Length of arc AB = rd.              (601)

6020 Huygens’ Approximation.—Rule.—From 8 times the chord of half the arc take the chord of the whole arc, and divide the remainder by 3.


Proof.—The rule gives




6 o • 0 \ 3 (16 sin 4—2 sin 2)



Expand the sines by (764) as far as 68, and the result is rd. 6021 Taking an axis OX through the mid-point of the arc with origin O, the centroid of the arc is given by (5889)

-   2rsin}0  —    .

a — -- - Hence tor a semi-circle a = —.

0                                      7

6023 Also, for the centroid of BX, y = 2r sin 30,

C where a = / XOB.

6025 The M. I. of the arc AB about OX and OY are mr2^ sin 0\    - mri\ . sin 6\       _. 2(1-7e) and 2(1+1g) (5978)

6027 M. I. about axes perpendicular to XO Y, through O and X the mid-point of the arc respectively, are mr2 and m.272(1—sin 2).         (59 79)

20/

6029 Cor.—The XL. I. of a) _mr2

circular ring about a diameter )2


SECTOR OF CIRCLE.




AOB (Fig. 191)



ano- a 720   — 4r sin 30 — - - 4rsin2Ja

6030 Area =-o, a = —. For XOB,y=--.

A           ou                     C

Proof.—x, y are respectively 3 of x, y in (6021, ’3) ; since the centroid of each elemental sector is distant 3r from 0. Otherwise, by (5893, ’5).

6033 The M. I. about OX and OY are


mr2

4




sin 6\

0)




and




mr2 (1 i sin 6 4100



Proof.—By (5981—2) ; or integrate (6025-6) for r from 0 to r.

SEGMENT OF CIRCLE. ABX (Fig. 191) 6035 Area = 2 (6-sin e),   #=s(e"3in6y

6037 For GBX, y = 7(2—3 cos a+cos3a) o (a—sin a cos a)

Proofs.—From the sector and triangle ; otherwise, the centroid, by (5893, ’5).

6038 M. I- about OX and OY,                    (5981-2)

4                                                            4

— (30 — 4 sin 6+sin 0 cos 6) and 1(0 — sin 0 cos 0).

24                                  8

47°

6040 COR.—Hence, for a semi-circle, a = ——.

6041 Also, the M. I. of a circle about a diameter, and about a central axis perpendicular to its plane, are respectively

— and —.             (5920)

THE RIGHT CONE.

If h be the height, r the radius of the base, and I the slant, 6043 Curved surface = vrl. Volume = ^irr^h. 6045 Distance o£ centroid from vertex = JA.

6046 M. I. about axis of figure = m 1or2.

6047 M. I. about cross axes through the vertex and centroid respectively.

1

 For M. I. of a triangle, see (5944-52).


m2% (r+ 4h8) and m 3% (472 + h?) •

FRUSTUM OF CYLINDER.

Let 0 be the inclination of the cutting plane to the base, and c the length of the axis intercepted.

6048 The distance of the centroid from the axis is

	
- a1 tan 6



x — —---.

4c

6049 The M. I. about the axis = m —, being the same as that of a cylinder of height c. Hence, by (5921) and the value of a above, the M. I. about any line parallel to the axis can be found.

SEGMENT OF SPHERICAL SURFACE. (Fig. 191)

Let 0 be the origin of coordinates; OA = r the radius; and 00 = a the abscissa of AB the plane of section.

6050 The curved area of AB = 2mr (r—x) = the area of its projection on the enveloping cylinder of the sphere.

PROOF :          Area = 2ry ” dx = 2Tr (r—x).


(5878)



J ® y

6051 For centroid of surface, a = 3 (r+x).

6052 The M. I. about the axes OX, OY are


—- (2r2—ra — 22) 0




and




m (472—70—22). O



HEMISPHERICAL SURFACE.

6054 Area = 2my2, a = 3.                   (6050-1)

6056 M. I. about OX or OY = m 372.            (6052-3)

SEGMENT OF SPHERE.

6057 Volume = 7 (2,+4)(,—2)2, a = 3(r—a)2.

6059 M. I. about OX = " (r—^vf (87?+-970+308).

6060 AT. I. about OY

= T (,—2)2(16,3—17,3218722+943).

PROOF.—As in (6146-7) ; or put a—b = c in the results.

HEMISPHERE.


6061




Volume = 3mr3,




3,.

8‘ ‘




(6064)



Proof.—Vol. = surface (6054) X 3, by elemental pyramids having their common vertex at the centre of the sphere. Otherwise, make & = 0 in (6057).

6063 M. I. about OX or OY = m^r2.


(6059-60)



SECTOR OF SPHERE.

6064 Volume = 3mr2 (r—h),       = 3 (r—h). centroid of each elemental pyramid is distant fths of r from the centre. 6066 For the M. I. add together the M. I. of the cone and segment (6046, ’59).


(6050) x 7.




Proof.—Vol. = surface




z = 2 of x in (6051), since the



THE PARABOLA, y2 = 4mx. (Fig. of 1220) 0072      / Us 6067 Bad. of curv. p = “0— = 2a (1 + - Y.       (4542) 6069 Coordinates of centre of curvature 34+2a, -                 (4545) 6071 ArcAP = s = . (ax +02)+a log va+vla + a). 6072            = a [cot 0 cosec 6+log cot (16)]. Proof:             s = Jv(1+4) do.            (5197, 4206) Substitute vx, and integrate by (1931). 6073 Are AL = a 12+a log (1 +2).

Centroid of arc AP with above value of s. 6074 sz = 21,+1,/(a++4c)+“log 2e+a+2v(ef+aa), 6075 sy = $ {Va (x+a)"- a2}. 6076 For centroid of arc AL, putting a = a, _ 6 7 2 4-^(3 + 2^2)      44    (2 7 2-1) a " 8 {<2+log (1+2)} °   3   3 * 72 +log (1+72)*

Half-segment of parabola ANP.

6078 Area = 3wy, a = 3a, y = zy.

6081 The M. I. about the a and y axes are m fax and m 3a2.

THE ELLIPSE.

6083 The equation being 'b^Pa^if1 = a2b2, the length of the arc AP (Fig. of 1205), putting $ for the eccentric angle of P, is s=a v(1—e2 cos? o) do.

PROOF. — In (ds)2 = (da)2+ (AyT (5113), substitute da =—a sin odd, dy =b cos $d, by (4276), and use (4260).

6084 The length of the elliptic quadrant AB is ma (, e2 Ze4 32.5e6    33.53.7e8    9 ) 2 14  2! 2! 2 3! 3! 26  4! 4! 28

PROOF.—Expand the binomial surd above, and employ (2454) and (2 4 7 2). Similarly, from (5887) and (5978) the three following values are found.

6085 For the centroid of the same quadrant, _ 2a 1—e2—le*       •  , i C=m: 1-e=%e approximately.

6086 The M. I. about the a and y axes are approximately, mb2 1-—e—zze _ ma2 1-8e—zze

2 1—4e—ze4      2 1—4e‘—ze"

6088 Fagnani’s Theorem.—(Fig. 192.) Let P be any point on the ellipse, CY the perpendicular on the tangent at P; Z_ACY=B'S Q the point whose eccentric angle =2r— 0. Then

6089 PY+AP = aivd-e2^^d9 = BQ-, and in the hyperbola (Fig. 193)


6090



PY-AP = as •(I-e sin2^) d6.

6091 Cor. — The difference between the lengths of the infinite curve and asymptote = a v(1 — e2 sin20) de, where , a                                      0 tan a — ——.

b

PROOFS.—By (5203),

AP + PY or s+q=pd@=a. (1—e2 sin20) d@ = BQ, by (6083). Jo            J

In the hyperbola we have q—s = pde.

6092 Draw the tangent at Q and the perpendicular CU upon it. Let a, a be the abscissas of P, Q. The following relations subsist,

2      /

PY=e^_ = QU, CY.CU=ab, CP^+CU^ a^b2. a

PROOF.—Let © = the eccentric angle of P, and let ACU = O'. Then tan 0 W =btan 6.             (4276-80) ox a


Similarly for Q,




therefore



tan ( — — 0) = cot 9 = — tan 6', 2/     a

tan $ = cot O’ or d = - — 0

2

The relation therefore between P and Q is reciprocal. Now PY = Ux sin 9 (4295) and x = a sin 0, therefore PY = =42. = QU, by the reciprocity.

C

Again, CU? = a? cos2 UpU sin2 9' (4372) = a’sin?p+U2 cos?4 ...... (ii.).

Put $ in terms of 9 by the above, and we find

72 _ a2U _ a^U - a2 cos2 S+T^sin^ ~ CY"

Lastly, CP+CU= x^ + y^^sin^ + Ucos^, by (ii), = a-pU (4276-7). 6095 When P coincides with Q, the point is called ‘ ‘ Fagnani’s point,” CY = \/{ab), PY = a—b, and a = a%(a+b)-1.

6096 Griffiths’ TheoremP—H an ellipse of eccentricity e, and a hyperbola of eccentricity e-1, be placed as in the figure of 1205 (the circle representing the ellipse), P, p being considered corresponding points; then, calling PQ, in (6088), a Fagnanian arc, we have the following theorem :—

* J. Griffiths, M.A., Proc. Lond. Math. Soc., Vol. V., p. 95.

5 o

The ratio of the difference of two Fagnanian arcs on the ellipse to the difference of the two corresponding arcs on the hyperbola is equal to the product of e2 and the four abscissas of the points on the ellipse.

SECTOR AND SEGMENT OF ELLIPSE.

6097 The formula for the sector and segment of a circle may be adapted to the ellipse by writing a for r and multiplying linear dimensions parallel to the minor axis by b : a. But a will then represent the eccentric angle of the semi-arc, and 6 twice that angle. Thus, in the figure of (1205), if AGP be the half sector, a = AGp, 0 = 2AGp.

Sector of ellipse (2AGP in fig. of 1205):

5do  a abb  ~ 4a sin 10  -  46 sin2 9 6098 Area = —» a = --902, y = —n—2, (6030-2) 2           ou the last being for the half sector AGP. The M. I. about the x and y axes are

Segment of ellipse (2ANP in same figure) : 6103 Area = “b (e—sin e), *= Aa sinese. (8035-8) 2                3(0—sni

6105 For y of the half segment ANP, and for the M. I. about the x and y axes, replace r by b in (6037-8) and by a in (6039).

6108 For the whole ellipse, the area = nab.         (6103) 6109 For the half ellipse, a = 40.                  (6104) 077

6110 The M. I. about the x and y axes, and a third central axis perpendicular to both,

mb2 ma2 . m(a2A-bi2) — _

—, ——, and ———2.      (6041-2)

4    4            4

6113 The area of the ellipse whose equation is


{a b cfg h^y^)2 = 0, is






Proof.—If a, 3 be the semi-axes of the conic, the area Ta, takes this value, by (4414) and (4407).

6114 Lambert’s Theorem.—The area of a focal sector of an ellipse, as PSP' (Fig. 28), in terms of 4, p‘, the eccentric angles of P, P', is

$ {6—d—e (sinc—sind)} = “‘{x—x-(sinx—sinx)}.


In the second value, sin X and sin % are = 2



r+Yc a respectively, where r = SP, r' = SP', and c = PP',1 a result of use in Astronomy.

THE HYPERBOLA.

6115 The length of an arc of the hyperbola b2x2 — a2y2 = a2b2 and the abscissa of its centroid may be approximated to, as in (6084) for the arc of an ellipse, by the substitutions from (4278),

J ds = a J sec $ • (e2 sec2 4- 1) d and          I ccds = a21 sec3 $ • (e3 sec3 $—1) do.

6117 Landen’s Theorem.—This theorem gives any arc of an hyperbola in terms of the arcs of two ellipses, as follows :

s • (a2+b1+2ab cos C) dC =

J • (a2— b2 sin2 A) dA + § (b — a3 ^LPB) dB+2a sinB + const., that is—Arc of ellipse whose semi-axes are aA-b and a—b = Arc of ellipse whose major axis is 2a and eccentricity b : a — difference between a right line and the arc of an hyperbola whose major axis is b and eccentricity a : bf

6118 Area ANP (Fig. of 1183) bounded by 2, y, and the curve

= b §a./(=a)=a log@+(a2—a2) 2 .  (1931)

6119   = } { ocy—ab log (7 + %) $.                  (4271) 6120 Area of sector between GA, GP and the curve ab (D y\ =2105@a+5)

6121 Area between two ordinates yx, y^, when the asymptotes are the coordinate axes

ab i D, = 9 log—

Proof :       sin 2AC0 2ab. f a‘+62 —.           (4387) J • a+b2 J 4 a• 6122 The centroid of ANP, A being the area (6118), is given by

A = % (—"; A5 = %($—*+ ") •

	
	
6124 The M. I. of ANP about the a and y axes are 2,    (2,7—5m») v-)+" log*- Af-^.





6125 $,(2,—4) V^r-a^ - « log*±vC*—t),

THE ELLIPTIC PARABOLOID.

6126 Equation, — — - = 2%. a b

6127 Pol. of segment = TV (ab) z2,    z = 3%. 6129 M. I. about the axes of x, y, and % respectively, (az . z2\ /bz 22\     a — 6

m(3+2), m(3+2), m“33.

6132 The surface S of the same segment may be found from


S—4




•(202-249)



6133 If the surface of the paraboloid be bounded by a curve of constant gradient y (5881), the area becomes


S = 3mab (secy— 1).




(5883)



THE PARABOLOID OF REVOLUTION.

6134 Equation, a2+y2 = 2az or 2 = 2az.

6136 Surface of segment, S =3ma {(2:+a)—al} . (5880)

6137 Volume = rraz^ = ^r^z, z = 3%.          (5887, ’99)

6140 M. I. about axis of figure = —             (6131)

6141 For M.I. about OX and OY put a = b in (6129-30).

THE ELLIPSOID.

6142 Equation, w+g + —=1, semi-axes a, b, c (5600).

6143 The surface of the segment cut off by the plane whose abscissa is x, will be found from

[image: ]

e « • 0




a^-Vb^ (c2—a2) a2+a4 (c2— b2) y2\2 J J a'b—a'b'a”—a'b'y? -)

Proof.—By (5874) and (5629, ’7), eliminating z by means of the equation of the surface.

6144 The volume of the solid segment and the centroid are


given by




V =" (2a+a)(a—a)®,




— _ 3(a+a)2

4 (2a+a)



Proofs.—Let (Fig. 177) represent one octant of the ellipsoid; OA, OB, OC being the principal semi-axes. The elemental section

41PNQ, = -NP .NQdx = rib • a?—a? — • a?—^dx.

a         a

Therefore Vol. = The "(a—23) dx=^ (203-3a?+43) = &c.

The moment with respect to the plane of yz

7 b C ( , 9          _ mbc , — —- (a’R—X) dx — —9 (a — x a2                 4a2     7 and division by the volume gives c as above. 6146 The M. I. of the solid segment about the axis a = Tbc,b2+€) (a- «) (Ba2+9ax+3«8).

Proof.—(Fig. 177.)

— T (a — — NP2+NQ2 0 mbc (b2+c2) (a, 2        , M. I. = ttNP.NQ.——"—— dx (6112) =  4—- (a^—xydx = &c. 6147 The M. I. about the axis b = mbc, $ C (A- 2)3(802+900+302)+20- 50343+305 2. Proof: M. I. = "NP.NQ (NO + ON2\ da               (5921)

= mbe(a?— x2ydx~I zbc(a2 —a?2) x2dx = &c. 4a Ja            a 6148 The volume of the whole ellipsoid = ^irabc. Proof.—By making a = 0 in (6144).

Otherwise: Let En% be the point on the auxiliary sphere of radius r corresponding to xyz on the ellipsoid. By (5638-9), rx = as, ry = by, rz = cC Thereforedxdydz = ^f f dzdydz = dgc gr".            (6061)

— 3a

6149 For the centroid of the semi-ellipsoid a = “.   (6145)

6150 The M. I. about the axis a = m -——


(6146)



5

6151 The volume of a segment cut off by any plane PNQ, (Fig. 177), where OA = d is the semi-conjugate diameter, and


AN = h, is




v= mabcl"(3dsh)



Proof.—Taking the area of the section from (5655), the volume of the segment will be

rabc sin 6“/  a2\ i .   2

-------- 1--— dx, where sin 0 =

2 Ja dl /                      d

6 being the inclination of d to the cutting plane. Integrate, and put x = d—h.

PROLATE SPHEROID.

Put c = b in equation (6142) of the ellipsoid ; then a will be the semi-axis of revolution.

6152 The surface of the zone between the plane of yz and a parallel plane at a distance a is s=*6 § a sin"1 — 4a, (49—2843) 2 .

( e a a                ) Proof.—By (5878). s =2tbe"V/(& _ «3) dz.

Then by (1933). Otherwise, make b = c in (6143), and reduce. 6153 Cor.—The ichote surface = 2mb (b— — sin-le ). e / 6154 The centroid of the surface of the zone in (6152) is given by _ 2mbe ( a3 / a? 283 3aS 1 es et

Proof.—From    Sic = 2rbea . / (a3 — 22) dx.

a J o V \ e2 /

6155 The M. I. of the same zone is


. _i eoc , 763

sin---- a a




1 a2'

4e2—2a?




av («2—e2a2).



6156 And for the whole surface, by making x = a and doubling,          o        /   1 \

M. I. = mab3 (---) sin-le-mb*( 1 + — ). \ e 2e3/             \    2e2/

Proof : M.I. = 2ir\yA J(l+^\dx = f (c?—4?) /(A3—2) da J V ay/ a J       ye" /

2-b"e r / / a?              2-b3e f 2 11 cd

= a J V b T4) d- J" Venf)dr.

The first integral by (1933). For the second, by Rule VI. 2048, we obtain the formula

615722 /(?- x1) dx = A sin’12 + 22 fa x ./(a?—22), J                     8 a 8 in which — must now be written for a.

6158 For the volume, moment of inertia, and abscissa of centroid of the solid prolate spheroid, make c = b in (6144-51), a being the axis of revolution.

OBLATE SPHEROID.

6159 Put b = a in the equation (6142) of the ellipsoid; then c will be the semi-axis of revolution.

The surface of the zone between the plane of ay and a parallel plane at a distance 2, is

c ra , 4 ।  2 2 2\ । 7Tc2,   aez—/(c—a2e2x2) $ = gzsvCT a’e) + — log-- e"-----.

Proof.—By (5878). s = 2rg‘e / (-9% + 22) dz. Then by (1931). C    J o V ' d"e      /

6160 COR.—The whole surface — 2ma?+ "Clogl—e e 1 — e

6161 The centroid of the surface of the zone in (6159) is given by

- _ 2ma‘e § ( c* . c6 ? 3e‘S (. \a‘e " / a"e3 5 '

Proof.—As in (6154). z for the surface of half the spheroid is obtained in this case by making z = c, but in (6154) put a = a. 6162 The M. I. of the same zone is

M.I="(1-afe-2)*v(e+"*er6) ( mc2 (4a? — 3c2) 1 o, aez +(+ a‘e8x?) 1 4e3 °8         ?         ‘ 6163 And for the whole surface, by making 2 = c and doubling, —    4/ c2) C2 (4a2—3c2) a (1+e) M. I. = Tra* 1 - 29 ---3---- log - —%. \ Za‘e4/ Ze5               c

Proof : M. I. = 2r«/(1+ Cz) dz = 2rd"e^—z^ 1 (as& +2) dz.

The first integral involved is given at (1931), and the second is obtained in the same way as in the Proof of (6155), giving 6164 a3v/23+adu=2=t0.(«*+c)-9 log{»+.(a*+a)}.

6165 For the volume, moment of inertia, and abscissa of centroid of the solid oblate spheroid, make b — a in (6144-51), c being the axis of revolution.
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 Williamson'’s Integ. Calc., Art. 137.   + Ibid., Art. 157.

2

 i.e., British Museum Catalogue, Press mark P.P. 1580. t P.P. signifies Peading-Room volumes within reach.


EXPLANATION OF ABBREVIATIONS, &c.


	
a.    c.    = areal coordinates.



alg.    = algebraic.

ap.     = application.

anal.    = analytical.

ar. p.   = arith. progression.

	
c.    c.    = Cartesian coordinates.



cn.     = construction.

cond.   = condition.

curv.   = curvature.

	
d.    c.    = differential calculus.


	
d.    e.    = differential equations.


	
d.    i.     = definite integral.



eq.     = equation.

ex.     = example or exercise.

ext.    = extension.

	
f.    = formula.


	
f.    d. c. = finite difference calculus.


	
f.    d. e. = finite difference equation.



geo.    = geometrical.

	
g.    p.   = geometrical progression.



gn.     = general.

gz.     = generalization.

	
h.    c. f. = highest common factor.


	
i.    c.     = integral calculus.



153.—The suffix means that three articles under

18—21 .—Means that one article on the stibject wit




	
	
i.    eq. = indeterminate equation.





imag.  = imaginary.

	
	
1.    c. m. = lowest common multiple.





num.   = numerical.

	
o.    c.    = oblique coordinates.


	
p.    c.    = polar coordinates.


	
p.    d. e. = partial difference eqziations.


	
p.    e.    = polar equation.



perp.   = perpendicular..

pl.      = plane.

pr.     = problem.

	
q.    c.    = quadriplanar coordinates.



rad.    = radius.

sd.     = solid or ^-dimensional.

sol.     = solution.

sym.   = symmetrically.

ta.      =  table.

t. c.     = trilinear coordinates.

tg. c.   = tangential coordinates.

tg. e.   =  tangential equation.

th.     = theorem.

tr.      = treatise(i.e.,morethan 50 pages),

transf. = transformation.

the same heading will be found in the volume.

Il be found in each of the four consecutive volumes.



References to the Synopsis stand first, and are the numbers of Articles, not of Pages. An asterisk (*) is prefixed where such numbers will be found.

The unclassified references following a principal title commonly refer to papers on the general theory of the subject; but some papers are occasionally included amongst these of which the titles are too long for insertion, and do not admit of abbreviation.

Subjects which might well have been included under the same heading appear sometimes under different ones, for the following reasons :— Exigencies of space have decided the insertion of the number of the volume only of the particular work in question, and a subsequent examination of the Index of that volume is required in order to find the page. It, therefore, became desirable not to change the original title of the paper when there was danger, by so doing, of making it unrecognizable. When, how-ever, the same subject appears in two parts of this Index under different names, cross references from one to the other are given. Some changes, however, have been made when the synonym was perfectly obvious ; for instance, when a reference to a journal, published fifty years ago, is found under the heading of " Binary Quantics,” the actual title of the article will, in all probability, be " Homogeneous Eunctions of Two Variables,” and so in a few other instances.

INDEX.

Abacus of the Pythagoreans : L.39. Abelian cubics and symmetrical equations : Q.5. of class •(—31) Mo.82.

Abelian equations : A.68 : 0.95 : J.93 : M.18: Mo.77,92.

Abelian functions : see " Hyper-elliptic functions.”

*Abel‘s formula for F(x+iy)+ F(x—iy"): 2705. Me.73.

*Abel‘s theorems : 1572 : C.94 : J.9,24, 61,90: LM.12: M.8,17: P.81, 83: Pr.30,34.

$ (x)+$ (y) = v {=f (y)+yf (x)} : An. 57.

*Abscissa : 1160.

Acceleration: Me.tr65.

* Algebra : 1—380: A.tr 20. application to geometry : JP.4. foundation, limitations : AJ.6 : CP.7, 82: Q.6. history of, in Germany : Mo.67,70.

Algebraic: ----Calculus: N.81. definitions : 0.37.

forms: C.84,94: M.15. coordination of: J.76. whoseHessian vanishes identically: M.10. in theory of cubics : M.8. formulae: G.12 : Q.5.

functions : A.10,31: J.92 : L.50,51 : M.10: N.62. applied to geometry: G.22: M.7. number of constants : J.64. as partial fractions : Z.9. rationalization of : A.69. representation by : J.77,78. resolution into factors : A.46. theorems : J.82 : M.1,6. synthesis: 0.163.

Algorithmic geometry: N.57.

Algorithm:----re definition of ( — ) : J.27.

of higher analysis : Mo.75. of arithmetical functions : G.23.

Alternants of 4th order, co-factors of: AJ.7.

Alternate numbers : LM.1O2.

Alternating functions : AJ.7 : C.12, 22: J.83 (Vandermond’s) : Me. 82.

Altitudes, determination of: A.12,19: Mem.15: N.45.

Amicable numbers : A.70.

Anallagmatic curves and surfaces : 0.87 : N.64 (quartic surface).

Anallagmatic pavements : E.10.

Analysis : A.1 : An.50 : C.3,11,12 : J£7: P.14: Q.6,7.

ap to geometry : G.23 : JP.4.

Analytical:----aphorisms : A.5 : J.10. combination theorem : J.H. functions : Ac.6 : thsAn.82 : Lagrange, trJP.3. system of, and series from it: An. tr 842.

* geometry : 4001—6165 : A.2,11,38: C.6: JP.9: L.72: M.2: Mem. 13 : Z.9: tr 11,12. theorems and problems: A.8,52: J.46. plane and solid in homogeneous co-ordinates : Z.15,16. of three dimensions : CM.4. metrics : Q.7,8.

theorems : A.8. treatise : C.13.

Angles :----conterminal: Me.74.

* of a central conic: 4375. division into n and n+1 parts : A.70. of five circles or six spheres : Me.79. * of two circles : 4180. problems on : P.1791. two relations between five : A.20.

* trisection of: 5325: A.4,34: C.2,66, 81 : G.15: Me.72: N.56,76. Anharmonics : LM.2,3.

* Anhar monic pencils of conics: 4809 —21.

*Anharmonic ratio: 1052,4648: GM.12. corresponding to roots of a biquadratic : N.60.

	
	
* of a conic: Q.4: of four tangents: 4986. 5    Q





Anharmonic ratio {continue^): of 5 lines in space : Me.76. of 4 points in a plane : A.1 : C.77. sextic : LM.2,60 : Q.37,38. systems : cnM.10.

“Annuities : 302 : A.22: Ac.l: CP.3 : J.83 : 1.1—24: P.1788,-89,-91, -94,1800, -10: N.47.

Anticaustic (by refraction) of aparabola: N.83,85.

“Anticlastic surface: 5623,5818.

Aplanatic lines, lemniscates, caustics, &c. : thL.50 : N.45.

Apolarity of rational curves : M.21. Apollonius’s problem : A.37 : M.6.

Approximation: J.13 : N.66. algebraic: J.76.

to functions represented by integrals : C.2O2. of several variables : C.70. successive: Mem.38.

Apsidal surfaces: Q.16.

Arabs, mathematics of: 0.39,60.

Arbitrary constants : 0.15 : L.80 : in d.e and f.d.e, TI.13.

*Arc, area, &c.:----quantification of : 1244, 5205, 5874, 6015. relations of : G.16 : 0.80,94: L.46.

Arcs with a rectifiable difference and areas with a quadrable difference: L.46.

*Areas :----and volumes in t.c and q.c : 4688 : Q.2.

* approximation by ordinates: 2991—7: 0.78: CD.9.

* between 3 lines : 4038 : Me.75. ext. of meaning : CD.5.

Arithmetic : A.5,18 : L.59. ancient: 0.71: N.51. degenre, ext. of the notion : 0.94. higher: J.35. history of: 0.17. ofIbn-Esra: trL.41.

of Nicomaque de Glerase : An.57.

Arithmetico-geometric mean : Mo.58 : Z.20.

•Arithmetic mean: 91: CD.6: of n quantities : 332 : L.39.

^Arithmetical progression: 79: thL. 39: Pr.10. and g. p when n (the number of terms) is a fraction : A.35. when the terms are only known approximately : C.96.

Arithmetical theorems: A.10: 0.93,972: CD.6 : G.7,18 : L.63 : of 1. c. m., N.57 : Gergonne, 0.5.

Arithmetical theory of algebraic forms : J.92,93.

Arithmographe polychrome: 0.51,53.

Arithmometer : 1.16—18.

Aronhold, theorems of: gzJ.73.

Associated forms :----systems of : gzAJ.1 : 0.86 : CD.6. and spherical harmonics : Me.85. Astroid of a conic : A.64.

^Astronomical distances : p 5.

	
	
	
^Asymptotes : 5167 : A.p. c 15,17 : CM. 4:    M.11 : N.68 : thsN.482 and 73.







* of conics : 1182, 4490, t.c 4683 : tg. c 4904, -66 : Me.71 : Q.3,8. of intersections of quadrics : N.73. of imaginary branches of curves : CM.2.

Asymptotic:----chords: A.12.

* cone of a quadric : 5616: E.30, g.e34.

* curves: 5172. lines of surfaces : A.60,61: R.84. law of some functions : Mo.65. methods: M.82.

* planes of a paraboloid : 5625. planes and surfaces : CD.3.

Atomic theory and graphical representation of invariants and covariants of binary quantics : AJ.12.

Attraction :——of confocal ellipsoids : Me.82.

of ellipsoids : CD.4,9 : J. 12,20,26,31 : JF.15: L.40,45: M.10: N.76: Q.2,7,17.

of ellipsoidal shell: J.12: JP.15 : Q.17. of paraboloids: L.57.

of polyhedra: J.66. of a right line and of an elliptic arc : An.59 : CD.3.

of a ring and of elliptic and circular plates : G.21: Z.11.

of spheroids : J.12 : JP.8 : L.76 : Mem.31 : P.(Ivory) 12.

of solids of revolution, &c. : An.56 : CD.2.

solid of maximum : TE.6.' theorems : Q.4,17. theory of : L.44,6.

* Auxiliary circle : 1160.

Averages : 1.7,9.

*Axes :----of a conic : gn.eq4687 : A.30 : E.36: G.12: Q.q.c4; t.c 5,8,15 and 2 0 : Me.a.c 6 4,71: N.43,48,58: t.cQ.12.

* construction of : 1252 : Me.662.

* cn. from conj. diameters: 1253: A.13,20: Me.82 : N.67,78.

* of a quadric : 5695 ; A.30 : An.77 : G.9 : J.2,64,82 : N.43,51, cn 68, 69,74.

* rectangular, nine direction cosines for two systems : 5577—8 : L.442.

*Axis :----of perspective or homology : 975.

* of reflexion : 1007.

* of similitude : 1046, 4177.

Axonometry and projective collineation in space : M.25 : Z.12,21.

Babbage’s calculating machine: C.992. Barycentric calculus and right line construction : J.28.

Battement de Monge : L.82.

Beltrami’s theorem : A.44.

^Bernoulli’s numbers : 1539 : A.3 : AJ.5,7: An.59,77 : C.542,583,812: G.9: J.20,21,28,58,81,84,85 (first 62),88,92 : LM.42,7,9 : Me.75 : gzMem.83 : N.76 : Q.6,22. application to series : see " Series.” and interpolation : C.86. and their first 250 logarithms: CP.12. and secant series : A.1,3,35: C.4,32. bibliography of : AJ.5. indeterminate representation of: Z. 19. new theory of : 0.83. theorems on : E.2,8 : N.77. Bernoulli’s series : 1510.

Bessel’s functions (see also " Integrals of circular functions ”) : J.75 : M.3,4,9,14,16 : Q.20,21. representation of arbitrary functions by : M.6.

squares and products : M.2. tables : Z.2.

Bonnet, two formulse of: G.4.

Bicircular quartics : LM.3,99 : P.77 : Pr.25: Q.193: TL24.

focal conics of : LM.11. with collinear triple and double foci : LM.12,14.

nodal, mechanical cn. of : LM.3.

Bifocal variable system : M.16.

Bilinear forms :   J.68,,84,86 : L.74: Mo.66,682,74.

congruent transformation of: Mo. 74.

four variables : G.21 : Mo.83. relation between two and their quadric and quartic system: M.I. reciprocals: G.22. reduction of : 0.78,92.

Bilinear functions : GM.11. polynomials : 0.77.

trilinear and quadrilinear systems:

Billiards, theory of : L.83.

Bimodular congruences : G.21.

Binary and ternary quadratics: N.64,65.

“Binary cubics : 1631: A.17 : 0.92 : G.17 : J.27,53,41 : Q.1,11.

Binary cubics—{continued'): automorphic transf. of : LM.14. and quadratic forms : G.21.

system of two: E.7 : G.17: LM.13 : M.7.

resultant: Q.6.

tables and classification of : A.31. transformation by linear substitution: J.38.

Binary forms : An.56,77 : At.65 : G. 2,3,10,162: J.74: M.2,3,20: Q.14. and their covariants, geo.: M.23. ap. to anal, geometry : L.75. ap. to elliptic functions : AJ.5. ap. to Euler’s integrals : 0.47. canonical: J.54: M.21. evectant: Q.ll. geo. interpretation or ap.: 0.78: G. 17: M.9,222. having the same Jacobian : 0.94. having similar polar forms : M.8. in a cubic space-curve: J.86. in two conjugate indeterminates: 0.97. most general case of linear equations in: 0.99.

	
	
( 2) groups of: M.23. with related coefficients : M.12. transference of, when not of a prime degree: M.21.





transformation of: M.4,9.

typical representation of : An.68,69.

Binary homographics represented by points in space, applied to the rotation of a sphere : M.22.

Binary nonics, ground forms : AJ.2.

Binary octics : thO.96 : M.172.

Binary quadrics : 0.47 : G.3 : J.27 : L.59,77: M.15,172. construction of, through a symbolical formula: 0.57.

indeterminate, integral sol.: J.45. for a negative determinant: No.81 : 0.60 (table): L.57 : M.172,21,25. partition table: AJ.4. representing the same numbers: L.59. transformation of: 0.41. with two conjugate indeterminates : 0.96.

*Binary quantics : 1636 : An.56 : 0.52 : 0D.9.

(2n—l)-ic, canonical form of : Q.20. derivatives of: Q.15.

* discriminant of: 1638 : Q.10. reduction of : J.36 : L.52 : Q.7. transformation of : CM.1: thE.28. in two polynomials U, V, prime to each other and of the same degree : N.85.

Binary quartics :----and their invariants • A.18: G.14: J.41: M.19: Q.7.

Binary quartics—{continued'): condition for perfect square : E.36. or quintics, with three equal roots or two pairs of equal roots : P.68, and ternary cubic, correlation between: An.76.

Binary quintic: G.14. canonical form for : Q.19.

Binary sextics: taAJ.4: C.64,87,963 : G.14: M.2,76,77. syzygies of: AJ.7.

Binet’s function: L.75.

Binodal quartic with elliptic function coordinates : AJ.5.

*Binomial :----coefficients: 283,366—7 : A.1,2: G.14: Mem. 24: N.th60, 61,70,85: Z.25. sum of selected : Me.85.

* equations : 480 : A.10: At.65,68: c.10,44: G.52,10: L.57: LM.11, 12,16. irreducible factors of : An.69. aP—1 = 0 : see " Roots of unity.” equivalences to any modulus : 0.25.

	
	
	
* theorem : 125—36 : A.8, geo. 61: 0. 45:    CD.7: CM.3: G.12: J.1,4,5, 28,55: Me.71: N.423.47,50,71,78: P.16,16,95,96: TI.12. generalization of : J.1 : N.572.







*Binormal: 5723.

Bipartite functions and determinants: LM.16.

Bipartition, repeated: Mel.4.

“Biquadratic :----equation (see also “Cubic and biquadratic”): 492 —501: A.1,12,16,23,31,39,40,41, 45,69: AJ.1: CM.1,462,47: G.5 —7,13,21: J.90: Me.62: N.44,582, 59,60,63,78,81,83: Q.7,28: Z.6,8, 18. cond. for two equal roots : E.44. and elliptic functions : 0.57: L.58. reduction to canonical form : G.5. reduction to a reciprocal equation : L.63.

solution of: A.51,56.: C.49,82: L. 73: Q.19: numerical, 0.61: without eliminating the 2nd term, A.39 : 4 variables, J.27: trigonometrical, A.19,70. and sextic eqs. in the theory of conics and quadrics : J.53.

* values which make it a square : 496 : G.7 : E.22. function with four variables : An. 59. involutions: 0.98.

Biquaternions : AJ.7 : LM.4.

Biternary forms with contragredient variables: M.I.

Borchardt’s functions : J.82.

^Brachistochrone : 3037, 3044: L.48: Man.31: Me.80: Mem.22: N. 77,80.

Brahmins, trigonometrical tables of the: TE.4.

*Brianchon’s theorem : 4783 : A.53 : 0. 82: CM.4: G.2: J.84,93: gzN. 82: z.6.

and analogues : CD.7 : Q.9. on a quadric surface : 0.98 : E.19. on a sphere : A.60.

*Brocard circle and Lemoine’s point: 4754c: gzN.85.

*Burchardt’s factor tables p. 7: erratum, A.23.

*Burmann‘s theorem, d.c : 1559.

Calculating machine: Pr.37.

Calculus :----algebraic, which includes the calculus of imaginaries and quaternions: 0.91.

of chemical operations : Pr.25.

of direction and position : AJ.6: M. pr 6.

of enlargement: AJ.2.

of equivalent statements: see “Logic.” of forms (Invariant theory): CD.72, 8,92. of infinitesimals, third branch of: viz., given y and yx, to find a: TE.24.

of limits, ap. to a system of d.e : C.15e. of Victorius : Z.16. of other subjects : see the subject.

Calendar: J.3,9,prs 22.

Jewish: J.f28.

Canal surfaces: A.1,10.

Canon-arithmeticus of Jacobi. 0.39,63 : L.54.

Cantor’s theorem: M.22.

*Cardioid: b=a in 5328, Fig.129: A.59,63,68: LM.4: Me.64: N.81. and ellipses: Pr.6.

*Carnot’s theorem : 4778.

"Cartesian oval: 5341—5358 : A.69 : 0. 97 ; LM.1,32,99 : Me.75 : Q.l: Me. 74: Q,12,cnl5. area of: E.21. eq. with triple focus as origin : E.9,23. foci: E.7. functional images: Q.18. mechanically drawn : LM.5,6 : Q.13. perimeter: E.21. rectific. by ellip. functions ; 0.80,87 : LM.5.

through 4 points on a circle : LM.12. with 2 imaginary axial foci: LM.3.

*Cassinian oval: 5313: Me.77,83: N.57. analogous surfaces: An.61. radial of: E.26.

Cassinoid with n foci, rectif. of: L.48.

Catacaustic and diacaustic of a sphere : . JP.17.

Catalecticant of a binary quantic: E. 37,38.

Catenary: 5273 : Me. 64, 66,68. by parabolic trigonometry : Pr.8. revolving: E.22.

*Cauchy’s formula i.c : 2712. closed curve theorem : Mo.85. various formula : C.271O.

*Caustics : 5248—9 : Ac.4 : L.46 : P.57, 67: Pr.8,14), 15: Q.l,2,3cn8,9,12. by successive reflexion from spheres : J.13. identity with pedals : Z.14. of a cardioid : Me.83.

* of a circle: 5248 : CD.2. of a cycloid: A.30.

of an ellipse, focus at centre: J.44. of infinitely thin pencils : J.98. of refraction at a plane surface : N.47. radii of curvature: N.65. surfaces and singularities : J.76.

Cells of bees : N.56 : Q.2.

Cell structure: LM.16.

Centimetre - gramme - second system : p.1.

Centrals, theory of: J.243.

Centre of:----curves and surfaces: L. . 46: Q.10.

a circle touching two : A.24. geometrical figures: A.16. harmonic mean: J.3. mean distance of curves and surfaces : N.ths 85: Q.33.

mean distance of points of contact of parallel tangents, ext. of th.: L. 44.

* similarity: 947.

* similitude: 1037.

* similitude of 3 circles : 1046 : 4176. similitude of 2 quadrics each of which circumscribes the same quadric : J.31.

Centres, theory of: J.24.

Centro-baric methods in anal, geometry: J.52.

“Centroid :----formulas for : 5884—5902, 6015: JP.26: L.43. and its use in stereometry : A.39. of common points of two conics : A.3.

* of circular arc : 6021: E.13. of a dice : N.63.

* of frustrums : 6048, &c.: A.33. of a gauche curve after development on a right line, locus of: 0.88. of algebraic curves and surfaces: An.68.

of a frustrum of a prism : L.39.

Centroid—{continued):

of a frustrum of a pyramid: Me.79 : N. 762. of oblique frustrum of a cone : E.33. of a perimeter: A.51.

* of plane curves : 5887 : J.21: G.12.

* of spherical and other areas : 5898, 6051: J.50: L.39,422.

* of surface and solid of revolution: 5896—9: AJ.3: L.39. of a trapezium: Q.9.

* of a triangle : 951 : A.52,58.

*Change of independent variable : 1760— 1816 : AJ.3 : CM.1 : G.2 : L.40,58 : Q.l,2,10: Z.17.

	
*    from x, y to r, 0 : 1768.


	
*    from a, y, z to r, 6, $ : 1783.


	
* in a definite multiple integral: 2774— 9: A.22,41. in transcendent definite integrals: C.23.





in the theory of isotropic means : C.34.

Characteristics: E.5: J.71: M.6. of conics : A.1: 0.67,72,76,83, : JP.28 : LM.9: M.15: N.666,71. of conics of 5-point contact: E.27. of cubic systems : C.742. of curves and surfaces : 0.73. of quadrics : 0.67 : JP.28 : N.68. relation between two characteristics in a system of curves of any degree : 0.62. surface groups defined by two : 0.79 : u = 1, v = 1, 0.78.

Chart construction: Mel.2 : N.60,783.

Chemico-algebraic theory: AJ.1.

Chemico-graphs: AJ.1.

Chess board, ths and prs : A.56 : E.34, 42,44.

Chessmen, relative value of: E.39: Mel.3.

Chinese arithmetic and algebra : 0.51: N.63.

*Chord:--joining two points on a circle: 4157: A.43,44: E.22.

* of contact for two circles : 4172. Chronology: J.26.

"Circle: 4136—90c.c: A.1,3 th 4,9,25,27, th47 : 0.94: J.14,17: Q.19 : TE. th6.

* approximate rectification and quadrature: 6019, &c: A.2,6,geol3,14, 43: J.32: Me.75,85: N.45,47: Q.4.

arc of : see Circular arc. area of segment: 6035 : A.27,39,44.

* chord of: 4157—8.

* chord of contact: 1017 : 4138,—72.

* coaxal: 1021—36: A.23. configuration of: C.932.

Circle—(continued):

* cn. from 3 conditions : 937 : JP.9.

* Cotes’s properties : 821: A.11, ext. to ellipse 30 : P.13 : TI.7.

* cutting three at given angles : 4185 : LM.3,5: N.83,.

division of : A.27,37,41: At.19 : E.1, 31: G.6: C.85,93: J.27,54,56: N.53,54. and theory of numbers: J.30,842,87 : N.56. ths. on sum of sqs. of perpendiculars, &c.: 1094—8.

* eight circles touching three, cn: 4189: Mel.3: Q.5. eight through 6 points of intersection of 3 conics : Q.10.

* equation of: 4136—48, p.c 4151: Pr.27: TL26.

* general eq.: t.c, 4691,4751: tg.c, 4906. Euler’s th. extended to ellipse : A.51. five-point th.: E.5. four pairs of circles through 6 points common to 3 circles : Q.9. four points concyclic, condition: A. 44: N.84. geometry of: A.67 : Z.24. groups of points on : A.14. in tri-metric point-coordinates : Z.27.

* and in-quadrilateral: 733 : CD.9. lines of equi-different powers in two circles * A.19.

* of curvature : 1254,5134: A.31,63 : J. 45 : p.cN.84.

* polar of x'y': 4138,—64. rectangles of: Z.14. ring of, touching two fixed: J.39 : Me.78. six points th.: Q.8. and self-conj. triangle : A.41. and sphere, geo.: Mo.82. system through a point on a plane or sphere: G.16.

* tangents : 4137—43,4160 : L.56 : P.14, common to a circle and conic: cnA.69.

* common to two circles : 953,4171: cnA.34.

* locus of a point, the tangents from which to two circles have a given ratio : geo.965—6.

* three: 997—9,1036,1046—51,4183—7.

*    prs.(Gergonne): 1049 : At.19 : L.46. through mid-points of sides of a triangle : see Nine-point circle.

* through 3 points : 4156,4738. through 3 points on a conic: A.2: J.39. touching a conic twice : J.56 : N.65.

Circle—(continued):

* touching 3 circles, cn: 946,1049: A.24,26,28,35: An.68: 0.60: Me. 62: N. 63,65,66,84: Q.8. touching the 4 circles which touch the sides of a spherical triangle : A.4.

and triangle, ths and prs : A.30,57: LM.15: Q.4.

* two; eq. for angle of intersection: 4180—1.

* theorems: 984—1045: Q.ll: see " Radical axis ” and " Coaxal circles.”

and two points; Alhazen’s pr: AJ.4.

Circulants:----final expansion of: Me.85. of odd order : Q.18.

"Circular :----arc : length, centroid, &c.: 6019. with real tangents : Z.l. graphic rectification and transposition of: Z.2.

cubics, involution of : LM.1,7. chord of curvature of: E. cn36. and elliptic functions in continued fractions : CD.4.

* functions: 606: A.17 : J.16. points at infinity: see " Imaginary ditto.”

relation of Mobius : LM.8 : N.76 : Q.2.

* segment: arc, chord and area: 6035 : N.63.

Circulating functions: P.18.

*Circum-centre of a triangle: 4642: tg. eq 4883.

*Circum-circle :--of a triangle: 713, 4738: tg. eq 4895: A.51,58. coordinates of centre : 4642. hypocycloidic envelope of Ferrers : N.70.

and in-conic: N.79.

* of a polygon: 746—8 : A.19.

* of a quadrilateral: 733 : N.79.

Circum-cone of a quadric, locus of vertex: N.52.

*Circum-conic :--of a triangle : 4724 : tg. eq 4892 : An.57.

* of a quadrilateral: 4697 : At.54. locus of centre : E.I.

Circum-cubic of a complete quadrilateral : G.10 : Q.5.

