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Abstract 
A method of creating a constitutive model of layered rocks based on an artificial 
neural network (ANN) is reported in this work. The ANN gives an implicit 
constitutive function ∑ ∑n n1 F( E, ), relating the new state of homogenized 
stresses n 1 with the old state Σn and with the increment of homogenized strains 

. The first step is to repeatedly run a strain- controlled homogenisation on 
an uni-dimensional finite element model of a periodic cell with elastic-plastic 
models (Drucker-Prager) of the components. Paths are created in ( , ) space, 
from which, a set of patterns is formed to train the ANN. A description of how to 
prepare this data and a discussion on ANN training issues are presented. Finally, 
the procedure based on trained ANN is put into a finite-element code (ZSoil.PC) 
as a user-delivered constitutive function. The approach is verified by comparing 
the results of the developed model basing on ANN with a direct (single-scale) 
analysis, which showed acceptable accuracy. 

Keywords: layered rocks, finite element method, homogenisation, artificial neural network 
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1.  Introduction 

Layered rocks are an example of a  medium for which different strategies of 
numerical analysis related to the problems of geomechanics can be employed. 
Generally, layered rocks possess a periodically inhomogeneous micro-structure 
which consists of two (or more) layers with different material properties. While 
using the finite element approach, the main division may be done between direct 
(or single-scale) and multi-scale modelling. 

In the first type of analysis, FE meshing should correspond to the layers set 
up, see Fig. 1, and at least one finite element must be placed in the depth of 
each layer. This causes a very rapid growth of the FE mesh size, with up to multi-
million DOFs, particularly for 3D problems. Furthermore, mesh generation is 
difficult and demanding in such cases. Nevertheless, single-scale modelling can 
be used in small problems and provides results which constitute a reference for 
the other approaches, as shown in Section 6.

Multi-scale modelling requires the introduction of homogenised media in terms 
of averaged stresses Σ and strains E. A brief description of the homogenisation 
procedure of the layered media, such that each layer is described by a material 
model belonging to wider class of elastic-plastic models, is given in Section 2. 

One of the ways of proceeding is known as FE2 (see Giuntoli 2019, Feyel 
1999), in which at each integration point of macro-level finite elements, a micro-
level BVP set on the domain of periodic cell is solved simultaneously with 
a macro-level analysis. In the case of layered media, it seems to be particularly 
promising, mainly due to the simplicity of the micro-level problem. Nevertheless, 
in the present work the other approach is applied. First, a large set of separate 
problems of micro-level analysis is performed, creating data for of a constitutive 
model identification. These are paths created in (Σ, E) space, from which, a set 
of patterns is formed to train the artificial neural network (ANN). A  detailed 
description of this way of proceeding given in Section 3. 

Obviously, the described procedure is not the only possibility. In the other, 
elastic-plastic models based on yield surfaces with a prescribed shape are used. 
Instead, in the ANN based procedure, a constitutive function is sought, taking 
an implicit form that is consistent with an incremental solution algorithm for 
any problem with a  strain-driven nonlinear relation, see Fig. 1. The complete 
approach to numerically analysing layered media using an artificial neural 
network as the constitutive driver is shown in Fig. 2. To verify the approach, the 
obtained results are compared with a direct (single-scale) model.

Fig.  1.  Strategies of numerical analysis 
applicable to layered rocks (own elaboration)
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Nowadays, ANN based computations are increasingly used in geotechnical 
engineering, including in problems of: slope stability analysis, see Ferentinou 
(2007), Goh (2003); estimating TBM method performance, see Benardos 
(2004); bearing capacity of a pile submitted to lateral load, see Das (2006). The 
constitutive behaviour of homogenous soil can also be simulated using ANN, 
for example, in the work of Najjar (2007) and Lucon (2007). A thorough review 
of the ANN application in the field of geotechnics can be found in the work of 
Shahin (2008) and more recently, Moayedi (2020) and Baghbani (2022). Our 
goal is to show how an ANN-based approach can be used to create a constitutive 
model of layered rocks as an example of composite material with nonlinear 
materials of components, in a fully automated way, without any assumption of 
its form. This follows along the general path of proceeding shown in the works of 
(Waszczyszyn, 1999; Lefik, 2002; Ghaboussi, 1998; Hashash, 2004).

