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Abstract

In recent years, we can observe a significant development of new materials and the tech-
nological advancements these new materials have allowed. The most relevant examples
would be these of composites, metamaterials, and 3D printing. The growing demand for
numerical modeling that include multiscale nature of materials is the main motivation
for the research presented in this dissertation. One example of a numerical method cap-
able of resolving problems with many scales is the Multiscale Finite Element Method
(MsFEM) that is the main topic of this thesis.

The thesis presents investigation on the MsFEM capabilities of modeling the mech-
anical behavior of advanced materials. During the course of the research, original modi-
fications to the method were proposed and numerically tested to confirm its accuracy
and efficiency. This includes: an introduction of the higher-order B-splines as a new
way of building the MsFEM basis functions; modeling sandwich beams and plates with
complex lattice layers using the anisotropic higher-order coarse-scale approximation and
the novel shape functions that take into account the microscale boundary conditions
incorporated into the method in the iterative corrector scheme; and an adaptation of
MsFEM for modeling the mechanical behavior of 3D printed elements using a three-
scale approach. Moreover, numerical tests were accompanied by novel experimental
measurements of 3D printed material samples and parts to validate the method in an
engineering scenario.

The applicability of MsFEM was demonstrated on linear problems of steady-state
flow in heterogeneous media, elasticity, and free vibrations of objects made of het-
erogeneous, anisotropic material with mesostructure with voids. Number of degrees
of freedom was reduced even by four orders of magnitude compared to standard fi-
nite element models without introducing a significant additional approximation error
as demonstrated in a few examples. Moreover, a new way of building multiscale basis
functions using B-splines was shown that it outperforms original MsFEM. The addi-
tional error can be reduced by increasing the order of the B-spline used. When using the
method with the iterative corrector scheme, it was shown that proposed approach with
higher-order functions gives a new possibility of reaching desired accuracy faster with
a large reduction of the necessary number of degrees of freedom. In case of modeling
3D printed elements, the multiscale solutions correlate well with experimental tests for
both static and dynamic, yielding a 2-5% difference of the experiment and higher-order
MsFEM results.

Keywords: multiscale finite element method, higher-order shape functions, composite
structures, extrusion 3D printing testing
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Chapter 1

Introduction

1.1 Challenges and motivation

All materials have a multiscale structure. Since appropriately designed fine-scale char-
acteristics allow for the achievement of material properties needed for challenging tasks
of modern engineering, synthetic composites and metamaterials receive increasing at-
tention. Composites are created by mixing two or more constituent materials, usually
in the form of bonded layers or as a dispersed phase made of particles or fibers intro-
duced into a matrix phase. Meanwhile, the macroscopic properties of metamaterials are
defined by mesoscopic structures of repeating truss-like patterns. Furthermore, progress
in the field of advanced materials was possible due to the novel production techniques,
e.g., additive manufacturing (AM), commonly called 3D printing, that are capable of
rearranging a base material in an assemble that is hardly possible to obtain by tra-
ditional manufacturing, creating optimal mesostructures that strengthen particularly
vulnerable sections of manufactured parts.

During the design process of advanced materials and parts manufactured with them,
numerical simulations are widely used. They allow designers to reduce the cost of
experimental testing and accelerate the process. In order to reproduce quantities of
interest on a coarse scale, it is necessary to take into consideration certain features of the
microscale when modeling. However, the direct numerical solutions of such multiscale
problems is a great challenge. The main difficulty arises from complexity introduced
by finer scales. For the conventional numerical methods like the finite element method
(FEM), it leads to a large number of degrees of freedom (DoFs). Since one problem may
need to be recalculated many times, e.g., in optimization process, the global numerical
simulation may become impractical. Thus, the need emerges to develop multiscale
methods capable of capturing small-scale details in simulation of macro-scale parts and
still being computationally feasible.

The main purpose of any multiscale method is to significantly reduce the size of the
problem and the cost of a numerical simulation. It is done by establishing a relationship
between micro-scale characteristics and macro-scale properties. A variety of multiscale
methods can be derived depending on a problem properties like scale separability or
periodicity. When a multiscale problem is formulated by a partial differential equation
with fast varying coefficients, one possible method is to introduce coarse-scale special
basis functions that capture the microscale details and then use them to find the solu-
tion. This upscaling technique is called the multiscale finite element method (MsFEM)
and is the central topic of this dissertation.

The main goal of this work was to investigate and enhance the MsFEM capabilities

9



10 CHAPTER 1. INTRODUCTION

of modeling the mechanical behavior of advanced materials. During the course of the
research, certain original modifications to the method were proposed and numerically
tested to confirm its accuracy and efficiency. They are: a utilization of the higher-order
B-splines as a new way of building the MsFEM basis functions; an anisotropic higher-
order coarse-scale approximation, and novel shape functions that take into account the
boundary conditions in problems of beams and plates. Moreover, an adaptation of
MsFEM was proposed for modeling the mechanical behavior of 3D printed elements.
Numerical tests were accompanied by novel experimental measurements of 3D printed
material samples and parts to validate the method in an engineering scenario.

In the scope of the dissertation, linear problems were considered. The range of
solved and tested problems includes the steady-state flow, as well as statics and free
vibrations of elastic bodies. The parts tested experimentally were manufactured using
a material extrusion technique and acrylonitrile butadiene styrene (ABS) was chosen as
the base material.

1.2 Outline of the dissertation

This is a paper-based dissertation. It consists of five chapters that are preceded by
the acknowledgments and the table of contents. This section ends the introductory
chapter, including the motivation and aim of the research, as well as the structure of
the dissertation.

Chapter 2 presents a literature overview on the topic of multiscale modeling of
heterogeneous materials. Three fundamental multiscale approaches, i.e. the asymptotic
homogenization and representative volume element method, as well as the multiscale
finite element method, are presented briefly with their advantages and limitations. The
section about MsFEM is further expanded upon the original modifications to the method
proposed in recent publications.

Chapter 3 consists of the full texts of the following four papers constituting the
doctoral thesis:

Article 1 M. Dryzek andW. Cecot. A coupling of multiscale finite element method and
isogeometric analysis. International Journal for Multiscale Computational Engineering,
18(4):439–454, 2020. 40 points, IF = 1.591.

Article 2 M. Dryzek and W. Cecot. The iterative multiscale finite element method for
sandwich beams and plates. International Journal for Numerical Methods in Engineer-
ing, 122:6714–6735, 2021. 200 points, IF = 3.477.

Article 3 M. Dryzek and E. Dryzek. Positron annihilation lifetime spectroscopy of
ABS objects manufactured by fused deposition modelling. Acta Physica Polonica A,
132(5):1506-1508 , 2017. 40 points, IF = 0.577.

Article 4 M. Dryzek, W. Cecot, and M. Tekieli. Experimental and multiscale compu-
tational static and dynamic study of 3D printed elements with mesostructure. Finite
Elements in Analysis and Design, 215:103876, 2023. 100 points, IF = 2.618.

The first article presents the idea and its realization in numerical tests of utilizing the
higher-order B-splines as a new way of building the MsFEM basis functions. The second
article explores the possibility of modeling sandwich beams and plates with complex lat-
tice layers using MsFEM. The anisotropic higher-order coarse-scale approximation and
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the novel shape functions that take into account the boundary conditions are intro-
duced into the method in the iterative corrector scheme. The third and forth papers
present experimental analysis of 3D printed material as well as an adaptation of MsFEM
using a three-scale approach and the higher-order approximation for the prediction of
mechanical behavior of 3D printed parts with complex mesostructure.

Chapter 4 consists of supplementary materials not presented in the articles and the
results of additional numerical experiments conducted during the course of the research.

Chapter 5 includes conclusions, final remarks, and prospects of future work.
The structure of the dissertation ends with a bibliography containing references to

the literature cited in the presented work, a list of figures, and a summary written in
Polish.
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Chapter 2

Literature overview

Many multiscale numerical methods have been developed and presented in the literature.
These methods can be divided, after Fish [15], into two categories: information-passing
or concurrent.

In the information-passing multiscale methods, the fine-scale details are idealized in
a small volume of material, and their averaged response is embedded into the coarse
scale. Coefficients of coarse-scale equations are computed by solving an auxiliary prob-
lems in small domain. Special features of the fine-scale problem, such as scale separation
and periodicity, are usually taken advantage of. Mathematically-based asymptotic ho-
mogenization or physically-based representative volume element (RVE) approach belong
to this category. MsFEM also belongs to this category of methods [11].

In the concurrent methods, the coarse-scale equations are not formulated explicitly,
but are implied from the equations on the fine scale. Fine-scale information is simul-
taneously evaluated in different portions of the problem domain and has to be carried
out throughout the whole simulation. The notable example in this category is the finite
element squared method [14, 20, 46]. Another approach is Cellular Automata Finite
Element (CAFE) were problem is resolved in parallel scales using FEM at macro scale
and Cellular Automata at micro scale [39, 40].

A brief introduction to the asymptotic homogenization, the RVE method, and the
MsFEM upscaling are presented to give the reader a coherent view through the whole
dissertation. To illustrate each method, a problem of the steady-state flow in an isotropic
heterogeneous material will be considered:

−▽ ⋅ (k(x)▽ u) = f(x), in Ω, (2.1)
u subjected to appropriate boundary conditions, (2.2)

where k(x) denotes the material parameter that, in the case of steady-state flow, rep-
resents permeability.

2.1 Asymptotic homogenization

Asymptotic homogenization is a well-known mathematical technique that exploits dis-
tinct scale separation and the periodicity of microstructures to obtain the homogenized
solution. Let l and L denote the characteristic size at the microscale and the macroscale,
respectively. Their ratio

ε = l

L
≪ 1, (2.3)

13
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Figure 2.1: 1D example: material distribution and a unit cell (a). The exact solution
and homogenized solution (b).

is a parameter that describes the separability of the scales. If k(x) is periodic with a
period of order ε, it is called the rapidly oscillating coefficient and unknown function u
can be formally represented by a regular expansion in the power series of ε:

u = u0 + εu1 + ε2u2 + . . . , (2.4)

which converges to the homogenized solution u0 as ε → 0. The homogenized solution
u0 can be evaluated as the solution of

− k△ u0 = f(x), in Ω, (2.5)
u0 subjected to appropriate boundary conditions (2.6)

where △(●) = ▽ ⋅ ▽(●) and k is called the effective coefficient that describes the mac-
roscopic properties of the heterogeneous medium and is a constant. k is defined by an
integral of an auxiliary function that is a solution to a problem defined in a periodic
(unit) cell with boundary conditions that reflect periodicity assumptions. A comparison
between the exact solution and the homogenized solution to a 1D exemplary two-phase
problem is presented in Fig. 2.1. The problem reads:

− d
dx
(k (x) du

dx
) = 1, for x ∈ (0, L) ∖ {xi} , (2.7)

u(0) = 0, u(L) = 0, (2.8)

where k(x) = 5.5 − 4.5 sgn (sin 2πx
l
), L = 1, and l = 0.1 and the resulting k = 2

11 . For the
regularity requirement, the natural jump conditions across the phase interfaces xi are
given as:

u+(xi) = u−(xi), (2.9)

k(xi)+
d
dx
u+(xi) = k(xi)−

d
dx
u−(xi). (2.10)

where xi = il for i = 1 to L
2l − 1.

Mathematical homogenization theory dates back to the French school [2] and provides
a theoretical background for multiscale methods. The asymptotic homogenization method
is restricted to problems with periodic coefficients and scale separation. Later develop-
ments generalized the method for spatially homogeneous random media and nonperiodic
materials [45].
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2.2 Representative volume element

A physically-based approach to multiscale problem can be derived assuming that there
exist a finite volume of the material whose behavior represents that of the bulk of the
material. This small volume is called the representative volume element. Information
gathered from the RVE is used to define the model parameters assumed on a coarse
scale. In the considered problem (2.1) the RVE is used to identify permeability of the
homogenized medium on a coarse scale. For the characterization of the permeability
properties of the medium, a constitutive relationship between flux q and the gradient
of u will be assumed:

⎡⎢⎢⎢⎢⎢⎣

qx
qy
qz

⎤⎥⎥⎥⎥⎥⎦
= −
⎡⎢⎢⎢⎢⎢⎣

k11 k12 k13

k21 k22 k23

k31 k32 k33

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂u

∂y

∂u

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.11)

where kij (i, j = 1,2,3) are effective coefficients that are to be identified.

Actual microstructure

Idealized geometry

Periodic geometry

Periodic cell
(Unit cell)

ZAPROJEKTOWANO PRZY UŻYCIU WERSJI STUDENCKIEJ PROGRAMU AUTODESK

Z
A

P
R

O
J

E
K

T
O

W
A

N
O

 
P

R
Z

Y
 
U

Ż
Y

C
I
U

 
W

E
R

S
J

I
 
S

T
U

D
E

N
C

K
I
E

J
 
P

R
O

G
R

A
M

U
 
A

U
T

O
D

E
S

K

ZAPROJEKTOWANO PRZY UŻYCIU WERSJI STUDENCKIEJ PROGRAMU AUTODESK

Z
A

P
R

O
J

E
K

T
O

W
A

N
O

 
P

R
Z

Y
 
U

Ż
Y

C
I
U

 
W

E
R

S
J

I
 
S

T
U

D
E

N
C

K
I
E

J
 
P

R
O

G
R

A
M

U
 
A

U
T

O
D

E
S

K

Figure 2.2: Examples of RVEs in unidirectional fiber composite based on micrograph
of a metal matrix composite NiAl2–Cr [51].

The first step in the multiscale modeling using RVE is to select the representative
part of the microstructure. The ideal situation would be to select the region as large
as possible so that as much information about heterogeneity can be retained. However,
some reasonable simplification must be made to limit the size of the RVE. In case of
periodicity, simply periodic cell is sufficient to represent the material. In case of a
microstructure with random distribution, some idealization must be performed. The
possible options for RVEs are to assume periodicity and idealize the geometry or to
keep randomness within the microstructure and manipulate the fiber location at the
boundary so that the geometry is periodic (see Fig. 2.2). In general, the choice of RVE
regions has a small influence on macroscopic properties, however, it is relevant when
evaluating the microscopic variables e.g. stresses [51].

To evaluate effective coefficients, one needs to conduct a series of tests by solving
boundary value problems in the RVE imposing different boundary conditions. In the
simplest case, it is done by imposing Dirichlet boundary conditions implied by constant
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unit values of the gradient of u:

▽u(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂u

∂y

∂u

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
, ▽u(2) =

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
, and▽ u(3) =

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦
(2.12)

as the three test cases. From the analysis of the problem (2.1) in RVE with these
boundary conditions, one computes the average fluxes: q(1), q(2), and q(3), respectively.
Inserting these results in Eq. (2.11) it is easy to obtain the effective coefficients. If
the boundary value problems are solved numerically, this analysis is called numerical
material testing. The analogy can be found to physical testing, i.e. tensile strength
testing. Different types of boundary conditions can be imposed on RVE i.e. Dirichlet,
Neumann, or periodic ones. The latter yields the best results even for small RVEs
[48, 51].

Given a wide range of multiscale problems in modern sciences and engineering, the
use of RVEs has become a popular means of analysis, as can be found at many confer-
ences, academic papers, and textbooks [35]. With the assumption of scale separation,
numerical tests on RVE can be easily applied to identify parameters of nonlinear con-
stitutive relations, as well [50]. Moreover, it is possible not to assume any constitutive
relation on a coarse scale and compute the macroscopic stress tensor at every neces-
sary point (e.g. Gaussian abscissas) by solving boundary value problems in RVE. This
multi-scale computational homogenization [20] was later called finite element squared
method (FE2).

2.3 The multiscale finite element method

In MsFEM two meshes are employed. Let TH be a partition of Ω into finite elements of
characteristic size H. This is a coarse grid of macroelements K that usually do not fit
to the heterogeneity of the material. Each macroelement is then refined with a mesh of
much smaller characteristic size h, called a fine grid, fitted to the fine-scale details that
is illustrated in Fig. 2.3.

The introduction to the method will be presented after [42], starting with a decom-
position of the solution u:

u = ua + ub. (2.13)

The first component ua satisfies the homogeneous differential equation:

−▽ ⋅ (k(x)▽ ua) = 0, inK, (2.14)
ua = u∣∂K , on ∂K. (2.15)

The second component, ub, also referred to as a ‘bubble’ part of the solution u, satisfies
the following non-homogeneous equation in the macroelement domain K:

−▽ ⋅ (k(x)▽ ub) = f, inK, (2.16)
ub = 0, on ∂K. (2.17)
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Figure 2.3: MsFEM coarse grid and fine mesh in macroelement K. Shades of gray
represent different permeability values.

These two components are k(x)-orthogonal, i.e. they satisfy ∫K▽ub ⋅ k(x)▽ uadΩ = 0.
Since by using Green’s first identity as well as properties of ua and ub:

∫
K
▽ub ⋅ k(x)▽ uadΩ = −∫

K
ub▽ ⋅ (k(x)▽ ub)dΩ + ∫

∂K
ub (k(x)▽ ua ⋅n)dS = 0,

(2.18)
where n is the outward pointing unit normal to the boundary ∂K.

Since the Dirichlet boundary condition in Eq. (2.15) is missing (u is not known),
an iterative schema described in Sect. 2.3.3 is used or Eq. (2.15) is modified in order
to define multiscale basis functions φi ∈H1

0(Ω) in macroelement K as a solution to the
following problem:

−▽ ⋅ (k(x)▽ φi) = 0, inK, (2.19)
φi = Ni, on ∂K, (2.20)

where Ni denotes the standard finite element shape functions on the coarse grid (i =
1,2, . . . ,M , whereM is the number of coarse DoFs). Sometimes, Ni is not used directly
on ∂K but after certain modifications or for larger domain by the oversampling method
what is described later in this section.

The multiscale basis functions are used in the standard finite element scheme of
finding an approximation uH = ∑Mi=1 αiφi ∈ V H = span{φi(x)} ⊂H1

0(Ω):

B(uH , φi(x)) = L(φi(x)), i = 1,2, . . . ,M, (2.21)

where for the considered exemplary problem

B(u, v) = ∫
Ω
∇u ⋅ k(x)∇vdΩ, L(v) = ∫

Ω
fvdΩ. (2.22)

Finally, multiscale solution ums is obtained as the sum of uH and the bubble part
ub [27]:

ums = uH + ub. (2.23)

In practice, problem (2.19)-(2.20) is solved numerically on a fine mesh for each
macroelement K individually, unless the considered domain is periodic. The values of
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the fine mesh DoFs for each multiscale shape function φKi for element K are stored in
matrix P = (pij) that is called the prolongation matrix. This φKi can be expressed in
the following way:

φKi = pijφhj , (2.24)

where φhj are basis functions of the fine grid. To calculate entries of aK-element stiffness
matrix kij , the trail u and the test v functions in (2.22) are substituted with multiscale
shape functions φKi and φKj expressed by formula (2.24):

kij = ∫
K
∇φKi ⋅ k(x)∇φKj dΩ = pil pjm∫

K
∇φhl ⋅ k(x)∇φhmdΩ. (2.25)

Assuming the assembled over coarse element domain fine-mesh stiffness matrix Kh =
(khlm), where khlm = ∫K ∇φhl ⋅ k(x)∇φhmdΩ, the coarse grid stiffness matrix can be com-
puted using the following matrix formula:

KH = P TKhP . (2.26)

Similarly, the loading vector for element K is evaluated by the following formula:

fH = P Tfh, (2.27)

where fh is the fine mesh loading vector assembled over the coarse element domain and
it equals to fhl = ∫K fφhl dΩ.

MsFEM consists of two steps: numerical evaluation of the multiscale basis functions
and coarse-grid analysis on these functions. The basis functions are built using the
boundary value problem that contains information about the fine scale distribution
of coefficient k(x). The global formulation uses these basis functions to provide an
approximation of the solution enhanced with the fine-scale heterogeneous features.

The idea of using basis functions that satisfy the differential equation is not new
and can be traced back to a pioneering article by Babuška et al. [1] on the problem of
unidirectional composite materials. Generalization of this idea for all types of composite
materials and porous media was introduced by Hou and Wu in paper [25] where the
method got its name. MsFEM is closely related to the variational multiscale method
(VMS) [29, 30]. Both methods yield same results, provided that the right-hand side is
treated the same in both methods [15] (consider problem (2.16)-(2.17) and Eq. (2.23)).
Moreover, a parallel can be drawn between MsFEM and the multigrid method [16, 17].
The same numerical techniques are utilized in both methods, e.g., prolongation.

Originally, MsFEM was developed to effectively solve problems of flow in highly het-
erogeneous porous media utilized in high-fidelity reservoir simulations [49]. A framework
for non-linear problems of flow was later presented in [10]. More recently, the method
was modified to solve problems of elasticity of composites and metamaterials in [56],
where it was called the extended multiscale finite element method. Several other engin-
eering problems were modeled using MsFEM, including beam and plate problems [57],
viscoelastic asphalt concrete [31, 33], heterogeneous piezoelectric composites [18], and
regional soil subsidence [52].

The primary benefit of MsFEM over the other multiscale methods is the absence of
assumptions about periodicity and scale separation. Moreover, macroelements are not
limited to standard elements. They can have arbitrary shapes even with curved edges or
faces [55, 44]. From a technical perspective, the multiscale shape functions are calculated
numerically on a fine grid for each macrolement independently that allows for parallel
computing. If the material is periodic and the coarse elements fit the periodicity, then
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the shape functions can be reused leading to further cost reductions. It is also worth
noting, that by using Galerkin coarsening (Eq. (2.26) and (2.27)) no integration is
needed to obtain the matrices at the coarse level.

The main difficulty of the method is to choose appropriate boundary conditions
that determine multiscale basis functions in Eq. (2.20). For example, Ni can simply
be chosen to be linear on the boundaries of the macroelement. However, this approach
neglects fine-scale oscillations of the true multiscale solution at the macroelement in-
terfaces. This can lead to large errors, caused by resonance effects that was identified
for the first time in [28] and is a recurring theme in studies about MsFEM. This effect
typically occurs when the macroelement size H and the parameter ε that characterizes
the small scale of the problem are of the same order. The following subsections present
possible strategies to mitigate this effect and generally improve the MsFEM solution.

2.3.1 Oscillatory boundary conditions

A good choice of boundary conditions can significantly improve the accuracy of the
multiscale method, as has been proven theoretically using an asymptotic expansion
in [25, 28]. In this subsection, typical methods of generating boundary condition in
problem (2.19)-(2.20) that account for fine-scale details will be recalled.

The first intuitive approach to oscillate the boundary conditions in 2D problems
is to consider a reduced problem on each edge of ∂K [25]. The reduced problem is
obtained from Eq. (2.19) by removing the partial derivative in the direction normal to
the given macroelement edge (after transferring the equations to the master element).
For example, consider the macroelement K presented in Fig. 2.3 which edge Γ12 ⊂ ∂K
between nodes 1 and 2 is perpendicular to the direction y. For this edge, the reduced
problem reads:

∂

∂x
k(x)∂Ni

∂x
= 0 (2.28)

The boundary conditions for this two-point problem are given by Ni(xj) = δij for
i, j = 1,2, where xj are the coordinates of the nodes j and δ is the Kronecker delta.
In the 3D case this approach is performed in two steps: first solving the 1D problems
of type (2.28) along each edge, then imposing the solutions as a boundary condition
to the 2D reduced problem on each macroelement face. A detailed description of each
problem can be found in [6, 32].

