

Security in Clouds Environments

Algorithms, Standards, Risks, Procedures
and Models

Security in Clouds Environments

Algorithms, Standards, Risks, Procedures
and Models

Agnieszka Jakóbik
Jacek Tchórzewski

Kraków 2023

CHAIRMAN OF THE CRACOW UNIVERSITY OF TECHNOLOGY PRESS EDITORIAL BOARD
Tomasz Kapecki

CHAIRMAN OF THE DIDACTIC BOARD
Agata Zachariasz

SERIES EDITOR – INFORMATION AND COMMUNICATION TECHNOLOGY
Paweł Pławiak

REVIEWER
Michał Bereta

PROJECT COORDINATORS
Otmar Vogt
Janusz Pobożniak

PUBLISHING EDITOR
Agnieszka Filosek

PROOFREADING
Agnieszka Filosek

LANGUAGE VERIFICATION
LINGUA LAB s.c.

TYPESETTING
Anna Pawlik

COVER DESIGN
Karolina Szafran

This text was published as a part of the project ‘Excellence programming – PK XXI 2.0. Cracow University
of Technology development program for the years 2018–22’.
Funding from EU: 18,048,774.96 PLN

© Copyright by Politechnika Krakowska

https://creativecommons.org/licenses/by-sa/4.0/

eISBN 978-83-67188-62-3
Online edition

5 publisher’s sheets

Wydawnictwo PK, ul. Skarżyńskiego 1, 31-866 Kraków; 12 628 37 25, fax 12 628 37 60
wydawnictwo@pk.edu.pl
www.wydawnictwo.pk.edu.pl
Correspondence address: ul. Warszawska 24, 31-155 Kraków

For all authors mentioned or cited in this
book and for all which were not cited but
also have a contribution in improving the
security of cyberspace.

For their effort and hard work which
allows You, dear Reader, to use modern
technologies securely and easily.

6

Contents

Preface ... 8
Acronyms.. 9
Notation .. 11
1. Cloud and Security .. 13

1.1. Cloud Computing .. 13
1.2. Cryptography Techniques .. 15

1.2.1. Introduction ... 15
1.2.2. Basic Definitions .. 15
1.2.3. Symmetric Ciphers .. 17
1.2.4. Asymmetric Ciphers ... 21
1.2.5. Hashing Functions .. 22
1.2.6. Digital Signatures .. 24

1.3. Security Services for Cloud Defence ... 25
1.3.1. Cryptographic Solutions for Cloud Environments 25
1.3.2. Implementation of Cryptography in Clouds 27

2. Practical Examples of Security Techniques .. 29
2.1. Advanced Encryption Standard ... 29

2.1.1. AES in Clouds .. 29
2.1.2. AES notation and basic information... 30
2.1.3. AES Ciphering algorithm ... 33
2.1.4. SubWords(State) and InvSubWords(State) ... 33
2.1.5. ExpandKey(K) .. 34
2.1.6. ShiftRows(State) and InvShiftRows(State) ... 34
2.1.7. MixingColumns(State) and InvMixingColumns(State) 35
2.1.8. AddRoundKey(State, RoundKey) .. 35

2.2. Secure Hash Algorithm 2 ... 36
2.2.1. SHA-2 in Clouds .. 37
2.2.2. SHA-256 ... 37
2.2.3. SHA-512 ... 38

2.3. Rivest-Shamir-Adleman ... 40
2.3.1. RSA in Cloud ... 40
2.3.2. RSA Ciphering Scheme .. 41

7

Contents

2.3.3. RSA Digital Signature ... 42
2.3.4. Blind RSA ... 43

2.4. Elliptic Curve Cryptography (ECC) .. 43
2.4.1. ECC in Clouds ... 44
2.4.2. EC domain parameters ... 45
2.4.3. ElGamal cryptosystem .. 48
2.4.4. Elliptic Curve Digital Signature Algorithm 49

2.5. Shamir Secret Sharing ... 50
2.6. Counter Example ... 51

3. Security Aspects in Cloud Systems .. 53
3.1. Introduction ... 53
3.2. Identification of security procedures in Cloud infrastructure..................... 54
3.3. Transparency contrary to security balance .. 59
3.4. Security contrary to computing efficiency .. 60
3.5. Summary ... 61

4. Cyberattack Modelling Techniques Overview .. 62
4.1. Introduction ... 62
4.2. Modelling the Dynamic of the Attack .. 62

4.2.1. Attack Graphs .. 62
4.2.2. Attack Surface .. 64
4.2.3. Kill Chain ... 64
4.2.4. Attack Trees Models .. 65
4.2.5. Petri Nets .. 66
4.2.6. Markov Processes .. 67

4.3. Attack Consequences Measurement Models ... 67
4.3.1. Mean Failure Costs Model ... 67
4.3.2. Security Threat Measurement Model (STMM) 69
4.3.3. Empirical Risk Assessment Equation .. 70
4.3.4. Common Vulnerability Scoring System metrics 71

4.4. Community, Industry and Expert Surveys ... 77
4.4.1. CLOUD SECURITY ALLIANCE Top Threats 77
4.4.2. OWASP Cloud Top Ten ... 79
4.4.3. ENISA Risks List ... 81
4.4.4. NIST Issues and Concerns list ... 83

4.5. Strategic Models ... 85
4.5.1. Game Theoretic Models ... 85

References ... 87
Index ... 96

PrefaCe

Once upon a time, a bandit called Angulimal threatened to kill Buddha. Show me
your grace Angulimal and fulfil my last wish. Cut the branch from that tree, says
Buddha. Well, Angulimal did it without any problems. Then Buddha said Now, try
to put this branch back to the tree, like it was never cut. Confused, the bandit said that
it is impossible. The cut off branch will never be a part of this tree. Budda concluded
See? You think that you are strong because you can destroy and hurt. It is for kids. Only
the great ones know how to create and repair.

We don’t know whether it is a true story or not. However, we agree with the
conclusion. In this book, we present modern security solutions dedicated to
modern cyberinfrastructures, which is the Cloud. These methods are not easy. They
incorporate knowledge from many disciplines, such as mathematics, informatics
and even a law. They also assume knowledge about infrastructures, procedures,
information flow, etc.

What we tried to do is to present these aspects in a way that non-experts will gain
knowledge in this field, and maybe even experts will find something new which can
be inspiring for future works.

Agnieszka Jakóbik, Jacek Tchórzewski

9

aCronyms

AES Advanced Encryption Standard
ANSI American National Standards Institute
API Application Interface
APT Advanced Persistent Threat
CA Certification Authority
CBC Cipher Block Chaining
CC Cloud Computing/Computational Cloud
CERT Computer Emergency Response Team
CFB Cipher Feedback
CP Cloud Provider
CSA Cloud Security Alliance
CTR Counter Mode
CVSS Common Vulnerability Scoring System
DAs Defensible Actions
DDoS Distributed Denial of Service
DES Data Encryption Standard
DoS Denial of Service
DS Digital Signature
DSS Digital Signature Standard
EC Elliptic Curve
ECB Electronic Codebook
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
ENISA European Union Agency for Cybersecurity
FIPS Federal Information Processing Standards
IaaS Infrastructure as a Service
IEC International Electrotechnical Commission
IoT Internet of Things
ISO International Organization for Standardization
MitM Man in the Middle
NIAC National Infrastructure Advisory Council
NIST National Institute of Standards and Technology

10

acronyms

OFB Output Feedback
OS Operating System
OWASP Open Web Application Security Project
PaaS Platform as a Service
PKCS Public Key Cryptography Standard
PN Petri Net
RSA Rivest-Shamir-Adleman
SaaS Software as a Service
SE Searchable Encryption
SHA Secure Hash Algorithm
SHS Secure Hash Standard
SLA Service Level Agreement
SP Storage Place
VLAN Virtual Local Area Network
VM Virtual Machine

notation

In this section, we will present the notation which is common for the whole document.
Note that in each chapter or subchapter, local variables and functions necessary for
the presentation of algorithms are also defined and are not listed here.

∧ AND operation.
 OR operation.
not(a) or ¬a Negation of a.
 Concatenation.
∀a For all arguments denoted by a.
∃a There exists element a.
× Matrix multiplication.
⊕ Bitwise logical exclusive-or on bit strings of the same length.
a The ceiling of the argument: the smallest integer that is greater

than or equal to a.
a The floor of the argument; the largest integer that is less than or

equal to a.
{0, 1}n Binary string of length n. If n = ∗ length is not limited.
a.append(b) Appends element b to the vector a. If b is also a vector, all

elements of b are added to the vector a, and the vector a is
containing len(a) + len(b) elements.

a (mod n) The unique remainder when integer a is divided by the positive
integer n.

bitlen(a) Number of bits of element a.
bytearray(a, b) Function which converts element a into byte array of size b.
 Unused bytes are set to 0x00.
Fp Field defined over value p.
F m2

 Field defined over binary number 2m.
f a b: → Function f assigning b values to all a values.

φ Eulers’ totient function.
GF Galois Fied.
gcd(a, b) Greatest common divisor of the integers a and b.

12

notation

H(a) Hash produced from message a.
LSBs(w) s least significant bits of binary word w.
lcm(a, b) The least common multiple of the integers a and b.
len(a) Number of elements in vector a.
MSBs(w) s most significant bits of binary word w.
P − a EC defined over a bits prime number.
parseUint32(a) Function which is parsing byte array a into unsigned 32 bits

integer. Note, that len(a) = 4.
parseUint64(a) Function which is parsing byte array a into unsigned 64 bits

integer. Note, that len(a) = 8.
RSA − a RSA algorithm with key length equal to a.
RotateLeft(w, n) Left binary rotation of binary word w by n positions.
RotateRight(w, n) Right binary rotation of binary word w by n positions.
SHA − x SHA function returning x bits hash.
ShiftLeft(w, n) Left binary shift of binary word w by n positions.
ShiftRight(w, n) Right binary shift of binary word w by n positions.
seedlen The length of the domain parameter seed in bits.

13

1. Cloud and seCurity

1.1. Cloud ComPuting

The definition of Cloud was introduced in 2011 by the National Institute of
Standards and Technology: Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g. networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics, three service
models, and four deployment models [80].

The essential parameters of Clouds are [80]:
 • On-demand self-service − which means that the process of providing

computational capabilities is fully automated. Human intervention is no
needed at this point [80].

 • Broad network access − which means that the Cloud can be used and
accessed by any device which supports standard mechanisms promoted by
heterogeneous platforms. For example, IoT devices such as mobile phones,
as well as standard PCs or super-fast workstations [80].

 • Resource pooling − which means that computational ability resources are
distributed between many possible customers. The resources can be assigned,
reassigned or deleted dynamically; however, the client doesn’t physically know
where these resources are [80].

 • Rapid elasticity − which means that computational capabilities can scale
dynamically proportionally to the customers’ demands. From the customers’
point of view, this scaling should be invisible and unnoticeable [80].

 • Measured service − usage of available resources should be constantly
optimised and controlled. Appropriate measures have to be introduced to
provide clarity for a Cloud Provider and customers [80].

According to [80] and [3], we can distinguish three basic Cloud services
models:

 • Software as a Service (SaaS) − services are running on Cloud infrastructures
and are provided to customers via thin client platforms. These platforms
could be a browser, application, e-mail, etc. The important thing is that the

14

1. cloud and security

installation of an application is not needed [80]. Responsibility for data security
is on the Cloud Provider side. A good example of SaaS is Google Apps.

 • Platform as a Service (PaaS) − services can be built and deployed in the Cloud
by customers. Customers can use tools supported by the Cloud Provider.
Data security responsibility is shared. Infrastructure and underlying layers are
controlled by the Cloud Provider. However, applications themselves and their
configurations are controlled by the customers. From the developers point
of view, usage of these types of services can increase data availability, services
scalability and the speed of developing and testing of applications [80].

 • Infrastructure as a Service (IaaS) − availability, monitoring and management
of whole data centres. The ideology is similar to PaaS. However, customers
get more control over basic computational resources, such as firewalls. Any
customer application is fully controlled by the customer (including operating
systems) and can be arbitrarily deployed. Security responsibility is still shared.
The Cloud Provider is responsible only for the underlying Cloud infrastructure.
The rest, such as storage or chosen networking components, is the customers’
responsibility [80]. As an example of IaaS infrastructure, we can consider
AWS (Amazon Web Services).

Deployment − all processes (including testing, running, maintenance) which are
needed for software and hardware to exist and work properly.

Deployment model − a systematised and structured way of appropriate
deployment. NIST in [80] defines four basic Cloud deployment models:

 • Private Cloud − multiple users are allowed. The management is carried out by
a single organisation. Infrastructure can be leased, and maintenance can be
carried out by a third party [80].

 • Community Cloud − multiple users are allowed, and management can be
carried out by a single organisation or by multiple organisations. However,
consumers (users) create a community and use the Cloud for shared
concerns [80].

 • Public Cloud − can be managed by any organisation. This type of Cloud is
publicly available [80].

 • Hybrid Cloud − a combination of two or more of the types mentioned above.
The hybrid Cloud consists of separate types which bounded together create
one standardised conglomerate [80].

We can point out here that all definitions given above are not the only ones,
and not the only proper ones. We based these on the NIST definitions, because NIST
is one of the biggest organisation for standardisation of security measures.

To ensure secure Cloud Computing, we have to deeply analyse how Cloud
infrastructure looks like. To do this, the authors in [3] divided the Cloud into layers,
where each layer represents resources which share similar features:

15

1.2. cryptography techniques

 • Horizontal layer − defines relations between resources. It can be divided into
three sublayers [3]:

 – Physical sublayer − defines policies of communication between users
and their resources. This sublayer consists of network devices, operating
systems and their firmware [3].