2.  Homogenisation technique of layered media

According to the general formulation of the homogenisation problem, the total 
strain ε  is the sum of macro-level averaged strains E(X) and the fluctuating, 
periodic strains εp(x). The same split relates to displacements.

	 ε X x E X ε x
u X x U X E X x u x
( , ) ( ) ( ),
( , ) ( ) ( ) : ( )

p

p

	 (1)

In the case of a layered (uni-periodic) medium, the microstructure geometry 
resulting from parallel material layers is homogeneous in two directions, namely 
(y,z), while it is periodic in the third direction (x), normal to the layers direction. 
A periodic cell has a finite length in the direction x, named pX while it degenerates 
in the two others. This means that the dimensions of the periodicity cell in 
y and z tend to 0, pY→0, pZ→0. The periodic cell is a 1D line segment. Periodicity 
conditions imposed on the all displacement vector components at two pairs of 
parallel surfaces result with the conditions: 
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The displacement vector of the periodic perturbation up then has all three 
nonzero components, but they are functions of only one spatial coordinate x, it 
is in a direction perpendicular to the stratification. The periodicity condition has 
to be imposed at the opposite ends of the segment on the displacement field in 
the form: up(x+)=up(x-). Figure 3 shows the setup of a 1D model of the periodic 
cell for analysis of the layered medium.

Micro -level FEM
HFEMANN

Macro -level FEM

Usage of ANN as
a constitutive

(                         )

ANN

ANN
y

Fig.  2.  Application schema and software  
used in the FE analysis of the layered media 
(own elaboration)
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In the strain field of the periodic perturbation, the components � � �zz
p

yy
p

yz
p� � �0,  

thus the total strains in these directions are directly equal to the strains of the 
macro-model. � � �yy YY zz ZZ yz YZE E E� � �, , . The  relationship between the 
strains and displacements that define the form of the operator B1D takes the form:
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Equilibrium conditions in a weak form leads to equation (4):

	 B B1 1D T D pE u 0( )σ 	 (4)

The solution of Eq. (4) is established formally by the finite elements method, 
see (Urbański, 2005), which in this case leads to a  very simple model. The 
number of 1D finite elements with linear shape functions should be equal to the 
number of layers in the periodic cell, leading, in the case of two layers, to a very 
small, 3-node FE model of the cell, with only three degrees of freedom. This is 
the case firstly because of the periodicity condition and secondly because in 
order to avoid singularity of the finite element equations system, a set of three 
kinematical constraints eliminating rigid body movements have to be introduced 
to the model, fixing translations at the internal node. After solving it, obviously 
with an iterative procedure which must be run when any layer has a nonlinear 
constitutive model, micro-level strains and in consequence also stresses 
which are a piecewise constant within each layer are set. The average stresses 
Σ are evaluated as integrals along the line divided by the cell volume which is 
equivalent to its length.

	 ∑ σ
1
p

dx
X x

x

	 (5)

The method outlined above provides an exact solution for the homogenisation 
problem for any layered media. When strain-controlled homogenisation is used 
as a  tool to create a  macro-constitutive model then the increment of macro-
strains DE is imposed, and the response of the medium expressed in macro-
stresses Σ create the required path in the (E,Σ) space. Obviously, in the case of 
material nonlinearity, for each path, the homogenisation procedure must be run 
in incremental way in n steps until a given strain range is achieved:

Fig.  3.  Setup of the 1D model of the periodic 
cell of the layered medium (own elaboration)
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3.  Data preparation for model identification

The fundamental problem when dealing with the problem of preparing data for 
ANN-based identification of the model is to organise a large number of separate 
runs of the homogenisation procedure, covering the whole expected states of 
stresses and strain increments. This creates a domain in 12-dimensional space. In 
the case of layered media, this task is relatively simple because homogenisation 
is performed on a very small FE model, and the problem possesses a  level of 
symmetry which allows the reduction of this effort. This was accomplished in 
the following way: 

1.	 The increment DEXX was chosen covering the whole range of expected 
strains for compression or tension in a direction normal to the layers.