*Circum - parallelogram of an ellipse : 4367.

Circum-pentagon of a conic : M.5 : N.67.

Circum - polygon : ----- of a circle : 746—8 : CD.1: Me.80: N.66.

of a conic : M.25.

of a parabola : CM.2.

of a cuspidal cubic: LM.13: ditto quartic : LM.14.

Circum-quadrilateral :----of a circle : E.35: N.48.

of two circles : N.67.

Circum-rhombus of an equil. triangle : A.45.

Circum-triangle :----of a conic: N.70.

* locus of vertex : 4800 : E.35. of a triangle : J.30.

*Cissoid: 5309—12: A.62,69 : N.43,85. tangents of: LM.2.

Cissoidal curves: A.56.

Clairaut’s function and equations: Pr. 25.

Clinant geometry: Pr.l0,ll2,12,15.

Closed curves : Me.77 : geo th Q.4.

* and moving ch ord,Holditch’s th: 5244: gzMe.78: Q.2. ext. to surfaces : Me.81. quadrature of : A.61: N.43 : Crofton’s thsA.55: C.65,68: E.362.

I sip dedy, t=0, t' =0 being the tangents from ay : LM.2.

* rectification of : 5204.

Closed surfaces : JP.21.

*Coaxal circles: 1021—36: 4161—70: Q. 52: reciprocated, 4558. Poncelet’s limiting points: 4165: thJ.86.

Coaxal conics : Q.10.

Cochleoid, (a2+9/2) tan*1 % = 7rry: A.70.

•Coefficients:----detached: 28.

* differential: 1402.

* indeterminate: 232.

*Cogredients: 1653.

*Collinear and concurrent systems of points and lines : 967 : A.69 : G .21.

Collineation and correlation : M.22 : prM.10.

and reciprocity: M.23.

" gleichstimmigkeit ” of, in space: Z.24,28.

multiple c. of two triangles : A.2,70. of plane figures, ground forms : J.74. paradox: Z.28.

^Combinations : 94—107 : trA.15 : CP.8 : G.18: J.5,13,212,34,38,th53: M.5 : Z.2.

ap. to determinants : JP.28. complete, i.e., with repetitions : C.92 : N.42,74.

compound: Man.79.

* C (n, r) an integer: 366 : L.42.

G (n,r) when n is fractional: A.70.

* C(n,%) = C(n—1,7—1)+C(n—1,7): 102.

G (m+m‘,p) = s’’ G (m, r). G {m^—r): L.42.

Combinations—[continued):

* problem or theorem : 105—7 : A.21 : C.97 : CD.2,4,7,82 : 1.5 : J.3,45,56 : L.38: Mem.11: N.53,73: Z.15. of Euler and its use in an eq.: L.39. of 1,2, ...n, each c. having a sum ba: G.19,20. of dominoes : An.73. of n dice each with p faces : TE.21. of n points in space : L.40. of observations: L.50. of planes through a system of points : N.57.

Combinatorial:----products : A.34. systems: L.56.

Combinatory analysis : A.2,50,70: J.11, 22 : Mem.50 : N.80.

Commensurable quadratic divisors : N. 47.

Oommensurables: TE.23.

*Commutative law: 1489.

^Companion to the cycloid : 5258.

Com planation formula : A.48.

Complementary functions: 0.19: J.11. Complete functions : C.86 : J.482.

Complete numbers : Mo.62.

^Complete primitive: 3163.

Complex axes of a quadric : Z.19.

Complexes : L.44,47 : M.2,4.

of axes of a quadric : N.83. in combinations and permutations : A.21.

of 1st and 2nd degrees and linear congruences : An.76 : L.51: M.2, 9: N.85: trZ.27. linear: N.85: Z.18: of an in-conic of a quadrilateral: G.21. of 2nd degree: G.8,17,18: end.93: M.7 : N.72.

of 2nd degree with a centre: L.82. of 2nd degree of right lines which cut two quadrics harmonically: M.23. quadratic ray- & web-comp]exes: J.98. of nth degree, singularities : M.12. and congruences, spherical of 2nd degree, their circles and cyclides: J.99.

and spherical complexes, ap. to linear p. d. e : M.5. tetrahedral in point space: Z.22.

Complex numbers: A.28: 0.90,99: G.11: J.22,35,67,93: L.54,75,80: M.22: Mo.70: Q.4. from the 31st roots of unity: Mo.70. from the nth roots of unity: J.40 : Mo. 70. index and base of a power, geo : Z.5. prime and from roots of unity : J.35 : taMo.75.

Complex numbers—(continued): prime and from the 5th roots of unity: Mo.ta 59. resolution of A"+Bn+C" = 0, and when n = 5 : L.47. from the roots of unity; class numbers : J.65: Mo.61,632,70. in theory of residues of 5th, 8th, and 12th powers : L.43.

Complex unities : C.96,99 : J.53. Klein’s groups: J.50.

Complex roots of an algebraical eq: M.1: N.443: of a" = 1, Mo.57.

Complex variables, functions of: An. 59,68,712,82,83: G.3,6: J.54,73,83 : M.19 : Z.82,10.

especially of integrals of d.e: J. 75,76.

Composite functions of a higher order : G.2.

Composite numbers :----for construction of factor tables : A.45. groups of: J.78: LM.8: Me.79.

" Compteurs logarithmiques ” : C.40.

*Concavity and convexity: 5174.

Concentric circles : LM.14.

3 quadrics, intersection of : E.39.

"Conchoid : 5320 : A.5 5 : N.432.

Concomitants of a ternary cubic: AJ.4.

“Concurrent lines and collinear points 967-76: A.69.

th. on conic and triangle : E.35.

*Concyclic conicoids : 995 : Q.ll.

*Cone : 1150—59, 6043 : A.16 : L.61 : Me. 62. and cylinder, superfices, tr : An.57. general d.e of: E.18. intersection of two: N.64.

* oblique : eq 5598 : J.2 : Me.80.

* sections of: 1150—9.

* and sphere : 5652 : thsMe.64. superfices of oblique frustrum.: J.2. through m points and touching 6—m lines: LM.4. volume of frustrum : Ac.41: N.13. Configuration of 16 points and 16 planes: J.86.

(3, 3)10 and unicursal curves : M.21.

*Confocal conics : 4550—8, 5007, tg.e 5005 : J.54: LM.12,13 : Me.66,68, 73: N.80: Q.10: TE.24: Z.3.

* Graves’ theorem: 4555: Griffith’s ext. LM.15.

* tangents of: 4555.

	
	
	
*Confocal quadrics : 5656—72 : A.3 : CD. 4,5,92:    G.16: M.18: thMe.72; Q.3. relation to curves and cones : CD.4,9. volume bounded by three and the coord. planes: A.36.







Confocal surfaces : Me.66.

Conformable figures : A.59 : LM.10: M. 19:Z.17.

Congruences : 0.51,88: th and ap J.19: thMe.75: N.50: P.61.

	
	
binomial: AJ.3 : 0.61: expon. to base 3, Mel.4. classification of roots : 0.63. Cremonian: LM.14.





irreducible: J.40. and irreducible modular functions: 0.61.

linear: LM.4: of circles in space : 0.93. numerical: An.60 ; multiplication of, 61.

of 1st degree: A.32.

	
in several unknowns : L.59. sol. by binomial factorial: Mem.44. transformation of modulus : Mel. 2: N.59. with composite modulus : E.30. of 2nd degree: 0.622: Mem.31: reduced forms: 0.74.



of 3rd order and class : LM.16. higher, with real prime modulus : An.83: J.31,54,99. resultant of systems of linear : 0.88. and trigonometrical functions : J.19. a?+y2 = 1 (mod. p): J.19. a' = 1 (mod. p): J.31.

Congruent divisors of a number, no. of : A.37.

Conical functions : M.18,19.

*Conical surfaces : 5590 : A.63 : Ac.5 : LM.32: M.3. through 6 points, locus of vertex : J.92. “Conicoids : 5599 : A.48 : Q.tg.c9, q.c and t.c 10.

50-point: Me.66.

*Conics: 4032—5030: A.l2,5,17,31,32,60, 68: C.83: G.1,2,3,21: J.20,30,32, 45,69,86: M.17,19: N.42,435,442, 45,712,752,82 : P.6 2: Q.8,tg.c9: Z.18,21,23. anharmonic correspondents, problem of 5 conics and 5 lines : N.56. of Apollonius : L.58.

* angles connected with : 4375. arcs similar to : N.44.

* areas of (see also “ Sectors ”): 4688, 6097—6121: N.46 : t.cQ.2.

* auxiliary circle: 1160.

* centre :----coordinates of 4402, 4267, t.c 4733 and 4742 : tg.eq of 4901: ths and prs N.45.

* locus of 4520, 5028.

* chords of: 4315,4322; p.c4337 and CD.1: Me.66: see also " Focal.” cutting an ellipse at a given angle : E.28.

Conics :----chords of—{continued'):

* intersecting : 1214, 4317. moving round an ellipse : A.43,44 : E.22.

* chord of contact: 4124,4281; 4699— 4721.

* and circle, intersection th: 1263: A.59: N.64. collinear relation to circle : Z.l. and companion quadric : An.60 : JP.7. conjoint lines of: L.382.

* conjugate diameters: 1193 —1213, 4346 ; ths 1278—85 : CM.1: L.37 : N.42, ths 44,69 : Q.3.

* parallelogram on : 1194: 4367. relation to ellipse when equal: A.18. conjugate points : Q.8.

* construction of : 1245,4822 : A.28,43: E.29: Q.4: N.59,73 : with help of circle of curv. A.24.

* from conj. diameters : 1253: A.52.

* contact of : 4527—33 : A.1,60 : 0.78 : Pr.34. at 2 points : Q.3 : N.74.

	
	
* do. with each of 2 conics or circles : 4803—6: OD.5,6: E.31,34. 4-pointic with a quartic : M.12.





* 5-pointic : 5190—1: 0.782 : E.5,,23 : J.21 : P.59. with surfaces: 0.912: P.70,74, convexity from focal property: N.56. criterion of Mobius : J.89.

* criterion of species : 4464—77; t.c 4689: 5000.

* curvative :---centre and radius of: 4534—49 : geo 1254—66 : thsMe. 73: N.79,85.

* geo cn : 1265 : A.17.

*    chord of: 1259,—64 : Q.6 : locus of mid-point A.70. as curves in space : tr A.37 : M.64.

* definitions : 1160. degenerate forms : LM.22.

* diameters : 1214,—35 : eq 4458 : cn Me.66: N.65.

* director circle : geo 1217, eq 4693—5 : o.cE.40: LM.13: N.79.

* directrices: 1160: trA.63: LM.11.

* eccentric values of coordinates : 4275 : CM.4.

* eccentricity: 1151,4200. elementary formula: Gr.9.

* ellipse and hyperbola : 4250—96.

* equations of: 4251,4273; p.c 4336; tg.c 4663,4870: J.2.

* general: 4400,4714,4719; t.c 4755 and 4765; tg.c 4664 and 4872; p.c 4493 : t.c A.51: CPA,5 : t.c G.6,7: Mem.52: N.43,45,65. (See also " Conics, general equation.”)

Conics :----equations of—{continued):

* intercept: 4498.

* equations of parabola: 4201; t.c 4775; p.c 4336.

* general: 4430,4713 ; t.c 4656 with 4689 ; tg.c 4974 with 5000.

* ay = kB8 and derived equations : 4697 __4719 ; Q.4.

* ay = K82 or 'LM= R^: 4699, 4784 : N. 44 : S+E = 0, &c.: 4707.

* La‘+M32+Ny2 = 0: 4755, ’65 : Me.62. equation in p and p : Q.13.

* equi-conjugates, gen.eq : 4491. formulge : J.39 : N.62. from oblique cone : L.38.

* general equation; cond. for a circle :

*    4467: t.c 4691 and Me.68: Q.2: from eq. of axes : N.57.

* cond. for an ellipse: 4464; t.c 4689.

* cond. for a hyperbola: 4468; t.c 4689: A.39.

	
	
	
* cond. for a rectangular hyperbola: 4737; t.c 4690; tg.c 5000.







* cond. for a parabola: 4430; t.c 4696, 4735, 4746 and 4775 ; tg.c 5000.

* cond. for two right lines: 4469, 4475, t.c 4662. generation of : N.75 : Z.23.

by a moving chord of a circle : A.34.

* Maclaurin’s method: 4830 : LM.4.

* Newton’s method : 4829. graphic problems : N.80.

Halley’s pr: N.76. harmonically in- and circum-scribed : Q.18.

intersecting in 4 points : J.23. intersecting a surface in 5 points : C.63.

with Jacobian = 0 : M.15. limiting cases : 446 5—7 7 : Me.684.

* normals: 1171,sd5629—32 : A.16,24,32, cn 43,47: An. cn 64,78 : C.72,84 : J. cn 48,56,62 : Me.66 : Mel.2 : N. 70,81: Q.8 : z.11,18,26. circle through feet of: N.80. cutting of the min. or max. arc or area : N.44. dividing ellipse most unequally: E.29.

* eccentric angles of the feet of four, th: 4334.

* equations of : 4286, 4483, 4512.

* intercepts : 4294: segments ; 4309, 4486. least distance between two: A.21,38. number of real: J.59 : N.70,722. number cut by 8 lines in space: J. 68. number under double conditions : C. 59.
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Conics—{continued): octagram : LM.2.

	
* passing through given points and touching given lines : cn 4831 — 40. 5 points : cn 4831, eq 5024: A.27 : A.9,24,64: An.50: N.57.


	
4 foci of a conic : Q.5.


	
4 points: N.66 : Q.2,8: Z.9. 4 points, envelop of : E.28 : Do. of axes, N.79.



*    4 points, locus of pole of a line : 4770.

	
*    4 points and touching a line : cn 4833 : A.65. 3 points and touching a circle twice: N.80.


	
3 points and touching a line : Q.6. 3 points with given focus : cn A.54. 2 points and touching a line : Q.2. 2 points and touching 2 lines, locus of centre: G.7. four such conics, th : Q.8. 1 point and touching 3 lines : Q.8. parameter of: N.43.



* perpendicular from centre on tangent : 1195, 4366—73.

* ditto from foci : 1178, 4300. of 8 points : J.65.

of 9 points : A.43 : G.1. of 9 points and 9 lines : G.7,8. of 14 points : Me.66. pencil of: M.19.

and polar, Desarques’ th: N.64.

* pole of chord joining 21Y1, 2292 : 4326 : parabola, 4218.

* properties of: 1274: A.4,25,70 : p.cJ. 38. quadrature of: TE.6. and quadrics : A.30 : L.42 : N.58,,662, ths 73: geo interpretation of variables, N.66.

* rectification of: 6071, 6084: P.2: TI.16: Z.2.

* reduction of u, u' to the forms &2+y2+z2 = 0, ax?+By2+yz2 = 0 : 4995. series of : A. cn 67 and 68.

	
	
* seven points of: C.94.





* similar : 4522.

six points of : A.62 : J.92. systems of : C.62,65 : M.6 : N.66 : of 2, Q.7 : of 4, L.54. and orthogonal lines: N.71. and quadrics : Z.6.

* tangents or polar : 1167—9, 4280—5, 4790 : gn.eq 4478: A.61 : cnCD. 3 : CM.1, p.eq 4 : N.79. intercepts on the axes : 4292.

* two at the origin, eq : 4489.

Conics :---tangents—{continued):

* two from x'y': 4311 : gn.eq 4488, 4965, A.57 : t.c 4680—2, cn 1181: A.532.

* do. for parabola: 4215, cn 1232 : ratio of lengths, 1243.

* quadratic for m : 4313: parabola, 4220.

* quadratic for abscissa of points of contact: 4312 : parabola, 4216.

* subtend equal angles at focus: 1181, 1234: CM.2. locus of x'y': A.69.

* segments of : 4307.

* at the points u, tan $, u cot $: 4799. tangent curves of: Z.15.

* theorems: 1267: A.54: J.16: L.44: M.3: N.455,483, 72,84: Q.4,62,7 t.c : by Pascal, Desarques, Carnot, and Chasles, A.53. conic and triangle, Q.5.

	
	
	
3 circles touch a conic in A,B,C and all cut it in D; A,B,C,D are concyclic, J.36.







* three : 4707, 4710 ; in contact, 4803.

* Jacobian of : 5023.

* touching:----a conic and line, cond.: 5017. a curve twice : J.45. curves of any order : 0.59. five curves: C.584.

* four lines : 4804: locus of centre, 4772, 5028 : locus of focus, 5029 : N.45,67.

n lines : N.61. a group of lines, and having a given characteristic and focus : A.49. a quintic curve in 5 points, no. of : N.66.

* two circles twice : 4806.

* two conics twice: 4803.

* two sides of the trigon: 4784— 4808. transformation of: G.10.

* two : 4936—5030 : N.58.

* with common chords or tangents : 4700—5.

* common elements, cn : A.68.

* with common points and tangents: 4701—7 : LM.14 : Z.18.

* at infinity : 4715—6.

* common pole and polar, cn : 4762.

* condition of touching: 4942, t.c 5021.

* intersecting in 4 points : 4700 : A. 32 : at co, A.16.

* points of intersection : tg.e 4973 : cn A.69. reciprocal properties: E.29.

Conics :----two—(continued):

* reduction to 22+y2+22 = 0 and ax2+By?+yz2 = 0 : 4995.

* six chords of, eq : 4941.

* tangents of, four: eq 4981: J.75:Q.3.

	
* under 5 conditions: 4822—43: L.10,59. 6    conditions, cn : 0.59. 7    conditions in space : 0.61.



Conjugate :----functions : apLM.12 : TI.17.

lines of surfaces : CD.9.

* points : 1066, 5184 : in ellipse, A.38. point-pair of a conic : Z.17. tetrahedrons of a quadric, each vertex being the pole of the opposite side: N.60,83.

triangle of a conic : N.83.

Connexes (1, n) corresponding to d.e: A.69.

in space : Mel.6.

linear: M.15.

of 1st order and class in simple involution : G.20.

of 2nd order and class : G.19. analoguein anal. geo. of space: M.14.

Cono-cunei: A.2.

Constant coefficients, theory : 1.23.

Constant functions and their derivatives : A.15.

*Contact and circle of curvature : 4527, 5188, 5134: A.30.

*Contact of curves:----5188: cir. of curv. A.53 : 0.32 : J.66 : P.62 : Pr.il : Q.7.

with a parabola: Z.2.

with faisceaux of doubly infinite curves : 0.83.

with surfaces : L.78 : with triangles, M.7.

Contact:----of lines with surfaces : L. 37: Q.1,17: Z.12.

of an implexe with an alg. surface : 0.84.

of quadrics : LM.5.

4-pointic on an algebraic surface: M.9. of spheres : JP.2.

of surfaces: J.4: JP.15: P.72,74,76: Q.12.

of 3rd order between 2 surfaces: C.74,. problem: of Apollonius, A.66: spherical, At.192.

transformation : 0.85 : M.23.

Contingence angle of : see " Torsion.”

Continuants : AJ.l: Me.79.

“Continued fractions : 160—87 : A.18,33, 55,69 : An.51; gzC.99 : CM.4 : th E.30 : G.10,15 : J.6,8,114 and ap, 18,53,80 : LAO,58,65 : LM.5 : Me. 77: Mem. ap to i.c 9,13: Mo.66: N. 42,tr49,56,66 : Q.4 : geo Z.12.

Continued fractions—(continued):


1111 a+ b— a + b+




a+ a+




and




: A.42: J.3.




b 6+1




a— a+1+ a +2 + &c.




b>a+1 : Mel.l.



a+a+1+ a+2+

1-----------------: A.30. 22+1+ 22+3— 2x+5+


2+33 and a+22

2+2+      (+(+




E.36,33.



ascending : A.60 : Z.21.

algorithm pn = apn^ 1+6p,-2 : 168 : J. 69,75.

do. ap. to solution of trinomial eq: A.66.

combinator representation of the approximation : A. 18.

development: Ac.4 : C.87 : Mem.9.

for et and log (1 +2) : CM.4.

for e exp. a+ba+cx?+ : 0.87.

for arl—an+an — a l+ .

1 — a-1+a-4 — o-9+


J.27,28.



for U sin @—Y cos &—W ; U, V, W, polynomials in a: J.76.

for (m+ n)+p : N.45.

for powers of binomials : CM.4 : Mem. 18.

infinite: A.332.

numerical values: Q.13.

Eisenstein’s, TE.28: Wallis’s, Mem. 15.

periodic : A.19 (2 periods), 33 : G.16 : J.5 3 : N.42,43,45,462.

reduction of: J.46.

reduction of a square root to a: 195 : A.64: J.31.

do. of a cube root: A.8.

do. of an nth root: A.64.

Contingence, angle of : 5725.

Continuity, principle of: CP.8 : in relation to Taylor’s and Maclaurin’s theorems, L.47.

^Continuous functions: 1401: A.15: Ac.52 : C.18,20, and discontinuous 40, of integrals of d.e 23: TA.7. Continuous manifoldness of 2 dimensions : LM.8.

*Contragredients : 1813.

Contraposition : E.29.

*Contravariants : 1814: G.12, of 6th deg 19.

* of two conics : 4990 and 5027.

*Convergents : 160—87 : gzC.98 : CD.5 : J.37,57,58 : N.46.

Convex polygon, intersection of diags : N.80.

"Coordinates, transformation of : 4048— 51,4871,5574—81.

*Coordinate systems : 4001—31, 5453, 5501—6 : G.16 : J.5,45,50 : LM.12. ap. to caustics : An.69.

* areal: 4013: Me.80,82, gn eq 81. axial: N.844,85 : Q.10.

* biangular: 5453—73 : Q.9,8,13.

* bilinear : ap 5341 : A.32. bipolar : N.82. bipunctual: AJ.1.

Boothian : see tangential.

* Cartesian : 4001. dual inversion of c.c and t.c : Q.17. central: Z.20.

curvilinear : A.34 : An.57,64,683,70, 73: 0.48,54: CP.12: G.10, and i.c 15 : L.40,51,82: Mem.65 : Q.19 : on a surface and in space, An.692, 71,73: including any angle, J.58.

* eccentric values of : 4275, 5638 : CM.4. elliptic: A.34,402: J.8 5 : Q.7 : Z.2 0. Fuchsian functions of a parameter : 0.92.

hyperelliptic coordinates: J.65. one-point intercept: 4026.

two-point intercept: 4025.

linear : Z.21.

mixed coordinates : A.13. parabolic : 0.50. parallel: N.84,,85. pedal: Me.66.

pentahedral: Me.66.

of a plane curve in space : LM.13.

* polar: 4003,sd5506: Me.76. polar linear in a plane : Z.21. quadrilinear : Me.62,64,.

* quadriplanar or tetrahedral: sd5502, ap A.53 : Q.4. surface: 0.65,81.

* tangential: 4019, 4870—4915, 5030 : Me.81 : Pr.9 : Q.2,8.

* tangential rectangular, or Boothian: 4028. tetrahedral point coordinates : Z.8. triaxial: A.64.

trigonal: G.14 : Q.9.

	
	
* trilinear : 4006 : A.39 : Me.62,64 : N. 63:    Q.4,5,6 : conversion to tangential, 4876. trimetrical point: A.67.





Coplanation:---Z.11.

of central quadric surfaces : Z.8. of pedal surfaces : Z.8.

Coresolvents : Q.6,10,14: non-linear, TN.67.

Correlation of planes: J.70 : An.75,77 : LM.5,6,8,10.

Correlative figures, focal properties: LM.3.

Correlative or reciprocal pencils : M.12.

Correspondence :----principle of: geo thAn.71 :    extC.78,80,ex83,852: N.46.

of algebraic figures : M.2,8.

application to Bezout’s th C.81 ; to curves, 0.72 ; to elimination, N. 73 ; to evolute and caustic, N.71. complementary theorem to : C.81. determination of the class of the envelope and of the caustic of a curve: 0.72.

determination of the degree of the envelope of a curve or surface of n parameters with n—2 relations: 0.832.

determination of no. of points of intersection of 2 curves at a finite distance : L.73 : 0.75.

determination of the number of solutions of n simultaneous algebraic equations : 0.78.

determination of the order of a geometrical locus defined by algebraic conditions : 0.82,842.

forms : M.7.

multiple in 2 dimensions : G.10.

of curves : 0.62: P.68 : Q.15.

of two planes : LM.9.

of points : LM.2 : 0.62 on a curve : Q.ll on a conic: M.18 on two surfaces.

for groups of n points and n rays: M.12.

of two variables (2,2): Q.12.

of 2nd deg. between 2 simply infinite systems : An. 71.

Correspondent values, method of: P. 1789.

Corresponding points :----in some involutions : LM.3.

on two curves : M.3.

on two surfaces : 0.70.

Corresponding surface elements : M.11.

Cosmography, graphic method: N.82,79.

*Cotes‘s theorem: circle, 821; areas, 2995. analogous ths : CM.3.

Counter-pedal surface of ellipsoid: AJA.

Coupures of functions : 0.99.

"Covariants : 1629, 4936—5030 : 0.80,81, th 90: G.1,20: Q.5,16 : J.47,87, 90 : thM.5 : N.59, : ap to i.c 0.56. binary: G.2.

of binary forms : An.58 : 0.82,86,87 : G.17 : L.76,79 : M.22. of binary quadrics, cubics, and quartics : An.65 : J.50 : Q.10. of binary quantics : E.31: Q.4,5,17. of a binary quartic: J.53: quintics. An. 60.

Covariants—(continued'): and contravariants of a system of simultaneous forms in n variables ; to find the number of: C.84. of quantics : An.58 : binary, Me.79. of a septic, irreducible : 0.87. sextic : G.19. of a system of binary cubo-biquadra-tics ; number of irreducible covariants : C.872. of a system of 2 binary quadratic forms ; number of : 0.84.

of ternary forms : G.192.

* of two conics : 4989, 5026 : of three, Q.10.

Covariants and invariants : An.60. of binary forms : An.58,59,61,83 : 0. 66,69 : reciprocity law, 0.86. of a binary octic, irreducible system : 0.86,93.

of a binary quintic : 0.96. of a binary sextic : C.962.

as criteria of roots of equations : An. 68.

Cribrum or sieve of Eratosthenes: N. 43,49.

Critical functions: see" Seminvariants.” Criticoids and synthetical solution : E. 9,26,32.

*Cubature of solids : see " Volumes.” Cube numbers, graphic cn of: E.43 : Me.85 : tables to 12000, J.42.

Cube root extraction: A.22,64: J.11: N.44,583: TI.1.

*Oube roots, table of (2 to 30): p.6. Cubes of sums of numbers : N.71. Cube surfaces : Pr.17.

Cubical parabola: Q.6,9. metrical properties : M.25.

“Cubic and biquadratic equations : 483— 501 : A.45 : No.1780 : An.58 : C.geo41,90: JP.85 : L.59 : M.3 : N.79 : Z.8 ; Arabic and Indian methods, 15.

Sturmian constants for : Q.4. mechanical construction: LM.22.

Cubic and biquadraticproblems: An.7O2. Cubic classes which belong to a determining quadratic class, number of: A.19.

Cubic curves : An.73 : AJ.5,15,27 : 0. 37: thCD.7: CP.11: G.1,,2,14, 23 : J.ll,32,34,ths42,63,geo78,90: L.13,44,45 : M.15 : t.cMe.64: Mo. geo5 6: N.50,67,geo723 : p.57,58: Pr.8,9 : Q.4,,5 : Z.geol5,22. classification of: Q.16. and conics which touch them : J.36. coordinates, explicit functions of a parameter: J.82.

Cubic curves—(continued): 48 coordinates of: P.81ii. with cusps : A.68. degeneration of : A.4: M.13,15. derivation of points : LM.2. with a double point: M.6 : with two, M.3.

with double and single foci: Q.14. Geiser’s : J.772.

generation of : G.11 : J.36 : M.52,6 : by a conic pencil and a projective ray pencil, Z.23 : linear, J.52. and higher curves : A.70.

mechanical construction of : LM.4. number of cubic classes which belong to a determining quadratic class: A.19.

nodal, tangents of : LM.12.

of third class with 3 single foci: Q. 14,162.

	
18    points on : E.4. inflexion points of: J.38 : M.2,5 : N. 73,th83,85. 12    lines on which they lie in threes : E.29.



rational: A.58 : G.9. referred to a tetrad of corresponding points: Q.15.

represented by elliptic functions: JP.34.

and residual points : E.34,. resolved into 3 right lines : M.14. and right lines depending on given parameters : J.55.

	
	
16 cotangential chords of : Q.9. and surfaces : J.89. synthetic treatment : Z.21. tangential of: P.58 : Pr.9. tangents to : cnE.25—7,ths28: LM.3 : Q.3. with a double point or cusp : M.I. forming an involution pencil: LM. . 132. their intersections with cubics or conics : C.41 : TI.26. through 9 points : C.cn36,37 : L.54 : two cubics do., CD.6,. through 8 points : Q.5. through 2 circular points at oo : cnZ.14. transformations of: 0.91.





*Gubic equations: 483—91: A.1,3—7,11, 22, 252, 32, 3 7,41,42,442, prs47,68 : An.55 : 0.num46,85 : OD.4,6 : E. 35: G.12,16: J.27,56,90: LM.8: M.3 : Mem.2 6 : N.45,th52,th56,64, 66,703,75,78,81,84: TE.24: TI.7. See also “ Cubic and biquadratic equations.” and division of angles : A.15. in a homographic prof Chasles : 0.54.

Cubic equations—(continued): irreducible case: A.30,39,41,42: No. 1799: AJ.1,: C.58: J.2,7: L.79: N.67 : in real values, A.49: by continued fractions, A.2. roots :----condition of equality : E.30. definition of: th A.31. geometrical construction of: C.44, 45 : Arab, m.s.s, J.402. integral: N.752. power-sums of: C.54,55. squares of differences of: An.56: Q.3.

* solution of :----Cardan’s formula: 484: A.14,40,gz22 : Me.85. Cockle’s: CM.2,3.

* trigonometrical: 489 : A.19 : N.61, 67,71: TEA. by differences of roots : J.42. by continued fractions : A.10,39. by logarithms : 0.66. by s =1+1: 0.60. %

* mechanical: 5429 or 0.79. numerical: 0.44.

Cubic forms (see also " Binary cubics ”): thsJ.27.

ternary: J.28,29 : JP.31,32. quaternary : transf J.58 : P.60 : Pr.10 : division into five, J.78.

Cubic surfaces : Ac.3,5 : thsAn.55 : C. 972,98 : G.22 : J.53,65,68,69,88,89 : M.6 : Mo.56 : N.69 : P.69 : Z.20. classification of: M.14.

double sixers of : Q.10. with 4 double points : M.5.

“ gobbe ” : G.14,17,21.

hyperboloidal projection: G.2.

27 lines of: 0.52,68,70: J.62 : L.69 : M.23 : Q.2.

27 lines and 45 triple tangent planes of: An.84: and 36 double sixers Q.18.

locus of centre of quadric through 8 points : Me.852.

model of : CP.12.

polar systems : M.20. properties of situation : M.8. in quaternions : AJ.2. reciprocal of Steiner’s surface: N.722, 73. singular points of: P.63. triple tangent planes : CD.42.

Cubo-biquadratic eqs., no. of irreducible forms: 0.87.

*Curvature : 1254—8 : 5134, 5174 : A.1, 28,43 : J.81 : Me.622,f64,72,75 : N.th60,69: Q.t.c8,12.

* circle of: 1254—5, 5134: A.cn30,37: J.68.

Curvature—(continued):

* at a cusp : 5182 : N.71.

* at a double point: 5187 : Q.3. dual, evolute and involute: Q.10. of an evolute of a surface : 0.80. of higher multiplicity (Riemann) : Z.20,24.

* of higher order : 5188—91 : M.7,16. of third order : 0.26. of intersection of 2 quadrics : An.63. mean : 0.92.

* at a multiple point: 5187 : 0.68. of orthogonal lines : JP.24.

* parabolic: 5818. of a plane section of a surface : 0.78 : Z.17.

spherical : A.25.

"Curvature of surfaces : 5818—26 : A.4, 20,41,57: An.fandths61,64: 0. th 25,49,602,ths66,67,68,geo74,84 : J.1,3,7,8: JP.13: L.44,722: p.c Me.71: Mel.3 : Q.12 : Z.27.

* average, specific, integral, &c. : 5826 —30.

axis of curvature of envelope of a displaced plane: 0.70. approach of 2 axes of finite neighbouring curves : 0.86.

circular and spherical: see “Tortuous curves.”

constant: J.88 : G.3 : mean, 0.76, L. 41,53; neg., 0.60,M.16; pos.,G.20; total, C.972.

Euler’s theorem: gzO.79.

Gauss’s th0.42 : analogy M.21: Q. 16. ap. to aneroid barometers : 0.86. indeterminate : CD.7. and inflexion : trA.19.

* integral: 5826. and lines : An.53,59 : L.41. mean = zero throughout: Mo.66. and pencils of normals : 0.70. and orthogonal surfaces : P.73, of revolution : L.41 : Z.21,22. skew: Z.26. sphere of mean curvature of ellipsoid : A.43.

"Curves (see also " Curves algebraic ” and " Curves and surfaces ”): 5100: A.2,16,32,66 : An.53,542: C.geo7 2,91: J.14,31,342,63,642, 70 : L.38,44,ths57 and 61 : M.16 : N. p.c61, 71,77,85, cn from p.c.

from Abel’s functions, p = 2 : M.I. Aoust’s problem : A.2,66.

arcs of, compared with lengths : JP. 23.

of " allineamento ” : G.21. analytical method: LM.9,16.

Curves—{continued):

whose arcs and coordinates are connected by a quadratic equation: J.62.

whose arcs are expressible by elliptic or hyperelliptic functions of the 1st kind: Z.25.

argument of points on a plane curve: LM.15.

bicursal: LM.4,7.

with branches : imaginary, CM.1,Q.7: infinite, Q.3.

2 characteristics defining a system of algebraic or transcendental curves: 0.78.

least chord through a given point: A.23.

class, diminution of : N.67.

closed : see “ Closed curve.”

of 2-point contact with a pencil of curves : M.3.

of 3-point contact with a triply infinite pencil of curves : M.10 : 4-point do., LM.8.

whose coordinates are functions of a variable parameter : Me.85 : elliptic, J.64 : N.68.

cutting others in given angles or in angles whose bisectors have a given direction : 0.58,83.

and derived surfaces : An.59,61. derived from an ellipse : A. 10. determination from their curvature: P.83,84.

from property of tangents : A.51. determination of the number of curves of degree r which have a contact of degree n<mr, with an m-tic, and which satisfy 2 r (r— 3)—n other conditions, and similar problems : 0.635.

defined by a differential equation: 0. 81,90,93,98: L.81,82. do. algebraic and an analogous space theorem : L.762. $2+2 = 0, Pr.15: pioc r2, Mem. 24 : pn = A sin c, N.76. diameters of: L.49 : N.71: and surface, 0.60.

eq obtained from tangent: N.45. whose equations are: y = ‘Va, A.14, 16 : v3 = u (u—1) {u—a) {u—y), a and y constants, 0.93.

* t $ = a sin $, A.48 : y = r (e), 2323. linear functions of the coordinates : N.65. equidistant, tangents to : cnZ.28. whose evolute and involute are equal: 0.84. extension to space: 0.85.

Curves—{continued):

a family of: N.72.

four, with two common points : Q.9. generation of : geoJ.58,71 : M.18. by intersections of given curves : Z.14. by collinear ray-systems : Z.19. geometrical: A.37 : two laws, 0.84. relation to harmonic axes : C.734. “ gobbe”: of zero kind, G.11 : rational, 0.9,12-higher plane : A.70 : L.61,63. homofocal: 1ST.81. defined by intersecting conics : 0.37. intrinsic equation : 0P.8 : Q.5. joining two points : pr L.63.

with multiple points : 0.62 : L.69. with three of higher degrees, cn An.58. n-tic with m.p of n—1th order : 0. 80: N.76. network of: 0.67. pencils of: A.65 : of 3rd order, Z.13. 2+Pa = s: E.U.

with a constant polar subtangent: N. 62. with several “ points d’arret ” : N. 60. in a power-series of sines : J.3.

* of pursuit: 5247 : 0.973: N.83. of " raccordement ” : JP.12. rational: A.56 : G. th15,16: M.9,18. generation of : G.12. reciprocal of: J.42.
[image: ]

of section: A.43.

of a series of groups of points, ths : C.732

with similar evolutes : Me.66.

* singularities of: 5187: An.71 : 0.78, 80 : CP.9 : J.64 : JP.7 : L.37,45 : LM.6: M.8—102,16: N.50,80,813: Q,2,7 : higher singularities, J.64: L.70.

of the species 1 : 0.973.

sextactic points of : P.65.

on surfaces : see " Surface curves.” systems of : An.61: G-.13 : Mc.82 : theory, O.632,94.

and surfaces : A.73 : Ac.7 : L.65. tangential polar eq of: Q.l.

theorems or problems : A.prl,313,prs 37 and 42: G.12: J.1 : M.14: Q.3. re arc CP and chords GP, PM, GM Mem.10.

to describe curves which shall have equal arcs cut off by a fixed pencil of lines : Mem.10.

Curves—(continued):

re lines drawn at all points of a curve at the same inclination to it : C.74.

tracing apparatus : LM.4.

transformation of : CD.8 : LM.1 : scalene Q.13 : M.4,20,21 : of 14-ics which cut a quartic in the points of contact of its double tangents: J.52.

and transversals: J.47.

under given conditions : P.68.

Curves algebraic (see also " Curves and surfaces ”) : C.99,ths60 and 80 : CM.4: G.1,4,5 : J.12,47,59 : N.50 , 81,cn83.

represented by arcs of circles : JP.20. with axes of symmetry : N.80.

of 2nd class and 2nd order : G.1.

of 3rd class and 4th order : G.4. of 3rd class and curves of 3rd order : J.38: L.78.

of 4th class with a triple and a single focus : Q.202.

of 6th class : Ac.2.

of class n and order m, two laws : C.85.

common points, a system of : J.54. generation by right lines : J.42. and homothetic conics, ths : J.53. lemniscatic : An.58. manifoldness of: M.10.

* mechanical construction of an -tic : 5407 : LM.7. with a mid-point: J.47. number of points of contact: 0.82. number of intersections : C.76 : M.15. projective involution : M.3. remarkable group of : M.16. species determined : M.23. symmetrical expression of constants : Q.5.

theorems : two metric, M.11: Maclaurin’s, N.50.

Curves and surfaces :----M.8 : N. 59 : gnthsC.45 and G.4 : algebraic, An.77 ; J.49 and L.55.

" arguisiane ": G.12.

curves having the same principal normals and the surface which the normals form : C.852.

of same degree, a common property : G.8. satisfying conditions of double contact : 0.89.

Curvilinear angles, ths : L.44,45.

Curvilinear triangles : A,612: N.45.

Curvital functions : C.60.

Ourvo-graph: A.1.

*C usps : 5181 : Mem.22 : Q.10.

Cusps—(continued): construction of 8 cusps of 3 quadric surfaces when 7 are given : J.26.

* keratoid: 5182.

* ramphoid : 5183.

Cyclic :----curves : A.37 : Z.cn2,26,27. functions : A.69, and hyperbolic 37. interchanges (higher algebra) : Man. 62. projective groups of points : M.13,20. number of do. in a space transf. : 0.90.

surfaces : Z.14. systems : 0.76.

Cyclides : N.66,70 : Pr.19 : Q.9,12. reducible: LM.2.

and sphero-quartics : P.71.

"Cycloids : 5250 : A.13 : N.52,82.

and trochoids on surface of sphere : Mem.22 : Q.19.

surface of, th of Archimedes : Me. 84.

Cycloidal curves : Z.9.

Oyclosis in lines : LM.2.

Cyclotomic functions : C.9O3:

^Cylinder, frustrum of : 6048. circumscribing a torus of revolution: 0.45.

and cones, intersection by spheres, ths : J.54.

and hemisphere : P.12.

Cylindrical functions : A.56 : An.73 : M.5,16 : and d.i M.8.

of 1st and 2nd class : M.I.

J (x) analogous to the spherical function Pn (cos 6) u : M.3. representing a function of 2 variables: M.5.

"Cylindrical surfaces : 5591: LM.32. quadrature of: A.9.

Cylindroids : At.19,39 : Me.80 : Z.25.

Decimal fractions :----approximation by : N.51. error in addition of non-terminating : 0.40 : N.56.

repeating: A.16,33,56 : G.9: Me.85 : Mel.5: N.42,49,74.

	
	
	
1    where 7 is one of the first 1500 P primes : A.3.







Definite integrals : see " Integrals.”

Deformation :----of conics : Z.25. of a cache-pot: N.81.

of a one-fold hyperboloid: E.30. of surfaces : C.68,70 : G.16 : JP.22 : L.60.

*De Moivre’s theorem : 756 : A.6,11. Demonstrations, reduction to simplest form: C.83.

Derivation :----applied to geo prs : An. 54.

of analytical functions, gz : G.222. of a curve : An.52.

Derivatives : see " Differential coefficient.”

* Arbogast’s : 1536 : CD.6 : 1.12 : L. 82 : extMe.78 : P.61 : Pr.ll : Q. 4,7.

Schwarzian : CP.132.

Descriptive Geometry : An. 63 : L.39 : N.522,56.

*Detached coefficients : 28.

Determinants : 554 : A.44,56,65 : apAn. 57 : J.22,tr512,72,73,74,89 : 0.86 : OP.8: G.1,4,8,9,10: L.84: LM. 10: Me.62,78,794,83 : N.51,69,ap 70: Pr.8 : Q.8 : TE.28 : Z.16. and algebraic " clefs ” : 0.36. of alternate numbers : LM.11. application to : --- algebra and geometry, A.51,50,53. contact of circles and spheres : N. 60. cylindrical surfaces : A.58. equations : Q.19. geometry: J.403,492,77. surfaces of revolution : A.582. arithmetical: G.23 : LM.10 : Me.78 : Pr.15.

of binomial coefficients : Z.24. catalogue of papers and treatises : Q. 18. of Cauchy (“aleph”) : G.172. combination of : CD.8. combinatory analysis of : 0.86.

* composite : 555 : J.88,89.

* compound : 555 : AJ.6 : LM.14 : Me. 82. in conics : J.89,92. with continued fractions : J.69. cubic : G.6 : LM.13 : and higher, 11. cycle of equations : G.11.

of definite integrals : L.52 : Z.11. development of : An.58 : N.85 : in binomials, G.10 : in polynomials, G.13,15: and ap to resultant of 2 eqs, G.21. division problems : A. 59. double orthosymmetric: Z.26. and duadic disynthemes : AJ.22. elements of: G.10,15. equation in which apq = aq : C.41. of even order, analogy between a class of: J.52.

of figurate numbers : G.9. functional: CD.9: J.22,69,70,77,84: M.1,18 : Me.80 : Q.l: of binary forms, C.92 : of a system of functions, L.51.

Determinants—(continued):

function in analysis for a certain determinant of n quantities : C.70.

gauche (apq = —aqp): C.88,892: CD.9 : J.32,38,50,th55: L.54.

involving V/1, &c.: Q.15,16,17.

of lower determinants : J.61.

of minors of given determinant: 0.86.

* minor: 554: G.I.

* multiplication of: 562, 570 : A.14,59 : L.52.

number of terms in : LM.10. partial: 0.97.

persymmetric: Me.82.

with polynomial elements : Me.85. of powers : AJA.

quadratic forms of : J.53,89 : L.56 : N.52.

ditto of negative dets.: J.37 : L.60 : M.22 : Mo.62,75.

of rational fractions : Me.82. resolution into quadratic factors of a def. formed from two circulants : Me.82.

of the 16 lines joining the vertices of two tetrahedrons : J.62.

of sixth order: Me.84.

* signs of the terms : 557: E.29 : Me. 80.

skew: Q.8,18.

of squares of distances of points : Q. 11.

Sylvester’s det. and Euler’s resultant: An.59.

symmetrical: G.I : J.82 : M.16 : th Me. 85: Q.14,18. and Lagrange’s interpolation : LM. 13. ap to a pr in geo : Z.20. of nth order and n—ith power X sq. of a similar determinant : AJ.4.

theorems and problems : AJ.3 : An. pr60: G.2,42,62,12,16 : J.pr66,pr 84: L.51,54 : M.13 : Me.79 : N.65 : Q.l,pr2,15: Z.7,prsl8. transformation of: An.73 : G.10,f 16 : of product, L.60.

uni modular, cn : Z.21. for verifying a system of d.e : 0.23. with a diagonal of zeros : Me.73.

Developable cylinders, motion of : Man. 84.

	
Developable surfaces : A.69 : M.18 : Me. 77:    Q.6. circumscribing given surfaces : Z.13, 15. circumscribing 2 quadrics: 0.67,ths 54,gz63 : 00.5.
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Developable surfaces—(.continued): of a conical screw : A.69. edge of regression : L.72. of first 7 degrees : J. 64. through a given curve which develops into a circular arc : L.56. through a gauche curve : 0.97. mutual: J.19.

quintic : 0.54 : OD.5 : G.32.

of surfaces having principal lines of curvature plane: 0.36.

Development of tortuous curves : prs Mem,

Diacaustic of a plane : N.75.

Diagonal scales : LM.6.

Diametral curves : CM.2.

of constant sectional area, prs : N.43.

Didon, proposition of: 0.86.

Differences :----and differential-quotients : A.49,53 : N.69. equations of raised : JP.6 : N.85. parameters of functions : 0.95.

“Differential Calculus : 1400—1868 : J. 11,,12,13,,14,152,16 : Me.662: Q.4. reciprocal methods : CD.7,8.

“Differential coefficients or differential quotients or derivatives (see also “ Differentiation ”): 1402, 1422— 46: Pr.12.

of algebraic functions : Mel.l. of log a and a% : A.1; of ad and ax : N. 53. of {f(x) }n: M.S ; of y exp (z*) : A.22. calculated from differentials : AJ.16.