 – Virtual sublayer – is designed for user resource management without direct
usage of the physical layer. This layer consists of virtual machines and virtual
discs which gather physical resources in fully functional logical parts [3].

 – Application sublayer – represents all applications and software which use
virtual layer resources or directly use physical resources [3].

 • Vertical layer – defines tasks which will be realised by particular resources.
This can also be divided into three sublayers [3]:

 – Storage sublayer – which represents a database or set of databases used for
information storage [3].

 – Server sublayer – which defines the role of a server working in the Cloud
infrastructure [3].

 – Network sublayer – which defines the role of network devices working
in the Cloud infrastructure [3].

As can be seen, assuring security in the Cloud is very demanding. All layers with
all sublayers have to be considered and secured properly, i.e. effectively and according
to the law.

1.2. CryPtograPhy teChniques

1.2.1. introduCtion

Assuring security in Computational Clouds is very demanding. In this chapter, we
will describe methods which allow one to ensure secure commutation and secure
data storage. In chapter 1.2.2, we introduce basic security definitions. In the next
chapters, we describe cryptographic solutions to assure an appropriate security level.

1.2.2. BasiC definitions

Cryptology – is a branch of science concerning methods of secure information
exchange and storage. Cryptology can be divided into cryptography and cryptanalysis.

Cryptography – creating and investigating ciphers, transformations and other
securing methods. The idea is to represent a message in a form that only legitimate
user can reveal.

Cryptanalysis – part of cryptology oriented towards breaking secure algorithms,
transformations and other securing methods. The idea is to find breaches and

16

1. cloud and security

weaknesses which allow an unauthorised user to reveal (wholly or partially) a secured
message.

Steganography – a branch of science oriented towards hiding information.
The idea is not to change the message content the but form. An attacker shouldn’t
know that the message exists. Steganography should be used with cryptography,
which means that a hidden message should also be ciphered.

Steganalysis – a branch of science oriented towards detecting messages.
Steganalysis algorithms will answer whether a message is present in investigated data
and where. Each Cloud user needs to be authenticated and authorised.

Authentication – a method which allows one to confirm the identity of a user.
Potential users are physical persons, virtual machines, services, applications, etc.

Authorisation – a method which allows one to verify whether a user can get
access to particular resources or not. Authorisation is done after authentication.

Cryptogram – is a presentation of the message in a form where only authorised
recipients can reveal the content.

Cipher – algorithm which creates appropriate, secure cryptograms.
Padding – adding to the original message bits to reach the appropriate length

of the message. There are several padding methods. One of the simplest is pad10*.
At the end of the message, we add ‘1’ bit and then fill the rest with ‘0’ to reach the
appropriate length.

Strong Prime – accordingly to [110], this is a prime number p which fulfils the
following conditions:

 • p is large,
 • p − 1 has a large prime factor, denoted by r,
 • p + 1 has a large prime factor,
 • r − 1 has a large prime factor.

Strong Primes can improve the security of many cryptographic algorithms,
though not all of them. For example, it is not necessary to use Strong Primes in RSA
cryptosystem [110].

Safe Prime – should be used mainly for cryptosystems based on a discreet
logarithm problem (DLP). Safe Primes are numbers which fulfil the condition
presented in eq. (1.1) [109]

 p q� �2 1 (1.1)

where q is also prime.
In this case, q is also called a Sophie Germain Prime [109].
Discrete Logarithm Problem – the authors in [43] defined DLP as follows:

Let G be a cyclic group of order n and g be a generator for G. Given an element y ∈ G ,
the discrete logarithm problem is to find an integer x such that:

 g yx = (1.2)

17

1.2. cryptography techniques

Secret Sharing – spreading information (secret) to multiple users in a way that
only a given number of participants (whole group or a subgroup) can retrieve it.

1.2.3. symmetriC CiPhers

In the past, two popular and classical cryptography techniques were:
 • Substantive Encryption – replacing message signs with a chosen cryptogram

(e.g. Cesar Cipher, Playfair Cipher, Hill Cipher).
 • Changeover Encryption – appropriate sign mixing.

Both types are insecure against simple attacks. Modern society needed a fast
and secure encryption method. That’s where symmetric ciphers came in. The main
concept is presented in fig. 1.1. The message is passed to the symmetric algorithm,
which uses a secret key to create the cryptogram. The cryptogram is passed to the
recipient. The recipient uses a reverse algorithm and the same secret key to retrieve
a message from the cryptogram [108]. However, there are some basic requirements
which need to be fulfilled to reach the appropriate security level [108]:

 • Attacker cannot break the algorithm even if some amount of cryptograms
were captured (e.g. during communication).

 • An attacker cannot restore a secret key even if several messages were captured
with corresponding cryptograms.

 • There is one key for ciphering and deciphering. Thus, both sides of
communication have to keep this key in secret. The key must also be forwarded
from one side to the other in a secure way (e.g. via a dedicated secure
communication channel).

Currently, there are two types with symmetric ciphers:
 • Stream Ciphers – the key is at least as long as the message. Ciphering runs bit

after bit [72] and depends on adding bits of the message to the bits of the key.
The key cannot be reused. Stream Ciphers are faster than Block Ciphers [72].
This is caused by their simplicity. The biggest problems are in generating

Fig. 1.1. Symmetric Ciphering Scheme [108]

18

1. cloud and security

the pseudorandom secure key and with the key size. One of the most popular
stream ciphers is the Vernam Cipher.

 • Block Ciphers – the original message is divided into separate blocks (most
popular block sizes for symmetric ciphers are 64 bits, 128 bits and 256 bits).
Both sides of communication have the same secret key. With the usage of this
secret key, blocks of cryptograms are created. Each block has the same size
as one block of the message [108]. If the message length is not equal to the
multiplication of block size (further denoted by b), an appropriate padding
method has to be used. The ciphering scheme is presented in [108] and
in fig. 1.2. The Block Ciphering Scheme is the most popular technique used in
network communication [108].

NIST defined five operational modes which can be applied in block ciphering [32]:
 – Electronic Codebook (ECB) – the ciphering function is used independently

and directly on all message blocks [32]. The ciphering process is presented
in eq. (1.3) and deciphering in eq. (1.4) [32].

 C CIPH M i ni k i= =(), , ,1 (1.3)

 M CIPH C i ni k i� ��1 1(), , , (1.4)
where Mi is one block of the message, Ci one block of the cryptogram, n total
number of blocks, CIPHk ciphering function which uses the secret key k and
CIPHk

−1 deciphering function which uses the secret key k [32].
 – Cipher Block Chaining (CBC) – first block of the message is XORed with

a secure initialization vector V before ciphering (see eq. (1.5)) [32]:

 C CIPH M Vk1 1� �() (1.5)

The size of V is equal to the block size and must be unpredictable (however, it is
not necessary to keep it in secret) [32]. The rest of the blocks are then ciphered
according to eq.(1.6). Each output block of the cryptogram depends on the key
and the previous block [32]:

 C CIPH M C i ni k i i� � ��(), , ,1 2 (1.6)

Fig. 1.2. Stream Cipher Encryption scheme presented in [72]

19

1.2. cryptography techniques

The decryption process is a reverse operation (see eq. (1.7) and (1.8)) [32].
However, the first block needs to be deciphered before it is XORed with V :

 M CIPH C Vk1
1

1� �� () (1.7)

And the rest of the blocks:

 M CIPH C C i ni k i i� � ��
�

1
1 2() , , , (1.8)

 – Cipher Feedback (CFB) – is slightly different than its predecessors.
One parameter is block size b determining the size of blocks on which the cipher
will be operating. The second one is called segment size s, and it determines
the size of cryptogram blocks and message blocks. s must be greater than 0
and smaller than the block size b. The most common s values are: 1 bit, 8 bits,
64 bits and 128 bits [32]. NIST also introduces input I of size b, which is an
input block which will be processed by the ciphering algorithm and output O
of size b, which is the output returned by the algorithm. The ciphering
starts with passing vector V (the same vector as in CBC) as an input to the
algorithm [32]:

 I V1 = (1.9)

considering n segments which have to be ciphered, the next inputs are given
as a concatenation of (b − s) Less Significant Bits of previous input I and the
previous cryptogram segment C (note that C is the size of s) [32]:

 I LSB I C i ni b s i i� �� � �() , , ,1 1 2 (1.10)

The outputs of the algorithm are just ciphered inputs. However, these outputs
do not create a cryptogram yet [32]:

 O CIPH I i ni k i= =(), , ,1 (1.11)

To create the final cryptogram, an XOR operation is performed on the s Most
Significant Bits of outputs and corresponding message segments [32]:

 C MSB O M i ni s i i� � �() , , ,1 (1.12)

Deciphering is the reverse operation. This starts with assigning vector V as
in eq. (1.9). The inputs are then calculated as in eq. (1.10) and the outputs as
in eq. (1.11) The final deciphering process is based on the fact that the XOR
operation is reversible [32]:

 M MSB O C i ni s i i� � �() , , ,1 (1.13)

 – Output Feedback (OFB) – assuming the notation is the same as in CFB mode,
initialisation vector V is assign to the input I1:

20

1. cloud and security

 I V1 = (1.14)

However, vector V must be unique at each execution of the algorithm, even
if the algorithm is using the same secret key [32]. Note that in this example,
we are considering block size only; segment size does not exist in the given
context. This method does not require padding. It implicates the fact that all
cryptogram blocks are the size of b, and the last one can be smaller. The next
inputs become outputs (results from symmetric algorithm) from the previous
step (see eq. (1.15)) [32].

 I O i ni i� ��1 2, , , (1.15)

The outputs are ciphered inputs (see eq. (1.16)) [32]:

 O CIPH I i ni k i= =(), , ,1 (1.16)

The outputs are still not the final cryptogram. All blocks of the cryptogram
except the last one are created as presented in eq. (1.17) [32].

 C O M i ni i i� � � �, , ,1 1 (1.17)

Considering that the last block of the message is the size of u (0 < u < b),
the last block of the cryptogram is created by an XOR operation done on
the last block of the message and u Most Significant Bits of the last output
(see eq. (1.18)) [32].

 C MSB O Mn u n n� �() (1.18)

During decryption, we perform the same operations as presented in eq. (1.14),
eq. (1.15) and eq. (1.16) [32]. The n − 1 blocks of the original message are
then decrypted as presented in eq. (1.19) and the last one as presented in
eq. (1.20) [32].

 M O C i ni i i� � � �, , ,1 1 (1.19)

 M MSB O Cn u n n� �() (1.20)

 – Counter Mode (CTR) – in this mode, all blocks of messages have their own
initial vector of size b (block size). These vectors are called counters, and for
a single n blocks, the message will be denoted by T1, T2, …, Tn [32]. Those
counters have to be unique under the given secret key. This means that even
if we use one secret key for ciphering many messages, all counters for all
messages have to be different [32]. Note that this model also does not demand
padding methods. Considering that the rest of the notation remains the same
as in the OFB example, outputs are created as presented in eq. (1.21) [32].

 O CIPH T i ni k i= =(), , ,1 (1.21)

21

1.2. cryptography techniques

All blocks of cryptogram are outputs XORed with message blocks (see
eq. (1.22) and eq. (1.23)) [32]. In this case, the last block of the message is also
the size of u, where 0 < u < b, and we XOR this block with u Most Significant
Bits of the last output block.

 C O M i ni i i� � � �, , ,1 1

 (1.22)

 C MSB O Mn u n n� �() (1.23)

For decryption purposes, we do the same operation as presented in eq. (1.21),
and we once again use the fact that the XOR operation is reversible (see
eq. (1.24) and eq. (1.25)) [32].

 M O C i ni i i� � � �, , ,1 1

 (1.24)

 M MSB O Cn u n n� �() (1.25)

Block ciphers are slower than stream ciphers; however, they can offer high security
with much smaller and predictable key sizes. One of the most popular symmetric
block ciphers is DES, as well as the more modern AES.

1.2.4. asymmetriC CiPhers

The asymmetric ciphering scheme is presented in fig. 1.4. As we can see, there is no
longer only one key for ciphering and deciphering purposes. The first key, which
is called the Public Key, is used to transform the message into a cryptogram. This
key is not kept in secret, which is why it is called ‘public’. The Private Key is used
for deciphering purposes, and it is kept in secret [108]. Two important parameters
of asymmetric ciphers are [108]:

 • It should be hard to retrieve the Private Key if the Public Key and ciphering
algorithm are known publicly.

Fig. 1.3. Block Cipher Encryption scheme presented in [108]

22

1. cloud and security

 • In some algorithms (such as RSA), both generated keys can be used for
ciphering purposes. The second key is then used for deciphering purposes and
is kept in secret.

Asymmetric ciphers are slower than symmetric ciphers [67]. However, they allow
one to avoid problems with key distribution, because the Public Key can be widely
known, and the Private Key is never shared. Most asymmetric ciphers are also block
ciphers. This means that for a given algorithm, there exists a maximal message size,
and if a message exceeds this size, it has to be divided into 2 or more blocks. Note that
the operational modes for block ciphers mentioned in sec. 1.2.3 are dedicated only
for symmetric ciphers.

There are four basic situations where asymmetric ciphers should be used [108]:
 • When the sender wants to encrypt the message and the cryptogram should be

very strong.
 • When the sender wants to sign a message with a digital signature.
 • When the sender wants to share a session key. For example, communication

will be continued with a symmetric encryption, and a symmetric key is
distributed with asymmetric cryptography usage.

 • When strong authorisation or confidentiality is necessary.

1.2.5. hashing funCtions

Hashing functions belongs to the One Way function family (see eq. (1.26)) [113].