2.	 For each of the above cases, a  reduced space of strain increments 
is considered. They are set in subsidiary 3D space as shown in Fig. 4. 
The vector � � � � � �E ’ { , , , , , }’ ’ ’ ’ ’ ’ ’� E E E E EXX Y Y Y Y XY Y Z

T0 is used as an 
increment of control data of the homogenisation procedure which is run 
across the full range of the expected strains. This enables the user to 
keep control of the data preparation procedure in an easier way.

3.	 For obtained points in stresses and strain increments, space 
transformation due to rotation around the X  axis is performed (in the 
example Da=15o, thus it is done twenty-three times). In this way, axial 
symmetry with respect to the X axis and the tensorial character of data is 
preserved and full 3D tensors consisting of input X and output Y vectors 
are used later to train the ANN. 

In the procedure described above, the number of X,Y patterns obtained from 
one path is equal to the number N of stress-strain points in it, i i i N, ,∑ ,0E ,  
with i if

�
E E ￼ where f is the control function of load factor l, leading to:

	 X ∑ ∑{ , ( ) ( )}, , ,i i
i i

i i N1
1 1 	  (7)

The number of patterns might substantially increase, up to Nmax=N(N-1)/2, 
when for any given stress point, a  larger set of strain increments and the 
corresponding stresses are included:

	 X ∑ ∑i
j
i

j i
j i N j i N1

1 1 1, ( ) ( ) , , , , , .E E E 	 (8)

This procedure, called “diluting”, is shown in Fig. 5. In addition to increasing 
the number of patterns, it widens the range of strain increments. It may only 
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Fig. 4. The idea of pattern generation to train the ANN (own elaboration) 
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This procedure, called “diluting”, is shown in Fig. 5. In addition to increasing the number of 

patterns, it widens the range of strain increments. It may only be performed for smooth paths 

and with controlled intensity. This is essential when using a trained ANN as the constitutive 

function in a boundary value problem; however, it does not require any additional 

computational effort. In the presented example, the procedure of diluting is performed.  
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Fig. 5. Increasing the number of patterns and widening the range of strain increments by 

the diluting procedure (own elaboration) 

Fig.  4.  The idea of pattern generation to train 
the ANN (own elaboration)



No. 2023/007

6 https://doi.org/10.37705/TechTrans/e2023007

be performed for smooth paths and with controlled intensity. This is essential 
when using a  trained ANN as the constitutive function in a  boundary value 
problem; however, it does not require any additional computational effort. In 
the presented example, the procedure of diluting is performed. 

Another method of enhancement was to randomise the input values of Emn 
by introducing a randomised control function, instead of steadily increasing one, 
see Fig. 6 for details.
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Fig.  5.  Increasing the number of patterns and 
widening the range of strain increments by the 
diluting procedure (own elaboration)
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Fig. 7. Multilayer perceptron-type ANN as a constitutive function (own elaboration) 

A single pattern record for training ANN and its schema is shown in Fig. 7. In practice, a 

large number of such records is needed, for example, the number of records finally used to 

train the ANN from the example described in Section 6 was about 200,000. 

 

4. ANN-based creation of the constitutive model  

The multi-layered, unidirectional perceptron neural net (shown schematically in Fig. 7) 

is a nonlinear function 
MN RR  YXΦ : , defined recursively as: 

Fig.  6.  Randomised control function (own 
elaboration)

Fig.  7.  Multilayer perceptron-type ANN as 
a constitutive function (own elaboration)
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A single pattern record for training ANN and its schema is shown in Fig. 7. In 
practice, a large number of such records is needed, for example, the number of 
records finally used to train the ANN from the example described in Section 6 
was about 200,000.

