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Abstract 

This paper presents an example of solving the parameter identification problem 
in the case of a robot with two degrees of freedom. In this study, a weighted 
recursive least squares algorithm was generalised to a case of nonlinear 
parameterisation in which the identified parameters did not satisfy the linear 
model. The generalisation involved linearising the model in the neighbourhood 
of current values of the parameter estimates. It was assumed that the estimates 
were updated every N steps of signal sampling. This method of identification can 
be applied whenever the parameters concerning a model need to be determined 
at the time of measurement. This is particularly useful in adaptive control when 
the plant parameters vary over time.
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1.  Introduction 

Identification methods can be classified into on-line methods, when the model 
is required to be known in real time (e.g. in adaptive control (Niederliński, 
Mościński, Ogonowski, 1995; Woś, Dindorf, 2013)), and off-line methods, when 
the time of model creation is not significant (Vítečková, Víteček, 2013; Valasek, 
Pavliska, Perfilieva & Farana, 2013). 

Precise control requires using digital systems and thus developing models 
for control purposes. It is essential that their properties change automatically in 
accordance with the input and output signals and that their structure is simple 
enough to allow on-line control.

One of the elements of an adaptive control system is an algorithm responsible 
for identifying the plant parameters (Bochnia, 2018; Graba, 2017; Miller, 
Adamczak, Świderski, Wieczorowski, Łętocha, Gapiński, 2017; Krzysztofik, 
Takosoglu, Koruba, 2017). As these may change over time and the process of 
identification is conducted concurrently with measurement, the identification 
algorithm is usually recursive in nature(Zorawski, Makrenek, Goral, 2016; 
Adamczak, Bochnia, 2016). A recursive identification algorithm is also called an 
on-line identification algorithm or a real-time identification algorithm.

There exists a large variety of on-line identification algorithms used in 
adaptive control systems (Fortescue, Kershenbaum, Ydsti, 1981; Wittenmark, 
Astrom, 1984; Wittenmark, Astrom, 1980). The majority of them are based on 
the classic least squares (LS) method. This algorithm can be used for models 
that are linear with respect to the parameters: 

	 T
n nv =φ θ,	 (1)

where
θ	 –	 a vector of unknown parameters, 

nv 	 –	 a scalar signal,
nφ 	 –	 a vector signal dependent in a known way on the measured signals (the 

plant input and output),
0,1,...n= –	 are the successive time instants.

The LS algorithm is based on the plant variables previously registered in a 
sufficiently long time interval 0,1,..., 1n N= − . The processing of measurement 
data is defined to be off-line because the identification process follows 
measurement of the input and output variables.

Frequently, it is necessary to identify time-varying plants for which the 
parameters change in time due to changes in external factors. In such cases, the 
LS algorithm does not provide us with correct results. Estimates derived through 
a classic method, in which the entire record of plant observation is taken into 
consideration with the same weight, are average estimates.

Similarly, the least squares recursive algorithm does not respond to changes 
in the plant parameters. By adapting the iterative algorithm to tracing time-
dependent plant parameters, we arrive at a method with exponential forgetting. 
This method requires introducing the so-called forgetting factor into the 
equations which will be responsible for the algorithm memory length. To trace 
current changes in the values of the parameters, one should determine the 
estimates simultaneously while measuring the input and output variables. What 
happened in the past has no significant influence on the present state of the 
plant and should therefore be forgotten.

The method based on this concept is called a recursive LS algorithm with 
exponential forgetting or a weighted recursive least squares (WRLS) algorithm 
(Janecki, 1988).

The WRLS algorithm with exponential forgetting of the past data is obtained 
by the minimisation of the objective function
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	 θ φ θ θ θ Γ θ θ12
0 0 0

1

ˆ ˆ( ) ( ) ( ) ( )
n

n i T n T
n i i

i

J λ v λ− −

=

= − + −− 	 (2)

with respect to the vector of the parameters θ, where λ is a constant satisfying 
the inequality 0 < λ < 1. Let ˆnθ  represent a value of the vector of the parameters θ 
for which ( )/ 0nJ∂ ∂ =θ θ . Using a simple transformation, one gets 

	 11
ˆ ˆ ˆ( ),T

n n n n n n nv −−= + −θ θ Γ φ φ θ 	 (3)

	 1 1
1 , 1,2,...T

n n n nλ n− −
−= + =Γ Γ φ φ 	 (4)

In criterion (2), the components dependent on the past measurement data 
are multiplied by the factor t iλ − . This implies that, when the estimate of θ̂ is 
determined, the older measurement data are less important than the current 
data. The parameter λ is called a forgetting factor. Using the matrix inversion 
lemma, the algorithm equations can be written in such a form that there is no 
need to invert the matrix nΓ .