 � � � �� � �x X f x y g y x, : (:) (1.26)

This means that for any input x, we can calculate output y; however, the reverse
operation (calculating value x from y) is impossible. One way function can be
a hashing function if it fulfils the condition presented in eq. (1.27) [113].

Fig. 1.4. Asymmetric Ciphering Scheme presented in [108]

23

1.2. cryptography techniques

 h n: { , } { , } ,0 1 0 1 1� �� � (1.27)

This equation means that input and output are considered as binary strings. Input
can be any length, but the output is always a fixed length. The result of the hashing
function is called hash or digest, and it is a sort of fingerprint of a given data set (input
binary string). The main structure is presented in fig. 1.5.

Three basic hash function security parameters are [113]:
 • Collision Resistance – it is hard to find two different messages which produce

the same hash value.
 • First Preimage Resistance – for a given hash, it is hard to find a message which

produces this hash.
 • Second Preimage Resistance – for a given message and its hash, it is hard

to find the second message which produces the same hash value. The main
difference between Second Preimage Resistance and a Collision Resistance is
that the first message is given.

Note that:
 • There is no ideal Hashing Function. All hashing functions can be compro-

mised, because there are potentially infinite inputs and a finite number of
outputs.

 • There are more parameters which have to be fulfilled by the hashing function.
The three mentioned above are basic.

The security of hashing functions is measured in bits of security, where n bits of
security means that the attacker must perform 2n operations to break a hash [113].
Detailed information about the security of a standardised hashing function can be
found in [33].

There are many hashing functions; however, only four were considered as
SHS (Secure Hash Standard) and were accepted by NIST [33], [90]: Secure Hash
Algorithm 0 (SHA-0), SHA-1, SHA-2 and SHA-3. SHA-0 and SHA-1 have been
compromised and are not considered as secure anymore. SHA-2 and SHA-3 are

Fig. 1.5. Hashing Function structure described in [113]

24

1. cloud and security

not hashing functions; they are families of hashing functions. The family of SHA-2
contains the following hashing algorithms [90]: SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224 and SHA-512/256, where the number after ‘SHA’ indicates
hash length in bits. SHA-512/256 means that the final hash length is equal to 512
bits; however, it can be securely truncated into 256 bits [90]. The family of SHA-3
contains the following hashing algorithms [90]: SHA3-224, SHA3-256, SHA3-384
and SHA3-512. In fact, some of these algorithms have a constraint on maximal
message length which can be hashed. The hashing function can be used: to create
digital signatures, to create hashing tables (indexing), for secure password storage
in databases and so on.

1.2.6. digital signatures

To create a digital signature, both sides of communication need to establish
(or just choose) an appropriate hashing function (see sec. 1.2.5). This function must
be the same on both sides of the communication. The signer must also establish an
appropriate public and private key (see sec. 1.2.4) and deliver this public key to the
verifier. The process of creating the digital signature is presented in fig. 1.6 [108].

In the first step, the message is hashed. The digital signature is then created with
the use of the sender’s private key. Note that only the sender can create the signature,
because only the sender knows his private key.

The verification process is presented in fig. 1.7 [108]. The verifier gets a message
and a signature of this message. Firstly, the hash from the message is calculated by
using the same hashing function as the sender. Signature verification is a process
which demands a signature, hash from the original message and the sender’s
public key. The algorithm returns information on whether verification completed
successfully or not. Note that everyone who owns the sender’s public key can verify
the signature. There are four reasons to use digital signatures schemes [67]:

Fig. 1.6. Digital Signature creation presented in [108]

25

1.3. security services for cloud defence

 • Authentication – digital signatures allow one to verify a machine’s or person’s
identity [67]. After confirming the identity, authorisation can be done.

 • Privacy – only authorised persons or machines can operate on given data [67].
 • Integrity – digital signatures themselves do not protect data but allow detect

any unauthorised changes [67].
 • Non-Repudiation – the sender cannot deny the fact that the message was sent

by him [67].

1.3. seCurity serviCes for Cloud defenCe

Fundamental cryptographic tools that are used in Computational Clouds are
symmetric and have public-key encryption, hash functions, message authentication
codes and digital signatures (see sec. 1.2). Usually in CC systems, data is stored in
different locations than in the units which are processing them (VMs), for example
in dedicated virtual disks or databases (Storage Place – SP). Therefore, the results
of computations have to be transmitted into the Cloud to be retrieved by the user
who uploaded the tasks. Considering data in motion and data at rest, different
types of defences have to be used. In this chapter, we will describe what the security
solutions are for Cloud environments and how to implement them.

1.3.1. CryPtograPhiC solutions for Cloud environments

Several limitations of conventional cryptography have to be considered during the
transfer of algorithms and protocols into a Cloud environment [124]:

 • Using traditional methods implies the inability of processing of encrypted
data. Decrypting data before processing is a very inefficient solution.

Fig. 1.7. Digital Signature verification presented in [108]

26

1. cloud and security

 • Point to Point Data Access Policies, when the sender knows the intended
recipient. Irrelevant when the group of recipients is the target of the data or
the recipient is unknown. Also inadequate for shared and dispersed storage.

 • Limited trust. All traditional cryptographic protocols remain secure under
the assumption that parties can be trusted. Trust in a Cloud environment can
be assured only by SLA or by a contract between the customer and provider.
Compromise of the private key by an uneducated customer or intentionally
returning incomplete results by a provider may collapse the whole chain
of trust.

 • Requests for encrypted data are made over public channels. The provider does
not control customers’ endpoints: web browser, mobile phone or tablet.

These are reasons for new cryptographic mechanism development that can reduce
the necessary level of trust between a customer and the holder of encrypted data:

 • Searching Over Encrypted Data: Conventional ciphertexts are designed not
to reveal any information about the original plaintext and are not suitable
for searching without decryption. The proposed solutions are Searchable
Encryption (SE) schemes. Most algorithms add keywords into encrypted
material or allow one to use chosen Boolean formulas to create queries.

 • Homomorphic Encryption: Traditional encryption schemes exclude
meaningful combinations which can be done on ciphertexts such as lowering
the security of the procedures by making them more vulnerable to attacks.
Considering some degree of security reduction in favour of computational
efficiency, Cloud providers may use homomorphic encryption schemes.
This enables chosen computations to be done on encrypted data.

 • Aggregating Over Encrypted Data: Certain types and sets of data shared by
the same community of users may be aggregated and processed using one
of the secret sharing techniques [27, 52, 53]: Shamir secret sharing scheme,
Ramp Shamir secret sharing scheme [19], additive secret sharing scheme
or replicated additive secret sharing scheme.

Invisible Party or Content Cryptography: Anonymous and blind cryptography
is used when one party of the scheme does not want to reveal his identity or the
verifying procedure should be done without encrypting the underlying message.
Blinded signatures are schemes in which the content of a message is blinded before
the message is signed [25]. This may be applied in cryptographic election systems
and digital cash schemes. Anonymous cryptography is used to verify a legitimate
signer in four different ways:

 • authorised entity may identify the signer of a signature,
 • authorised entity may link two signatures created by the same signer without

identifying the signer,
 • both of the authorised entities may identify or link,
 • neither of the authorised entities may identify or link.

27

1.3. security services for cloud defence

Authentication of an anonymous party is an example of anonymous digital
signatures [23, 118].

1.3.2. imPlementation of CryPtograPhy in Clouds

Detailed instructions and best practices as far as the implementation of particular
algorithms is considered can be found in [28], in NIST SPs and guidelines and in ISO
standards [16]. Effective implementation of multiple-precision integers arithmetic,
modular arithmetic, greatest common divisor algorithms and exponentiation is
crucial for the effectiveness of cryptography algorithms [65]. Furthermore, several
design objectives have to be considered [79]:

1. The customer should not need an additional third party to encrypt data on
his side.

2. Sending data to the Cloud and reading it from the Cloud should be done with
an encryption framework.

3. The customer must be authorised to have access to the data stored in the Cloud.
4. Cryptographic keys must be generated instantly, validated and should never be

located in the Cloud storage centre.
5. The provider is obligated to provide customers with free choice of crypto-

graphic algorithms.
6. The provider must develop the efficient mechanism of encryption over the

Cloud. It includes scalability supporting, automatisation of processes and
24/7 services availability despite geographic dispersion of customers.

NIST offers the Cryptographic Module Validation Program that verifies
cryptographic modules according to the Federal Information Processing
Standards (FIPS), such as FIPS 140-1 Security Requirements for Cryptographic
Modules. An additional advantage of this procedure is that NIST publishes validated
(according to FIPS 140-1 and FIPS 140-2) Cryptographic Modules lists.

The following libraries, among many others, were certified and may be used for
high-level cryptographic services providing:

 • Security Builder FIPS Java Module: supports optimised Elliptic Curve
Cryptography and provides Java application developers with sophisticated
cryptographic tools.

 • Dell OpenSSL Cryptographic Library: for various Dell Networking products.
 • The Luna PCI-e cryptographic module: a multi-chip embedded hardware

cryptographic module in the form of a PCI-Express card.
 • SUSE Linux Enterprise Server 12 – StrongSwan Cryptographic Module:

a complete IPsec implementation for the Linux kernel.
 • SUSE Linux Enterprise Server 12 – OpenSSH Client Module, SUSE Linux

Enterprise Server 12 – OpenSSH Server Module.
 • wolfCrypt module, a comprehensive suite of FIPS approved algorithms.

28

1. cloud and security

 • The IBM Crypto for C v8.4.0.0 (ICC), cryptographic module implemented
in the C programming language. It is packaged as dynamic (shared) libraries
usable by applications written in a language that supports C language linking
conventions (e.g. C, C++, Java, Assembler, etc.).

Other tools are delivered by Cloud providers themselves for usage in their Clouds.
Such examples are:

 • AWS Encryption SDK: dedicated to defining a system of keys which customers
use to encrypt data. It supports tracking and protecting the data encryption
keys and performs low-level cryptographic operations, see fig. 1.8.

 • IBM Cloud Data Encryption Services: includes a combination of the AES-
-256-certified encryption, hashed integrity checking, multifactor secret sharing
with keyed information dispersal and internal bulk key management [47].

 • Openstack Barbican: symmetric key management system dedicated to
SSL/TLS keys, SSH keys or any other type of key material. Additionally, it
supports public Certificate Authorities (CAs) [85].

 • HP CLOUD: provides advanced data encryption, tokenisation, and key
management that protects sensitive data across enterprise applications, data
processing IT, Cloud, payment ecosystems, critical transactions, data storage
and big data platforms.

 • Adobe Cloud provides the Adobe Secure Product Lifecycle: which specifies
software development practices, processes and tools.

Fig. 1.8. AWS Encryption SDK encryption scheme presented in [11]

29

2. PraCtiCal examPles of seCurity teChniques

In this chapter, we present security algorithms and solutions which are currently
considered as secure. All functions, algorithms and computations assume Big-
-Endian byte order, unsigned integer usage (size depends on the algorithm) and
standard wrapping behaviour of unsigned integer numbers. All arrays and tables are
indexed from 0.

2.1. advanCed enCryPtion standard

The Advanced Encryption Standard (AES) is a symmetric block cipher announced
by the National Institute of Standards and Technology in 2001 [34]. It can be used
as a CIPHER algorithm presented in the symmetric block cipher modes in sec. 1.2.3.
Operations are made on 128-bit blocks, and possible key sizes are 128, 192 or
256 bits [34]. AES is considered as a secure standard which can be used for network
communication. Before presenting the algorithm itself, we introduce appropriate
notations and information in sec. 2.1.2.

2.1.1. aes in Clouds

AES is one of the most efficient symmetric algorithms [73]. Thus, the authors
in [98] claimed that the Advanced Encryption Standard is very suitable for Cloud
environments. The authors point out that [98]:

 • AES can perform efficiently on software platforms, as well as on hardware
platforms (including 8-bit and 64-bit platforms).

 • Using AES results in very high performance in software usage, because of ease
of parallelisation of computations and parallelisation of instructions.

 • AES is suitable for restricted-space environments due to less memory allocation
than other ciphering schemes.

 • No proven cryptoanalysis attacks on AES cryptosystem have been made.
What’s more, AES potentially supports any key and block size greater than
128 bits.

30

2. practical examples of security techniques

The authors in [73] performed tests on 128-bit AES used under a simulated Cloud
environment. Their conclusion was: The performance evaluation shows that AES
cryptography can be used for data security.

The authors in [13] present complex studies on how AES can be used for secure
data storage in Cloud environments. They investigated security, speed and the delay
which appears when AES is used. They conclude that the use of AES allows one to
increase confidentiality, authenticity and access control. The only drawback was that
encrypting larger files increased the delay.

AES is also used in commercial Clouds:
 • Google: Data stored in Google Cloud Platform is encrypted at the storage level

using either AES256 or AES128 [42].
 • Amazon Web Services: The AWS Key Management Service uses the Advanced

Encryption Standard (AES) algorithm in Galois/Counter Mode (GCM) with
256-bit secret keys [12].

 • Microsoft OneDrive: While BitLocker encrypts all data on a disk, per-file
encryption goes even further by including a unique encryption key for each file.
Furthermore, every update to every file is encrypted using its own encryption key.
Before they’re stored, the keys to the encrypted content are stored in a physically
separate location from the content. Every step of this encryption uses Advanced
Encryption Standard (AES) with 256-bit keys... [82].

2.1.2. aes notation and BasiC information

 • M – is a message which will be ciphered, and len(M) (mod 16) = 0. If the
message length does not fulfil this equation, appropriate padding methods
have to be used.