The next approach was suggested in [28] after thorough discrete error analysis of
MsFEM. It was observed that by imposing artificial boundary conditions in problem
(2.19)-(2.20) the resulting multiscale solution exhibits a boundary layer near ∂K that
is the main source of the resonance effect. This layer, however, is thin; thus raises
the idea of exploiting this by reformulating the problem of multiscale basis function
to a larger region and using only the interior information to construct the functions.
The technique was called oversampling and can be implemented in the following way:
consider larger domain K ′ with the corresponding nodes (1′,2′,3′,4′) that covers the
quadrilateral macroelement K as illustrated in Fig. 2.4a. Temporary shape functions
ψKj will be calculated for each node, using equations (2.19) in domain K ′ with boundary
conditions on ∂K′ defined on each edge as a linear function that takes values 1 in j-th
node and 0 in the remaining ones (see example in Fig. 2.4b). The modified shape
function φKi of the macroelement K is going to be calculated as a linear combination
of the temporary shape functions:
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Figure 2.4: Oversampling domain of size 3H × 3H in green (a) and temporary shape
function ψK1 with outline of a solution on ∂K (b).

φKi =
4

∑
j=1

cijψ
K
j , i = 1, . . . ,4, (2.29)

where cij are constants determined by solving the set of 4×4 linear equations φKi (xj) =
δij , where xj denote coordinates of the macroelement nodes (for i, j = 1,2,3,4). The
best size of K ′ was numerically estimated in [54] to be 3H × 3H. This approach indeed
mitigates the resonance effect; however, it results in non-conforming approximation
with discontinuities along macroelement edges ∂K. The error of non-conformity was
estimated to be small in [12]. Although oversampling can be simply translated to 3D
macroelements, a special oversampling technique for this case was proposed in [53].
An improvement of the technique was presented in [27] where oversampling is used for
each macroelement edge separately to obtain boundary conditions to calculate optimal
multiscale basis functions.

The third technique was inspired by the RVE method. The authors of [54, 55]
proposed to utilize periodic boundary conditions in the problem of multiscale basis
functions. To illustrate it, consider the 2D rectangular macroelement K aligned with
x and y axis (Fig. 2.3). To calculate the multiscale shape function φK1 associated with
node 1, the following constraints are applied to individual edges:

N1∣Γ12 = N1∣Γ43 +∆x, on Γ12, (2.30)
N1∣Γ14 = N1∣Γ23 +∆y, on Γ12, (2.31)

where ∆x and ∆y are linear functions that take values 1 at node 1, and 0 at nodes 2,
3, and 4. This technique can be further expanded in the vector problem of elasticity
where the values of ∆x and ∆y can be oscillated using the oversampling technique.

2.3.2 Higher-order approximation

In problem (2.19)-(2.20), Ni can be any function that provides conforming multiscale
functions. Thus, rises the idea of enriching multiscale function space in a manner similar
to the p-refinement in the standard FEM. To construct multiscale basis functions, Ni

functions were defined using higher-order shape functions of Lagrange [19], hierarchical
[36] or Crouzeix-Raviart [7] type. Multi-node macroelements were introduced in [4, 5]
that are created by adding nodes along the edges and inside the elements. This approach
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Figure 2.5: Multiscale shape functions types for hierarchical [6], Lagrange [19], and
multi-node macroelements [4] (for detail definitions refer to the cited articles).

was also combined with the oversampling technique, e.g., in [38]. Higher-order boundary
conditions were also oscillated using reduced problems along edges in [6]. The increase
of DoFs on a fixed coarse grid was studied in the context of adaptivity [43, 31] and
topology optimization [37].

The new multiscale shape functions can be divided into vertex, edge, and mid types,
as illustrated in Fig. 2.5 for three function families. Vertex or edge types shape functions
are generated using Eq. (2.19)-(2.20). To create the mid functions of hierarchical and
Lagrange type, with zero Dirichlet boundary condition, problem (2.19)-(2.20) has to be
modified by introducing the source term on the right-hand side, after [47]:

−▽ ⋅ (k(x)▽ φKi ) =△NK
i , inK, (2.32)

φKi = 0, on ∂K, (2.33)

where NK
i is the bubble function of higher-order type in macroelement K. Moreover,

the Lagrange shape factions should be normalized.
In case of multi-node macroelements [4], each shape function in this approach can

be interpreted as the field obtained by imposing unit values at each of the coarse scale
DoF while all others are set to zero. The mid shape functions are generated using Eq.
(2.19)-(2.20) and value 1 of a selected fine-scale DoF. However, one should note that
for 2D and 3D second order problems pointwise conditions are ill-posed. Probably this
is the reason of almost singular behavior of the mid shape functions.
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It is worth noticing, that at a discrete fine-scale level this approach of decreasing
of DoFs number in MsFEM resemble the superelement constructed by the static con-
densation technique [23]. By using a static condensation on a single macroelement, a
dependency relations between fine-mesh interior DoFs and DoFs on the macroelement
boundary can be formulated, and the interior DoFs can be eliminated out of the global
system. What is left is a macroelement with DoFs only on edges, which is referred to as
superelement. In contrast, MsFEM reduces even more DoFs; however, it does not fully
resolve the fine-mesh solution. The way of model order reduction using superelements
is commercially successful and can be found in many FEM programs, e.g., [13, 21].

2.3.3 Iterative correction

To improve the accuracy of local boundary conditions (2.20), information of the global
solution ums can be used. This approach creates an iterative loop of using the current
solution to correct basis functions to obtain a new solution that can be used for a new
correction, and so on. First, it was used to iteratively modify multiscale basis obtained
by the oversampling technique to smooth the solution and obtain a conforming (con-
tinuous) solution [9, 8]. Similarly, the multigrid algorithm, e.g, two-grid cycle scheme in
the multigrid terminology [24, 26], has been applied to converge the MsFEM solution
to the fine-scale numerical solution.

Iterative methods will be illustrated with a recently developed residual-driven local
iterative technique in [42, 41], where core idea is to correct individual multiscale basis
functions. Let us assume that MsFEM solution ums was calculated using a standard
bilinear multiscale nodal basis. Using this solution, it is possible to rewrite original Eq.
(2.1) to calculate the right-hand sides in domains K̃i that are the supports of multiscale
basis functions φi (patches of several macroelements):

fms = −▽ ⋅ (k(x)▽ ums) , in K̃i, i = 1,2, . . . ,M, (2.34)

whereM is the number of coarse DoFs. Note that the right-hand sides are marked with
ms index and typically differ from the right-hand side of the original problem. The
exact solution u in K̃i is the sum of the multiscale solution and some unknown term uc,
a local corrector:

u = ums + uc. (2.35)

By linearity of the problem, uc satisfies the following residuum-driven problem:

−▽ ⋅ (k(x)▽ uc) = f − fms, in K̃i, (2.36)

uc = (u − ums) ∣∂K̃i
, on ∂K̃i. (2.37)

In order to localize each correction, uc takes value 0 on boundary ∂K̃i. As a result, this
problem is only driven by the residuum of the approximate solution and can be solved
on a fine grid. uc is later combined with φi to create a new corrected multiscale basis
function. After correcting all the multiscale basis functions, a new multiscale solution
can be obtained. This concept was theoretically and numerically proven to converge
to the best possible fine-mesh accuracy. The corrector term is an approximation of
the error and is computed similarly to the implicit error estimation method [22]. In
MsFEM, the subdomains consist of the macroelement patches.



Chapter 3

Full texts of the articles
constituting the doctoral thesis

This chapter presents the full texts of four research articles indexed in the Journal
Citation Reports (JCR) database constituting the submitted doctoral thesis. Each
paper is attached in the following sections with the bibliographic information with the
number of points assigned by the Polish Department of Education to the journal in
which the specific article is published and the Impact Factor assigned to the journal1.

This set of articles presents investigation on the topic of MsFEM capabilities of
modeling the mechanical behavior and properties of advanced materials. The research
consist of certain original improvements of the method, numerous numerical examples
of modeling of composites and materials with lattice microstructure, and experimental
measurements of 3D printed samples that were used to validate the numerical method.

Article 1 (page 25) introduces the higher-order spline approximation in MsFEM
methodology. The idea of B-splines spanned on several macroelements as a basis
for building multiscale trail and test functions was examined. To compute the new
multiscale basis function a source term on the right-hand side is introduced as in Eq.
(2.32)-(2.33). However, in contrast to standard MsFEM where the shape functions are
evaluated macroelement by macroelement, in this approach the basis functions are com-
puted at once at theirs whole supports . Modified MsFEM with the new basis functions
was tested on selected numerical experiments on problems of flow in porous media with
periodic and random material properties distribution. The modified method indeed im-
proves standard MsFEM for fast oscillating material properties even though resonance
effect was observed when the ratio of inclusion size and coarse mesh size approaches one
(ε/H → 1). However, for some examples, it could be reduced by increasing the order of
B-splines.

In Article 2 (page 43), an adaptation of MsFEM to the analysis of sandwich beams
and plates with complex lattice layers was proposed. In these problems, one geometric
dimension (thickness) is much smaller compared with the others, thus only one layer
of macroelements can be used. Furthermore, the boundary conditions on the top and
bottom edges (or faces) are often zero traction. This allows for significant reduction
of DoFs and introduction of approximation exclusively in the direction of beam axis
or plate mid plane. The novel higher-order multiscale shape functions that take into
account the microscale boundary conditions were introduced. Additionally, the local
iterative corrector scheme (see Sect. 2.3.3) adapted for the bending-dominated responses

1Values of the current point score in lists of journals of the Ministry of Science and Higher Education
in Poland and Impact Factor as of October 31, 2022.
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of sandwich structures provides converges of the coarse mesh approximation to the best
possible fine-mesh solution. Several numerical examples are presented to demonstrate
the capabilities of the method. The proposed modifications of the shape functions
and the higher-order coarse mesh approximation increase the convergence rate. The
method was validated by comparison of the numerical results with experimental ones
for a sandwich panel with a dual corrugated high-density fiberboard core. Very good
consistency of both results was observed.

In Article 3 (page 66), Positron Annihilation Lifetime Spectroscopy (PALS) was
used to study ABS specimens manufactured using material extrusion technique. This
study was conducted as a prelude to numerical multiscale modeling of 3D printing ele-
ments. It gave insight to the structure of the 3D printed material using the advance
experimental measuring technique and gave the author of this thesis opportunity to
familiarize with extrusion-based additive manufacturing technique. PALS is a non-
destructive spectroscopic method of materials research widely used for investigation of
metals, semiconductors, ceramics, polymers, and porous materials. In case of poly-
mers, from the obtained positron lifetime spectra, information about the molecular
microstructure can be derived due to the fact that ortho-positronium (a bound state
of electron and positron) is a probe of local free volumes in their structure (for more
details see Sect. 3.3.1). Knowing that certain features of a microstructure affect mac-
roscopic mechanical properties a correlation between these properties and the positron
annihilation parameters can be established. In the study, a set of 3D printed specimens
was prepared to explore possibilities of identifying differences in molecular structure
for different print configurations. Square tiles (10 mm × 10 mm) and long rectangular
tiles (100 mm and 200 mm long) with all filament roads parallel to longer edge were
prepared. All types of tiles were produced with various infill line distance parameter
that results in different overlapping of the roads in horizontal and vertical directions.
The slight increase of the ortho-positronium lifetime indicating increase of the mean
free volume radius and was observed for the longest tiles for which influence of weld
interface is expected to be most pronounced. This study was conducted in Institute of
Nuclear Physics Polish Academy of Sciences in Cracow.

In Article 4 (page 71), numerical and experimental studies were conducted to demon-
strate the applicability of MsFEM with the higher-order approximation to the prediction
of mechanical behavior of 3D printed parts with complex mesostructure. Three scales
are considered: the microscale, at which the filament paths are homogenized using
an orthotropic material model with experimentally identified properties; the mesoscale
with 3D printed structure that is upscaled by MsFEM; and the macroscale, at which the
overall problem is effectively solved. To validate the approach experimental measure-
ments of static bending and free vibrations of beams with four different mesostructures
and two print orientations were conducted. The measurements were performed using
digital image correlation and were compared with numerical modeling. Both results
coincide very well for a number of examples. Moreover, the study revealed that the
hierarchical higher-order shape functions can accurately represent free vibrations even
for the high frequencies.



25

3.1 Article 1: A coupling of multiscale finite element method
and isogeometric analysis

M. Dryzek and W. Cecot. A coupling of multiscale finite element method and iso-
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Abstract

In this paper, we propose to use the B-splines spanned on several macroelements as a basis for
building the Multiscale Finite Element Method (MsFEM) trail functions. The main benefit of our
approach is calculation of the multiscale functions in one step on the whole support, in contrast
to standard MsFEM shape functions that are evaluated coarse element by element and require a
cumbersome gluing.

Selected numerical experiments for flow in porous media with periodic and random material prop-
erties distributions were performed to test our modified MsFEM with the new basis functions. We
found that the method indeed improves standard MsFEM for fast oscillating material properties. We
observed that the resonance effect, when the ratio of inclusion size and coarse mesh size approaches
one (ε/H → 1) can be reduced by increasing the order of B-splines.

Keywords: Multiscale finite element method, Higher order shape functions, B-splines
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1 Introduction

The main purpose of any multiscale method is to reduce significantly the number of degrees
of freedom in numerical simulation of partial differential equations with fast varying coefficients.
It is done by establishing at first a relationship between microscale characteristics and macroscale
properties. The most frequently used approaches to this problem are the asymptotic homogenization,
the representative volume element method (including FE2), and the multiscale finite element method.

The asymptotic approach makes use of the unit cell analysis followed by a solution of a boundary
value problem with constant coefficients to evaluate the homogenized solution, understood as the limit
of a certain sequence of functions. The method proposed by Bensoussan, Lions and Papanicolaou [1]
was studied for modeling of a periodic composite. However, it reveals its limitations when applied to
solve nonperiodic material problems.

The representative volume element method (RVE) uses a minimal material volume that contains
sufficient information about the microstructure. The macroscale properties are determined by im-
posing specific boundary conditions to this representative volume and computing numerical material
testes. The gathered information is later used in analysis on the macro level, facilitating the acquisition
of macroscopic and microscopic stress and strain fields. A few key types of the method are:

• numerical homogenization - by a single RVE analysis with a constitutive law assumed a’priori
(Zohdi and Wriggers [2]),

• computational homogenization - that is free of coarse-scale constitutive equations with RVE
attributed to selected (e.g. Gauss integration, points, and material parameter tangent tensor
(∂σ�∂ε) evaluated on the fly as proposed by Geers, Kouznetzova, and Brekelmans [3], and called
later by Feyel and Chaboche as FE2 method [4]),

• heterogeneous multiscale method - in which the integrand (integrated function) values at Gauss
points are computed on the fly by micro-cell analysis, as in the method proposed by E and
Engquist [5],

• cellular automata based approach (CAFE) - developed by Madej, Pietrzyk, and Hodgson [6, 7],
who incorporated a quite different technique at the RVE level, instead of the FEM analyses.

The RVE approach may be used if two assumptions are satisfied i.e. periodicity and scale separation.
The multiscale finite element method starts with a macroscale discretization, which is followed

by the independent refinement of each coarse-scale element in order to obtain a discretization that
complies with the material heterogeneity. The multiscale shape functions of the method are obtained
by solution of auxiliary local problems in the macroelement domains. The MsFEM solution is then
composed of the multiscale basis functions. This way, the microscale details are incorporated in the
macroelement stiffness matrices (see Hou and Wu [8]).

While defining the local problem of the multiscale shape functions appropriate boundary conditions
should be imposed, ideally equal to the exact solution. Since we do not know the solution in advance,
we have to make certain approximations. Originally undisturbed linear functions were incorporated.
Although these resulting shape functions can capture details of microstructure inside the element
domains, there is a significant error on the macroelement boundaries (see Fig.1). The resonance effect
occurs when the length of the scale of the microstructure approaches the coarse mesh size, on which
the interelement material heterogeneity is neglected [9].

There are several techniques that can improve the result of the MsFEM calculations by introducing
oscillatory boundary conditions by the auxiliary BVP. The first option was deduced from a simple
observation that the error diminishes quickly across the boundary layer, thus proposition to extend
the domain while building the multiscale shape functions. This approach was called oversampling and
was introduced simultaneously with MsFEM by Hou et al. [8, 9]. This technique, however, results in
a nonconforming MsFEM, where the macroscale basis functions are discontinuous along the edges of
macroelements. Another option of reducing the resonance effect is the iterative approach presented
e.g. in [10, 11]. After obtaining the solution by MsFEM the residue is used as a load for the correction
of the multiscale shape functions. The new solution is obtained from the corrected function space
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Figure 1: Solutions of an elliptic boundary value problem obtained on a fine mesh (uexact) and on
3× 3 coarse quadrilateral mesh using MsFEM with linear boundary conditions (uMS).

and again can be corrected until the residue is small enough. Finally, the increase of the degrees of
freedom, in a similar manner to p-refinement in FEM, was studied. Higher order macroscale shape
functions were also used of either Lagrange [12] or hierarchic [13, 14] or Crouzeix-Raviart [15] type.
Multi-point elements were introduced in [16, 17] bringing MsFEM closer to elements reduced by static
condensation method. The increase of degrees of freedom was studied in the context of adaptivity
[18, 19] and topology optimization [20].

Originally, the multiscale finite element method was developed to solve flow in highly heterogeneous
porous media. More recently, the method was modified to solve vector problems of elasticity (the
Extended Multiscale Finite Element Method, [21]) of composites and metamaterials. Several other
engineering problems were modeled using MsFEM including: heterogeneous piezoelectric composite
[22], 3D eddy currents in laminated media [23], and regional land subsidence [24].

In this work, we propose to utilize the higher order B-splines as a new way of building the MsFEM
basis functions. Non-Uniform Rational B-Splines (NURBS) are basis functions used in Isogeometric
Analysis (IGA) and the list of benefits of using them over standard FEM approximation includes
improved representation of surfaces in contact problems, advantages in vibrations problems, usefulness
in plate and shell problems, and most important coupling design model with the analysis model. The
isogeometric analysis is widely developed by researchers around the world and coupling it with the
multiscale method may also further expand its capabilities. B-splines functions are spanned on patches
of several elements. Moreover, B-splines are build of polynomials of higher order with arbitrary order of
continuity, thus we expect to achieve better smoothness of the MsFEM solution and there are no need
fot introducing oscillations to the boundary conditions of the local problems related to the internal
knots since B-splines assume zero values on the patch boundary. The proposed modifications to
MsFEM can be also interpreted as a combination of standard FEM approximation on the microscale
level and B-splines on the macroscale level. The FEM approximation of C0 regularity enables the
appropriate solution of heterogeneous material deformations while B-splines on the macroscale should
provide an appropriate approximation of the macroscopic structure behavior.

The article is divided into 5 sections. In sections 2 we introduce the problem of flow in hetero-
geneous media and briefly introduce MsFEM with oversampling technique. In sections 3 we refer to
the construction of B-splines basis functions and how to use them in MsFEM methodology. In sec-
tion 4 we show numerical tests of our method in comparison to standard MsFEM and MsFEM with
oversampling modification. Finally, in section 5, we present conclusions from this work and further
research plans.

2 Problem formulation and MsFEM

We recapitulate briefly the standard MsFEM principle for the problem of a flow in heterogeneous
media modeled by the an elliptic equation with highly oscillatory coefficient a(x):

3
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Find function u in domain Ω such that:

−O · (a(x)Ou) = f, in Ω, (2.1)

u = û, on ∂ΩD, (2.2)

a(x)
∂u

∂n
= t, on ∂ΩN , (2.3)

where n is the unit outward normal to ∂ΩN . We divide the domain Ω into macroelements Ωi with
corresponding nodes (1, 2...M), such that Ω =

⋃
i Ωi, with the characteristic mesh size H. Each

macroelement is meshed with a fine mesh of size h. Both discretizations are illustrated in Fig. 2 for a
regular mesh. Please note, that the macroelements in general may be of arbitrary shape. Macroelement
number of degrees of freedom, is denote to M on course scale and N on fine scale.

The weak form of Eq. 2.1 reads:
Find u ∈ U in a domain Ω such that:

B(u, v) = L(v), ∀v ∈ V, (2.4)

where

B(a, v) =

∫

Ω
∇u · a(x)∇vdΩ, L(v) =

∫

Ω
fvdΩ. (2.5)

and V is the H1 Sobolev space in this case.

Figure 2: Discretization of the domain Ω.

2.1 The MsFEM idea

We start with the following decomposition of the solution u [11]:

u = ua + ub. (2.6)

The first component, ua, satisfies homogeneous differential equation on the macroelement domain Ωi:

−O · (a(x)Oua) = 0, in Ωi, (2.7)

ua = u, on ∂Ωi, (2.8)

with the Dirichlet boundary condition defined by the exact solution u. Second component, ub (also
refereed to as a ’bubble’ part of the solution u), satisfies the following non-homogeneous equation on
the macroelement domain Ωi:

−O · (a(x)Oub) = f, in Ωi, (2.9)

ub = 0, on ∂Ωi, (2.10)

4
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with the zero Dirichlet boundary condition. This two components are orthogonal, i.e. they satisfy∫
Ωi

Oub · a(x)OuadΩ = 0. As explained in [11], from this property multiscale shape functions φj of
the macroelement Ωi are defined:

−O · (a(x)Oφj) = 0, in Ωi, (2.11)

+b.c. on ∂Ωi,

for j = 1, 2...M , where M denotes element number of degrees of freedom (dofs). Different boundary
conditions, as mentioned in section 1, can be utilized.

Now, we can establish a new global problem for solution uH ∈ V H :

B(uH , v) = L(v), ∀v ∈ V H , (2.12)

V H = span {φ1(x), φ2(x), ...φM (x)} . (2.13)

Problem (2.11) may be also interpenetrated as a definition of the prolongation operator that
transfers M coarse element dofs into N fine mesh dofs. Problem (2.11) is solved numerically on the
fine mesh to compose prolongation matrix PN×M that is used to compute the macroelement stiffness
matrix KH and vector fH by simple algebraic operations (the Guass coarsening):

KH = P TKhP , fH = P Tfh, (2.14)

where Kh and fh are assembled on the fine mesh only on macroelement domain Ωi. We want to
stress that Kh was computed previously when solving (2.11) thus can be reused here. It is also worth
noting that no integration is done to obtain the matrices on the coarse level.

We can now solve for the coarse mesh dofs uH :

KH
GuH = fH

G . (2.15)

Knowing uH , it is easy to calculate vector of fine mesh dofs uh element by element:

uh
e = PuH

e . (2.16)

Finally, multiscale solution uMS is obtain by adding uh with bubble part ub which is numerical
solution of problem (2.9) with its boundary conditions in each macroelement on fine mesh:

uMS = uh + ub. (2.17)

2.2 Oversampling technique

We will use also the oversampling technique. Thus, after [8],let’s consider larger domain Ω′i, with
corresponding nodes (1′, 2′, 3′, 4′) that covers macroelement as illustrated in Fig. 3. We are going
to calculate temporary shape functions ψk, for each dof, using equations 2.11 on domain Ω′i with
linear functions on the boundary ∂Ω′i. Modified shape function φj on the domain Ωi are going to be
calculated as a linear combinations of the temporary shape functions:

φj =

4∑

k=1

cjkψk, (2.18)

where cjk are constants determined by solving set of 4 × 4 linear equations φi(xj) = δij , where xj

denote coordinates of macroelement vertices (for i, j = 1, 2, 3, 4).
It was reported in [21] that the best results are obtained using an oversampling region covering

the 3× 3 macroelements. For the macroelements sharing an edge with the boundary of the domain Ω
only feasible oversampling size is 3× 2 (2 in the direction perpendicular to the boundary).

For random coefficient a oversampling technique will generate different results on the edges of
macroelements resulting from analysis in different patches. In this work, we are going to take the
mean average between values of the same basic function calculated on different macroelements to
provide a conforming approximation.
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Figure 3: Oversampling domain Ω′i.