4.  ANN-based creation of the constitutive model 

The multi-layered, unidirectional perceptron neural net (shown schematically in 
Fig. 7) is a nonlinear function Φ X Y: R RN M, defined recursively as:

	

Φ X:R x y i n n N

y w y
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i i

i
k k
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j

( ) ( ) ( )
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In Eq. (9), L >1 is the number of layers, and n(k) is the number of neurons 
in the k-th layer. These parameters define the topology of the artificial neural 
net. wj

(k) is the coefficients of the linear combination named as the weights, and 
b(k) is the bias, which is a term that shifts values of linear combinations. a(k) is 
the activation function, which is generally nonlinear. The activation functions 
available in our implementation are presented in Table 1.

Table 1. Activation functions available in AppANN

Name: LINEAR SIGMOID  TANH SOFTPLUS SOFTSIGN RELU

a(x)= x
1

1� �e x tanh x� � ln 1�� �ex x
x1+

0 0
0

,
,
x

x x
�
�
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File in *.csv format containing all records 
with patterns to train and test the ANN

 
 

Fig. 8. Dialogues enabling the user to set hyper-parameters in manual and optimisation mode (source: 
???) 

 

Learning rate is a parameter that controls the adjustment of the weights of a neural network 

with respect to the loss gradient. During the training process, the loss is calculated for inputs 

and the gradient of that loss is calculated with respect to the model’s weights. The learning 

rate is calculated after obtaining values of the gradients – the gradients get multiplied by the 

learning rate. The learning rate affects how huge the update is of the step to move towards the 

minimum point in the loss function. The lower the value, the slower we travel along the 

downward slope. If the step is too big, the minimum point on the loss function could be 

missed. If the step is too small, it might take too long to converge to the minimum point. 

More information can be found in the work of Smith (2017). 

Batch size is the number of samples that are passed to the network at once. This is one of the 

most important hyperparameters to tune in the training of neural networks. The larger batch 

size allows computational speedups from the parallelism. Too large a batch size will lead to 

poor generalisation, see the work of Keskar (2017).  

Standardisation is an important step in data pre-factoring. In practical applications, the data 

set contains a variety of features, often with different distributions and intervals, with different 

levels (dimension), which easily affect our model training. Data standardisation removes the 

effects of scale, feature, and distribution differences in the model. 

Fig.  8.  Dialogues enabling the user to set 
hyper-parameters in manual and optimisation 
mode (source: own elaboration)
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For an assumed set of topological parameters L and n(k), the values of wj
(k) 

and b(k) are the results of using an objective loss function to minimise error. The 
theoretical background for this is provided by the mathematical theory of artificial 
neural networks, with the universal approximation theorem (Hertz 1991, Bishop 
2006). It has been proven that a multi-layered, unidirectional perceptron neural 
network is capable of approximating an arbitrary multi-dimensional nonlinear 
function e.g. Φ X Y: R Rn m .

Using the original software AppANN of IdeaLogic Ltd., the building of multi-
layered perceptron architecture could be easily achieved. In the subsection 
“Layers”, the user can determine the number of layers and the corresponding 
parameters for each layer, such as the number of neurons, the activation function 
and the dropout factor. The user interface of AppANN is shown in Fig. 8.

Learning rate is a parameter that controls the adjustment of the weights of 
a neural network with respect to the loss gradient. During the training process, the 
loss is calculated for inputs and the gradient of that loss is calculated with respect 
to the model’s weights. The learning rate is calculated after obtaining values of 
the gradients – the gradients get multiplied by the learning rate. The learning rate 
affects how huge the update is of the step to move towards the minimum point in 
the loss function. The lower the value, the slower we travel along the downward 
slope. If the step is too big, the minimum point on the loss function could be 
missed. If the step is too small, it might take too long to converge to the minimum 
point. More information can be found in the work of Smith (2017).