 • State – 4 × 4 matrix (see tab. 2.1), which is used for ciphering operations [34].
Firstly, it contains a message than ciphering operations can be done. si,j denotes
bytes, and thus 4 ∗ 4B = 16B = 16 ∗ 8b = 128b. As we mentioned earlier, in the
first step, the message is put into a State array. This is done by taking byte after
byte of the message and putting them into columns.
Example: let’s consider a message given in a hex form:
M = 0xa1b1c1d1e1f1a2b2c2d2e2f2a3b3c3d3,

Table 2.1
AES State array

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

31

2.1. advanced encryption standard

The State will then look as presented in tab. 2.2. Note that, technically, each
row is a 32-bit word (it is also a classic integer size). It implicates the fact
that State rows can be interpreted as integer numbers which can speed up
computations. In such a case, State contains 4 elements, and in our example,
S(0) = 0xa1e1c2a3, etc.

Table 2.2
AES State array example

0xa1 0xe1 0xc2 0xa3
0xb1 0xf1 0xd2 0xb3
0xc1 0xa2 0xe2 0xc3
0xd1 0xb2 0xf2 0xd3

 • Nb – is equal to 4, because it is the number of 32-bits word stored in a State
array [34].

 • Nk – as we mentioned earlier, possible key sizes are 128, 192 or 256 bits.
However, the key is also stored as 32-bit words. Thus, appropriate Nk values
are: 4, 6 or 8 [34].

 • K – ciphering and deciphering key. Contains 32-bit words.
 • Nr – represents the number of rounds. When Nk = 4, Nr = 10. When Nk = 6,

Nr = 12, and when Nk = 8, Nr = 14 [34].
For ciphering and deciphering purposes, we also have to define 5 tables containing

constant values: Sbox (see tab. 2.3), InvSbox (see tab. 2.7), MixingVars (see tab. 2.5)
and InvMixingVars (see tab. 2.6) [34].

Table 2.3
AES Sbox Constants

0x63 0x7C 0x77 0x7B 0xF2 0x6B 0x6F 0xC5 0x30 0x01 0x67 0x2B 0xFE 0xD7 0xAB 0x76

0xCA 0x82 0xC9 0x7D 0xFA 0x59 0x47 0xF0 0xAD 0xD4 0xA2 0xAF 0x9C 0xA4 0x72 0xC0

0xB7 0xFD 0x93 0x26 0x36 0x3F 0xF7 0xCC 0x34 0xA5 0xE5 0xF1 0x71 0xD8 0x31 0x15

0x04 0xC7 0x23 0xC3 0x18 0x96 0x05 0x9A 0x07 0x12 0x80 0xE2 0xEB 0x27 0xB2 0x75

0x09 0x83 0x2C 0x1A 0x1B 0x6E 0x5A 0xA0 0x52 0x3B 0xD6 0xB3 0x29 0xE3 0x2F 0x84

0x53 0xD1 0x00 0xED 0x20 0xFC 0xB1 0x5B 0x6A 0xCB 0xBE 0x39 0x4A 0x4C 0x58 0xCF

0xD0 0xEF 0xAA 0xFB 0x43 0x4D 0x33 0x85 0x45 0xF9 0x02 0x7F 0x50 0x3C 0x9F 0xA8

0x51 0xA3 0x40 0x8F 0x92 0x9D 0x38 0xF5 0xBC 0xB6 0xDA 0x21 0x10 0xFF 0xF3 0xD2

0xCD 0x0C 0x13 0xEC 0x5F 0x97 0x44 0x17 0xC4 0xA7 0x7E 0x3D 0x64 0x5D 0x19 0x73

0x60 0x81 0x4F 0xDC 0x22 0x2A 0x90 0x88 0x46 0xEE 0xB8 0x14 0xDE 0x5E 0x0B 0xDB

0xE0 0x32 0x3A 0x0A 0x49 0x06 0x24 0x5C 0xC2 0xD3 0xAC 0x62 0x91 0x95 0xE4 0x79

0xE7 0xC8 0x37 0x6D 0x8D 0xD5 0x4E 0xA9 0x6C 0x56 0xF4 0xEA 0x65 0x7A 0xAE 0x08

0xBA 0x78 0x25 0x2E 0x1C 0xA6 0xB4 0xC6 0xE8 0xDD 0x74 0x1F 0x4B 0xBD 0x8B 0x8A

0x70 0x3E 0xB5 0x66 0x48 0x03 0xF6 0x0E 0x61 0x35 0x57 0xB9 0x86 0xC1 0x1D 0x9E

0xE1 0xF8 0x98 0x11 0x69 0xD9 0x8E 0x94 0x9B 0x1E 0x87 0xE9 0xCE 0x55 0x28 0xDF

0x8C 0xA1 0x89 0x0D 0xBF 0xE6 0x42 0x68 0x41 0x99 0x2D 0x0F 0xB0 0x54 0xBB 0x16

32

2. practical examples of security techniques

Table 2.4
AES Rcon Constants

0x01 0x00 0x00 0x00
0x02 0x00 0x00 0x00
0x04 0x00 0x00 0x00
0x08 0x00 0x00 0x00
0x10 0x00 0x00 0x00
0x20 0x00 0x00 0x00
0x40 0x00 0x00 0x00
0x80 0x00 0x00 0x00
0x1b 0x00 0x00 0x00
0x36 0x00 0x00 0x00

Table 2.5
AES MixingVars Constants

0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

Table 2.6
AES InvMixingVars Constants

0x0e 0x0b 0x0d 0x09
0x09 0x0e 0x0b 0x0d
0x0d 0x09 0x0e 0x0b
0x0b 0x0d 0x09 0x0e

Table 2.7
AES InvSBox Constants

0x52 0x09 0x6A 0xD5 0x30 0x36 0xA5 0x38 0xBF 0x40 0xA3 0x9E 0x81 0xF3 0xD7 0xFB

0x7C 0xE3 0x39 0x82 0x9B 0x2F 0xFF 0x87 0x34 0x8E 0x43 0x44 0xC4 0xDE 0xE9 0xCB

0x54 0x7B 0x94 0x32 0xA6 0xC2 0x23 0x3D 0xEE 0x4C 0x95 0x0B 0x42 0xFA 0xC3 0x4E

0x08 0x2E 0xA1 0x66 0x28 0xD9 0x24 0xB2 0x76 0x5B 0xA2 0x49 0x6D 0x8B 0xD1 0x25

0x72 0xF8 0xF6 0x64 0x86 0x68 0x98 0x16 0xD4 0xA4 0x5C 0xCC 0x5D 0x65 0xB6 0x92

0x6C 0x70 0x48 0x50 0xFD 0xED 0xB9 0xDA 0x5E 0x15 0x46 0x57 0xA7 0x8D 0x9D 0x84

0x90 0xD8 0xAB 0x00 0x8C 0xBC 0xD3 0x0A 0xF7 0xE4 0x58 0x05 0xB8 0xB3 0x45 0x06

0xD0 0x2C 0x1E 0x8F 0xCA 0x3F 0x0F 0x02 0xC1 0xAF 0xBD 0x03 0x01 0x13 0x8A 0x6B

0x3A 0x91 0x11 0x41 0x4F 0x67 0xDC 0xEA 0x97 0xF2 0xCF 0xCE 0xF0 0xB4 0xE6 0x73

0x96 0xAC 0x74 0x22 0xE7 0xAD 0x35 0x85 0xE2 0xF9 0x37 0xE8 0x1C 0x75 0xDF 0x6E

0x47 0xF1 0x1A 0x71 0x1D 0x29 0xC5 0x89 0x6F 0xB7 0x62 0x0E 0xAA 0x18 0xBE 0x1B

0xFC 0x56 0x3E 0x4B 0xC6 0xD2 0x79 0x20 0x9A 0xDB 0xC0 0xFE 0x78 0xCD 0x5A 0xF4

0x1F 0xDD 0xA8 0x33 0x88 0x07 0xC7 0x31 0xB1 0x12 0x10 0x59 0x27 0x80 0xEC 0x5F

0x60 0x51 0x7F 0xA9 0x19 0xB5 0x4A 0x0D 0x2D 0xE5 0x7A 0x9F 0x93 0xC9 0x9C 0xEF

0xA0 0xE0 0x3B 0x4D 0xAE 0x2A 0xF5 0xB0 0xC8 0xEB 0xBB 0x3C 0x83 0x53 0x99 0x61

0x17 0x2B 0x04 0x7E 0xBA 0x77 0xD6 0x26 0xE1 0x69 0x14 0x63 0x55 0x21 0x0C 0x7D

33

2.1. advanced encryption standard

2.1.3. aes CiPhering algorithm

The ciphering algorithm presented by NIST looks as follows [34]:

Step 0 K = ExpandKey(K)
Step 1 State = M
Step 2 State = AddRoundKey(State, K[0, …, Nb − 1])
Step 3 i = 1, …, Nr − 1 do Steps 4, 5, 6, 7
Step 4 State = SubWords(State)
Step 5 State = ShiftRows(State)
Step 6 State = MixColumns(State)
Step 7 State = AddRoundKey(State, K[Nr ∗ Nb, …, (i + 1) ∗ Nb − 1])
Step 8 do Steps 4, 5
Step 9 State = AddRoundKey(State, K[Nr ∗ Nb, …, (Nr + 1) ∗ Nb − 1])

Note that putting the message to the State presented in Step 1 is described in
sec. 2.1.2. After all these operations, State contains the cryptogram.

Deciphering algorithm presented by NIST [34]:

Step 0 K = ExpandKey(K)
Step 1 State = AddRoundKey(State, K[Nr ∗ Nb, …, (Nr + 1) ∗ Nb − 1])
Step 2 i = Nr − 1, …, 1 do Steps 3, 4, 5, 6
Step 3 State = InvSubWords(State)
Step 4 State = InvShiftRows(State)
Step 5 State = AddRoundKey(State, K[i ∗ Nb, …, (i + 1) ∗ Nb − 1])
Step 6 State = InvMixColumns(State)
Step 7 do Steps 3, 4
Step 8 State = AddRoundKey(State, K[0, …, Nb − 1])

After all these operations, State contains the original, deciphered message.
All ciphering and deciphering functions are described in the next sections.

2.1.4. subWords(state) and invsubWords(state)

This function uses SBox (see tab. 2.3) for changing byte values stored in State during
ciphering, and InvSBox (see tab. 2.7) during deciphering.

Let’s assume that State(0, 0) = 0xa1. 0xa1 indicates which value from Sbox
(during ciphering) will replace the value currently stored in State(0, 0). In particular,
the 4 most significant bits indicate the row in SBox, and the 4 least significant bits
indicate the column number of SBox [34]. Thus, in our example: State(0, 0)′ =
SBox(0xa, 0x1) = SBox(10, 1) = 0x32, where State(0, 0)′ is the new value of State(0, 0).

34

2. practical examples of security techniques

Function SubWords performs this substitution with the use of Sbox on all State
values during ciphering (see eq. (2.1)), and function InvSubWords performs this
substitution with the use of InvSBox on all State values during deciphering [34].

State i j SBox State i j State i j State i j� � �
��

�
��

�(,) (,) , (,) (,)
16 16

��
��

�
��
�

�

�
�

�

�
� �16 0 3, , , ,i j (2.1)

Note that eq. (2.1) is also equivalent to eq. (2.2)

State i j SBox ShiftRight State i j State i j xF� � �(,) (((,),), (,)),1 0 ii j, , ,� 0 3 (2.2)

2.1.5. expandKey(K)

As we mentioned earlier, the AES key can contain 4, 6 or 8 32-bit words, and the key
size determines the number of rounds (Nr). In fact, in each round, we are operating
on 4 32-bit words of the key. Practically, the input key words are used as a seed for
generation of another Nr ∗ Nb different 32-bit words of K. The final size of K is equal
to (Nr + 1) ∗ Nb, which produces Nr + 1 vectors, each containing 4 32-bit words.
These vectors can also be presented as 4×4 matrices containing bytes values (if we
divide each 32-bit word into 4 bytes).

To expand the values of K, the following algorithm should be used [34]:

Step 1 i = Nk, …, Nk ∗ Nb do Steps 2–7
Step 2 tmp = K(i −1)
Step 3 if i (mod Nk) = 0 do Step 4

Step 4 tmp = RotateLeft(SubWord(tmp), 1) � �
��

�
��
�

�

�
�

�

�
�Rcon i

Nk
1

Step 5 if Nk > 6 ∧ i (mod Nk) = 4 do Step 6
Step 6 tmp = SubWord(tmp)
Step 7 K.append(K(i − Nk) ⊕ tmp)

Note that this algorithm assumes that the initial Nk 32-bit words of key K were
generated, and SubWords(tmp) is the same function as described in sec. 2.1.4,
performed on one vector containing 4 bytes. Rcon(i) denotes a 32-bit word stored
in i-th row of the Rcon constants table (see tab. 2.4).

2.1.6. shiftrows(state) and invshiftrows(state)

The ShiftRows operation can be formally represented as in eq. (2.3), and InvShiftRows
as in eq. (2.4) [34].

 State i j State i i j i j� � � �(,) (, () (mod)), , , ,4 0 3 (2.3)

35

2.1. advanced encryption standard

 State i j State i i j i j� � � � �(,) (, () (mod)), , , ,4 4 0 3

 (2.4)

In fact, ShiftRows performs left binary rotation by a row number, and InvShiftRows
performs right binary rotation by a row number. If we represent State as 4 32-bit
words, ShiftRows can be represented as in eq. (2.5), and InvShiftRows as in eq. (2.6),
equivalently [34].
 State i RotateLeft State i i i� � �() ((),), , ,0 3 (2.5)

 State i RotateRight State i i i� � �() ((),), , ,0 3

 (2.6)

After using ShiftRows or InvShiftRows, State′ becomes a new State.