* of a composite function : 1420 : nth, G.13.

* of exponentials and logarithms : 1422 —7 : A.11 : N.50,52,85.

* of a function of a function : 1415 : A.9: in terms of derivative of inverse function, Mem.57. of a function of two independent variables : 1815.

of irrational functions : P.16. of products whose factors are consecutive terms of a series : Me.31. ratio to the function at the limit co : J.74. successive or of nth order : 1405,1460 —72, 2852—91: A.1,4,7 : An.57 : G.18: M.4: Z.3.

* of a sum, product, or quotient: 1411. independent repres. of: M.4.

	
	
	
* of a function of a function : G.13 : n = 4, 1419. of functions of several variables : 0.93. of a logarithmic function : A.8. of a product: 1460, 1472. and summation symbols: J.33,ths32.







Differential coefficients of nth order— (continued):

	
*    of (a2+^)n: 2860; 1—e, 1467.


	
*    (1—22)n-1 (Jacobi): 1471, A.4; •(a2—b22), A.3.


	
*   _1 : 1469 ; _, 1470, J.8 ; 1+x2       1+a2



*      (a+ba+cx2)", 2858; (x2+ax+b)-m, A.8.

	
* tan a : A.12 ; cos"a, A.9 ; sin ax, cos 1461, N.62.


	
* sin 22, 2862; sin-lg, 2854—5 ; cos ‘        ’





* tan-le, 1468, apN.9.

* eax, eaxy : 1463—4 ; eag", CM.2.

* eax : 2861, A.30 ; eax cos bx, 1465.

* a"-lloga: 1466; ex cosa cos (c sin a), 2856. of nth order with a = 0 in the result:

* tan-l, sin-le, (sin-1a)2, 2865—9 ;

* cos m sin-1®, cos m cos - 1g, 2871—7; sin           sin

	
*    (1+22)±72 sin m tan-l, 2883—7; 1    ' cos



*    —@, oPeas cos bx, 2889—91 ; ex—1 sin (x or y)+cos x A 3 1+2y cos a+y2

^Differential equations (D.E.) : p.460, 3150 — 3637: A.1,52,67: AJ.4: An.5O2: 0.8,15,23,29,42,54,70,83 : OM.3 : E.9: J.1,36,58,64,66,74,75, 76,78,86,91: L.38,52,56: LM.4,10 : M.8,12,25 : Man.79 : Me.81: Mem. 30 : Mo.84 : N.72,80: Pr.7 : TL13 : Z.4,16,27.

Abel’s theorem : J.90. algebraic : An.79 : 0.86. with algebraic integrals : J.842. approximate solution : 0.5. by equations of differences : L.37.

* by Taylor’s theorem : 3289. of astronomy : 0.9,29 : P.4. asymptotic methods : 0.94 : Q.5. Bessel’s numerical solution: Z.25.

* Complete primitive : 3163—6 : J.25., no. of constants : OP.9. with complex variables : Mo.85. of a conic : E.38. continuous and discontinuous integrals of: 0.29. for a conical pendulum : A.84. relation between its constants and the constants of a particular solution: 0.92.

	
D. E.—(contimied): of curves having the same polar surface : An.76.


	
*    depression of order by unity: 3262—9. with different, total integrals : L.84. of dynamics : C. 5, 26,40, : CD.2 : G.1, 4:    L.37,49,52,553,72,74 : M.2,17, 25: Mel.4: Pr.12: P.54,55,63. ap. to engineering : JP.4. and elliptic functions : L.49. elliptic : G.19 : M.21. elliptic multiplier : M.21.





* exact: 3187, 3270—5: G.12: C.1,10,11. of families of surfaces : Me.77. with fractional indices : JP.15. of functions of elliptic cylinders : M. 22. general methods : L.81.

* generation of : 3150. geometrical meaning of : Q.14.

* homogeneous : 3186, 3234, 3262—8 : 0.13: 0M.4: J.86. hyperelliptic : J.32,55 : Mo.62.

of hypergeometrical series : J.56,572, 73. integrability of: Z.12: immediate, 0.82.

whose integrals satisfy relations of the form F [da] = Va Fx : 0.93. whose integrals are satisfied by the periodicity modulus of elliptic integrals of the first kind : J.83. integrating factors : pp468 — 471, 3394: 0.682,97. of Pdx+ Qdy+Bdz: Q.2. integration : by Bessel’s function: Me.80.

by Gamma function : TE.20.

* by definite integrals : 3617—28 : 0.17: J.74. by differentials of any index : 0.17 : L.44.

	
	
by elimination : CP.9. by elliptic functions : An.79,82 : 0. 41:    JP.21. by separation of operative symbols : Z.15.


	
* by series : 3604—16 : 0.10,94: LM. 6:    Me.79 : Q.19 : TI.7. by theta-functions : 0.90. irreducibility of: J.92. isoperimeters, pr : Mem.50. of Lame : J.89.





of light: M.I.

in linear geometry : M.5.

of motion: 0.55: of elastic solids, Q.13 : of fluids, CP.7 : of a point, 0.26. with integrals " monochrome and monogene ” : 0.40.

	
D. E.—(continued):



* Parseval’s theorem : 3628. and p.d.e of first order : J.23. particular integrals of: 0M.2 : algebraic, 0.86. relations of the constants : 0.93 : J.10: JP.6.

	
	
in problem of n bodies : An.83. of perturbation theory : Mem.83. with quadratic integrals : J.99. for roots of algebraic equations : P. 64:    Pr.13.





* rule for equivalence of two solutions 3167.

	
	
	
* singular solution of : 3169—78, 3301— 6,    3401—3 : 0.19,94 : CM.2 : JP. 18 : M.22 : Man.83,84 : Q.12,14. of sources : A J.75.







of a surface : G.2. satisfied by the series 1±2q+24± 2q9+&c. . 21/q+21/q+21q3+ &c. : L.49 : J.36. satisfying Gauss’s function F (a,^,y,x); L.82. synectic integrals of : 0.40. and tortuous curves : L.53. transformation of : An.52 : 0D.9 : in curvilinear coords : J.85.

D. E. linear : A.28,35,40,41,43,45,46,53, 59,65,69 : Ac.3 : AJ.7 : An.50,85 : At.75: O.72,293,58,73,84,88,903,913, 922,94: OD.3,42,9 : CP.9,10: G. 15 : J.23,24,25,40,42,55,63,70,76, 79,80,81,83,87,88,91,98 : L.38,64: M.5,11,12 : Me.75: P.48,50,51: Pr.56,182,193,20 : Q.8 : Z.3,7,9. without absolute term, condition of solutions in common : 0.95. with algebraic integrals : 0.96,97 : J. 80,90: M.21. determination of arbitrary constant: At.65: Q.192. argument & parameter interchanged in the integral: J.78. bibliography of : AJ.7. with coefficients that are algebraic functions of an independent variable : 0.92,94.

* with constant coefficients : 3238—50 : An.64: CM.12,2: E.34: JP.33 : L.42: N.47,84. with periodic coefficients : 0.91,92 : doubly periodic : C.902,92,982: J. 90. with rational coefficients, algebraic integrals of : 0.96 : JP.32,34. with rational coefficients, upon whose solution depends the quadrature of an irrational algebraic product: 0.913, 922.

D. E. linear—(continued): with variable coefficients : 0.92 : . J.66,68,76 : L.80,81.

which connect a complete function of the 1st kind with the modulus : 0.86.

homogeneous : Ac.l : J.90 : Mo.82. integrating factors of : 0.97,98. integration by Abelian functions, 0. 92 : J.73 ; by finite differences, Q.l ; by series, J.76. which admit of integrals whose logarithmic differentials are doubly periodic functions: L.78. whose particular integrals are the products of those of two given linear d.e: A.41. irreducibility of: J. 76.

Landen’s substitution, geo : J.91. Malmsten’s theorem : J.40. singular solution : J.73,83,84. transformation of: 0.91,96.

* n variables, 1st order : 3320—32 : C. 14,15 : G.13 : J.20,80 : L.38. n variables, 2nd order : L.37 : 2 variables, 0.70.

n variables, any order : Mem.13.

* Pdx + Qdy + Edz =0:P,Q,R involvin g a, y, z, 3320 ; geoM.16 ; Z.20: P, Q, B, integral functions of a only, _ 2 Q.192: P=(ax"+ba"-1+&c.) n, Q, B similarly with y and z, Q. 202.

* Xdx+ Ydy + Zdz-1 Tdt = 0 : condition of being an exact differential, 3330.


adt+yda+zdy+tdz = 0 : A.30.



*D. E. of first order, linear : p467 : 0.86 : G.13 : algG.18; M.23. exact: 3187.

homogeneous: 3186.

integration by a particular integral: 0.86.

reduction to a continued fraction of a fraction which satisfies a: 0.98.

separation of variables : 3185 : CM.1.

Mdx+Ndy = 0: 3184 : N.74,77.

(ax+by+c) dx + ^a'x+ByYc'^dy = 0: 3205,p471: L.59.

(ax+by+c)nda+(a‘a+b‘y+c‘)"dy : A. 64.


de+ =0; P,Q being quartics in

VI vQ



x, y : 0.66 : LM.8 : ME.79.

f(x) dx , f(y)dy_ F(x) T F(y) 0.92.


. f (x) of 1st deg.. ’ F(x) of 5th deg.



D.E. of first order, linear—(continued): * Pida+Pdy+Q (xdy—y dx) = 0 ; P^, P2 being homogeneous and of the pth deg. in x, y ; Q homogeneous and of the qth deg.: 3212. P1, P2, Q different linear functions of x, y : 0.78,83 : L.45 : J.24.

* yx+Py = Q, where P, Q involve x only: 3210.

* yx+Py = Qyn ■. 3211. yy +Py + Q,-. Mem.il.

1.+0= (208+1.272: where F’ Q, B are functions of x : Mem.il. 3+a+by+y2 = 0 : J.25. y,V(m+a) = \y^m—x : A.42. y^=f^y)- J.9 ; y^ =f(^,y)- An.73: L.55. (y+1)—4. 0.88. J a (8y-D yx+f(x) sin y+F(x) cos y+d(x) = 0 : L.46.

* U+bu? = cam (Riccati's eq.) : 3214: A.40: 0.11,85: (m =-6) E.7: ext28 : JP.14 : L.41 : P.81 : Q.7, 11,16. allied eqs : L.51 : Me.78 : Q.12. sol. by continued fractions: Mem.18. by definite integrals : J.12. transformation of: Me.83.

*D. E. of first order : 3221—36 : A.29 : 0.40,45,66 : M.3.

two variables : An.76 : J.40 : Mem. 62 : N.50 : singular solution, J.38. * Clairaut's equation, y = px+f(p): 3230: CM.32: Me.77. integration by second order d.e: A.46. homogeneous in x and y : 3234. reduction to a linear form with respect to the derivatives of an unknown function : 0.87. related transcendents : Ac.3. separation of variables : CD.9.

* singular solution : 3230 : A.56,58 : CP.9 : J.48 : Me.73,77.

* solution by differentiation : 3236.

* solution by factors : 3222. transf. by elliptic coords : J.65. verified by a reciprocal relation between two systems of values of variables : 0.15.

dx^Ydy^ = ds^ and analogous eqs: L.73.

* adx-}-^dy = ds : 3287. dx^+dy^I-d^ = ds^ : L.48.

D. E. of first order—(continued): da? + dy^+dz^ = X (da? + d32 + ly^: L ■ 50.

F (u, u,) = 0 : C.93.

* acp (p)+yy (p) = x (p) : 3226.

D. E. of second order, linear: A.29, 32,55,64: An.63,79,82, : C.82,,90, - 91,932,97 : J.51,74: L.3 6: Me.14: M.11 : Mo.64 : Z.5. with algebraic integrals : 0.90 : J.81, 85 : L.76. with doubly periodic coefficients : Ac.2. homogeneous : M.22. integration by Gauss’s series : Z.19. transformation of : An.52.

* y" = a : 3288.

y" = Py : 0.9.

* y"-\-a^y = Q : 3522/5 : geoMe.66 : Q = cos nx, 3526 : Q = 0, 3523—4.

y" = Ay (a+2bx+cx2)-2 : L.44.

* y" = ax+by : 3281.

xy" = y : Z.2.

(1= x2) y" ± my = 0, &c.: CM.3,.

^ (y”-\-Q.z) = p (p—^-) y ■ CM.2. y" = {h+n (n+1) k^sn^x} y (Lame’s eq.) : 0.85.

y" = Ho+ydi—y20,+ &c., when do &c. are trigonometrical series : 0.98. y" = y (e*+e-*)-2 : L.46.

y" + axmy =f(m) : E.6. y" = ay-\-y^ (x) : A.45.

* y"=f(y) : 3257.

* y''=f(x, y) (Jacobi): 3285. y" + py'+ry = ^ ■ 0.85,90: Q.19. y" = x^y'—nxy : A.53.

xy" A-my' -\-nxy = 0 : L.45,78. xy"-\~y’A-Axmy = 0 : 0.39.

x^y" -\-rxy' = (bam+s) y : An.51 : CD. 5.

x^y" +23y‘ +f (y) = 0 : A.28,30. y"+f^ y'+F(y) y? =0: 3284: L.42.

* (a+be) y”+(c+dx)y‘+(e+fa)y =0: A.58.

(a+ba”) a2y”+ (c+ex”) xy'A- (f+ga”) y = Q (Pfaff): 3598 -. J.2,54: and like eqs., Z.2,3 : with b = 0, A.38. a2 (a—bx) y"— 2x (2a—bx) y' +2 (3a—bx) y = 6a2 : A.28,30.

xy" + y' +y («+A) = 0 : Me.81,84. «y”+y/+y (x—A) = a.cos (+1). Me. 2 — L 82. x^y"— 2xy‘+2y = x^yf~^: A.28,30.

D. E. of 2nd order, linear—(continued): sy‘+(r+qa)y‘+(p+na—ma2) y = 0 : A.23: Z.8,9.


* (1—22) y"— ay‘+q?y = 0 : 3282.

* (1 +ax)y”+ay‘±q‘y = 0: 3283,3594. 2(1—a^)y"—y+n(n+1)y = 0: Q.18. x (1—«) y”+1—lx) y’+ie y = ^- Me. 82: Q.17.

(on+x) (n+x)y"+(m—n) y' —X2 (rn+x^y = 0 : A.42. (mi^+nx+p) y"+ (qx+r) y’+sy = 0 : jp.13: Z.4.

Apy"+Axy'+Buy = 6, y.y" -\-A\y' +BXuy = 0, and p.y" A-A~Xy' -)-Bp. = 0; with X = a-\-bxA-cx2 and p = bA-^cx : A.423.

d, {(x—23) y^}—ay = 0 •' L.54.

* y"+Py~A-QyA-B = 0, P, Q, R being functions of a : 3280.

Py”A-Qy'A-By = 0: Ac.l. zy”^A-o.zyy~IA-f (y) = 0: Me.71.

D. E. of second order : Ac.l: An.79 : JP.29 : C.67.69,80,91: J.90: L.39: LM.11,12,13,16 : Z.15. with algebraic integrals : 0.82. derived from linear eq : Me.73. with elliptic function coefficients : Ac.3. in the neighbourhood of critical points: 0.87. polynomials which verify : Ac.6. solution by definite integrals : A.27. by factors: 0.68.

by Challis’s method, and application to Calc, of Variations : A.65,66. yy” = ly'2A-^py~: L.73. Myy”A-Ny'^=f(x): N.79.

* y” A~Py'A~Qy'3 = 0, P, Q functions of a: 3276.

* y''A-Py'A-Qy'n = 0: 3278.

* y”A-Py'iA-Qy'n = 0: 3279.

* y"+Qy2+R=0: 3277. EzA- 1I,+I=0, where I is Bessel’s function: J.56.

D. E. of third order, linear: C.88, : Q. 7,8,14: M.24.

y' = y : JP.15: ut = u^: C.3. ^y”'-y = 0 : Z.8. y"'= 3may”+6m(u+2)y‘+3m(u+2) (u+1)y: A.42.

y"' = xm (Ax^y"A-Bxy’ + Cy) : A.58.

D. E. third order: An.832: C.982: M.2 3.

*D. E. of higher order, linear: 3237—50: A.65 : C.972 : J.16 : M.4 : Q.18.

D. E. of higher order, linear—(coni.): of orders p and m+p, th : 0.43.

Yax = ay,— y : A.1.

* ynx=f^; 3256.

ynx = xmy : L.39. ynx = (a+^ y : J.10. a2m ymx = amy : A. 32. «2mJ2mz = y : A.42.

aynz = y : A.26.

xmynx =±y: by definite integrals: 0.482,49 : J.57.

ynx = xmy : by definite integrals: J.19. a"“ly@2m+1)= =± y : by Bessel’s function : M.2.

ynx = c”y+ A+Ba+Cx2+ ... +Nxn : Z.10.

ynx = A^yx+B^^y : A.28,38. a""yn* = Axy +By : A. 33. ynx— ^y = Y2x+abany : by definite integrals : J.17.

ynx = Ax‘y2,+Bey,+Cy : A.53: M.3. ynx = Az"y2+ Bx'^yxA- Gx^y : A. 29,30,33,38. «ynz+ayn-1)= = bay: J.2: 2.10. Jy»—Y(-1)=+ma2y =0: A.40. Jy,r+Ay(n-y)= = a (ey.+uy) : A.86. Axy,+BJn-1),= ^(Axyx+By): Z.8. q?ym++q"a2y —P (p—1) y^-2)x : J.2.

Ax Ry (n+2)=+B&Y(n+1)=+CYne = xm {axzy2x-\-bxyx-\-Gy) : A.38.

* y,+aY0-1).+...+ay =0: 3239 : A. 40.

* ditto =f(x): 3243, 3516 : C1 ... an functions of x, 3237 : J.39. n fractional and all lower orders integral: L.36. (dx+a)ny —f(x)-. OM.4.

* ditto = eax : 3528 : ditto = sin mx : 3529.

	
	
	
	
* {p+qxy'ynx+ax (p+qa)"-ly(n-y)«—... A-any =f{x): 3250 : with p = 0, 0.96. d„, +ny^m + n) x+ •. .+(am+ a) ymx —... +aoy = 0 : A.47. a"-l(a+ba) Ynx+a"-2(c+d) (-1) +... -\-ty = 0 : J.39.









Y3—my±+ny,+py = q : L.44. 2                   2

*D. E. of higher order : 3251—69.

* Yn = F(Yn-1)-): 3258.

* In = F‘(Y(n-2)=) : 3260.

Pynx+Q = 0, where F, Q are functions of x, y, and the first n—1 derivatives of y : J.31.

D.E., simultaneous system of: An.69, 82,84: C.10,432,47,92, : CM.1: LM. 14: Me.13,80 : Pr.12. Hamiltonian: Q.14. integration and inversion of the integrals : 0.23. Jacobi’s : CD.3.

* method of multipliers : 3353. number of arbitrary constants: Me. 77.

* reduction of order : 3350. reduction to a P.D. eq : 0.44. theorem of Abel: 0.24. theorem analogous to Lagrange’s in the Perturbation theory: L. 51. theorem of a new multiplier : J.27. transformation and integration of: L.45.

* 22 = ax+by and Y2t = ce+dy: 3354 and a similar example.

*D..E., simultaneous linear: 3340—59: AJ.4: 0.9,92: E.5: N.66,84. Pfaff’s method : 0.14 : J.2 : transformation of: J.98.

* dx_dy_dz 3346. Q.14. P Q R "

* dx — dv — dz . 3347 P,-xP P2-yP P^P ’

* at+P(aa+by) = Q and yt-\-P{cx+dy) = B-. 3348.

* txt+2(x—y) = t and tye+(x+5y) = B: 3349.

* equations in x, xu, xu, &c. . yt, y^t, y&t, &c.: 3357.

* homogeneous in x, y, % ... and their second derivatives only : 3358.

*D.E., simultaneous first order: 3340— 49: 0.43: J.48: Pr.62.

*D.E., symbolic methods : 3470—3636 : 0D.1 : P.61 : Q.3,172.

* F (d.)u = Q : 3515.

* "2+a?u = Q and similar : 3522.

* exceptional case of the inverse process : 3526.

* reduction of an integral of the nth order: 3530.

* ax"Jma+ba"y,+&c.=Q: 3531.

* aymo+byno+&c.== f(e",sin@,cos@): 3535.

* am,”z + bm"z + &C. = u+ua+ &c. : 3540.

* F{tt)u=Q: 3541.

* Reduction to the form (II"+A,IT-1+ ... + An)u = Q, where II — Mda+ Ndy + &c. : 3546.

D.E., symbolic methods—{continued):

* F (xdx,ydy, ...) u =zAx"y"... : 3558.

* to transform (a + ba + ...) unx + (a‘ + b’a +...)u(n-1)*—+...&c. = Q into the symbolic form: and the converse : 3571, 3573.

* u+a {D) e,u+&c. = U: 3575.

* to transform u+ {D) erQu = U: 3579—80.

* to reduce a homog. eq. to the form ynz+c[y = X: 3585.

“Differential expressions : 1407 : prAn. 85. algebraic : An.79: M.9, by homog. coords. transf. of : J.85 : Q.162 : Mo.69.

Differential:----formulae, theory of : L. 52. functions, theory of: 0.60. expressions, linear: J.85. parameters of functions : 0.66,78. quadratic forms: An.84 : transformation of, A.16.

* resolvents of alg. eqs : 3631—7 : An. 83 : 0.91: LM.1,9,14 : M.geo4,18 : Me.75,82: Man.65,84: Q.6,11.

* of yn—nyn~r-\-{n—1)2 = 0, &c. : 3633—6 : Man.65. of ym+byr+ca= 0: Q.17. of 12 (y4+ay?+ay) = a? : Me.82.

Differentiants in terms of differences of roots of parent quantities : AJ.1.

"Differentiation : (see also ‘ Differential coefficients ’) 1402—82 : CM.1.

* formulae: 1411 — 72: An.59: CD.2 : CM.1 : Pr.9.

by the method of " Rates ” : Me.75. general, i.e., with any index fractional or imaginary : An.58 : AJ.3 : OD. 32,4,5 : J.12 : JP.13 : L.55 : N.84 : Q.3,4: TE.14,15 : Z.16 : change of independent variable, JP.15.

* under the sign J : 2253 : A.17. successive : A.20 : Q.12. when the function becomes infinite : 0.88.

Digits :----calculus of : Sbonimsky’s th: J.30.

frequency of in numbers : AJ.4. origin of: L.39.

Diophantine analysis : see " Partition of numbers.”

Di-polar geometry: Z.27.

"Direction ratios and cosines : 5511—14. Directive algebra: N.68.

Directrix :----of a conic : 1160 : gn.eq A.25 : E.36: Me.80 : t.cQ.13. of in-parabola of a triangle : Me.80. of a curve : A.20 : J.2. of a parabola : gn.eqE.29. of a quadric : N.74,75.

Discontinuity :——in curves : CM.4 : Z.26. '

in fractions : Man.48.

in maxima and minima: CD.3.

Discontinuous functions : A.7 : C.153, 28: G.19: J.7,10: LM.6: Man. 48: TI.21.

Discriminant: 1627, 1638—9, 1644 : Ac. 1: J.90: LM.2: M.12 : N.59 : Pr.14: Q.10,11.

of an algebraic d.e of 1st order in 4 variables, and of its complete primitive: An.84.

of alg. eqs., resolution into factors : M.24.

of alg. functions : J.91. applied to conics and quadrics : A. 58. of binary quantic : An.56. of a binary sextic : An.68. of a quartic : N.83.

of a ternary quadratic form : Me.68.

“Discriminating cubic: 1849, 5693: G. 16: J.26,71.

* proof of real roots : 1850 : A.29. Displacement:----theory of : N.82. of plane figures : 0.80: N.73. of an invariable dihedron : Me.85: infinitesimal ditto, 0.84. of an invariable figure : C.51,523,66, 922 : JP.26 : L.74,75. of a figure, two of whose points slide on two curves : 0.82.

of a solid : L.40: determination of the normals to the lines or surfaces described: 0.62. of a system of points: 0.78. virtual displacement: J.11. infinitesimal: of an alg. surface : 0. 70. of bodies only defined by 4 coordinates : 0.73. of a parallelogram : 0.97.

“Distance:----between 2 points: 4034—5, t.c4601: Q.7 : sd5508, 5510: some relations, G.9. correspondences for quadric surfaces : LM.16.

of a point from a line and from a plane: A.57.

* of a point from a plane in a given direction : 5559. relations : Z.27.

Distributive law: 1488.

Divisibility : 0.96 : E.8 : M.39 : N.67,74. of decadic numbers : Z.22. of numbers of the form 22n+ 1: Mel.52. of a quotient by the powers of a factorial : 0.94.

of (x+y)"+(— «)"+(— y)n : Me.79. Division : prJ.47 : prL.56.

* abridged: 28: arithJ.31: N.452,463, 52,54,57,81 : algN.42. by 73 or47 ; rule for remainder: E.22.

* effected by determinants : 581. Fourier’s rule: N.52. of planes and spaces : J.1,2. of a rectilineal figure and of a spherical polygon : J.1O2.

* of a right line into equal parts : 950. and transformation of plane figures : A. 42. of trapeziums, pyramids, and spheres: A.11.

of triangles: A.11,17.

Divisors :----of an integer, number of : 374: 0.96: N.68.

of integral rational functions: Mem.57.

* Newton’s method of : 459. of a polynomial with commensurable coefficients : N.75. rational, of 2nd and 3rd degree: N.45.

* sum of : 377 : Ac.f4: L.56,57. sum of powers of: L.58. of a2+Ay? : L.49.

Double algebra: LM.15.

Double function, laws of change of higher order: A.21.

*Double points : 5178 : -tic with }n {n—3), 0.60 ; with } (n — 1) (n—2),M.2; Clebsch’s ths of these quantics, 0.84: n-tic with }(m—1) (m—2)—2 double points, L.80. of plane curves in cubic space : Z.28. in a locus defined by alg. conditions : 0.88.

of a pencil of curves : An.64. of plane curves in cubic space : Z.28. in the projected intersection of 2 quadrics : N.84.

of tortuous curves : M.3.

Double relations : A.60.

Double tangents : An.51: J.49 : P.59 : Q.4: Z.21.

of a Cartesian : E.30. of an n-tic : M.7 : number = 2n (n—2) (n?—9), J.40,63; N.53. of a quartic: 0.37: 4.49,55,68,72: M. 1 : N.67 : P.61 : Pr.ll : with a double point, M.4,6: reciprocity of 28 double tangents. to the surface of centres of a quadric : . 0.78.

Drilling, shape of hole : Pr.35.

Dual relation between figures in space: J.10.

Duplication of the cube, approx.: Pr.20.

*e (see also “Expansion”): 151: N.67, 682: geo meaning E.4 : N.55. combinatorial definition of : A.12.

* incommensurable : 295: CM.2 : LAO : Me. 74.

and 77, numerical th : Q.15.

e“+bx+c“+in fractions : L.802.

_1

e «3, &c.: CP.6.

eDsDe": E.37.

*eis : 766 : AJ.7 : in transformations : 0M.4.

ea+ib-. A.33.

*Edge of regression : 5729: tg.eC.71.

* radius of curvature of: 5742.

Eisenstein’s theorem: G.16.

Elastic curve : 0.18,19 : JP.34.

Elementary calculation: N.45.

*Elimiuants : 583, 1626.

and associated roots : LM.16. of two cubics : J.64. degree of: G.11, two eqs 12 : J.22,31.

*Elimination: 582—94 : A.23 : Ac.6,7 : 0.12,87,90: CD.3,,6: 0M.3; G. 15,17 : J.34,43,60 : JP.4: L.41,44 : LM.11: M.5,11: N.42,45a,46,80, 82,832: Q.7,thl2: Z.23. problems: 0.84,97: J.58: M.12: Q. 8,11: in metrical geo, A.63.

^Elimination of a between two equations: 586—94 : 0.12 : 0M.2 : J.15,27 : Mo.81: N.432,762,77.

* by Bezout’s method : 586 : A.79 : J. 53: Me.64: N.74,79. by cross multiplication : 0M.1.

* by the dialytic method : 587 : N.79. in geodetic operations : Z.3.

* by h.c.f : 593 : JP.8.

by indeterminate multipliers : CM.1.

* by symmetrical functions : 588. degree of the final equation : J.27 : L.41.

Elimination :---ap to alg. curves : M.4. ap to in- and circum-conics of a polygon : At.63. calculation of Sturm’s functions : 0. 80.

* of functions : 3153 : 0.84,87 : Me.73, 76. with linear equations : At.53. with linear differentials : L.36. with n variables : CP.5. resultants, comparison of: J.57 : and interpolation, J.57. transformation and canonical forms : CD.6.

*Ellipse (see also “Conics”): 1160, 4250 : cn1245 : geoQ.9. theorems : A.30,47,prs49 : N.76 : Mc Cullagh’s, N.72. eq. r+r‘= 2a : A.2. equal chords : tg.eE.22. of maximum surface : N.65.

* as the projection of a circle: 4921: N.752.

* rectification of : 6083—96 : A.3,22,27, 30 : At.39 : graphic : Mel.l: N. 43 : TE.4 : Z.6 : when e is very small, TI.9. representation by a circle : An. 70.

* quadrature of : 6108, 6113; t.c4688: A.46 : of sector 6098, A.20: of segment, 6103.

and triangle : thQ.4.

^Ellipse and hyperbola : 1160, 4250 : A. 24,28.

theorems : A.23 : CM.3 : N.85. sectors : TE.14.

^Ellipsoid : 5600,6132: A.28 : thCD.2 : prC.20: L.38: cnM.20: P.9. centro-surface : CP.12 : LM.3. cubature of some derived surfaces: A.12.

* and enveloping cone : 5664—72 : Q.6. generation of (Jacobi): CD.3.

* of gyration : 5930 : of inertia : 5925— 39. and plane of constant segment, th: E.32.

* of revolution: 5604 : area, N.42. a locus in space : Q.16,172.

* quadrature of : 6143 : J.17 : Z.1: of zone, A.22.

* volume : 6144,—8 : A.46.

Ellipsoidal geometry : A.10: LM.4. GIfAAOg •     7

*Elliptic functions : 2125 : A.l,122,16,21, 35,48 : trAc.5,62,ths72: An.61,84: C.46,506,90,96,97 : CD.2,32,5 : CM. 3, : E.23 : G.14 : J .2,34,44,6,8,16,26, 27,302,32,35,37,39,46,72,83, : JP. 25 : L.55,56,61 : LM.7,10,29 : M. 3,ll,12,pr25 :   Me.79,80,81,822: Mo.81,82a,832,85 : N.773,784,792 : P.31,34,75,78 : Pr.6,9,10,12,232 : Q.11,17,19: Z.22,ll,27.

of first kind : A.12,21: C.16 : J.93 : L.43. with complementary moduli extension of a theorem of Lagrange: An 832. normal forms of 3rd and 5th degree : M.172. replaced by one of second kind: J.55. represented by gauchebiquadratics:

Elliptic functions—(continued): of first and second kind : C.10. as functions of their amplitude: JP. 14. representation in a simple form : Z.21. series by which they are computed : J.16,17.

of second kind : J.93. mechanical representation: Me.75. reduction to first kind from same modulus: A.56.

of second and third kind, expression by 0 function : Z.10.

of third kind : C.94,96 : CD.8 : J.14, 47: LM.13. addition of: A.47,geo64 : AJ.7 : C.59, 78 : J.35,41,44,54,882,90 : LM.13 : M.17: Me.80,84: Q.18: Z.1. of 1st kind, Z.26 : 3rd kind, Me.81. 2nd kind by q series : Me.83. application of: C.857,865,892,90,93,946. to algebra: J. 7. to arithmetic : 0.98 : L.622. to confocal conics : Z.72. to geometry : G.12 : J.38,53. to in- and circum-circles of a polygon : L.45. to rectification : L.45. to spherical conics : Z.22. to spherical curves and quadrature: An.50. to spherical polygons with in- and circum-circles: L.46. to spherical trigonometry : Q.20.

* approximation to : 2127—32: P.60,62, arithmetical consequences : Ac.5. arithmetico-geometric mean: J.58,85, 89. arg sn a and (arg sn a)2, as def. integrals : Q.19.

in complex regions : Z.282. development of : 2127—32 : J.81 : 1st and 2nd kind, C.92 : with respect to the modulus of X (x), u (®) and their powers, 0.86. development of an imaginary period when the modulus is small enough: An.70. differentiation by periods and invariants : J.92. discriminant of modular equations: M.8,9.

double substitution : J.15.
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Elliptic functions—(continued): eqs. for the division of : Mo.75.

formula : AJ.5 : J.15,36,50 : LM.13 : Me.78,80,85 : Jacobi Mel.l: Q.16, 19 : from confocal conics,LM.14 ; differential,Me.82 ; for sn, cn, dn, of u+v-\-w, Me.82.

Galois’ resolvent: M.18. geo. problems : M.19.

geo. properties : L.43,45 : P.52,54. geo. representation: A.22,61 : An.60, 61: At.53 : C.19,213: J.63 : L.44, 78 : in solid geo, M.9: of 1st kind, An.53: 0.70: CD.1 : JP.28: L. 43,454,46,78 : of 3rd kind, A.2 4. identities: Me.77.

imaginary periods: AJ.6.

infinite double products, A.14: with elliptic functions as quotients, J.35.

inversion of : J.4 : JP.34 : L.69.

KD'+K'E-KK = IT : Me.75.

of JK: Me.85.

modular equations : C.472 : J.58 : LM.9,10 : M.12.

modular functions : A.11,13 : G.12 : J.72,83: L.4O2: M.17,18: differentiation for modulus of am, LM. 13 : expansion in powers of modulus, J.41: formulse, L.64: relation between the modulus and the invariant of a binary quartic, Z.18.

multiplication of: C.889: J.14,39,41, 74,76,81,86,88,: M.8: Mo.57,833: and division, Z.7, : formulae, trA. 36 : 0.59 : J.39,48 : complex, M. 25: Mo.62 : Q.19,20 : mod.— •}, . J.48.

periodicity moduli of hyper-elliptic integrals as functions of a parameter : J.71,91.

subsidiary, pm (u, k) : LM.15.

products of powers: Mem.71. quadriquadric curve: M.25.

q-formula for sin am: LM.11.

q-series: and £85,: for T. + — coeffs.:

Q.21.

reduction of: An.64: in canonical forms, J.53.

relations : A.67 : J.56 : between N (k) and F (k) : J.39.

representation by power series: J.54. representation of quantities by sin am (u+w, k): J.45.

series: 0.95.

sn 8u, cn 8u, dn 8u in terms of sn u, tables: Pr.33.

sn, cn, and dn of u+v+w: LM.13.

Elliptic functions—(continued): spherical triangle of: Q.19. and spherical trigonometry : Q.17. substitution of 1st order : J.34. and theory of numbers : L.58. transformation : An.573,58,60 : Ac.3 : C.49,f79,f80,82: CD.3,5: J.3,34, 35,f55,55,87,88,89 : LM.9,11: M. 14,192,22 : Me.83,tr84: Pr.27 : Q. 13,20.

of 1st kind : A.33. of 1st and 2nd kind as functions of the mod: L.4O2. of 3rd order : J.60 : Me.83. of 7th order, square of mod : J.12 : LM.13. of 11th order : At.5. of the orders 11,13,17, and 19 : J. 12,16. cubic : 0.64 : Q.13. and division : J.76 : M.25. of a double integral, &c. : Me.75. Hermite’s ; tables : J.72. Jacobi’s : LM.15,16 : J.87. linear : J.91. modular, of Abel: ap to geom: C. 58 : to conics, 0.79. modulus of in a function of the quotient of the two periods : An. 70. pertaining to an even number: J. 14. quartic : Q.12. by roots of unity: J.6. of rectangular coordinates : LM.15. and of functions in theory of Catenary : A.2. triple division of and ap. to inflex, of cubics : A.70.

Weierstrass's method: AJ.6.

*Emanents : 1654.

Empirical formulee, calculation of : Me. 73.

Engrenages : L.39,402.

" Ensembles,” theory of: Ac.2,. “Envelope : 5192 : A.24,prs56: 0.45,86. p.d.eCM.4: G.11: M.84: Me.64,72 : N. 44,59,68,74. application to perspective : A.9. class of (Chasles), th : 0.85. from ellipse and circle : LM.15.

* of a carried curve: 5239. of conics, theorems : N.45.

of chords of a conic: N.48: subtending a constant angle at the focus, CM.3.

of chord of a closed curve : E.28 : cutting of a constant area, E.31. of curves in space : L.83.

* of a curve with n parameters : 5194.

Envelope—{continued} :

of directrix of a parabola : E.34. of geodesics : M.14,20. imaginary, of the conjugates of a plane curve : C.75.

of pedal line of a triangle : Q.10 : do. of in-triangle of a circle, Q.8,9. of perpendiculars at extremities of diameter of an ellipse : N.46.

of a plane : C.35.

of planes which cut a quartic gauche curve of the 2° in 4 points of a circle : An.71.

of planes perpendicular to radiants of an ellipsoid at the surface : An. 59 : Pr.9.

of plane curves : G.11,12 : singularities of, LM.22.

of polars of a curve : J.58.

of a quadric : Q.ll.

of a right line : N.63,79,83 : Q.13. cutting two circles harmonically : N.85. sliding on two rectangular axes : N.45.

of a Simson line : E.29,34.

of a sphere : C.67: J.33 : touching 3 spheres, N.60.

of a surface : CM.1: M.5 : degree of, N.60.

of a surface of revolution : L.65. of tangent of 2 variable circles : N. 51.

Enveloping asymptotic chords and polars : A. 14,16,17.

"Enveloping cone : 5664—72.

of an n-tic surface : CD.4.

* of a quadric : 5697: th of Jacobi, J. 12 and CD.3. of a twisted hexagon, locus of vertex : A.10.

Enveloping line of class cubic: involution th, E.29.

Epicycloids : J.1 : Mem.20 : N.45,46,60: TE.24: thsZ.15.

centre of curvature : N.59 : plane and spherical, JP.14.

double generation of: N.69. reciprocal polar of : geoE.19.

*Epi- and Hypo-cycloids : 5266—72: LM. 4: Z.18.

and derived curves : Z.17, tangential properties of : absPr.34.

*Epi- and Hypo-trochoids : 5262—5 : LM.4.

Equality and similarity of figures : J.52.

*Equations. (see also " Linear equations ”): 50-67, 211—222, 400— 594: A.6,18,57,58,60,61,652,67: tr Ac.32: AJ.6: An.51,542: C.44,

Equations—(continued):

	
	
	
	
47,59,62,68,91,97,995: CM.3: CP. 4:    G.1 : J.13,16,34: L.672,69: M. 14,21: Me.76: Mo.79,f80: N.67, 68,ths55,67, and 80 : P.1799.









(For Binomial, Biquadratic, Cubic, Cubic and biquadratic, Linear, Quadratic, Quintic, and Transcendental equations, see those headings. Other kinds will be found below.)

Abel’s properties : 0.91.

algorithms for solving : M.3. whose coefficients are rational functions of a variable : J.74.

of degree above the 4th not soluble : J.83.

whose degree is a power of a prime : An.61: c.48: L.68.

* derived: 424 — 31: A.22: in d.c, 1708—12.

developments : An.61. differential operators in: LM.14. Eisenstein’s theorem: LM.7. extension of theory of : C.58. fundamental principles or theorems A.1,11: C.96,97: L.39,40: J.23.

Galois’ theory : 0.60 : G.12 : M.18,23. of geometry: 0.68: homogeneous, N.64.

generic: Q.4,5.

Hariot’s law of: J.2 : extC.98. homogeneous, reduction of a principal function which verifies a characteristic homog. eq.: C.134, 142. identical: J.27. impossible: Man.51.

in geo. mean of roots : N.45. in quotients of roots : N.45. in sums of the 0 (n,2) roots of another eq.: N.43. insolubility of quintics, &c.: J.I. irrational: Man.51.

* with integral coefficients : 503 : C.24: J.53 : complex, J.53. irreducible: An.51: Mo.80 : of prime degrees, AJ.7.

* linear: see “Linear equations.”

	
*    miscellaneous : 214. numerical: C.10,123,32,78,81: G.13: J.10: L.36,38,41,83. and commensurable quadratic factors : L.45.



of nth degree with two real roots: 0.98.

from observations: A.21.

	
*    with only one positive root: 411 : 0.98.



of payments : A.34,36 : CD.1: CM.2.

Equations—{continued):

* reciprocal: 466 : A.44 : C.162 : of a quartic, N.66. reduction of: 0.97: CD.6 : to reciprocal eqs., A.35.

relation to linear d.e and f.d.e : L.36. roots of: see “Roots of equations.”

* simultaneous (see also “in two or three variables”): 59, 211, 582 : 0.25 : LM.6 : thsN.48 and 81: quadratics, N.60. deducible the one from the other: 0.22.

of the form a”+ym+zm = a: N.46. * solution of : 45,54,59,211,466—533, 582: A.64: trAn.52: O.32,53,62, 643: J.4,2 72,87: Mo.5 6,61. by approximation : 506—533 : A.30: Ac.4: 0.11,17,45,60,792,82: E.4: G.8 : J.14,22 : Me.6 8 : N.51,62,783, 80,84: No.58: R.5: Q.3: TIA: Z.23.

Horner’s method: 533: P.19. Lagrange’s method : 525 : 0.91. Newton-Fourier method : 527—8 : AJ.4: G.2: Me.66 : N.46,56,60, 69,79. Weddle’s method: Z.7,8. by continued fractions : J.33. by definite integrals: Me.81 : P.64: Z3. by diminishing the powers of the roots: 0.41. by elimination of integers: NAO. by geometry: 0.87. by imaginary values : J.20. by infinite series : J.33. by interpolation: 0.5. by logarithms : 0.95. the one by the other: 0.72 : L.71. by radicals : 0.58 : Q.15. by series : An.57 : C.49,52 : J.6 : Mem.33. by transcendents : An.63 : Q.5. by trigonometry : 480: A.1. a nonic eq. which has this characteristic : A given rational symmetrical function 6 {a, 3) of two roots, gives a third root y, such that a = 6 (3, y),   3 = 6 (y, a), y = 6 {a, B) : J.34.

symbolic, non-linear: 0.22.

systems of: 0.67: G.11,18 : LM.2,8 : Q.ll: M.19: Z.14,18 (see also " Linear equations.”) transformation of: 0.64.

* in one variable : 45—58, 214—16, 400 —550 : approx A.20. graphic solution: 0.65. a?n+1— x—k = 0 : An.59.

Equations—{contimied): am—pa+q =0 : number of real roots: 0.98. a2n+qan+p" = 0 and derivatives: N.652. a"-1+a"-2+ ... +1 = 0 irreducible if n be a prime : L.56. aa?m*n+bam*n+ca"+d —. 0 . G.14. {x—1) !+1 = xm : L.56. {xp—ap) y (a) =0 : N.82. (1+2)"(1+ba) ==0 when x is small: A.2.

* in two variables : 59—67,211,217—8 : A.20,25: OM.2: J.14: N.473,48, 63: Pr.8 : Q.18. of any degree with a variable parameter : L.59. implicit: Mem.30. numerical solution: Z.20. 23+y3 = a and a2y+ay2 = b : A.48. in three variables : gn.sol, 60 : A.1,64: N.47: M.37: by acubo-cycloid, 0.69.

*    {y—c)(z—b) = a3, sym in a, y, z : 219.

*    y?+22+yz = a%, &c., sym: 220.

* x2—y2 = a?, &c.,sym,and a=cy+bz &c., sym : 221—2. x—yz = ±a/{(1- y2)(1— 22)}, &c., sym: A.35. ax-\-by-\-cz = I, a'x+b'y+Ic'z = 1, 22—y2+z% = 1, by trigonometry: A.6.

"Equiangular spiral: 5288: Me.622: N.69,70. Equilateral hyperbolic paraboloid and derived ray-system: Z.23.

Equimultiples in proportion: G1.

Equipollences, method of : N.69,,70,,73-, 743.

Equipotential curves : Me.82 : Pr.24.

Equipotential surfaces: GAO: geoJ. 42: M.8. of ellipsoid: L.822.

Equivalence of forms : 0.88,90 : JP.29.

Equivalent representation: Z.23.

Equivalents, theory of: A.44.

Eratosthenes’ crib or sieve : N.43,49. Error in final digit of decimals : 0.40 : Me.74: N.56.

Errors of observation: A.18,19 : An.58 : 0.93 : JP.13 : N.56 : PAO : TE.24.

Errors of constants : Mo.83.

	
*Euclid, enunciations : p. xxi. axiom 11: J.1; 1.47 : new proof, 0.60. II.    12 and 13: Me.80; VIA: Q.ll new proof, Q.9.



XI., &c., Me.71: XI.28 : A.10. XII., &c., G.9; criticism on : QA,9.

Euler’s algorithms: A.67.

*Euler’s constant: 2744 : Pr.15,16,18,19, 20, Table 27. and Binet’s function : 0.77 : L.75. Euler’s equation : N.72 : integration of it by the lines of curvature of a ruled hyberboloid, N.75.

Euler’s equations of motion solved by elliptic integrals : Q.14.

Euler’s formula for (1+a)" : L.44.

*Euler‘s integrals : 2280—2323 : A.41: Ac.1,2: An.54: O.9,17,94,95,th96: J.15,21,,45 : fL.43 : Me.83 : Z.9.

* B (I, m): 2280: An.69 : G.9. T (n) : see “ Gamma function.” ap. to series and functions of large numbers : JP.16. sum formula and quadratic residues : An.52.

Euler’s numbers : AJ.5 : An.77 : 0.66, 83 : J.79,89 : prsL.44: Me.78,80.