3 B-spline basis functions

B-splines have been long used in the Computed Aided Design (CAD) systems allowing to repre-
sent complex geometries by polynomial functions. Further modifications of the functions allowed to
represent exactly conic and circular sections. Only recently Hughes et al. proposed in [25] to employ
the Non-Uniform Rational B-Splines in numerical analysis framework. The concept became known as
the Isogeometric Analysis (IGA) and its idea is to utilize the NURBS functions as basis functions in
the finite element analysis for solving partial differential equations.

B-spline functions are defined over a knot vector set Ξ = {ξ1, ξ2, ..., ξn+p+1}, ξi ≤ ξi+1, where i is
a knot, n is a number of basis functions, and p is order of basis function. B-spline basis functions of
order p are defined by the Cox-de Boor recursive relations as:

for p = 0 Ni,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise,
(3.1)

for p > 0 Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

ni,p−1 +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

ni+1,p−1. (3.2)

Multivariate B-spline basis functions are defined by the tensor product of the univariate functions.
The bivariate B-spline basis functions are defined as

Np,q
i,j (ξ, η) = Ni,p(ξ)Nj,q(η). (3.3)

Because B-spline functions are constructed in the parametric space, the conventional mapping
process of FE analysis has to be redefined. The additional mapping, which requires the transformation
of B-spline based elements from the physical to the parametric space, is well described in literature
e.g. in [26, 27], thus we refer readers therein.

3.1 B-splines in MsFEM for 1D problems

To introduce our concept lets first consider for illustrative purposes a simplification of equation
2.1 reduced to 1D:

− d

dx

(
a(x)

du

dx

)
= f(x), x ∈ (0, L), (3.4)

u(0) = α, (3.5)

a(L)
du

dx |x=L

= F, (3.6)

where α, F, f are given. We use B-spline functions with p = 2 over the whole domain and a knot
vector Ξ representing coarse mesh. For simplicity we assume the parametric space to be equal to the
physical space, although it is not required.
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[28] The modified basis functions that take into account heterogeneity of a(x) will be computed
by solution of the following auxiliary problem:

− d

dx

(
a(x)

dφi
dx

)
=

d2Ni

dx2
, x ∈ (xi1, x

i
2), (3.7)

φi(x
i
1) = φi(x

i
2) = 0, (3.8)

where (xi1, x
i
2) is the support of a B-spline function. It should be noted that the support consist of

p + 1 macroelements. For each B-spline function with non-zero values at 0 or L we are going to add
another multiscale basis function constructed from homogeneous differential equation:

− d

dx

(
a(x)

dφDi
dx

)
= 0, x ∈ (xi1, x

i
2), (3.9)

φi(x1) = Ni(x1) = 1, (3.10)

φi(x2) = 0. (3.11)

Problems 3.8 and 3.11 are solved numerically using standard FEM on the fine mesh. The modified
shape functions φ are presented on the right diagram in Fig. 4 and are used to find MsFEM solution
uH .
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Figure 4: Undisturbed second order B-spline functions for the knot vector Ξ =
{0, 0, 0, 1, 2, 3, 4, 4, 4}(left), their second derivatives (center), modified multiscale basis functions
(right).

3.2 B-splines in MsFEM for 2D problems

Computations of the modified basis functions for 2D problem will be illustrated by an exemplary
discretization and B-spline basis functions spanned on 3 × 3 mesh of macroelements (see Fig. 5).
p = q = 2 was assumed. To construct multiscale basis function we solve a following local problem
with the zero Dirichlet boundary condition and RHS determined by B-spline functions:

−O · (a(x)Oφi,j) = 4Ni,j , x ∈ Ωi, (3.12)

φi,j = 0, on ∂Ωi, (3.13)

where Ωi is the support of Ni,j function. In Fig. 6 we present an exemplary B-spline function, the
corresponding source term, and the resulting multiscale basis function.
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Figure 5: B-spline functions defined for the knot vectors Ξx = Ξy = {0, 0, 0, 1, 2, 3, 3, 3} in 2D space.

Figure 6: Second order B-spline function in 2D (left), Laplacian of the function (center), modified
multiscale basis function (right).

For each B-spline function with non-zero values on the boundary we introduce two additional multiscale
basis functions: φDi,j and φNi,j . The first one is a solution of the problem:

−O ·
(
a(x)OφDi,j

)
= 0, x ∈ Ωi, (3.14)

φDi,j = Ni,j , on ∂Ωi. (3.15)

The second term is obtained by solving the same problem but with the Neumann boundary conditions:

−O ·
(
a(x)OφNi,j

)
= 0, x ∈ Ωi, (3.16)

φNi,j = 0, on ∂Ωi ∩ ∂Ω, (3.17)

a(x)
∂φNi,j
∂ñ

=
∂Ni,j

∂ñ
, on ∂Ωi ∪ ∂Ω. (3.18)

In Fig. 7 we present example of an original function and the corresponding modified function used for
multiscale analysis.

8
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Figure 7: Second order B-spline function with non-zero values on the boundary and gradient on the
function (left), two modified multiscale basis functions (center, right).

All the basis functions are computed numerically on the fine mesh. The inner functions φi,j
approximate the solution inside the domain. The φDi,j functions correspond to the multiscale basis
function from 1D example and are responsible for reproducing Dirichlet boundary conditions of the
global problem. By introducing φNi,j we enrich function base with functions capable of approximating
solution on Neumann boundary of the global problem. The latter functions are equal to zero on
Dirichlet boundary ∂ΩD.

It is worth pointing out that in contrast to standard MsFEM we calculate the modified B-spline
basis functions in their supports in one step. If the material and the coarse mesh are periodic one
may significantly reduce the computation time since all coarse elements matrices are the same.

4 Numerical experiments

The results obtained from the multiscale method uH are going to be compared with those obtained
using the standard FEM applied on the fine mesh grid uFEM , which will be called a reference solution.
The comparison of the FEM results with the multiscale method results will expose the additional
modeling error em introduced by the multiscale method.

em = uFEM − uH . (4.1)

This error will be measured in the L2 norm:

||em||L2 =

[∫

Ω
em · emdΩ

] 1
2

(4.2)

and in the H1 seminorm:

||em||E =

[∫

Ω
Oem · OemdΩ

] 1
2

. (4.3)

Convergence diagrams shown in this section present relative error norms i.e.:

ηL2 =
||em||L2

||u||L2

, ηE =
||em||E
||u||E

. (4.4)

4.1 Initial results

We present two illustrative examples of 1D and 2D problems that were solved using our modified
MsFEM with B-spline basis functions.
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Figure 8: Example 1: Material distribution with coarse and fine meshes (left) and solution (right)

Example 1 In this example 1D problem 3.4 was considered with constant f = 10, the zero Dirichlet
boundary conditions on the left end, and the Neumann boundary condition F = 1.5 on the right end.
The domain consisted of nine subintervals with different material properties. We assumed a = 104

for material 1 and a = 103 for material 2 (see Fig. 8). The calculations were conducted twofold. The
standard FEM approximation (fine mesh) with 21 dofs with linear shape functions was used to obtain
a reference solution. Next, modified MsFEM with B-spline basis functions of second order spanned
over 4 macroelements (coarse mesh) with 8 dofs was used to find a solution. The displacement achieved
by both methods, u and uH respectively, are shown on the right diagram in Fig. 8. They coincide
very well.

Example 2 Next, we analyzed 2D flow in heterogeneous media in a square domain discretized with
3 × 3 coarse mesh with four different material permeability distributions (coefficient a, see Fig 9).
Zero flow on the left edge and constant flux on the top edge and zero flux on the bottom and right
edges were assumed. Again results from standard FEM and MsFEM are presented in juxtaposition to
observe the difference between the two. Number of dofs for the FE analysis (microscale level) is equal
to: (a) - 1085, (b) - 1181, (c) - 1049, (d) - 2401; Number of dofs in multiscale analysis (macroscale
level) is equal to 65 for all examples.

This example reveals that the obtained solution with our approach shows good agreement with
the reference solution. The maximum error does not exceed 6% measured in the L2 norm. We observe
that with the method we are able to obtain a solution with oscillation on the coarse mesh.

4.2 Convergence tests

In this section, we tested the method for various material distributions, coarse mesh sizes, and
order of B-splines. The domain Ω in all examples is a unit square (L = 1). Fig. 10 presents three
material distributions: M1, M2 (periodic), and RND (random). The examples with periodic material
distribution are generated by arranging no×no elementary cells of the material pattern. The size of the
elementary cell is ε = L

n0
. The random distribution was generated using Gaussian probability density

inside the whole domain. The maximum element edge length of microscale mesh was assumed as
hmax = 1

8no
for periodic distribution and as hmax = 1

256 for random distribution. Quadratic elements
were used in the fine mesh.

Examples 3-6 were conducted for a problem with zero essential boundary conditions and various
RHS. Example 7 was conducted for a problem with f = 0, zero flow on the left edge, constant flux on
the top edge, and zero flux on the bottom and right edges. Error norms calculated from the results
obtained with our method are shown in juxtaposition with error norms calculated from the results
obtained from MsFEM and MsFEM with oversampling (MsFEMo) obtained on the same coarse mesh
and are presented on the convergence plots.

Example 3 In this test we assumed homogeneous material with a = 1, in which the multiscale
basis functions are interpolants of unmodified B-splines. We further assume RHS f = 1000 and the
maximum element edge lengths of the fine mesh to be hmax = 1

256 . Size of macroelement H varied
from 1/4 to 1/32. Diagram in Fig. 11 shows dependence of L2 norm error on the coarse mesh size.
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(a) (b)

(c) (d)

Figure 9: Example 2: 2D stationary flow in heterogeneous media calculations using MsFEM with
B-spline basis functions and various permeability coefficient a distribution: (a)(b)(c) periodic, (d)
random.

Figure 10: Material properties parameter distributions.

We observe the linear convergence with the decrease of size of the macroelements, that was expected.
Also error reduction is observed with an increase of the order of B-splines.
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Figure 11: Dependence of L2 norm error on coarse scale refinement and order of B-splines for homo-
geneous example, p = 2− 5.

Example 4 Next we present results for different materiel distributions (M1, M2, RND). We assumed
constant RHS f = 1000 and fixed no = 32 for both M1 and M2. Size of macroelement varied from
H = 1/4, 1/8, 1/16, 1/32, which corresponds to ε/H = 8, 4, 2, 1 for periodic examples. The results in
Fig. 12 reveal large decrease of the error up to one order of magnitude for p = 2 and two orders of
magnitude for p > 2 in comparison to standard MsFEM and MsFEMo for ε/H = 8 − 4. However,
after this point, when H ≈ ε a strong resonance effect [8] is observed for H < 1/8, according to the
theoretical error bound:

||em||L2 = O(H2 + ε/H). (4.5)

Example 5 In this test, we further examine the case with periodic material distribution M2. We
decreased gradually characteristic size ε = 1/32, 1/64, 1/128, that corresponds to no = 32, 64, 128
numbers of repetitions of the elementary cell in the domain. We set order of B-spline functions to
p = 2. In Fig. 13 we present a convergence plot for these three cases. Indeed the resonance effect
becomes dominant for H < 1/16 when ε was decreased to 1/128.

Example 6 In this test we repeat Example 4 for fixed ε/H = 1 or H = 1/32, and we varied order
of B-spline from p = 2 − 8. In Fig. 14 we can see diagrams of L2 error norm vs. approximation
order p. We observe that B-spline based MsFEM is superior in particular for p > 3. In the case of
periodic material, error stabilizes to one value. Similar stabilization in MsFEM was reported for the
oversampling size in [21]. The increase of oversampling size reduces the error, however, size bigger
than 3× 3 macroelements did not enhance the results.

Example 7 Our last test shows results for more demanding boundary conditions and zero RHS, while
the remaining assumptions were assumed as in Example 4. Converges plots, depicted in Fig. 15,
again reveal better results for a bigger number of material repetitions in one macroelement. A strong
resonance effect is observed.

5 Conclusions

In this paper, we presented applications of B-spline basis functions in the MsFEM framework.
B-splines are the linear combination of piecewise smooth basis functions of Cp−1 continuity. In stan-
dard MsFEM, shape functions need to be modified on the boundary, which is usually done by the
oversampling technique in order to reduce the error caused by the imposition of the boundary condi-
tions. In our approach, we propose to calculate the whole basis function in one step, thus there is no
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Figure 12: Dependence of L2 and energy norms of error on coarse scale refinement for M1 and M2
exampels with no = 32, and RND example.
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and RND example. Fixed coarse mesh size H = 1/32 (ε/H = 1). Note that error norm calculated
from the results obtained by MsFEM and MsFEMo are depicted as a points and no change of the
order of approximation was done in this cases.

need for any modification of the inner basis functions on the edge because they diminish to zero. The
approach was tested on the problem of flow in heterogeneous media with multiscale basis functions for
the order of p > 2. Several 2D examples with periodic and random material properties distribution
were analyzed. Comparison with standard MsFEM and MsFEM with oversampling modification was
shown on convergence diagrams.

Results indicate that up to 4-8 oscillations of the material properties per macroelement the method
converges and outperforms MsFEM with oversampling modifications. Over that point, when the
number of oscillations decreases to 1 per macroelement, we recognized a strong resonance effect. The
effect can be reduced by increasing the order of B-spline functions keeping the error at the same level
as the results obtained by MsFEM with oversampling, or even smaller.

The proposed approach leads to significant improvement in accuracy for fast varying material
properties and produces smooth results of the high order. These conclusions encourage us further to
work on the method, in particular, to overcome the resonance effect.
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Abstract
We present an adaptation of the multiscale finite element method to the anal-
ysis of sandwich beams and plates with complex lattice layers. The proposed
modification significantly reduces the number of degrees of freedom (even by
four orders) due to the anisotropic higher-order coarse-scale approximation and
the novel shape functions that take into account the microscale boundary con-
ditions. Moreover, the local iterative corrector scheme Nguyen and Schillinger
(2019) adapted for the bending-dominated responses of sandwich structures pro-
vides converges of the coarse mesh approximation to the best possible fine-mesh
solution. Several numerical examples are presented to demonstrate the capa-
bilities of the method. We found that the proposed modifications of the shape
functions and the higher-order coarse mesh approximation increase the con-
vergence rate. Finally, we validated the proposed model by comparison of the
numerical results with experimental ones for a sandwich panel with a dual cor-
rugated high-density fiberboard core. Very good consistency of both results was
observed.

K E Y W O R D S

composite structure, multiscale finite element method, residual-driven correction, sandwich beam
and plate

1 INTRODUCTION

In recent years, we observe a fast development of new materials and the technological advancements that allow for
their manufacturing. The most relevant examples include composites and metamaterials that are often obtained by addi-
tive manufacturing, commonly referred to as three-dimensional (3D) printing. Scientists and engineers try to bring these
materials into cutting-edge sectors of progressive industries including aerospace, medicine, automotive, and building
engineering. The novel properties of the materials are usually obtained by combining two or more constituents, or by
rearranging matter in a form of sophisticated microstructures (see Figure 1). We focus in this article on structural ele-
ments that at the macroscale can be classified by their dimensionality as beams or plates, in particular on composite
laminates, sandwich panels, multilayered lattice structures. Modeling such elements with a detailed 3D representation of
the microstructure is a very challenging task due to a large number of degrees of freedom (dofs). Therefore, we propose an
adaptation of the multiscale finite element method (MsFEM)1 to reduce the computational cost of modeling composite
beams and plates.

The main purpose of any multiscale method is to reduce significantly the number of dofs in numerical simulation
of partial differential equations with fast varying coefficients. It is done primarily by establishing a relationship between

6714 © 2021 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nme Int J Numer Methods Eng. 2021;122:6714–6735.
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F I G U R E 1 Examples of sophisticated microstructures: The first in the world 3D printed concrete bridge in Madrid, Spain (A) and a
light layer sandwich panel with a dual corrugated high-density fiberboard core (B)

microscale characteristics and macroscale properties. The most frequently used approaches to this problem are the
asymptotic homogenization,2 the representative volume element (RVE) method (including FE2),3 and the MsFEM.1

The asymptotic approach makes use of a unit cell followed by an analysis of a boundary value problem with constant
coefficients to evaluate the homogenized solution understood as the limit of a certain sequence of functions. The method
proposed by Papanicolaou et al.2 is mathematically sound and was successfully applied but only for periodic composites
with the scale separation property.

The RVE, that is, a minimal material volume that contains sufficient information about the microstructure, is used
to determine the effective macroscale properties by imposing specific boundary conditions to the RVE and performing
numerical strength tests. The key type of the RVE based method is FE2 version3 that allows predictions of the mechani-
cal behavior of structures made of heterogeneous materials with both linear and nonlinear constitutive laws. It was also
considered for modeling of beams and plates and called numerical plate testing for two-scale analyzes.4 Recently multi-
scale plate element were developed based on the higher-order computational continua (HC2) formulation.5 Experimental
validation of the method for fiber metal laminate (FE2),6 reinforced concrete beams and plates (FE2),7 and fiberboard
sandwich panels (RVE)8 is discussed in the cited papers. It should be noted that the RVE approach may be used if two
assumptions are satisfied, that is, periodicity and scale separation.

The MsFEM1 starts with a macroscale discretization that is followed by the independent refinement of each
coarse-scale element (macroelement) in order to obtain a discretization that complies with the material heterogeneity.
The multiscale shape functions of the method are obtained as solutions to local problems in the macroelement domains to
incorporate the microscale details into the macroelement stiffness matrices (refer to Hou and Wu1). The method requires
neither the assumption of the scale separation nor the periodicity of the microstructure. Furthermore, the calculations
can be easily parallelized.

While defining the local problems for the multiscale shape functions appropriate boundary conditions should be
imposed. For the static analysis, the best ones would be determined by the exact solution. Pragmatically, the traces of the
standard undisturbed shape functions were assumed at first on the coarse element boundaries. Although the resulting
multiscale shape functions could capture details of the microstructure inside the element domains there was a significant
error close to the macroelement boundaries. Therefore, a careful choice of the boundary conditions is necessary, for
example, one may use functions that are the solutions of the local one-dimensional (1D) problems along coarse element
edges9 or oscillatory boundary conditions as the result of the oversampling technique.1,10 Another way to improve the
MsFEM solution is to use an iterative approach.11,12 Finally, higher-order macroscale shape functions of either Lagrange,13

hierarchic,14,15 Crouzeix-Raviart,16 or B-spline17 type are used. Multipoint elements18,19 were introduced bringing MsFEM
closer to the static condensation method. The recent development of the method includes coarse mesh adaptivity,20,21

topology optimization,22 as well as coupling with the Discontinuous Petrov–Galerkin method23 and the RVE approach
for the three-level analysis.24

Originally, the MsFEM was developed to solve flow in highly heterogeneous porous media. More recently, the method
was modified to solve problems of elasticity (the extended MsFEM25), composites, and metamaterials. Several other engi-
neering problems were modeled using MsFEM including viscoelastic asphalt concrete,21,26 heterogeneous piezoelectric
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composite,27 and regional land subsidence.28 There are only a few articles tying MsFEM with beam and plate problems.
We refer to Reference 29 where authors are using boundary conditions of laminate theory with the method.

In this article, an adaptation of MsFEM with a residual-driven corrector scheme to analyze structures with one or two
dominant dimensions like beams and plates is proposed. In such structures dominating bending modes are the reasons
for large modeling errors. We reduced it significantly by the iterative scheme12 with a novel anisotropic higher-order
approximation and incorporation of the boundary conditions of the microscale problem to the multiscale shape functions.

The article is divided into five sections. In Section 2, we introduce the problem of beams and plates with composite,
lattice structures and briefly introduce MsFEM with linear and higher-order multiscale basis functions that incorporate
the kinematic and static microscale boundary conditions. Later in this section, we present the iterative scheme derivation
based on the residuum as a load source in local corrector problems. In Section 3, we study the convergence of the method
on various examples of beams and plates, including model verification with a closed formula and validation by experi-
mental results. In Section 4, we present conclusions and further research plans. Finally, in Appendices A and B we show
how to construct multiscale basis functions and how to generate them using higher-order formulas for the considered
problems.

2 PROBLEM FORMULATION AND MSFEM IDEA

We begin with considering sandwich beams and plates as either two-dimensional (2D) or 3D solid bodies satisfying the
linear elasticity equations at the microscale that read:

Find displacement u in domain Ω ⊂ Rn(n = 2 or 3) such that:

−▽ ⋅
(

C(x)▽su
)
= f, ∀𝜔s ⊂ Ω, (1)

u = û, on ΓD, (2)
t = t̂, on ΓN , (3)

where ΓD and ΓN denote boundary parts with the Dirichlet and Neumann conditions, ΓD ∪ ΓN = 𝜕Ω, and ΓD ∩ ΓN = ∅.
Continuity conditions for both displacement and traction on the interfaces between subdomains 𝜔s are assumed, û and t̂
donate known displacement and loading, t =

(
C(x)▽su

)
⋅ n, and ▽s is the symmetric part of the gradient operator, that

is, ▽s(•) = ((•)⊗▽ +▽⊗ (•))∕2. C stands for elliptic, bounded, and highly oscillating elasticity tensor. The material
parameters are differentiable (typically constant) in each subdomain 𝜔s, s = 1, 2 … N𝜔.

The corresponding weak form of (1)–(3) reads:
Find displacement u ∈ H0

1(Ω) + û such that:

∫Ω
▽v ⋅

(
C(x)▽su

)
dΩ = ∫Ω

v ⋅ fdΩ + ∫ΓN
v ⋅ t̂dΓ,∀v ∈ V, (4)

where V = H0
1(Ω) and H0

1(Ω) = {v ∈ H0
1(Ω) ∶ v = 0|ΓD}

In MsFEM two meshes are used. For beams, we start with the generation of a coarse grid of rectangular macroelements
Ωi (i = 1, 2 … Nel). We assume that there is only one macroelement in the depth direction (see Figure 2A). Similarly,
brick type macroelements for plates have one dimension equal to the plate thickness and quadrilateral top and bottom
faces (see Figure 2B). In each macroelement, a fine mesh of size h that captures the microscale details is generated. If we
want to use the iterative scheme the fine meshes need to comply (match) on the coarse mesh skeleton.

The following decomposition of the solution u in each macroelement Ωi is assumed after:12

u = ua + ub, (5)

where ua and ub are C(x)-orthogonal, that is, ∫Ωi
▽ub ⋅

(
C(x)▽sua

)
dΩ = 0. The ua component satisfies the following

problem with zero loading:

−▽ ⋅
(

C(x)▽sua
)
= 0, in Ωi, (6)

ua = u, on ΓD
i , (7)

ta = 0, on ΓN
i , (8)
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F I G U R E 2 Multiscale finite element method discretization of beams (A) and plates (B)

where ΓN
i denotes top and bottom beam edges or plate faces with known traction t̂ and ΓD

i stands for the vertical element
boundaries. The Dirichlet boundary condition is defined by the unknown exact solution u of problem (1)–(3).

By the orthogonality, the second component ub can be evaluated locally, independently for each macroelement and it
satisfies the following nonhomogeneous equation with zero displacement on ΓD

i :

−▽ ⋅
(

C(x)▽sub
)
= f, in Ωi, (9)

ub = 0, on ΓD
i , (10)

tb = t̂, on ΓN
i . (11)

Thus, we can define multiscale basis functions 𝝓k as solutions to problem (6)–(8) with dk (k = 1, 2 … K) as the
assumed Dirichlet boundary condition:

−▽ ⋅
(

C(x)▽s𝝓k
)
= 0, in Ωi, (12)

𝝓k = dk, on ΓD
i , (13)

tk = 0, on ΓN
i , (14)

where K denotes total number of the multiscale basis functions. All this functions are attributed only to coarse element
boundaries and the system of linear equations for coarse scale global solution uH ∈ VH reads:

∫Ω
▽vH ⋅

(
C(x)▽suH) dΩ = ∫Ω

vH ⋅ fdΩ + ∫ΓN
vH ⋅ t̂dΓ, ∀vH ∈ VH , (15)

where VH = span
{
𝝓1(x),𝝓2(x), ...𝝓K(x)

}
.