The value of the forgetting factor λ is selected according to the expected rate 
of changes in the parameters of the identified plant and the level of noise in 
the measurement data. In practice, parameter λ is selected in such a way that  
0.9  <  λ  <  0.99 to ensure attenuation of the measurement noise and plant 
disturbances.

A shortcoming of the algorithm is that the past data are also forgotten when, 
for example, 0n =φ , i.e. when there is no information about the plant. Note that 
from the condition 0n =φ , it is clear that 1

1 .n nλ −=Γ Γ . Thus, the lack of information 
about the plant results in an exponential increase in the matrix nφ . An excessive 
increase in the eigenvalues of matrix nφ  is unfavourable as it may cause a 
considerable random change in the values of the parameter estimates, and 
consequently, the instability of the adaptive control system. Another drawback 
of the algorithm with the exponential forgetting of past data is that this algorithm 
cannot be used when the plant parameterisation is not unique.

In this paper, the WRLS algorithm was generalised into a case of nonlinear 
parameterisation, this is one in which the identified parameters did not 
satisfy the model (1). The generalisation involved linearising the model in the 
neighbourhood of the current values of the parameter estimates. It is assumed 
that the estimates are updated every N steps of signal sampling. This assumption 
is justified when the sampling period is small with regard to the expected rate of 
parameter variation. A modification is also applied to ensure that the matrix nΓ  is 
bounded irrespective of whether the signal nφ  is sufficiently exciting.

2.  Model identification using nonlinear parameterisation

Suppose that the plant equation satisfies the relationship 

	 ( ) 0nf =θ 	 (5)

where
θ	 –	is the parameter vector, 
fn 	 –	is a certain scalar function that is non-linear with respect to the parameters θ.

When the sampling period is small, information about the plant parameters 
obtained in one sampling step is generally insufficient. Thus, it is assumed that 
the parameter estimates will be updated after just N successive signal samples 
for the selected positive integer N. The aim is to derive a recursive equation that 
will allow determining parameter estimates mθ  for the time instants lying in the 
interval ( ) [( 1) , ]m m N mN= −α , 1,2,...m= .

Define the following objective function
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	 θ θ θ θ Γ θ θ( ) ( )J λ f λ= + −−
2 1

0 0 0
1 ( )

ˆ ˆ
m

m j m T
im

j i j

− −

= ∈α

	 (6)

Let θ̂ be a certain estimate of the parameter vector. The function ( )nf θ  in the 
neighbourhood of point θ̂ can be approximated by a linear form

	 θ θ θ θ θ φ θ θ
ˆ

( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
T

Tn
n n n n

f
vff

=

∂
+ − = −

∂ θ θ

θ
θ

	 (7)

where 

	
ˆ

( )ˆ ˆ ˆ ˆ ˆ( ) , ( ) ( ) ( )Tn
nnnn

f
v f

=

∂
=− = −

∂ θ θ

θ
φ θ θ θ φ θ θ

θ
.	

Substituting (7) into (6), we have

	 θ θ θ φ θ θ θ θ Γ θ θ( ) ( ) 1
0 0 0

1

ˆ ˆ ˆ ˆ ˆ, ( ) ( ) ( ) ( ).
m

m j T m T
kkm

j

J λ v λ− −

=

= + + − − 	

Let ˆmθ  denote a value of the vector of parameters θ, for which 1
ˆ( , )/ 0mJ −∂ ∂ =θ θ θ .  

As in the classic recursive algorithm with the exponential forgetting of past data, 
we obtain

	 ( )11111
( 1)

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ,T
m m m i m i m i m m

i m

v −−−−− −+=θ θ Γ φ θ θ φ θ θ
∈ −α

	 (8)

	 1 1
111

( 1)

ˆ ˆ( ) ( ) , 1,2,...T
m m i m i m

i m

mλ− −
−−−

∈ −

=+=Γ Γ φ θ φ θ
α

	 (9)

Generally, it is assumed that 1
0
− =Γ Iε  for ε  ranging 103  –  106. Small initial 

values of the elements of the matrix 1
0
−Γ  ensure the immediate convergence of 

estimates to the real values of the parameters at the beginning of the algorithm.
To avoid an excessive increase in the inversion of the covariance matrix mΓ , 

when the signal nφ  is not sufficiently exciting, we will apply another modification 
of the algorithm (9). Let ( ):[0.1] [0.1]G x →  be a differentiable function satisfying 
the conditions ( ) 1x G x≤ ≤ , '(0) 1/G λ= . Thus, function G approximates the 
straight line x/λ for small values of x. Let us then demand that 1

m
− ≥Γ Iε  for 

each m. Equations (9) are modified as follows:

	 1 1
111

( 1)

ˆ ˆ( ) ( ) ,T
m m i m i m

i m

λ− −
−−−

−

= +Π Γ φ θ φ θ
∈α

	 (10)

	 1 ( )m mG−=Γ Πε ε .