Evectant of Hessian of a curve: E. 32.

*Even and odd functions : 1401.

*Evolute: 5149 — 59, 5165: An.53,61: 0.30: Q.3,11. analogous curves : L.76.

* of a catenary : 5159. of a cubic curve : Q.ll. of a cycloid: A.30.

of an evolute, in inf.: L.59 : Me.80.

* of an ellipse : 4547,4958 : 0.84 : N.52, 63,. and involute in one : L.41. of the limacon, rectif. and quadr. of: E.40. of negative focal pedal of a parabola : E.29. oblique, direct and inverse of different orders: 0.85.

* of a parabola : 4549,4959 : Q.5 : N.65. rectification and quadrature of : A.4. of surfaces: 0.74. of symmetrical bicircular quartics : Q.18.

* of a tortuous curve : 5731: A.25.

* angle of torsion of evolute : 5754. integrable equations : L.43.

*Evolution: 35.

E (x) = integral part of a : 0.50 : L.57.

*Ex-circle of a triangle: 711,953 : 4749 : A.54: thN.60. locus of centre, th : Q.9.

"Expansions of a function in a series (see also " Series ” and " Summation ”): A.31 : An.7 : thsAJ. 3 and 4: 0.7,13,17,20: CM.4: J.90 : L.38,46,76 : M.16 : Mel.3 : Mem.33 : N.82,83 : num, Q.3 : Z.2.

Expansions of a function in a series—

* of circular functions : 2955: A.11 : CM.3: J.43: L.36; Q.12: of imag. arcs, J.6. coefficients of: gn form, 0.85: gn property, J.41.

connected with a 2nd order d.e: 0.5 : L.36,372.

of denominators of convergents : 0.46: JP.21.

of exponentials : J.80.

* of explicit functions : 1500—47. extended class of: 0.82: approximating to functions of very large numbers, L.782.

of faculties of the variables : Mem.31. of implicit functions : 1550—73. of Jacobian functions : An.82. of Legendre’s functions, X,: An.75. with limits : 0.34. of another function : 1559 : 0.95,96. of periodic quantities : 0.52,53 : JP.11. of powers of the variable: At.57 : 0.19: L.46.

of powers of a polynomial: 0.86 : J.53, 882.

of powers of another function: Mem. 33 : N.74. within a given interval according to the mean values of the function and of its successive derivatives in this interval: 0.90.

by Bessel’s function : J.67 : M.10,17 : Z.1.

* by binomial theorem: 125.

* by factorials : 3730.

* by generating functions : 3732.

* by indeterminate coefficients: 232, 1527—34: A.3.

by logarithmic method : 0.92.

* by Maclaurin’s th : 1524. by a series : 0.93,95.

Expansion of :----alg. functions : 0.89 Z.45.

	
	
Eisenstein’s th: J.45. n, alg. functions from n eqs : G.11. i (1+ax)n in an integral series: A.65. (1— a)(1— &2)(1—83) ... : 0.92 : J.21 : L.42.





(1 — «)(1 — «?)(1 —24)(1—28) ... : Me.80. (1+2)(1+22)... (1+-I«): 0.25: J. 43. (1+ax+ba2+...+la"-1)-1 : AJ.6. {(a—a,)2+...+(—a)}-1: 0.952. (1+ax+ba2)" : Q.18. (1—2ax+x2)-1: L.372. 21+1 (1 — 2ax+a%a?) 2 : 0.862.

Expansion of—^continued): (1—ax—bx^)~m: J A3. {(1-2)(-£).} 1.40. (x—z)" in powers of 22—1: C.86. (=+3)0): CM.3.

nth derivative of v(a2—b^): A.42. (1—9=46)) in powers of t, when y=16= 1565.

* Bernoulli’s numbers : 1545. circular functions : J.24: Q.5. an arc in linear functions of sines or tangents of fractions of the arc in g.p : L.43. powers of arc in powers of sines : J.11.

* T : 2931—2, 2945, 2960—2 : Me.78.

* powers of T: Me.78: 72, 858: T-1, Me.83.

* sin 6 and cos 6 in powers of 6: 764, 1531: A.5,29: 0.16.

* sin‘@ and cos"^ in sines or cosines of multiple arcs : 772—4 : A.24,55 : 0.12 : OD.3: J.1,5,14: N.71 : TL7.

* sin nd and cos nd in powers of sine or cosine : 758, 775-79,1533 : 0.82 : CM.2 : Me.76 : Mem.13,15,18 : N. 732,83 : Q.4 : convergency of the series, J.4.

* cos nd in powers of cos d : 780 : Q. 12.

*    sin-1®: 1528,—64: J.25 : N.74 : remainder, Z.12. cos"u®: A.11.

* tan®: 1525, 2913,—17: A.16: 0.88: N.57.

* cot®: 2911,-16: 0.88: Q.17.

* sec x : 1526 : A.16 : 0.88 : J.26 : N.57 : Q.17.

* cosec® : 2914,—8.

* tan-1®: 791.

* tan n@: 760.

* a^sin® in differences of sin® : 3749.

sin nx / cos xn : A.4. cos ‘

(1 — u cos $)-1 = ^an cos 2n : A.21. (a?+b2— 2ab cos #)exp.— (m+1):TE.5. {a+b cos rp + c cos p')-" in cosines of multiples of t and $‘ : J.15. cos k cos-1 (cos o—a) : 0.15.

&b3 (0+6,+...+6,-1): A.34.

* y in powers of x when ® = — Sin %—- • 796,1558.            sin(yta)

Expansion of—{continued):

* do. when x = log1 : 1570.

I

d cot d in powers of sin2 d: Q.6. cot-1 (m—1)— cot-1 (m+1) : A.47. differential coefficients by f.d.c and the converse: J.16.

elliptic functions : A.19. andof their powers : 0.83 : cos amx, L.64.

equations : L.50.

exponential functions: N.82.

i

* e = limit of (1 +®) 1590: A.3,23: Q.7.

* ex: 0.30: N.48.


x ex—1. e“±l‘ e=+1 ’




1539, 1543—4.



eay in powers of yeby : 1571.

(ae"—1)-1 : At.57.


e exp. (A+ 4)




: Z.3.



eax cos bx : 798. j e-dr os ba da, and summation of the series : J.41.

* e exp. sin®: 1529.

* e exp. a sin-1®: 1535.

* e exp. log (z +® sin y) : 1557.

e exp.—cp{x,y,z...): C.582.

® exp.[® exp.[® exp, &c.: J.28.

* fractions : 248.

functions :---

Al{x),Ali{x), Al2{x) (Weierstrass’sfunc-tions) in powers of the modulus : O.822,85,86: L.792.

1 (), by Taylor’s th: 0M.4.

* f (a+h) (see Taylor’s th): 1500—9, 1520: Abel’s th, 1572; Stirling, 1546 ; Boole, 1547 : AJ.3.

* f{x) (Maclaurin) : 1507 : 3759.

* f{x+b,y+li)-. 1512,1521.

* f{x>yY- 1516,1523: Me.3.

* f(0) (Bernoulli): 1510.

* 4 (u+6®+c®2+...) (Arbogast): 1536: CD.1,6.

* ol (Cayley): 1555.

* f {z-{-xcp{y)} in powers of ® (Lagrange) : 1552: Laplace’s th, 1556.

Expansion of—(continued):

* f (y) in powers of v (y) (Burmann) : 1559.

* f{Y-1(x)} and v-1 (a) : 1561—3.

* P (e*) (Herschel) : 3757.

* ux+n: 3740; Anu : 3761.

* ^nux and A"u, : 3741—2.

* in differential coefficients of u: 3751.

* A"a" and A"O" : 3743—4.

* unx in differences of u : 3752.

* ^ouxdx in terms of u0, u,, u^, &c.: 3778.

a function of a complex variable : M. 19. a function of a function : AJ.2,3. functions of infinitesimals : G.12. a function of a rational fraction : At. 65. a function of n variables: C.604 : J. 66. a function of y,y' in ascending powers of a,’ when y = z+ad(y) and y' = z‘+a‘d(y‘) as in 1552: J.48. holomorphic functions: M.21 : by arcs of circles, 0.94.

* implicit functions : 551,1550: L.81. integrals: A.1: of linear d.e, An.71 : of log a, A.4.

* logarithms : 152—9 : N.82.

* log (1-0), log 1+e, &c.: 155—9. 1—2

* log y and log yn in powers of a-1 when y^-ay^ = Q-. 1553-4.

* log (a+bx+cx?+ ...): 1537.

* log (1+2 a cos a+a?) : 2922.

* log (1 +n cos x) : 2933.

* log 2 cos (a) : 2927.

	
	
	
• sin \ 2 /







* log r(1+): 2294, 2773.

higher integrals of log a : A.4. numbers : M.21.

* a polynomial: 137 : Z.26.

a quartic function : A.35.

Exponents : N.57 : P.1776. reduction for d.i: C.16.

Exponential, th : 149 : N.52.

functions: P.16.

replaced by an infinite product: 0.99.

Exponentials, successive of Euler : L.45.

Factorials :----calculus of: L.57 : N. 60 : Pr.22: Q.12 : Q.f8. geom. i.e (1+a) (1+e) (1+72)... : G. 17.

* notation : 94,2451: Q.2.

Factorials—(continued): reciprocal: 0.17.

treatment by limits : J.39. 1,22,33...n": Me.78.

* n ! = r (1+n) : 2290. approx, to when n is large : 0.9,50 : J.25,27 : L.39.

n! =n"e"(2nm) (Stirling): Q.15. {22±1p!m+1}-1: CM.3.

	
	
* 1 ' 3.5. theorem : 339. 2.4.6 ...





C (n, r) when n = a + i/3 : J.43.

Factors: 1—27.

in analysis of integral functions : M. 15. application to rotations to indicate direction: J.23.

* of composite numbers : 274 : J.11. complex : 0.24. equal, of integral polynomials : 0.42 : L.56.

* of an equation : 400 : J.3 : condition for a factor of the form a"—an, A.55,63. irreducible, of an integral function according to a prime modulus p 0.86.

linear, resolution into : N.822. of polynomials and geo.ap : J.29,89. product of an infinite number of : A. 59.

2  2 2   — _ -cos — cos — cos — ,.. : N.70. 2     4     8 radical, of numbers : 0.24,25.

of Az2+By2+Cz2, th of Lagrange: AJ.3.

of ^—fgy^ = ±1: A.33.

of (x+y)n—an—yn : thQ.15,162.

* of 221—2xny" cos n@+y2n : 807. of a"—2n cos ne+a-": CP.11: Me.76. (1—%) (1—22) (1—23)... : 0.96.

* tables of (Burchardt’s) p.7 : to 4100, J.46. geo. properties : J.22. transformation of: A.57. of 100...01 : Me.79.

Faculties, analytical : J.7,11,334,35.40, 44,51. coefficients of : A.9,11: At.75. divisibility of: A.48. numerical, of 2nd order : Mem.38. series: Z.4.

*Fagnani‘s theorem : 6088: A.26 : LM. 5,13,23 : Z.1.

curves having Fagnanian arcs: LM.11. stereometric analogy: Z.17.

Faisceaux :---of binary forms having the same Jacobian : C.93.

of circles : 0.76.

of conics : Z.20.

curvature relations: Z.15.

formation of : 0.45 : CM.3.

intersections of : N.72 : degree of the resulting curve, J.71.

of lines and surfaces : N.53,83.

plane : N.53 : defined by a first order d.e, 0.86.

of tortuous cubics in connection with ray-complexes : Z.19.

Fan of Sylvester : E.33.

Faure’s theorems : G.1,19 : and Pain-vin’s, N.61.

Fermat’s theorems :----of (NP~X—1) +P : 369 : A.32 : AJ.3 : J.8.

of a"+y" = z" being insoluble when n is an odd prime, &c : An.57 : C.gz84 and 965,91 : J.40,87 : TE. 21. analogous theorem: J.3. case of n = 14 : J.9. and periodic functions : Me.76. a+y = □, a2+y2 = D3: Mem.26. of the semicircle : A.27,30,31: gzA.31. method of maxima : C.5O2.

Feuerbach’s : th of the triangle, Me.84: circle, A.59.

Fifteen girl problem : E.34,35 : Q.8,9. " Fifteen” puzzle : AJ.22.

*Figurate numbers : 289: A.5,69.

*Finite differences, calculus of: 3701— 3830 : A.13,18,24,63 : 0.70 : J.ll2, 12,133,142,152,16: Me.82: Mel.5: Mem.13 : N.69 : thsP.16,17. ap. to complex variability : An.82: ap. to i.eq, An.50.

* first and nth differences : 3706. ABu = 0 : An.73.

* A"Om : 3744: Q.5,8,9: Herschel’s table, N.54.

A" 0"+II (m), table of: OP.13. Sv,, 8210, &c., in a function of Au,, A2uo, &c. : N.61.

* A"u in successive derivatives of u 3761 : N.73. Alp and Bernoulli’s numbers : An.59.

7 ,    .     h ,  B,12,   , lx — Alx—oAla—T To Alx _ &C. ; Ac.5.

A sin a and Acos®: 0M.1.

Finite difference equations : AJ.4: An. 59: CD,2: CM.1,3,4: OP.6: JP. . 6: L.83: P.60: Pr.10. of integrable form : 0.54. of mixed differences : Q.10.

Finite difference eqs.—(continued):

of the kind ux>y = ux^y>x+y : 0M.4. linear: AJ.7: An.50: At.65: Q.l. first order, constant coefficients : 0.8. determination of arbitrary constants : A.27 : At.65 : G.7. integration to differences of any order: J.12. with variable coefficients : 0.17. partial:---- constant coefficients : 0.8. linear of 2nd order : 0.98. of physics : 0.73.

Finite differences :----exercises : No. 44,47. formulae : OD.9 : Q.2.

sum and difference: J.58.

of functions of zero : TI.17.

H (n, r) value of : Q.9.

integrals: 0.39,57: JP.42 : L.44. expressed by definite integrals: An.53.

^exy : A.6 : No.44.

inverse method : 0.74 : P.7.

involving 7/1 : Me. 78.

of powers converted into d.i: JP.17.

Fleflecnodal planes of a surface : Q.15.

Flexure : AJ.22 : Me.2.

of ruled surfaces : An.65.

of spaces : LM.9.

of spherical surfaces : Me.77.

^Fluctuating functions: 2955a: LM.5: M.20: TL19.

Fluents: P.1786.

of irrational functions : P.16.

*Focal : chords of conics: 1226, 4235, 4339. circle of conics : Mel.2.

* distances : 4298 : N.64. pedal of a conic : N.66.

*Focal properties :----of conics : 1163, 1167—9, 1181, 1286—8, 4298— 4306, 4336—45, 4378, 4382, 4516, 4550—58, 4719 — 21, 5008—16: CD.7.

of curves: CD.7. of homographic figures : N.71.

* of a parabola: 1220,1223—6,123 0—4, 4231, 4235—8 : G.22. of a quadric surface : An. 59 : N. 58.

Focal quadrics of a cyclide : Me.85. Foci: 3.64: N.42,44, 53,85: Q.2,a.c9.

* of conics: 1160: trA.25,63,64, cn69 : gzC.22 and L.39 : CP.3 : N. 69,74, 78,81,82: t.cQ.8,13,12and45: gen. eq, N.48.

analogous points in higher plane curves: J.10.

Foci:----of conics—(continued):

* coordinates of: 4516. eq. of: LM.11: o.cE.40.

exterior : N.79.

* to find them : Q.25: from gn.eq,5008. through four points : N.833.

* of four tangents : 5029 : N.83. locus, a cubic: M.5. negative: A.642.

under three conditions : Q.8. of curves: C.82; nth class, 86: N.59,79.

of cones : N.79.

of differential curve of a parabola : A.58.

of in-conic of an n-tic, locus of: E.21. of lines of curvature of an ellipsoid: Z.26.

of quadrics : N.42,66,74,7 5,7 8.

of quartics : J.56.

of the section of a quadric by a plane : N.64,70.

by another quadric : N.47.

of surfaces : C.74 : of revolution, N. 74.

*Folium of Descartes : 5360 : N.44.

Forms, theory of : M.18 : of higher degree, Mo.83 : Pr.38. reciprocity principle: An.56.

Formula : Cr.15,19. for log 2, &c. : Me.79. in the Fund. Nova : Me.76.

* of reduction in i.c : 1965: Me.3.

Four colors problem : AJ.22.

Four-point problem : E.5,6,82.

Four right lines not 2 and 2 in same plane: J.5.

Fourier-Bessel function : J.69 : M.3.

“Fourier’s formula in i.c : 2726 — 42: CM.3: J.36,69: L.36: M.4: Me. 73 : Q.8 : gzZ.9. ap.to calculationof differentials : J.13.

*Fourier’s theorem : 518 : 528 : An.50, 75: J.13: M.192: Me.77,82,83. ap. to a function of a complex variable : M.21.

Fractions : AJ.32 : G.9,prl6 : J.88 : L.10. continued, decimal, partial, vanishing, &c.: see each title. number expressible by digits • n: C.96.

reduction to decimals : A.1,25. transformation into decimals : A.11.

*Frullani’s formula : 2700: LM.9.

Fuchsian functions : C.927,93,943,95,96.

Fuchs’s theorem on F(^,y, Y=) = 0 : C.99.

Functional equations : CM.3: J.90 : TE.14.

	
f. $a —fx : c.88. f.da=l+fx: c.99.


	
4    .fay = F. $a, to find p : Mem.31.





Functional equations—(contimted): q2+y = (afy+y/a) . J.2.

fiy • $ia++fy • ©2—&c.

=fie . Hiy +f . ^y-I&c. : J.5.

oa+4y = y fy ' Fx+f • Fy . J.46. X ^y)

I f(x, 6) 4 (a+8) cW = F(x), to find + : J a

Pr.8.

pa—oe+b=&e. : Q.15. ex — d f() =f(sin™s) : C.88.

Functional images in ellipses : Q.17. in Cartesian ovals : Q.18.

Functional powers : Mem.38. symbols: Q.4.

Functions : A.28 : AJ.6 : An.79 : 0.43, 91 : CP.1 : J.16,prs71,74,84,87, 91: L.45 : Me.7 : Mo.80,81 : P.15, 16,17,62: Pr.ll2: prsZ.26.

algebraic, alternating, analytical, circular, circulating, conjugate, continuous, curvital, cyclotomic, derived, discontinuous, elliptic, even and odd, exponential, Fuchsian, gamma, generating, hyperbolic, implicit, infinite, imaginary, integral, irrational, irreducible, isotropic, iterative, monodrome, monogenous, monotypical, non-uniform, periodic, polyhedral, quantitative, rational, representative, transcendental, trigonometrical : see the respective headings.

analogous:----to algebraic functions : C;89.

to circular functions : C.84.

to Euler’s : 0.89 : M.19. to functional determinants : J.75. sine and cosine : Q.16. to modular functions : Ac.2 : 0.93. connected by a linear eq.: 0.17. condition of f (x, u) being a function of $ (x, y).: A.21.

development of: see " Expansion.” defined by d.e : JP.21,28.

differing very little from zero : L.74. errors of geometricians : J.16. expressed by other functions, remainder : 0.98.

fractional: J.8: the variable being the root of an equation, N.56.

from functional equations : M.24. from Gauss’s equation : 0.92.

with lacunae: 0.96.

Lagrange, tr: JP.5,7.
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Functions—(continued):

linear: 0.90.

with linear transformations inter se : M.19,20.

whose logarithms are the sums of Abel’s integrals of the 1st and 3rd kind: C.92.

with non-interchangeable periods: M.201,21,25.

number of values of : 0.48.

do. through permuting the variables : JP.102,18 : L.50,60.

of two variables : Ac.3 : C.90,962. made constant by the substitution of a discontinuous group : 0.97. which arise from the inversion of the integrals of two functions: 0.922.

whose ratio has a fixed limit: G.5. f(x,y) such that f{zf (x, y)} is symmetrical : J.l.

of three variables satisfying the d. e, AF = 0 : Ac.4.

of three angles, th. re 1st derivatives : J.48.

of 4 and 5 letters : L.56.

of 4, 5, and 6 letters : L.50.

of 7 letters : C.57,953.

of 6 variables which take only 6 different values through their permutation, not including 5 symmetrical permutations : A.68.

of n variables : 0.21 : Mo.83 : with 2n systems of periods, 0.97. analogous to sine and cosine : Q.16. number of values : J.85. : do. by permutationofthevariables: 0.214. obtained from the inversion of the integrals of linear d. e with rational coefficients: C.9O2: J.89. of an analytical point, ths : C.952. of a circular area from a given integral condition : Z.26.

	
	
	
of imaginary variables : 0.32,48 : JP. 21:    L.58,593,603,613,62 : LM.geo 8.







of large numbers, approx. : 0.203. of a real variable, connexion with their derivation : M.23,24. of real arguments, classification according to their infinitesimal variation: J.79.

of the species zero and unity : 0.95. of a variable analogous to the polynomials of Legendre: 0.95.

allied to Pfaffians : Q.16.

rationally connected: L.59.

with recurring derivatives : LM.4 : TE.24.

Functions—(continued):

which relate to the roots of the equation of division of a circle or of n‘—1=0: J.17.

representation of: 0.923: M.17 : one-valued, Z.25. approximate: Z.3.

by an arbitrary curve : M.22. by Bessel’s functions : M.6. by definite integrals : Ac.2. by elliptic functions : An.82. by Euler’s sum-formula: J.56. by Fourier’s series : Mo.852. by graphic methods : A.2: imag., ' J.55.

by infinite products : Z.24. y = eae"A, constant and r a positive integer: A.42.

y = k11^ ; A.52.

reproduced by substitution : 0.19.

resolution into factors : Ac.65 : C.19, 30: CP.11: J.18.

satisfying the eq. AF = 0 : 0.96. singularities of: M.19.

whose successive derivatives form an arith. prog.: An.71.

systems of: Mo.78: of two inter-connected, 0.98.

of two systems of quantities, correlative and numerically equal:

which are neither rational nor reducible to irrational algebraic expressions : 0.182.

which are of use in elliptic functions and logarithms : No.58.

which take a given value in a given position : An.82.

which have no derivative throughout a certain interval: An.77.

which vanish with their variables: TI.162.

a® : An.63.

{(x“)"}* and so on, and the corresponding inverse function : J.42.

arising from v(4—2xz+z2): J.2.

o(j=a«+b. LM.9. cx+d

f(u,z), u being an implicit function of an imaginary variable z : Pr.42.

f(x), formula of analysis : J.53. f(x) =0,y =f (a), th. re p (y): E.36.

Y () =dlogT(): 2743.

Y (a) of Jacobi: J.93.

Q (x): Ac.2.

Functions—(continued):

1

Bessel’s, l(x) = — cos (x cos 6) d6 TT Jo _122 424    26  I ~ 22122.42 22.42.62 T

Cauchy’s numbers ; N-kj,P = 1 "e-kui (elu-e-in)j X 27 Jo ^—e~iu)pdu.

	
	
	
	
•                     T COS 20 cosine integral; Ciq = ---—da : taP.70.            ‘o "









Dirichlet’s function, F(x) =s (D) 1. Z.27. inn" elliptic; j^-^-1 F (eP) {R (e”)}“*pde : J.23.

* Euler’s ; B (I, m) : 2280.

	
	
	
	
•                       (o o—% expon-integral; Ei (=   —de : A. 10:taP.70.        n4."









En = — — ■ sin2n c cos(e cos co) da: An. 1," mv0 70.

E (a?) : Mel.6.

a="tansla=1-41,+1—&c. Jo a?                 5"     5" = -915965,594177 ... : Mem.83.

T (a) : see “ Gamma function.” Jacobi’s (b) =(-1) exp x‘-"2le(bi) \ a /                 i=1     \ a / C.592,60: L.47,50.

Laplace’s Y() : M.14.

log-integral; Liq= "de . Jolog a

Ln (1+)=«-4+s - &c.

Legendre’s Xn : see " Legendre.”

P, wheree exp ( — @2) dx = he • T : Jo \   h2/         4 10.

P" (cos y), n = 0 : G.22.

P (a3Y,c) : Z.14. a 3 y / no

n (z) = a"e-®da ; Y (z) = dz log n (z) : Q.i.

	
	
	
	
	
sine-integral; Si q = P sin & dx : taP. 70.                 vo x











zje exp (— z*) F(z) dz — 0 : C.93.

Functions—(contimted): 3/{1+az3} dx : J.9,.

Y(p,      E^^dcp Jov{1—p2 sin? @}"

X, Y, &c., such that SXYda = 0 and and that any function can be expanded in the form aX+3 Y+&c. : LM.10.

*Gamma function, T (n): 2284 : A.4,6,61: An.69 : C.35,92,96 : J.35,82,90, ap 57 : L.42,46, 52,55: Q.9 : Z.1, 25. . application of this and other transcendents : 0.86.

of a complex : Me.84.

* curve y = r (x): 2323.

* deductions : 2286—2316 : A.10. derivatives of : Q.6.

of equidifferent products : J.36. of an infinite product: J.39.

* = limt. of H Mn: 2293: A.30.

* logarithm of : 2294,2768: C.9.

* numerical calculation : 2771.

* as a definite integral: 2768. n, negative : OD.3.

* numerical calculation of : 2317.

* the function v (x) = dx log T (x) : 2743 . —70. reciprocal of: Z.25.

reduction of: J.40.

* transformation of: 2284, 2318 : J.57.

T(n+1) = • (27) e-"n"+i(1+e) (Stirling) : C.5O2.

*r (m) r (1—) = _ : 2313 : Ac.3. sin mT

*r (c) T (a+1 ) ... T ( &+"—1): 2316: \ n /        \ n / L.55,56.

r (x) = P (x) +Q(): Ac.2. '

s 1 : G.6. r(«)

Gauche cubics : 0.82 : J.60 : N.622. 3rd class, theorems : J.58. number of common chords of two : An.70.

through five points : N.83. through six points, cn : N.66.

Gauche curves : C.70,77,903.

Mo.82: thsN.532.

classification of: JP.32.

on a cubic surface : 0.62.

of a developable surface, singularities : An.70.

differential invariants of: JP.28.

Gauche curves—(contimied): intersection of two surfaces having common multiple points, singularities of: 0.80.

on a one-fold hyperboloid : An.1 : C. . 52,53. metric properties of, in linear space of n dimensions : M.19. representative curve of the surface of principal normals of : C.86.

of the zero species : C.80.

Gauche helicoids : rad. of curv.: N.45. in perspective: JP.20.

Gauche :----in-polygons of a quadric: C.822.

perspective of algebraic curves : 0.80. projection: N.65.

quadric : N.67 : and orthogonal trajectory of generatrices : thN.48.

	
	
	
	
	
	
quartic : A.62 : 0.82 : L.70. 9 points of, 7 points of a gauche cubic and 8 associated points: 0.98. unicursal, a class of: 0.83. surface: N.61.













sextic curve: 0.76.

surface: JP.17: L.37,72. deformation of: 0.57. which can be represented by a p.f.d.e of the 2nd order : 0.61.

Gaussian periods of congruent roots corresponding to circle division: J.53.

*Gauss‘s function: see “Hypergeometric function.”

Gauss’s theorems: J.3.

*General methods in anal. geometry: 4114.

General numerical solution of any problem: LM.22.

	
^Generating functions : 3732 : J.81: N. 81: Pr.5 and ground-forms of binary quantics of first ten orders : AJ.23,3. do. of binary 12-ic and of irreducible syzygies of certain quantities: AJA



of some transcendental series : At.55. for ternary systems of binary forms, ta : A J. 5

	
*Geodesics : 5775, 5837—55: A.39 : C. 402,41,96,p.c97: CD.5 : G.19 : J. 50,91 : M.20 : Me.71: N.45,65 : Q. 1, 5: Z.18,26.



of cubic surfaces, loci : CD.6. curvature : 5846 : C.42,80 : L.12. on an ellipsoid : M.20.

* radius of: 5776,5846. duals of: Q.12.

	
	
*    equations of: 5837.





Geodesics—(continued): flexure of: 0.66. forms from cn of their polar systems : Z.242.

* geometry: 5855.

problems: A.8 : An.65 : CP.6 : J.532: L.49 : TN.732.

on a quadric or ellipsoid: C.222 : CD.4: J.19: L.42,41,44,48,57 : M.3 5: N. 76. Joachimsthal's theorem: J.42. and corresponding plane curves 0.50. and lines of curvature : L.463: N. 82.

* pd constant along such : 5842. shortest lines: .1.26.

* through an umbilic : 5850. on a right cone: A.69.

* radius of torsion of: 5848: IDR'P^-V P = 0, Me.75. sections : Z.2.

* shortest lines on surfaces : 5838: J. 20. on a spheroid : J.43. triangles: Mo.82.

best form of: N.55.

reduction of arc of a small one : An. 50.

Geodesy, spherical problems : A.252,63. representation of one surface upon another: An.70.

Geodetica, integration of its eq: An. 53.

Geography, comparative : A.57.

•Geometrical conics: 1150 —1292 (see Contents p. xviii): G.l: Me.62, 64,71,73 : Q.10.

Geometrical:----constructions : LM.2. definitions : J.1. dissections and transformations : Me. 75. drawing : A.23.

figures, general affinity of : J.12. forms : G.l : of 2nd species, G.3,4.

* mean : 92 : CD.8 : Pr.29. approx, to by a series of arith. and harm, means : N.79. paradoxes : Z.24.

* progression : 83 : A.pr2,6 : G.11 : N. 54. a property of 1,3,9,27... : A.33. proportion, theory of pure : A.62. quantities and algebraic eqs : C.29. reckoning (Abzahlenden): M.10. relation of the 5th degree : M.2. relations, ap of statics : J.212. signs : Z.14.

* theorems and problems : .920—-1102.

Geometrical—(continued): theorems : J.11 : L.46 : N.743 : Law-son’s, Man.13. method of discovering : J.8. from a principle in alg.: LM.11. problems : At.25,32. transformations : A.32.

and ultra-geometric quantities : 0.52, 55.

Geometry :----of the Ancients : At.22. comparative, ap. to conics : N.653. of derivation : An.543.

* elementary : 920—1102 : J.6,10 : A.2 : N.623. principles of: A.40 : 0.56 : G.11,14, 20: LM.16: Me.62: Z.20. enumerative : Ac.l. higher : A.20 : No.73 : prsA.55. instinct of construction : N.56 : Q.2. der Lage: Z.6. linear : A.27 : ap. to quadrics, M.10. linear and metrical: M.5.

of masses: JP.21.

and mechanics, on their connection : L.78.

organic, of Maclaurin : L.57. plane, new anal, foundation : M.6. plane and solid, analogies : L.36: N. 653.

plane and spherical, ths : Mem.15. of position : J.50 : Q.1 : analTE.9. theorems : An.55 : J.31,34,38,412 : TE.28.

5 points in space: CM.2. in lieu of proportion : CP.10. of space, abstract: Pr.14,18 : aphorisms, J.242.

* of three dimensions : 5501—6165 : N. 63.

Glissettes :----problem: Q.ll. centre of curv.: JP.21: rad. of curv., L.45..

Golden section: A.4.

Goniometrical problems : Q.7,15. Graphic calculus: C.89.

Graphs (Clifford’s): LM.10.

application to binary quantics: LM. 172. to compound partitions : AJ.96.

Grassman’s life and works : M.14. Greatest common measure: see “Highest common factor.”

Greatheed’s theorem, D.C : CM.1. Grebe’s point: A.58.

Green’s theorem, &c.: J.39,44,47 : TE. 26.

^Griffith’s theorem (Conics) : 6096. Ground figures, single and double relations : J.88.

Groups : AJ.1: LM.9 : M.13,20,22. cyclic, in Cremona’s transf. of a plane An.82.

in a quadratic transformation : An. 82. discontinuous : C.94.

of linear substitutions : Ac.l. of finite order contained in a group of quadratic substitutions: C.97,98. of finite order contained in the semi-cubic groups of Cremona: 0.99. Fuchsian: Ac.l3.

formed from a finite number of linear substitutions: 0.83.

of interchangeable elements : J.862. introduction to the theory of : Me.62. Kleinean : 0.93.

of many-valued functions : Man.62. modular eqs. (Galois) : M.14,18. non-modular : Man.652. of points G‘4 on a sextic with 5 double points: M.8.

primitive: 0.72,78,96: L.71. for the first 16 degrees : 0.75 degree of, containing a given substitution : J.79.

(P)36O (11)360 of the figure of six linear complexes of right lines two and two in involution : An.83. principal, classification of: 0.73. of substitutions: C.67,84,94: M.5: isomorphism of, G.16. of 168 substitutions and septic equations : M.20.

transitive : G.22 : J.83 : N.84.

*Guldin’s theorems : 5879 : Me.85.

Harmonic axes : of curves : 0.743. of a system of right lines and planes : G.4.

Harmonic centre for a system of 4 points in relation to a given pole: Z.20.

Harmonic division :----of a conic : G.10. of a quadric : G.10.

* of a right line by a circle and chord of contact: 948.

Harmonic :---hexhedron and octahedron : Z.18.

* pencils and ranges : 933, 4649 : Q.6.

* of 4 tangents to two conics, locus of vertex : 4984.

* points, system of four : 1063 : N.51. polar curves : A.50 : M.2.

* progression or proportion : 87 : ext of th, A.31,43,tr41: 0.43 : Me.82 : N.85 : Z.3,14 : sum of, Pr.20. divergency of: A.1.

* section by a quadric and polar plane : 5687.

Harmonics in a triangle : A.57.

Hermite’s $ function, linear transf. of : M.S.

*Helix : 5756 : A.64.

conical: N.13,53: rectif. of: N.45. on a twisted cone: A.16. relation with cycloid : C.51.

^Hemisphere, volume, &c.: 6061.

Herpolode of Poinsot: 0.99.

Hesse’s surface, &c.: Z.19.

*Hessian : 1630 : J.80 : curve, M.13. covariant of binary quintic form : M. 21. of a quaternary function: Q.12: cubic, Q.7.

of a surface: nodes of, J.59: constant of, M.23.

Hexagon: thN.65.

Pascal’s : see " Pascal.” in space: J.85,93.

“Hexahedron : 907.

Higher algebra : An. 54 : N.55, (Serret): Q.45.

Higher :----analysis : A.25 : G.14. arithmetic : J.6,9 : N.81. geodesy: Z.19: trZ.132. geometry: A.10: N.57 : Z.6,17. planes : A.47.

variation of simple integrals : Z.22.

*Highest common factor : 30: A.3 : M. 72: N.42,44,452. of 2 complex numbers: no. of divisions : L.46,48.

of 2 polynomials : CM.4. remainder in the process : C.42.

Holditch's theorem: see " Closed curve.”

Holomorphic functions : 0.99 : G.22. development in series : C.94 : M.21.

Homalographic projection: N.61.

Homaloidal system, n-tic surface and an (n—l)-ple point: G.13.

Homofocal:----conics: thN.492: loci relating to parallel tangents, C. 62,63,. quadrics : 0.50 : L.th51,60 : N.th64, 79 : Pr.332. paraboloids: A.35. and conjugate surfaces, tr : Z.73. common tangents of: 0.22 : L.46. quartic surfaces, triple system of, including the wave surface : N.85. sphero-conics: L.60. surfaces, and u sin?i‘+v sin?i” == a?: 0.22.

Homogeneity of formulae : 0.96 : thsN. 49.

Homogeneous coordinates: G.l3,8: Z.15. metrical relation: G.11.

Homogeneous functions : see " Quantics.”

*Homogeneous products, H (n, r) : 98— 9: Q.6,9,10.

* and sums of powers : 538 : E.39,40. Homographic division of three tangents to a conic : Mel.2.

Homographic figures : threeC.94 : thQ. 3: N.58,68,pr61. corresponding points, th : L.45. focal properties: LM.22. relation of roots : N.73.

*Homographic :----pencils : 4651.

* systems of points : 1058—73. on quadric scrolls : Q.9. theorem of a conic : N.48,49. transformation: N.70: of angles,Q.14.

Homography: Me.62 : N.60 : Z.21. and perspective: N.69. and rotations, correspondence of : M. 15.

Homological polar reciprocal curves: ET.44.

*Homology : 975 : G.3,8: N.44 : E.24. conic of: 0.94. of sets: Q.2.

* of triangles : 975 : Me.73.

*Homothetic conics : 4523 : N.64,th68. with the same centre : 0.66.

*Horograph : 5826.

^Hyperbola :----theorems :   A.27,46 : CD.1: N.424.

* with asymptotes for coord, axes: 4387 : Me.73.

* asymptotic properties : 1182.

* conjugate: 1160.

* construction : 1247, 1289. eccentric circles: A.44.

* quadrature of,&c.: 6118 : A.25,26,27 : N.44 : TI.7 (multiple areas).

* rectangular : 4392 : Z.26 : under 4 conditions, A.3.

* segment of : 6118 : N.61.

*Hyberbolic arc, rectification of: 6115: J.55 : P.2,11,59.

* Landen’s theorem : 6117 : LM.11,132. “Hyperbolic functions : 2180 : A.19 : G. 15 : Mem.30 : N.64. analogy with the circle : An.51. ap. to evolution and solution of eqs.: A.38. construction of tables of: J.16. generalization of: A.35.

*Hyperboloid : 5605 : J.85 : Me.66. theorems : geoG.4: J.24,86.

* one-fold : 5605 : of rotation, A.70 : L.39 : M.18 : N.58. parameter of a parabolic section of : N.75.

* two-fold: 5617 : A.18,ths27. conjugate : CD.2. equilateral and of revolution : Ac.5.

Hyperboloid—(continued):

* generating lines of: 5607. and relation to ruled surfaces : Z.23. of revolution : N.72.

Hyperboloidic projection of a cubic “ gobba ” : An.63.

Hypercycles: C.945.

Hyperdeterminants : CD.9 : J.34,,42.

Hyper-elliptic functions : A.16 : AJ.53, 7 : An.7 0 : C.403,622,67,92,94,97 : CD.3 : J.25,27.30,40,47,52,54,75, 76,81,85: L.54: M.3,11,13 : Q.15,19. of 1st order : J.12,162,35, 98. containing transcendents of 2nd and 3rd kind : J.82. multiplication of : Ac.3 : M.17,20. transformation of: Ac.3 : (p = 2), M.15. transf. of 2nd degree : M.9 : Mo.66. transf. of 3rd degree : M.l,193. transf. of 5th degree : M. 16,17,20. of 3rd order (p = 4) : M.12. of 1st order and 3rd kind : J.65,68,88. of 1st and 2nd kind : An.582: J.93 : in series, M.9. of 3rd kind, exchangeability of parameter and argument : J.31. of nth order, algebraic relations : C. 993. Gopel’s relation : An.82. addition theory : M.7. addition th. for 1st order in a system of confocal quadrics : M.22. approximation to: P.60,62, choice of moduli: 0.88. division of : C.68,98 : L.43 : M.I. bisection: C.702 : trisection, An.76 : M.2. generalisation of: C.84,98. geo. representation: L.78. inversion of : C.99 : J.70. in logarithmic algebraic functions : M.11.

and mechanics : J.56. periodicity moduli: A.68 : An.70. periodic: J.32 : of the 1st class, LM. 12 ; with four periods, An.71. with quartic curves, 4 tables : M.10. reduction of, to elliptic integrals: Ac.4: 0.855,93,99: J.55,76,79,86. 89 : M.15: TI.25. transformation of 2nd order, which, applied twice in succession, produces the duplication : C.88. transformation: M.7,prl3. of two arguments, complex mult, of: M.21.

Hyper-elliptic d-functions, alg. characteristics : M.25.

Hyper-Fuchsian functions from hyper-geometricseries of two variables: C.99.

Hyper-Fuchsian groups : C.982.

Hyper-Jacobian surfaces and curves : LM.9 : P.77 : Pr.26.

Hyper-geometric functions or series: 2 91 : A.55,57 : J.152,75 : M.3 : Q. 16: Z.8,26,27. as continued fractions : 291—2 : J.66. of two variables : C.902,91,95 : L.822, 84. extension of Riemann’s problem: C.90.

of nth order: 0.96: J.71,72 : M.2. and Jacobi’s polynomials : 0.89. square of: J.3.

Hyper-geometric integrals : J.73 : Z.22.

“Hypocycloid : 5266.

with 2 cusps : Z.19. with 3 cusps : J.64 : Me.83 : N.70,,75.

Hypsometric tables of Bessel: Pr.12.

*lcosahedron : 907: M.12,25 : and star dodecahedrons, Z.18.

Icosiangame: Q.5.

“Imaginary :----quantities : 223 : A.20, 22: 8 square, A J.4 : 0.18,24,25, 882,94: JP.2 3: N.63,64: P.1,6,31. ap. to primitive functions of some derived functions: N.63.

* conjugates : 223 : modulus of, 227.

* logarithm of : 2214: LM.2. curves : Q.7. exponents: A.6. integrals of d. e : 0.23. prime factors of complex numbers formed from the roots of irreducible rational equations: Z.10. transformation of coordinates : Q.7. variables: 0.962 : polygons of, 0.92.

• • a-\-ib in the form a+Fiy : A.55. tan-1 (£+in) in the form x+iy : A.49. p (a, y)-}-^ (x, y) = F (xl-iy), to determine $ and y : A.10.

* geometry : 4916 : A.322,61 : 0.61 : CD.7,8 : J.55,70 : M.11 : Me.81 : N.702,722: TE.16.

of Lobatschewski: G.5: J.17 : N. 68,. of Standt: M.8.

use in geometrical drawing : J.I.

* circular points at infinity : 4717, 4918, 4935 : tg.eq4998, 5001 : Me.68 : Q. 3 8 32

* coordinates : 4761 : 0.75 : Man.79 : homog.Q.18. elements in geometrical constructions, and apparent uncertainty therefrom : Z.12.

Imaginary—{continued):

* lines through imaginary points: 4761, 4722—3.

problem, Newton-Fourier : AJ.2.

* tangents through the focus of a conic: . 4720—1, 5008 : A.22. variables, generating polygons of a relation between several: JP.30. a+iy = VX+iY, and the lemnis-catic coordinates of the nth order.

Implexes of surfaces : C.802.

"Implicit functions :----of one independent variable, ( {xy); values of d., ^, (3e : 1700-6.

* the same when V (x,y) = 0 is also given : 1718—9.

*    Y., Y2e Y3 when 4 (x,y) =0: 170 7— 16 : ynx, An.58.

*    $. (u,y,^, ©2 (n,y,^ : 1720—1.

*     $= (x, y, z, §) when 3 eqs. connect x, y,z, ^ : 1723.

* of two independent variables :---- yxz when p (x, y,%) = 0: 1728.

* ^Jii.xyz), $21, (.z, when V (x, y, z) = 0: 1729—32.

*     $ (x, y, z, §, 7) when 3 eqs. connect x, y, z, 8, 7 : 1735.

* of n independent variables : 1737: An. 58. transf. into isotropic means and trig, series : 0.38. transf. into explicit functions : 0.38. defined by an alg. eq. : 0.47. determined by the infinitesimal calculus : 0.34.

"Increment : 1484.

Incommensurable :--numbers: JP. 15 : N.43. limits of numbers : N.81. lines : N.44: in ratio ^3 : 1, A.3.

*Indeterminate coefficients : 232,1527 : A.3: J.5.

“Indeterminate equations • (see also " Numbers ” and " Partition ") : 188—94: 0.10,th78,88 : G.5 : J.92. Mem.44 : N.44,45,pr57,592,71,78, 81,prs81,85 : TE.2.

ap. to a geo. problem: Mem.20 : Z.20. impossible class of : N.63. linear : JP.13 : L.41 : N.43 : P.61 : Z.19.

* with 2 unknowns : 188—93 : A.3,7 : J.42 : L.63,69 : Mem.31.

* with 3 unknowns : 194 : G.2. with n unknowns : 0.94 : N.52. 21+2x2+ ...+Na = m : G.1.

Indeterminate equations—{continued): and congruences : Pr.ll. quadric : J.45 : in n unknowns, N.84. quartic : geo.cnL.63.

quintic : J.3.

quadratics in two unknown integers : ^-ay2 = ±1: A.12,52 : E.23,28 : J.17 ; by trig.: L.64—66 : N.78. x2—ay?=b: 0.69: L.37,38 : Mem. 28. 22—ay2 = ± 4, a= 5 (mod 8) : J.53. a2+y? = {a2+b2)k : 0.36 : An.53. «2+y2 = 0 : geoA.55.

{n + 4)a?—ny2 =4: N.83.

ax?+ba = y2: L.76.

ax2 + bx + c = y2 : G.7.

222+ 22 + 1 = y2: N.78.

ax2 + bxy + cy2 — 0 : geoC.9.

x2 + nxy — ny2 = 1: N.83.

x2 — y2 = xy impossible: N.46. ax2 + bxy + cy2 + dx + cy +f =0:0.87. quadratics in three unknown integers: 23+32+22=0: geoA.55.

2?+y2 =z2: A.22,33: E.30: G.19 : solution prior to Diophantus, 0.28,3.

x2 + ay2 = z2: N.78.

ax2 + by2 = z2: G.8

x2 + ay2 = z : N.78.

a?±ay=4z: N.72.

x2 + a {x + b)2=y : N.78,.