Batch size is the number of samples that are passed to the network at once. 
This is one of the most important hyperparameters to tune in the training of 
neural networks. The larger batch size allows computational speedups from the 
parallelism. Too large a batch size will lead to poor generalisation, see the work 
of Keskar (2017). 

Standardisation is an important step in data pre-factoring. In practical 
applications, the data set contains a  variety of features, often with different 
distributions and intervals, with different levels (dimension), which easily affect 
our model training. Data standardisation removes the effects of scale, feature, 
and distribution differences in the model.

Standardisation means subtracting the mean value of all features from each 
feature and dividing the result by the standard deviation s  according to the 
standardisation equation: 

	 x
x

’�
��
�

	 (10)

Normalisation is the process of reducing data values to specific ranges in 
order to be able to compare them. Most often, they are normalised to ranges: 
<0:1> or <-1:1> with the minmax technique: 

	 x
x x

x x
’

min( )
max( ) min( )

�
�
�

	 (11)

Optimiser –  the user can choose between the following optimisers: 
stochastic gradient descent (SGD), adaptive moment estimation (Adam), root 
mean square propagation (RMSprop), adaptive gradient (Adagrad), and adaptive 
delta (Adadelta). For their descriptions, see (Smith 2017).

Number of epoch specifies complete passes of the entire training dataset 
passing through the training or learning process and it decides how many times 
the change in the weights of the network will happen.

Loss function. The available functions are means squared error (MSE), 
root mean squared error (RMSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE), and coefficient of determination (R2). Exact formulae 
can be found in numerous references, e.g. Bishop (2006), Raschka (2017) and 
Szeliga (2017).
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Dropout factor is one of most efficient regularisation techniques to prevent 
overfitting. It is the percentage of randomly deactivated neurons during training 
in each training iteration. Some neurons tend to be too strong and when they are 
deactivated, the neural network is forced to find a different decision path and 
activate neurons which have previously not been used so much.

Train/test defines the proportion of data used for training and for testing.
The neural network training uses the Keras package with TensorFlow in the 

back-end. For the purposes of tuning the neural network hyperparameters, the 
python library Hyperopt has been implemented in software. It uses the tree of 
Parzen estimators (TPE) and adaptive TPE techniques to find the optimal set 
of parameters. The user can define the space of the optimised parameters 
by setting the lower range limit, the upper range limit, the step (for numerical 
parameters), and by the specification of other items. The algorithms of the above 
are given in the literature (Bergstra 2011, Bergstra 2013).

5.  Implementation issues concerning ANN used as 
a constitutive model

The computations were run within the FE system ZSoil.PC®, which contains 
the option of a  user material model (UMat). A  piece of UMat code shown in 
Fig. 9 utilises the universal routine RunModel (of IdeaLogic) for reading ANN in 
a form X→Y written in C++ . 

Other required parts of code (transformation local-global of stresses, strains 
and stiffness, Gauss point storage handling and updating) are also contained in 
the ZSoil® UMat. The evaluation of material stiffness ∆ for monotropic material 
as an inverse of compliance matrix is given in Eq. (12). Elastic constants 
E E G G v vvv hh v h vh hh, , , , ,  are based on (Vlasov 1990), where they are given in 
a closed form for a two-layer composite material.
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Although the described method of proceeding with the constitutive matrix 
of the model has a limited choice of nonlinear problem-solution algorithms to 
the initial stiffness algorithm only, it is more convenient than the alternative. 
Note, however, that all material model nonlinearities are reproduced by the ANN 
function. 
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5. Implementation issues concerning ANN used as a constitutive model 

The computations were run within the FE system ZSoil.PC®[26], which contains the 

option of a user material model (UMat). A piece of UMat code shown in Fig. 9 utilises the 

universal routine RunModel (of IdeaLogic) for reading ANN in a form X→Y written in C++ .  