2.1.7. mixingColumns(state) and invmixingColumns(state)

The MixingColumns operation is based on a matrix multiplication and is presented
in eq. (2.7). InvMixingColumns is also a matrix multiplication; however, the constant
values are different, see eq. (2.8).
 State MixingVars State� � � (2.7)

 State InvMixingVars State� � � (2.8)

MixingVars are presented in tab. 2.5, and InvMixingVars in tab. 2.6. The important
thing is that MixingVars and InvMixingVars represent the polynomial coefficients
in GF(28), and all calculations are done under this field [34]. Thus, multiplication of
byte a = [b7, b6, b5, b4, b3, b2, b1, b0] by 0x02 can be done as presented in eq. (2.9) [108].

 a x
b ShiftLeft a x b
b ShiftLeft a

� �
� �
�

�
�
�

�
0 02

1 1 0 1
0 1

7

7

if
else

(,)
(,)��

 (2.9)

The plus operator is represented by XOR: a + b = a ⊕ b. All multiplications must
be done with the use of appropriate combinations of adding and multiplications by
0x02. For example: if a = 0xaa and b = 0x09 then a ∗ b = 0xaa ∗ 0x09 = 0xaa ∗ (0x02
∗ 0x02 ∗ 0x02 + 0x01) = 0xaa ∗ 0x02 ∗ 0x02 ∗ 0x02 + 0xaa = 0x4f ∗ 0x02 ∗ 0x02 +
0xaa = 0x9e ∗ 0x02 + 0xaa = 0x27 + 0xaa = 0x8d.

2.1.8. addroundKey(state, roundKey)

This function performs the XOR operation on RoundKey words and corresponding
State columns (see eq. (2.10)) [34].

 State j i State j i RoundKey i j i j� � � �(,) (,) (,), , , ,0 3 (2.10)

State(j, i) denotes i-th byte in j-th 32-bit word of State, and RoundKey(i, j) denotes
j-th byte in i-th 32-bit word of RoundKey. Note that:

36

2. practical examples of security techniques

 • RoundKey is created by four 32-bit words taken from key K after key extension.
The ciphering and deciphering algorithms presented in sec. 2.1.3 indicate
which words should be taken for a given round.

 • Key binary words are XORed with State columns. In other words, the first row
of State will be XORed with a binary word created by the 4 most significant
bytes of the RoundKey array.

2.2. seCure hash algorithm 2

In this chapter, we will describe two classic hashing algorithms which are current
Secure Hash Standards (SHS): SHA-256 and SHA-512. Before we describe the
algorithms themselves, we present additional functions which will be useful [90]:

 • S function [90]:

 S x a b c RotateRight x a RotateRight x b RotateRight x(, , ,) (,) (,) (� � � ,,)c (2.11)

 • s function [90]:

 s x a b c RotateRight x a RotateRight x b ShiftRight x(, , ,) (,) (,) (,� � � cc) (2.12)

 • Maj function [90]:

 Maj a b c a b a c b c(, ,) () () ()� � � � � � (2.13)

 • Ch function [90]:

 Ch a b c a b not a c(, ,) () (())� � � � (2.14)

For both of the hashing algorithms mentioned earlier, the messages have to have
an appropriate byte length. Let’s define the padding algorithm as well [90]:

1. m – byte array representing message
2. n – block size

Step 0 pad(m, n):
Step 1 tmp = len(m) ∗ 8
Step 2 m.append(0x80)
Step 3 i = 0
Step 4 while i (mod n) ≠ (n − 8) do Step 5, 6
Step 5 m.append(0x00)
Step 6 i = i + 1
Step 7 m.append(bytearray(tmp, 8))
Step 8 return m

37

2.2. seurce hash algorithm 2

Note that:
 • tmp variable stores the number of bits in the original message.
 • binary representation of 0x80 is (10 000 000)b. This means that this padding

method assumes adding bit ‘1’ to the message and later an appropriate number
of ‘0’ bits.

This method is called pad10*.

2.2.1. sha-2 in Clouds

Hashing functions are one of the most important tools in Cloud security aspects.
The authors in [104] present a data integrity checking method with the use of hashing
functions. The method presented by the authors calculates the hash value from data
to be sent on the customer side. Their methodology allows one to avoid third-party
auditors. Hashed data is stored in secured local repositories. When a client wants
to download data from a Cloud, a hash can be calculated again and compared with
the stored one. This assumption allows one to verify Cloud Provider credibility and
compliance with the Service Level Agreement (SLA).

In [4], the authors presented a hybrid hashing security algorithm for data storage
in Cloud. The authors claims that a hash function is the best solution to reach
integrity in Cloud environments. However, combining a hashing function with secure
cryptography algorithms (such as AES or RSA) can ensure confidentiality of data,
integrity and non-repudiation. The authors’ algorithm is named hybrid-SHA256.

The hashing function can be used without any additional security algorithms
(such as storing passwords in databases or the method presented in [104]) and can be
combined with different security techniques (such in digital signatures or as presented
in [4]). As an another example, we can give an algorithm for secure data storage in
Cloud Computing through Blowfish, RSA and Hash Function, as presented in [66].

In this chapter, we present two hashing function from the SHA-2 family. Note that
in most of the algorithms, only the certificate hash function shall be used. Thus, using
SHA-3 is also a secure solution (if the chosen security algorithm allows one to do so).

2.2.2. sha-256

In this section, we present an algorithm of the calculation SHA-256 digest [90]. Note
that the hash is calculated from byte array M, H are initial hash constants, and K are
fixed constants given by NIST [90]. K and H values are 32-bit unsigned integers.

Step 1 H = (0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c,
 0x1f83d9ab, 0x5be0cd19)
Step 2 K = (0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,

38

2. practical examples of security techniques

 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2)
Step 3 M = pad(M, 64)
Step 4 i = 0
Step 5 tmp = (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
Step 6 while i < len(M) do Steps 7-23
Step 7 W = ()
Step 8 for j = 0, …, 15 do Step 9

Step 9 W.append(parseUint32 M i j i j
64

64 4
64

64 4 3�
��

�
��
� � � �

��
�
��
� � � �

�

�
�

�

�
�

�

�
�

�

�
�, ,

Step 10 for j = 16, …, 63 do Step 11
Step 11 W.append(W(j − 16) + W(j − 7) + s(W(j − 15), 7, 18, 3) + s(W(j − 2), 17, 19, 10))
Step 12 for j = 0, …, 7 do Step 13
Step 13 tmp(j) = H(j)
Step 14 for j = 0, …, 63 do Step 15-20
Step 15 t1 = K(j) + W(j) + S(tmp(4), 6, 11, 25) + Ch(tmp(4), tmp(5), tmp(6)) + tmp(7)
Step 16 t2 = Maj(tmp(0), tmp(1), tmp(2)) + S(tmp(0), 2, 13, 22)
Step 17 for k = 7, …, 1 do Step 18
Step 18 tmp(k) = tmp(k −1)
Step 19 tmp(0) = t1 + t2
Step 20 tmp(4) = tmp(4) + t1
Step 21 for j = 0, …, 7 do Step 22
Step 22 H(j) = H(j) + tmp(j)
Step 23 i = i + 64
Step 24 return H(0)||H(1)||H(2)||H(3)||H(4)||H(5)||H(6)||H(7)

2.2.3. sha-512

In this section, we present an algorithm of the calculation SHA-512 digest [90]. Note
that the hash is calculated from byte array M, H are initial hash constants, and K are
fixed constants given by NIST [90]. K and H values are 64-bit unsigned integers.

Step 1 H = (0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179)

39

2.2. seurce hash algorithm 2

Step 2 K = (0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
 0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
 0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694,
 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
 0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70,
 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30,
 0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
 0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
 0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817)
Step 3 M = pad(M, 128)
Step 4 i = 0
Step 5 tmp = (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
Step 6 while i < len(M) do Steps 7-23
Step 7 W = ()
Step 8 for j = 0, …, 15 do Step 9

Step 9 W.append parseU M i j i jint64
128

128 8
128

128 8 7�
��

�
��
� � � �

��
�
��
� � � �

�

�
�

�

�
, , ��

�

�
�

�

�
�

�

�
��

�

�
��

Step 10 for j = 16, …, 79 do Step 11
Step 11 W.append(W(j − 16) + W(j − 7) + s(W(j − 15), 1, 8, 7) + s(W(j − 2), 19, 61, 6))
Step 12 for j = 0, …, 7 do Step 13
Step 13 tmp(j) = H(j)
Step 14 for j = 0, …, 79 do Step 15-20
Step 15 t1 = K(j) + W(j) + S(tmp(4), 14, 18, 41) + Ch(tmp(4), tmp(5), tmp(6)) + tmp(7)
Step 16 t2 = Maj(tmp(0), tmp(1), tmp(2)) + S(tmp(0), 28, 34, 39)
Step 17 for k = 7, …,1 do Step 18
Step 18 tmp(k) = tmp(k −1)
Step 19 tmp(0) = t1 + t2
Step 20 tmp(4) = tmp(4) + t1
Step 21 for j = 0, …, 7 do Step 22
Step 22 H(j) = H(j) + tmp(j)

40

2. practical examples of security techniques

Step 23 i = i + 128
Step 24 return H(0)||H(1)||H(2)||H(3)||H(4)||H(5)||H(6)||H(7) In this case,
 the digest is equal to 512 bits (8 ∗ 64-bit word).

2.3. rivest-shamir-adleman

Rivest-Shamir-Adleman (RSA) is an asymmetric block cipher. This algorithm is the
most popular asymmetric scheme and overwhelms its competitors [108]. Published
by the authors in 1978, RSA became a global standard very quickly. Accepted by NIST
as Public Key Cryptography Standard 1 (PKCS1), RSA can also be used for digital
signatures generation. The algorithm is based on the Discrete Logarithm Problem.
The authors in [108] distinguish 4 main attacks which can be done on RSA:

 • Brute force attack: checking all possible combinations to break the cipher
[108].

 • Mathematical attacks: factorisation of RSA parameters [108].
 • Time attacks: which use the realisation time of particular RSA instructions

during deciphering [108].
 • Attacks with a chosen cryptogram: which use mathematical parameters

of RSA [108].
To avoid all these possible problems, an appropriate key should be chosen.

All details are described in the next sections.

2.3.1. rsa in Cloud

The authors in [93] proposed the use of RSA in Cloud environments. They proved
that the use of RSA protects against unauthorised access to data. The performance
of algorithms varies according to the size of the data. To compensate for these
drawbacks, the authors in [39] proposed an algorithm called ERSA (Enhanced
RSA), which is based on RSA. ERSA enable one to perform fast complex calculations
and increase the speed of encryption and decryption. The authors state that ERSA
can be used to ensure data security in the Cloud. In [119], the authors proposed
a method for providing security in the Cloud via the classic RSA cryptosystem. They
performed comprehensive studies and finally state that: RSA provides high security
in high potential data encryption methodology [119].

RSA can also be used for digital signature creation. The authors in [105] proposed
and tested a secure RSA digital signature scheme, which can be used in Cloud
environments to ensure authentication, data integrity, privacy and non-repudiation
(all main features which digital signature should have). We presented their algorithm
in sec. 2.3.3.

41

2.3. rivest-shamir-adleman

RSA is also used by commercial Cloud providers, e.g.:
 • Google Cloud KMS in asymmetric encryption schemes [41]. Currently, they

also use SHA-256.
 • Amazon: The keys that Amazon EC2 use are 2048-bit SSH-2 RSA keys. You can

have up to five thousand key pairs per Region [9].

2.3.2. rsa CiPhering sCheme

Firstly, key pairs have to be generated according to the following algorithm [108]:
1. p, q – two distinct positive prime numbers with reasonable size.

Step 1 n = p ∗ q
Step 2 φ(p, q) = (p − 1) ∗ (q − 1)
Step 3 find e such that: 1 < e < φ(p, q) ∧ gcd(e, φ(p, q)) = 1
Step 4 d ≡ e−1 (mod φ(p, q))

A public key PUB is created by pair (e, n) and a private key PRIV by pair (d, n).
Note that:

 • φ(p, q) is an totient function (also called Euler Function). If p and q are prime
numbers, this totient function can be calculated as presented in Step 2.

 • Step 4 presents a modular inverse of e (mod φ(p, q)). Practically, it means
that: d ≡ e−1 (mod φ(p, q)) can be presented as e ∗ d ≡ 1 (mod φ(p, q)). d can
be found, e.g., via the Extended Euler Algorithm.

 • The RSA key length is equal to the bit length of n. Thus, for example, RSA-1024
notation means that the bit length of n is equal to 1024.

 • If number a is represented on ad bits and number b on bd bits, product
c = a ∗ b will be represented on ad + bd bits or ad + bd −1 bits.

However, RSA parameters have some restrictions, which are presented in [89]:
 • p, q and d shall be kept in secret. e and n can be shared [89].
 • The bit length of n shall be equal to: 1024, 2048, 3072 bits or more.

The bigger the n, the harder the factorisation problem becomes, and the time
of computations is longer [89].

 • Certification Authorities (CAs) shall use n equal to or longer than their
subscribers [89].

 • p and q shall be generated with an approved pseudorandom number gene-
rator [89].

 • Seeds of pseudorandom prime generators shall be kept in secret (or destroyed)
[89].

The ciphering scheme is presented in eq. (2.15), and the deciphering scheme in
eq. (2.16) [108].

42

2. practical examples of security techniques

 c m ne= (mod) (2.15)

 m c nd= (mod) (2.16)

Note that:
 • m is a message which will be ciphered. m must be converted into a number

such that: m < n. If this condition is not fulfilled, m has to be divided into
blocks such that each block of the message creates a number smaller than n
(mblock < n). Each block is then ciphered separately.

•   m m ned= (mod).
 • Everyone with the sender’s public key can cipher the message; however, only

sender the can decipher it with a private key.