Problem (12)–(14) is solved numerically on the fine mesh for each macroelement separately and the obtained dofs
set up a column of prolongation matrix PN×M , where M is the number of shape functions in macroelement Ωi and N is
the number of dofs of the fine mesh in Ωi. The prolongation matrix transforms coarse dofs to fine dofs and is calculated
for each macroelement individually. This process is easily parallelized. Moreover, in the case of periodicity, the matrix is
calculated only once, greatly reducing the computation time.

The prolongation matrices are used to compute macroelement stiffness matrices KH and vectors fH by simple algebraic
operation:

KH
i = PT

i Kh
i Pi, fH

i = PT
i f h

i , (16)

where matrices Kh
i and vectors fh

i are assembled only in macroelements Ωi. No integration is done to obtain the coarse
element matrices and vectors. It is worth pointing out that Kh

i is computed when one solves problem (12)–(14), thus it
can be reused here. fh

i has to be assembled but it will be also needed to compute ub approximation.
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After assembling on the coarse level we can solve for the coarse mesh skeleton dofs uH :

KHuH = fH . (17)

Knowing uH , it is easy to calculate, element by element, the fine-mesh dofs (approximation of ua):

uh
i = PiuH

i . (18)

The final multiscale solution ums
i is obtain by summing uh

i with locally evaluated bubble part ub
i :

ums
i = uh

i + ub
i . (19)

2.1 Novel multiscale shape functions

The test and trial MsFEM shape functions are solutions to problem (12)–(14) where dk have to be given. In the sim-
plest case of the standard MsFEM, dk boundary conditions are traces of bilinear standard shape functions on the whole
macroelement boundary Γi (see example in Figure 3A). Whenever there are holes inside of a macroelement the zero
traction condition on their edges are built into the coarse shape functions. We propose to do the same for the top and bot-
tom edges (or faces) of the coarse elements for the considered sandwich structures. Therefore, we assume the kinematic
boundary conditions dk only on ΓD

i edges (faces). The results are presented in Figure 3(B). Appendix A exemplifies the
procedure for the calculation of boundary conditions dk for a linear multiscale approximation.

For the convenience of the assembling process, we unite both vertices of the vertical edges (beams and plates) or top
and bottom edges of the vertical faces (plates) and represent them either by the vertex or the edge nodes on the midplane
(see Figure 4). Such a logical interpretation is possible here since all macroelements compose only one layer. Therefore,
for each element, there are neither elements above nor below it and virtually one may consider the 2D beam elements as
1D segments as well as 3D plate elements as 2D polygons. This approach gives us 4 (for beams) and 6 (for plates) dofs per
a united edge node when the linear approximation is used, and the global solution uH reads:

for beams: uH =
Nnodes∑

j=1
(𝝓j,bzuj,bz + 𝝓j,bxuj,bx + 𝝓j,tzuj,tz + 𝝓j,txuj,tx), (20)

F I G U R E 3 Standard multiscale shape functions (A) and new multiscale shape functions used in a beam model (zero traction on top
and bottom edges) (B)
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F I G U R E 4 Beams (A) and plate (B) macroelements condensed to midplane

for plates: uH =
Nnodes∑

j=1
(𝝓j,bzuj,bz + 𝝓j,bxuj,bx + 𝝓j,byuj,by + 𝝓j,tzuj,tz + 𝝓j,txuj,tx + 𝝓j,tyuj,ty), (21)

where Nnodes is a number of united edge nodes.
In order to improve the accuracy of the analysis and potentially increase the rate of convergence during the iterative

correction of a multiscale solution, we expand the VH space and include nonlinear basis functions of the hierarchical
type. The approach is inspired by the higher-order FEM approach.30 The very concept of the hierarchic base is to increase
the order of approximation by adding new shape functions that do not alter the lower-order shape functions. In the case
of MsFEM, it becomes a highly desirable property of this approach since no recalculation of the existing shape functions
is needed in the case of refinements.

Hierarchical functions can be generated by using the integrated Legendre polynomials (see, e.g., Reference 31, eq.
(8.61)), that in interval [0, 1] are of the form:

𝜓p+1(𝜉) =
1

(p − 1)!22(p−1)
dp−1

d𝜉p−1

[(
(2𝜉 − 1)2 − 1

)p
]
, p ≥ 2, 0 ≤ 𝜉 ≤ 1, (22)

where p is the order of approximation. In Appendix B, we recapitulate the procedure for the calculation of boundary
conditions dk for higher-order multiscale approximation.

It is worth mentioning that at the macroscale level the proposed first-order approximation meets the plane
cross-section Euler’s hypothesis at the vertical edges and faces of macroelements only. This is not the case neither at other
cross-sections nor for higher-order approximation. Furthermore, the multiscale shape functions do not reflect material
distribution along ΓD

i boundary, thus, we introduce a correction procedure that is the topic of the next two sections.

2.2 Corrector problem

Let us consider support of basis functions of a given united edge node j, Ω̃j (see Figure 5). We can rewrite boundary value
problem (1)–(3) and use already calculated solution ums to complete the corresponding right-hand sides (r.h.s.):

−▽ ⋅
(

C(x)▽sums
)
= fms, in Ω̃j, (23)

ums = ums|Γ̃D
j
, on Γ̃

D
j , (24)

tms = tms|Γ̃N
j
, on Γ̃

N
j . (25)

Note that the r.h.s. are marked with ms index and typically differ from the original problem r.h.s.. The exact solution
u is the sum of the multiscale solution and some unknown term uc, a local corrector:

u = ums + uc. (26)
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F I G U R E 5 Corrected domains in beams (A) and plates (B) (bottom is a midplane representation of the conjugated nodes)

By linearity of the problem uc satisfies the following equations:

−▽ ⋅
(

C(x)▽suc
)
= f − fms, in Ω̃j, (27)

uc = u − ums, on Γ̃
D
j , (28)

tc = t̂ − tms, on Γ̃
N
j . (29)

Since we are correcting the solution in the support of the j node basis functions and we do not want to disturb the
solution in the adjacent macroelements, we will assume that uc = 0 on the edge Γ̃

D
j .

The weak formulation of the corrector problem is as follows:
Find displacement uc ∈ V(Ω̃j), uc = 0|Γ̃D

j
in domain Ω̃j such that:

∫Ω̃j

▽v ⋅
(

C(x)▽suc
)

dΩ =

(
∫Ω̃j

v ⋅ fdΩ + ∫Γ̃N
j

v ⋅ t̂dΓ

)
−

(
∫Ω̃j

v ⋅ fmsdΩ + ∫Γ̃N
j

v ⋅ tmsdΓ

)
, ∀v ∈ V. (30)

The r.h.s. represents the residuum of the problem that is driving the corrector problem. The problem is solved on the
fine mesh and is the solution of the following system of algebraic equations:

K̃
h
j uc

j = f̃
h
j − f̃

h,ms
j = r̃j, (31)

where K̃
h
j and f̃

h
j matrices and vectors, respectively, assembled on Ω̃j and fh,ms

i = Kh
i ums

i in a single macroelement Ωi.
It is worth noting that the proposed domains Ω̃j of patches of macroelements are the only feasible choice due to

fact that the residuum is not equal to zero only on the interfaces between macroelements. To prove this, lets us analyze
residuum inside a single macroelement Ωi:

r = f − fms = f +▽ ⋅
(

C(x)▽sums
)
= f +▽ ⋅

(
C(x)▽s(uH + ub)

)
. (32)

The function uH is a linear combination of multiscale shape functions generated by solving problem (12)–(14)
with zero body forces and traction, hence it does not contribute to the residuum. The only contributor is the bub-
ble part ub that yields body forces equal to f from (9), thus the residuum is equal to zero. Analogously, residual
traction forces along ΓN

i are equal to zero. Therefore, the current ums multiscale solution satisfies (1) and (3) inside
element domains Ωi and ΓN

i , but not on macroelement interfaces. Where the solution itself is continuous between
macroelements, its gradient is not. Therefore, this residuum is a loading distributed along the coarse mesh vertical
interfaces.
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One can also notice that the presented corrector term is an approximation of the error and is computed similarly
as in the implicit error estimation method,32 particularly in the subdomain version. In MsFEM the subdomains are the
macroelement patches.

2.3 Iterative scheme

In order to reduce error due to the assumptions involved in choosing local kinematic boundary conditions when building
multiscale basis function, the correction function uc is added to the multiscale basis functions. This allows for recalcula-
tion of the coarse mesh problem and correction of the multiscale solution in an iterative manner. The basis of the corrector
scheme12 can be summarized as follows: (I) define local corrector domains, (II) compute a series of local corrector prob-
lems and update multiscale basis functions, (III) recalculate coarse mesh problem with the newly updated multiscale
basis functions, and (IV) repeat the process until the residuum is small enough. The corrections may also be performed
adaptively, that is, in regions with high residuum. The scheme was proven theoretically12 to converge to the best possible
fine-mesh solution and was shown to work on numerical examples.

In the beam and plate problems, no simple addition of uc to a multiscale basis function can be performed because
there are multiple multiscale basis functions in a single corrector region. Authors of the original scheme12 proposed
two strategies in this case: spreading the correction function between existing basis functions or introducing a new
corrector degree of freedom for each corrector domain. The first approach involves the introduction of troublesome
splitting rules that have a negative effect on the convergence of the method. An additional corrector degree of free-
dom at each coarse mesh node allows converging significantly faster as stated by the authors. We will adapt the
second option of adding corrector dofs and tie it with the united edge nodes of the midplane that we will briefly cover
here.

Before initiating the corrector scheme, a corrector basis function 𝝓j,c and a coefficient uj,c are defined for every correc-
tor domain of united edge node j (see Figure 6), and 𝝓j,c = 0 and uj,c = 1. In plates, the choice of the corrector domains
(patches of macroelements) may differ and influences the convergence rates. In this article, all numerical experiments
were performed with the corrector domains associated with supports of basis functions of the united edge nodes. Thus,
the global solution uH for beams reads:

uH =
Nnodes∑

j=1
(𝝓j,bzuj,bz + 𝝓j,bxuj,bx + 𝝓j,tzuj,tz + 𝝓j,txuj,tx + 𝝓j,cuj,c), (33)

and for plates it can be written analogically.
The corrector scheme begins by updating the corrector basis functions in the following way:

𝝓new
j,c = 𝝓j,cuj,c + uc, (34)

and setting a new coefficient unew
j,c = 1.

F I G U R E 6 Corrector degrees of freedom in beams (A) and plates (B)
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After the corrections to the basis functions are done, the coarse mesh problem is solved again starting from the prolon-
gation of macroelement matrices in (16) including new corrector dofs and functions for every macroelement. Then after
assembling the algebraic system of Equation (17), it is solved for vector uH , which includes new values of coefficients uj,c.
The new upscaled solution is obtained and the next iteration of the corrector scheme can be initiated.

Each corrector problem is driven by the current residual and therefore depends on the computation of the source
term f̃

h,ms
i of the current multiscale solution ums. Update of 𝝓i,c basis function depends on the sequence of corrections and

therefore creates race conditions. In order to parallelize the process, patterns with nonoverlapping corrector regions can
be easily adapted into the scheme. In the scope of this article, we did not thoroughly test the influence of a sequence of
corrections on convergence that may be the subject of future work.

MsFEM with the iterative scheme presented here for the linear problem of elasticity can be extended to nonlinear
problems as, for example, in Reference 21, where the method was applied in the framework of elastic-visco-plasticity.
Moreover, the original residual-driven MsFEM corrector scheme was efficiently extended to nonlinear problems in Refer-
ence 33, in such a way that the iterative correction does not increase the overall computational cost of nonlinear MsFEM
analysis. The main difficulty for our approach will be keeping orthogonality of the multiscale basis functions, the corrector
basis functions, and the bubble solutions.

2.4 Upscaling of the kinematic boundary conditions

The coarse-scale beam or plate supports, fixed or pinned, and pointwise loads have to be appropriately represented in
the fine 2D or 3D domain. The loading has to be distributed on a small area and the displacement conditions have to be
interpolated using multiscale basis functions, bubble part, and correction function.

In the case of the fixed or sliding support at the given coarse node, we simply set the corresponding entries of vector
uH as equal to zero.

For the pinned support, we assume that the coarse mesh fits the support location, the corresponding dofs, for example,
uj,bz and uj,bx for beams as shown in Figure 7, equals to zero, and the zero displacement on a small segment is assumed
in problems (12)–(14) and (9)–(11). This way the support condition is built into the multiscale shape functions. In an
iterative scheme, the same boundary conditions in the corrector problem are imposed.

3 NUMERICAL EXPERIMENTS

In this section, five examples of various beams and plates are presented. The objective of this study is to examine the
capability of the modified MsFEM to model complex structural elements and show the efficiency of the iterative proce-
dure. The examples include a simply supported homogeneous beam, a sandwich beam, a multispan beam with irregular
structure, a concrete reinforced slab, and a sandwich panel with the dual corrugated high-density fiberboard (HDF) core.

The results obtained by the multiscale method ums are compared with these obtained using FEM and a very fine
mesh called the reference solution uFEM. The comparison of the FEM and MsFEM solutions enables computation of the
additional modeling error em introduced by the multiscale method:

em = uFEM − ums. (35)

F I G U R E 7 A pinned support in a beam and its two-dimensional representation (red segment)
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This error is measured in the L2 norm:

||em|| =
[
∫Ω

em ⋅ emdΩ
] 1

2

. (36)

Convergence diagrams shown in this section present the relative error, that is:

𝜂 = ||em||
||uFEM|| . (37)

3.1 Beam examples

Example 1. In the first simple example, we compare results of the MsFEM analysis and the analytic formula of deflection
of a homogeneous simply supported beam carrying a uniformly distributed transverse load t = −10 kN

m
. The beam has

length L = 300 mm and the rectangular cross-section with depth h = 50 mm and width b = 10 mm. We assumed Young’s
modulus E = 210 GPa and Poisson’s ratio of 0.3. The closed formula of deflection of the neutral axis of a simply supported
Timoshenko beam34 is:

wa(x) =
tL4

24EI

[(( x
L

)4
− 3

2

( x
L

)2
+ 5

16

)
−
(

h
L

)2 2(1 + 𝜇)
k

(( x
L

)2
− 1

4

)]
, −L

2
≤ x ≤ L

2
, (38)

where k = 5
6
, 𝜇 = 0, and I = bh3

12
for the rectangular cross-section. The plane stress state was assumed for the numerical

analysis. The domain was discretized with six macroelements with fine meshes of 335 fine linear triangular elements and
386 dofs each. The pinned supports were modeled by 2 mm long segments with either zero displacement or symmetry
boundary condition.

The comparison of the deflections obtained using MsFEM with linear multiscale functions, FEM on the fine mesh,
and the theoretical formula are presented in Figure 8. The maximum deflection and general shape of the deflection
of the homogeneous beam are predicted with a good accuracy by MsFEM adapted to a beam analysis. The observed
discrepancies result from different mathematical models and the number of dofs in numerical models.

Example 2. In the second example, we study more thoroughly a convergence of the MsFEM results to the reference
fine-mesh solution. We consider a cantilever sandwich beam shown in Figure 9, similar to the three-layer beam analyzed
in Reference 29. The beam is 1 m long, with width and depth of 100 mm. The beam is made of two aluminum panels of
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F I G U R E 8 Comparison of the deflection obtained by the closed formula,34 FEM, and MsFEM. MsFEM, multiscale finite element
method
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15 mm thickness with Young’s modulus of 70, 000 MPa and Poisson’s ratio of 0.33. The core with hollows is made of epoxy
with Young’s modulus of 4350 MPa and Poisson’s ratio of 0.3679. The beam is subjected to constant distributed loading
of 0.5 kN

m
applied on the top edge. The plane stress state was assumed for numerical analysis. The domain was discretized

with 10 repeating macroelements refined with the auxiliary meshes of 968 fine linear triangular elements and with 1116
dofs each.

Figure 10 presents the convergence of the corrector scheme for various orders of approximation p = 1 − 5. In all cases,
we observe that the iterative method converges the reference solution up to the machine precision. In the case of linear
basis functions, this level of accuracy is achieved after six iterations. By enriching the space of multiscale basis functions
we see that the rate of convergence increases significantly. When using the multiscale basis functions of order 5 the
fine-mesh solution is achieved after only three iterations. We can see that after one iteration with linear functions we
reduce error from 10−1 to 10−2. However, using multiscale basis functions of p = 5 the error is reduced by up to four orders
of magnitude in only one step of iteration (from 10−2 to 10−6).

The increase of the order of approximation reduces the error even without the iterative scheme that is shown in
Figure 11(A). In this example, the error drops significantly after adding basis functions of odd orders. This effect can be
explained by examining the juxtaposition of shape function 𝝓2,3x and the fine-mesh solution (see Figure 11B). The odd
antisymmetric polynomials indeed fit the solution very well. That is not the case for even-order polynomials. We also
compared these functions with corrector shape function 𝝓2,c generated after six iterations of the MsFEM solution with
linear basis functions.

Using this example we also studied the influence of the application of the Neumann boundary conditions during
the generation of the multiscale shape functions. In the standard MsFEM analysis the Dirichlet boundary conditions

F I G U R E 9 Cantilever beam, coarse element, and the fine mesh
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F I G U R E 10 Cantilever beam. Convergence of the corrector scheme for different coarse scale approximation orders
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defined by Equation (13) are assumed on the whole macroelement boundary Γi, as shown previously in section 2.1 in
the example in Figure 3(A). Figure 12 presents a convergence of iterative scheme with multiscale functions either build
using only the Dirichlet boundary conditions or both the Neumann and Dirichlet ones. The initial errors were 37% and
25%, respectively. Furthermore, six iterations instead of 16 are needed to reach the reference solution when the Neumann
boundary conditions are built in.

Example 3. We examine a multispan beam with an irregular structure that can be manufactured in the computerized
numerical control milling process (see Figure 13). The example is a showcase of unclear scale separation and missing
periodicity assumption that can be a result of, for example, optimization procedures. The structure is composed of 17 cells
of three types, with varied bracing. The dimensions of the cells are 100 mm × 100 mm with a depth of 50 mm. The whole
beam has a length of 1.7 m and is fixed at the left end and roller supported at 0.8 and 1.4 m. We assume steel as the base
material with Young’s modulus of 210 GPa and Poisson’s ratio of 0.3. Uniformly distributed load of 2 kN

m
is applied on the

top edge. Each cell was a macroelement in MsFEM with individual fine meshes.

The results of the analysis of the beam are presented in the convergence plots in Figure 14. Similar observations can be
made as in the previous example. With linear basis functions, we achieve the fine-mesh solution in the iterative process
of 15 corrections starting from 𝜂 = 6.81%. As previously indicated, after enriching the basis space we reduce the initial
error and increase the rate of convergence.

F I G U R E 11 Convergence of the multiscale finite element method error for increasing order of approximation (A), juxtaposition of the
fine-mesh solution, the shape function 𝝓2,3x , and the corrector shape function 𝝓2,c (B)
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F I G U R E 12 Convergence of relative error in analysis with the standard multiscale finite element method basis functions (Dirichlet
boundary conditions) and basis functions proposed by us (Dirichlet and Neumann boundary conditions)
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F I G U R E 13 Multispan beam model and macroelement types with fine meshes. Beam arranged from macroelements in order:
[1, 1, 2, 2, 3, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 2]
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F I G U R E 14 Multispan beam. Convergence of the corrector scheme for different coarse scale approximation orders

Figure 15 depicts the L2 norm of the FEM approximation using the residuum entries as dofs of MsFEM solution with
linear basis functions and the solution after first and second correction. As described in section 2.2 the residuum is not
equal to zero only on ΓD

i boundary of macroelements that correlates with the results shown here. In the initial solution,
the norm of the residuum reaches a magnitude of 21 MN

m
with peaks at the junction of susceptible macroelements of type

2 and stiff macroelements of type 3. During the correction procedures, the residuum is significantly reduced, almost not
visible after second correction in the initial limits.

3.2 Plate examples

Example 4. In this example, we analyze a 6 m × 6 m rectangular concrete reinforced slab with a uniformly distributed
load of 20 kN

m2 on the top surface. The slab edges are fixed. Figure 16(A) depicts one section of the slab with top and bottom
reinforcements (𝜙 10 mm bars) and hollow concrete filling. The material properties are as follows: concrete Young’s
modulus is 70 GPa and Poisson’s ratio is 0.2, reinforcement Young’s modulus is 210 GPa and Poisson’s ratio is 0.3.
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F I G U R E 15 Norm of the residuum
(

MN
m

)

F I G U R E 16 Dimensions of repeating section of the reinforced slab: (A) Side views, (B) 3D view and the fine mesh

By the symmetry of the problem, only one-quarter of the whole problem is analyzed. The coarse mesh consists of 15 ×
15 square macroelements. Each macroelement was divided into 102,972 fine elements with 54,849 dofs (see Figure 16B).
The number of dofs in the MsFEM analysis with linear basis functions and with corrector dofs is 1792, while in the
reference model is about 19 million (19,045,800 exactly).

Figure 17 illustrates the convergence of the MsFEM solution with the increasing number of corrections for the differ-
ent initial multiscale basis functions. Although changes in the rate of convergence are less prominent with the increase of
the order of approximation than in the previous examples, the error is still reduced significantly for higher p. The number
of dofs for p = 2 equals 6880 and for p = 3 equals 14,848. With respect to the reference fine mesh, this increase in dofs is
still insignificant and compensated by the error reduction.

The stress distribution is shown in Figure 18. We can compare the reference von Mises stresses in the concrete and the
top reinforcement with the results obtained by MsFEM with linear multiscale basis functions without correction and cor-
rected one and three times. We observe a significant difference between the initial uncorrected solution and the fine-mesh
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F I G U R E 17 Concrete reinforced slab. Convergence of the corrector scheme for different coarse scale approximation orders

F I G U R E 18 Example 4: The Von Mises stresses (MPa) calculated directly using the fine mesh (19 millions dofs), by MsFEM without
correction, and with one and three corrections (1792 dofs). MsFEM, multiscale finite element method
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solution. The MsFEM solution features artificial peaks of stresses between macroelements that can be explained by a large
residuum. But, MsFEM with iterative correction leads to stresses distributions that are much closer to the reference one.
This correlates with the L2 norm error from the convergence plot. After the third correction, the stress plots are almost
identical to the reference solution with the peak values of the stresses matching up to the third digit.

We have also compared the computational costs of direct FEM and proposed modified MsFEM solutions. The compu-
tations were done on a server with four Intel Xeon Gold 5120 (2,20 GHz, 14 cores) processors. The reference FEM solution
was obtained with MATLAB Partial Differential Equation Toolbox and took 3644 s. The MsFEM solution with linear mul-
tiscale basis functions took only 22 s (166 times faster) and yielded 11% relative error. MsFEM with a single iteration of
the correction performed for the whole domain took 485 s (7.5 times faster) and yielded 0.3% relative error. The multi-
scale shape functions, as well as the corrector problems in the iterative scheme, were computed in parallel. Such high
efficiency of MsFEM without correction was possible due to the reuse of the stiffness matrix in repeating macroelement.
Iterations of the corrector scheme are expensive, however, they can be carried out only in the regions with high residuum
rather than in the whole domain.

Example 5. Our last example is the sandwich panel with a dual corrugated HDF core subjected to bending. Its com-
plex geometry is presented in Figure 19. The panel was analyzed by the RVE based homogenization in Reference 8. The
numerical results were compared with the experimental data. The experiment consisted of tensile tests to determine elas-
tic properties of the facing and the core materials as well as series of one-point bending tests of assembled HDF sandwich
panels. Elastic properties were determined for HDF facing panel: Young’s modulus of 5457 MPa, Poisson’s ratio of 0.33,
and for core: Young’s modulus of 5457 MPa, Poisson’s ratio of 0.33. Samples for bending tests were cut out in a shape
presented in Figure 20(A), whereas Figure 20(B) presents the setup of the bending test. The samples were subjected to
a load applied with a constant velocity until failure. The force of P = 307.66 N was found to be the elastic limit with the
corresponding deflection of the sample of 2.67 mm.