ANN_ToZS( iModel,…,sOld,dE,sNew) //  C++ called from Fortran code
……..
double X[12]; //  temporary vector for stresses and increment of strains
for (int i = 0; i < 6; i++)

{
X[i] = sOld[i]; //setting old stress
X[i + 6] = dE[i]; //setting strain increment
}

ANNModels[iModel]->RunModel (12,6,X, sNew); //evaluate new stress
……….  

Fig. 9. Routine used to read ANN within UMat code (source ???) 

 Other required parts of code (transformation local-global of stresses, strains and 

stiffness, Gauss point storage handling and updating) are also contained in the ZSoil® UMat. 

The evaluation of material stiffness  for monotropic material as an inverse of compliance 

matrix is given in Eq. (12). Elastic constants , , , , ,vv hh v h vh hhE E G G v v are based on (Vlasov 

1990), where they are given in a closed form for a two-layer composite material. 
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Although the described method of proceeding with the constitutive matrix of the model 

has a limited choice of nonlinear problem-solution algorithms to the initial stiffness algorithm 

only, it is more convenient than the alternative. Note, however, that all material model 

nonlinearities are reproduced by the ANN function.  

6. Comparison between direct and ANN-based homogenised model 

 As an example of layered media following a two-layer composite was considered. In 

both layers of equal thickness, material behaviour is assumed to be perfectly elastic-plastic 

with a Drucker-Prager yield surface. The Drucker-Prager plasticity model was chosen among 

Fig.  9.  Routine used to read ANN within UMat 
code (source own elaboration)
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6.  Comparison between direct and ANN-based homogenised 
model

As an example of layered media following a two-layer composite was considered. 
In both layers of equal thickness, material behaviour is assumed to be perfectly 
elastic-plastic with a Drucker-Prager yield surface. The Drucker-Prager plasticity 
model was chosen among the others available mainly because of its simplicity. 
Note that the main goal of this paper was to investigate the effectiveness of the 
ANN approach with regard to the constitutive modelling of any layered media 
with the nonlinear behaviour of each component but not an exact reproduction 
of a given layered material. Model data are given in Table 2.

Table 2. Drucker-Prager elastic-plastic model data for the components 

Material
layer

Young 
modulus
Ei [GPa]

Poisson 
ratio
v i [-]

Friction 
angle
φ i [o]

Dilatancy 
angle
ψ i [o]

Cohesion
c i [MPa]

1. Slate 4.0 0.17 32 16 2

2. Sandstone 11.9 0.20 39 39 16
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the others available mainly because of its simplicity. Note that the main goal of this paper was 

to investigate the effectiveness of the ANN approach with regard to the constitutive modelling 

of any layered media with the nonlinear behaviour of each component but not an exact 

reproduction of a given layered material. Model data are given in Table 2. 

Table 2. Drucker-Prager elastic-plastic model data for the components  
Material 

layer 
Young modulus 

Ei [GPa] 
Poisson ratio 

v i [-] 
Friction angle 

φ i [o] 
Dilatancy angle 

ψ i [o] 
Cohesion 
c i [MPa] 

1. Slate 4.0 0.17 32 16 2 
2. Sandstone 11.9 0.20 39 39 16 

 

The range of strains used for the creation of patterns was (0-0.002) for tension, (-0.01-0) 

for compression in both the XX and YY directions and (0-0.005) for shear. The number of 

increments reached N=100, giving 181,600 records. Then, the procedure of diluting, described 

in Section 3, and randomisation was additionally used. On such a pattern set, training of ANN 

was performed. The split of the data between the test subset (70%) and the validation subset 

(30%) was accomplished. Searching for the optimal configuration of ANN was performed, 

yielding: number of hidden layers (=1), number of neurons at each layer (=26), the type of 

activation functions (tanh). Different error measure graphs are shown in Fig. 10. 