2.3.3. rsa digital signature

RSA can also be used for signing messages with digital signatures. Before presentation
of the algorithm itself, let’s introduce some additional notations:

•     (,), (,)e n d ns s s s – signer public and private key, respectively.
•     (,), (,)e n d nv v v v – verifier public and private key, respectively.
 • H – hashing function. The same for signer and verifier.
 • m – message which will be signed.

Basic signature creation is presented in eq. (2.17) [63].

 s m nd
s

s= (mod) (2.17)

A signature s and message m are sent to the verifier, and value v is then calculated
as presented in eq. (2.18). If m = v, verification is completed with success.
 v m ne

s
s= (mod) (2.18)

However, this scheme was improved by the authors in [105]. Their scheme
assumes the use of RSA signatures in Cloud environments. The improved scheme
assumes that the signature s looks as presented in eq. (2.19):

 s m n H m ne
v

d
s

v s= ((mod), () (mod)) (2.19)

s is sent to the verifier, which calculates v as presented in eq. (2.20).

 v H s n s nd
v

e
s

v s= ((() (mod)), () (mod))0 1 (2.20)

If v(0) = v(1), verification is completed with success. Note that everyone can
verify the digital signature with the sender’s public key, but only the sender can create
it with a private key.

For signature purposes, additional security requirements are presented by
NIST [89]:

43

2.4. elliptic curve cryptography (ecc)

 • The key pair used for the digital signature scheme can be used only once and
shall not be used for any other purposes [89].

 • Only approved hash functions shall be used for digital signature schemes.
The security of the chosen hashing function cannot be lower than the
security of modulus n [89].

 • The length in bits of the hash function output block shall meet or exceed
the security strength associated with the bit length of the modulus n [89].

 • The security strength of the hash function and modulus n shall exceed
the security required by the digital signing process [89].

2.3.4. Blind rsa

Considering Cloud Computing, another version of RSA, called Blind RSA, may be
used. Each result of the computation is firstly blinded by a VM that computed the
task. The blinded results are sent to the SP, and there they are decrypted using the
RSA procedure. Using such an extension of the basic algorithm, the SP is not aware
of the exact data that will be stored (as the black box coding engine). In the case of
transmitting data to the user, the results of the computation are retrieved from the SP
and decoded by VM. Only the authorised VM may decode the results.

Let’s assume the same notation as presented in sec. 2.3.2. Public and private keys
are generated in the same way; however, the ciphering scheme is a little bit different.
If the VM wants the SP to cipher the message m ∈ {0, 1, …, n} blindly, m is multiplied
by ke mod n, where k is a randomly chosen number called the blinding factor. The VM
then sends the blinded message m ∗ kd mod n to the SP. Next, the SP ciphers the
blinded message, which results in c = (m ∗ kd)e mod n, and stores it. Finally, the VM
unblinds the message by multiplying c by k−1 mod n, which results in:
 c k n m k k nd e� � � � �� �1 1mod () mod

m k k ne de� � ��1(mod)

m kk ne � �1(mod)

and deciphers if:
 () (mod)m n me d =

2.4. elliPtiC Curve CryPtograPhy (eCC)

Elliptic Curves (ECs) allows one to implement some cryptographic algorithms
in a different way. In this section, we present the Elliptic Curve Digital Signature
Algorithm, ElGamal cryptosystem implemented with ECs usage and all formulas

44

2. practical examples of security techniques

which are necessary for understating these algorithms. The main reason why ECs are
gaining popularity is the key size. Algorithms based on ECs use much smaller keys
for the encryption and decryption process, which results in much faster (even many
times faster) computations in comparison to classical asymmetric algorithms (such
as RSA). Less time of computations results in less memory usage and less power
consumption. What is more, the smaller keys in ECC do not cause a decrease in
overall security. However, one of the biggest drawbacks of ECC is the complexity of
algorithms and complexity of implementation. Cryptograms can also be bigger in
comparison to RSA.

There are three main types of ECs [24]:
 • ECs over real numbers.
 • ECs over binary fields (also called EC over F m2

).
 • ECs over finite fields (also called EC over Fp).

In ECC, curves over F m2
 and over Fp are used. We will focus on the third type

(ECs over Fp). All necessary formulas and notation are presented in sec. 2.4.2.

2.4.1. eCC in Clouds

In [7], the authors claim that ECC is currently becoming more and more popular
in Cloud environments due to its smaller cryptography key sizes (which leads to
the less memory consumption and reduction of computational time) and less power
consumption. These two factors are very important, e.g., in mobile applications.
They also proposed an encryption scheme which is basing on the ElGamal
cryptosystem with ECC usage. Their conclusion is: ECC had provided a robust
and secure model for the development and deployment of a secure application in the
Cloud. This work would promote confidence in both large and small scale organisations
in Cloud investment [7].

In [48], the authors demonstrated an encryption scheme, decryption scheme
and digital signature scheme with ECC usage. The authors also pointed out that
currently there are only a few known attacks on Elliptic Curves which won’t work
if EC parameters are chosen according to the security requirements.

In [100], the authors described how to effectively and securely use ECDSA in
Cloud systems. They also compared the effectiveness of the RSA signature scheme
and ECDSA. They pointed out that using ECC also ensures faster access to the
memory in comparison to other existing Digital Signature Algorithms.

The examples mentioned above are only a drop in the ocean. It is possible to give
many more examples of ECC usage in Cloud computing environments. If we take
into consideration that ECC is also used by private Cloud providers, such as:

 • Google Cloud: in asymmetric signing algorithms. Curves P-256 and
P-384 [40].

45

2.4. elliptic curve cryptography (ecc)

 • Amazon Web Services: in CloudFront for supporting ECDSA Certificates
for HTTPS Connections to Origins [8].

 • Microsoft Azure: in the cryptographic library for creating ECDSA [83].
We can assume that it is an important technique which is worthy to be described

in the Cloud security context.

2.4.2. eC domain Parameters

Elliptic Curve E over Fp is a curve given by formula (2.21) [24], [116]:

 E y p x ax b p: (mod) (mod)2 3� � � (2.21)

Where [116]:
 • p > 3, and p is a prime number.
 • a, b ∈ [0, p − 1] and (4a3 + 27b2) (mod p) ≠ 0 (mod p)

Each curve used for cryptographic purposes must define the following para-
meters (see tab. 2.8):

Table 2.8
EC basic parameters and notation

Symbol Name Description

O Point at infinity This is EC additive identity [24]. Every EC has point O.

#E EC order Total number of points (including point O) generated by the curve E
(see eq. (2.21)) [24], [116]. E should be a prime number.

G(gx, gy) EC generator Randomly chosen point which belongs to E (see eq. (2.21)) [116].

Note that: gx, gy ∈[0, p – 1] and g p g ag b py x x
2 3(mod) (mod).� � �

n EC generator
order

In such case, the order of the generator means that for any number x
from range [1, n − 1], xG will be a point on a curve; however
nG = O. Practically n is indicating how many times G can be

multiplied. n must be a prime number and: n > 2160 ∧ n > 4 p [116].

The idea behind ECC is similar to the modulus arithmetic. EC, which fulfils all
the conditions above, creates a finite number of distinct points. Adding a point to
another point (under some conditions mentioned later) will produce a point at the
curve. Multiplication works in the same way. When the curve is big enough, some
points create subgroups within the group generated by a curve. Multiplication of
a point from this subgroup will produce another point from this subgroup. Formally,
it can be said that EC can create cyclic abelian groups [108], such as the generator
mentioned in tab. 2.8.

46

2. practical examples of security techniques

Let’s assume that an appropriate EC was generated (see eq. (2.21)) and
A = (ax, ay) and B = (bx, by) are two points which belong to the curve. –A is equal to
(ax, –ay (mod p)) [24]. To perform an adding operation, the following algorithm
should be used [24]:

1. A(ax, ay) + B(bx, by) = C(cx, cy)
2. A and B are distinct points
3. A ≠ –B

Step 1 s
a b
a b

py y

x x

�
�

�
(mod)

Step 2 c s a b px x x� � �2 (mod)
Step 3 c a s a c py y x x� � � � �() (mod)

To double point A, the following algorithm shall be used [24]:
1. 2B(bx, by) = C(cx, cy)
2. by ≠ 0

Step 1 s
b a

b
px

y

�
�3

2

2

(mod)

Step 2 c s b px x� �2 2 (mod)
Step 3 c b s b c py y x x� � � � �() (mod)

To multiply a point, doubling and adding operations must be combined. For
example: 9B = 8B + B = 2(4B) + B = 2(2(2B)) + B. This can be done, for example,
via the binary powering algorithm. Note that points are usually multiplied by a huge
number, and thus naive powering method will be useless.

Finding the appropriate curve and calculation of all necessary parameters is
generally complicated. Thus, NIST in [89] presented curves which are considered as
secure. We present three of them in tab. 2.9, tab. 2.10 and tab. 2.11.

Table 2.9
Curve P-192 [89]

a 3

b 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1

p 6277101735386680763835789423207666416083908700390324961279

n 6277101735386680763835789423176059013767194773182842284081

gx 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012

gy 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811

47

2.4. elliptic curve cryptography (ecc)

Table 2.10
Curve P-256 [89]

a 3

b 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b

p 115792089210356248762697446949407573530086143415290314195533631308
867097853951

n 115792089210356248762697446949407573529996955224135760342422259061
068512044369

gx 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0 f4a13945d898c296

gy 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ece cbb6406837bf51f5

Table 2.11
Curve P-512 [89]

a 3

b 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef10
9e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00

p 686479766013060971498190079908139321726943530014330540939446345918
554318339765605212255964066145455497729631139148085803712198799971
6643812574028291115057151

n 686479766013060971498190079908139321726943530014330540939446345918
554318339765539424505774633321719753296399637136332111386476861244
0380340372808892707005449

gx 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3d
baa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66

gy 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e6
62c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650

Note that:
 • a, p and n are given in decimal format, while b and the coordinates of G in

hexadecimal format.
 • Users can calculate their own G with different n (G and n must fulfil all

conditions mentioned in this chapter). The rest of the parameters can remain
unchanged.

 • Notation P − X indicate that the curve is defined over X bit’s prime number.
 • According to the NIST Special Publication 800-57 [15], curves P-160 to P-223

offer the same security as RSA-1024, curves P-224 to P-255 offer the same
security as RSA-2048, and curves P-256 to P-383 offer the same security as
RSA-3072. RSA needs a 15360-bit key to reach the same security level as curve
P-512 (and higher) [15].

48

2. practical examples of security techniques

2.4.3. elgamal CryPtosystem

ElGamal is an asymmetric cipher which can be implemented with Elliptic Curve
(EC) usage. A description of particular variables is presented in sec. 2.4.2.

To represent how the algorithm works, let’s assume communications between A
and B. Both sides of communications must choose the same [21]:

 • a and b EC parameters.
 • Finite field Fp.
 • Generator G of EC.
 • The same algorithm of mapping message M into EC.

To generate cryptographic keys, A and B have to [21]:

Step 1 choose natural number k such that: k ∈ [1, n − 1]
Step 2 calculate point Q = k ∗ G

Q q qa x
a

y
a= (,) is a public key of A, and ka is a private key of A. Note that Qa is a point,

and ka is a number. B generates keys analogously. After the keys were generated, both
sides need to validate them. An appropriately generated public and private key fulfils
the following conditions [21]:

•    Q O nQ O� �and [21].
•    (,)q q F Q Ex y p∈ ∈and [21].
Before ciphering, message M has to be encoded as a point on the chosen curve E.

This is quite challenging and may reduce the speed of the overall ciphering process.
The authors in [84] described a Koblitz method which allows one to overcome this
problem.

One of the biggest downsides is that the hardness of encoding message M into
curve E depends on the private key k, and this is not always possible [84].

If we assume that message M was successfully encoded as a point on a curve (let’s
denote this point by MP mp mpx y= (,)) and that A wants to send this message to B,
the ciphering scheme presented in [21] looks as follows:

Step 1 Choose natural number r such that: r ∈ [1, n − 1]
Step 2 Compute c1 = r ∗ G
Step 3 Compute c2 = r ∗ Qb + MP
Step 4 Send cryptogram C = (c1, c2) to the B

To decipher cryptogram C = (c1, c2), B must perform the following operations [21]:
Step 1 V = kb ∗ c1
Step 2 MP = c2 – V

After deciphering, B must also map point MP back to message M.

49

2.4. elliptic curve cryptography (ecc)

To avoid the whole message mapping process, the bauthors in [26] proposed
a slightly different ciphering scheme based on ElGamal, called Hash ElGamal. Let’s
assume the same notation and scenario as in the ElGamal encryption; however,
A and B have access to the same hash function denoted by H, and we are considering
M as a binary string representing the message. Then, if A wants to encrypt a message,
the following algorithm should be used [26]:

Step 1 c1 = r ∗ G
Step 2 c2 = H(Qb ∗ r) ⊕ M
Step 3 Send cryptogram C = (c1, c2) to the B

To decrypt a message, B must perform the following instructions [26]:

Step 1 M = H(kb ∗c1) ⊕ c2

Note that in the Hash ElGamal encryption scheme:
 • Binary length of message M cannot be longer than the digest length produced

by hashing function H. Otherwise, the message must be divided into blocks
with appropriate bit length.

 • Ciphering and deciphering processes assume calculating a hash from a point
of curve E.

 • Hash ElGamal is partially homomorphic in the field Zp [26].

2.4.4. elliPtiC Curve digital signature algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) is an American National
Standard (ANSI X9.62), created in 1998 [116]. A description of particular variables is
presented in sec. 2.4.2. Additionally, the Signer and Verifier have access to the same
hashing function H. The Signer private key is ka, and public key is Q q qa x

a
y
b= (,).