For instance, the function G can be a polynomial of the form

	 1 2( ) ( (1 ) )G x λ x λ x−= − − .	 (11)

Other examples can be found in Ref. (Hunt, 1996).

In accordance with the scheme presented in Fig. 1, a test stand was prepared 
and an experimental procedure was conducted in order to validate the presented 
concept.

3.  A mathematical model of a robot manipulator

In the next sections, the following problems will be solved: first, we will derive 
the equations for the DC motors, then we will define the kinetic and potential 
energy of the system (Fig. 1), and finally, we will symbolically derive the robot 
dynamic equations, using the second order Lagrange equations.
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Let 1 2[ ]T=φ ϕ ϕ  denote the vector of joint variables acting as generalised 
coordinates, mj – the mass, lj – the arm length, lcj – the distance from the centre 
of gravity and Sj – the motor of the link j.

Using the typical equivalent diagrams (Fig. 2) of DC motors available in the 
literature and the second Kirchoff law, we can write the following electrical 
equation of the DC motor:

	
j j j jz R L eu u u e= + + , for j = 1,2	 (12)

where
uzj	 –	 is the voltage supplied to the rotor.

Due to the possibility of an open-loop system being difficult to control, 
it is essential that the identification be performed for a closed-loop system 
with properly selected PD controllers. Let us assume that the equations of the 
controllers have the following form:

	 = − −ϕ ϕ ϕ( ( ) ( )) ( )
jjjjz p z j d ju K t  t  t  K ,	 (13)

where
Kpj, Kdj	 –	 the parameters of the controllers,

( )
jz tϕ 	 –	 the control signals,
( )j tϕ  	 –	 the variables describing the position of the manipulator arms.

The voltage drops across the rotor winding resistance and inductance are:

	 ( )
j j jR w wu R i t= ,	 (14)

Fig.  1.  An electrically-driven manipulator

Fig.  2.  Equivalent circuit of the DC motor

https://doi.org/10.37705/TechTrans/e2022007
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( )

jw
L j j

di t
u L

dt
= , 	 (15)

where
Rwj	 –	 is the equivalent rotor winding resistance,
Lj	 –	 is the equivalent rotor winding inductance,
iwj	 –	 is the current flowing through the rotor windings.

The electromotive inductance force is

	 ϕ ( )
j je e je k t= ,	 (16)

where
kej	 –	 is an electromotive constant.

Substituting the subsequent components to Eq. 12, we obtain:

L
di t

dt
R i t k t K t t K tj

w

w w e j p z j d j
j

j j j j j j

( )
( ) ( ) [ ( ) ( )] (� � � � � � � � � )), for j = 1,2.	 (17)

The rotor torque is:

	 ( )
j j js m wM k i t= ,	 (18)

where
kmj	 –	 is a mechanical constant.

Let us define the manipulator kinetic and potential energy. The following 
geometrical relations take place:

	 ϕ ϕ ϕ ϕ
2 22 2 1 2 2 1cos( ( ))sin( ( )), cos( ( ))cos( ( ))ccccx l t t t tly == ,	 (19)

	
22 1 2sin( ( ))c cz l l t= + ϕ 	

The velocity of the centre of gravity of the second arm of the manipulator is:

	 2 2 2
2 2 2 2c c cV x y z= + + .	 (20)

Thus, the kinetic energy of the system is:

	 1 2E E E= + ,	 (21)

	 ϕ ϕ 222 2
2211 2 2

1 2
( ) ( )

, , ,
2 2 2 12 2j

j j jcc
cj c

m l lJ t J tm V
E E J l= = + = = ,

where
Jcj	 –	 are moments of inertia of the robot arms assumed for a uniform beam.

The potential energy of the system is:

	 U U U� �1 2 ,	 (22)

	 U m gl U m g l l tc c1 1 2 2 1 21 2
� � �, ( sin( ( )))� ,

where
g	 –  is the acceleration of gravity.