SUMMARY:
train[%]: 70, test[%]: 30
input column range: 4:15, output column range: 16:21
technology: Keras-TensorFlow
learning rate: 0.01
optimizer: ADAM
epochs: 500, batch size: 128
normalization: STANDARIZATION
loss function: MAE
Layers number: 1
Layer nr: 0 Neurons nr: 26, ActivFunc: TANH, 
Dropout: 0

 
Fig 10. Error measures obtained during the training procedure and its summary (source 

???) 

Comparison of stress-strain path in the composite (XX and YY components) in full a 

range of compression (Ninc=100) for randomly induced strains, for both the homogenisation 

Fig.  10.  Error measures obtained during  
the training procedure and its summary 
(source own elaboration)
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procedure and the created ANN model is shown in Fig. 11. In the authors opinion, this results 

show a satisfactory accordance.  

a)  

b)  
 

Fig. 11. Comparison of stress-strain path (red-ANN, green-homogenisation) for:  
a) compression in a direction normal to the layers, b) compression in the direction of the 

layers (own elaboration) 
 

The simplest way to verify the results of the ANN-based approach in the analysis of the 

layered media is to compare it with the results of the single-scale, direct analysis of the same 

object. This reference object is shown in the Fig. 12. This is a model of a slope with tunnel 

openings and its lining modelled with shell elements. This is in fact a plane-strain model but 

modelled with one layer of 3D brick elements in the Z direction. In the XY plane, in this 

example, FE meshing corresponds to the spreading of material layers of equal thickness. For 

both components, the gravity is the same,  = 20 kN/m3. Obviously, identical plasticity model 

data and layer thicknesses were used for the analysis of the periodic cell.  

The referential direct model possesses 38,000 nodes while the ANN-based model has 

only 980 nodes. The comparison of the results for the first deformation and the plastic zones 

is presented in Fig. 13. This is for the direct model only, as the ANN-based model cannot 

produce such a result. In Figs. 14, 15 and 16 stresses and strains are shown, both in frame 

rotated (X axis-perpendicular to the layers). Additionally, the internal force graphs in shell 

tunnel lining are given in Fig.17. 

Fig.  11.  Comparison of stress-strain path 
(red-ANN, green-homogenisation) for:  
a) compression in a direction normal  
to the layers, b) compression in the direction  
of the layers (own elaboration)
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The range of strains used for the creation of patterns was (0-0.002) for tension, 
(-0.01-0) for compression in both the XX and YY directions and (0-0.005) for shear. 
The number of increments reached N=100, giving 181,600 records. Then, the 
procedure of diluting, described in Section 3, and randomisation was additionally 
used. On such a pattern set, training of ANN was performed. The split of the data 
between the test subset (70%) and the validation subset (30%) was accomplished. 
Searching for the optimal configuration of ANN was performed, yielding: number of 
hidden layers (=1), number of neurons at each layer (=26), the type of activation 
functions (tanh). Different error measure graphs are shown in Fig. 10.

Comparison of stress-strain path in the composite (XX and YY components) 
in full a range of compression (Ninc=100) for randomly induced strains, for both 
the homogenisation procedure and the created ANN model is shown in Fig. 11. 
In the authors opinion, this results show a satisfactory accordance. 

The simplest way to verify the results of the ANN-based approach in the 
analysis of the layered media is to compare it with the results of the single-
scale, direct analysis of the same object. This reference object is shown in the 
Fig. 12. This is a model of a slope with tunnel openings and its lining modelled 
with shell elements. This is in fact a plane-strain model but modelled with one 
layer of 3D brick elements in the Z direction. In the XY plane, in this example, 
FE meshing corresponds to the spreading of material layers of equal thickness. 