To create a signature from message M, the following algorithm has to be used by
the Signer [116]:

Step 1 Choose a such that: a ∈ [1, n − 1]
Step 2 Compute P(px, py) = a ∗ G
Step 3 r = px (mod n)
Step 4 if r = 0 go to Step 1
Step 5 if bitlen(H(M)) > bitlen(n) compute e = ShiftRight(H(M), bitlen(H(M)) –
 bitlen(n)), else compute e = H(M)
Step 6 Compute s = a−1 ∗ (e + r ∗ ka) (mod n). If s = 0 go to Step 1.
Step 7 Send (r, s) to the Verifier.

50

2. practical examples of security techniques

Verifier get signature (r, s) and message M. To validate signature, Verifier must
perform the following steps [116]:

Step 1 If r or s are not in interval [1, n − 1] signature is invalid.
Step 2 Compute c = s−1 (mod n)
Step 3 if bitlen(H(M)) > bitlen(n) compute e = ShiftRight(H(M), bitlen(H(M)) –
 bitlen(n)), else compute e = H(M)
Step 4 Compute u1 = e ∗ c (mod n)
Step 5 Compute u2 = r ∗ c (mod n)
Step 6 Compute P(px, py) = u1 ∗ G + u2 ∗ Qa. If P = O signature is invalid.
Step 7 Compute v = px (mod n)
Step 8 If v = r signature is valid.

Note that:
 • Signature (r, s) is made of numbers, not points.
 • Step 5 in the signature creation algorithm (and corresponding Step 3

in verification algorithm) assuming taking bitlen(n) leftmost bits of hash
value as an e parameter (if hash is longer than bitlen(n)). e can be greater
than n; however, it cannot be longer. The original ANSI X9.62 assumes the
use of the SHA-1 function, which produces 160-bit hashes (bit length of n
is always greater than 160 bits). In such a case, whole hash values can be
taken as e; however, NIST in 2015 announced that SHA-1 should not be used
anymore. It is recommended to use SHA-2 or SHA-3, and in this case, there
exists a possibility that the bit length of n will be smaller than a hash length.
Truncation is then needed.

2.5. shamir seCret sharing

Tasks from the same batch are calculated and stored in different locations. Nevertheless,
to process the batch further or to send it back to the user, CC has to assure that all
elements of the batch were gathered, and no single part of the computational chain
has lost its share. The proposed scheme may be an alternative for traditional methods
for information integrity checking that use hash functions like SHA-2 or SHA-3.

Secret sharing procedure enables one to distribute certain knowledge among
the group of participants so that only a predesignated collection of them are able to
recreate the knowledge by collecting and combining their shares, [101]. The secret is
split among t VMs that are chosen out of n to run the batch of tasks. The completeness
of the results may be checked by recreating the secret from them. Such a procedure
can guarantee that less than t participants are not able to recreate the secret. Let’s
assume that the first participant of the secret is the unit sending a batch to workers

51

2.6. counter example

(dealer), and we have n participants in the system, and that the batch was split among
t −1 VMs so that each VM has at least one task from that batch to run. The Shamir
Scheme [101] uses polynomial interpolation over finite field GF(q), where q >= n + 1.

1. Secret splitting. The dealer choose n distinct nonzero elements from GF(q):

 x x xn1 2, , ,

and allocates them among participants. In the next step dealer fixes element
K ∈ GF(q) as the secret. The shares of the secret are created by the following
scheme:
 • Dealer sets elements

 a a a GF qt1 2 1, , , () � �

randomly, uniformly and independently.
 • if the a x K a x a x a xt

t() � � � � � �
�

1 2
2

1
1

 is the polynomial of degree t – 1
then shares are defined as yi = a(xi) for i = 1, 2, …t.

2. Retrieving the secret. If all t participants gather their shares together (dealer
and chosen VMs), they formulate the set of t points (xi, yi) of the polynomial a.
Using the Lagrangian Interpolation, there is a possibility to find the unique
polynomial of degree t – 1 passing throughout these points. The secret is found
by taking the value of that polynomial at point 0. Shares may be also computed
from the system of linear equations:

 y K a x a x a xt
t

1 1 1 2 1
2

1 1
1� � � � � �
�

y K a x a x a xt

t
2 1 2 2 2

2
1 2

1� � � � � �
�

y K a x a x a xt t t t t

t� � � � � �
�

1 2
2

1
1

where yi for i = 1, 2, …t are known shares,

 K a a a GF qt, , , , ()1 2 1 � �

are unknown. The solution of this system, including secret K, may be found
(e.g. via Gaussian Elimination Method) only if exactly t participants gave their
shares.

2.6. Counter examPle

One of the best symmetric stream ciphers is the Vernam Cipher. The algorithm is
presented in [102].

Ciphering process:
 C M K� � (2.22)

52

2. practical examples of security techniques

Deciphering process:

 M C K� � (2.23)

where: Vernam uses the XOR operation to produce the ciphertext [102].

Table 2.12
Vernam Cipher Symbols

C Cryptogram

M Message

K Key

The resulting bit is equal to “1” if the input bits are different and “0” if they are the
same [102]. If Key is generated appropriately, the Vernam Cipher becomes an ideal
cipher. Theoretically, it is extremely hard to break within a reasonable time, even with
all the computational power from all over the world.

The only problem is the key generation. There are several technical solutions for
generation of random bit strings. Some research points out that even images (chosen
properly) or different files can be used as a key [5]. As an example of a pseudorandom
bit generator, we can also point out Blum Blum Shub (BBS) [30].

However, the Vernam Cipher, despite its strength, has many drawbacks, which are
presented in [61]:

 • Key has to be equal or longer than the message.
 • Key cannot be reused. Practically, this means that half of the communication

process will be spent on key exchange.
 • Security channel for key exchange is necessary.

These drawbacks cause a reduction of usage of the Vernam Cipher in Cloud
environments. Most commercial Cloud Providers do not support stream encryption,
because it is replaced by faster symmetric block encryption. Despite the fact that
there exist articles which propose the use of variations of stream ciphers in Cloud
environments (such as [91]), they will probably not be useful in practice.

53

Most deadly errors arise from obsolete assumptions
Frank Herbert, Children of Dune

3. seCurity asPeCts in Cloud systems

3.1. introduCtion

The Cloud Computing (CC) model incorporates multiple stakeholders for providing
scalable on-demand access to a shared pool of configurable computing resources.
The liability of service quality in the CC model is on the Provider side [3]. Security
is the next objective after assuring proper infrastructure and software for elastic,
complex and heterogeneous Cloud Services. The basic security services that have to
be implemented in the Computational Clouds are the same as for traditional systems:

 • the preservation of confidentiality – information/data/services should be
accessible only for authorised users;

 • integrity – information/data/services should be accurate and complete; and
 • availability – ensuring access on demand.

The necessity for additional security services comes from the fact that physical
resources are shared by a lot of customers. Secret sharing, auctioning and voting pro-
tocols are main examples of specialised algorithms used for protection resources with
many participants. The next aspect of any Computational Cloud is the large number
of end-users. This results in higher vulnerability to inside threats or security igno-
rance. Moreover, the complex and heterogeneous architecture and massive scale of
offered services make the system more vulnerable to unintentional security threats
like users errors. All security components, including cryptography algorithms, proto-
cols and schemes, need to be established, implemented, monitored, reviewed and im-
proved constantly. This is an obligation under international law regarding the right to
privacy and many international standards and regulations, e.g. ISO/IEC 27002:2013
Norm or NIST Special Publication 800-53. This chapter presents different aspects
of security in Computational Clouds.

54

3. security aspects in cloud systems

3.2. identifiCation of seCurity ProCedures
in Cloud infrastruCture

When it comes to cryptography elements, computational Cloud architecture can be
divided into several parts, see fig. 3.1 [44]:

 • Cloud consumer’s part: responsible for cryptography solutions for consumption
of the services,

 • Cloud provider’s part: supporting secure orchestration, secure deployment,
security of services, secure recourse abstraction and security of the physical
layer, as well as secure resource management,

 • Cloud broker’s part: providing secure service aggregation and secure wrapping
services [44].

Considering CC layers, the following cryptography element placement is
necessary [88]:

 • Software as a Service method supporting secure use of applications running
on a Cloud infrastructure. The broad access of applications from various client
devices, including thin clients, web browsers and tablet interfaces, has to be
considered.

 • Platform as a Service dedicated methods. Cryptography tools assuring security
of programming languages, libraries, data basis.

Fig. 3.1. Chosen security preserving methods in a Computational Cloud ecosystem
presented in [44]

55

3.2. identification of security procedures in cloud infrastructure

 • Infrastructure as a Service (IaaS). Cryptography enabling processing, storage,
networking.

As far as a deployment model is considered, different cryptography services and
trust levels have to be considered for:

 • Private Clouds governing very sensitive data under strong authentication and
authorisation of strictly defined customers.

 • Public Cloud cryptography assuring services are open for public use. These
systems need to handle many lean or security-unaware clients on a massive
scale.

 • Hybrid Cloud cryptography tools serving as security for the composition of
private, community or public Clouds. The main challenge is the unification of
cryptography security levels among different providers [99].

Regarding infrastructure layers, the following components may be listed:
 • Physical layer cryptography Methods dedicated to physical resources and their

interactions. Examples include servers, storage disks, modems and switches.
 • Virtual layer methods support virtual resources. Examples of such resources

may be VMs, virtual networks and virtual storage disks.
 • Application layer schemes secure applications hosted using virtual resources.

The International Organization for Standardization Standard ISO/IEC
19790:2012(E), entitled Information Technology Security techniques, Security
requirements for cryptographic modules, specifies four levels for cryptography
modules as apart of general security requirements:

1. Security Level 1: at least one approved algorithm or approved security function
shall be used;

2. Security Level 2: role-based authentication in which a cryptographic module
authenticates the authorisation;

3. Security Level 3: identity-based authentication mechanisms implemented.
Moreover, the input or output has to be processed inside a secure module with
a trusted path from other interfaces. Plain-text may be passed through the
cryptographic module in encrypted form;

4. Security Level 4: the highest level of security defined in this standard. Penetration
of the cryptographic module is closed from any direction. A security threat has
a very high probability of being detected, resulting in secure backup of the
system running [50].

In such a complex system, load balancing is necessary. The proper mapping of
data and tasks in Cloud systems are realised by schedulers. This implies that the initial
requirements and assumptions as far as the strength of the cryptographic shield over
tasks and data is considered, and they have to be properly mapped into units serving
as workers, see fig. 3.2 [3]. Moreover, the developer is obligated to provide a sufficient
amount of VMs meeting these needs. Load balancers and schedulers have to be
informed about these cryptography services divided into categories, measurable and

56

3. security aspects in cloud systems

verifiable. Additionally, they have to optimise not only the parameters of schedules
concerning time and efficiency but additional criteria considering fulfilment of
the security requirements. This results in the necessity of multistage optimisation
problem solving [55, 56, 69].

Horizontal and Vertical Scaling service usage also has deep consequences.
They are available on-demand for CC users. The scaling of one component results
in cascaded scaling at other dependent resources. This may be done at the same
level of infrastructure in the form of horizontal scaling or at the previous (next)
level of infrastructure, namely as vertical scaling. This enforces the frequent integrity
checking and authentication mechanisms used for each consecutive part of the
process, see fig. 3.3.

Fig. 3.2. Mapping security requirements by schedulers presented in [3]

Fig. 3.3. Horizontal matching of security requirements presented in [3]

57

3.2. identification of security procedures in cloud infrastructure

The Cloud model assumes the provision of services regardless of problems
with the physical equipment or virtual resource failures. Therefore, backup, trust
connections with other servers and transparent migrations to new physical units
or virtual resources are necessary to be established and to be ready for use at any
time. The backup scenarios have to take into consideration the secure backup
of cryptography keys, privileges, rights, restrictions and roles of the customer,
see fig. 3.4.

Virtualisation enables a single hardware system to concurrently run multiple
isolated virtual machines. The IaaS layer is based on many virtualised components:
virtual machines, hypervisors and virtual networks [22]. Solutions dedicated for such
a resource may be:

 • guest OS Isolation [107],
 • isolation of VM systems with mandatory access control mechanisms [54],
 • encryption and hashing of the state of VMs before saving,
 • data in transit between VM protection by securing the network using

VLANs [46].
Clouds offer services on a massive scale. Therefore, security establishment

requires automated solutions. Verifying trust chain elements has to be done with
minimum human intervention. Moreover, performance Analysis of Data Encryption
Algorithms or key generation systems should be done to avoid using inefficient
solutions. Cryptographic protocols dedicated to Big Data Systems are often the best
choice for CC systems. Among them are Multi-Party Computation [18], or Functional
Encryption [6].

Computational Clouds process a large variety of data types. Data at rest, being
stored on psychical units in digital form, has to be treated differently than data in
motion over an infrastructure. Data in use (active data) stored in non-persistent
units, typically in computer random access memory, CPU caches or CPU registers,
also needs dedicated solutions. Data in transit may be moved using several paths:
Firstly, from the customer endpoint (computer, laptop, tablet) using the Internet and
a web service provided by the CC. The data or metadata is then transferred between

Fig. 3.4. Redundancy of trust connection presented in [3]

58

3. security aspects in cloud systems

Services and Virtual Machines inside the Cloud. Lastly, the data has to be transited
physically, for example, to store it onto hard drives. Examples of a dedicated solution
for encryption of data at rest may be found in [96]. Techniques for encryption of data
in motion are presented, for example, in [94]. And finally, the encryption of data in
use is described in [103].