Using the expressions for the kinetic and potential energy, we obtain two 
second-order Lagrange equations:

https://doi.org/10.37705/TechTrans/e2022007
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,  for j = 1,2.	 (23)

After substitution and simplification of all the variables, we have a system of 
two equations (where: � �j j t� ( ),  � �j j t� ( ),  � �j j t� ( ),  � �j j t� ( ), � �z zj j
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k
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k
k

glw

m

w

m
e

2 2 2 2
2

2 2 2 1
2

22

2

2

2

22 4

cos( ) cos( )sin( )� � � �
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l L m
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l

m

m

2 2 2
2

2
2

2 2 2 1
2

2 2

2

2
4

2

2

sin( )

cos( )

�
�
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�

�
��

�

�
�� �

� �



 

22
2 2 2 1 1 2

2
2 2 2

2
2 2 22

4 3 3
2

2

2

L m
k

l m R

k
l L m

km

w

m m

sin( )�  


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22

2
�uz

	 (24)

4.  Model parameterisation

Parameterisation is a procedure of selecting parameters that are to be identified. 
It is important that this parameterisation is unique. If so, the model is said to be 
identifiable. The most suitable method of parameterisation is to assume that the 
parameters to be identified are the successive equation parameters: lj, mj, Rwj, Lj, 
kmj, kej. However, even a superficial analysis suggests that such a model is non-
identifiable because the number of parameters of the model can be reduced. 
Let us define the parameters:

	

� � � �1
1
2

1 1
2

1 2
2

2
3

1
2

1
4

2
2

2

1 1

1

1

1

1

� � � �
l L m

k
L l m

k

l m R

k

l m R

km m

w

m

w

m

, , , , ��

� � � �

5

6
2 2 2

7
2 2

8 9 2

1

2

2

2

2

�

� � � �

k

l L m
k

l m R

k
k l

e

m

w

m
e

,

, , ,

	 (25)

For the parameters defined in the above way, Eq. 24 takes the following form:

	 1

2 2

5 1 4 2 1 2 2 2 1 2 3 1 4 2 1

2

2 2 2 1 2 2 1 2 1 1 2 2 1

1
(12 3 sin(2 ) 6 cos(2 ) 3 (cos( ))

12

6 sin(2 ) 3 sin(2 ) 3 (cos( )) )
z
u

− − + + +

− θ − + + =

ɺ ɺ ɺ ɺ ɺ ɺɺ ɺɺ

ɺ ɺɺ ɺ ɺɺ ɺɺɺ ɺɺɺ

θ ϕ θ ϕ ϕ ϕ θ ϕ ϕ ϕ θ ϕ θ ϕ ϕ

ϕ ϕ ϕ θ ϕ ϕ ϕ θ ϕ θ ϕ ϕ 	

	
2

2

7 2 7 9 2 2 1 8 2 6 2 2

2

6 9 2 1 2 6 9 2 1 1 7 9 2 6 9 2

1
(6 cos( ) 3 cos( )sin( ) 12 6 sin( )

12

3 cos(2 ) 3 sin(2 ) 4 4 ) z

g g

u

+ + − +

+ + + + =

ɺ ɺ ɺ

ɺ ɺ ɺ ɺɺ ɺɺ ɺɺɺ

θ ϕ θ θ ϕ ϕ ϕ θ ϕ θ ϕ ϕ

θ θ ϕ ϕ ϕ θ θ ϕ ϕ ϕ θ θ ϕ θ θ ϕ
	 (26)

Note that the proposed method of parameterisation is nonlinear with respect 
to the parameters θ. 

Using the linearisation described in Eq. 7, we get:

	 ( ) ( ) , 1,2T

j j jv t t j= =φ θ ,	 (27)
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where for the first equation

	
1 1 1 11 1 1( ) 12( )p z p dv t K K K= − − ɺϕ ϕ ϕ ,	

2 2

1 1 2 1 2 2 2 1 2 1 2 2 1 1

2

2 1 2 2 1 1

( ) [ , 6cos(2 ) 6sin(2 ) 3sin(2 ) 3(cos( )) , ,

3sin(2 ) 3(cos( )) ,12 ],

t = − − − +

− +

φ ɺɺɺ ɺ ɺ ɺ ɺɺ ɺ ɺɺ ɺɺɺ ɺɺ

ɺ ɺ ɺɺ ɺ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

	
1 1 2 3 4 5[ ]T=θ θ θ θ θ θ ,	

and for the second equation

2 2 2 2

2 2

2 2 2 7 9 2 1 6 9 2 1 2

6 9 2 1 1 7 9 2 6 9 2

3
( ) 12 12 12 sin(2 ) 3 cos(2 )