 

 15 

 

 

 

 

 

 

 

 

 

1) with homogenized ANN constitutive 
model

2) direct, single scale with Drucker-Prager
e-p constitutive models in each layer

=45o

0.5m

0.5m

30.0

20.0
10MPa

21.0

20.0

6.0

60.0

Slate:
E = 4.0 GPa, ν= 0.17
φ=32o, ψ=16o , c=2 MPa
Sandstone:
E = 11.9 GPa, v = 0.2
φ =ψ=39o, c=16 MPa

 = 20 kN/m3

[m]

 
 

 16 

35008 nodes958 nodes

Shell
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Fig. 12. ANN based model versus referential direct (single scale). Outlook and details (own 

elaboration) 

Deformation [m]

uYmax = -4.55e-2 uYmax = -5.23e-2

Plastic zones

 

Fig. 13. Deformation for ANN-based and referential (direct) object. Plasticity zones (own 

elaboration) 

Fig.  12.  ANN based model versus referential 
direct (single scale). Outlook and details  
(own elaboration)
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For both components, the gravity is the same, g = 20 kN/m3. Obviously, identical 
plasticity model data and layer thicknesses were used for the analysis of the 
periodic cell. 

The referential direct model possesses 38,000 nodes while the ANN-
based model has only 980 nodes. The comparison of the results for the first 
deformation and the plastic zones is presented in Fig. 13. This is for the direct 
model only, as the ANN-based model cannot produce such a  result. In Figs. 
14, 15 and 16 stresses and strains are shown, both in frame rotated (X axis-
perpendicular to the layers). Additionally, the internal force graphs in shell 
tunnel lining are given in Fig.17.
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Fig. 12. ANN based model versus referential direct (single scale). Outlook and details (own 

elaboration) 

Deformation [m]

uYmax = -4.55e-2 uYmax = -5.23e-2
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Fig. 13. Deformation for ANN-based and referential (direct) object. Plasticity zones (own 

elaboration) 

Fig.  13.  Deformation for ANN-based and 
referential (direct) object. Plasticity zones  
(own elaboration)

Fig.  14.  Stresses and strains for ANN-based 
and referential (direct) object component XX 
(normal to the layers) (own elaboration)
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No averaging between layers
xx, =450

xx, =450

xy
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strains
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Fig. 14. Stresses and strains for ANN-based and referential (direct) object component XX 

(normal to the layers) (own elaboration) 

yy, =450

yy, =450

xy

No averaging between layersYY stresses

strains

 

Fig. 15. Stresses and strains for ANN-based and referential (direct) object component YY 

(parallel to the layers) (own elaboration) 
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Fig.  15.  Stresses and strains for ANN-based 
and referential (direct) object component YY 
(parallel to the layers) (own elaboration)

Fig.  16.  Stresses and strains for ANN-based 
and referential (direct) object component XY 
(shear) (own elaboration)
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Fig. 14. Stresses and strains for ANN-based and referential (direct) object component XX 

(normal to the layers) (own elaboration) 
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Fig. 15. Stresses and strains for ANN-based and referential (direct) object component YY 

(parallel to the layers) (own elaboration) 
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Fig. 16. Stresses and strains for ANN-based and referential (direct) object component XY 

(shear) (own elaboration) 

M [MNm/m]
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Fig. 17. Internal forces for shell lining for ANN-based and referential (direct) object (own 

elaboration) 

6. Conclusions 
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7.  Conclusions

During the research on the applicability of an artificial neural network based 
on constitutive modelling within a  finite element analysis, particularly in the 
context of layered rocks, a few issues should be considered. Firstly, large pattern 
sets must be created on which the artificial neural networks will be trained. The 
range of these sets should cover the range of stress points and strain increments 
expected to be encountered during the intended finite element analysis. When 
this postulate is not fulfilled, the correct results can hardly be expected. 

The “diluting” procedure, described in Section 3, may be seen as a remedy, 
at least when monotonic loads are considered as was the case in the assessed 
examples. However, applying a  randomised path may be helpful to make the 
ANN model usable in cases when some loading-unloading action takes place. 

Because of the developed AppANN application described in Section 4, the 
user does not need sophisticated knowledge about artificial neural network 
algorithms and their optimisation. Our final conclusion is that the artificial neural 
network-based constitutive models can be used in FE modelling; however, more 
research is needed to make them a “black box tool” for general use during finite 
element analysis. 
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