The MsFEM numerical analysis was conducted for half of the original problem due to the symmetry of the problem
as shown in Figure 21. The model was divided into 2 × 7 macroelements of two types. The half to the force P was applied
on the surface of the size of 1.2 mm × 50 mm (size of one element of the fine mesh in y direction). The roller support was
modeled as a fixed boundary in x and z directions on the surface of size of 2.4 mm × 50 mm in the location between two
macroelements on the bottom facing panel.

Figure 22 presents maximum deflection versus load graphs for the experiment, the MsFEM solution obtained with
linear basis functions, and its first correction. The uncorrected MsFEM solution predicts a stiffer response to the load
than the actual sample in the experiment exhibited. The relative difference of the computed and measured maximum
deflections for MsFEM was 30.9%, while after performing one correction it was reduced to 1.2%. This was achieved with
165 dofs (including corrector dofs). The RVE based solution8 yielded a solution discrepancy of 11.7% and it was obtained
using 136,583 dofs.

Figure 23 presents the distribution of 𝜎yy stresses component for both the MsFEM analysis and after the first cor-
rection. As in the previous example, only one correction smooths the large incorrect stress between macroelements
sufficiently allowing for investigation of stress concentration at the core-facing interfaces that may be crucial in the
designing processes.

F I G U R E 19 Dimensions and shape of a core of the high-density fiberboard sandwich panel
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F I G U R E 20 Sandwich panel specimen dimensions (A) and setup of the bending test (B)

F I G U R E 21 Multiscale finite element method discretization with the fine mesh of two macroelement types
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F I G U R E 22 Load versus deflection curves
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F I G U R E 23 Example 5: 𝜎yy stresses component (MPa) and deflection obtained by MsFEM with linear shape functions and MsFEM
after the first correction. Deflection scaled 30 times. MsFEM, multiscale finite element method

4 CONCLUSIONS

An adaptation of the MsFEM to the analysis of sandwich beams and plates was addressed in this article. We incorporate
the fine-scale boundary conditions of both kinematic and static types into the coarse-scale shape functions. The presented
examples show a significant improvement of the MsFEM results, especially with the use of the corrector scheme12 and
the higher-order hierarchical multiscale functions in the analysis. Due to the higher-order approximation, only one layer
of the coarse elements can be used reducing their number and simplifying the algorithm by using the united edge nodes.

The original iterative method12 can be numerically expensive because it is necessary to downscale the solution and
solve corrector problems for each patch of macroelements in each iteration, but the proposed approach with higher-order
functions gives a new possibility of reaching desired accuracy faster with a large reduction of the necessary number of dofs
(even by four orders). In the case of periodicity, this approach provides outstanding benefits, when the shape functions
are reused in repeated macroelements.
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24. Krówczyński M, Cecot W. A fast three-level upscaling for short fiber reinforced composites. Int J Multisc Comput Eng. 2016;15(1):19-34.
https://doi.org/10.1615/IntJMultCompEng.2016018563

25. Zhang HW, Wu JK, Lü J, Fu ZD. Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta
Mech Sin. 2010;26(6):899-920. https://doi.org/10.1007/s10409-010-0393-9

26. Klimczak M, Cecot W. Towards asphalt concrete modeling by the multiscale finite element method. Finite Elem Anal Des. 2020;171:103367.
https://doi.org/10.1016/j.finel.2019.103367

27. Fu P, Liu H, Chu X. An efficient multiscale computational formulation for geometric nonlinear analysis of heterogeneous piezoelectric
composite. Compos Struct. 2017;167:191-206. https://doi.org/10.1016/j.compstruct.2017.02.005

28. Ye S, Xue Y, Xie C. Application of the multiscale finite element method to flow in heterogeneous porous media. Water Resour Res.
2004;40(9):1-10.

29. Zhang S, Yin J, Zhang H, Chen B. A two-level method for static and dynamic analysis of multilayered composite beam and plate. J Comput
Phys. 2016;111:1-18. https://doi.org/10.1016/j.finel.2015.12.001

30. Zienkiewicz O, Gago JDS, Kelly D. The hierarchical concept in finite element analysis. Comput Struct. 1983;16(1):53-65. https://doi.org/
10.1016/0045-7949(83)90147-5

31. Zienkiewicz O, Taylor R, Zhu J. ’Standard’ and ’hierarchical’ element shape functions: Some general families of C0 continuity. In:
Zienkiewicz O, Taylor R, Zhu J, eds. The Finite Element Method Set. Vol 4. 6th ed. Butterworth-Heinemann; 2005:103-137.

32. Grätsch T, Bathe KJ. A posteriori error estimation techniques in practical finite element analysis. Comput Struct. 2005;83(4):235-265.
https://doi.org/10.1016/j.compstruc.2004.08.011

33. Nguyen H, Schillinger D. The multiscale finite element method for nonlinear continuum localization problems at full fine-scale fidelity,
illustrated through phase-field fracture and plasticity. J Comput Phys. 2019;396:129-160. https://doi.org/10.1016/j.jcp.2019.06.058

34. Ike C. Timoshenko beam theory for the flexural analysis of moderately thick beams – variational formulation, and closed form solution.
Tecnica Italiana-Italian J Eng Sci. 2019;63:34-45. https://doi.org/10.18280/ti-ijes.630105

How to cite this article: Dryzek M, Cecot W. The iterative multiscale finite element method for sandwich
beams and plates. Int J Numer Methods Eng. 2021;122:6714-6735. https://doi.org/10.1002/nme.6808

62 CHAPTER 3. FULL TEXTS OF THE ARTICLES



DRYZEK and CECOT 6733

APPENDIX A. MULTISCALE SHAPE FUNCTIONS CALCULATION

Let us consider a macroelement of a beam shown in Figure A1(A) with coarse mesh nodes A, b, A, t, B, b, and B, t
and midplane nodes A and B with corresponding x-coordinates (xA) and (xB). For simplicity, let us assume that global
coordinate system (x, z) is leveled with the bottom edge of the beam macroelement. The multiscale shape functions of
node A are calculated by imposing Dirichlet boundary conditions on ΓD

i boundary, and can be described by the following
functions:

for 𝝓A,bz ∶ dA,bz(x, z) =
[

0
(

1 − z
h

)(
x − xB

xA − xB

)]
,

for 𝝓A,bx ∶ dA,bx(x, z) =
[(

1 − z
h

)(
x − xB

xA − xB

)
0
]
,

for 𝝓A,tz ∶ dA,tz(x, z) =
[

0 z
h

(
x − xB

xA − xB

)]
,

for 𝝓A,tx ∶ dA,tx(x, z) =
[

z
h

(
x − xB

xA − xB

)
0
]
, (A1)

where h is the height of the beam. The formulas for shape function associated with node B are derived by swapping
coordinates between nodes A and B.

For plate problems, consider a macroelement of a plate shown in Figure A1(B). For clarity, we only present formulas
for boundary conditions of shape functions associated with midplane coarse mesh node A. We assume that the global
coordinate system (x, y, z) is leveled with the bottom surface of the plate. Node A is directly connected to nodes B and C.
The x- and y-coordinates of nodes A and B are (xA, yA) and (xB, yB), respectively. Nodal displacement functions of face ΓAB
read:

for node A, b ∶ NAB,b(x, y, z) =
(

1 − z
h

)(√
(x − xB)2 + (y − yB)2

lAB

)
, (A2)

for node A, t ∶ NAB,t(x, y, z) =
z
h

(√
(x − xB)2 + (y − yB)2

lAB

)
, (A3)

where lAB =
√
(xA − xB)2 + (yA − yB)2 is a distance between the nodes A and B, and h is the height of the plate. The same

formulas can be derived for face ΓAC by swapping coordinates between nodes B and C. Dirichlet boundary conditions
read:

for 𝝓A,bz ∶ dA,bz(x, y, z) =
[
0 0 N𝛼,b(x, y, z)

]
,

for 𝝓A,bx ∶ dA,bx(x, y, z) =
[
N𝛼,b(x, y, z) 0 0

]
,

for 𝝓A,by ∶ dA,by(x, y, z) =
[
0 N𝛼,b(x, y, z) 0

]
, (A4)

F I G U R E A1 Macroelement of beam type (A) and plate type (B)
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for 𝝓A,tz ∶ dA,tz(x, y, z) =
[
0 0 N𝛼,b(x, y, z)

]
,

for 𝝓A,tx ∶ dA,tx(x, y, z) =
[
N𝛼,b(x, y, z) 0 0

]
,

for 𝝓A,ty ∶ dA,ty(x, y, z) =
[
0 N𝛼,b(x, y, z) 0

]
, (A5)

where 𝛼 = AB or AC, for faces ΓAB or ΓAC, respectively. For the remaining faces of ΓD
i the Dirichlet boundary condition is

equal to zero in all directions for these multiscale shape functions.
The presented approach is sufficient for the assumed geometry of macroelements with rectangular faces of ΓD

i bound-
ary. In the case where this assumption cannot be met, for instance, a plate with optimized height, a more general
approach is required, which involves at least inversion of the bilinear interpolation. This problem will be addressed in
future work.

APPENDIX B. HIGHER- ORDER MULTISCALE SHAPE FUNCTIONS CALCULATION

In beam example, higher-order hierarchic functions are associated with new coarse mesh edge nodes A, p and B, p as
shown in Figure B1(A). Boundary conditions to generate higher-order multiscale shape functions for beam macroele-
ments read:

for 𝝓A,pz ∶ dA,pz(x, z) =
[

0 𝜓p+1

( z
h

)(
x − xB

xA − xB

)]
,

for 𝝓A,px ∶ dA,px(x, z) =
[
𝜓p+1

( z
h

)(
x − x2

x1 − x2

)
0
]
, (B1)

where 𝜓 is a higher-order hierarchical function in interval [0, 1] (see Equation (22)) and p is the order of approximation.
The reader can easily derive formulas for node B by swapping coordinates between nodes A and B.

To generate multiscale shape functions of higher-order in plate problems, nodes of edges and faces are added to the
macroelement (see Figure B1B,C). New coarse mesh nodes M, bp, M, pp, and M, tp are identified with the extra node
M on the virtual mesh edge.

The multiscale shape functions of a higher-order associated with node A will be generated using the following edge
displacement function:

for node A, p ∶ NAB,p(x, y, z) = 𝜓p+1

( z
h

)(√
(x − xB)2 + (y − yB)2

lAB

)
. (B2)

The same formula can be derived for face ΓAC by swapping coordinates between nodes B and C. Boundary conditions
for corresponding functions are derived by applying the displacement in x, y, and z directions, as described previously,
for example, in (A4).

The multiscale shape functions of higher-order associated with node M will be generated using the following edge
and face displacement functions:

F I G U R E B1 Higher-order macroelements of beam type (A), and plate type (B)–(C)
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for node M, bp ∶ NAB,bp(x, y, z) =
(

1 − z
h

)
𝜓p+1

(√
(x − xB)2 + (y − yB)2

lAB

)
, (B3)

for node M, pp ∶ NAB,pp(x, y, z) = 𝜓k+1

(
1 − z

h

)
𝜓l+1

(√
(x − xB)2 + (y − yB)2

lAB

)
, (B4)

for node M, tp ∶ NAB,tp(x, y, z) =
z
h
𝜓p+1

(√
(x − xB)2 + (y − yB)2

lAB

)
, (B5)

for every combination of k = l = 2, … , p. These functions are used to derive the corresponding shape function boundary
conditions by applying the displacement in x, y, and z directions, as described previously, for example, in (A4) only on
the face ΓAB. For the remaining faces of ΓD

i the Dirichlet boundary condition is equal to zero.
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3.3 Article 3: Positron annihilation lifetime spectroscopy
of ABS objects manufactured by fused deposition mod-
elling

M. Dryzek and E. Dryzek. Positron annihilation lifetime spectroscopy of ABS objects
manufactured by fused deposition modelling. Acta Physica Polonica A, 132(5):1506-
1508, 2017. 40 points, IF = 0.577, https://doi.org/10.12693/APhysPolA.132.1506.

3.3.1 Short description of the positron annihilation lifetime spectro-
scopy and its applications

Positron annihilation has been widely used for the study of materials at the atomic
level. A positron emitted from a radioactive source into matter loses its energy in a
short time (less than 2 ps) in the thermalization process. Having thermal energy, he
wanders randomly and annihilates with an encountered electron after a time longer
than 100 ps. As a result of the annihilation of the electron-positron pair, their mass
is converted into energy in the form of mainly two gamma rays. If there are defects
in the crystalline structure of the material studied, such as vacancies, their clusters, or
dislocations, positron can be trapped there. Due to a lower local electron density the
probability of annihilation decreases and the positron lifetime increases. The lifetime of
positrons is an indicator of defects in the crystal lattice allowing them to be identified
as well as their concentration.

In the positron lifetime spectrometer there are two detectors with BaF2 crystals.
One of them registers the gamma photon of energy of 1275 keV emitted from the 22Na
nucleus after an emission of the positron that starts the timer. The second detector
registers one of the annihilation photons of energy 511 keV, that allows to determine
the spectrum of the positron lifetime in the tested material.

It is worth mentioning that defects determine many properties of the materials.
These are e.g. yield strength, tensile strength, ductility, creep, and fatigue, as well as
thermal and electrical conductivity of metals and semiconductors. Only a few material
properties do not depend on defects, or only depend on them to a small extent, e.g.,
melting point or modulus of elasticity. The study of defects is one of the main objectives
of materials science and engineering, and positron annihilation spectroscopy is a useful
tool to study these defects.

PALS is used mostly to study lattice defects in metals or semiconductors. How-
ever, in molecular materials, a bound state of electron and positron, analogous to the
hydrogen atom, called positronium (Ps) can be formed. It is formed in regions with
low electron density, e.g., local free volumes in polymers. Positronium can form in
two spin states arising from the relative orientations of the spins of the electron and the
positron: para-positronium (p-PS) with antiparallel spins and ortho-positronium (o-Ps)
with parallel spins. The para-positronium annihilates into two gamma photons, while
the ortho-positronium annihilates into three gamma photons. The lifetime of the para-
positronium in vacuum is 125 ps, while the ortho-positronium lives in vacuum three
orders of magnitude longer, i.e., 146 ns. The lifetime of o-Ps in matter is shortened to
a few nanoseconds because the positron can annihilate with another electron with anti-
parallel spin from the free volume walls rather than with the one it is bound to. This
process called pick-off is the basis for using o-Ps as a probe of local free volumes. The
free volume model used in PALS relates the lifetime of o-Ps with the size of the inter-
and intra-molecular regions in molecular materials and allows to determine their size.

https://doi.org/10.12693/APhysPolA.132.1506
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PALS can be used to study changes in molecular microstructure of polymers im-
pacting the local free volumes which take place under influence a variety of factors such
as temperature, pressure, chemical changes. Free volume plays an important role in
processes such as glass transition, polymer blend mixing, plasticisation, stress relaxa-
tion, aging, stress flow, permeability, and diffusion. All this was a premise to attempt
to use PALS in studies of the effect of fused deposition modeling parameters on the free
volume microstructure of ABS (acrylonitrile butadiene styrene) objects produced using
this method.
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Positron annihilation lifetime spectroscopy was used to study acrylonitrile butadiene styrene (ABS) specimens
manufactured using fused deposition modelling to explore possibilities of identifying differences in molecular struc-
ture. The set of specimens was prepared including square tiles and long rectangular tiles (100 mm and 200 mm
long) with all filament roads parallel to the longer edge. All types of tiles were produced with various infill line
distance parameter resulting in different overlapping of the roads in horizontal and vertical directions. The slight
increase of the ortho-positronium lifetime indicating increase of the mean free volume radius was observed for the
longest tiles for which influence of weld interface is expected to be most pronounced. No differences were observed
for different infill line distance parameters.
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1. Introduction

Additive manufacturing (AM) commonly referred to
as 3D printing is a manufacturing process of produc-
ing parts by adding-layer-upon-layer of material. Tradi-
tionally, it has been used for singular rapid prototyping
purposes including visualisation, design verification, and
functionality testing. However, objects manufactured by
AM are more frequently considered as potential end-use
products. In recent years 3D printing has become more
and more popular mostly because of the equipment price
drop [1].

Fig. 1. Schematics of fused deposition modelling pro-
cess: (a) CAD model, (b) slicing, (c) 3D printing, (d)
post-processing.

Fused deposition modelling (FDM) is one of the most
popular AM technologies. The process can be divided
into four steps (see Fig. 1). First the 3D CAD model of a
desired element is being prepared using a computer soft-
ware. Then the software slices the model into layers, cal-
culates the path of extruded material, called toolpath or
raster, and adds model of support material if necessary.

∗corresponding author; e-mail: ewa.dryzek@ifj.edu.pl

The path pattern usually is prepared in the way that ma-
terial creates the solid outer surface called contour and
lattice inner fill called infill. In the next step, the soft-
ware convert the path to a code and sends commands
to an automated machine called a 3D printer and the
process of production begins. The main part of the 3D
printer is the extruder. It can be precisely manoeuvred in
X−Y−Z print area by stepper motors and it can heat,
melt, and deposit a thermoplastic filament through its
nozzle in the wanted location. The extruder follows the
toolpath prepared by the software and deposits roads of
material. Due to the thermal fusion the road bonds with
the layer beneath and roads beside and solidifies creating
a solid fill, which then forms the chosen shape. Finally,
the created part is being post-processed by removing any
additional supports and smoothening the surface. The
technology is simple to use. The products can have com-
plex geometries and its contour and infill path can be
varied depending on expected properties. However, the
material is heterogeneous, filled with layers of fine roads,
welds between and voids which creates anisotropy of the
material properties. Also the outer surface is not smooth
because of layered structure (stair-stepping).

Due to rapid invention in the field of 3D printing
the technology found application in variety of disciplines
from medicine [2], car industry [3], to even building in-
dustry [4]. Ease of using the tools, no need of producing
expensive moulds and control over inner structure of the
final product give AM advantage over conventional man-
ufacturing methods especially in projects which require
only one or a few copies of the same part. In many of
these cases the produced parts are expected to have cer-
tain structural, mechanical or thermal properties. This
creates a new subject for exploring by science testing and
analysis.

Typical material used in small scale FDM process are
thermoplastic polymers in a form of filament including

(1506)
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polycarbonate and ABS. ABS is common thermoplastic
characterised by its toughness and strength. Its proper-
ties are determined by composition of three monomers:
acrylonitrile, butadiene, and styrene. Acrylonitrile and
styrene polymers are responsible for strength and rigid-
ity while butadiene rubbery phase for toughness. The
average size of the butadiene particles is 200 nm, how-
ever, the size distribution is so large that particles 50 µm
in diameter can be also found [5].

During manufacturing process the material must be
heated to its melting point to form it through the noz-
zle and create sufficient bond with previously extruded
layer. ABS is amorphous and therefore has no true melt-
ing point. The temperature in FDM process is kept above
its glass transition temperature, which is ca. 105 ◦C. Usu-
ally higher temperature (≈ 230 ◦C) is required to addi-
tionally heat already built material to create a form of
weld with newly extruded bead. Exceeding this tem-
perature may, however, spoil the material by breaking
polymer chains [1].

It was reported that the weld interface tends to have
other molecular structure then the road build and it
varies between raster configuration in the same speci-
men shape [6]. The authors suggest that differences may
result from variation of time of bonding of the neigh-
bouring roads and because ABS is sensitive to thermal
history. This observation casts a new light on a complex
issue of mechanical properties of 3D printed objects. In
the present investigation, we attempt to find out if the
positron annihilation lifetime spectroscopy (PALS) can
detect changes in the free volume microstructure con-
nected to the presence of the weld interface in the 3D
printed samples.

2. Experimental

Specimens were produced in FDM 3D printer 3D
Kreator Motion. Material used in the process was ABS-
FX in filament form manufactured by F3D Filament.
The filament was heated to 230 ◦C. The speed of de-
positing was set to 60 mm/s. The nozzle diameter was
equal to 0.4 mm. The specimens were chosen to be in the
form of 5 mm thick tiles 10 mm in width. There were
three length variants: 10 mm, 100 mm, 200 mm. The
slicing software to create input file for the printer was
Cura 2.5. The raster pattern was chosen to be lines with-
out change in angle between the layers which resulted in
unidirectional roads packing (see Fig. 2). Thus, raster
orientation defined as the angle between the print direc-
tion and the long axis of the specimens was equal to 0◦.
The layer height was equal to 0.35 mm. Different infill
line distance (see Fig. 3), i.e., 0.34, 0.37, and 0.4 mm
was chosen to differentiate the weld interface range in
the build. Infill line distance minus diameter is some-
times referred to as raster to raster air gap. If this value
is negative roads are overlapping and this print configu-
ration is reported to improve mechanical properties of an
component as a whole [7].

Fig. 2. (a) A toolpath example in one layer. (b) Visu-
alisation with the cross-section trough.

Fig. 3. A simplified cross-section of the unidirectional
print proposed in [8].

For PALS measurements, a lifetime spectrometer with
a time resolution (FWHM) of 280 ps was used. A
positron source of 22Na deposited on Kapton foil (7 mm
thick) was sandwiched between two identical samples.
The obtained PALS spectra with a total number of
1.5 × 106 counts were analysed using the LT code [9],
taking into account three annihilation channels: i.e. p-
Ps, free positrons, and o-Ps annihilation; as well as back-
ground subtraction and the source contribution allowed
us to obtain χ2 of the fit close to unity.

3. Results and discussion

The way the specimens were prepared, i.e., with the
toolpath pattern being lines along the tile length with-
out changing the build orientation between the layers was
chosen to enhance the influence of the interface between
builds. The weld interface between the roads was found
to be depleted in the rubbery butadiene phase in com-
parison to the build surfaces [6]. It also exhibited an
interfacial stiffening effect connected to increase in the
indentation elastic modulus. This effect was more pro-
nounced when the rasters were relatively long and it was
explained by the shorter time in which the beads inter-
acted with each other being still in the melt state during
deposition [6]. Thus the samples prepared by 3D printing
are not entirely homogeneous and this can affect positron
annihilation including the size of local free volumes de-
tected by o-Ps.

Considering three components, the analysis of the
positron lifetime spectra gave the following values: τ1
close to 0.19 ns with intensity I1 equal to ca. 17%, τ2
close to 0.45 ns with intensity I2 equal to ca. 60% which
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Fig. 4. The o-Ps lifetime as a function of the infill dis-
tance for specimens of different length.

are similar for all the samples. The values of the longest
lifetime component, τ3, as a function of the infill line
distance for the 3D printed samples of different length
are shown in Fig. 4. Assuming that o-Ps annihilates in
the pick-off process, the right axis shows the average lo-
cal free volume radius calculated according to the semi-
empirical model [10, 11] from the formula

τ3 =
1

2

(
1 − R

R+ ∆R
+

1

2π
sin

2πR

R+ ∆R

)−1

, (1)

where R is a radius of the hole and ∆R is an electron layer
thickness. The value of ∆R was estimated as 0.166 nm.
Because for polymers τ3 is the most relevant quantity we
will focus on its behaviour. For all the samples o-Ps in-
tensity I3 does not change significantly and is equal to
ca. 23%.