(x2 + ky2) z = ax+ bky : J.49.
{a, b, c, d, e,fY«yz)?= t: Pr.13. 22+y?+ 16z2— n2: Mel.4; =4n + l, L.70.

quadratics in four unknown integers : x2 + y2±z2 = t2 0.66 : N.48 ; x2 + 2y2 + 322 = t, L.69.

y2 = 22 +1 {z + B)3 : N.782. quadratics in five unknown integers : a2 + by2 + cz2 + dt2 = u, with the following values of b, c, d : 1,1,1; 2,3,6 ; L.45: 1,1,2; 1,1,4; 1,1,8; 2,2,2; 2,4,8 ; 4,4,4 ; 3,4,12 ; L.61 : 1,2,4 ; 1,4,8; 2,2,4; 2,4,4; 2,8,8; 4,4,8; 4,4,16; 4,16,16; 8,8,8; 8,8,16; 8,16,16; 16,16,16; L.62 : 2,3,3; 3,0,3a ; L.66 : 1,3,3 ; L.6O3, 63 : 1,1,3; 1,2,6; 2,2,3; 2,4,6; 4,4, 12; 1,1,12; 2,2,12; 1,4,12; 1, 3,4; 3,4,4; 4,12,16; 3,6,6; 3,3,3 ; 3,3,12; 3,12,12; 12,12,12; L.63:

Indeterminate equations—(continued): 1,1,5; 2,3,6; 5,5,5; L.64: 1,5,5; 1,6,6 ; 1,9,9 ; l,n,n; ^.n^n ; L.65, 59 : with c — ab, 0.42 and L.56. ax2 + by2 + cz^ + dt^=u, with the followingvalues of a, b, c, d : 2,2,3,4 ; 2,3, 3,6;   3,3,3,4; 1,2,6,6; 2,3,4,4; L.66: 2,2,3,3; L.65;   3,4,4,4 ; 3,4,12,48; L.63.

«?+y2+2%+t=4u : L.56. ax^ + by2 + cz^ + dt^ + exy +fzt — u, with the following values of a, b, c, d, e,f: 1,2,—2,2,1,2; L.63 : 1,2,3,3, 1,3 ; 2,2,3,3,2,3 ; 1,1,6,6,1,6 ; L.64 : 2,3,2,3,2,2 ; 2,5,2,5,2,2; L.64 : 1,1, 2,2,0,2 ; 1,1,1,1,0,1 ; 1,1,1,1,1,1 ; 2,2,3,3,2,0; 1,1,3,3,1,0; L.63; 3,5, 10,10,0,10; 2,3,15,15,2,0; 2,3,3,3, 2,0; L.66.

«2 + 2y2 + 222 + 3(2 + 2yz = u : L.64. 202 + 3y2 + 322 + 312 + 2yz = u : L.6 6. a2 + y^ + 22 + 2u? + 2uv + 2v2 + ^ — w : L.64. a? + y^ + 222 + 2zt + 2t^ + Bu2 + 3v2 = w : L.64.


2 (xc2 + xy + y^) + 3 (z2+12 + u2+v)=w : L.64.

ay + yz+zt+tu =v: C.622: L.67.

y^ •—— a + x^ + ,., + a, : G. 7. quadratics in seven unknown integers :

x^ + ay^ + b^ + ct^ + du^ + ev^^w, with the following values of a, b, c, d, e : 4,4,4,4,4; 1,4,4,4,4; 2,2,4,4,4; 1,1, 4,4,4; 1,2,2,4,4; 1,1,1,4,4; 1,1,2, 2,4; 1,1,1,1,4; 4,4,4,4,16; L.65: 1,1,1,1,1; 1,1,1,1,2;    1,1.1,2,2; 1,2,2,2,2; 2,2,2,2,2; 2,2,2,2,4; 3,3, 3,3,3: L.64.

higher degrees :

cubic: AJ.2.

&3 = y2+: N.782,83 : with a = 17, N.77.

«3+y3 = az^ : N.782,80.

23+33+23+u3 = 0: A.49. ax^+by^ = ^-_ C.87,91,94: N.79: a = 7, b = -5, L.79. a4±2"y4 = z^ and similar eqs : L.53. 24+ax?y?+y4=z?: Mem.20. ax4+ba2y2+cy4+dasy+exy3 =fz2; 0.883.

a5+y5 = az5: L.43.

«7 Dy"1 = 22, impossible : 0.823 : L.4O4.

Indeterminate equations—(continued): -tic solution by alg. identities: C.873.

a" Dyn — zn impossible if n>2 (Fer-mat’s last th.) : A.26,58 : An.64: C.24,89,902,98: J.17.

a?n — y?n = 2" : L.40. axm + bym = czn : N.794. a™ = y"+1, impossible : N.50,70,71. «2—ay^ = zn : 0.99.

simultaneous : x = u? ; 2+1 = 2v2 ; 2x+ 1 = 3w? : N.78.

«?+a= y^- y^—a — z^: An.55: 0.78. 22+2+2 = y^-, a?—x—2=z2: N.76. axDby + cz =0 ; AyzDDzxDCxy = 0: A.28. 22—/2—22 = □ ;  22—92—22 = n • -2+12422 = □ : E.20. x^D^y Dy^= ^', y2+ayz+z==I; 22+ax+a? = □ : E.20,21. a+y+z = • ; a2+y2+22 = □ ; «3+y3+z= □ : E.17. six eqs. in nine unknowns : N.50. exponential, xy =yx : A.6 : Z.23. ax— b =1 : N.57.

^Indeterminate forms : 1580—93 : A.26 : AJ.l exponential: J.1 : Me.75 : N.48,77 : 0, A.21; Z.1: —; L.41, 0               oo

%      42: N.46 (e) when x = oo , 1592; x 0°, J.11,12 : 0 exp 0", J.6.

* with two variables : 1592a.

“Indeterminate multipliers: 213, 1862, 3346: N.47.

“Index law : 1490.

Indian arithmetic, th : L.57 : calculation of sines, N. 54.

“Indicatrix : 5795: 0.92: Me.72: N.74.

* a rect. hyperbola, condition : 5824.

* two coinciding lines : 5825.

* an umbilicus : 5819.

to determine its axes : L.78,82. determination of a surface from the indicatrix: A.59.

*Indices : 2 9 : N.765,77s,78.

in relation to conics : N.722. of functions, calculus of : JP.15.

Induction : 233 : 0.39 : G.15 : L.48.

^Inequalities : 330—41: A.1,2 4.

in integrals: Mel.3 : f.d.c.Mem.59. (| n)^ > n" : N.60.

5 x

Inequalities—{continued): ax >a : A.14.

if 22+y2 = 22, a"+y” 2 2" : A.20. geo. mean of n numbers < arith. mean : 332 : N.42.

Infinite :----equalities : M.10 : prG.22. functions : An.71 : J. 54.

from gnomonic projection : Me.66. linear point-manifoldness : M.15,17, 20,212,23. point-mass: M.23.

products: J.27 : N.69. value expressed by r functions : Ac.3. exhibiting circular arcs, logarithms and elliptic functions of the 1st kind : J.73 : Ac.4.

use of in mathematics : C.73.

“Infinitesimal calculus :' 1407 : M.11,18.

Infinitesimal geometry : An.59 : C.82. of a surface, formula : G.13.

Infinity, points at on alg. surfaces : G. 59.

“Inflexional tangents : 5789 : A.35. of a cubic curve : E.30 : J.38,58.

Inflexion curves : Z.10.

“Inflexion points : 5175: CM.4 : J.41. of cubic curves : J.28 : axis, E.31. Herse’s equation: N.81.

Inscribed figures :

in-circle :----of a quadrilateral, locus of centre: A.52.

* of a triangle : 709, 953, 4747—50 : tg.e 4889: CM.1.

* in-centre : 709, t.c4629, tg.e4882.

In-conic :----of a circle : th J.91. four of a conic : prJ.39. of a developable quartic : An.59. of a polygon : M.25. of a quadric : J.41.

* of a quadrilateral: tg.e4907 : N.63 : four, N.56.

* of a triangle : 4739—46, tg.e4887 : A.2 : N.50; max, A.8 : Q.2 : lat. rect., E.34.

In-cubic of a pencil of six lines : Q.9.

In-hexagon :—•—of a circle : A.22.

* of a conic : 4781: N.57,82.

In-parabola of a triangle : CD.7.

In-pentahedron of a cubic : Ac.5 : M.5.

*In-polygons:--of a circle: 746: CM.1: J.35 : N.50. regular of 15,30,60,120, &c., sides : A.62.

do. 9 and 11 sides : LM.10. do. 17 sides : TI.13.

do. four of 30 sides : N.78. do. 5, 6 and 10 sides, relation : AGO, 43,45,48.

In-polygons—{continued) : two stars, one double the other: A.61.

of a circle and conic (Poncelet) : G.I.

* of a conic : 4822 : thsN.47 : cnTN.69.

* with sides through given points, cn : 4823 : An.512. semi-regular: N.63.

of a cubic (Steiner) : M.24. of a curve : Q.7.

of a polygon, th: CD.5. of a quadric with sides through given points : LM.22.

In-quadrics :--of a developable: Q.10: quartic, An.59.

6 of a quadric, 2 touching 4 : An.69.

*In-quadrilateral:--of a circle: 733 : A.5 : cnE.21 : area, N.44 : P.14.

* of a conic: 4709. of a cubic : N.84.

In-sphere of a tetrahedron : A.61.

In-spherical quadrilateral: N.49.

In-square : of a circle : J.32. of a quadrilateral: A.6.

In-triangles :----of a circle : P.71. with sides through given points : J.45 : N.44.

of a conic : J.7 : Maccullagh’s th, N.65. with given centroid : G.23. similar : A.9. of a triangle : ths Q.21. two (Steiner’s " Gegenpunkte ”): J.62.

In- and circum-circles :----of a polygon : N.45. distance of centres : A.32. of a quadrilateral: Fuss’s prMel.3.

* of a triangle: 935 : A.38.

* distance of centres : 936, 4972 : eq, 4644.

In - and circum-conics : of a pentagon : N.782.

of a polygon : J.64,70 : regular, Z.14. of a quadrilateral: 60 theorems, N. 453: N.76. of a self-conjugate triangle : Me.81.

* of a triangle: 4724, 4739 : An.5 2 : G.222.

In- and circum-heptagons of a conic : A.3.

In- and circum-pentagon : of a circle : A.22,43.

In- and circum - polygons (see also “Regular polygons”):---of a circle : L.16 : N.80 : p.11 : Q.ll.

* sum of squares of perps., &c.: ths 1099. difference of perimeters, ths : N.433. of two circles, respectively : 0.53 : G.21: L.78.

In- and circum -poly gons—{continued): of a conic: A.4 : ellipse An. 52 : An. 57 : J.64 : N.57,84. of two conics : 0.90.

of a curve : C.78.

of a homonymous polygon : A.50.

In- and circum-quadrics of a tetrahedron : eqsN.65.

In- and circum-quadrilaterals :----of a circle: A.48.

of a conic : 4709 : and pentagon ths, N.48.

In- and circum-spheres :----of a tetrahedron : N.73.

of a regular polygon : A.32.

* of a regular polyhedron : 910.

In- and circum-triangles :----of a circle (Castillon’s pr): Q.3. equilateral, of another triangle : Me. 74. and square of an ellipse : A.30.

* of two conics : 4970 : N.80.

* envelope of base : 4997. respectively of two conics having a common pole and axis : CD.4.

“Instantaneous centre : 5243.

^Interest: 296—301: and insurance, A. 26. .

Integrability of functions : An.50,73 : 0.28: J.59,79 : JP.17: L.492. criterion for max. and min. values of a primitive : An.52.

“Integral calculus : 1900—2997 : A.ext 18,26: Euler’s, A.20: C.14,42; Newton, OD.8 : G.19: L.47 : Me. 72,74,75: Mem.18,36. paradoxes : 0.44.

* theorems, &c.: 2700—42 : A.45 : C. 13 : L.geo.ap50,56 : Me.77 : Mem. prsl5,30.

Integral functions : 0.88,89,98 : G.4,22, : h.c.f of G.2. with binomial divisors : J.70. and continued fractions : An.77. reciprocal relation of : A.67.

“Integrals or Integration : 1908 : A.1,2, 4,5,6,10,23: Ac.1,32,44 : 0.90: CD.9: CP.3: J.2,4,8,17,25,36,39, 61,92 : JP.9,10,11 : L.39 : M.6,16, 73,75: Mem.31 : P.14,36,37: Pr. 7,39: Q.11,13: Z.7,ll,15,182,222,23.

* approximation to : 2127, 2262, 2991 : A.9,14: 0.97: CM.2: G.3: J.1, 16,18,37,48 : L.80.

* Gauss’s: 2997: 0.84: M.25. by the principle of Abel’s derivative : J.23.

* by differentiating under the sign of integration: 2258.

by elliptic functions : G.11 : L.46.

Integrals or Integration—{continued): from orthogonal surfaces’ theory: L.38.

by Pfaff’s method : A.47.

by series : Me. 71.

by substitution: A.18.

by Tchebychef’s method: L.74 : M.5. comparison of transcendents : Me. 79 : Pr.8. complex, representing products and powers of a definite integral: J. 48. connected with trinomial integrals : L.55.

convergency of: M.13.

definite :----applied to Euler’s, &c.: JJ6. . with finite differences : J.12. from indefinite: J.41,51,52.

whose derivatives involve explicit functions of the same variable : 0.12. determination of functions under the sign J: JP.15.

* difference between a sum and an integral: 2230: G.9. division into others of smaller intervals : A.4.

* eight rules for definite integration: 2245. equations for obtaining functions as integrals : J.79. expressible only by logarithms: An. 76. extended independently of the conception of differentials: A.61. formulae of: A.1 : J.18,19 : M.4: Me. 76 : Mo.85 : N.85 : failure of f, CM.2.

and gamma-function: LM.12 : Z.9,12. higher, of composite functions : A.20. with imaginary limits : C.23 : J.37. use of imaginaries in : M.14. inverse method: CM.4: CP.4,5 : L.78. involving elliptic functions : Pr.29 : Q.19.

* limits of: 2233—44 : L.74. multiplication of: Pr.23. number of linear independent of 1st kind: An.82.

of alg. differentials by means of logarithms : Mo.57 : An.75 : C. 902: J.12,24,78,79: Mo.84: N.81 (see " Integrals ”). of algebraic surfaces : C.993 : J.26 : octic, An.52 : cubature, 0.80.

* of circular functions : 1938—97 : 2453 —2522: No.1799: LM.4: M.6: Mem.9.

Integrals or Integration—(continued): sine and cosine : G.6 : M.11.

* of exponential and logarithmic functions : 2391—2431: E.17,18.

* of circular, logarithmic and exponential functions : 2571 — 2643 (see " Integrals ").

of a complex function : A.66: th of Cauchy, Ac.84.

* of a closed curve : 5204 : C.23 : E.28 : Z.17.

of differentials containing the square root of a cubic or biquadratic: Me.57.

* of discontinuous functions: 2252: C.23 : LM.6.

of dynamics : L.52,55,58.

of explicit functions, determination of algebraic part of result: An.61.

* of functions which become infinite between the limits : 2240 : J.20 : JP.11: Q.6.

of infinite relations : M.14. of irrational alg. curves by logarithms : An.61.

* of irrational functions : 2110—20: AJ.2 : An.56 : C.322,89 : L.53,64: Mem.30.

* limits of : 1903,-6, 2233, 2775.

* for quadrature of curves : 5205—11 : 0.68,70 : circle, J.21,23 : JP.27. triple integrals : J.59.

* of rational functions : 2021— 32, 2071 —2103 : L.27 : N.73.

* of rational fractions : 1915 : CD.3 : Mem.332: N.72.

of total differentials : C.992. of transcendental functions : JP.26. of two-membered complete differentials : J. 54. periods of : C.36,38,752: G.753 : JP.2 74.

* principal values of infinite definite : 2240: A.68. properties by elliptic coordinates: L.51. quotient of two d.i of the form Jda dy...dz : J.67.

reduction to elliptic functions : An. 60: LM.12: Me.77,78. residues of : JP.27. Riemann’s of first kind : An.79. singular values of: A.11.

* successive : 2148 : L.62 : 2nd order, M.20 and Z.11.

* summation of : 2250 : J.47 : JP.12,21. tables of definite, by B. de Haan, note on: C.47.

and Taylor’s theorem : Me.84. theorems : L.48 : P.55 : Q.10,12.

Integrals or Integration—(contiwued}:

* transformation of: 2245—52 : A.10 : CM.4 : J.fl5,22,36 : L.36 : Mel.3 : ,Q.l.

* variation of arbitrary constant: 2247 : J.33.

whose values are algebraic: J.10: JP.14: L.38.

algebraic FUNCTIONS. Indefinite: unclassified: An.75: C.9O2: J.12,24, 78,79 : Mo.84 : N.81.

* simple functions of a2=a? : 1926—37 : xm, A.4 : 1(a2—92), A. 38 : -1, 22—a2

N.82: — - , An.68.

* fractions involving a binomial surd : 2008—19.

(1+0) 1(28=1): Mem.13.

_______*________. 0.18 (a"—a) • (a" — b)' M/(1+4) : 2015 : L.80 : Z.8. 1—24 ----(1=68)2---— : Mem.10. (1 ±22)(1 + ba?+a4)1

_______a_______. A q (x3+8) v(x3—1) ‘ '

* ——- and deductions : 2021—8. a"±1


*

*

*

*

*

*

*

*

*

*



a"(a+ba")P: 2035—60: A.36 : Mem.il.

----—--— : A.40; - : 2007.

(a?—a)P (a—b)q        a" (a—1)" functions of (c+ba+cx2): 2071—80: 2103—9.

——e---—: A.55. ^/(a-(-bxI-cx^yi

functions of (a+ba2+c24): 2081—5.

functions of (a+ba"+ca2n) : 2086— 2102.

rational algebraic functions of irrational ones :

integrated by rationalizing: 2110— 20.

reducible to elliptic integrals, viz. : rational functions of VX4, VX3, and •Xg :

where X^ is a quartic in a : 2121 —41.

F(x, VX4) : 2121 : LM.8. : L.57.

F(a) : 2133—6 : J.36 : LM.14.

• X,


Integrals :----ALGEBRAIC—(continued):

: L.64 : Mel.3.




	
- 1 : 0.59 : 0D.1 : E.36 : J.10.



VA4

f(x)--- : 0.51.

F(x) VX4

	
- 1 : 2141 : J.17 : Man.79.



Az

F^X.): L.57.

—1: Me.82.




Integrals :----ALGEBRAIC—(continued):

* «"F { (^ax—&) } (Cauchy): 2712:

A.9.




xn

1+2a cos c+a2




: A.12: E.41.




deductions from this involving in-te grals of the forms




11—xn -     ,

----dx and

o 1 2




	
•    maw



sin---

n : A.35.

sin aw




(1—23)3

1




(x3—1).(x3 — b3)’




&c., reduced to




Jacobi’s functions : Q.18.

—f()--- : J.32.

•± (1—98)

sundry : 0M.2 : L.47.




Other limits:

1 F (x) dx f6 F (x) dx

-1 V(1—a?)' J   (x—c)”




2368—9.




Limits 0 to 1 :




n/a p

b (a-bx)qxm~xdx-. A.35.

o

1—o sinc dx=f(a)-. geoN.85.

-1 1 — 20 COS a—22




*

*

*

*



Euler’s : see " Euler’s integrals.”

a‘-1 (1—a)n-1 : 2280: A.40: 0.16:

J.ll,173.

2l—1 _ 2m- 1

---: 2341 : 0.55.

(1+e)‘*m

similar forms: 2342—4, 2352, 2356 —67.

- 1 pond - 1

------. 2367: A.10.

1— 1— a"

«"(—)". L.59.

(1+cx)P

_‘(1—2) L.57

{1+.(1+ax)}2P+24*2

«"*(1—)n—1 . L 56_7

(a-I'bx-\-cx^)m+1

------------------------: J.42.

(a—be)m (1—xY~n xn

Limits 0 to co :

—,&c.: 2309—12, 2345—55: A.38: 1 ±x

J.24: L.41 : Q.12 : Z.19.

----1----: 2364.

(x2+a2)"

Xnx~r: Me.83.


20




^n > a > 0 : N.48.



, &c.: A.16.

CIRCULAR FUNCTIONS. Indefinite:

* sin x, sin-la, &c.: 1938—49: sin"a,&c., 1954—7 : cos”®, N.74.

* --1---: 1951: J.9; _----— a+ocos®          (a+bcosx)n 1958 : Me.80.

* products and quotients of sine and cosine and their powers : 1959— 80, 2066—70: A.49.

* binom. funcs. of sin and cos: 1982—92.

* ditto of tangent: 1983, 1991.

*  F(sin g, cost) . 1994—7 . A 12 . a cos 2+b sin -c J.19,32.

* (a+2b cos x+c cos 2)-1 : 1993;

*       -------------------, 2029. a2n—2®” cos 26+1

* ___________F (cos x)____________: 1996. (a1+bi cos a)(a2+b2 cos ®)...&c.

a function of sine or cosine in a rapidly converging series, and successive integration of it: J.4,15.

__________sin"d__________ . a Ji (1—k sin c) • (1 — 12 cos2)

(sin amx)2n : J.81.

•{1—%% sin? } (a+x) sin3 } (a—x)^ : J.39.


x" (1+g2), and 12 similar: A.35. 1+a4n+2




sine : A.17 : with m = 1, G.7. xm



Integrals:----CIRCULAR. Indef.—(cont.):

* —sin lex f (z) (Fourier) : 2726—42 : 2 or sin 2

A.38,.


*

*

*

*



Limits 0 to 9 :

sin” a: 2453—5, 2458, 2472: E.29: n = i, E.28.

tan2™-1®: 2457.

sin” a cosp a : 2459—65.

cosP ® sin nx : 2481, 2484—92 : L.43.

cosn-la sin va 7 , . . . . -----.------- = — and similar : A.59. sin 2         2

* ® cos"-2® sinn® : 2494.

* ————1, . o and similar : 2496 C2 COSP 2 + 02 sin3 0

—2501, 2344.

* cos?-n-la sin”-la Sin mt and cos E ‘ sin”-2 a sin pa : 2585—8. -

* a cot ax : A.34 : No.19 ;

x tan AT (1—ba) : 5340.

Limits 0 to T :

* sin"® cos7’® : 2459.

* sin nx sin px : 2467—9.

COS-

* (sin)” sin nx: 2474—82,2493.

\ cos / cos                 ’

* sin?ne d,f(cosa): 2495.

cos n (x—a sin®): L.41 : 0 to 2T, 0.39.

cos (a+na) cos (b+pa) cos (c+qx) : 0. 54.

* —sine,—Pr.25: with a = 1, 2506 l—a cos3®

and Q.ll.

x sin® or sin® sinr® or cosr® . -. 1-2 005:+c2—2623-9.

sin^ or ooSf» :Q.11:LM.1l:n=1,

(1 — 2a COS X + a?)"

L.74.

xF (sin x cos ®) : JP.27.

about 250 integrals with limits chiefly from 0 to T, some from 0 to co: Pr.252, 26,27,29,30,31,322,33.

Limits 0 to oo :

* cos E, cos®3, cos (cz)2: 2507—9: Q. MS

12: 2602.

(sin)%: Q.13; sin /Ne.72.

COS/ •   ’ cos

Integrals:----CIRCULAR. 0 to oo —(cont.):

* c± m sin be: 2579—81. cos

cos b, also ("COS E de: A.10.

2—C Joo X

* sin"2.2510: A.30: E.26. Z.5:=2 aP

and 3, 2511—2.

* cos qx—cos pa, 2513—5. x or ®3

. sin ax sin ba - • .

* ----------- and similar: 2514—22. x

* cos 2a® sinP a . 2722__5 xm

$ (sin ax, cos lox), reduction of: J.15.

p (sin ax, cos ba) . J 23 25 x

* sin T. 2572 ; L.49 : Z.7,8. x                                     ■

* cost®. 2573: A.10,11,5 9: J.3 3: Me. (2+22

72,76: Z.7,8.

* qsin r : 2575 : A.10 : 3.33.

(2—22

cosrs,: L.40: Q.18.

, / \ sin

$(n) dose

-------8--: A.11 : with 0(®) = xm, a3+®3           1

L.46 : $ (®) = tan-1 cx, A.11.


sin / v (ax\

cos‘




a2+a2




2

- and similar : Z.13.



sin a® - 1  1

7————. ■   and related integrals :

(1—22) sin 0®

Ac.7.

1—cos"1 x .278

22

tan’1 ax—tan-1 ba . 2505


b‘




x

Other limits : dx




o a+b cos a+c sin x




, lim. 0




to 27 :



A.55.

tan a - - - - ,


(2416) :



Integrals :----CIRCULAR—{continued):

* [1 tan -1 ax dx . 9 209

Jo 2v/(1—22) :

F (2)

—— dx, where H (x) is a rational • -0 xn

integral circular function : OM.3.

sine-integral, &c. : see " Functions.”

EXPONENTIAL functions. Indefinite:

* e", ax: 1924; xm+nx, 2004.

* e" {+ (=)++$‘ (=)} : 1998.

e exp (442) : E.34.

X being a rational integ. funct. of x : e’X: J.13; eX, Mem.83 ; e exp (—2), Q.I.

e exp ( x ), or the same X 262 or Via+bx^)

- (c-\-dx^): L.52.

Limits 0 to oo :

* e-k* xn : 2284—91: see " Gamma function.”

* e exp (—ka2) : 2425 : evaluation by a continued fraction, J.12.

* other forms : 2426—31, 2595, ’8, 2601.

* eexp (_g—a2 ) ; 2604—5: L.56. V 22 1

——-: Z.6 ; ditto X xm, L.46. 1-a2

e-nx

----- and the same X x : A.10. 22—a^

e-axe(2+bz): M61.2.

e exp {axn). Ei (± az") : Q.18.

Other limits :

expon-integral : see " Functions.” Co

e exp (—«2) [= Erfc^ (Glaisher)] :

Me. 76.

* e-kx E (x) dx-. C.774.

J0

I a?”e exp(—22--) : 0.12. Jo \          a2) •

( 2,

I F(ret) ennd: A.15.

J 0a

logarithmic functions. Indefinite:

* log®: 1950; «‘(logs)*", 2003—6. xm log (1 +x), &c.: A.39.

E (x) log x : G.12.

* « (log «) and a similarform: 2030—2. x ± 1

Integrals :----logarithmic. Indef.— {continued):

x log® type of several: Mem.18. (1—xn)P *

Limits 0 to 1 :

1                               1 \ n

* log—: 2284; ®Ulog —) , 2291.

2              \ x /

* involving log x or log (1 ± x): 2391— 2403, 2416—22.

* log (If®); 2416: 0.59: 3.6: L.43,44.

* log® 2636  0.12 ^-Mog® /(1—2)’ 1+a" and many cases, J.34.

* 1 log 1+ : 2403 : L.73. x 1—X


a" (a—1)" Z 3 . log x




xm—1 log X ‘




A.37.



about 540 expressions chiefly formed from log (1 = x) or log (1 ± 2) or log (1+x+x2) orlog (1+a2+a4), joined to a single factor of the

form xm or (1 ± xm) or ------ ‘            1 = xm


with integral values of m and n : A.39,40.



about 280 expressions, nearly all comprised in the form

p xm (1—x")2 (log a)',

with integral values of m, n, p, q, and t: A.40.

about 130 expressions of the forms, Xm (1—Xn)p (log a)2 or 3,

P xm (1—xn) I log®, and

9m ( onr _ 1 ) ‘—“—— log ®, with integral values of m, n, p, q, and r : A.40.

* Limits 0 to oo : 2423—4.

Other limits:

* log (1-®) . 2408—12 . L.73 . Z1 x

* — log 1+s, limits 0 to f2—1: 2415. x    1—x

log-integral: see " Functions.” circular-exponential functions. Indefinite :

* eax (sin ) bx: 19,99; ex sin" x cos" x, \cos /                               ’ 2000.

Integrals :---circular-exponential— (continued'):

(eix sin a)n-1 : L.74.

Limits, 0 to c :

* epfF sin r. 2571,2591. a

* e-ar sin bx : 2583 : 0 to 1, Mem.30.

* e-Aze" sin bx . 2577, 2589 . j 3 3 . 7.7.

sin ) x: 2608—11 : A.7: COS /

* with limits— T to ~, 2612.

pax I p— ax

* —1---- sin mx, &c.: 2593—2600. er-HFe-re

* e-ke cos mx sin" a : 2717—20.

* e exp (—a?22) cosh 2ba, and similar:

2614-8: Z.1,10.

* e exp 5 — («2+ 42 ) cos 6 } X &c.: 2606: Q.12.

* cos a—enu ; 2619.

X

CIRCULAR-LOGARITHMIC FUNCTIONS :

* a”(log s)" . 2033.

a2n — 2a" COS n0+1 '

Limits 0 to 1 :

* cos (m log x) / log x, and similar : 2641 —3.

log(1—2 cos @+a%), &c., &c.. A .34.

X log 1-2 cos @+22,& 13 similar: 1.73, X (1 — 22)

log sin je log cos a, &c. (limits 0 to 7 ): E.22.4 ‘

Limits 0 to

* log sin a : 2635: CM.2 : E.23 : Q.12: 0 to n-rr and similar integrals, A. 16.

* log(1+ccosz) . 2633 ! o to 7, 2634. COS X

tan a log cosec a : E.27.

log (1+n2 sin? a) . L 46

Nd—k? sin? 2)

Integrals :---circular LOGARITHMIC— (continued):

log 2% x and log v(1—k2 sin2 x), each

with the above denominator: J.92.

Limits 0 to T :

* log (1—2a cos a+a?) : 2620—2 : L.38 : Q.ll.

* cos rx log (1—2a cos a+a2) : 2625: A. 13.

* x log sin x : 2637 ; x log sin2 x, 2638.

Limits 0 to oo :

COS a& , --y log 2ce: A.11.

62—22

* log (1—2 a cos c&+a%) . 2631

1+22        :

Other limits :

"a+b cosada: A.53.

o a—0 COS 2

F (cos na) log sin ^dx : Z.10.

cos?(n-Da log tan x dx : A.16.

, o

nm

xm log (1—2 a cos 2+02) dx, and , o

similar: J.403.

EXPONENTIAL-LOGARITHMIC FUNCTIONS :

(0 ax a—ax

I €--------log (x2+u?) dx, &c.: J.38. J0 er— e-r

""ec«- log (1— 2a cos a+a%) dx: J.40. J0


*

*

*

*



MISCELLANEOUS THEOREMS :

formula of Frullani, Poisson, Abel, Kummer, Cauchy, &c.: 2700—13.

\bf(x)=f(b)-f(a): 1901-3: A.16. J a

C (ax)— ^xldx: Me.81: « =0,2700. J a Xn

# (a) {Y (a)} *"da : 2001—2.

"fJMdx (6 of Taylor’s th): LM.13.

Jo xr

nC

F(x)dx, approx. to: 0.97.

J - 00

f(— R) dx = jf(y) dy : CD.4.

$ («+ — )G2dz, and similar: " Me.75,76,77.

f(x) # (x) da : L.49.

i1 > (1 cl uvdx < udx vdx: AJ.7.

Jo o Jo

Integrals :---- MISCELLANEOUS TH. — {continuecl) : J. (u), du : 7.25.

J (u+Jc)k+2 du = (—1)* j {u)k+2du:

A.38.

J. Pm («) Pn (x) dx (Pm c = Legendre’s coef.) : Pr.23. .dvty=logv(w)+0:3.10.

f (x + p} (a—q)0 d6 _    .

I              ——, O = pos integer : j am*1 (xpppQ) 1     -      -C.78.

I 2(sin 2x) cos x dx

Jo r

= I ' 4 (cos3 a) cos x dx :   A.21 : J0 L.532.

f (x) sin airxd (log a) : Mo.85.

T , cos - sin3 ,    . —---- .  2 Y 92, transt. oi: 0 72+22 sin cos3 5

J.86.

integrals deduced from z"+Pz‘+Qz = 0, and y‘+ (P+2R) y'+ {Q+R (P+R)+R} y = 0-. J.18.

J II (x, y} dx : J.61 : Mo.61 : Q.7.

* if f(xpiy) = P+iQ, th : 2710.

[Upwards of 8,000 definite integrals have been collected and arranged in a 4to volume by D. Bierens de Haan; Leyden, 1867 (B.M.C. : 8532. ff.)]

“Integrating factors of d.e: pp.468—471, 3394.

Integrator mechanical: 5450.

Intercalation: CM.3.

intercepts, to find : 4115.

interest: 296: N.48,61,64.

Interpolating functions : C.11.

interpolation : 3762 : A.32,61,62,70 : AJ.2: C.19,48,68,92 : J.5 : L.37, 46 : Me.78 : N.59,76 : Q.7,8. of algebraic functions, Abel’s th: J.28. Cauchy’s method: A.2 : C.373: L.53. by circular functions : N.85. by cubic and quintic equations : 0.25. formulse : J.2 : 0.992: Mo.65.

* Lagrange’s: 3768 : J.1,84: N.57,61. Newton’s : N.57,61,71. for odd and even functions : 0.99.

* and mechanical quadrature : 3772: A.20.

Interpolation—(continued) : by method of least squares: C.373: Mem.59.

* by a parabolic curve : 2992 : 0.37. Stirling’s series : Me.68. and summation: I.ll2,12,14. tables : 1.113.

of values from observation : Mel.2: tr, Mem.59.

Intersection:----• of circles and spheres : L.38.

* of 2 conics : 4916 : OD.5,6 : N.66.

* of 2 curves : 4116, 4133 : CM.3 : J.15 : L.54 : by rt. lines, Me.80.

* of 2 planes : 5528.

of 2 quadrics : 0.62 : N.684.

of right line and conic: see " Right line.”

of successive loci, ths : N.42. of surfaces : J.15 : L.54 : by rt. lines, Me.80.

“Invariable line, plane, conic,and quadric: 5856-66.

^Invariants : 1628 : An.542: 0.85s: E.42 : G.1,2,15 : J.62,68,69 : L.55,61,76 : M.3,5,17,19 : Me.81: N.58,592,69, 70 : P.82 : Pr.7 : Q.12 : Z.22. of binary cubics : An.65. of binary forms : of 8th deg., 0.84 : G.2 : M.5 : simultaneous, M.I. of higher transformations : J.71. superior limit to number of irreducible : 0.86.

of a binary quadric : M.3.

* of a binary quantic: 1648: E.40 : Me.79 : of two, 1650.

of a binary quartic : M.3 : Q.10. of a binary quintic, table of irreducible: AJ.1.

of a bi-ternary quadric : J.57.

* of a conic : 4417 : 4936—5030.

* of two conics : 4936 : N.75. of three conics : Q.10.

* of particular conics : 4945. of a correspondence : G.20. differential: M.24: of given order and degree belonging to a binary 10-ic, C.89.

of d.e linear: 0.88 : of 4th order, Ac. 3. and covariants of f(x2, y2) relative to linear transformation: 0.17. of linear transformations : M.20. mutual relation of derived invariants : J.85.

of an orthogonal transformation: J. 65 : LM.13. of a pair of homog. functions : Q.l. partial: LM.2.

of points, lines, and surfaces : Q.4. 5 Y

invariants—{continued'): of a quadric : J.86 : of two, M.24 : Q.6. of a quintic : of 12th order, Q.l: of 18th order, 0.92 : J.59. related, to linear equations : 0.94. of sixth order : G.19. skew, of binary quintics, sextics, and nonics, relations : AJ.1. of ternary forms : G.192. transformation theorem : M.8 : Me.85.

Inverse calculus of differences : N.51.

"Inverse equation of a curve or inverse method of tangents: 5160: No. 1780: J.26: Mem.9,26.

“Inversion : 1000, 5212 : An.59 : 0.94,pr 90 : LM.5 : Me.66 : thsN.61 : Pr. 34: problems by Jacobi, J.89: geo. ths, Q.7. formulas: An.53: Lagrange’s, J.42,54. of arithmetical identities : G.23.

* of a curve : 5212 : G.4 : J.14 : Pr.14.

* angle between radius and tangent: 5212,5219: E.30. of 2 non-intersecting circles into concentric circles: E.39.

* of a plane curve : 5212: G.4: Pr.14. of a quadric : J.52,76 : Q.ll. of a system of functions : An.71. and stereographic projection : E.35.

^Involute: 5149,—53,—66.

* of a circle : 5306 : 0.26 : successive, E.34.

and evolute in space : CD.6. integrals of oblique : 0.85.

* of a tortuous curve: 5753.

Involution : 1066 : A.55,63 : gzAn.59 : At.63: CD.2: thCP.il: thE.33: G.10,2 0: J.6 3: N.53,64,65. and application to conics : A.4,5. of a circle : Me.66. of a cubic space and the resulting complex: Z.24.

of higher degrees : 0.993: JM.72 : of 3rd and 4th, An.84 : Z.19. of numbers, machine for : P.15. of n-tic curves : 0.87. relation between a curve and an n-tic, the latter having a multiple point of the n—ith order: 0.96. pencils with problems in conics and cubics: N.85.

of points on a conic : N.82. of 6 lines in space : 0.52. of right lines considered as axes of rotation: 0.52.

* systems of points in : 4826,4828. ditto, marked on a surface: 0.99.

Irrational fractions : decomposition of, J.19 : irreducibility of, Mem.41 : rationalization of, A. 18.

Irrational functions : M.4 : of the 2nd degree, 0.98.

Irreducible functions with respect to a prime modulus : 0.70,90,93 : L. 73,.

Isobaric :----calculus, N.85 : homog. functions, G.22 : algorithm, N.84.

Isogonal relations : A.60 : Z.18, 20. do. represented by a fractional function of the 2nd degree : M.1.8. representation of a = V/X and q_/aX"+b ; Z.26. V cXn+cl transformation of plane figures: N.69.

Isomerism, pr : AJ.1.

Isoperimeters, method of: N. 47,74,82. problems : J.18 : M.13 : Mel. 5. triangle with one side constant, and a vertex at a fixed point: 0.84.

Isoptic loci : Pr.37.

Isosceles figures : 0.87 : JP.30.

Isotherms, families of: Z.26.

Isotropic functions : C.262,272.

Iterative functions: L.84.

*Jacobian : ths 1600—9 : AJ.3 : thZ.10.

* of 3 conics : 5023 : LM.4.

* formulae: d.c.1471 : J.842: Mo.84. function : one argument, G.2. of several variables : Mo.822. modular eq. of 8th degree : M.15. and polar opposites : Me.64. sextic equation : Q.18. system, multiplicator: M.12.

Jacobi-Bernoulli function: J.42.

Kinematics : A.61 : AJ.3: G.23 : L. 53,80: LM.thl7: N.82, ths 83 and 84.

of plane curves : A.55 : N.82 : caustics, Z.23.

paradox of Sylvester : Me.78. of plane figures : Mel.26 : N.78,802 : of a triangle, N.53. . of a point : N.49,82 : barycentric method, Mel. 5.

of sliding and rolling solids : TA.2.

Kinematic geometry:--of space : J. 90. of similar plane figures : Z.192,20,23.

Knight’s move at chess : C.31,52,74 : CD.7: CM.3: E.41: N.54: Q.142.

Knots : TE.28 : with 8 crossings, E.33.

*Kummer‘s equation, i.c.: 2706. rational integrals of: M.24. an analogous eq.: C.99.

Kummer’s 16-nodal quartic surface: 0.92: J.84.

figures of: M.18.

lines of curv. of: J.98.

Lame’s equation : An.79 : 0.86,90,91, ths92.

Lame’s functions: 0.87 : J.56,60,62 : M.18.

*Lagrange‘s theorem (d.c) : 1552: 0.60,77: OD.6: CM.3 : Mel.2: gzO.96 and Me.85 : gzQ.2.

"Lambert's th. of elliptic sector : 6114 : of a parabolic sector, A.16,33,48 : Me.78: Q.15.

*Landen‘s th. of hyperbolic arc: 6117: E.21.

Laplace’s coefficients or functions : see " Spherical harmonics.”

Laplace’s equation : and its analogues, CD.7 : and quaternions, Q.l.

Laplace’s th. (d.c) : 1556.

Last multiplier, Jacobi’s th. of : L.45.

Lateral curves : A.58.

*Latus rectum: 1160.

*Law of reciprocity : N.72 : d.e,3446. ext. to numbers not prime : 0.90.

*Least divisors, table of, from 1 to 99000 : page 7.

Least remainder (absolute) of real quantities: Mo.85.

Least squares, method of: A.11,18,19 : AJ.1 :    C.34,37,40 :    CP.8,11: 0.18:    J.2 6:     L.52,53,67,75 : Me.80,81 : Mel.l,4: gzZ.18.

Legal algebra (heredity) : N.63.

*Legendre’s coefficient or function, X, : 2936: 0.47,91: L.76, gz79: Me.80: Pr.27.

and complete elliptic integral of 1st kind: Me.85.

rth integral of and log integral of: Me.83.

product of any two expressed by a series of the same functions: Pr.27.

Legendre’s symbol (4) : Mel.4,5.

Leibnitz’s th. in d.c: 1460 : N.69 : a formula, Mo.68.

*Lemniscate: 5317: A.55,cn3: At.51: thsE.4 : L.46,47 : Me.68 : N.45.

chord of contact, cn : Z.12. division of perimeter: 0.17: L.43: into 17 parts, J.75 : irreducibility &c. of the partition equation, J.394.

tangents of : J.14 : cnZ.12.

Lemniscatic geometry : .Z.212 : coordinates, Z.12 ; of nth order, J.83.

Lemniscatic function : biquadratic theorem, multiplication and transformation of formula, J.30.

Lexell's problem: LM.2.

*Lima5on : 5327 : 0.98 : N.81.

Limited derivation and ap. thereof: Z.12.

Limiting coefficients : 0.37.

Limits : theory of, Me.68.

of functions of two variables : M.11.

[       1 \ x of (1---I when a — co : L.40: \ a / N.85 : Q.5.

Life annuities: A.42: cn of tables, P. 59.

Linear :----associative algebra : AJ.4. construction : Man.51.

coordinates in space: M.I. dependency of a function of one variable : J.55.

dependent point systems : J.88. forms: L.84: with integral coefficients, J.86,88.

function of n variables : G.14.

U2 = V2 where U, V are products of n linear functions of two variables : CD.5.

geometry, th : M.22. identities between square binary forms: M.21.

systems, calculus of : JP.25.

Linear equations : A.512,70 : Ac.4 : C. 81,th942 : G.14 : J.30 : JP.29 : L.f 39,66: Mo.842: N.51,75,802: Z. 152,22. analogous to Lame’s : 0.98. with real coefficients : M.6. similar: N.452. solution by roots of unity : 0.25.

* systems of : 582 : A.10,22,52,57 : G. 15: 0.81,96: L.58: N.462. in one unknown : 0.90 : G.9. of nth order: J.15.

* standard solution : 582: Q.19 : gen. th, A.122. symbolic solution in connexion with the theory of permutations: 0.21. whose number exceeds the number of variables: N.46.

Lines :----alg. representation of : 0.76. " de faits et de thalweg ” in topography : L.77. generated by a moving plane figure : 0.86.

of greatest slope: A.29: and with vertical osculating planes, 0.73. loxodromic: J.11.

six coordinates of : CP.11.

*Lines of curvature : 5773 : A.34,37 : An.53 : 0.74,: CD.5: L.46: M.2, 32,76: N.79: Q.5. of alg. surfaces : Z.24.

* and conics, analogy : 5854 : Me.62.

Lines of curvature—{continue^ : dividing a surface into squares : C. 74: LM.4: Mo.83. of an equilateral paraboloid : N.84. of an ellipsoid: A.38,48 : An.70: ths CD.3 : CM.2,3,4 : JP.1 : N.81. comparison of arcs of, by Abel’s th : An.69. and of its pedal surfaces : Q.12. projection of: Z.2. rectification of : An.73. generation of surfaces by : J. 98 : N. 77. and geodesics of developables : L.59.

* near an umbilic : 5822 : A.70 : Q.10.

* osculating plane of : 5835.

* plane, condition for: 5843: An.68: C.363)422,96 : G.22 : Me.64. plane or spherical: An.57 : C.46 : JP. 20: L.53.

* of a quadric: 5833—4 : C.22,,49,51 : G.11: J.26: Me.l: N.632:Pr.32: TI.14.

* pd constant along it: 5836. projected from an umbilic into con-focal Cartesians : E.19.

* quadratic for yx, giving the directions : 5810.

of two homofocal quadrics : L.45. of quartic surfaces : C.59 : L.76. of ruled surfaces : 0 78. spherical: C.362,422. and shortest distance of 2 normals one of which passes through an umbilic : L.55.

of surface of the 4th class, correlatives of cyclides which have the circle at infinity for a double line : 0.92. of the tetrahedral surfaces of Lame, &c.: 0.84.

and triple orthogonal systems : M.3.

^Linkage and linkwork : 5400—31: E. 28,30 : Me.75 : N.75,78.

* 3-bar : 5430, E.34; 4-bar, Me.76. conjugate 4-piece: LM.9.

* for constructing :----an ellipse: 5426. a lemniscate : AJ.1.

* a limagon : 5427 : Me.76. a2 and a" : AJ.1 and 3. root of a cubic equation : 5429. Hart’s : 5417 : LM.6,82.

Kempe’s : 5401 : Pr.23.

Peaucellier’s : 5410 : E.21 : LM.6 : N. 82.

the Fan of Sylvester : E.33. the Invertor : 5419. the Multiplicator : 5407. the Pentograph : 5423. the Plagiograph : 5424. the Planimeter: 5452.

Linkage and linkwork—(continued):

* the Proportionator : 5423.

* the Quadruplane : 5422.

* the Reciprocator : 5419.

* the Reversor : 5407.

* the Translator: 5407.

* the Versor-invertor : 5422.

* the Versor-proportionator: 5424.

Lissajons’curves : A.70: M.8.

*Lituus : 5305.

Loci, classification of: C.83,85 : P.78 : Pr.27.

Locus of a point:----the centre of a circle cutting 3 circles in equal angles : N.53.

the centre of collineation between a quadric surface and a system of spherical surfaces : A.65. dividing a variable line in a constant ratio : gzAJ.3.

of intersection of common tangents to a conic and circle : N.63,79.

of intersection of curves : CM.2. ditto of two revolving curves : N.64. on a moving right line : L.49. on a moving curve : Mem.18. the product of 2 tangents from which, to 2 equal circles is constant: An. 64.

at which 2 given lengths subtend equal angles : A.68.

whose sum of distances from 3 lines is constant: A.17,46: from 2 lines, N.64 : from lines or planes, A.192,prs and ths31.

whose distances from 2 curves have a constant ratio : An.58: or satisfy a given relation, A.33 symbolic f.