2
3 sin(2 ) 4 4 ,

p z p dv t K K K= − − + + +

+ + +

ɺ ɺ ɺ ɺ

ɺ ɺɺ ɺɺ ɺɺɺ

ϕ ϕ ϕ θ θ ϕ ϕ θ θ ϕ ϕ ϕ

θ θ ϕ ϕ ϕ θ θ ϕ θ θ ϕ

2

2 2 2 9 2 1 2 9 2 1 1 9 2 2

2 2 2

9 2 2 1 9 2 2 7 2 2 1 6 2 1 2

6 2 1 1 7 2 6 2

( ) [ 6 sin( ) 3 cos(2 ) 3 sin(2 ) 4 ,6 cos( )

3 cos( )sin( ) 4 ,12 ,3 cos( )sin( ) 3 cos(2 )

3 sin(2 ) 4 4 ],

t g g= − + + + +

+ + + +
+ + +

φ ɺ ɺ ɺ ɺ ɺɺ ɺɺɺ

ɺ ɺɺ ɺ ɺ ɺ ɺ

ɺ ɺɺ ɺɺ ɺɺɺ

ϕ ϕ θ ϕ ϕ ϕ θ ϕ ϕ ϕ θ ϕ ϕ
θ ϕ ϕ ϕ θ ϕ ϕ θ ϕ ϕ ϕ θ ϕ ϕ ϕ
θ ϕ ϕ ϕ θ ϕ θ ϕ

	
2 6 7 8 9[ ]T=θ θ θ θ θ .	

5.  Experimental results

Let us assume the following values of the parameters of the analysed simple robot 
system: l1 = 0.5 m, m1 = 100 kg, l2 = 1 m, g = 9.81 m/s2, Rwj = 0.04 Ω, Lj = 0.004 H, 
Kpj  =  191.304, Kdj  =  31.6957, kmj  =  23  Nm/A, kej  =  23  Vs/rad. To  observe the 
changes in the parameter estimates during on-line identification, we assume 
that the mass of the object carried by the manipulator is not constant. For 
0 < t < 45 s, the mass m2 is 150 kg, and for 45 < t < 170 s, m2 =170 kg.

The parameter estimates are updated every N samples (N  =  1900), at 
∆  =  0.001  s. The number of time intervals (m  =  87) results from the total 
identification time (t  =  170  s), the number of samples N, and the sampling 
period ∆.

The excitation of the plant caused by the set point should be sufficient to 
allow the identification of the parameters. The most common exciting signals 
are step signals, a combination of sinusoidal signals with different frequencies 
and random signals. In the experiment, we used the step signal shown in Fig. 3.

The identification results obtained for the particular parameters are shown 
in Figs. 4-12. Along the horizontal axis, we have the numbers of time intervals m 
for which the estimation was performed.

Fig.  3.  Set-point angle ( )
jz
tϕ

https://doi.org/10.37705/TechTrans/e2022007
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Fig.  4.  Identification of the parameter 1

Fig.  5.  Identification of the parameter 2

Fig.  6.  Identification of the parameter 3

Fig.  7.  Identification of the parameter 4
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Fig.  8.  Identification of the parameter 5

Fig.  9.  Identification of the parameter 6

Fig.  10.  Identification of the parameter 7

Fig.  11.  Identification of the parameter 8
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6.  Conclusions

The values of the nine parameters 
1 9[ ]T=θ …θ θ  obtained through on-line 

identification are only slightly different from the real ones =θ [0.00434783 
0.026087 0.0434783 0.26087 23 0.026087 0.26087 23 1]T for 0  <  t  <  45  s and  

=θ [0.00434783 0.0295652 0.0434783 0.295652 23 0.0295652 0.295652 23 1]T 
for 45 < t < 170 s. Decreasing the factor λ or the number of samples N used for 
the successive estimations causes the parameter estimates to reach the correct 
values sooner. For significantly time-varying systems, large changes in the plant 
parameters require use of an algorithm with a small value of the forgetting factor 
as this speeds up the forgetting of past data.

A rapid change in the manipulator mass causes a change in four of the 
identified parameters, 2θ  

4
θ  

6
θ  and 

7
θ , which reach the desired values after 

about a dozen iterations. Instantaneous changes in the values of the other 
identified parameters, 1θ  

3
θ  

5
θ  

8
θ  and 

9
θ , are also observed. These are not 

only due to a sudden change in the mass but also to a step change in the external 
control signal.

On-line identification is a procedure aimed at increasing our knowledge after 
each new number N of measurements. It can be applied whenever it is essential 
to update a model concurrently with a measurement, as is the case with adaptive 
control systems when the plant varies over time.

Recursive methods is very important in the control systems when the control 
and signals  filtration process is realized on the basis current model (Ljung, 
Gunnarson, 1990; Ljung, Söderstrom, 1987; Goodwin, Payne, 1977; Widrow, 
Stearns, 1985).  
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