It can be seen from Fig. 4 that for the shorter tiles,
i.e., 10 mm and 100 mm long, τ3 has the same value
within the experimental error range and it is equal to
ca. 2.20 ns which corresponds to the average free volume
radius equal to 0.30 nm. It should be mentioned that
the values reported in the literature for ABS are slightly
lower, ca. 2.14 ns [12, 13]. It is worth noticing that for
the 200 mm long tiles even higher values of τ3, ca. 2.24 ns
corresponding to the average free volume radius 0.31 nm
are obtained. It can be expected that the differences in
positron lifetime values caused by higher length of raster
would be small. The change of the volume fraction of the
weld interface caused by adjustments of infill line distance
parameter in the samples is limited, thus its contribution
to the positron lifetime spectrum is small. Additionally,
in polymers the free volume holes are not uniform in size
and the obtained values of τ3 and subsequently values of
the free volume radii are averaged over some distribution.
It seems that the effect however small is observed for the
samples with the longest raster. The effect of different
infill distance for the measured samples is negligible.

The farther investigations require enhancement of the
interface weld volume fraction by for example using
smaller nozzle or/and increasing the sample length. To-

gether with results from different mechanical test the
PALS method may enrich knowledge about influence of
microstructure on strength and durability of additive
manufacturing elements.

4. Conclusions

In the paper, there were presented the results of the
positron lifetime measurements of ABS specimens man-
ufactured by FDM process. The specimens of unidi-
rectional print configuration with different raster length
and different overlapping of filament roads were chosen
to highlight the presence of weld interface in the build.
Results shows that the length of raster has some small
influence on o-Ps lifetime value causing its increase from
2.20 ns to 2.24 ns for specimens with the longer raster.
The differences are not observed when it comes to varia-
tions in the infill line distance parameter in the samples.
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A B S T R A C T

Numerical and experimental studies were conducted to demonstrate the applicability of the multiscale finite
element method (MsFEM) with the higher-order approximation to the prediction of mechanical behavior of 3D
printed parts with complex mesostructure. Three scales are considered: the microscale, at which the filament
paths are homogenized using an orthotropic material model with experimentally identified properties; the
mesoscale with 3D printed structure that is upscaled by MsFEM; and the macroscale, at which the overall
problem is effectively solved. To validate the approach that may be useful for designing 3D printed elements,
the authors conducted experimental measurements of static bending and free vibrations of beams with four
different mesostructures and two print orientations. The measurements were performed using digital image
correlation and were compared with numerical modeling performed by the authors. Both results coincide very
well for a number of examples. Moreover, the study revealed that the hierarchical higher-order shape functions
can accurately represent free vibrations even for the high frequencies.

1. Introduction

In recent years, significant progress has been observed in the field
of materials manufacturing. A substantial contribution to the progress
can be assigned to additive manufacturing (AM), popularly known as
3D printing. The technology enables a combination of two or more
constituent materials, as well as rearrangement of matter in the volume
through the introduction of certain mesostructures that would hardly
be possible to obtain using traditional manufacturing techniques (see
Fig. 1). During the design process of 3D printed materials, digital
simulation is often incorporated to reduce the cost of experimental
testing. This is a challenging task for the direct numerical methods
like the finite element method (FEM) because of the complexity of
the multiscale nature of these materials. Therefore, the authors of this
paper use and develop the multiscale finite element method (MsFEM),
originally proposed by Hou and Wu [1], in order to enable effective
analysis of 3D printed material fabricated using the material extrusion
technique.

AM is a manufacturing process of producing parts by adding layer
upon layer of material. Traditionally, it has been used for rapid proto-
typing purposes, including visualization, design verification, and func-
tionality testing. However, objects manufactured by AM are more
frequently considered as potential end-use products. Thus, these objects
are expected to have certain structural, mechanical, or thermal prop-
erties. The technology found applications in a variety of disciplines,

∗ Corresponding author.
E-mail address: mateusz.dryzek@pk.edu.pl (M. Dryzek).

ranging from medicine [2] to automotive [3], and building indus-
tries [4]. AM has many advantages over conventional manufacturing
methods, particularly when facing a project that requires only one or a
few copies of the same part. In such a case, AM is easy to use, does not
require the production of expensive molds, and provides control over
the inner structure of the final product.

Material extrusion is one of the most popular forms of AM technol-
ogy. The parts in this process are formed by laying down filament which
bonds to the layer beneath through thermal or chemical fusion. This
makes the material heterogeneous, filled with layers of often visible
fine paths, welds and voids between them, yielding anisotropic material
properties. Efficient computer modeling of elements manufactured with
the material extrusion technique may be done by different multi-
scale methods, e.g. the asymptotic approach, presented by Rodríguez
et al. [5] or numerical homogenization by representative volume ele-
ment (RVE), described by Makowski and Kuś [6]. Similarly, the theory
of laminate was utilized by Li et al. [7] in this problem, and it was
also compared to solid orthotropic material simulation by Martínez
et al. [8]. A more recent study by Liu and Shapiro [9] developed
a new method that homogenized detailed microstructure through a
solution of an integral equation formulated using Green’s function.
An investigation of the failure mechanisms was proposed using brute
force modeling [10–12], where all the filament paths and voids were
modeled using FEM.

https://doi.org/10.1016/j.finel.2022.103876
Received 16 August 2022; Received in revised form 29 October 2022; Accepted 7 November 2022

72 CHAPTER 3. FULL TEXTS OF THE ARTICLES



Finite Elements in Analysis & Design 215 (2023) 103876

2

M. Dryzek et al.

Fig. 1. Example of sophisticated mesostructure achieved through additive manufacturing: a concrete 3D printed bridge in Madrid, Spain.

This article presents, after Cecot and Oleksy [13], the application
of MsFEM with higher-order functions to modeling elements manufac-
tured with the use of 3D printing extrusion-based technology. MsFEM
is an upscaling method that captures the microscale heterogeneity
by special basis functions and greatly reduces the number of degrees
of freedom (DOFs) in contrary to direct solution. Neither the scale
separation nor the periodicity of the mesostructure has to be assumed.
Furthermore, the calculations of the basis functions can easily be
parallelized. As 3D printed materials are characterized by two or more
scales and often a large porosity (void to volume fraction), the MsFEM
adaptation towards analyzing these problems could prove to be highly
beneficial.

For modeling 3D printed material, a three-scale approach is pro-
posed (see Fig. 2). In the microscale, the material built of filament
paths is homogenized by assuming orthotropic constitutive equations
with experimentally determined parameters. The mesoscale structure
is depicted by the MsFEM shape functions. Finally, the problem is
solved on the macroscale. For the validation purpose, experimental
measurements of bending and free vibrations of beam-like elements
were conducted, with four different mesostructures and two print orien-
tations. The authors also originally applied and tested the higher-order
MsFEM [13,14] for analysis of free vibrations. It is worth mentioning
that MsFEM has already been used for a three-scale analysis in [15] but
at the microscale level.

In this three-scale computation, two upscaling errors are made.
The first one appears when the constitutive parameters and equations
are assumed for the mesostructure, neglecting the microscale voids.
The second upscaling error is added by MsFEM, which uses macroele-
ments incorporating the mesoscale properties in an approximate way.
Therefore, comparisons with experiments were proposed in order to
validate such multiscale modeling. The accuracy of the direct numerical
modeling, by the adaptive isogeometric analysis, was confirmed by ex-
perimental measurements conducted for 3D printed samples by Alaimo
et al. [16]. Also, in another work by Carraturo et al. [17], 3D printed
beams, were used to determine the modeling error introduced by the
well-known asymptotic homogenization. The authors concluded that
the additional modeling error is acceptable in this case, especially re-
membering that a significant reduction of computation time is observed
due to homogenization.

In this study, an upscaling by the MsFEM method was used, that
requires neither material periodicity nor scale separation. The higher
order (up to 𝑝 = 5) macro-scale approximation and the first order of
approximation at the mesoscale were proposed. It was also experimen-
tally confirmed that the MsFEM upscaling with such an approximation
contributes slightly to the modeling error for both statics and dy-
namics with heterogeneous material. Moreover, it enables much faster
numerical analysis than the direct numerical analysis.

The paper is divided into 6 sections. In Section 2, the orthotropic
mechanical model of 3D printed material is discussed and the param-
eters for the given base material and print configuration are identified
through tensile tests. Next, in Section 3, experiments on selected beams
with various mesostructures are reviewed. In Section 4, a numerical

model is discussed and MsFEM with linear and higher-order multiscale
basis functions is briefly introduced. In Section 5, the experimental and
numerical results are compared and the convergence of the method is
studied. In Section 6, conclusions are presented.

2. 3D printed material

2.1. Elastic deformations

After Li et al. [7] and Alaimo et al. [18], extrusion-based 3D
printed material is considered in this study as a composite made of
orthotropic layers of filament rasters. Fig. 3 presents a cross-section
through a sample, as well as the common terminology associated with
filament-based processes.

The constitutive relations for a general linear elastic material can
be written as:

𝝈 = 𝑪𝝐, (2.1)

where 𝝈 and 𝝐 denote stress and strain tensors respectively, and 𝑪 is
the tensor of material parameters.

This study focuses on the effect of layer orientation on the mechani-
cal behavior of printed parts in the plane stress state. It is assumed that
the coordinate system {1, 2} is right-handed, direction 1 is aligned to
the lamina plane and direction 2 is perpendicular to it and represents
the layer stacking direction (see Fig. 4).

Assuming the plane stress state, problem (2.1) can be expressed
using the Voigt notation as follows:

⎡
⎢⎢⎣

𝜎11
𝜎22
𝜏12

⎤
⎥⎥⎦
=
⎡
⎢⎢⎣

𝐶11 𝐶12 0
𝐶12 𝐶22 0
0 0 2𝐶33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝜖11
𝜖22
𝜖12

⎤
⎥⎥⎦
, (2.2)

and 𝜖33 can be computed by condition 𝜎33 = 0. It is well known
that the coefficients of the 𝑪 tensor can be expressed as a function of
the longitudinal Young’s modulus 𝐸1, transverse Young’s modulus 𝐸2,
Poisson’s ratio 𝜈12, and the shear modulus 𝐺12:

𝐶11 =
𝐸2
1

𝐸1 − 𝜈212𝐸2
, 𝐶22 =

𝐸1𝐸2

𝐸1 − 𝜈212𝐸2
, 𝐶12 =

𝜈12𝐸1𝐸2

𝐸1 − 𝜈212𝐸2
,

𝐶33 = 𝐺12.

(2.3)

The material parameters 𝐸1, 𝐸2, and 𝜈12 can easily be identified
using the standard tensile tests. However, identification of the shear
modulus may be more troublesome. Thus, an additional tensile test was
utilized for specimens with layers rotated by angle 𝜃 to the elonga-
tion direction, as proposed by Li et al. [7]. Hooke’s law in this new
coordinate system can be expressed as:

�̂� = �̂��̂�. (2.4)

Transformed stiffness matrix �̂� can be derived in the following way by
tensor rotation in Voigt notation (refer to e.g. Gerdeen and Rorrer [19],
Eq. 8.64–8.65):

�̂� = 𝑻 −1𝑪𝑻 , (2.5)
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Fig. 2. Three-scale approach.

Fig. 3. Common terminology associated with extrusion-based 3D printing and a cross-section of a printed part.

Fig. 4. Reference coordinate system {1, 2} aligned with layer plane and two parts
printed in different orientations.

where 𝑻 is the transformation matrix:

𝑻 =
⎡
⎢⎢⎣

cos2(𝜃) sin2(𝜃) 2 cos(𝜃) sin(𝜃)
sin2(𝜃) cos2(𝜃) −2 cos(𝜃) sin(𝜃)
− cos(𝜃) sin(𝜃) cos(𝜃) sin(𝜃) cos2(𝜃) − sin2(𝜃)

⎤
⎥⎥⎦
. (2.6)

Relations (2.4) and (2.5) for uniaxial stress state imply the follow-
ing formula for Young’s modulus 𝐸𝜃 for the specimen having layers
oriented at angle 𝜃 to the tested direction:

𝐸𝜃 =
[
cos4(𝜃)
𝐸1

+ sin4(𝜃)
𝐸2

+ sin2(2𝜃)
4

(
1
𝐺

−
2𝜈12
𝐸1

)]−1
. (2.7)

It is clear that 𝐸0 = 𝐸1 and 𝐸90 = 𝐸2. Assuming that Young’s modulus
can be evaluated for another material orientation, e.g. 𝜃 = 45◦, Eq. (2.7)
can be solved for 𝐺:

𝐺 =
[

4
𝐸45

− 1
𝐸0

− 1
𝐸90

+
2𝜈12
𝐸0

]−1
. (2.8)

2.2. Base material and printer

The 3D printer used in this study was the closed-chamber Stratasys
Uprint. It is equipped with two extruders capable of printing model
material and support material. The base material for the model was
chosen to be Stratasys P4300XL ABS. The model material tip used was
T16 (0.178 mm diameter). The print configuration was set to Solid with
default settings: 0.254 mm layer height, 0.508 mm raster width, and
one contour line. Raster angle was set to {45◦,−45◦}, meaning that

angles between filament paths in two adjacent layers differ by 90◦. This
configuration ensures the same mechanical behavior of the part within
the layer plane. The default temperature of the liquefier is 310 ◦C and
the chamber interior one is 77 ◦C.

2.3. Material testing

Tensile tests were performed in order to determine elastic constants:
𝐸0, 𝐸45, 𝐸90, and 𝜈12. As reported by Popescu et al. [20], there are no
commonly agreed standards for material extrusion specimens testing.
The initial tests with dumbbell-shaped specimens recommended in the
ASTM D638 standard showed that such specimens fail consistently at
the fillet due to the stress concentrations observed therein. Thus, after
previous studies by Alaimo et al. [18], the ASTM D3039 standard that
is designed to test polymer type anisotropic materials was considered. It
recommends a specimen have a constant rectangular cross-section with
additional tabs at a grip area that omit the troublesome fillets. Fig. 5
depicts the shape of the specimens, as well as the orientation at which
they are printed.

Three types of specimens (T0, T45, and T90) were considered,
and 10 samples were prepared for each type. The dimensions of the
specimens are presented in Table 1. To prevent gripping damage and
introduce load into the specimens more gradually during the test,
tabs were glued to the specimen ends (two on each end) using a
cyanoacrylate adhesive. The tabs were 3D printed with the same config-
uration as the specimens. In order to conduct the optical measurements,
specimens were prepared with speckle patterns of black dots over a
white background spray-painted on one side of the specimens.

The specimens were tested under displacement control on a uni-
versal testing machine Zwick Roell Zmart Pro with pincer grips type
8322. A head displacement rate of 2 mm∕min was set to achieve specimen
failure within 1 to 10 min. Stress–strain response was recorded with
longstroke extensometer of a 50 mm gauge length. Additionally, the
strain field was measured using the Digital Image Correlation (DIC)
technique to evaluate Poisson’s ratio. During the tests, photos of the
samples were taken at a 2 s interval and then processed in order
to determine the material parameters. Photos were obtained using a
digital single-lens camera with a matrix resolution of 6000 × 4000
pixels. The camera was equipped with a Sigma 17–50 mm f/2.8 AF
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Fig. 5. Orientation of specimens for tensile tests. The layers were stacked in the 𝑍 direction.

Table 1
Specimen dimensions assumed after ASTM D3039.

Name Layer
orientation

Specimen length
[mm]

Specimen & tabs
width [mm]

Specimen
thickness [mm]

Tabs length
[mm]

Tabs thickness
[mm]

T0 0◦ 200 15 2 36 1.6
T45 45◦ 200 15 3 25 1.6
T90 90◦ 150 25 3 36 1.6

Table 2
Test results for different print orientations.

Name Layer
orientation

Young’s modulus
[MPa]

Poisson’s
ratio

Ultimate
strength [MPa]

T0 0◦ 2239 ± 13 0.41 ± 0.04 31.6 ± 0.3
T45 45◦ 1956 ± 10 – 25.2 ± 1.4
T90 90◦ 1920 ± 20 0.35 ± 0.05 19.7 ± 1.5

EX DC OS HSM zoom lens with a focal length set at about 24 mm to
cover the entire surface of the samples. The surface of the specimen was
additionally illuminated with a white LED light source with a neutral
hue of about 6000 K. The collected images were iteratively processed
using the CivEng Vision software developed at the Cracow University
of Technology (for more details, refer to e.g. Tekieli et al. [21]; Słoński
and Tekieli [22]). Two virtual strain gauges (virtual tensometers) were
placed on the surface of the sample to measure the longitudinal and
transverse deformation.

2.4. Material parameters

The tests for all three orientations revealed a pronounced linear
elastic region (see Fig. 6(a)). Young’s moduli were evaluated using
linear regression within the strain range from 0.1% to 1%. The results
are summarized in Table 2 and have error ranging from 0.5% to
1%. The table also contains Poisson’s ratio evaluated for T0 and T90
specimens and average ultimate strengths for all the specimen types.

Poisson’s ratio was calculated as a ratio between longitudinal and
transverse strains measured optically beginning from the longitudinal
strain of 0.1%. The final value of the ratio was calculated as the mean
value of a series of measurements for the longitudinal strain range of
0.5% to 1% (see Fig. 6(b)) for a single sample and then averaged for
five samples.

In the assumed orthotropic material model, 𝜈21 is a dependent
variable and can be calculated as a form of verification using the
following relation:
𝜈12
𝐸1

=
𝜈21
𝐸2

. (2.9)

Solving for 𝜈21 and using the measured values of the remaining con-
stants yields 𝜈21 = 0.35, which with an accuracy of ±0.05, is equal to
the measured value.

The density of the material, computed as the arithmetic average of
nine (3 for each specimen type) volume and mass measurements, equals
0.973 g∕cm3.

The results clearly display that the print orientation is an important
parameter influencing the mechanical behavior of 3D printed parts. The
relative difference in Young’s modulus between longitudinal (T0) and
transverse (T90) orientations is equal to about 15%. Fig. 6(c) depicts
a curve that predicts Young’s modulus in the uniaxial test for all layer
orientations using Eq. (2.7). The elasticity tensor for the studied 3D
printed material in the {1, 2} coordinate system reads:

𝑪 =
⎡
⎢⎢⎣

2616 920 0
920 2243 0
0 0 1386

⎤
⎥⎥⎦

MPa (2.10)

Although it is outside of the scope of this paper, it has to be
pointed out that layer orientation plays a significant role beyond the
elastic region as well. It was observed that longitudinal specimens
T0 exhibit more ductile behavior, with the prominent plastic region.
Transverse specimens T90, on the other hand, show brittle behavior
without any plastic deformation and with a failure mode of delami-
nation that strongly influences the ultimate strength. The inclusion of
these observations in the numerical model will be the subject of future
work.

3. Experimental program

A series of static and free vibration tests with the cantilever beams of
four types (B1–B4) was conducted to explore the mechanical behavior
of 3D printed parts with mesostructure and validate the multiscale
model. Beams of 11 cm span plus a 4 cm grip were designed as 2 × 11
grids of repeating cells. The dimensions of the beams and mesostructure
cells are presented in Fig. 7. Each beam was printed with two layer
orientations: 0◦ and 90◦. In total, 8 beams were tested.

Static bending tests were performed with flexure test accessories:
screw grips as fixed support and an upper anvil with a rocking mount-
ing which applies the load to the specimen 10 cm from the support
(see Fig. 8(a)). Constant rate of displacement of the anvil was set to
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Fig. 6. Typical stress–strain curves for tested specimens after offset to compensate for alignment of the specimen (a). Typical Poisson’s ratio-strain curve for T0 specimens (b).
Young’s modulus against layer orientation (c) (note that graph y-axis limits range from 1500 MPa to 2500 MPa).

Fig. 7. Dimensions of tested beams and mesostructures [mm].

Fig. 8. Experimental setup of static and dynamic tests.

2 mm∕min. Force versus displacement response was recorded with the
machine measuring the force and travel of the anvil. The tests were
accompanied by optical documentation with a camera for DIC analysis.

Vibration tests were performed by exciting beams into free vibra-
tions. The beams were hit with an impulse hammer (PCB 086D05) with
a force sensor at the tip. Acceleration was derived from the measure-
ments made by a mono-axial accelerometer (PCB 352C66) attached
to the end of the beam (see Fig. 8(b)). Measurements were recorded
with a 4096 Hz frequency. Data was recorded through a portable data
acquisition station LMS SCADAS MOBILE. 10 series of measurements
were made per single specimen beam. The weight of the accelerometer
with wire attached to the specimen was measured before and after
the experiment. The average is equal to 6.1 g. A reference triaxial
accelerometer was attached to the test stand in order to record stand
vibrations, which turned out to be negligible.

3.1. Experimental results

The summary of the bending tests’ results is shown in Fig. 9 on
force versus displacement curves. Additional measurements obtained
with DIC were used to validate numerical results and are presented in
Section 5.1. The tests confirmed the finding from the previous section
that 3D printed parts with ABS exhibit linear response at the first
loading stage and that the print orientation influences the response.
Beams printed in 90◦ orientation are less stiff in the tests. The beams
of type B2 are the stiffest of the tested beams. Orientation also plays
a role in the ultimate strength of the objects. Beams printed with 0◦
orientation withstand a force more than 2 times greater than beams
printed in 90◦ orientation, which failed by delamination.

Fig. 10 presents a graph of a typical series of measurements in
dynamic tests. The dominant frequency was determined by the fast
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Fig. 9. Force–displacement curves of beams in bending tests.

Fig. 10. Typical dynamic response graph.

Fourier transform and it is presented in Table 3 after averaging a
few measurements. The effect of damping was taken into account in
computing the natural frequencies by calculating decrements of accel-
eration; however, its impact was negligible (below 1%). The influence
of the print orientation on the frequencies is measurable. Beams printed
with a 90◦ orientation vibrated with lower frequencies than beams of
the same geometry printed with a 0◦ orientation. The beams of type
B2 vibrated with the highest frequencies, again indicating that their
mesostructure is the stiffest one. Later, during numerical studies, it was
revealed that the mass of the accelerometer and cable connecting the
sensor added to the vibrating system was significant and lessened the
effects of orthotropy on the results.

4. Numerical model

At the beginning, a 3D printed sample occupying domain 𝛺 with
boundary 𝛤 is considered. The problem of linear elasticity reads:
Find displacement 𝒖 in domain 𝛺 ⊂ R𝑛(𝑛 = 2 or 3) such that:

𝜌�̈� −▽ ⋅
(
𝑪▽𝑠𝒖

)
= 𝒇 , in 𝛺, (4.1)

𝒖 = �̂�, on 𝛤𝐷, (4.2)

Table 3
Natural frequencies measured in dynamic tests.

Beam type Layer orientation Frequency [Hz]

B1 0◦ 169.4 ± 2.2
B1 90◦ 163.2 ± 2.6

B2 0◦ 184.7 ± 7.6
B2 90◦ 187.1 ± 1.0

B3 0◦ 157.8 ± 1.7
B3 90◦ 152.5 ± 3.6

B4 0◦ 164.1 ± 2.0
B4 90◦ 153.8 ± 1.1

𝒕 = 𝒕, on 𝛤𝑁 , (4.3)

where 𝛤𝐷 and 𝛤𝑁 denote boundary parts with the Dirichlet and
Neumann conditions, 𝛤𝐷 ∪𝛤𝑁 = 𝜕𝛺, and 𝛤𝐷 ∩𝛤𝑁 = ∅. �̂� and 𝒕 denote
known displacement and loading, 𝒕 =

(
𝑪▽𝑠𝒖

)
⋅𝒏, ▽𝑠 is the symmetric

part of the gradient operator, i.e. ▽𝑠(∙) = ((∙)⊗▽+▽⊗ (∙))∕2, and 𝜌
stands for the material density.