Locus:---of pole of one conic with respect to another : N.42. of remarkable points in a plane triangle : A.43.

of vertex of constant angle touching a given curve: N.61. of vertex of quadric cone passing through 6 points : N.63.

*Logarithmic :---curve, 5284 : quadrature, N.45.

integral: A.92,19 : J.17 : Z.6. numerical determination : A.11. of a rational differential: J.3. parabola: CD.7. potentials : M.S,4,8,13,16 : Z.20. rational fractions : A.6. systems : A.14. transcendents: P.14. waves : LM.22.

^Logarithms : 142: P.1792, 1787, 1806, 17: TE.26. and anti-logarithms, cn : 1.124,24.

Logarithms—(^continued):

* calculation of: 688 : A.24,27,42 : LM. 1,5 : Me. 74 : N.51 : Pr.312,32 : TE.6,14 : Tl.6,8. Huyghen’s method : C.662,682. and circular functions from definite integrals: A. 65. common or Briggean : A.24. constants in integral : J.60. of different orders of numbers : L.45. higher theory of : trA.15. impossible: CM.1. natural, or Napierian, or hyperbolic : A.25,26,57. of commensurable numbers or of algebraic irrationals : 0.95. base of: see " e."

* modulus of : 148 : A.3. of negative numbers : No.1784. new kind of : J.70.

powers of: OM.2. of sum and difference of 2 numbers : A.45.

with many decimal places : N.67. of 2, 3,5, 7,10 and e all to 260 decimal places: Pr.27. of 2, 3, 5, 10 and e to 205 places : Pr. 6,20.

* of primes from 2 to 109: table viii.,p.6. tables of log sines, &c. cn : Q.7.

Logic, algebra or calculus of: A.6 : AJ. 3,72 : CD.3 : M.12 : Man.71,76,823 : Q.ll. of equivalent statements : LM.11. Logic of numbers : AJ.4.

Logocyclic curve : Pr.9: Q.3.

Longimetry applied to planimetry: J.52. Loto, game of : L.42.

Loxodrome : eqA.21 : N.612 : Z.5. of a surface of revolution : N.74. of cylinder and sphere : A.2. of ellipsoid and sphere : A.32. of paraboloid of rotation : A.13. • Loxodromic triangle upon an oblate spheroid : A.27.

Lucas’s th : G.14 : analogous f., G.13.

Ludolphian number: Mo.82.

Lunes : J.21.

“Maclaurin's th. (d.c) : 1507 : A.12 : CM.32: J.84: N.70. symbolic form: CM.4.

Maclaurin-sum-formula: J.12.

Magical equation of tangent : Q.6.

Magic :----cubes, Q.7 : CD.1. cyclovolute: TA.5,9. parallelepiped: A.67. rectangles: A.65,66. squares : A.21,57,66 : CD.1 : CM.4 : E.8: J.44: Me.73: Pr.15,16: Q. 6,10,11 : TA.5,9.

Malfatti’s problem, to inscribe 3 circles in a triangle touching each other: A.15,16,20,55: J.10,452,76, 77,84,89 : LM.7 : M.6 : P.52 : Pr. 6 : Q.1: TE.24 : Z.21.

Malfatti’s resolvents of quintic eqs : A. 45.

Malm’s surfaces, th : J.84,88.

Mannheim, two theorems : G.8.

Martin’s measure of distance : A.19.

Matrices : E.42 : LM.4,16 : thMe.85 : P.58,66 : Pr.9,14.

( a> b ) and function/(a?) = az+b ; c,c         • cx+d Me.8O4.

Cayley’s th : LM.16 : Me.85. equation, px — xq: C.992.

of 2nd order : linear eq., C.992 : quadratic, Q.20. of any order : linear eq., C.994. notation of : J.50. persymmetrical, th : E.34. product of: G.5,11. roots of a unit matrix: 0.94. whose terms are linear functions of x : J.50.

“Maximum or minimum : 58, 1830 : A.4, 13,22,35,49,53,602,70 : C.17,24 : J. 48 : JP.25 : Me.l,geo5,72,76,81, 83 : N.43 ; Z.13.

* problems on : 1835—40, 1847 : A.2, geol9,38,39 : geoL.42 : Mem.il, a paradox, N.63. of an arc as a function of the abscissa: J.17.

* continuous : 1866, of a definite integral: Z.21. discontinuity in : CD.3. distances between points, lines, and surfaces, geo : At.65. duplication of results : Me.80. ellipse which can pass through 2 points and touch 2 right lines: A.14.

elliptic function method : Mel.5. of figures in plane and in space : CM. 3: L.41 : J.242: Z.11.

* functions of one variable: 1830 : ditto, with an infinity of max. and min. values : J.63.

* functions of 2 variables : 1841: Mem. 31 : Q.5,6 : Lagrange’s condition, CM.2.

* functions of 3 variables : 1852 : CD.1: prs 1860—5.

* functions of n variables : 1862 : L.43 : Mem.59 : Q.12 : symmetrical, Mel.2.

Maximum or minimum—(continued): of in- and circum-polygon of a circle : A.29,30 : do. of ellipse, and analogous th. for ellipsoid, An.50. indeterminates : CM.4. in-polygon (with given sides) of an ellipse : A.30.

by interpolation, f : A.25. method of substitution : A.23. of multiple definite integrals : Mel.4. planimetrical groups of: A.2. of single integrals between fixed limits : J.54,69 : M.25.

of the sum of the distances of a point from given points, lines, or planes: J.62.

of the sum of the values of an integral function and of its derivatives : . L.68.

solids of max. vol. with given surface and of min. surface with given vol. : 0.63.

* of J F (a, 3) ds, &c., to finds : 3070—2.

* of j J F (a, y, z) dS, &c., to find S : 3078 —80.

Maximum :----ellipse touching 4 lines : A.12.

ellipsoid in a tetrahedron : Z.14. of a factorial function : Me.73. polyhedron in ellipsoid : A.32. of a product: N.44.

of a sphere, th : N.53.

* solid of revolution : 3074. tetrahedron :----in ellipsoid, A.32 : whose faces have given areas, C. 54,66 : N.62,.

* volume with a given surface : 3082.

of sin E. A.362: of ya?, &c., A.42. 2 of ax+by+&c., when a2+y2+&c.=1 : N.46.

Mean centre of segments of a line crossing three others: A.40.

Mean distance of lines from a point : Z. 11.

Mean error of observations : A.25 : C. 377 : TI.22. in trigonometrical and chain measurements : A.46 : Z.6.

Mean proportionals between two lines : A.31,34.

Mean values : C.18,20,23,26,272 : L.67 : LM.8 : M.6,7 : Z.3. .

of a function of one variable : G.16 : of 3 variables, C.29.

and probabilities, geo : 0.87 : L.79.

*Measures of length &c.: page 4. exactitude of: Z.6: do. with chain, Z.l.

Mechanical calculators : 0.28 : 1.16 : P.85.

for " least squares ” : Mel.2.

Mechanical construction of :----curves : M.6 : N.56.

Cartesian oval: AJ.l. conics : An.52 : three, N.43. ellipse: A.65: Z.l. lemniscate : A.3. conformable figures: AJ.2. cubic parabola : N.58. curves for duplication of roots : A.48. (a3—^/y : E.18.

surfaces of 2nd order and class : J.34.

Mechanical:----division of angles : Q.4. measurement of angles : A.61.

* integrators : 5450: 0.92,94,95 : Pr.244. for Xd+ Ydy : Me. 78. involution : AJ.4.

* quadrature : 3772 : A.58,59 : J.6,63 gzA.66 and 0.99. solution of equations : Me.73 : N.67. linear simultaneous : Pr.28. cubic and biquadratic, graphically:

Mensuration of casks : A.20.

Metamorphic method by reciprocal radii: N.54.

Metamorphic transformation : N.46.

Metrical:----system : E.30.

properties of figures, transf. of: N. 582,59,60 : J.4. properties of surfaces : AJ.4.

*Meunier’s theorem : 5809 : gzC.74.

Minding’s theorem : Quaternion proof : LM.10.

Minimum :---theory of : L.56: prM.20. angle between two conj. tangents on a positive curved surface : A.69.

4 area : J.67.

of circum-polygon : CD.3. of a hexagonal " alveole,” pr : N. 43. circum-conic of a quadrilateral: A. 13: An.54. circum-tetrahedron of an ellipsoid : Z.25.

circum-triangle of a conic : Z.28 : of an ellipse, Z.25.

curves on surfaces : J.5 : see " Geo-desics.”

distance of 2 right lines : G.4 ; of a point, ths : A.8.

ellipse through 3 points and ellipsoid through 4 : L.42.

ellipsoid, th: Mo.72.

N. G. F. of a binary septic : AJ.2.

Minimum :---theory of—(continued) : numerical value of a linear function with integral coefficients of an irrational quantity : C.53,54. perimeter enclosing a given area on a curved surface : J.86. questions relating to approximation : Mel.2 : Mem.59.

* sum of distances from two points : 920-1.

sum of squares of distances of a point from three right lines : Z.12.

sum of squares of functions : N.79.

Minimum surfaces:---eqA.38 : G.14, 22: J.81,85,87,ext78: Mo.67,72 : projective, M.14 : metric, M.15. algebraic : M.S : lowest class-number, An.79.

not algebraic and containing a succession of algebraic curves : 0.87. arbitrary functions of the integral eq. of: 0.40. between 2 right lines in space: 0.40. generation of: L.63, representation of by elliptic functions: J.99.

of a twisted quadric : At.52.

limits of (Calc, of Var.) : J.80 : on a catenoid, M.2: determined by one of the edges of a twisted quadrilateral, Mo.65. variation of surface, capacity of : Mo. 72.

Minimum value of

^(A+Dx-]rGa^+&c.)dx: N.73.

of J v(da2+dy?+...) when the variables are connected by a quadric equation : J.43.

Models: LM.39: of ruled surfaces, Me.74.

Modular :----equations : An.79 : of 8th degree, 59 : C.483,493,66 : M.1,2 : Mo.65: see also under " Elliptic functions.” degradation of : M.14. factors of integral functions : 0.24. functions and integrals : An.51: J. 184,193,20,21,23,25: M.20. indices of polynomials which furnish the powers and products of a binomial eq : 0.25. relations : At.65.

Modulus:----of functions, principal: 0.20.

of series : 0.17.

* of transformations : 1604 : A. 17. *Momental ellipse: 5953.

*Momental ellipsoid: 5925, 5934; for a plane, 5936.

“Moment of inertia : 5903 : An.63 : At. 43 : M.23.

* of ellipsoid : 6150: CD.8: J.16. by geometry of 4 dimensions : Q.16.

* principal axes : 5926, 5967, 5972 : At. 43.

* of a quadrilateral: 5951 : Q.ll. of solid rings of revolution : Q.16.

* of a tetrahedron : 5957.

* of a triangle: 5944: Me.4: Q.6 : polar, N.83.

* of various lamina and solids : 6015— 6165.

Monge’s theory " des Deblais et des Remblais ” : LM.14.

Monocyclic systems and related ones : J.98.

Monodrome functions : C.43 : G.18.

Monogenous functions (Laurent’s th) : Ac.42: C.32,43.

Monotypical functions : C.32.

Monothetic equations : 0.99.

Mortality : A.39.

" Mouse-trap ” at cards : Q.152.

Movements : JP.15. elliptic and parabolic : JP.30. groups of: An.692.

of a plane figure: thAn.68: JP.20, 28 : LM.3. of an invariable system : 0.43. of a point on an ellipsoid : AJ.1 : J.54. relative : JP.19 : of a point, L.63. of a right line : 0.89 : N.63.

of a solid : JP.21. transmission of and the curves resulting : JP.3.

of " ahnlich - veranderlicher ” and " affin-veranderlicher ” systems : Z.24 and 19.

“Multinomial theorem : 137 : Me.62.

Multiple-centres, geo. theory : L.45.

Multiple curves of alg. surfaces : An.73.

Multiple Gauss sums : J.74.

^Multiple integrals : 1905, 2825 : A.64 : An.52: 0.8,11: thsCD.l: thE. 36: J.69: L.39,433,452,46,th48,56: LM.82: Me.762: Z.l3,3.

* double: 2710, 2734—42: A.13 : Ac.5: An.70 : J.272 : G.10 : L.58, : Mem. 30. approximation to : J.6. Cauchy’s theory, ext. of : 0.752.

* change of order of integration : 2775 : A.19. expressing an arbitrary function: J.43. reduction of : J.45 : Z.9. residues of: 0.752.

Multiple integrals, double—(contimced): rbr°___________(22 — 12) dxdy___________ J oJ ••/ { (x2 — 62) (c2—2?) (b2—y^ ^—y2)}

=T: L.38. same with log of numerator : L.50. f(a‘—e)(dydz‘—dzdy)+sym J J •{(‘— x)2+...}3 = 4mm : 0.66.

transf. of I (_—d^d^----- J J V (sin2v—sin2c COS21) J.20.

1 2r (2r_____cos ix cos ja dx dy_____ TT3° Jo v{l+a2+2a(ucosa+vcosy)}

JJ F (a+bx+cy) dx dy : A.37.

JJ F (xpiy) dx dy : J.42.

( F(u,t,E) atdu: 0.96. JJ G (u, t, a)

( (axm ±byn) «P-1 yq~x dx dy : J. °37.

evaluation: A.5: by Fourier’s th, CM.4.

expansion of: Q.8.

Frullanian : LM.15.

limits of: LM.16.

reduction of : An.57 : L.41,39. by transf. of coordinates : 0.13. " F (x? + y2 + ...) q (ax + by +...) dxdy ...: L.57.

of theory of attraction : OD.7.

* transformation of : 2774 : A.10 : An. 53 : No.47 : 0M.4 : Mel.2 : Mem. 38: Q.4,12. an indef. double : J.82,10.

* a triple integral: 2774—9 : J.45. yidxi-\-...-\-yndxn: LM.11.

* triple : 2774: A.30 : J.45. which are unaltered in form by transformation of the variables: J.15, 91. fff-"dxdydz...: Q.23.

* Iff a‘-1 ym~xz"-1... dxdy dz ... with different limiting equations : 2825: CM.2: L.51.

* some other integrals evaluated by r functions : 2826—34.

^^F(ax^by+c0, a'x+b'y+c'z, a”x-\-b”y-\-c"z>) dx dy dn, limits ± oo : A.30.

Multiple integrals—(continued'): volume integral of (*)+(%)+(:) : z-l*

Jeexp(—a2—y^—22), @Py?z dxdydz: N.54.

JJ...q (az- + by^ + &c.) xpyq ...dxdy... with limits 0 to oo in each case (Pfaff) : J.28.


________da dy..._________ by dis-

{(a— x)2+ (b—y)^+...}"

continuous functions: TI.21.



do. with n = ‘ and with a numerator


(a—) F ($+%2+..): CN.3.



JJ ... F (x,y,z...) PQ dx dydz ... where P = (1—«)d-1 (1—y)b~ ...

Q ya za+b ta+b+c... : L.59.

arising from (2604), viz :

Co       / e exp ( — a?--M dx : Pr.42. Jo      \       2 /

“Multiple points: 5178: CM.2: thG.15 : Me.2: Q.2,6.

on algebraic curves : An.52 : L.42 : N.51,59,81, at 00. 643.

on two curves having branches in contact: 0.77.

on a surface : J.28.

“Multiplication : 28 : J.49 ; abridged, N. 79. by fractions : Me.68.

Multiplicator equations : M.15.

Multiplicity or manifoldness: J.842,86 : thAc.5: Z.20.

Music: E.273,28: Pr.37.

Nasik squares and cubes : Q.8,152.

Navigation, geo. prs. of use in : A.38.

Negative in geometry: No.1792.

Negative quantities : At.55 : N.443,67 : TE.1788.

Nephroid : LM.10.

Net surfaces : J.1,2 : M.1 : any order, An.64.

quadric: J.70,82 : M.11. quartic: M.7. and series : 0.62.

trigonometrical : Z.14.

having a 3-point contact with the intersection of two algebraic surfaces : G.9.

Newton, autograph m.s.s of : TE.12.

*Nine-point circle: 954,4754: A.41: E. 7,30,th35,pr39 : G.l,ths4: Me.64, 68: Q.5—8.

Nine-point circle—(conUmiel) : an analogous circle : A.51.

* contact with in- and ex-circles : 959 : Me.82 : Q.13.

and 12-point sphere, analogy: N.63.

Nine - point conic of a tetrahedron : Me.71.

Nonions (analogous to Quaternions) : C.97,98.

Non-uniform functions : 0.88.

Nodal cones of quadrinodal cubics : Q. 10.

Node cusps: Q.6.

Nodes, two-plane and one-plane : M.22.

“Normals : 1160: 4122—3, 5122 : A.13, 53: LM.9: p.eMe.66: Z.cn2 and 3. of envelopes : Me.80.

* plane of a surface : 5772.

* principal: 5722: condition for being normals of a second curve, 0.85. of rational space curves : J.74. section of ellipsoid (geodesy) : A.40.

* of a surface : 5771, 5785 : 0.52: CD.3: CM.2: L.39,47,72 : M.7. coincident: L.48. transformation of a pencil of : 0.882.

*Notation (see also " Functions ”): A,B,G,E,G,II: 1642.

* A.P., G.P., H.P.: 79,83,87.

* (abaca) : 554.

(n) (2), Jacobi’s function (see

" Functions ”).

* ab or an/b ; 2451.

* Ban, Bernoulli’s nos. : 1539.

* 0 (n,r) or Cn,, : 96. Otherwise

C (n,3) = number of triads of n things, &c.

(7) = rth coef. of nth power of (1 +e) : also Jacobi’s function (see " Functions ”).

* D : 3489 : dx,dnx, &c.: 1405.

* d'y, das,d%,&c.: 1407.

J dx

% d (uvw). 1200

d (aeyz) ‘

*A : 582, 1641, 3701 ; X, 1645.

*E : 902, 3735.

*6:150,1151.   A A

e exp a+ — or ea+1= e“+%

2    I   2

*f() : 400, 1400; /-1 (a), 430.

*/ (x) fa (a) : 424, 1405.

Notation—{continued):

*4 (ay) = u : 4656; $ (Auv) or U, 4665.

*Gus: 3732.

*H (n, r) : 98.

*J: 1600.

N.G.F= numerical generating function.

N=b(modr) signifies that N— b is divisible by r.

* n= n^ = n ! : 94, 3713.

* T as operator : 3500.

* P (n,^ or P,,= n‘): 95. Also,

P {n, r) = number of triplets of n things, &c.

* y (a) or Z'{P) = dx log r (x) : 2743.

* B, r, ra : 909—13.

* Sm,Sm,P: 534; Sn, 2940.

* sin-1, &c.: 626 ; sinh, &c., 2180.

* 2: 3781—3.

* U, : 3499.

^i (n) = sum of divisors of n.

n ■ n —/n\_.     ,

— or • — or A 1 = integer next d\ — C d/

n " d‘

, n integer next > —. | d                        d

(2 ) =rth coeff. of (1 +a)n. \ r /

< = not less than ; $ = not greater than.

(—) = denominator to be stated afterwards.

( X ) and ( X ): 1620.

algebraic : CP.3.

for some developments : 0.98. continuant = contd. fraction determinant.

median = bisector of side of a triangle drawn from the opposite vertex.

subfactorial: Me.78.

suggestions: Me.73.

*Numbers (see also “ Partition of,” and " Indeterminate equations”): 349: A.2,16,26,58,59 : Ac.2 : AJA,6 : C.fl2,43,442,454,f60 : CM.1: G.16, 32 : J.93,39,404,48,77 ; tr,273,28and 29, : JP.9 : L.37—39,41,45,586,59, 60: LM.4 : Mem.22,24; tr (Euler), 30: N.443,62,79: Q.4: TE.23. ap. of algebra, JP.11 ; of r function, No.81 ; of infinitesimal analysis, J.19,21. formula : L.64,652. relation of the theory to i.c: 0.82. 5 Z

Numbers—{continued):

approximation :----to VN, E.17 ; to functions of large numbers, 0.82. binomial eqs. with a prime mod : 0.62. cube : Q.4.

cubic binomials : a3±y3 : C.612. determined by continued fractions : LM.29.

digits, calculus of, th : J.30.

digits terminating a power: A.58 : N.46.

Dirichlet’s th. 29 ( m ) = ((m): L.57.

Dirichlet’s f. for class numbers as positive determinants : L.57.

division of : A.26 : J.13 : Mel.3 : Pr. 7,10 ; by 7 and 13, A.25,26 ; by ma?+ny2, Mem.15: P.17,88: Q. 19,20. divisors of y^+A^ when A=4n+3 a prime : J.9. divisors arising from the division of the circle : L.60.

4m + 1 and 4m +3 divisors of a number : LM.15.

factors of: Mem.41.

Gauss’s form: L.56.

integral quotients and remainders: An.52.

large, analysis of : A.2 : 0.2,29. method with continuous variables: J.41.

multiples of: C.2.

non-pentagonal th: J.31.

number of integers prime to n in n!= (n): L.57.

odd: A.L: and prime to all squares, 0.67.

Pellian equation : prA.49 : LM.15: sol. by ell. functions, Mo.63. perfect: 0.81 : N.79.

polygonal, Fermat’s th. of : P.61. polynomials having determinate prime divisors : 0.98.

powers of, 12 theorems : N.46. prime to and < N: A.3,29 : E.28, : J.31 : N.45.

prime to and < the product of the first n primes : A.66.

prime with respect to a given ar.p : 0.54.

prime to the radix having multiples made up of repeating digits: Me.76.

products of divisors of: Q.20. quadratic forms of : Mem.53. rational linear functions taken with respect to a prime modulus, and connected substitutions: 0.483.

Numbers—{continued): representation of by forms : 0.92 ; by infinite products, A.1. square having prime factors of the form 4n+1 : N.78.

squares of : J.84 : M.13 : Pr.63,7. three in ar.p : N.62.

sums depending upon E (x) : L.602. sums of digits : Me.66 : TE.16. sum and difference of two squares: thsN.63.

* sums of divisors : 377 : Ac.6 : G.7 : L.632: Mel.2 : Mem.50.

* sums of powers of (see also " Series ”): 276, 2939: An.61,65 : thCD.5: Me.75 : N.42,56,70 : Q.8. of cubes: An.65: L.66 ; of the odd nos., A.64. of n primes : N.79, ; 4th powers, A.54. of squares: A.67. of uneven orders : Mo.57. symmetrical functions of: Q.7. systems : Z.14 ; history of, by Hum-boldt, J.4.

theorems : A.7,10,20,49 : An.70 : C. 252,43,83 : CM.2: G.8: L.48,52: N.75; Cauchy’s, gzC.53; Eisenstein’s, J.27,50,83 : LM.7: Q.5,6.

	
	
Gauss’s on X = -—— : C.98. 2—    y Lagrange’s arithmetical: A.47. 2"+q" in terms of pq: N.75. on 2"±1 : C.85,86 : Me.78. 2,    biquadratic character of: 0.57, 66: L.59. on (n+1)"—nm : N.44 ; P2 (n), L.69.


	

	
* on n1'—n {n—1)"+, &c.: 285 : A.30. on 2m positive numbers : N.43. on P {m)+E ( __) P (1)+ : Q.3. \m—1 / on the greatest product in whole numbers of given sums : J.57. on an odd sum of 12 squares : L.60. on products of sums of squares: G.2. on 4 squares : N.57. on 2, 4, 8, and 16 squares : Q.17. on « (a) + $ {a) +, &c. = n, where a, a, &c., are the divisors of n: Cm.3.









Numeration, ancient decimal: 0.6,84. Numerical approximations: N.423,53.

Numerical functions: L.57 : Me.62. simply periodic : AJ.1. sums of, approximately : 0.96. which express for a negative determinant the number of classes of a quadratic form, one at least of whose extreme coefficients is odd: C.622.

Obelisks : A.9,11.

Oblique :----bevilled wheels, cn : J.2.

* coordinates : 4050, 5511—9 : fN.54. cyclic surface: TI.9. and osculating circle of a conic : G.22.

Octahedron function : Q.16.

Octahedron, centroid of: LM.9.

Octic equations : G.7,10; and curves, M.152.

Octic surface : G.13 : M.4 : Q.14.

^Operative or symbolic calculus: 1483, 3470—3628: A J.4 : 0.17: G.202: J.5,59: LM.123: Me.82,85: P.37, 44,60—63: Pr.l02,ll2,122,134 : Q. 4,5,8. applications : G.19: Me.82. algebraic: TE.14; ap. to geometry, CM.1,2; ±,CM.3. expansions : Pr.l42. formula : 0.393.

* index symbol: 1485 : OD.6. integration : OD.3 : exMe.76. representation of functions : 0.43 : CD.2. seminvariant operators : Q.20. on the symbols a’, logza, sin a, cos a, sin-’a, cos-1®: A.9,11.

theorems : A.57 : CD.82: LM.11 : Q. 32,15,163 ; from Lagrange’s series, Q.16; from mrpu—pa>u = pu, OD.5.

•Operators : dx, 1405; ehclx, 1520—1, Q.92.

* (d,—m)-1, &c.: 3470—85 ; gz of 3474, 0.43.

* D (P-1) ... (D-n+1): 3489.

* m = xdx+yd,j+&c.: 3500. expansions and formula for :


* F (xdx) U, where U= f (x) = a+ba+ ca2+ : 3486.

* f (D) uv, 3494 : uf (D) v, 3495, with f as above.

D^f^U-. E.36.

* {cp {D~) erl)}n Q 3491.

e"*DF (a), &c. . E.34.

e"t« F(a) =*+1F(+1): E.36. 2

QF(a, x): Q.13.

2mtV/{a 1v±b (ui)}, &c. : 0.96. f(+ D).1: E.39.

* y (dx+y) $a = $ (d^+x) vy : 3498.

* reduction of F (m) : 3503.

* F (m) U and F-1 (m) U : 3509—10.

* G (u,m) u„/m !: 3514. transformation of Vdx. Ddx..., &c : G. 21.

Orthocycle: Q.17.

Orthogonals, algebraic system of : 0.69.

“Orthogonal :----circles : 4170, 4182—4 ; of in- and circum-circles of a triangle, Q.18. circle and conic : E.7. coefficient system: A.2,61. coordinates : 0.60; curvilinear, JP. .26.

conics : N.84; families of, A.63. curves : J.35 : N.52,81. system from logarithmic representation : Z.16.

* lines of a triangle : 4633. lines and conics : 0.72.

* projection : 1087. in metrical projective geometry: GM.14. of a circle into an ellipse : A.2. of a triangle : E.30,31,36,37. substitution: J.67 : M.13 : Z.24. surfaces :   0.2 9, spheres 36,542,59,72, 79,87,thsl7 and 21 : J.84: JP.17 : L.43,44,46,47,63 : N.51 : P.732 : Pr.21 : Q.19. cubic eq. for : 0.762. with elliptic coordinates : 0.53 : J.62. and isothermal: 0.84 : JP.18 : L. 43,49. systems: O.67,754: M.7; condition, J. 83 ; quadric, J. 76 ; parallel, M.24. triple : A.55 — 58: An.63,77,85 : O.alg58,67; cyclic, G.21,22 : J.84 ; quartic, 82: Z.23.

trajectories: L.45 : Me.80 : Z.17. of circles : Me.85. of circular sections of an ellipsoid : L.47. of a moveable plane ; Pr.41. of a moveable sphere : 0.42. of a surface : Mem.20.

Orthomorphic projection of an ellipsoid on a sphere : AJ.3.

Orthomorphosis of a circle into a parabola : Q.20.

Orthoptic :----lines of a conic: A.57. loci of: LM.13 : Pr.37 ; of 3 tangs. to a quadric, E.40. surface of a quadric : J.50.

Orthotomic circles : Me.64,66 : Q.2.

*Osculating :----circle : 5724: L.39. of conics : A.70 : N.60. of a family of curves : N.70. of a parabola, ths : N.66. of quadric curves N.43. of tortuous curves : N.81.

* cone : 5727 : angle of, 5752. conic : L.39 : triply, A.69 : Z.19. of a cubic curve : J.68:: Z.17.

Osculating—(continued): curves : Q.11.

helix : N.71. line of a surface : 0.82 : J.81. parabola: N.81. paraboloid: JP.15: N.82: of a quadric, L.382.

* plane: 5721, eq 5733: and radii of curv. at a multiple point of a gauche curve : An.71: 0.68. of a tortuous curve : 0.96 : J.41,63. sphere :---Mem.20 : N.70: of curve of intersection of two surfaces, cn : 0.83. of two curves having a common principal normal: LM.16. surfaces : C.792, degree of 98 : L.41, 80 : of quadrics, N.60.

Oval of Cassini: see " Cassinian oval.” Oval of Descartes: see " Cartesian oval.”

Pangeometry : G.5,15.

“Pantograph : 5423 : Mem.31 : TE.13.

Paper currency : A.42.

Pappus, prs in plane geometry : A.38 : Z.5.

“Parabola : geo. 1220—44 : anal. 4200— 3 9 : eqCM.2: N.424,54,70 : geo CM.4 : Me.71 : cnl249 : thsN.60, 63,71,76,802. circum-hexagon and triangle: CM.1. circle of curvature of : 1260 : A.61. chords of : 1239, 4224. two intersecting: 1242. determination of vertex and axis: N.58.

* eq. deduced from eq. of ellipse : 1219. focus and directrix: N.49.

* focal chord: 4235—9.

* latus rectum : 1222 : Me.75.

* normal, length of: 4233—4. plane and spherical: A.60.

* quadrature of : 1244 : A.32.

* and right line : see " Right line.”

* segment of : 6078 : A.26,29. solid generated by it: N.42. sector : E.30 : N.57 : Lambert’s th, J.16. in space: A. 3.

* tangents : see under " Conics.”

* through 4 points, cn : 4837: J.26.

* triangle of 3 tangents : 1237,—68 : A. 47: Me.75. trigonometry of : CD.8.

^Paraboloid: 5621, 6126—41 : N.61 : Q. 13.

* generating lines of : 5624. of eight lines : 0.84.

* elliptic : 5622 : A.11 : L.58 : P.96.

Paraboloid—(continued):

* quadrature of: 6127 : An.55.

* segment of : 6127—33 : A.29.

* hyperbolic : 5623 : A.11.

* of revolution : 6134.

Paradoxes of De Morgan : J.113,124, 13, 16.

Parallels : A.8,47 : At.51: J.11,73 : Mel. 1,3 : Mem.5O2: Z.21,22 : Thibaut’s proof, A.15. in analytic geometry : A.44.

Parallel curves : J.55,ths32 : LM.3 : Q. 11 : Z.5. closed : A.66.

* of ellipse : 4960 : A.3 9 : An.6 0: N.442: Q.12.

Parallel surface : 0.54: LM.12. of surface of elasticity : An.57. of ellipsoid: A.39: An.50,60: E.17 : J.93.

Parallelogram with sides through four given points : A.39.

Parallelogram of Watt: A.8 : L.80.

^Parallelepipeds : on conjugate diameters : 5648.

diagonals, &c.: CM.1.

equality of: A.4.

analogues of parallelograms: LM.2: Me.68.

on a spherical base : N.45. system of: LM.8.

Partial differences: question in analysis: J.16.

“Partial differential equations (P.D.E.): 3380-3445 : O.34,ll,16,78,95,96 : thsCD.3 : J.58,80,prs26 : JP.7,10, 11: L.36,80,83 : M.11: Z.6,8,18.

*P.D.E., first order : 3399—3410 : A.33, tr50 : An.55,69 : C.146,533,545: CD.7: CM.1,: J.2,17 : trJP.22 : L.75 : M.9,ll,th20 : Z.22.

* complete primitive connected with any solution: 3405.

* derivation of the general primitive and singular solution from the complete primitive : 3401.

* derivation of a singular solution from the differential equation : 3403. with a general first integral: Me.78. integration by :----Abelian functions : C.94. Cauchy’s method: 0.81.

* Charpit’s method: 3399. Jacobi’s first method: 0.79,82: and ap. to Pfaff’s pr, J.59. Jacobi-Hamilton method: M.3. Lie’s method: M.6,8. Weiler’s method: M.9.

* law of reciprocity : 3446. and Poisson’s function : C.912.

P.D.E., first order—{continued) : simultaneous : 0.68,76 : L.79 : M.4,5.

* singular solution : 3401—3 : J.66. systems of: A.56 : M.11,17. theorem of Jacobi : 0.45.

3 variables : J.64.

* n variables : 3409 : A.22 : J.60: LM. 10,11. with constant coefficients : Mel.5. integration by calc, of variations: 0.14.

z = pa+qy+F {p, q): Z.5.

ad yb zcpm qn— A: CM.1. ^+P1+...+DnJdx,d,JDZ=Q,-. Z.13.

*P.D.E., first order, linear: 3381—95: reduction to, 0.15 : J.81 : Me.78.

* Pz+Qz, = R: 3383: extension to n variables, 3384.

L (px+qy—z)—Mp—Nq+H = 0 : 0.83.

a (yuz — zuy) + b {%ux—auz)— c(xuy—yux~) = 1: Q.8.

* Pt+Qt+ ... +Rta = S: 3387.

* „= -—, ; „„= 202+92 : 3390—1. v(y?— 22)

* (a—a) z+(y — b) % = c—z: 3392.

* 2?+y2+2% = 2ax : 3393.

* simultaneous : 3396 — 7 ; ex. 3398 : J.81.

u = vy and uy = — vx: J.70.

*P.D.E., second order : 3420—45 : A.33 : O.544,7O2,78,98 : JP.tr22 : L.72 : M.15: Me.762,77 : Mel.3 : N.83 : P.46 : transf. of, 0.97.

in two independent variables: trA. 54 : trNo.81 : 0.92 ; transf. of, 97 : M.24.

in 4 and 5 variables : Mem.13.

* Rr+Ss+Tt = V, Monge’s method: 3423: CM.3: N.76: Q.6.

* RrA-Ss-\-Tt +U (rt—82) = V: 3424, 3434—40: J.61.

* Rr-\-Ss-\-Tt-\-Pp+Qq+Zz = U: 3442. 7+t=0: A.2: 0M.1 : J.59,73,74: L.43.

7+t+1z=0: M.l.

* r—at = 0: 3433.

* 7—a^t = $ (^,y), &c. : 3565.

« (r—a^t) = 2np : E.13.

r—a^y-bt = 0-. E.27,28.

7= q2mt: 0.98.

7 = q : J.72.

P.D.E., second order—(continued) : dx {p sin x)+t+n (n+1) z sin3® = 0 : L.46.

7 (1+92) =t(1+p2): j,582.

q^r-A^+ ^r]yq = O: E.22.

d« (pa)+dy(qx) = 0 : Z.28.

construction of explicitly integrable equations of the form s = zX (x,y) : JP.28.


_2f‘(x) F(y) {/ (x)+F(y)}2




2: 0.81.



a^dxy log X ±X = 0 : L.53.

s+Pp+Q4+Z=0: Me.76.

s+ap+bq+abz = V: 3444.

(ax+by+c)s+alq+bup=0: A.33.

(x+y^ s+a (x+y)p+b ^+y) q+c^ = 0: A.33,38.

z2 (28—20)2+4 = F (y) : A.70.

rt—s3 : geoQ.2.

P = (rt—82)" Q, Poisson’s eq.: 3441.

(1+7) t+(1+t) r—2pqs = 0 : An.532.

q (1 +q) r+p (1 +p) t—(p+q+2pq) s = 0: 3432.

4s2+(r—t)2 = 472 : approx. integn., 0.74.

As+Bq+y (r, p, q, ®, y, z) = 0: 0.93.

(log B)ay—az = 0 : 0.36.

uu = Pr " where t = J

L.38.


_____r dr V^Rr^+A^



* U2+u2+uz= 0 (see also " Spherical harmonics ”) : 3551, 3626, J.36 : Mo. 78.

* uz+u,+uz =xyz : 3552.

* auxl-huy-pcuz = xyz, &c.: 3554.

* au2,+au — q^xu = 0 : 3618.

* a? (u2+12,+u2) — U2t : 3629 : 0.7 : LM.72.

integration bv change of variables: C.742. "

P.D.E., third order, two independent variables : LM.8 : N.83.

P.D.E., fourth order : AA=0: 0.69.

P.D.E., any order : No.73: 0.80,89 : M.11,13. n

a 2 ^nx = Eny : Z. 7.

two independent variables: 0.75: CP.8.

P.D.E., any order—{continued'): any number of functions and independent variables : 0.80. and ap. to physics : JP.13.

of cylinders : Me.77.

and elliptic functions : J.36 : hyper-ell., J.99.

integration by definite integrals : An. 59 : 0.94 : L.54. of dynamics : C.5 : J.47. Hamiltonian: M.23: Z.11. of heat: L.48 ; of sound, L.38. integrated in series : C.15,16. of Laplace: G.23.

linear: An.77 : C.13,90 : CD.9, : CM. 2: J.69: JP.122: L.39. of orthogonal systems of surfaces: Ac.4 : 0.77. with periodical coefficients : 0.293. of physics : L.72,47.

P.D.E., simultaneous : 0.92,th78: LM.9: M.23 : Z.20. linear: J.65.

P.D.E., system of : C.13,74,81. am^mt = a?mz,a : A.30,31, by z = eatf{x'). ^nx = a"z(m+n)+F(y)+aF2 (y)+ ... + am-1F‘„(y) : A.51.

Az„+(d.,+d.,+...)" = 0: 0.94. dz = Hde+KZy+Ldp+Mdq+NZr+ &c.: J.14.

Partial differentials of _— : J.11. 24—y2

“Partial fractions : 235, 1915 : A.30,66 : O.46,492,783: CM.1 : G.2 : J.1,5,9, 10,11,22,32,50, : JP.3: L.46 : Mem. 9: N.452,64,69 : Q.5.

Partition of numbers (see also “Numbers ” and " Indeterminate eqs.”): AJ.2,5,6 : An.57,59 : At.65: 0.80, 86,90,91: CP.8: J.13,61,85: M. 14: Man.55 : Me.78,79 : Mem.13, geo.ap20,44: Mel.l: N.69,85 : P. 50,56,58: Pr.7,8: Q.l2,2,7,15: Z. 20,24.

by Arbogast’s derivatives : L.82. of complex numbers in Jacobi’s th: 0.96. by elliptic and hyper-elliptic functions : J.13.

formula of verification: Pr.24. into 2 squares : An.50,52,54 : 0.87 : J. 49 : LM.8,9: N.54,78,alg65 : odd squares, Q.19. into 3 squares : J.40 : L.59,60. into 4 squares : 0.99 : L.68 : Pr.9 : Q.l. 4 odd, or 2 even and 2 odd : Q.19,20. into 5 squares : 0.97,98 : J.35.

Partition of numbers—{continued): into ten squares : 0.60 : L.66. into p squares: 0.39,90 : L.61 : N. 54. and an integer : L.57. into the product of two sums of sqs.: L.57. into parts, the sum of any two to be a sq.: Mem.9.

into 2 cubes : L.70.

into sum or difference of 2 cubes : AJ.2.

into 4 cubes : N.79.

into maximum nth powers : 0.95. into 10 triangular numbers : 0.62. formation of numbers out of cubes : J.14.

	
2    squares whose sum is a sq.: E.20 : N.50.


	
3    squares, the sum of every two being a sq.: E.17.


	
4    squares, the sum of every two being a sq.: E.16.


	
3    nos., the sum or diff, of two to be a sq.: Mem.18.


	
2 sums of 8 sqs. into 8 sqs.: Me. 78. a sum of 4 sqs. into the product of 2 sums of 4 sqs.: TL21. n nos. whose sum is a sq. and sum of sqs. a biquadrate : E.18,22,24. a quadric into a sum of squares : N. 80,81. ns—m3 into 3p2+q2 : N.49.





a square into a sum of cubes : N.67.

a cube into a sum of cubes : E.22, 23. into 4 cubes: N.77; into 3 or 4 cubes, A.60.

n12 — 9m12 or its double into 2 cubes : N.81.

	
3    nos. whose sum is a cube, sum of sqs. a cube, and sum of cubes a sq.: E.26.


	
5    biquadrates whose sum is a square E.20.



of n into 1, 2, 3, &c. different numbers : E.34.

of pentagonal numbers : 0.96.

	
	
a series for the : AJ.6.





tables, non-unitary : AJ.7.

theorems : AJ.6 : 0.40,96 : Me.76,80, 83 : pr. symm. functions, G.10.

Partitions :----in theory of alg. forms : G.19.

number of for n things : E.10.

in planes and in space : J.I.

Sylvester’s theorem: Q.4.

trihedral of the X-ace and triangular of the X-gon : Man.58.

“Pascal’s theorem : 4781: AJ.2 : CD.3, 4: CM.4: J.34,41,69,84,93 : LM. 8: Me.72: N.44,52,82 : Q.1,4,5,9 : Z.6,10. extension of and analogues in space : C.82,98: CD.4,5,6: G.11 : J.37,75: M.22: Me.85.

ap. to geo. analysis : A.18. on a sphere: A.60.

Steiner’s " Gegenpunkte ” : J.58.

Pascal lines: E.30.

Pedal curve: A.35,36,52 : J.48,50 : M.6 : Me.80,81 : Q.ll: Z.52,21. circle and radius of curvature : 0.84 : Z.14.

of a cissoid, vertex for pole: E.I. of a conic : A.20 : LM.3 : Z.3. central: A.9 : Me.83 : N.71. foci and vector eq.: LM.13. negative central: E.20,29 : TI.26. negative focal: E.16,17,20. nth and n—1th: E.18.

of evolute of lemniscate : E.30. inversion and reciprocation of : E.21. of a parabola, focal and vector eqs.: LM.13. rectification of difference of arcs of : Z.3.

which is its own pedal: L.66.

Pedal surfaces : A.22,35,36 : M.6 : J.50 : Z.8.

counter: A J. 5.

volumes of: 0.55: A.34 : An.63 : J. 62: Pr.12.

Pentagon, ths : A.4 : J.5,56 : N.53. diagonals of: A.57.

Pentagonal dedecahedron : A.25.

Pentahedron of given volume and minimum surface : L.57.

Periodic continued fractions : A.62,68 : c.968: J.20,33,53: N.68: Z.22. closed form of : A.62. representing quadratic roots : A.43. with numerators not unity : 0.96.

Periodic functions : A.5 : J.48 : N.67 : gzO.89: Mo.84.

cos a—} cos 32+3 cos 5x: CD.3a. doubly: C.322,40,70,90 : J.882: L.54. of 2nd kind : 0.90,98: gzL.83. of 3rd kind : 0.97. monodromic and monogenous : 0.40. with essential singular points: 0.89. expansion in trig, series : N.78. 4-ply, of 2 variables : J.13. 2n-ply, of n variables : Mo.69. multiply: C.57,582. integrals between imaginary limits: A.23.

real kind of: Mo.66,84.

Periodic functions—(continued') : of 2nd species : M.20.

of several variables : 0.43: J.71. in theory of transcendents : J.11. of 2 variables with 3 or 4 pairs of periods: 0.90. with non-periodic in def. integrals: 0.18.

Periodicity theory: M.18.

Periods :----cyclic, of the quadrature of an algebraic curve : 0.80,84. of the exponential e": 0.83. of integrals : see " Integrals.” law of: 0.963.

in reciprocals of primes : Me.733.

“Permutations : 94 : A1.: 0.22 : 0D.7 : L.39,61: LM.15: Me.64,66,79 : N. 44,71,763,81: Q.l: Z.10. alternate: L.81. ap. to differentiation and integration A.21. of n things : 0.95: N.83; in groups, L.65. of 3q and 2q letters, 2 and 2 alike: N.74,753. number of values of a function through the permutations of its letters: 0.20,21,46,47: L.65. successive (" battement de Monge ”): L.82.

with star arrangements : Z.23.

^Perpendicular from a point:---upon a line : length of : 4094, t.c4624: eq4086, t.c4625: sd5530.

* upon tangent of a conic : 4366—73.

	
*    upon a plane : 5554.


	
*    upon tangent plane of aquadric : 5627.


	
*    ditto for any surface : 5791—3.



Perpetuants: AJ.72.

	
	
^Perspective: 1083 : A.692: G.3 : thsL. 37:    Me.75,81. analytical: A.11. of coordinate planes : 0M.2.





* drawing : 1083—6. figures of circle and sphere : A.57. isometrical: OP.1. oblique parallel: Z.16. projection : A.16,70. relief: A.36,70: N.57.

* triangles : 974 : E.29 : J.89 : M.22,16 : in a conic, Al.

Petersburg problem : A.67.

Pfaff’s problem : A.60 : 0.94 : J.61,82 : M.17 : th of Jacobi, J.57.

Pfaffians, ths on : Me.79,81.

	
	
	
7 (see also “ Expansion of”): 0.95 : E. 30: N.42,45. calculation of: A.6,18: E.27 : G.2: cn J.3 : Me.73,74: N.50,56,66.







by equivalent surfaces : N.48.

7 :----calculation of—{continued): by isoperimeters : N.46. by logarithms : N.56. to 200 decimal places : J.27 ; to 208, P.41 ; to 333, A.212 ; to 400, A.22 ; to 500, A.25 ; to 607, Pr.6,11,22.

formulae for, or values of : A.12 : J.17 ; L.46 : M.20.

m = 3 + 42 approx.: Me.66 ;

= 2 log i, J.9.

functions of : p.6 : A.1: C.56,74. m-1 : E.27; to 140 places, LM.4. hyperbolic logarithm of: LM.14. powers of T and of T-1 : LM.8.

* incommensurable: 795. series for : Q.12 : TE.14. theorem on T and e : Q.15.