The corresponding weak form of (4.1)–(4.3) reads:
Find displacement 𝒖 ∈ 𝑯0

1 (𝛺) + �̂� such that:

∫
𝛺

𝒗 ⋅ 𝜌�̈�d𝛺 + ∫
𝛺

▽𝒗 ⋅
(
𝑪▽𝑠𝒖

)
d𝛺 = ∫

𝛺

𝒗 ⋅ 𝒇d𝛺

+ ∫
𝛤𝑁

𝒗 ⋅ 𝒕d𝛤 ,∀𝒗 ∈ 𝑯0
1 (𝛺),∀𝑡 ∈

[
0, 𝑡𝑓

]
,

(4.4)

where 𝑯0
1 (𝛺) = {𝒗 ∈ 𝑯1(𝛺) ∶ 𝒗 = 0|𝛤𝐷}, 𝑯1(𝛺) is the Sobolev space of

square-integrable functions.
In the scope of this paper, the authors intend to focus on two time-

independent cases that – after discretization with a fine mesh of size ℎ,
capturing mesoscale details of a 3D printed part – read:

statics: 𝑲ℎ𝒖ℎ = 𝒇ℎ, (4.5)

free vibrations: 𝑲ℎ𝒖ℎ𝑗 = 𝜔2
𝑗𝑴

ℎ𝒖ℎ𝑗 , (4.6)

where 𝑲ℎ and 𝑴ℎ denote the stiffness and mass matrices, 𝒇ℎ denotes
the load vector, and 𝒖ℎ𝑗 and 𝜔𝑗 represent the 𝑗th vibration mode and
the corresponding angular frequency.
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4.1. MsFEM idea

In MsFEM two meshes are utilized. A coarse grid of macroelements
𝐾𝑖 (𝑖 = 1, 2…𝑁𝑒𝑙) of size 𝐻 is generated to capture the mesoscale
details. Each macroelement is then refined with a mesh of a much
shorter characteristic size ℎ.

The MsFEM algorithm consists of three steps: computation of the
multiscale basis functions by solving auxiliary local boundary value
problems in each macroelement using fine meshes, which enables
evaluation of the equivalent coarse element stiffness matrices; the
macro-scale computation, in which the finite element analysis of the
coarse meshes is carried out using the macroelement equivalent stiff-
ness matrices; and finally, the downscaling operation performed in
order to reproduce the solution on the fine mesh in each macroelement
separately.

In this analysis, two types of multiscale functions are introduced: the
skeleton and the bubble basis functions. The first will be responsible
for capturing global solutions, while the second will represent local
solutions inside macroelements.

4.1.1. Skeleton multiscale basis functions
The classic multiscale basis functions are defined by the following

boundary value problem:

−▽ ⋅
(
𝑪▽𝑠𝝓𝑠𝑘

)
= 𝟎, in 𝐾𝑖, (4.7)

𝝓𝑠𝑘 = 𝝍𝑘, on 𝛤𝑖, (4.8)

where 𝝍𝑘 denotes a shape function associated with the 𝑘th degree
of freedom of the coarse mesh. Only traces of 𝝍𝑘 functions on 𝛤𝑖
are needed to construct multiscale shape functions as depicted in the
example in Fig. 11.

In this work, a hierarchical base will be adopted as a source term.
The concept is inspired by the higher-order FEM approach introduced
by Babuška et al. [23] and Zienkiewicz et al. [24]. The very idea of the
hierarchical base is to increase the order of approximation by adding
new shape functions that do not alter the lower-order shape functions.
This property is beneficial in MsFEM, since no costly recalculations
of the existing shape functions are needed in case of approximation
enrichment.

The problem (4.7)–(4.8) can be solved directly on a macroelement
fine mesh using FEM or by eliminating interior DOFs using static
condensation (see Cecot and Oleksy [25]). It is intuitive that if as
many linear independent multiscale shape functions are used to con-
struct the solution as there are fine-mesh DOFs on the edges of the
macroelement, the global fine-mesh solution achieved by the static
condensation will be reproduced. However, for the dynamic problems,
the static condensation may lose details inside macroelements, thus the
bubble multiscale basis functions are reintroduced after Soghrati and
Stanciulescu [26], as well as Cecot and Oleksy [13].

4.1.2. Bubble multiscale basis functions
In order to represent a local solution inside 𝐾𝑖, the authors adopt

a strategy of constructing multiscale basis functions using polynomials
of appropriate order to define the right-hand sides:

−▽ ⋅
(
𝑪▽𝑠𝝓𝑏𝑘

)
= ▽ ⋅ (▽𝝍𝑘), in 𝐾𝑖, (4.9)

𝝓𝑏𝑘 = 𝟎, on 𝛤𝑖, (4.10)

where 𝝍𝑘 are hierarchical bubble functions mapped on 𝐾𝑖 that are
equal to zero on 𝛤𝑖. Fig. 12 depicts a hierarchical bubble function for
𝑝 = 2, a source function, and resulting multiscale shape functions.

It should be noted that 𝝓𝑠 and 𝝓𝑏 are 𝑪(𝒙)-orthogonal, i.e. ∫𝐾𝑖 ▽𝝓𝑠 ⋅(
𝑪▽𝑠𝝓𝑏

)
d𝛺 = 𝟎.

4.1.3. MsFEM workflow
Problems (4.7)–(4.8) and (4.9)–(4.10) are solved numerically on the

fine mesh. The obtained DOFs of the fine mesh of a single macroelement
comprise a column of prolongation matrix 𝑃𝑁×𝑀 , where 𝑀 denotes
the number of shape functions in macroelement 𝐾𝑖 and 𝑁 denotes the
number of DOFs of the fine mesh. These DOFs also determine the fine-
mesh approximation of coarse-scale shape functions that incorporate
the fine-scale heterogeneity. The prolongation matrix is used to trans-
form coarse DOFs into fine DOFs. It is calculated for each macroelement
locally, which allows for parallelization of the process. For the periodic
materials, the matrix is calculated only once and is reused for the
repeating macroelements.

Macroelement stiffness matrices 𝑲𝐻
𝑖 , mass matrices 𝑴𝐻

𝑖 and vec-
tors 𝒇𝐻𝑖 are calculated by simple algebraic operations using prolonga-
tion matrices, without the need for the integration on the coarse level:

𝑲𝐻
𝑖 = 𝑷 𝑇𝑖 𝑲

ℎ
𝑖 𝑷𝑖, 𝑴

𝐻
𝑖 = 𝑷 𝑇𝑖 𝑴

ℎ
𝑖 𝑷𝑖, 𝒇

𝐻
𝑖 = 𝑷 𝑇𝑖 𝒇

ℎ
𝑖 , (4.11)

where matrices 𝑲ℎ
𝑖 , 𝑴ℎ

𝑖 and vectors 𝒇ℎ𝑖 are assembled only in
macroelements 𝐾𝑖. Note that 𝑲ℎ

𝑖 was already computed when solving
problems (4.7)–(4.8) and (4.9)–(4.10).

After assembling on the coarse level, the following system of alge-
braic linear equations or the eigenvalue problem is solved:

statics: 𝑲𝐻𝒖𝐻 = 𝒇𝐻 , (4.12)

free vibrations: 𝑲𝐻𝒖𝐻𝑗 = 𝜔2
𝑗𝑴

𝐻𝒖𝐻𝑗 . (4.13)

After obtaining 𝒖𝐻 , fine-mesh DOFs can be calculated and the
solution on the fine-mesh level can be reproduced using this downscale
operation in each macroelement:

𝒖ℎ𝑖 = 𝑷𝑖𝒖𝐻𝑖 . (4.14)

5. Numerical model validation

The numerical multiscale model is presented in Fig. 13. The domain
is discretized with 2D plane stress state macroelements in such a way
that each cell of the mesostructure is treated as a single macroelement.
Periodicity of the mesostructures enables the construction of a multi-
scale model using only one macroelement for each beam type. For each
macroelement, the auxiliary triangular mesh with size ℎ < 0.7 mm is in-
troduced, which results in the following numbers of fine-scale elements:
B1 — 408, B2 — 616, B3 — 498, B4 — 490. Material parameters are
determined on the basis of the results presented in Section 2.4.

The static bending tests are modeled with constant distributed
loading applied on the top edge of 2ℎ length with a resultant force equal
to 𝐹 and located 10 cm from the fixed support, as in the experiments.

An extra mass is added in the dynamic tests to simulate the ac-
celerometer and the wire which was attached to the specimens during
the experiments. The mass is distributed on the bottom of the last
macroelement and is spread on the area of 1 mm × 10 mm.

The multiscale analysis is accompanied by reference fine-mesh mod-
els solved directly with FEM. The global meshes are constructed by
gluing together meshes of macroelement and have the following total
numbers of DOFs: B1 — 10 230, B2 — 15 202, B3 — 12 078, B4 —
12 782.

5.1. Bending tests

Fig. 14 presents the deflection lines of the beams in the numerical
simulations and in the experiments recorded for selected forces. The
forces were chosen from diagram 9 so that specimens stayed within
the linear range.

The experimental deflection lines were generated by the DIC
method. From the documented photos of the experiments, it was
observed that the fixed support actually allowed some slight rotation.
The angles of this rotation were measured by the DIC analysis and
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Fig. 11. Juxtaposition of input functions 𝝍 on 𝛤𝑖 and resulting multiscale shape functions of vertex (a) and higher-order mid-edge (b).

Fig. 12. Juxtaposition of hierarchical bubble function for 𝑝 = 2, source term functions ▽ ⋅▽𝝍 , and resulting bubble multiscale shape function.

Fig. 13. Beam MsFEM model (on the left) and fine-mesh discretization of macroelements (on the right).
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Fig. 14. Deflection line measured on the top edge of the beams obtained through DIC analysis (experiment) and the numerical simulations with MsFEM (𝑝 = 1, 2, 5).

Fig. 15. 𝜖𝑥𝑥 strain distribution maps of beam B10 obtained from the DIC analysis, the numerical simulation with the FEM reference model, and the MsFEM models for different 𝑝.

accommodated in the deflection lines in order to compensate for the

non-ideal gripping.

To keep the diagrams legible, only deflection lines computed by

MsFEM with 𝑝 = 5 were shown. As can be seen, the proposed multiscale
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Table 4
Maximum deflection measured in mm.

Beam type Layer
orientation

MsFEM
𝑝 = 1
(nDOFs = 72)

MsFEM
𝑝 = 2
(nDOFs = 186)

MsFEM
𝑝 = 3
(nDOFs = 300)

MsFEM
𝑝 = 4
(nDOFs = 414)

MsFEM
𝑝 = 5
(nDOFs = 528)

FEM Exp.

B1 0◦ −2.4281 −2.5673 −2.7332 −2.7514 −2.7636 −2.7663 −2.7
B1 90◦ −2.7834 −2.9663 −3.1383 −3.1593 −3.1728 −3.1756 −3.1

B2 0◦ −2.5594 −2.6582 −2.6604 −2.6689 −2.6806 −2.6967 −2.7
B2 90◦ −2.9329 −3.0672 −3.0695 −3.0795 −3.0913 −3.1109 −3.1

B3 0◦ −1.3663 −1.4569 −1.5370 −1.5447 −1.5577 −1.5636 −1.6
B3 90◦ −1.5518 −1.6734 −1.7661 −1.7746 −1.7915 −1.7994 −1.8

B3 0◦ −1.5261 −1.5865 −1.5950 −1.6027 −1.6040 −1.6083 −1.7
B4 90◦ −1.7085 −1.7901 −1.8006 −1.8084 −1.8099 −1.8147 −1.8

model with higher-order shape functions successfully captured the
deflection line observed in the experiment. Indeed, the effects of the
orthotropic properties of the 3D printed material were measurable in
the experiment and were reproduced through the proposed multiscale
approach.

In the enlarged sections of the diagrams, deflection lines of 𝑝 = 1
and 𝑝 = 2 MsFEM models were shown. It can be observed that for a
lower 𝑝 the multiscale model predicts a stiffer response of the beams
under load.

In order to make quantitative judgments, a summary of maximum
deflections of MsFEM 𝑝 = 1− 5 models, FEM reference models, and the
experiment as well as the number of DOFs for multiscale models, are
presented in Table 4. It can be observed that the results of multiscale
models converge with the results of FEM reference models, which
correlate well with the experiment. One should also note that the results
for 𝑝 = 5 were obtained with 20 times fewer DOFs than the number
used in the FEM reference model, and faster.

Finally, in Fig. 15, maps of dominating strain component 𝜖𝑥𝑥 for
beam B10 obtained with the DIC technique, FEM, and MsFEM are com-
pared. The DIC map was generated using a grid of virtual markers that
are used to measure the displacement field. The markers of size 30 × 30
pixels were distributed evenly over the entire surface of the beams,
excluding openings, which were masked during mesh generation. The
actual size of the markers was close to 0.75 × 0.75 mm, which is about
twice the diameter of the nozzle used for printing specimens. In order
to compare the numerical and experimental results, the DIC map was
plotted in the same range as the map of the FEM model.

The corresponding maps are qualitatively similar. The primary dif-
ference is observed in the maximum and minimum values. For a low
𝑝, the extreme values are smaller than in the reference solution that
correlates with the predicted deflection lines. When 𝑝 is increased, these
values converge with the reference solution.

5.2. Dynamic tests

A comparison between the experimental and numerical results for
dynamic tests is shown in Fig. 16 and in Table 5. The diagram depicts
the first natural frequencies obtained in the experiment and by MsFEM
and FEM.

The FEM reference results are within 5% of relative error with
respect to the experiment. The closest one was observed for beam B490.
The orthotropic properties influenced the results that were obtained
by the numerical model and correlate well with the experimental
results for B1, B3, and B4 beams. All the results obtained by MsFEM
predict higher frequency responses than the FEM reference models.
The maximum error of MsFEM models for 𝑝 = 1 is equal to 7% in
comparison with the reference results. However, when the order of the
multiscale approximation is increased, the natural frequency converges
to the reference solution and it is almost equal to FEM results for 𝑝 = 5
for all the beam types.

Fig. 16. Comparison of the natural frequency of 3D printed beams measured
throughout the experiment, and calculated by MsFEM and FEM.

5.2.1. Influence of bubble multiscale shape functions
The aim of this numerical test was to examine the influence of the

inclusion of the bubble multiscale shape functions in MsFEM models
on the results. Fig. 17 depicts converges of the natural frequencies of
modes 1, 5 and 20 to the reference solution with the increase of 𝑝.

As expected, the error of natural frequencies of higher modes pre-
dicted by MsFEM with linear shape functions is significant and equals
even up to 50% for the 20th mode of vibration. This error, however,
can be reduced by increasing the number of multiscale basis functions
of higher order. It can also be observed that the use of the bubble
multiscale functions reduces further error, especially for the higher
modes.

6. Conclusions

An application of MsFEM to mechanical analysis and therefore
to the reliable design of 3D printed elements was addressed in the
paper. A three-scale approach was presented: on the microlevel, the
orthotropic material parameters are experimentally homogenized, then
the mesostructure that may be the effect of design optimization is built
into the MsFEM shape functions, and the mechanical analysis is finally
performed at the macroscale. The presented concept was validated by
comparison of numerical modeling with experiments conducted on 3D
printed ABS beams with various layer orientations and mesostructures.
High-order hierarchical approximations of order up to 5 showed the
potential of modified MsFEM. The maximum deflection error in the
static bending tests for 𝑝 = 1 was 10%–15% and for 𝑝 = 5 it was
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Table 5
Natural frequency measured in Hz.

Beam type Layer orientation MsFEM
𝑝 = 1

MsFEM
𝑝 = 2

MsFEM
𝑝 = 3

MsFEM
𝑝 = 4

MsFEM
𝑝 = 5

FEM Exp.

B1 0◦ 178.2 173.2 167.6 167.0 166.6 166.5 169.4 ± 2.2
B1 90◦ 166.4 161.2 156.5 155.9 155.6 155.5 163.2 ± 2.3

B2 0◦ 198.2 194.5 194.4 194.1 193.6 193.1 184.7 ± 7.6
B2 90◦ 185.2 181.1 181.0 180.7 180.4 179.8 187.1 ± 1.0

B3 0◦ 180.6 174.8 170.1 169.7 169.0 168.7 164.1 ± 2.0
B3 90◦ 169.5 163.2 158.8 158.4 157.6 157.2 153.8 ± 1.1

B3 0◦ 165.5 162.3 161.8 161.4 161.4 161.1 157.8 ± 1.7
B4 90◦ 156.5 152.8 152.4 152.0 152.0 151.7 152.5 ± 3.6

Fig. 17. 𝑝-convergence to reference FEM solutions of the natural frequency of modes 1, 5, and 20, of MsFEM solutions and the difference when using multiscale bubble functions.

reduced to 5%–2%. These errors, besides the typical numerical error,
include the error of the assumed model (e.g. the plane stress state or
the elastic range) and the upscaling error, since the mesoscale details
are incorporated into the macroscale by the MsFEM approach. The
numerical results converge to the FEM reference solution. Moreover,
the application of the higher-order MsFEM was extended to the free
vibration simulation. In the dynamic tests, the natural frequency of the
beams was captured by the FEM reference solution and MsFEM 𝑝 = 5
within 5% error in relation to the experimental results. The numerical
tests revealed that higher-order functions can accurately represent free
vibration even for higher modes of vibrations due to the application of
inner (bubble) shape functions, e.g. for the 20th mode the error was
less than 2% in relation to the reference FEM solution.

In conclusion, the experimental validation confirmed that MsFEM
upscaling can be successfully used for efficient static and dynamic
modeling of 3D printed parts with mesostructure.
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Chapter 4

Additional experimental validation

Certain detail of experiments depicted in the papers as well as experimental measure-
ments that have not been published are reported in this chapter. Similarly as the other
laboratory tests they also have been used for validation of MsFEM based numerical
models.

4.1 Tensile and bending tests

The photos of all the specimens used in tests described in Article 4 are presented in
this section. Figs. 4.1, 4.2 and 4.3 present photos of specimens used in tensile test
with close-ups of the failure zone: T0, T90, T45, respectively. The results of this tests
were used to measure the parameters of extrusion-based 3D printed material. Fig. 4.4
presents tested beams with different mesostructures used in static and dynamic tests,
as well as close-ups of the failure zones of the B3 beams.

(a) (b)

Figure 4.1: T0 specimens after tensile tests (a). Close-up of a failure zone (b).
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(a) (b)

Figure 4.2: T90 specimens after tensile tests (a). Close-up of a failure zone (b).

(a) (b)

Figure 4.3: T45 specimens after tensile tests (a). Close-up of a failure zone (b).
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(a)

(b) (c)

Figure 4.4: Beams of types B1-B4 (rows) printed with layer orientations 0° and 90°
(columns) after bending tests (a). Close-ups of a failure zone of beam B3 printed with
layer orientations 0° (b) and 90° (c).
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4.2 Metamaterial of negative Poisson’s ratio

The following results were presented at the 41st Solid Mechanics Conference SOLMECH
in Warsaw, 2018, in the talk Development of the Multiscale Finite Element Method for
the Analysis of Advanced Materials, by M. Dryzek and W. Cecot.
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Figure 4.5: Metamaterial model and dimensions of a periodic cell (module 1).

A metamaterial of negative Poisson’s ratio was chosen to validate application of
MsFEM with higher-order approximation in modeling of its overall global mechanical
properties. The value of Poisson’s ratio is the negative of the ratio of transverse strain to
axial one observed e.g. in the tensile test. If the resulting value is negative, the material
increases its cross-section when stretched. Such behavior is mostly attributed to periodic
mesoscopic lattice structures that rotate inside when material is stretched. In this test,
the chosen mesostructure was proposed and studied in [34]. The considered problem is
a plane-stress tensile test of a square domain of 8×8 periodic cells of the mesostructure
illustrated in Fig. 4.5. Base material was chosen to have Young’s modulus E = 2 GPa
and Poisson’s ratio ν = 0.4. The elongation was set to ∆x = 0.1.
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Figure 4.6: Fine mesh of macroelements in multiscale models M1, M2, and M3.

Three multiscale models, M1, M2, and M4, with varying coarse grid size were con-
sidered: H = 1, H = 2, and H = 4, respectively. Fig. 4.6 shows fine meshes of macroele-
ments in each model. Note that in the M1 model macroelement is the smallest periodic
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cell. The multiscale analysis is accompanied by a reference direct fine-mesh FEM solu-
tion. The global mesh is constructed by gluing together meshes of macroelement and
have the total of 72130 DoFs.

In the multiscale analysis, multiscale basis functions were constructed using higher-
order hierarchical polynomials of order p = 1 − 5 with the method described in details
in Article 4. The multiscale basis functions were only of nodal and edge type, since no
internal load is considered in this problem.
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Figure 4.7: The FEM reference solution: Deformed and undeformed mesh. The color
indicate displacement uy in the direction perpendicular to the tensile direction (deform-
ation scaled 15 times, the undeformed structure is presented in the background).

Fig. 4.7 depicts results of the reference model. It can be observed that in the
reference model both dimensions of the structure after deformation (x1 and y1) are
greater than in the initial configuration (x0 and y0). Poisson’s ratio is calculated using
formula:

ν = −∆εy

∆εy
, (4.1)

where ∆εx = x1−x0
x0

is strain in the axial direction and ∆εy = y1−y0
y0

is strain in the
transverse direction. Calculated from the reference model, Poisson’s ratio equals -0.35,
which correlates very well with the numerical, -0.34, and the experimental results, -0.28
(extrapolated), from [34].

Figs. 4.8-4.10 depict the results of the M1, M2, and M4 models for p = 1 and p = 5.
For the M1 model with linear functions, the deformation in the transverse direction
is small and negative resulting in positive Poisson’s ratio ν = 0.0028. Asymmetrical
displacement uy can be explained by the asymmetry of mesostructure in the macroele-
ments. For M1 model with p = 5 order, it can be observed that Poisson’s ratio is
negative, ν = −0.11, and the downscaled solution more closely resembles the reference
solution. For the M2 and M4 models, they predict negative Poisson’s ratio as well.
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(a)

(b)

Figure 4.8: M1 model: Displacement uy on to deformed coarse grid and solution down-
scaled on fine mesh, for p = 1 (a) and p = 5 (b)(deformation scaled 15 times).

(a)

(b)

Figure 4.9: M2 model: Displacement uy on to deformed coarse grid and solution down-
scaled on fine mesh, for p = 1 (a) and p = 5 (b) (deformation scaled 15 times).
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(a)

(b)

Figure 4.10: M4 model: Displacement uy on to deformed coarse grid and solution
downscaled on fine mesh, for p = 1 (a) and p = 5 (b) (deformation scaled 15 times, the
coarse elements are visible in the left hand side figure).

Figure 4.11: M1 model with oversampling technique (p = 1): Displacement uy on to
deformed coarse grid and solution downscaled on fine mesh (deformation scaled 15 times,
the coarse elements are visible in the left hand side figure).

A strong resonance effect is observed. It can occur in multiscale analysis of chal-
lenging structures such as the one studied here. The next Fig. 4.11 presents results
of model M1 achieved with the oversampling technique (see Sect. 2.3.1). The over-
sampling domain was chosen to be 3H × 3H. In the results of the displacements uy no
interference with the coarse grid is visible.
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Figure 4.12: Relative error measured in L2 and energy norms of the multiscale solution
obtained by models M1, M2, and M4 with increasing number of DoFs (NDoFs) implied
by increasing order of approximation p.
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Figure 4.13: Poisson’s ratio versus order of approximation (reference value is from the
FEM reference model.

Next, the convergence of the multiscale solution with respect to the reference solution
is studied. The diagrams in Fig. 4.12 show the relative error measured in L2 and energy
norms, relative to the reference solution, versus number of DoFs in the multiscale model.
It can be observed that the increasing order of approximation p decreases the error for
all the models e.g. for the M1 model , from 13% to 8% in L2 norm. However, with
decreasing macroelement size from H = 4 to H = 1 the error increases, e.g. for p = 1, the
L2 norm error of model M4 is 6.0% and of model M1 is 13%. It confirms the resonance
effect i.e. proportionality of the error to ε/H ratio, where ε is the characteristic small-
scale length. Therefore, the M1 model with the oversampling technique delivers the
best results with an error of about 1% in L2 norm and 8% in energy norm.