II (a) = 1 (1+x) ... {1+(n— 1) «} : A.12: J.43,67.

n (x) and imaginary triangles and quadrangles: A.51.

Piles of balls and shells : N.72.

Pinseux’s theorem : Mo.84.

Plane : J.20,45 : Mem.22.

* equations of: 5545, q.c 5550, p.c 5552 : Z.1.

* under given conditions : 5560—73.

* condition for touching a cone: 5700.

* ditto for a quadric : 5635, 5701. cond. for intersection of two planes

* touching a quadric : 5703. figures, relation between: A.55 : J.52 : M.3. kinematics of: Q.16.

and line, problems : CD.2 : J.14. motion of : JP.2 : LM.7. point-systems : J.77; perspective, Z.17.

representing a quadric : N.71.

*Plane coordinate geometry : 4001—5473. Planimeter : A.58 : Mel.2,3 ; Amsler’s, 5452,0.77; Trunk’s, A.44; polar, . A.51 : N.80.

Planimetrical theorems : A.37,60.

Pliicker’s complex surfaces : M.7.

Pluckerian characteristics of a curve discriminant: Q.12.

Pluckerian numbers of envelopes : 0.782.

Point-pair, absolute on a conic : Q.8. harmonic to two such : Z.13.

Point-plane system: M.232.

Points :----in a plane, relation between four: A.2,26.

* tg.eq of two : 4669, 4913. on a circle and on a sphere : N.82. of equal parallel transversals : A.61.

Points—{continued):

four, or lines, ths : CD.8. at infinity on a quadric : N.65. roots in a closed curve : N.68. in space, represented by triplets of points on a line : LM.2. systems : JP.9 : M.6,25 : N.58. of cubic curves : Z.15. three : coordinates of, N.42 ; pr, A.8.

*Polar : 1016, 4124 : A.28: J.58 : gzLM.2 : Me.64,66: N.72,79.

* of conics : 4762 : thsN.58.

of cubic curves : J.89 : L.57 : Mel.5 : Q.2.

curves, tangents of : N.43.

* developable : 5728. inclined: N.59.

* line of two points with respect to a quadric: 5685.

plane: Q.2: Z.22.

* of a quadric : 5678, 5687 : An.71; of four, LM.13.

of a quartic : L.57. of 3 right lines : A.1.

* subtangent: 5133.

Polar surface:----of a cubic: J.89; twisted, Z.232,24. of a plane : 0.60 : N.66. of a point: N.65. tetrahedron: J.78 : N.65 : Z.13. of a triangle : A.59 ; perspective, J. 65.

Pole:----of chords joining feet of normals of conic drawn from points on the evolute: N.60.

* of the line Xa+u+vy: 4671.

* of similitude : 5587.

“Pole and Polar: 1016,4124.

Political arithmetic : trA.36—38.

Pollock’s geo. theorems : Q.l.

Poloids of Poinsot: CD.3.

Polyacrons, A-faced : Man.62.

Polydrometry : A.38,39.

“Polygonal numbers : 287 : Pr.l0,ll,122, 13.

Polygonometry : thsAn.52 and J.2,47 : Mem.30.

Polygons (see also " Regular polygons ”): An.cn53,63 : JP.4,9 : N. 74 : Z.11 ; theorems : A.1,2 : C. 262: prsCD.52: Mel.2: N.58.

* area of: 748,4042: J.24: N.48,52. articulated and pr. of configuration, tr: An.84. centroid: N.77. of circular arcs, cn : A.3 : J.76. classification: Q.2.

division into triangles : A.1,8 : L.382, 392 : LM.13 : Pr.8.

of even number of sides : LM.1.

Polygons—(continued): family of : N.83.

maximum with given sides : J.26. of n + 2n sides, numbers related to : A.62.

of Poncelet, metrical properties: L.79. semi-regular: JP.24 ; star, A.59 and L.79,80.

sum of angles of : A.52 : N.50.

Polyhedral function (Prepotentials): CP.132.

“Polyhedrons : 906 0.462,60—62 : J.3 : JP.4,9,,15,24 : L.66 : Man.55 : N. 83: P.56,57: Pr.8,9,112,12 : Q.7 : Z.11,14 ; theorems : E.39—42 : J. 18: N.43; F+S=E+2: 906: A.24: E.20,272.

classification of: C.51,52. convex: angles of, C.74; regular, A. 59. diagonals, number of : N.63. Euler’s theorem : J.8,14 : Mem.13 : Z.9.

minimum surfaces of : A.58. maximum : regular, C.612; for a given surface, M.2 : Mel.4. regular : ellipsoidal, 0.27'; self-conj., A.62 ; star, A.62 : thsC.26,. symmetrical: J.4 : L.49.

surface of: A.53 ; volume, 1.24 : N.52.

Polynomials : geometry of, JP.28 : th Q.14.

determined from its partial differential : A.4.

product of two : N.44.

system of: L.56.

of two variables analogous to Jacobi’s: A.16. value when the "variable varies between given limits : 0.98.

Polyzonal curves, VU+VV+= 0 : TE. 25.

Porisms : L.59 : P.1798 : Q.ll: TE.3,4,9. of Euclid: 0.29,48,56—59: L.55. of two circles : Me.84.

Fermat’s fourth : A.46.

of in- and circum-polygon : Me.83 : P.61.

of in- and circum-triangle: LM.6,9 : Q.l.

Poristic equations : LM.4,5.

Poristic relations between two conics : LM.8.

Position, pr. relating to theory of numbers : Mel.2.

Potential: thsAn.82 : 0.88: G.15 : J. 20,32,63,70,th81,85: M.2,3: N.70,: Z.17.

of a circle : J.76.

Potential—(continued) :

of cyclides : 0.83 : J.61; elliptic, Me. 78. cyclic-hyperbolic, tables : J.4,63,72,83, 9,.

of ellipsoids: J.98 : Me.84 : Q.14; two homog., J.63,70. elliptic: J.472. of elliptic disc, law, r-3 : Q.14. Gauss’s f. and theory : Z.84. gz. of first and second : L.79. history of: J.86.

of homogeneous polyhedra : J.69. Jellett’s eq. and ap.: Q.16.

Newton’s : M.11,13,16. one-valued: J.64. p.d.e of: 0.90.

Poncelet’s ths : Z.3. a related integral: L.45.

of a right solid : J.58.

of a sphere : Me.81; surface of, Me. 83 : Q.12 : Z.7. surfaces : J.54 ; conicoids, &c., 79. vector : Ale.80.

Pothenot’s problem of the sphere : A. 44,47,542.

Powers:----angular functions, &c.: J.72. and determinants, relation: Z.24. of negative quantics : Ale.73. of polynomials: JP.15.

Power remainders : M.20.

Prepotentials : P.75.

Prime divisors of quartics : J.3.

Prime factors of numbers: J.51: N.71,75.

Prime-pairs : Me.79.

*Primes : 349—378 : A.2,19 : AJ.7 : fAn. 69: 0.thsl3,49,50,f63,962: G.5: J.th12,th14,20 : L.52,54,th79 : LM.2 : M.21 : Me.41: N.46,56: Pr. 5 : Q.5 : up to 109, M.3. in ar.p: Z.6. calculation of: J.10: in 1st million, M.25.

in a composite number : C.32. distribution of,ap. of recurring series: 0.82. division of a prime 4n+1 into sum of squares: J.50 : ditto of 8n+3, 7n+2, and 7n+4, J.37. even number = sum of 2 odd primes (?) : E.10: N.79.

Fibonacci’s problem : LM.11. of the following forms and theorems respecting them: 47+1, 4k+3 ; L.60: 6%+1; J.12: 8k+1; L.6I3, 62: 8k+3 ; L.58,60,614,622 : 8k+5 or 7 ; L.60,61 : 12k+5 ; L.61,63 : 16%+3; L.61: 16k+7; L.60,61: 16%+11 ; L.60—62: 16k+13; L. 61: 201+3, 20k+7 ; L.63,64 : 6 A

Primes—(continued) : 247+1, 5, or 7 ; L.614 : 24k+11 or 19; L.60: 247+13; L.61 : 407+3; L.61: 407+7 or 23; L. 603,613 : 407+11 or 19; L.6 0: 40k+27; L.613: 1207+31, 61, 79, or 10 9; L.61: 1687+43, 67, or 16 3 ; L.63 : m2+kn2 with k = 20,36,44, 56, or 116, and n an odd number; L.65 : 4m2+5n2 with m odd; L. 66. general formula for : C.63.

of a geo. form, limit of : C.74. irreducibility of 1+x+ ... +ap-1, when p is a prime : J.29,67 : L.50 : N.49. law of reciprocity between two, analogue : J.9.

* logarithms of (2 to 109) : page 6.

* number infinite : 357 : Mo.78. number within given limits : A.64 : C.953 : M.2 : Z.5. number of digits in their reciprocals : Pr.22.,23.

number in a given quantity : Mo.59. product of n, th : N.74.

* relative : 349—50, 355,-8, 373 : J.70: L.49.

tables of : from 108 to 100001699 : of 153 of the 10th million : of cube roots of to 31 places : Me.78. of sums of reciprocals and their powers : Pr.33.

M= aab^ for a prime or composite modulus : Q.9.

totality of within given limits : AJ.4 : L.52.

transformation of linear forms of into quadratic forms : 0.87.

on that prime number X for which the class-number formed from the Xth roots of unity is divisible by X: Mo.74.

Primitive numbers: th0.74.

Primitive roots : 0.64 : JP.11 : fL.54 : taJ.45.

of binomial eqs.: thsL.40 : N.52. of primes : J.49. product of, for an odd modulus : J.31. of unity: 0.92.

Abel’s theorem: An.56. divisors of functions of periods of : 0.92. period, Jacobi’s method : 0.70. of primes : J.49 : and their residues, Me.85.

sum of, for an odd modulus : J.31. table, for primes below 200: Mem. 38. table of, for primes from 3 to 101: J.9.

^Principal axes of a body : 5926/60, ’72/77: J.5: JP.15: L.47: N.46.

Prismatoids : A.39 : volume of, Z.23.

Prismoids : A.39.

Prism : volume of, A.6.

^Probability : 309: A.l2,19,47 : 0.65,97 : CP.9: E.274,30: G.17: 1.15: J. 262,302,33,34,36,42,50 : L.7 9: N. 51,73: Z.2. theorems : Bernoulli’s : LM.5 ; P.62 ; TE.9,21.

problems : A.61,64 : OD.6 : E. all the volumes : G.16 : L.37 : Me.4,6 : Q.9. de 1’aiguille, &c.: L.60. in analysis : J.6. on decisions of majorities : L.38,42. duration of life : CM.4. rouge et noir : J.67.

drawing black and white : 1.14 : L.41. errors in Laplace, p. 279, and Poisson, p. 209: OP.6. games : A.11: head and tail; 0.94.

* of hypothesis after the event: 324: Mel.3.

local: P.68 : exE.7. notation : LM.12.

position of double stars : Pr.10. principal term in the expansion of a factorial formed from a large number of factors : 0.19.

random lines : Pr.16 : E. frequently.

* repeated trials : 317-—21: 0.94. statistics: L.38. testimony and judgment: TE.21.

Products:----continued: Me.772. of differences : thQ.15.

of 4 consecutive integers : N.62.

* of inertia : 5906. infinite, convergency of : A.21 : transf. of, 0.17.

of linear factors : 0.9. of n quantities in terms of sums of powers: Me.71.

of 2 sums of 4 squares (Euler): Q. 16,17. systems of: L.56.

“Progressions : 79—93 : An.64 : 0.20 : G.62,7,11 : of higher order, G.122. with n = a fraction : N.42.

^Projection : 1075, 4921: A.3,6,12 : prsJ. 70: Q.21,prl3.

and new geometry : A.1. central: G.13 : derivation from orthogonal, A.62. central and parallel, of quadrics into circles : A.52.

* of conics : 4921—35 : A.66 : J.37,86. of a cubic surface : M.5.

“Projection—(continued) :

of curves : J.66 : Z.132: loci of centres, A.6. on spheres: Q.14. tangents to : cnL.37.

of a curved surface on a plane : J.67. of an ellipsoid on a plane : J.59. of figures in one plane : A.1. gauche: N.66.

of Gauss : Mel.2.

* map : Mercator’s, 1093 : A.50 : G.18 : JP.24: N.793.

* of one line on another: 5529: on a plane, A.6.

* orthogonal: 1087. plagiographic: A.8. of ruled quartics : M.2. of shadows : N.56. of skew hyperboloid : Me.75. of solids : Man.84.

* of the sphere : 1090 : AJ.2.

* stereographic : 1090: A.30—32 : L. 42,54.

of surfaces on a plane : M.5. of surface of tetrahedron on a sphere : J.70.

* of two rectangular lines : 4934.

Projective:----correspondence between two planes and two spaces : G.22. equations of a surface, relation to tg.e: E.2.

figures on a quadric : A.18. generation of alg. surfaces : A.1,2 : of curve forms, An.14: J.54: M.25 : Z.18.

geometry : A.8 : An.75 : At.752,78 : G.12—14,17: J.84: M.17,18: ths N.77 : ths of Cremona, G.132,14 : thZ.11. loci and envelopes : G.19. and P.D. eqs.: A.1.

point series: J.91. and perspectivity of higher degree in planes: J.422.

“Proportion : 68 : A.8 : G.6,13 : TE.4.

Pseudosfera: G.10.

Ptolemy’s theorem : A.2,67 : At.19 : J. 13: LM.12. ext. to ellipse : A.30 : inverse of, A.5. Pure mathematics, address by H. J. S. Smith, F.R.S. : LM.8.

Pyramid : triangular : A.1,3,21,28,32, 36 : J.3 : volA.14. vertices of: A.2. and higher n-drons : prsA.9. and prism sections, collineation, &c.: A.9.

Pythagorean theorem: A.11,17,20,24: gzJ.26 and N.62. spherical analogue : A.44 : N.52.

Pythagorean triangles : taA.1 : E.20.

^Quadratic equations : 45 : A.24, : with imaginary coefficients, A.8. graphic solution : Me.76. real roots of : J.61.

solution by continued fractions : L.40. by successive approximation : N.74.

Quadratic forms (see also " Quadric functions ”) : trA.15 : Ac.7 : C. 85 : J.27,f39,54,56,76,86 : L.512, 73: M.6,23: Mo.682,743: thsAn. 54: J.53: M.20 and Z.16,19.

Dirichlet’s method : Mo.64. having one at least of the extreme coefficients odd : L.67,69.

Kronecher’s: L.64.

multiplication of : An.60.

number of the genera of : J.56. number which belong to a real determinant in the theory of complex numbers : J.27.

odd powers of sq. root of 1—2nU+n2: Mel.5.

positive: A.ll2.

reduction of : J.39 : L.48,56,57. relation, anal, investigation: Z.14.

Quadratic loci, intersection of: AJ.6.

*Quadratrix : 5338.

tangent, cn : N.76. of a curve : C.763.

Quadrangle : prA.55 : 0.95.

of chords and tangents : A.2. differential relation of sides : Me.77. dualism in the metric relations on the sphere and in the plane : Z.6. and groups of conics : A.1.

of two intersecting conics, area: LM.8. metrical and kinematical properties : 0.95.

^Quadrature : 5871—83: A.26 : An.5O2: OD.ths5,9: E.6: J.34: L.54: Mem.2 4,41: N.42,f55,54 : N.7 5 : TI.1.

approximate : 0.95 : N.58.

of the circle : Me.74 : Pr.7,20.

Cote’s method: N.56.

with equal coefficients, f.: 0.90. Gauss’s method: A.32: C.84,902: J.gn55,56. from integrals of differentials in two variables: M.4.

* Laplace’s formula, f.d.c : 3778. of a small geodesic triangle, Gauss’s th: J.16,58.

* by lines of equal slope : 5881. quadrics: CD.1 : L.63: formed by intersecting cylinders, An.65. sphero-conic: J.14.

Quadratures—(.continued) : which depend upon an extended class of d.e with rational coefficients : 0.92.

*Quadric cones: 5590,5618,‘54,‘97 : N.66. locus of vertex : 0.52.

through six points : 0.52.

Quadric functions or forms : A.13,,38 : C.44,55,78,892,95: J.472: JP.28, arith 32, positive 99 : algL.74 : Mo.58 : see also " Quadratic forms.”

bipartite: P.58.

in coefficients and in indeterminate complexes : J.24. equivalence of: 0.93.

in n variables : Me.2 : disappearance of products, N.55.

quaternary : An.59 : L.54 : M.5,13 : whose det. < 0, 0.96 ; and corresponding groups of hyperabelians, reduction of : 0.91,93,96 : G.5 : to sum of squares, Mel.5. represented by others : 0.93. transf. of: 0.86 : CD.4 : G.1 : LM.16 : M.66: Q.17. reciprocal: J.50. invariability in number of pos. and neg. squares: J.53. with two series of variables : 0.94.

*Quadric surfaces : 5582—5703 : A.32,4, 12,16,45,56 : An.52,geo60 : At.51: 0.76: CD.3 : G.13,14: J.1,18,38, f42,63,69,89 : JP.6 : L.39,43,50 : M.2,2 3 : geoMe.7 4: N.56,57,582, 593,60,61,77: Z.5,cnl3. theorems : An.54 : CD.5 : J.54,85 : L.4 3 : Mo.7 9 : N.632,642 : Q.2,4. problems: An.61 : 0.60: J.73: N. 58: Q.10. analogy with conics : Me.72. anharmonic section of : G.12. bifocal chords of : CD.5.

* central equations : 5599—5672.

* central sections : 5650: area, 5650: axes, 5651. locus of focus : N.66.

* non-central sections : 5654.

* centre : N.75 : area, 5655.

* centre, coordinates of: 5690: A.16.

* circular sections : 5596, 5601,’6,’19 : 0.43: 0D.1 : CM.1: E.30: J.47, 65,71,85: N.51. common enveloping cone : G.6.

* condition for a cone : 5699.

* conjugate diameters : 5637 : N.42,61; parallel, G.1; rectangular system, L.58.

Quadric surfaces :---conjugate diameters—(continued) :

* parallelepiped on them : vol. 5648 : sum of squares of areas of its faces, 5645 : do. of reciprocals of the perpendiculars on its faces, 5644.

* sum of squares of their reciprocals: 5643: ditto of their projections on a line or plane, 5646. construction and classification by projective figures : A.9. correlation of points and planes on : CD.5.

* cubature of : 6126—65 : A.14.

* diameters : 5677,—88.

* diametral plane : 5636 ; gn.eq, 5689. of constant sectional area : N.43. director-sphere of: Q.8. duplicate: CD.6.

* enveloping cones of : 5664—72,5697. equation between the coeffs. : J.45. without foci: L.36. focales, a property from the theory of: L.45.

* general eq.: 5673 : CD.5 : CM.4: LM. 12,13 : M.1: Me.64.

* condition for a cone : 5699. condition for a sphere: Q.2. coefficients : A.1.

* generation: 5607—24, N.47,75; Jacobi’s, J.73. homofocal: L.60. indices of points, lines, and planes, theory: N.704.

* intersection of two: 5660, C.642: G. 6 : M.15 : Q.10; ruled, N.83 ; with a sphere, ths, N.64. parameter representation of: M.15. tangent to: LM.13.

* intersection of three: 5661, J.73: TN.69.

loci from : A.27.

* normals of : 5629—32 : 0.78 : J.73,83 : N.63,78: Q.8. oblique coordinates : N.82.

* polar plane of : 5681—8. Pliicher’s method : L.38. of revolution : N. 72,81; through 5 points, 66 and 79. self-reciprocal: M.25: Z.22. sections of : J.74. similarity of two : CD.8. with a " Symptosen-axe”: A.60,61. system of: Q.15; reduc. and transf., L.74: Z.6.

* tangents : 5677 : G.12.

* tangent planes : 5626,—78 : CM.1 : cnJ.42: LM.11: N.46.

Quadric surfaces—(continued): locus of intersect, of three : LM.15. through 9 points or under 9 conditions : A.17 : CD.4, : J.24,62,68 : L.58,59 : Q.8 : Z.25. under 8 conditions : C.62.

through 12 points : G.17,22.

through a twisted quintic curve: E. 38. transformation of two, by linear substitution into two others,in which the squares only of the variables remain: J.12.

principal axes : see “Axes.” principal planes of: L.36: N.67,71 : Z.24.

and their umbilics : 0.54. volume of segment: A.27; of oblique frustum, E.19.

Quadricuspidals : L.70.

Quadrilateral: A.6,48 : Me.66 : thG.5 : prsN.43.

area: N.48 ; as a determinant, N.74. between two tangents to a conic and the radii to the points of contact: A.532.

bisectors, a property : N.75.

* and circle, geo.: 733 : Q.5.

* complete : 4652 : A.24,69 : At.63 ; mid-points of 3 diagonals, collinear, Me.73.

* and conic : 4697 : N.75, 76.

* and in-conic : tg.c 4907 : Q.ll. cn. with given sides and equal diags.: A.5. convex: A.66; area, Q.19. Desargues’ theorem: Z.24. plane and spherical: A.2 : Z.6. and quadrangle: A.1. right-angled: A.2,3. with sines of angles in given ratio: A.2.

* sum of sqs. of sides : th 924. th. extended to 3 dimensions : J.56.

Quadruplane : LM.14.

*Quantics: 1620: C.47: J.56: LM.6: N.48: Cayley P. 54,56,58,59,61, 67,71 and 78: Pr.72,8,9.„ll,15,17, 18,23 : thsCD.6 : J.53 : N.53 : Q.14; Cauchy, Pr.42. derivatives, relation between 1st and 2nd: E.39. derivation from another by linear substitution: 0.42. of differentials: J.70,71 : Mo.69. index symbol of : CD.5. integration of a rational: 0.97. in linear factors : 0.50: L.ths61: Q.6. transf. of ax?—by2+cz2+dw?,by linear subst.: J.45.

Quantitative function, transf. of : CD.3.

Quartic equations : see " Biquadratic.”

Quartic curves : An.76,79 : At.52 : 0.37, ths64,65,77,98: CD.5: G.14,16 : J.59 : M.thl,4,7,12 : prN.56.

aU+6^H = 0: M.I.

and Abel’s integrals : M.11.

binodal, mechanical cn. of : E.18. characteristics of a system : 0.75. chord of contact, eq. : M.17. classification by inf. branches : L.36. with cuspidal conics : M.I9. with 3 cusps of 1st kind : An.52. degenerate forms : LM.2. developable reciprocated: Q.7. with a double line : A.2 : 0.75. with a double point: M.19; two, 0.97. ; three, Q.18; three of inflexion, N.78.

with double tangents : J.66. and elliptic functions : J.57,59. of 1st kind and intersections with a quadric: An.692.

generation of . 0.45 : J.44 ; 3rd class, J.66 and Z.18.

16 inflexion points of 1st species of: trZ.282: E.32.

and in-pentagon, th : M.13. oblate : 0.74. parameter representation of: M.13. penultimate: Me.72. with quadruple foci: Q.182. rectification : 0.872. and residual points : E.342. and secants : M.12. singularities of : L.75 : M.14. synthetic treatment of: Z.23. through which one quadric surface only can pass : An.61. trinodal: thE.30.

unicursal twisted : LM.14.

Quartic surfaces : A.12: 0.70 : G.11,12 : LM.3,19: M.I,7,13,18,20 : Mo.66, 72: N.70,873: Q.10,11. containing a series of conics : J.64. with a cusp at infinity : LM.14. with double conic : A.2 : M.I,2,4 : Mo.68.

with eq. Sym. det. = 0 : Q.14. generated by motion of a conic : J.61. Hessian of: Q.15. and 2 intersecting right lines : M.3. with 12 nodes : Q.14.

with 16 nodes.: J.65,73,83,84,85,86,87, 88: Mo.64; principal tangent curves of, M.23 and Mo.64.

Steiner’s : 0.86 : J.64, with a tacnode at infinity at which the line at infinity is a multiple tangent: LM.13.

Quartic surfaces—(continued): with triple points : M.24.

Quaternions : C.86,98, : CD.4 : G.20 : M.11,2 2 : Me.623,64,81 : P.52 : Q. 6: TE.27,28: TL21. ap. to linear complexes and congruences : Me.83.

ap. to tangent of parabola: AJ.1,. elimination of ay from the conditions of integrability of Suadp, &c.: TE.27.

equations : 0.98 ; linear, 992 : of surfaces, Joachimstahl’s method, E.43.

vp Hp = 0 : TE.28 : qQ—qQ‘ = 0, Me.852.

finite groups : AJ.4.

f. for quantification of curves, surfaces, and solids : AJ.2. geometry of: CD.9. integration ths: Me.85. transformations : Man.82.

*Quetelet’s curve: 5249.

Quintic curves : cnM.25.

Quintic equations: AJ.6,,7 : An.65,682 : C.462,48,50,61,62,,73,80,,85 : J.59 : M.132,14,15: P.64: Pr.11 : Q.3 : TI.19 : Z.4.

auxiliary eq. of : Man.l52: P.61: Q.3. condition of transformability into a recurrent form: E.35.

irreducible: AJ.7 : J.34.

functions of difference of roots: An. 69. reduction of: Q.6.

resolvents of: C.632.

whose roots are functions of a varia-. ble: Q.5. solution of : An.79 : J.59,87 : N.42 : Q. 2,18. Descartes’ method: A.27. Malfatti’s: An.63. in the form of a symmetrical determinant of four lines : An.70.

Quintic surfaces : LM.3. having a quintic curve : An.76.

Quintics, resolution of : Q.4.

Radial curves : LM.1: of ellipse, Q.18. of conics, catenary, lemniscate, &c.; E.24.

Radiants and diameters of a conic: C. 26.

“Radical axis (see also " Coaxal Circles ”): 958,984—99,4161: LM. 2: Me.66. of symm. circle of a triangle: A.63. of two conics : Q.15.

"Radical centre : 997.

“Radical plane: 5585.

Radii of curvature of a surface : A.11, 55: Q.12: Z.8. principal ones : L.47,82 : M.3 : Me.80 : .. N.55.

*Radii of curvature of a surface : 5795— 5817: A.11,55: q.12: z.8.

* ellipsoid: 5831. flexible surface: L.482.

* principal: 5814—6 : L.47,82 : M.3 : Me.80: N.55. constant: Me.64.

* for an ellipsoid: 5832. equal and of constant sign : C.41: JP.21 : L.462,50.

* Euler’s theorem : 5806. one a function of the other : An.65 : C.84: J.62. product constant: An.57. reciprocal of product: An.52. sum constant: An.65. sum = twice the normal: C.42.

*Radius of curvature of a curve : 5134: A.cn4,9,31,33 : CD.7 : J.2,45 : ths M.17 : N.62,74: q.c and t.c Q.12 : Z.3.

absolute : CM.1.

* circular: 5736 ; ang. deviation, 5746.

* of conics : 1259 : A.9 : CM.1 : J.30 : L.3 6: Me.6 6: Mel.2j N.45,682. at a cusp or inflexion point: N.54. in dipolar coordinates : Me.81. of evolutes in succession: N.63. of gauche curves : N.66. of a geodesic: L.44 : on an ellipsoid, An. 51.

and normal in constant ratio: N.44.

* of normal section of $ (x, y, z) = 0 : 5817.

* of a parabola : 1261, 4542. of polar curves : A.51 : CM.2. of polar reciprocal: N.67. of projection of a curve: N.61 ; of contour of orthogonal projection of a surface, 0.78.

* of a roulette : 5235 : N.73. transf. of properties by polar reciprocals : L.66.

of tortuous curves : Mem.10. of circum-sphere of a tetrahedron in terms of the edges : N.74.

*Radius of gyration : 5904.

Radii of two circles which touch three touching two and two : A.55.

Radius vector of conic : J.30 : N.472. Ramifications: E.302,33,40,pr 37,th27. sol. by a diophantine eq.: Mo.82. Randintegral: J.71.

*Ratio and proportion: 68; compound, 74. of ap : bp: geo.cnN.44.

Ratio and Proportion—{continued) : of differences of geo. quantities : 0.40.

* limits of: 753.

* of segments of lines and triangles, geo.: 929—32.

* of two distances, geo.: 926—8.

Rational:----derivation, cubic curve : . AJ.3a.

divisors of 2nd and 3rd degrees : N. 45. functions, development of : AJ.5.

Rationalisation of:----alg. fractions: A.13,33,35.

alg. equations: A.13 : CD.8 : J.14 : P.14: TL6.

alg. functions : A.69.

a series of surds (Fermat’s pr.): A.35. Rational functions :----of n elements : M.14.

infinite form systems in : M.18.

Ray systems (see also " Congruences”): J.57 : L.60,74: Me.66 : N.60,613, 622: Z.16. of 1st order and class and linear pencils : J.67,692: Z.20.

1st and 2nd order: Mo.65 : M.15,17. 2nd order and class : J.92.

3rd order and 2nd class : J.91. 6th order and 2nd class : J.93. 2nd class and 16 nodal quartics : J.86: Mo.64. complex of 2nd degree and system of 2 surfaces : M.21.

and refraction theory: Q.142 : TI.15 —17. forming a group of tangents to a surface : Z.18.

infinite geometry of : Z.17.

"Reciprocal polars : 4844, 5704 : A.36 : gzE.24: J.77: LM.2: N.48,49: num.fG.21.

"Reciprocal : of a circle : 4845.

* cones: 5664, 5670.

* of a conic: 4866—8.

* of a quadric surface : 5717—8. radii: M.13.

relations : J.48,79,90 : M.19,20.

* spiral: 5302.

* surfaces : 5704—19 : J.79 : M.4,10: P. 69. curvature of: L.77. degree of: CD.2 : TI.23.

of Monge: C.42.

* of quadrics : gn 5705 ; central, 5706. of surface of centres o a quadric : Q.13.

of the same degree as their primitives : Mo.78.

theorems on conics and quadrics : L. 61.

Reciprocal—(continued): transformation, geo.: L.71.

triangle : th Q.1; and tetrahedron, Q.l.

Reciprocants: LM.172.

Reciprocity : anal., A.7 : geo., CD.3.

^Reciprocity law : 3446 : AJ.1,th 2 : 0. 90, : J.282,39 : LM.2 : Mo.58 : d.e, 3446 and A.33. in cubics : M.12.

history of: Mo.75.

for power residues : C.84; quadratic, C.24,88 : J.4 7 : L.472 and Mo.8 0, 84,85 ; cubic, in complex numbers from the cube roots of unity, J. 27,28.

quadratic F^ system of 8th degree : J.82.

supplementary theorem to : J.44,56.

“Rectangle : M. I. of, 6015.


"Rectangular

66,72 :

^Rectification

Ac.5:



hyperbola : 4392 : Me.62, N.42,65.

of curves: 5196 : A.26 :

An.69: CR.95: CD.9: G. 11 : J.14: L.47: N.ths53,64. approximate : M.4 : Mel.4.

by circular arcs : C.77,85 : L.50 : Mem. 30, by elliptic arcs or functions : J.79 : Mem.30.

by Poncelet’s theorem : C.94. mechanical: Z.16.

on a surface: Mem.22.

*Rectifying :----developable: 5727.

* line : 5726,-51 : N.73.

* plane: 5726.

* surface: 5730.

Reflexion:----from a revolving line : TE.28.

from plane surfaces : A.60.

from quadric surfaces : J.35.

Refraction curve : A.51.

Regie a calcul: 0.58 : N.69.

*Regular polygons : 746 : A.21,cn24,39 : L.38 : M.cn6,13 : N.42,44,47. convex: Me.74.

eqs. of and division into eqs. of lower degrees, tr. : A.46.

in and circum : N.45 : Q.2. in space : Me.75.

spherical: N.60,67.

star: J.65 : Me.74 : N.49. funicular: N.49.

5-gon: M.83.

7-gon: A.17.

7-gon and 13-gon : M.6.

8-gon: A.6.

12-gon: complete, 0.95.

Regular Polygons—(continued) : 17-gon: A.6: J.cn24,75: N.74; and division of the circle, A.42.

• eqs. for sides and diagonals : A. 40.

“Regular polyhedrons : 907 : A.11,,47 : Pr.34 : Me.66 : Q.15.

* relation of angles : 909 : Me.74. volumes by determinants : A.57.

Related functions: M.25.

Relationship problems: E.35,382.

Relative motion : N.66.

Rents : A.40.

Representative functions: M.18.

Representative notation : Q.6.

Reproduction of forms : C.97.

Reptation: N.54.

Residues: A.26: C.122,13,32,ap322,41,44, 49: CM.1: J.252)31,89: L.38: Mel. 4: N.462,Mem 70. ap. to infinite products : 0.17. ap. to integrals whose derivatives involve the roots of alg. eqs.: 0.23. ap. to reciprocity law of two primes and asymptotes : 0.76.

of complex numbers : Mo.80. primes of 5th, 8th, and 12th powers: J.19.

biquadratic : 0.64 : J.28,39 : L.67. cubic: A.43,63 : 0.79 : J.28,32 : L.76. quadratic: Ac.l: J.28,71: Q.l. ext. of Gauss’s criticism : Mo.76. of primes, also non-residues : L.42 : Mel.4. and partition of numbers : J.612. quintic: 0.76: Z.27. septic: 0.80.

of 9exp.(9exp.9) by division by primes : A.35.

Residuation in a cubic curve : Me.74.

Resultant alg.: M.16 : ext 0.583. and discriminants and product of differences of roots of eqs., relation: Me.80.

of two equations : J.30,50,53,54 : M.3 : P.57,68.

of two integral functions : Z.17. of n equations : An.56.

of covariants: M.4.

of 3 ternary quadrics : J.572: N.69.

Reversible symbolic factors : Q.9.

Reversion of angles : LM.6.

Rhizic curves : Q.ll.

Rhombus: quadrisection by two rectangular lines : Mem. 11. circumscribing an equil. triangle : A. 45.

Riemann’s surface: LM.8 : M.6,182: thsZ.12.

of 3rd species : M.17. new kind of: M.7,10.

Riemann’s surface—(continued) : irrationality of: M.17.

Riemann’s function: A.68 : J.83 : M.21. ext. to hyper-geo.-functions of 2 variables : C.952.

6-formula, gz : Ac.3.

*Right-angled triangles : 718 : prs A.2. with commensurable sides : E.33.

Right cone : Me.72,73,75,76.

Right line : A.49,57 : fQ.15 : t.cMe.62. and circle : ths N.56. coordinates of: G.10. and conic : Q.7 ; cn. for points of section, A.59,66: N.85.

*    quadratic for abscissae of the points: 4319.

* tg.e of the points : 4903.

* condition of touching : 4315, 4323, t.c 5017.

* drawn from x'y' across a conic: quadratic for the segments in an ellipse, 4314; parabola, 4221; gen. eq., 4494; method, 4134.

* joining two points, coordinates of point dividing the distance in a given ratio : 4032, t.c 4603, 5507.

* tg. eq. of the point: 4879.

* joining two points and crossing a conic : quadratic for ratio of segments in an ellipse, 4310 ; parabola, 4214; gn. eq., 4487, t.c 4678 ; method, 4131.

* constants, relations between: sd. 5515.

* coordinates of, relation between the: 4897.

* and curve : 4131—5 : ths. in which pairs of segments have a constant length, C.83e; a constant product, C.822,832; a constant ratio, C.83; ths. in which systems of 3 segments have a constant product, C.83,.

crystallography: A.34.

* equations of : 4052—66, p.c 4107, t.c 4605—8; sd5523, q.c5541. geometry of : A.64 : thsJ.8.

* at infinity : 4612—4, tg.c 4898.

* cond. for touching a curve: 4900. pencils of: C.70 : L.72 ; quadruple, J.67.

and plane : prs CD.1 and CM.2 : t.c and q.c Q.5.

pole of: t.c 4671: tg.e 4674.

* and quadric: 5676; harmonic division, 5687.

and quadric of revolution : N.82. six coordinates of : CP.11.

Right line—{continued): system of : At.68 : G.9,10,16. of 1st degree, G.6 ; of 2nd, G.7. in space: G.113,12 : L.46. and planes, geo. of 2nd kind: At. 65.

* three, condition of intersection: 4097: t.c4617.

* three points lying on, cond.: 4036, t.c 4615.

* through a point: 4073, 4088—9, 4099, t.c4608.

* condition: 4101.

* and perp, or paral. to a given line: sd5538—9. '

* through two points : 4083, sd553 7 ; t.c4616, 4789 ; p.c4109 : on a conic, equation of, ellipse 4324, parab. 4225.

through four lines in space: A.1 : CM.3 : Gergonne’s pr. J.2 and N.17.

* touching a surface : condition, 5786.

* quadric : 5703. planes or points through or on given points, lines, or planes, number of such: Z.6.

* two:---angle between them: 4112; sd5520,5553 : CP.2 : N.66.

* bisector of the angle : 4113, sd5540, q.c5543.

* cond. of parallelism : 4076 ; t.c4618; sd5531.

* cond. of perp.: 4078 ; t.c4620 : sd 5532.

* cond. of intersecting on a conic, gn. eq: 4962.

* cond. of either touching the conic : 4964.

* cond. of intersection: sd5533. coordinates: 4090, t.c4611.

* shortest distance : sd5534—6. drawn to the points of section of a right line and conic, eq. of : A.69.

* through origin, eq. of : 4111. under given conditions : C.73,74 : under four, C.68.

*Right solid: M. I. of, 6018 : thA.34. Rodrique’s th. : Me.80,842.

Rolling cones : L.53.

Rolling and sliding solids : geo thsC.46. Rosettes: N.48.

Rotation : CM.3 : LM.32 : infinitesimal, 0.78. of system of lines drawn through points on a directrix, modulus of: 0.21.

Roots of algebraic fractions : N.46.

*Roots of an equation (see also " Equations ”): 50,402 : A.14 : CM.2 : CP.8: E.36: J.20,31: K.42,56: P.1798,37,64: Q.l,5,6.

of a biquadratic, cn : N.44. by parab. and circle : N.87.

* commensurable : 502 : N.45,th57. limits to the number : N.59.

* common : 462 : C.80,88 : N.55,69. as continued fractions : CM.3. continuity of: N.76. in a converging series : C.23,38. of cubic : L.44 : N.42. of cubic and biquadratic : An.55 : L. 55. as definite integrals : J.2. yn—xyn~x—1 = 0 : Me.81: P.64. as determinants of the coefficients : A.59,61.

* discrimination of : 409 : A.46.

* equal : 432—47 : CD.5 : E.33 : Mel.l : P.1782: Q.9,18.

with equal differences : G.152. existence of : A.15 : CD.2 : OP.10 : ■ E.36: G.2: J.5,44,88: LM.1 : Q. 11 : TI.26. expanded in power series : J.48. of the form a+b+c+ : N.45. forms for quadrics, cubics, and quartics : Z.24.

* functions of the roots of another eq. : 425,430 ; products in pairs, Q.13.

* squares of differences : 541 : ap,N. 50: E.40. as functions of a variable parameter : 0.30. functions of : similar, L.54; relation to coefficients, TE.28. geo. cn of: JP.10.

in g.p : N.89.

in a given ratio : J.10.

* imaginary: 408: geo.cn,A.15,45 : 0.24, 86—88: JP.11: L.50: N.46,47, 682 : approx. N.45,53 : Q.9. between given limits : A.21 : L.44. Newton’s rule : Me.80 : N.67 : Pr. 13.

Newton-Fourier rule: Q.16.

* Newton-Sylvester rule : 530 : C. 994 : LM.1 : Me.66 : Pr.14 : Q.9 : T1.24.

* incommensurable : 506 (see " Sturm’s th.”)

infinite: N.442,45.

in infinite series : A.69.

* integral, by Newton’s method of divisors : 459.

least: M.9 : TE.28.

* limits of : 448 : 0.58,60,93 : geo CP. 12: N.43,45,592,72,80,,81. 6 B

Roots of an equation—{continued') : number between given limits : A.1 : G.9: J.52: L.40. the eq. containing only odd powers of a : N.63.

* Rolle’s th. : 454: AJ.4 : N.44 : ext L.64.

Rolle, Fourier, and Descartes : A.1. number satisfying a given condition : 0.40.

product of differences : Me.80 : P.61.

* of a quadratic: 50—3. of a quartic and of a Hessian, relation : E.34.

of quintics : 0.59,60 : LM.14 : TI.18. rationalization of : P.1798,14. real: A.36,58: 0.61: J.50: JP.10 : N.50 : P.57. of a cubic : N.72 : Z.2. Fourier’s th. : N.44. developed in a series : L.78: N.56. limits of: J.1 : N.53,79. series which give the number of: Z.2.

to find four : An.55.

* rule of signs: 416—23: A.34: 0.92, 982,992 : N.43, 46,47,6 7,69,7 9. separation of : A.28,70 : J.2 0 : N.682, 72,74,75,802. by differences : N.54. for biquadratics : A.47. for numerical: 0.89,92 : G.6. simultaneous eqs.: 0.5.

* squares of differences : 541: 0M.1: N.42,44 : Q.4.

* sums of powers : 534: E.38 : thJ.9 : N.53,75 : gzMe.85 : Q.19. in sums of rational functions of the coefficients : Ac.6. surd forms of : CM.3.

* symmetrical functions of: 534 : A.16 : AJ.1: An.542,55,60 : 0.44,45: G. 5,11: J.19,54,81: Me.81: N.48, 50,55,66,84: P.57: Pr.8: Q.4: TI.25. do. of the common roots of two eqs.: N.60: Z.15. do. of differences of roots : 0.98. which are the binary products of the roots of two eqs.: An.79. with a variable parameter : 0.12. which satisfies a linear d.e of 2nd order: 0.94.

*Roots of numbers : 108: A.17,26,35: 0.58: E.36: Me.75 : N.61,70.

* square root: 35 : 0.93 : N.452,46,61, 70.

* as a continued fraction : 195: A.6, 12,49: CM.22: L.47: Me.85: Mem.lO: TE.5: Z.17.

Roots of numbers—{continued}: to 25 decimal places : Me.77.

* cube root: Horner’s method: 37: A.67. of 2 to 28 decimal places : Me. 76,78. and sq. root, limit of error: N.48. fourth root: A.30.

nth root as a fraction : A.46.

*Roots of unity : 475—81 : 0.38 : J.40 : L.38,54,59: Me.75: N.43,: TE. 21: Z.22. cubic roots, alg. and geo. deductions : 0.84.

function theory: Z.22. 23 roots, composition of number 47 : J 55 56.

•Roulettes:' 5229: Ac.63 : 0.70: OP.7 : J.65 : L.80,81: N.56: TE.16 : z.28. areas of, and Steiner’s transf.: E.35. generated by a circle rolling on a circle : JP.21. by focus of ellipse rolling on a right line: A.48. by centre of curvature of rolling curve: L.59.

Ruled surfaces : An.68 : CD.8 : G.3 : J.8: L.78: N.61.

areas of parallel sections : Z.20. and guiding curve : A.18.

of minimum area: L.42. octic with 4 double conics : 0.60. P. D. eq. of: Me.77. quadric: Me.68. quartic : A.65; with 2 double lines, A.65. quintic: J.67. represented on a plane : 0.853. of species, p = 0 : M.5. symm. tetrahedral: 0.62. torsal line: M.17. transformation of: 0.88.

"Scales of notation : 342: J.1 : L.48,5ry, 10ry,20ry: Phil. Soc. of Glasgow, vol. 8.

Screws: TL25.

Scrolls : A.53 : CD.7 : CP.11 : J.20,67 : M.8 : cubic, M.1 : P.63,64,69 : Pr.12,13,16: Z.cn28.

condensation of: LM.13. cubic on a quadric surface : Me.85. flexure and equilib. of : LM.12. ruled : A.68 : z = mey2, A.55. tangent curves of : M.12.

“Sections of the cone : 1150.

^Sectors and segments of conics and conicoids : 6019 — 6162 : G.1: thsZ.l.

Secular eq. has real roots : J.88.

*Self-conjugate triangle : 4755, 4967 : G.8 : N.67 : Q.5,10.

Self-conjugate triangle—{continued):

* of 2 conics : Me.77; of 3 conics, 5025. and tetrahedron in conics and quadrics : Z.6.

Self - enveloping curves and surfaces : Z.22.

Self-reciprocal surface: Mo.78.

*Self-reciprocal triangle : 1020.

Seminvariants : AJ.7 : E.th42,6 : Q. 19—21. critical and Spencian functions: Q.4,6. and symm. functions : AJ.6.

Septic equations : Mo.58.

*Series: (see also “Summation” and “ Expansions ") : 125 — 9, 149— 59, 248—95, 756—817, 1460, 1471 —2,1500—73, 2708—9, 2743—60, 2852-64, 2880, 2911—68, 3781, 3820 : A.4,52,9,14,18,23,60 : No.39, 472: C.29,pr92: CP.9: G.10: J. 3,17 ,34,38,th53 : L.th56,81a: Me. 64: N.59,th62,70 : Q.3: Z.15,16, 23.

Useful summations:

* 2+83+83 + = log-1: 156.

* «—%+% — = log (1+=): 155.

* 1P+2+ ... +nP: 2939 : A.65: Me.78.

* p = 1,2,3, or 4 : 276 : A.64 : E.34.

1—2+3— & 1P—3P+5P— ... .

J.7. ^naxn-. A.27.

^ {a+n)bain: N.56.

S {an +b,a®) xk~n : Z.15.

1 n—3 । (n 4) (n 5) __ • J 20

Series—{continued): a±nb + G {n, 2) c±&c. : J.31.

nr—n {n—l)r+G {n, 2) {n—2)r — ... : 285; r =n, CM.1.

1+90+@@+1,,+ ••• : 3.37; with b b (0—1) a = 1, J.2.


. a^ n!

LM.9.



-——: N.59. {a-\-nd)k deductions from x2n p-x -- C --------------- . (a+1)22"n ! ’

1 ± .--1--4 and 1 _ —___1_ 2940—4 : A.41: LM.8 : Q.7 : with n = 1,2...8;2945; E.32,39; G.10; N.79 ; Z.3. Note that by (2391),


(1 log a 7
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z Mem.11 : with a = 1, J.5. 72

S — : A.61. n'. 27 . 213 x------ 7!   13! J.5.

z (n-1) «" . A.50. n! a"-1


z -, A.41 an




: E.44 ; with a =1,




2 (—1)"




(a+2n) (1—x)n ' 9.6.




a"



3230)17.36.

S a, at") : 2709.

(n)

2 (—1)" —: A.26. n—1.

. 1.3       1 - -n!2" (2n+1) :

1+ 4-1-1*+ (q"—1)(q"*1—1)(q®—1) (q8+1—1).9 (g—1) (q2—1) (q‘—1) (q‘+1—1) ‘ + ... : J.32,70.


2-----C

anm + an™—1




- : A.85. m



Series—(continued): gna+8

E Xn — -, 3 a pos. integer < a, na-           ° Kn = the general term of some recurring series : 0.86.

	
2 - : A.34. ni+a x.NFn (2):0.30.



* z ^s2n+l^ /nk-. 3.54; with * = 2,

2960—1, J.8.

z sin3 (2n+1) $ / (2n+1)4 : E.39.

	
„ /sin \2or4, , j 2 (cos n$)   / n and z (EU3n6)"Iv8; 1.73.



* 2 (a"cbznq) / n: 2922—3.

2 sin 72 2I‘r : L.40. COS p

* s n sin ne. 2962.

	
2 A, cos’1 e cos e : Z.l. sin



* z&dB (a+n8): 800: Q.8;

* ze"8ds (a+n8), 783;

* 2 $ cos (1-+18),788.

zf(n) sin ne: J.42: L.52.

	
2 H (m,n) a" “in ntf>: J.41.


	
2 1 tan $ : A.44. 2”    2"



zf(nz) ; L.51.   :A„$ (n) cn, J.25,28.

2”*/ («+n). A.22. \ m / from J a? (1—a)" dx : A.47.

from I cos3 x log 1+sine dx: 0.10. Jo 1—sin a

of Abel: 0.93: N.85.

application: thA.48 ; to arith, G.7.

in a.p : see " Arithmetical progression.”

analogous series: N.69.

a.p and g.p combined : A.9.

with Bernoulli’s nos.: An.53 ; and binomial coefficients, A.23.

Series—(continued):

	
	
binomial (see " Binomial theorem”) : analogous series : E.35 : J.32 : N. 82 ; with inverse binomial coefficients, Me.80. coefficients independently determined: A.18.





whose coefficients are the sums of divisors of the exponents, sq. of this series : Me.85. combination: A.26.

* convergent: 239: A.2,6,8,14,26,41,67, 69: No.44 : C.10,ll2,282,40,432: J. 2,32,11,13,16,22,42,45,76 : L.3 9— 42: M.10,20—22: Me.64: N.45, 46,67,69,702: B.87 : Z.10,11. and of d.i with a periodic factor: L.53. power-series: A.25. representing integrals of d.e : C.4O2. representing functions : M.5,22. in Kepler’s problems : Ac.1799. multiplication of: M.24. and products, condition : M.22. whose terms are continuous functions of the same variable : 0.36. with constant ultimate differences : Pr.52.

converted into continued fractions : J.32,33 : Mem.9 ; into products of an infinite no. of factors, J.12 : L.57 : N.47.

in cosines of multiple angles : C.44: Mem.15.

and definite integrals : L.82 : Man. 46. derived: A.22; from tan-1 6, A.16. developed in elliptic integrals of 1st and 2nd kind : An.69.

* difference : 264 : A.23,24. differential transf. and reversal of: Pr.7.

and differentiations : A.10 : J.36.

Dirichlet’s f. for 2 (2) —: 0.21 : L. 46.          \p J n

discontinuous: CP.6: L.54: Me.78, 82 : N.85. divergent: A.64 : No.68 : 0.17.20: CP.8,10 : J.11,13,41: M.10 : Z.10. division of: AJ.5. double: 0.63.

doubly infinite : OD.6 : M.24. ext. of by any parameter : A.48.

* factorial: 268 : Mem.20 : N.67 : TE. 20.

of fractions : L.40.

Fourier’s : A.39 : 0.91,92,96 : CM.2 : Z.27.

of Gauss and Heine : 0.73 : G.9.

Series—(continued'):

* Gregory’s : 791. harmonic periodic : J.23,25. of Hermite, a th.: E.29. from infinite products : Me. 733. integration of infinite : A.3. irrationality of some : J.37. involving two angles : L.74. Klein’s higher : An.71.

of Lagrange : C.23,343,522 : L.5 7 : N. 76,gz85 : Q.2 ; remainder, C.53. an analogous series : C.99.

of Lambert; S -— : A.10: An.68 : ’ 1—2"

J.9 : Z.6.

Laplace’s (d.c) : 0.68.

of Laplace’s functions : 2 Yn, C.882 ; Zn Yn, 0.44.

in Legendre’s function Xn : An.76 : 0.44.

of Leibnitz : L89.

limits of : A.20 : Me.76; remainders, 0.34; by the method of means, J.13.

from log (1+a), (1+2)" and ee by intermitting terms in the expansions : A.21.

modular: 0.19.

multiple: 0.192; “ regulateur ” of, 0.44.

neutral: CP.11. obtained by inversion from Taylor’s series: Mem.11.

of odd numbers : A.64.

a paradox : Me.72. periodic, critical values of : CP.8. of polynomials: 0.96.

of posterns : G.6.

* of powers (see also " Numbers ”) : 277 : 0.87 : G.2 : cubes, L.64and 65 : M.23 : Mo.78 : Q.8 : Z.1. approximate fractions : J.90. of a binomial: Mem.13. in a convergent cycle, constants in: M.25. like numbers : N.71,77. or multiples of 3 : A.272. of terms in ar.p : L.46. products of contiguous terms of: Mem.18.

of reciprocals: Q.8.

* recurring : 251: doubly, An.57 : J.33, 38 : Me.66 : Mem.24,26 : N.84 : of circlesand spheres, N.62 : f,Z.14. represented by rational fractional functions : J.30.

* reversion of: 551: J.52,54: LM.2 : TL7.

of Schwab: N.59.

Series—(continued): self-repeating : OP.9.

of spherical functions : An.75.

of Sterling, for transformation : .1.59. with terms alternately positive and negative: C.64.

whose terms are the coefficients of the same power of a single variable in a multiple integral: 0.20.

in theory of numbers : C.892. transformation of : 0.59 : J.7,9 : into a continued fraction, Mem.20, Z.7; of 2f(a, t)dt and others, 0.13.

in a triangle problem : A.64.

trigonometrical (see above): A.63 : Ac.2 : 0.95,97: M.4—6,162,17,22, 24: J.71,722: representing an arbitrary function between given limits, J.4; conversion in multiples of arc, L.51; symbolic transf. of, Q.3.

triple: G.9.

two infinite, multiplication rule : J.79.

*Seven-point circle : 4754c.

Seven planes problem : N.56.

Sextactic points of plane curves : Pr. 13,14.

Sextic curves : ax3+by3+cs = 0, Q.15 ; mech.cn, LM.2. bicursal: LM.7. and ellipse, pr: J.33.

Sextic developable: Q.7,9.

	
	
	
Sextic equation : 0.64: M.20. irreducible : J.37. solution when the roots are connected by (a— B) (b—y) (c—a) + (a—b) (^—c) (y—a) = 0: J.41.







Sextic torse: An.692.

Sextinvariant to a quartic and quart-invariant to a sextic : AJ.1.

"Shortest distance :----between two lines: 5534 : A.4 6 : G.5 : N.49,66. between two points on a sphere : A. 14: N.14,67,68. from the centre of a surface : A.63. of a point from a line or plane : N.44. Shortest line on a surface : A.23,37,64; in spheroidal trigonometry, A.40.

Signs: OP.2,11 : J.12: Me.73; (==), Me.75; (±), OD.6,7: Me.85 : N. 48,49.

Similarity:----of curves and solid s : A.13.

Similarly varying figures : LM.16.

Simson line of a triangle: E.29.

“Simpson's f. in areas : 2992 : 0.78.

Sines of higher orders : C.914,922 ; ap. to d.e, 0.90.3,91.

Sines, natural, limit of error : N.433. Sin 0 < 0— 63: geo.N.75.

Sin-1 (x-\-iy) : Q.15.

Sine and cosine :----extension of meaning : A.31 : C.863.

* in factors : 807: A.27 : J.27 : L.54. of infinity: CP.8 : Me.71 : Q.ll. of multiple arcs (see also " Expansions ”): CM.4 : TI.7.

* of particular angles: 690; 3°, 6°,.. to 90°, N.53. sums of powers : An.l.

* tables, formation of: 688 : A.66 : N. 422. values near 0 and 90° : G.9.

* of (a ±b) : 627; A.6,21,36.

Six-point circle of a triangle: Me.82, 83,.

Six points on a plane or sphere : LM.2. Skew surfaces : see " Scrolls.” Sliding rule: LM.6.

*Small quantities of second order : 1410. Smith's Prize questions, solutions : Me. 71,723,—4, 77.

Solid angle : A.42 ; section of, No.19.

Solid harmonics : Me.80.

Solid of revolution : A.60,67. between two ellipsoids : A.2.

* cubature and quadrature of: 5877— 80: A.68 : N.42.

Space homology : G.20.

Space theories : An.70 : LM.14 : P.70 : Z.17,18.

absolutely real space : G.6. continuous manifoldness of two dimensions : LM.8.

space of constant curvature: An.69, 73 : J.86 : M.12.

Pliicker’s " New geometry of " : G.8: L.66: P.11: Z.11,12.

Grassmann’s " Ausdehnungslehre ” : AJ.1: CP.13: M.7,12: Z.24; ap. to mechanics, M.12.

non Euclidean or n-dimensional : A. 6,29,58: ths64 : A J.4,5 : An.71: 0.75 : G.6,10,12,23 : M.4,52—7 : Me.ths68,72 : Pr.37.

3-dim., J.83; 4-dim., J.83, M.24; 6-dim., G.12.

angles (4-dimen.): A.69.

areas and volumes : A.69 : CD.7. bibliography of: AJ.1,2.

circle : G.12,16,18.

conics : A J. 5.

curves : C.79 : M.18.

Feuerbach’s points : G.16. hyperboloid : Z.13.

Space theories—{continued): imaginary quantities : Z.23. loci (anal.) : 0.24. planes (4-dimen.) : A.68. plane triangle: A.70. point groups : thsAc.7. polars and alg. forms : J.84. potential function : An.82,83. projection; M.19 ; 4-dim. into 3-dim., AJ.2. quadric, super lines of (5-dim.) : Q.12. quaternions : OP.13.

regular figures : AJ.3.

reversion of a closed surface: AJ.1. representation by correlative figures : C.812.

simplicissimum of nth order : E.44. screws, theory in elliptic space : LM. 15,16.

21 coordinates of : LM.10.

Sphere : geo,0.92 : ths and prs M.4: q.c Me.62. and circle: geo, A.57.

cn. from 4 conditions : JP.9. cutting 4 spheres at given angles: An.51: N.83. cutting a sphere orthogonally and touching a quadric, locus of centre : TI.26. diameters, no. of all imaginable: A.24.

* equation of: 5582.

5 points of: J.23 : N.84. illumination of: Z.27. kinematics on a : LM.12. sector of (eccentric): A.65. small circle of: Me.85. touching an equal sphere: E.31,32 ; as many as possible, A.56.

4 spheres, pr. : L.46.

4 touching a 5th : At.19.

8 touching 4 planes : E.19 : N.50. 16 touching 4 spheres : J.37 : JP.10 : Me.cn82 : Mem.10 : N.44,47,65, 66,84: Z.142.

* Volume, &c. of segment and zone: 6050: A.3,32,39: An.57 : P.1.

*Spherical:----areas : 902.

catenaries : J.33. class cubics with double foci and cyclic arcs : Q.15. conics : thQ.3; and quadrangle, Q.13; homofocal, L.60. coordinates : CD.1 : CM.l,ap2; homogeneous, G.6.

* curvature : 5728,’40,’47 : thE.34. curves: A.35,36 : Mem.10. of 3rd class with 3 single foci: Q. 17. of 4th class with quadruple foci: Q.18.

* Spherical:---curves—(conUnuel) : of 4th order : J.43. with elliptic function coordinates : J.93. equidistant: An. 71: J.25. and polars: No.63. rectification of: An. 54. ellipse: t.cQ.8. quadrature, &c. : L.45 : N.484,54. epicycloid : G.12.

excess : Mel.2 : cn,N.46 : f,Z.6. of a quadrilateral: Me.75.

figures, division of: J.22. geometry : G.4 : J.6,8,132,ths15 and 2 2 : M.15 : N.48, 585,59 : Q.4 : TI.8. harmonics or " Laplace’s functions ” : An,682: C.86,99 : CD.1: CM.2: J.26,56,60,geo 68,70,80,82,90: L. 45,48 : LM.9 : Me.77,782,85 : P.57 : Pr.8,18: Q.72: Z.24. analogues of : J.66 : LM.11. and connected d.i: Q.192. as determinants : Me.77. and homogeneous functions : CM.2. and potential of ellipse and ellipsoid : P.79. and ultra-spherical functions : Z.12.

Pn (cos y), n = oo : J.90.

P,u" du, &c. : Q.17.

b," by continued fractions : JP.28 ; s Q. Q,n' : P.70.

loci in spherical coordinates : TE.122. oblong : An.52 ; area, J.42. polygonometry: J.2. polygons in- and circum-scribed to small circles of the sphere, by elliptic transcendents: J.5. quadrilateral: A.4,40 : th,E.28 : N.45. surface of: A.342,352. quartics : foci, Q.21 ; 4-cyclic and 3-focal, LM.12. representation of surfaces: C.68,75, 944,96 : M.13. surface represented on a plane: Me.73. triangle : A.9,ll,20,ths50,65 : E.f30 : J.10,pr28: JP.2. ambiguous case: Me.77,852. angles of, calculated from sides: A.51. by small circles, area : N.53.

* and circle : 898 : A.29,33. cos (A+B+C), f.: Me.72. and differentials of sides and angles : A.10. and ex-circles : 898 : E.30. graphic solution : AJ.6.

Spherical:----triangle—(continued') : and plane triangle : A.1; of the chords, A.33 : An.54 : Z.1.

* right angled : 881 : A.51 ; solution by a pentagon, A.11. of very small sides : N.62. two, relations of sides and angles: A.2.

* trigonometry : 876 : A.ths2,ll,13,28, 37 : J.prs6,132 : LM.11 : N.42 : Z.16. d.e of circles : Q.20.

* cot a sin b : Me.64; mnemonic, 895 : CM.3. derived from plane : A.26,27.

* formulae : 882 : A.5,16,24,26 : N.45, 46,53: graphically, A.25: ap. in elliptic functions, A.40. geodetic reduction of a spherical angle: A.512.

* Cagnoli’s th. : 904.

* Gauss’s eqs. : 897 : A.13,17 : J.7,12 LM.3,13. Legendre’s th.: C.96 : J.44 : L.41 : M.1 : N.56 : Z.20.

* Llhuillier’s th.: 905 : A.20.

* Napier’s eqs.: 896: A.3,17: CM.3: LM.3,13.

* Napier’s rules : 881. supplement to, and geodesy : A.36.

*Sphero-conics: 5655a: tg.c,Q.8,99: Me.3: Z.6,23. homofocal: 0.50. mechanical cn: LM.6.

Sphero-conjugate tangents : An.55.

Sphero-cyclides : LM.16.

Spheroidal trigonometry: J.43: M.22.

Spheroidic transformation f. of Bessel: A.53.

*Spheroids : 5604, 6152 ; cubature, 6158, A.2.

Spieker’s point: A.58.

Spiral: A.28 : L.692 : N.79 : Z.14.

* of Archimedes : 5296 : A.65,66. conical: N.45.

* equiangular: 5288.

* hyperbolic: 5302.

* involute: of circle, 5306 ; of 4th order, 0.662.

Squares : J.22. whose diagonals are chords of given circles: A.64.

maximum with given sides : J.25. maximum in a triangle : J. 15. whose sides and diagonals are rational: J.37.

whose sides pass through 4 points: A.43.

64 transformed into 65, geo. : Me.77. sum of three : G.15 ; of four, L.57.

Standards of length : Pr.8,21.

Statistics : Z.26.

Steiner’s ths. and prs.: A.53 : J.13,14,16, 18,23,25,36,71,73 : N.48,562,593,62 : Hexagon, A.6 : Ray - systems, CD.6.

Stereographic projection : A.39 : JP. 16: L.46.

Stereograms of surfaces : LM.2.

Stereometry : JP.l4: thsA.10,31,43,57 ; J.1,5.

multiplication: J.49.

quadric and cubic eqs. and surfaces : J.492.

Sternpolygon and sternpolyhedron : A. 13.

Stigmatics : see " Clinant.”

Stewart’s geo.ths. : CM.2 : L.48 : TE. 2,15.

Striction lines of conicoids : Z.28.

Strophoids : AJ.7 : N.752.

*Sturm‘s functions : 506 : A.62 : 0.36, 62,682 : G.1,20 : J.48 : L.46,48, 6 7.- Mo.58,78 : N.43,46,52,54,66, 67,81: Q.3. and addition th. for elliptic functions of 1st kind: Z.17. ext. to simultaneous eqs.: 0.35. and H. 0. F. : Pr.6. and a quartic equation : A.34. and their reciprocal relations : Mo. 73. remainders : J.43,48. tables : P.57 : Pr.8.

ap. to transcendental eqs. : J.33. ap. to transf. of binomial eqs.: L.422.

Subdeterminants of a symm. system : J.93: M.82.

Subfactorial n : Me. 78.

Subinvariants = seminvariants to binary quantics of unlimited order : AJ.5.

•Subnormal : 1160.

•Subsidiary angles : 726, 749.

Substitutions : A.62 : 0.ths66 and 67, 74,76,79 : G.9,102,11,14,19 : L.65, 72: M.13. ap. to functions of six or fewer variables : 0.21.

ap. to linear d.e : 0.78.

by approximation, of the ratio of the variables of a binary quantic to another function of the same degree : 0.80.

canonical forms of: L.72.

and conjugate substitutions : C.21s,22. n-3

of the form Q (r) ~e (r”-2+ar 2 ) : M.2.

linear: 0.98: J.84 : M.19,202.

Substitutions :----linear—(continued) : of a determinant: An.84. and integral: M.24. powers and roots of : 0.94. reduction of : 0.90 : JP.29. for reduction of elliptic functions of 1st kind : An.58. successive : A.38. which transform quadric functions into others which contain only the squares of the variables : J.57. of n letters : geo. for n = 3,4,5,6, and mystic hexagram: An.83. no. of in a given no. of cycles : A.68. permutable amongst themselves : 0.212.

of equidistant numbers in an integral function of a variable : N.51. of systems of equations : N.81. of six letters : C.63.

a th. of Sylvester : ALL which admit of a real inversion : J.73. which do not alter the value of the function : C.212.

which lower the degree of an eq. in two variables and their use in Abelian integrals : C.15.

Sum and difference calculus : A.242.

Sum of squares of lines drawn from a point to cut a curve in a given angle : J.11.

"Summation of series (see also “Series” and “Expansions”): 3781: A.10—13,262,30,55,62 : No. 84: 0.87,88: J.10,31,33: LM.4, 72: Mem.20,30 : P.1782,1784—7,— 91,-98, 1802,—6,—7,—11,—19 : Pr.14.

* approximate : 3820 : J.5 : 1.24. of arcs : A.63.

Bernoulli’s method: J.31. Cauchy’s th. : M.4.

C (n, r) products of a, a+b, ... a+ (n-1) b : Q.18.

by definite integrals : A.4,6,38 : J.17, 38,42,46,74 : Man.46 : Mem.11. of derivatives and integrals : C.442.

* by differences : 264 : Mem.30. by differential formula : L.31 : Mem. 15. by v (x) : 2757.

formulae : A.47 : An.55 : J.30. Maclaurin’s, 0.862 : f(^,D) DF(n), Q.8: Lagrange’s, J.34: P.60: Vandermonde’s, L.41. of terms of a high order : C.32. Kummer’s method: 0.64.

Lejeune Dirichlet’s : CD.9. periodic: J.15. selected terms : Me.75.

"Summation of series—(continued) : of sines and cosines : J.4.

* theorem reXf(x,k)dx: 2708. J a of transcendents in alg. differentials : J.19. trigonometrical and infinite : Me.64. Superposition: TE.21,23.

* of small quantities : 1515.

"Supplementary :----angles : 620.

* chords : 1201. cones : thN.48.

* curves : 4917—20 : Man.54.

Supplement integrals : J.98.

*Surds : 108 : N.47. quadratic (see " Roots of numbers.”) V (a^I-b^, • (a12—b?) approximately : J.13.

* V(a±Vb): 121: A.3,13: J.17,20: Mem.10 : N.46,48.

* •/ (a= Vb): 122 ; / (a± Vb), 124.

*Surface of centres: 5774: A.68,: An. 57: C.70,712: E.30: L.41,58: LM.4: M.5,16. curvatures of the two ; relation : 0. 74,79. the two focal conics of a system of homofocal quadrics : C.532. of a quadric : Q.2. bitangents of: Q.13. model of: Mo.62. principal axes of : N.48.

Surface curves : A.39,60 : An.54 : 0.21, 80, : L.66 : G.19 : J.2: N.54,84. an an alg. surface : An.63. on cubic surfaces : M.21. curvature of : N.65. on a developable : An.57; the osculating plane making a constant angle with it, L.47. on an ellipsoid: An.51: CD.3: geoL.50. groups of rational: M.3. of intersection : M.2 : N.68 ; of 2 quadrics, A.16. multiple : G.142 ; singularities of, M.3. on a one-fold hyperbola : CD.4. on quadrics : N.70. rectification of : A.36. relation to their tangents : 0.82. on surfaces of revolution : Z.18,28. and osculating sphere : 0.73.

*Surface or surfaces : 5770 : A.14,f32,41, 59,60,62 : An.51 — 3,55,60^,61,65, 71: At.57: O.17,33,37,49,ths58, 61,64,67,69,80,86,992: G.3,21 : J. 9,thsl3,58,63,64,85,98: JP.19,24, 25,33: L.44,47,512,60: M.2,4,7,93, cnl9 : Mo.82,833,84 : N.53,652,68, 72: TI.14: Z.74,8,20.

*Surface or surfaces—(continued) :

“+*+"=1: A.35; a b c a = b = c = 1, A.21.

areas of: G.22 : N.52.

argument of points on: LM.16. complex: M.5; of 4th order and class, M.2.

whose coordinates are Abelian functions of two parameters : 0.92 : M.19.

of corresponding points : M.4.

* cut orthogonally by spheres : 3393 : 0.36.

deficiency of: M.3.

* definitions: 5770. determined from two surfaces of centres : A.68.

Dirichlet’s problem : An.71.

Dupin’s theorem : 0.74 : CM.4 : Q.12. doubly circumscribing an n-tic surface : J.54.

of elliptic cone : An.51.

of equal slope : 0.98 : N.65.

* equation of: gn5780 : A.3 ; for points near origin, 5803.

of even order : A. 70. families of : 0.70 : Me.72. flexure of: J.182.

Gaussian theory of: LM.12 : N.52. generation of : 0.94,97 : G.9 : J.49, : L.56,83 : M.18. implexes of : 0.79,82.

of minimum area : 0.57 : J.8,13 : L.59: Q.14.

of nth order : cnM.23 ; 2nd, 3rd and 4th, Mel.6.

of normals : N.59. whose normals all touch a sphere or conical surface : JP.4 ; do. for surface of revolution, JP.5. number under 9 conditions : 0.62. octic of zero kind : G.12. order determined : Me.83. one-sided: A.57. parabolic points of: CD.2. andp. d. e : 0.13: CD.2 : Z.7. and plane curves : J.54,72 : M.7. and point moving on it: L.76,77. and point at 0 on it: J.65. relation of in Riemann’s sense : M.7. representation of: J.83. on a plane : An.68,71,76. one upon another: An.77. of revolution : 0.86: G.4.

* areas and volumes : 5877,—9 : A.48. of a conic about any axis in space : JP.23 : L.63. of constant mean curvature : L.412. 6 c

*Surface or surfaces—(contimced'): meridian of: a lemniscate, G.21 ; generation of, C.85. meridian and contour curves of: 7.21. oblique : Q.6. passing through a given line, tangent plane of: N.84. in perspective: JP.20. of reg. polygon about a side, vol.: A.57.

quadric : A.55 : L.60. shortest line on : A.38. superposable: 0.80: N.81.

Riemann’s symmetrical; and periodicity modulus of the related Abelian integral of the 1st kind : Z.28.

ruled, with generators part of a linear complex: 0.84.

ruled octic with 5 quartic curves: 0.61.

screw, parallel projection of : cnZ.18. section of, homogeneous eq.: LM.15. self-reciprocal: LM.2; quadric, E.36. sextic of first species : M.21. singularities of: A.25: An.79 : CD.7: CM.2: J.72: M.9: N.64: Q.9. cubics : M.4 ; and quadrics, A.17. 16 singular points : C.922. solutions by infinites of 3rd order: geo0.802.

Steiner’s : LM.5,14 : M.S. touching a plane along a curve: 0D.3: 0M.2.

touching a fixed surface always : G.20. transformation of: M.19.

and transversal, th.: N.49. trapezoidal problem : Z.14. two series of: prsAn.73. web-system: J.82.

which cuts the curve of intersection of two alg. surfaces in the point of contact of the stationary osculating planes : L.63.

Surveying : N.502 : geo. th.A.37.

Symbolic geometry: (Hamilton), CD. 1-4.

Symbolical language: E.282.

Symmedian line : E.42 : N.83—5: Q.2O2.

*Symmedian point: 4754c.

Symmetrical:----conics of triangles : A.59.

connections by generating functions : J.53.

* expressions : 219.

figures: J.44.

functions : 0.76 : J.69,93,98 : LM.13: Q.20: Z.4. Brioschi’s th.: 0.98,

Symmetrical—{continued'): of the common sol. of several eqs.: An.58. multiplication of: Me. 85. of any number of variables : 0.82. simple and complete : M.18,20. tables of : AJA ; of 12-ic, AJ.5. points: of 1st order: A.60 : cnA.64. of tetrahedrons : A.60. of a triangle : A.583.

products : P.61 : Pr.ll. with prime roots of unity : Me.85. tetrahedral surfaces: Z.11.

Symmetry ; plane and in space : N.47.

Synthesis : 0.18.

“Synthetic division : 28 ; evolution, Me.68.

*Syntractrix: 5282.

Tables : mathematical; Sect. I., contents, p. xi. of Bernoulli’s nos., logarithms, &c., calculation of: J.2. for empirical formulas : AJ.5. in theory of numbers : Q.l. of ex, e~x, logioe®, logie—f : OP.13.

Tac-loci: Me.83.

Tamisage: LM.14.

“Tangencies (circles, points, and lines): 937 : Pr.9 : Q.2,8.

Tangential eq. with the intercept and angle of inclination for coordinates of the line : P.77.

*Tangent cone at a singular point: 5783, “Tangents : 116 0 : cnA.4,3 3 : J.562,73 : N.42: Z.23. and contact-point in loci and envelopes : C.85 : cnN.57. conjugate (and Dupin’s th.): An.60. construction of: M.22 : N.80. double: Q.3.

* eq. of ; to find it: 4120,—32; Me.66. faisceaux of: NAO. cut by lines at a constant angle: A.43. locus of intersections of three : LM. 15. at a multiple point, cn.: JP.13.

* and normals : 5100; relations, A.51. parallel: N.45.

* segments of : 4307 ; equality of, C.814.

* of a surface : 5781; at singular points : 5783: M.11,15.

*Tangent planes : 5770,—82 ; p.c5790 : CM.4: N.45.

* and surface; intersection of: 5786 —9 : L.58.

to equidistant surfaces : cnZ.28. triple: 0.77.

tan 120°: P.8,18.

tan a as a continued fraction : Z.16; do. tan nx, Me.74.

tan nx : f. in N.53.

tan-1 (x+iy) : Z.14.

*tanh S : 2213.

tantochrone: L.44 : An.53.

*Taylor‘s theorem : 1500,—20,-23 : A. 8,13 : AJA, extl: 0.58 : OM.1: J.11: L.37,38,45,58,gz64 : M.21„ 2 3: Me.724,73,75 : Mem.2 0: N. 52,63,70,743,79: TA.7,8: Z.gz 2 and 25. analogues of: J.6. convergence of : 0.60,74—6 : J.28 : L.73.

Cox’s proof: CD.6. deductions : G.12.

for an imaginary variable : Me.79. kinematic meaning of : J.36. reduced forms of : 0.84.

* remainder: 1503 : An.59 : 0.13 : J.17 : N.60,63: Z.4. a transformation of : 0.78.

Terminology: LM.14.

Ternary bilinear forms : G.21.

Ternary cubics : AJ.2,3 : 0.56,90 : CD.1: J.39,55 : JP.31,32 : L.58 : M.1,4,9. in factors : An.76 : Q.7.

as four cubes : LM.10. parameter of the canonical transf. : LM.12. reduction to canonical form: 0.81. transformation of : J.63.

Ternary forms : At.68 : G.1,9,18. order of discriminant: LM.3. with vanishing functional determinants : M.18.

Ternary quadric forms : At.652 : 0.92, 94,96: G.5,8: J.20,40,70,77; transf. of, 71,78 and 79 : L.59,77 : P.67, and corresponding hyperfuchsian functions : Ac.5. indefinite: J.47 ; with 2 conjug. inde-terminates, 0.68. representation by a square : An.75. simultaneous system : J.80. table of reduced positive : J.41.

Ternary quartic forms : C.563: An.82 : M.172,20.

Terquem’s th. : Q.4.

Tesselation pr.: LM.2.

Tesseral harmonic analogues : CP.13.

Tetradrometry, differential f. : A.34 : Z .5.

Tetragon, analogue in space : OD.7. Tetrahedroid : J.87.

*Tetrahedron : 907 : A.3,16,232,51,56 : J.6 5 : LM.4 : Me.62,662,82 : Mel. 2: N.pr74,80,81: Q.5 : geoZ.27. determined from coordinates of vertices : J.73.

Tetrahedron—(continued): of given surface : J.83. with opposite edges; equal, N.79 ; at right angles, Me.82. with edges touching a sphere : N.74. and four spheres : LM.122. homologous : J.56.

and quadric: CD.8 : thN.71 ; 2 quadrics, Q.8.

6 dihedral angles of, eq. : N.46,67. theorems : A.9,10,31 : N.612,662 : Q.3,5. two : M.19.

* volume : 5569 : A.452,57 : LM.2 : N. 67: Z.11. volume and surface in c.c and g.c : A.53: CD.8: N.68. volume and normal, relation : N.54.

Tetratops : A.692.

Theoretical value function : J.55.

Theta-functions : Ac.3 : C.ths90 : J.61, 66,74: M.17: Me.ap78: P.80,82: thsZ.12. analogues of: C.93. addition theory : J.88,89 : LM.13. ap. to right line and triangle : A.3. argument : J.73 : 4thM.14 : M.16. characteristic of: complexAJ.6: C. 882 : J.28. th. of Riemann : J.88. as a definite integral: Me.76. double: LM.9 : Q. transf. 21. and 16 nodal quartic surface : J.83, 85,87,88. formula of Riemann : J.93.

Jacobian, num. value : M.7,11. modular integrals : trAn.52,54: J.71. multiplication of : LM.1 : M.17. quadruple : AJ.62: J.83. reduction of, from two variables to one: 0.94.

representation of: M.6 : Z.11. transf. of: A.1 : An.79 : J.32 : L.80 : M.252. linear: Me.84: Q.21. triple : J.87.

in two variables: C.922 : J.84: M. 14,24.

Theta-series : constant factors of, J.98 : Me.81.

n-tuple : J.48.

Sx = a? (c—x) / {c(c—«) — 62} : Q.15.

*Three - bar curves : 5430 : LM.7,9 : Me.76.

triple generation of: Me.83.

Toothed wheels : cnTE.28.

Topology with tables : M.19,24.

Tore: section of: G.10 : N.59,61,64,652 circular, 56 and 65.

and bi-tangent sphere : N.74.

Toroid : A.8 : rectif. &c., A.9: N.44.

Toroidal functions : P.81: Pr.31.

Torse : sextic : CP.112 : Q.14. circumscribing two quadrics : Me.72. depending on elliptic functions: Q.14. and curve : Q.ll; and sphere, G.12.

*Torsion : A.19,62,65 : J.60: angle of, 5725 ; of involute, 5 753 ; of evolute, 5754.

* inflected, infinite and suspended: 5739 : N.45. constant: L.422.

*Tortuous curves : 5721: Ac.2 : C.19,43, 58,cn62 : G.4,5,21 : J.16,59,93: JP.2,18: L.502,th51,522 : M.5,19, th25: Mo.82: N.60: No.79: Q. 4,5,7.

* approximate coordinates of a point near the origin in terms of the arc: 5755.

* circular curvature of : 5722 : An.60 : CD.9 : J.60 : JP.152 : Q.6.

* locus of centre of do.: 5741, 5748 —50. with circular and spherical curvature in a constant ratio : L.51. cn. upon ruled cubics and quartics : 0.53. with coordinates rational functions of a parameter: M.3.

cubic: J.27,802: M.20: Z.27.

* definitions: 5721. determined from relation of curvature and torsion: A.65. cubics : An.58,59 : 0.45 : L.57 : of 3rd class, J.56; four tangents, M.13.

and developable surfaces : OD.5 : L.45: M.13.

elements of arc : N.733.

generation of: 0.94: L.83; by two pencils of corresponding right lines, G.23.

with homog. coordinates : Q.3. the loci of similar osculating ellipsoids ; d.e of same : 0.78. with loops: M.18.

with a max. or min. property: Mem.13. on a one-fold hyperboloid : 0.53. with the same polar surface, d.e : 0.783.

quadrics : J.20. quartics : 0.543 ; 1st species, J.93. cn. of two : 0.53. intersection of quadrics : 0.54. quintics : O.543,58.

* radii of curvature and torsion : 5739 : L.48 : Mem.18.

* and right line method : 5743. sextics, classification of : 0.76.

*Tortuous curves—{continue!): singularities of: 0.67 : J.42.

* spherical curvature : 5728,—40,—47 : A.19.

triple, and their parallels : A.65.

*Tractrix : 5279 ; area, E.35.

^Trajectory: 5246: Mo.80. of a displaced line ; oscul. plane, &c.: 0.70,76.

of 3 homofocal conics : An.64. of meridian of surface of revolution : L.46. surface of points of an invariable figure whose displacement is subject to 4 conditions : 0.76,77. of a tortuous curve : L.43.

Transcendental:--arithmetic : J.29.

* curves : 5250 : An.76 : M.22. equations : 0.5.59,72,94 : G.6,10 : J. 22 : L.38 : N.55,56. mechanical solution : OP.4. separation of roots by “ compteurs logarithmiques ”: 0.44. without a root: J.73.

^Transcendental functions (see also " Functions ") : 1401 : A.37 : 0. 86 : J.3,th9,20 : L.51. of alg. differentials : J.23 : L.44. arithmetical properties : M.22. classification of: L.37. connected with elliptic : 0.17. decomposition into factors by calculus of residues : 0.32. and definite integrals : P.57. expansion of : J.16. integral: 0.94,95 : G.23 : J.98. reduction of: Me.72. squares of: Me.72.

theorem of Sturm : L.362. whose derivatives are determined by cubic eqs. ; summation of the same : J.11.

which result from the repeated integration of rational fractions : J.30.

Transformation :----bilinear: M.2. birazionale: G.7; of 6th deg. in 3 dimensions, LM.15. contact: M.8.

* of coordinates : pl.4048 ; cb.5574—81 : A.13 : A.26 : 0M.l2 : J.2 : JP.7 : N.63. in 3 dimensions : A.13 : Q.2 : J.8. rectangular into elliptic : Mel.4.

Cremona’s : M.4.

of curves: L.49,50.

of differential equations : Me.82. of equations : A.40 : N.64, ; 3 variables, G.5. of a characteristic eq. by a discriminant : An.56.

Transformation—(continued): quadric : CM.2 : N.75 : M.23. simultaneous: Q.ll.

of figures in a plane : A.4 : N.64,774. in space : C.94,952,96 : N.79,80,. double reciprocal by normals to a sphere : 0.56.

formula : J.32.

of functions : An.50; in an inf. series, A.3.

by substitution : Mem.31. quadric : Q.2 ; quadric differential, J. 70. (ay—ba)2+(bz—cy^-Yffix—az)^ : CM.1,2. two variables: Mem.il. homographic plane : L.61.

in geometry : 0.71 : J.67 : JP.25. descriptive: G.13 : Z.9.

* linear : 582, 1794 : OD.1,6 : CM.3,4 : M.2: Mo.84. groups of: M.12,16.

methods of : 0.92; which preserve an invariable relation between derivatives of the same order, 0.82: L.76. which preserve the lines of curvature : 0.92.

* modulus of : 1604.

* orthogonal: 584,1799. for equations of dynamics : 0.67. plane : M.5 ; and in space, G.16. of powers into binomial coefficients : No.75.

of product of n factors : An.51. quadratic, of an elliptic differential : M.7.

in rational space : An.73 : LM.3. rectangular : LM.14. reciprocal: 0.92: 0.17: N.64,82,83. of rectilineal space coordinates : J.63. by series doubly infinite: An.56. space, for representation of alg. sur-

of surfaces : M.21: N.69 : Q.12. of symbolic functions into isotropic means : 0.43.

of tan-1 ./ d—C + symmet. y, z : V C-a CD.9.

Tschirnhausen’s : An.58 : P.62,65 : Pr.11,14. ext. to quintics and higher : E.1,,4 : . J.582.

* unimodular: 1605.

of variables : G.5 : No.78.

Transitive function : of 24 quantities : L.73.

doubly, of 5 or 6 variables : 0.21,22.

Transitive function—(continued): reduction to intransitive : 0.21.

^Transversals : 967—74: A.13,18,27,30, 56: CD.5: CM.1: J.84 : G.22 : Me.t.c682,75: N.432,48 : TE.t.c24. orthogonal: AJ.3.

of plane alg. curves : Z.19. of two points : A.66. parallel: A.13,57. of spherical triangle and quadrangle : A.45.

Trees, analytical: AJA.

Triads of once-paired elements : Q.9.

*Triangle: 700: A.17,19,22,29,33,36,43, cn46,61: G.21 : J.50 : M.geol7 : Me.q.c62: N.422,43.

* angles of: 677 : 738—45 : A.65 : P.28 : division, A.51,58: sum, geo960 : 0.69,70 : difference, Q.8.

* area : 707,4036—41 : A.45,57 : 0M.2 Mem.13.

* bisectors :----of angles : 709, 742, 932, 4628,-30.

* of sides : 738, 922i, 951, 4631: Mem.prl0,13.

* central line : 957,4644. and circle, ths.: A.9,40,47,60 : Q.7,8, 10. and 3 concentric circles : Me.85. of 3 intersecting circles : Q.21. circle and parabola: Q.15. and conic: N.70.

* of constant species : 977.

* construction of : 960.

* equilateral, sum of sqs. of distances of any point from its vertices : 923 : A.69 : gzl094. formed by joining the feet of bisectors of a triangle : A.642. Gauss’s equations for a plane triangle : A .5.

* notation : 4629 : E.44.

* orthocentre : 952, 4634. pedal line of : Me.83.

* perpendicular bisectors of sides : 713, 4639.

* perpendiculars on sides : 952, 4633 : Mem.13.

and point: Q.5. and polars: circle, G.11; conic, Q.7. of mid-points of sides, t.cQ.8. quadrisection of: Mem.9. rational: A.51,56.

* remarkable points of (see also " Incentre, ”&c.): 955—9 : A. four, 47 ; two, 48 ; five, 52 ; 66,67 : E.28, 30,40 : LM. nine, 14, : N.70,73,83 : Z.11,15.

* of reference in t.c : 4006. and right line : A. 59.

Triangle—(continued): scalenity of: Me.66,68. sides of : bisectors : A.17. division of : A.63 : N.83. containing conjugate poles with respect to four conics : Au.69. cubic eq. for in terms of A, R, and r: J.20. similar: C.792; under 3 or 4 conditions, C.782.

* solution of : 718, 859 : A.3,51 : J.44, : TE.10.

six-point circle : Q.4,5.

symmetrical properties : A.57 : Pr.ll. theorems : A.9,43,45,55,57,60,613,63, 68 : J.68,71,pr28 : Q.9,t.c7 and 8, geol,2, and 4. relating to triangles of same perimeter under four other conditions : C.84.

^Triangular:---numbers: 287: E.30 : J.69 : L.ths63.

prism: thN.42.

pyramid : At.19 : No.pr32.

Tricircular and tetraspheric geometry : An.77.

*Trigon. in t.c : 4006.

^Trigonometry : 600 : A.1,,2,8,11,13,30 : G.13: extM.35. formulae : A.27,65 : Me.81,gzl : N.77: geoQ.5,10.

* formulae : 627,700,823 : A.33 : N.46,80. functions : P.1796 ; in factorials, A.43.

in binomial factors : L.43. in partial fractions and products : Z.13. functions closely allied to : A.27. tables, cn: A.l,232,25.

theorems : A.2,50,51 : Q.pr7. on product of 4 sines : Me.81. on (1+iz ) ( 1+tV-- : Q.15,16. a ) \ b / cos? a sin4 $+2 sin a cos a sin $ cos d +sin2 a cos4 $ = 0 :

Trihedron :----about a parabola, locus of vertex: N.63. and quadric : N.71. and tetrahedron : A.57.

Trilinear forms : 0.92,93.

Trilinear relation of plane systems: J.98.

*Triplicate-ratio circle : 4754b : E.40,42, 435,44.

Twisted surface : see " Scrolls.”

Twist of a bar : Me.80.

*Umbilics : 5777, 5819—23 : J.65 : JP. 18 : M.9 : Q.3.

* of quadrics: 5603,5834: 0.96.

Underdeterminants of a symm. determinant (i.e., successive first minors) : J.91.

Undeterminants, &c. : A.59,.

Unicursal curves: A.60: C.78,94,96: LM.4. cubics, ths. re inflexion : E.28. quartics : LM.16 : N.84 : Z.28. surfaces, transf. of: M.66.

Uniform functions : O.92,947,95,963. with an alg. relation : 0.912. of an anal, point xy : Ac.l: 0.94. two points: 0.96,97. with " coupures ” : 0.96. with discontinuities : 0.94. doubly periodic: 0.94. from linear substitutions : M.19,20. with a line of singular points, decomposition into factors : 0.92. monogenous : Ac.4. in the neighbourhood of a singular point: 0.89. of two independent variables : 0.94,95.

*Units of elasticity, electricity, and heat: p.2.

"Vanishing fractions : 1582 : M.15 : Q.l.

Vanishing groups: CD.2,3,6,7,8. ap. to quantics : CD.2,3,6.

"Variation: 76: 0.17.

of arbitrary constants : L.38.

* calculus of: 3028—91 : A.3,prs42 : An.522: 0.16,50: CD.3: 0M.2: J.13,prl5,41,54,65,prs74,82 : JP. 17: L.41: M.22,152: Me.prs72: Mo.57 : N.83 : Q.prlO : and d.e, L.38 and 0.49. history: N.51.

* immediate integrability : 3090. and infinitesimal analysis : 0.17,40.

* relative max. and min.: 3069 : L.42. of multiple integrals : J.15,56,f59 : Mem.38. transformations: J.552.

* two dependent variables : 3051.

* two independent variables : 3175. integral, of functions : C.403.

* of parameters : th2714, 3243 : N.77.

* of second order : 3087 : A.4 : J.55 : Q.14: Z.23.

* of higher order: 3089: A.27: Z.26.

*Versiera or Witch of Agnesi: 5335.

^Volumes:----of solids: 5871—83: A. 31,32,36: J.34: N.f57,80. approximate: 0.95.

of frustums: A.33 ; of conicoids, J.44. of right cylinders and cones in absolute geometry: A.59. of surface loci of connected points : LM.14.


Volumes—(continued) : and surfaces by curvilinear coordinates : 0.16.

* Wallis’s formula : 2456 : A.39,gz39 : JP.28.

Waring’s identity: N.49,62 : extMe.85.

Wave surface : C.13,47,78,geo82,92 : CD.7,8: CP.6 : L.46: Me.662,73, 76,78,79 : N.63,82 : Pr.3 2 : Q.2,33, 4,5,9,152,17. asymptotes: C.97. and cone : Q.23,26. cubature of: An.61. generation and cn : 0.902. lines of curvature: An.59 : 0.97. normals and centres of curvature : geoO.64. umbilics, geo: 0.882.

Wear of gold coins : E.43.

Web surfaces : see “ Net surfaces.” co

Weierstrass’s function Enbn cos a"An 0 with a > 1 and b < 1 : 0.18 : J. 63,90. expansion in powers of the modulus : O.822,85,86 : L.792.

“Wilson's theorem : 371 : A.48 : OD.9 : J.8,19,20 : Me.83 : N.43. generalisation : J.31 : Me.64 : Mel.2 : N.45.

Wronski’s methods : 0.92 : L.82,83. formula of 1812 : N.742: Q.thl2.

Zetafuchsian functions : Ac.5.

Zonal conics of tetrazonal quartics : Q.10.
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Anarnysis.—Let ABX be the required
circle, touching 0D in X. Therefore

OX*= (4.0B.  (III. 36)

Hence the point X can be found, and the
centre of the circle defined by the inter-
section of the perpendicular to C'D through
X and the perpendicular bisector of AB.
There are two solutions.

Otherwise, by (926), making the ratio
one of equality, and DO the given line.
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