Finally, Fig. 4.13 depicts the values of computed Poisson’s ratios in all the conducted
numerical experiments. These results correlate with previous convergence plots. The
closest value of Poisson’s ratio to the reference solution -0.35 was achieved with the M1
model with the oversampling technique, ν = −0.28.



Chapter 5

Conclusions and discussion

Detailed testing and validation of upscaling techniques are essential for reliable modeling
of complex materials. The objectives of the dissertation were development and testing
of the multiscale finite element method in the context of advanced materials. The work
presents a recent overview of the method and its original modifications, numerical tests,
and experimental validation.

The applicability of MsFEM was demonstrated on linear problems of steady-state
flow in heterogeneous media and elastic deformation of heterogeneous, anisotropic ma-
terial with mesostructure. The reduction of number of DoFs, even by four orders of
magnitude, was possible without introducing a significant additional approximation
error. Three possible types of modification to MsFEM were tested to deal with this ad-
ditional error: oscillation of boundary conditions, introduction of new multiscale basis
functions, and iterative correction of the multiscale solution. In some cases, i.e. iterative
schemes, it is even possible to resolve the problem with fine-mesh accuracy.

One of the objectives of this research was to test hierarchical multiscale basis func-
tions. It was shown through numerous tests and experimental validations that the error
of the multiscale solution can be reduced by increasing the number of DoFs even in
the extreme example of negative Poisson’s ratio material. This way of constructing
functions was also considered in beam and plate problems creating an anisotropic ap-
proximation. When it was combined with the iterative corrector scheme, it was possible
to increase the rate of convergence of the method, giving a new possibility of reaching
the desired accuracy. Moreover, a new way of building multiscale basis functions and
increasing the number of DoFs was proposed by using B-splines. It was shown that this
approach outperforms MsFEM with the oversampling technique. However, a strong res-
onance effect was observed with this approach. The effect can be reduced by increasing
the order of the B-spline used.

The MsFEM approach was validated using experimental tests of 3D printed material.
A three-scale approach was proposed: on the microlevel the orthotropic material para-
meters were experimentally homogenized, then the designed mesostructure was built
into the MsFEM shape functions, and the mechanical analysis was finally performed at
the macroscale. The multiscale solution correlated well for a static test, yielding a 2-5%
difference with the experiment for higher-order multiscale functions. In the dynamic
tests, the measured natural frequencies of the tested specimens were captured by the
MsFEM model within 5% of error.

Experimental testing included vision-based measurements to obtain deformation and
strain fields. The dynamic test with the use of accelerometer contributed to the field of
experimental testing of 3D printed material. In addition, a novel material testing of 3D
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printed ABS material using positron annihilation lifetime spectroscopy was proposed.
The following original contributions are associated with this dissertation:

1. Application of B-spline functions in the MsFEM framework, including implement-
ation of the idea and its numerical examination for steady-state flow problems in
heterogeneous media.

2. Adaptation of MsFEM to the analysis of sandwich beams and plates using higher-
order hierarchical multiscale functions and the iterative corrector scheme. Imple-
mentation and numerical examination of the idea on examples of 2D and 3D
structures and validation by experimental data was performed.

3. Novel experimental testing of 3D printed ABS material and samples made of it
using digital image correlation, accelerometers, and positron annihilation lifetime
spectroscopy.

4. Application of MsFEM to mechanical analysis of 3D printed elements and valid-
ation by comparison of numerical modeling with experiments.

5. Testing MsFEM for the problem of metamaterial of negative Poisson’s ratio.

There is a wide range of disciplines that the application of advanced materials con-
cerns, highlighting particularly important ones for society, including medicine, building
engineering, and military and defense. The author believes that the study of digital
representation, modeling of composite materials, and development of MsFEM may be
beneficial to the process of designing future materials, accelerating the progress in some
of the aforementioned disciplines. Further research on the development of the method
may include implementation and testing of other constitutive laws in the multiscale
framework, e.g., to predict whole mechanical response of the 3D printed elements in-
cluding nonlinear range. Another idea for future research may concern technical diffi-
culties in preparing the MsFEM model mentioned by many authors, i.e. the difficulty of
meshing the fine-scale details in particular close to the boundary of macroelements that
may lead to very irregular meshes and approximation spaces with poor properties. This
could be potentially improved by decoupling fine mesh from coarse grid using geometric-
ally unfitted finite element methods [3]. In this methods the problems are solved using
the standard FEM, but the variational formulation is modified so that interfaces and
boundaries are integrated in a fine mesh that is not fitted to the geometry. This may
ease the process of building the multiscale model and stimulate application of MsFEM
in commercially available software based on the standard finite element algorithms.
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Streszczenie

„Modelowanie właściwości mechanicznych
wybranych zaawansowanych materiałów
za pomocą wieloskalowych elementów

skończonych”

Rozdział 1: Wprowadzenie

W ostatnich latach można zaobserwować znaczący postęp w dziedzinie nowych ma-
teriałów i technologii ich wytwarzania. Najlepszym tego przykładem są kompozyty,
metamateriały, i elementy wytwarzane w technologii druku 3D. Ich nowe właściwości
są uzyskiwane poprzez łączenie kilku materiałów bazowych (kompozyty) lub poprzez
układanie materiału w przestrzeni tak, aby uzyskać specyficzną mikrostrukturę (meta-
materiały, druk 3D). Naukowcy znajdują zastosowanie tych materiałów w kluczowych
gałęziach nauki i przemysłu, takich jak astronautyka, medycyna, przemysł samocho-
dowy, czy budownictwo. Zasadniczą częścią procesu projektowania nowego materiału
są kosztowne i czasochłonne eksperymenty laboratoryjne. Wspomagane są one również
obliczeniami numerycznymi, które pozwalają znacząco skrócić czas i koszt projektowa-
nia.

Wieloskalowa struktura zaawansowanych materiałów wymaga uwzględnienia skali
mikro w symulacjach komputerowych. Zadanie to, opisywane przez równania różnicz-
kowe z oscylującym współczynnikiem, jest trudne do bezpośredniego rozwiązania za
pomocą standardowych metod numerycznych takich jak np. metoda elementów skoń-
czonych (MES) ze względu na rozmiar problemu (liczbę stopni swobody) i czas obliczeń.
Dlatego rozwijane są wieloskalowe metody numeryczne, które poprzez stworzenie relacji
pomiędzy skalą makro i mikro, pozwalają na przeprowadzanie obliczeń w skali makro
jednocześnie uwzględniając w obliczeniach skalę mikrostruktury materiału. Jedną z
takich metod jest wieloskalowa metoda elementów skończonych (MsFEM).

W niniejszej pracy podjęto próbę zastosowania MsFEM w modelowaniu numerycz-
nym mechaniki zaawansowanych materiałów. Zaproponowano oryginalne modyfikacje
metody oraz przeprowadzono szereg numerycznych testów sprawdzających dokładność
i skuteczność metody. Ponadto zaproponowano adaptację MsFEM do modelowania
elementów wytwarzanych w technologii druku 3D. Numerycznym testom towarzyszyły
nowatorskie pomiary eksperymentalne na próbkach wykonanych za pomocą druku 3D
przeprowadzone w celu walidacji metody.
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Rozdział 2: Przegląd literatury

W literaturze można znaleźć wiele metod, które dedykowane są problemom wieloskalo-
wym i rozwiązują podjęte zadanie w różny sposób m.in. metoda homogenizacji asymp-
totycznej [45] lub metoda wykorzystująca reprezentatywny element objętości (RVE)
[35], czy dwupoziomowa metoda elementów skończonych (FE2) [20].

Metoda MsFEM zaproponowana przez Hou i Wu [25] zakłada utworzenie rzadkiej
siatki makroelementów, z reguły nie uwzględniającej mikrostruktury. Ideą metody jest
obliczanie funkcji bazowych siatki rzadkiej rozwiązując zagadnienie brzegowe z tym sa-
mym równaniem różniczkowym co oryginalny problem. W praktyce obliczane są funkcje
kształtu w każdym makroelemencie używając siatki gęstej, która jest dopasowana do
mikrostruktury. Następnie przeprowadzane są globalne obliczenia jak w klasycznej me-
todzie elementów skończonych na siatce rzadkiej. Umożliwia to znaczne zmniejszenie
liczby stopni swobody przy jednoczesnym uwzględnieniu informacji o złożonej mikro-
strukturze, która jest wbudowana w funkcje bazowe. Zaletą metody jest fakt, iż oblicze-
nia dla poszczególnych makroelementów odbywają się w sposób całkowicie niezależny.
Umożliwia to zrównoleglenie algorytmu, co dodatkowo skraca czas obliczeń.

Obliczania wieloskalowe wiążą się z wprowadzeniem dodatkowych błędów numerycz-
nych. Autorzy oryginalnej metody zauważyli, że jakość otrzymanego rozwiązania za-
leży w dużej mierze od warunków brzegowych w zagadnieniu obliczania funkcji kształtu
(efekt rezonansu). Aby zniwelować ten efekt zaproponowana została technika „over-
sampling” [25, 28], w której problem funkcji kształtu jest rozwiązywany w większym
obszarze niż jeden makroelement, a z jego wyników generowane są oscylujące funkcje
kształtu na brzegu danego makroelementu. Stosowano również periodyczne warunki
brzegowe, podobne jak w metodzie RVE [56].

Innym podejściem poprawiającym rozwiązanie metody MsFEM jest zwiększanie
liczby stopni swobody analogiczne do zwiększania stopnia aproksymacji w MES. Nowe
funkcje kształtu wyższego rzędu w MsFEM zostały wprowadzone na bazie wielomianów
Lagrange’a [19] oraz funkcji hierarchicznych [36, 6]. To podejście zostało wykorzystane
w algorytmie adaptacji [43, 31] oraz w zadaniu optymalizacji topologii [37].

Zastosowanie siatki rzadkiej i siatki gęstej umożliwia w łatwy sposób wykorzystanie
iteracyjnego podejścia korekcji rozwiązania. Ponadto, zaadaptowano w MsFEM podej-
ście z metody multigrid [24] oraz lokalną korekcję w nośnikach funkcji bazowych [42].
Dla tego ostatniego przykładu metoda zbiega się do rozwiązania z siatki gęstej.

Oryginalnie MsFEM został opracowany w celu skutecznego rozwiązywania proble-
mów przepływu w niejednorodnych ośrodkach porowatych wykorzystywanych w symu-
lacjach złóż ropy naftowej i gazu ziemnego [49]. Metoda została później zaadaptowana
do problemów sprężystości kompozytów i metamateriałów w [56]. Przy użyciu MsFEM
modelowano m. in. problem zginania belek i płyt [57], lepkosprężysty beton asfaltowy
[31, 33], czy kompozyty piezoelektryczne [18].

Rozdział 3: Pełne teksty artykułów stanowiących rozprawę
doktorską

W tym rozdziale pracy zamieszczono pełne teksty artykułów stanowiących rozprawę
doktorską. Poniżej znajduje się lista z danymi bibliograficznymi artykułów wraz z
punktacją zgodną z wykazem czasopism naukowych Ministerstwa Edukacji i Nauki oraz
współczynnik wpływu czasopism (Impact Factor, IF):
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Artykuł 1 M. Dryzek i W. Cecot. A coupling of multiscale finite element method and
isogeometric analysis. International Journal for Multiscale Computational Engineering,
18(4):439–454, 2020. 40 punktów, IF = 1.591.

Artykuł 2 M. Dryzek i W. Cecot. The iterative multiscale finite element method for
sandwich beams and plates. International Journal for Numerical Methods in Engine-
ering, 122:6714–6735, 2021. 200 punktów, IF = 3.477.

Artykuł 3 M. Dryzek i E. Dryzek. Positron annihilation lifetime spectroscopy of
ABS objects manufactured by fused deposition modelling. Acta Physica Polonica A,
132(5):1506-1508 , 2017. 40 punktów, IF = 0.577.

Artykuł 4 M. Dryzek, W. Cecot, i M. Tekieli. Experimental and multiscale compu-
tational static and dynamic study of 3D printed elements with mesostructure. Finite
Elements in Analysis and Design, 215:103876, 2023. 100 punktów, IF = 2.618.

W następnych podrozdziałach zamieszczono streszczenie każdego z nich.

Artykuł 1: Połączenie metody MsFEM z analizą izogeometryczną

Wartykule zaproponowane zostało budowanie wieloskalowych funkcji bazowych MsFEM
wykorzystując krzywe B-sklejane wyższego rzędu rozpięte na kilku makroelementach.
Główną cechą tego podejścia jest obliczanie funkcji bazowej w jednym kroku w całym jej
nośniku, w przeciwieństwie do standardowych funkcji kształtu stosowanych w MsFEM,
które są obliczane element po elemencie siatki zgrubnej i sklejane w czasie agregacji.

Przeprowadzono wybrane eksperymenty numeryczne na przykładzie zagadnienia
przepływu w ośrodkach porowatych z periodycznym i losowym rozkładem właściwo-
ści materiału, aby przetestować zmodyfikowaną metodę MsFEM z nowymi funkcjami
bazowymi. Uzyskano lepsze wyniki od standardowej metody nawet z techniką over-
sampling. Zaobserwowano jednak efekt rezonansu, gdy stosunek wielkości wtrąceń do
rozmiaru siatki zgrubnej dążył do jednego. Pokazano, że jest możliwa redukcja tego
efektu poprzez zwiększenie rzędu krzywych B-sklejanych.

Artykuł 2: Iteracyjna metoda MsFEM dla belek i płyt warstwowych

W artykule zaadaptowano metodę MsFEM do analizy belek i płyt warstwowych ze zło-
żoną strukturą kompozytową. Zaproponowana modyfikacja znacząco zmniejsza liczbę
stopni swobody modelu obliczeniowego (nawet o cztery rzędy) dzięki anizotropowej
aproksymacji wyższego rzędu oraz nowym funkcjom kształtu uwzględniającym niektóre
warunki brzegowe. Co więcej, w algorytmie wykorzystano iteracyjny schemat korek-
cyjny [42] odpowiednio zmodyfikowany do problemów zginania. Dzięki temu możliwe
jest odtworzenie rozwiązania z siatki rzadkiej. Przedstawiono kilka przykładów obli-
czeniowych, aby zademonstrować możliwości metody. Stwierdzono, że zaproponowane
modyfikacje funkcji kształtu i aproksymacja wyższego rzędu zwiększają zbieżności al-
gorytmu iteracyjnego. Na koniec poddano walidacji model wieloskalowy, porównując
wyniki numeryczne z wynikami eksperymentalnymi uzyskanymi w próbie zginania war-
stwowej płyty falistej o dużej gęstości. Zaobserwowano bardzo dobrą zgodność obu
wyników dla pojedynczej iteracji algorytmu.
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Artykuł 3: Spektroskopia czasu życia pozytonów w obiektach z ABS
wytworzonych w procesie osadzania topionego materiału

W artykule przeprowadzono badania z wykorzystaniem spektroskopii czasu życia po-
zytonów (PALS) na próbkach z polimeru akrylonitrylo-butadieno-styrenowego (ABS)
wytworzonych w procesie osadzania topionego materiału w celu zbadania możliwości
identyfikacji różnic w mikrostrukturze. Przygotowano zestaw próbek składający się z
płytek kwadratowych i długich prostokątnych (o długości 100 mm i 200 mm) wytwa-
rzanych tak, że ustawienie wszystkich włókien materiału jest równoległe do dłuższej
krawędzi. Stosowano różne odległości między włóknami, co skutkuje różnym nakłada-
niem się osadzanego materiału w kierunku poziomym i pionowym. Nieznaczny wzrost
czasu życia orto-pozytonium, wskazujący na wzrost średniego promienia wolnej objęto-
ści, zaobserwowano dla najdłuższych próbek, dla których spodziewany jest największy
wpływ nakładania się włókien w kierunku poziomym. Nie zaobserwowano różnic dla
parametru odległości między włóknami. Badania przeprowadzono w Instytucie Fizyki
Jądrowej PAN w Krakowie, w pracowni anihilacji pozytonów.

Artykuł 4: Eksperymentalne i wieloskalowe numeryczne badania ele-
mentów drukowanych 3D z mezostrukturą w warunkach obciążenia sta-
tycznego i dynamicznego

W artykule przedstawiono wyniki przeprowadzonych badań eksperymentalnych elemen-
tów ze złożoną mezostrukturą drukowaną metodą osadzania topionego materiału. Wy-
niki eksperymentalne posłużyły do walidacji modelu numerycznego metody MsFEM z
aproksymacją wyższego rzędu. Zaproponowano trójskalowe podejście w modelu nume-
rycznym: w mikroskali ścieżki włókien filamentu są homogenizowane przy użyciu or-
totropowego modelu materiału o eksperymentalnie zidentyfikowanych właściwościach;
w mezoskali wydrukowana struktura jest wbudowana do funkcji kształtu MsFEM; w
makroskali całe zadanie jest ostatecznie rozwiązywane. Aby zweryfikować podejście
przeprowadzono eksperymentalne pomiary statycznego zginania oraz drgań swobod-
nych belek o czterech różnych mezostrukturach i dwóch orientacjach drukowania. Po-
miary wykonano z wykorzystaniem optycznego systemu pomiaru deformacji pola od-
kształcenia. Wyniki eksperymentalne zostały bardzo dobrze odtworzone przez model
numeryczny w wielu przykładach. Ponadto badanie ujawniło, że hierarchiczne funkcje
kształtu wyższego rzędu mogą dokładnie reprezentować drgania swobodne nawet dla
wysokich częstotliwości.

Rozdział 4: Walidacja eksperymentalna

W tym rozdziale zamieszczono zdjęcia próbek i elementów badanych w czwartym ar-
tykule oraz wyniki badań numerycznych metamateriału z ujemnym współczynnikiem
Poissona zaprojektowanym na podstawie badań eksperymentalnych z [34].

Ujemny współczynnik Poissona materiału oznacza, że materiał poddany rozciąga-
niu będzie również rozszerzał się w kierunku poprzecznym. Takie zachowanie materiału
jest spowodowane obecnością periodycznej mezostruktury, której elementy skręcają się
i zginają podczas rozciągania próbki. Materiał z mezostrukturą nazywany jest meta-
materiałem. Zaproponowano eksperyment numeryczny, w którym wyznaczano współ-
czynnik Poissona wybranego metameteriału przy pomocy wyników uzyskanych metodą
MsFEM dla różnego stopnia aproksymacji oraz z wykorzystaniem techniki oversampling.
Wykazano zmniejszenie się błędu rozwiązania mierzonego w normie L2 oraz w normie



107

energetycznej względem rozwiązania referencyjnego wraz ze wzrostem stopnia aprok-
symacji. Zaobserwowano również zwiększenie błędu przy zmniejszaniu rozmiaru siatki
rzadkiej, co wskazuję na silny efekt rezonansu. Rozwiązanie uzyskane techniką over-
sampling jest najbardziej zbliżone do rozwiązania referencyjnego. Dla najmniejszego
rozmiaru makroelementów współczynnik Poissona uzyskany z liniowymi funkcjami był
dodatni i wyniósł 0.0028. Przy zwiększaniu stopnia aproksymacji uzyskano współczyn-
nik równy -0.11. Korzystając z techniki oversampling uzyskano współczynnik -0.28.
Wynik referencyjny to -0.35, a wynik z eksperymentu to -0.28.

Rozdział 5: Podsumowanie

Niniejsza rozprawa obejmuję temat modyfikacji i testowania wieloskalowej metody ele-
mentów skończonych w kontekście zaawansowanych materiałów. W pracy przedsta-
wiono przegląd literatury dotyczącej metody, autorskie modyfikacje, testy numeryczne
oraz eksperymentalną walidację metody.

Przeprowadzono liczne testy i walidację metody MsFEM z hierarchicznymi funk-
cjami bazowymi. Wykazano, że błąd rozwiązania wieloskalowego można zmniejszyć,
zwiększając liczbę stopni swobody nawet w skrajnym przykładzie materiału o ujem-
nym współczynniku Poissona. Wykorzystano funkcje wyższego rzędu w problemach
belek i płyt. Łącząc to podejście z iteracyjnym schematem korekcji, udało się zwiększyć
szybkość zbieżności metody. Zaproponowano ponadto nowy sposób budowania wielo-
skalowych funkcji bazowych i zwiększania liczby stopni swobody wykorzystując krzywe
B-sklejane. Wykazano, że to podejście dla pewnych rozmiarów makroelementów daje
wyniki lepsze od standardowej metody MsFEM z techniką oversampling. Jednak w tym
podejściu zauważono silny efekt rezonansy. Udało się go zmniejszyć, zwiększając rząd
krzywych B-sklejanych.

Metoda MsFEM została poddana walidacji poprzez porównanie z wynikami z ekspe-
rymentów na próbkach wytwarzanych w technologii druku 3D. Rozwiązania numeryczne
z modelów wieloskalowych z funkcjami wyższego rzędu dobrze korelowały z wynikami
eksperymentalnymi statycznego zginania. Błędy rozwiązania znajdowały się w prze-
dziale 2-5%. W testach dynamicznych zmierzone częstotliwości drgań własnych bada-
nych próbek zostały przewidziane przez model MsFEM z błędem 5%.

Do oryginalnych aspektów pracy należą:

1. Zastosowanie krzywych B-sklejanych w algorytmie MsFEM obejmujące imple-
mentację idei i testy numeryczne dla problemu przepływu w stanie ustalonym w
ośrodkach niejednorodnych.

2. Adaptacja MsFEM do analizy belek i płyt warstwowych z wykorzystaniem hie-
rarchicznych funkcji wyższego rzędu i iteracyjnego schematu korekcyjnego. Im-
plementacja i testy numeryczne na przykładach struktur 2D i 3D oraz walidacja
z danymi eksperymentalnymi.

3. Nowatorskie testowanie elementów z ABS wytworzonych w technologii druku 3D
przy użyciu optycznego systemu pomiaru deformacji pola odkształcenia, akcele-
rometru, i spektroskopii czasu życia pozytonów.

4. Zastosowanie MsFEM do analizy mechanicznej elementów wytwarzanych w tech-
nologii druku 3D i walidacja poprzez porównanie wyników z modelu numerycznego
z eksperymentami.
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5. Testowanie MsFEM na przykładzie problemu metamateriału o ujemnym współ-
czynniku Poissona w celu identyfikacji jego właściwości.

Istnieje szereg dyscyplin naukowych i inżynierskich, w których zaawansowane mate-
riały znajdują zastosowanie. Autor uważa, że dalsze badania nad modelowanie wieloska-
lowym materiałów kompozytowych i metamteriałów oraz rozwój metod wieloskalowych
takich jak metoda MsFEM, przyspieszy postęp w tych dyscyplinach. Dalsze badania
nad rozwojem metody MsFEM mogą obejmować implementację i testowanie innych
modeli konstytutywnych. Innym aspektem przyszłych badań mogą być wspominane
przez wielu autorów artykułów trudności związane z przygotowaniem modelu MsFEM
np. trudność z siatkowaniem w skali gęstej, zwłaszcza blisko granicy makroelemen-
tów, co może prowadzić do nieregularności siatki i pogorszenia właściwości przestrzeni
aproksymującej. Potencjalnym rozwiązaniem może być rozdzielenie siatki gęstej i siatki
rzadkiej korzystając z metod niedostosowanych elementów skończonych (unfitted finite
element method). W tych metodach problem jest rozwiązywany przy pomocy stan-
dardowej metody elementów skończonych, ale powierzchnie międzyfazowe lub granice
geometrii siatki rzadkiej są zintegrowane w sformułowaniu wariacyjnym, a siatka gęsta
nie musi być dopasowana do tej geometrii. Może to ułatwić proces przygotowywania
wieloskalowych modeli i korzystanie z MsFEM w komercyjnie dostępnym oprogramo-
waniu.
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