Security of data storage inside Clouds may be supported via:
 • a sequential revocation game where Cloud users have to choose the best

strategy from a set of three strategies to revoke and eliminate the malicious
user while minimising their costs [58],

 • proactively Secure Cloud-Enabled Storage [37],
 • auditing and monitoring mechanisms to detect and prove violations of security

properties [31],
 • a secure cloud storage system based on discrete logarithm problems [121],
 • strong Key-Exposure Resilient Auditing for Secure Cloud Storage [120],
 • valet security model [20].

Sensitive data is defined in a very broad sense. It is treated as any information
which compromised can adversely affect the interest of the data owner or the privacy
rights of individuals. The use of such data is regulated by law. For example, the Data
Protection Act of 1998 in the United Kingdom [49], specifies personal data stored on
computers or in an organised paper filing system as a sensitive data when it contains:
the racial or ethnic origin, political opinions, religious beliefs or other beliefs of
a similar nature, physical or mental health or condition, sexual life. User passwords,
credit card information and security policy numbers are further examples of data
being under special control.

The processing of such data is defined as obtaining, recording, holding, or carrying
out any operation or set of operations on it, such as:

 • organisation, adaptation or alteration of the information or data,
 • retrieval, consultation or use of the information or data,
 • disclosure of the information or data by transmission, dissemination or

otherwise making available, or
 • alignment, combination, blocking, erasure or destruction of the information

or data.
In Europe, sensitive data is protected by Directive 95/46/EC. This regulation aims

at the protection of individuals with regard to the processing of personal data and
to the free movement of such data [1]. There is an analogous law which specifies
sensitive data processing in the USA and many other countries. An example of
dedicated algorithms for encryption of sensitive data may be found in [57], [115]
or [45].

59

3.3. transparency contrary to security balance

3.3. transParenCy Contrary to seCurity BalanCe

Some layers of the Cloud have to be transparent or cannot be accessible to customers
and others. In such layers, the following aspects have to be taken into special
consideration: cryptographic algorithms involved, the length of the keys and libraries
used for implementation. The transparency strategy has to be updated according to
the newest stage of cryptology achievements, known threats and possible attacks
on the Cloud infrastructures.

Despite these kinds of layers, a customer must have the possibility to control
the security of the data, processes and infrastructure which is rented. This is why
Service Level Agreements (SLAs) are used. SLAs are standardised contracts where
cryptography services are formally defined. Negotiating the contracts and monitoring
of their fulfilment in real-time is possible. Assuring SLA conditions without revealing
details about schemes and procedures is possible by external independent audits and
systems of certificates and norms. The chosen international standards which can be
used for appropriate SLA formulation are presented in tab. 3.1 and in tab. 3.2.

SLA formulation, enforcement and compliance is necessary. Example aspects
which SLA shall consider are: performance metric in the case of multiple class
customers, trustworthiness of resources, response time of service (see [62]) or
automated processing (see [106]).

Table 3.1
Chosen Cloud relevant ISO/IEC and NIST standards

Tile Content

NIST SP 800-145
ISO/IEC 17788:2014
ISO/IEC 17789:2014
ISO/IEC 27000:2014
ISO/IEC 27001:2013
ISO/IEC 27002:2013
ISO/IEC FDIS 27017 (2015)
ISO/IEC 27018:2014
ISO/IEC 29100
ISO/IEC 27040:2015
ISO/IEC 17203:2011
NIST SP 800-146
NIST SP 500-292

Definition of Cloud Computing
Cloud Computing terms and definitions
Cloud computing architecture
Information security management systems, vocabulary
Information security management systems
Code of practice for information security controls
Information security controls for Cloud services
Protection of PII in public Clouds acting as PII processors
Privacy principles for information storage and processing
Storage security
Virtualisation Format
Cloud Computing Synopsis and Recommendations
NIST Cloud Computing Reference Architecture

60

3. security aspects in cloud systems

Table 3.2
Chosen certificates for Cloud systems

Standard Content

ISO 27001
SSAE16 / ISAE 3402
SAS 70 audit
ISO 27017
ISO 27018
HIPAA
PCI DSS

Internationally accepted independent security standard
Assurance standard for information security
Internal control of a service organisation
Cloud Security standard
Cloud Privacy standard
Use of Protected Health Information
Payment Card Industry Data Security Standard

3.4. seCurity Contrary to ComPuting effiCienCy

The Computational Cloud is based on the pay-as-you-go method. The provider
charges the customers based on the resources they used. To do this effectively,
the computational costs of all cryptography services have to be measured,
monitored and properly assigned to individual customers. Cost reduction should
not be possible from the users’ side by using an inappropriate low security level. On
the other hand, setting exaggerated security levels is also negative. This will slow the
processing of data and will lead to unnecessary exploitation of resources. Customers
should be informed about the increase in charges due to the specified cryptography
services used.

If the system is well protected from inside threads, lightweight cryptography can
be used [51], for example:

 • PHOTON: lightweight hash-function computing hash-codes of length 80,
128, 160, 224 and 256 bits,

 • SPONGENT: lightweight hash-function computing hash-codes of length 88,
128, 160, 224 and 256 bits,

 • Lesamnta-LW: a lightweight hash-function computing a hash-code of length
256 bits,

 • PRESENT: a lightweight block cipher with a block size of 64 bits and a key size
of 80 or 128 bits,

 • CLEFIA: a lightweight block cipher with a block size of 128 bits and a key size
of 128, 192 or 256 bits.

61

3.5. summary

3.5. summary

The presented methods and techniques are designed for reliable building of
CC systems, but implementing them is not voluntary. CC systems serve broad
public communities, academic communities and private companies. The security
assurance in such systems is guided by international norms, standards and even by
international law.

For example, the ISO/IEC 27000 norm for Information Security Management
Systems provides requirements for many systems, including Clouds. This standard
contains 11 security controls containing a total of 39 main security categories.
The 11 clauses include, for example, Security Policy setting, Organising Information
Security, Access Control procedure customisation and Information Security Incident
Management.

Another list was prepared by Cloud Security Alliance (CSA) in the form of Security
Guidance for Cloud Computing. CSA proposed the Cloud Security Reference Model
and a list of security controls. They described 14 Governance Domains and Guidance
for dealing with them.

This complex list of security controls was proposed in the form of the Cloud
Security Alliance Controls Matrix. The matrix is the mapping of 35 international
norms and standards (including ISO 27002/27017/27018) into one list. The matrix
specifies 16 main security domains, all with subdomains. This results in 132 Control
Domains in total. For each domain, architectural relevance is marked. The considered
architectural parts of the Cloud systems are: Physical Layer, Network layer, Compute,
Storage, Application and Data Layers. Additionally, domains are assigned into
3 Cloud Service Delivery Models: SaaS, PaaS or IaaS.

All lists given above, as well as guidance and norms, do not specify any strategy
stating which of the security controls will be beneficial for implementation in
a specific Cloud system.

62

The surest way to keep a secret is to make someone
think they already know the answer

Frank Herbert, Heretics of Dune

4. CyBerattaCK modelling teChniques overvieW

4.1. introduCtion

To secure a system properly, all dangers should be taken into consideration.
Experiments and tests should be done in a controlled environment. However,
to perform such tests, dangers have to be appropriately modelled. The negative
impact of potential threats should also be measured. This will be the main topic of
this chapter.

NIST Glossary of Key Information Security Terms [68] defines the three basic
concepts that will be used during the modelling of cyberattacks:

 • A threat is a circumstance or event that has an adverse impact on the considered
system operations (system functions, image or even reputation), assets and
users.

 • A vulnerability is a weakness in the system itself, in the security procedures,
security internal controls or implementation that may be exploited or triggered
by a threat source.

 • Risk is the level of impact resulting from a threat with a potential detrimental
impact.

4.2. modelling the dynamiC of the attaCK

4.2.1. attaCK graPhs

Liu Xuezhong [76] ordered a vulnerability set in the form of exploited paths. The
model assumes the dependencies between some vulnerabilities. If a chosen threat
can’t be applied easily, or there is no vulnerability-exploiting path to the certain
vulnerability, the threat resulting from that vulnerability will be weakened; otherwise,

63

4.2. modelling the dynamic of the attack

the effect of the threat will be increased. These vulnerability-exploiting paths were
used to construct a security threat model based on the attacking-path graph.

A set of security vulnerabilities is denoted by:

 { , , , }U U Un1 2 (4.1)

and the vector of system authority threats is denoted by:

 { , , , }T T Tn1 2 (4.2)

The feasibility matrix is then introduced. The element in the j-th row and j-th
column P(j,j) denotes the feasibility that an attacker executes during the attack with
the use of vulnerability j. It is scaled to the interval [0, 1). The element in the i-th
row and j-th column, P(i,j) equals the feasibility that the attacker will perform during
exploitation of vulnerability j, after the exploitation of vulnerability i. If there is no
exploitation path from Ui to Uj, then P(i,j) = 0. An acyclic digraph, see fig. 4.1, presents
the dependencies between threats and vulnerabilities.

Pontus Johnson et al. [60] provided an attacker-centric threat modelling method
for threat identification and quantification based on network modelling. The model
matches the assets of a network with attack steps. This procedure allows one to find
how these assets can be compromised and what the consequences for the rest of
the assets are. The generated network is used for generating an attack graph. In the
proposed model, the attack graph is an edge-weighted directed graph G = (V, I, E, w),
where:

 • V is a set of nodes, which are the attack steps;
 • I is a subset of V that denotes the starting point(s) of an attack;
 • E is a set of directed edges E ∈ VV and is equal to the possible progression of

the attacker during a successful attempt of attack steps;
 • The weight function w : (A, B) ∈ E → P(TTCA) defines the probability

distribution over time that an attacker will successfully perform an attack step
(i.e. TTC).

Fig. 4.1. Legend of attack presented in [76]

64

4. cyberattack modelling techniques overview

Calculation of the TTC value is a two-steps process. Firstly, each edge of the
graph is formulated by drawing a sample from its TTC probability distribution.
The sampled value becomes the weight of the edge. It represents the TTC of
the edge target attack step, under the assumption that the attacker has successfully
attempted the edges’ source attack step. Secondly, Dijkstra’s shortest path algorithm
is used to calculate the smallest TTC value for each attack-step, depending on
its ancestry.

4.2.2. attaCK surfaCe

Pratyusa K. Manadhata, in [78], proposed lowering the security risk by measuring
and reducing attack surfaces. The attacked system is modelled as in the I/O automata
model [77]. For a particular system S, the attack surface is triple, consisting of the set
of entry points and exit points, the set of channels and the set of untrusted data items.
The authors proposed estimating the damage caused by the attack in terms of the
attributes of the resource. The main metric was the Damage Potential-Effort Ratio,
which estimates the contribution of resources to the attack surface.

4.2.3. Kill Chain

A cyber kill chain is another tool for modelling the stages of cyberattacks. The kill
chain is also used as a network defence. The model assumes that every threat must
follow several stages, see fig. 4.2. For stopping an attack in progress, Defensible

Fig. 4.2. Kill chain analysis of an advanced thread presented in [125]

65

4.2. modelling the dynamic of the attack

Actions (DAs) have to be taken. DAs are also presented in the form of a chain of
actions.

 • Detect: determine whether an attacker is poking around.
 • Deny: prevent information disclosure and unauthorised access.
 • Disrupt: stop or change outbound traffic (to the attacker).
 • Degrade: counter-attack command and control.
 • Deceive: interfere with command and control.
 • Contain: network segmentation changes.

Using this methodology, Mujahid Mohsin and Zahid Anwar [86] proposed
protecting Internet of Things (IoT) systems against Advanced Persistent Threats
(APTs), see fig. 4.3.

4.2.4. attaCK trees models

Xiaoli Lin et al. [75] presented attack trees for modelling Cross-Site Request Forgery
(CSRF) attack against Web application users. In the attack tree, the attacker’s goal
is the root node. The possible actions are represented as leaf nodes, see fig. 4.4. The
purpose of such modelling is to clarify conditions on with the adversaries may reach
their targets and help to find week points of the system.

Rajesh Kumar et al. [70] proposed Attack-Fault Trees (AFTs) for the decomposition
of the security attack into smaller sub-goals, until decomposition is possible.
The leaves of proposed trees are the Basic Component Failures (BCFs), the Basic
Attack Steps (BASs) or on-demand Instant Failures (IFAILs). The tree structure is
represented by a directed acyclic graph. The logical gates are used for modelling
dependencies between leaves.

Fig. 4.3. Kill chain example in simple IoT network presented in [86]

66

4. cyberattack modelling techniques overview

4.2.5. Petri nets

A Petri Net (PN) is a directed bipartite graph, in which the nodes represent transitions
(i.e. events that may occur, represented by bars) and places (i.e. conditions, represented
by circles). The directed arcs describe which places are pre- and/or postconditions
for each of the transitions (denoted by arrows) [97].

M. Szpyrka [112] proposed a model of risk propagation among connected parts
of the modelled system. A static structure composed of n components (nodes,
elements, subsystems) is the representation of the system. The function f maps the
component set into a chosen set V. This function may be a probability function, then
V = [0, 1]. In general, the set V may be any numerical set or enumerated set, e.g.
V = {high, medium, low}. Values of f depend on values of the function f used on
other components. The internal dependencies are modelled in the form of modified
coloured Petri Nets [59]. The Propagation Nets are built to map trigger places
representing the possible attack points into sequences of transitions. The authors
introduce the transitions that represent internal dependencies and transitions
representing changes of the function f values caused by the system environment.
The result of the modelling is to obtain all possible paths of risk propagation.

W. C. Moody et al. [87] proposed the use of Stochastic Petri Net (SPN) for security
threat defence and deceptive defence tactics.

Fig. 4.4. Attack Trees Modelling example presented in [75]

67

4.3. attack consequences measurement models

4.2.6. marKov ProCesses

In [64], D. A. Karras used Markov models for modelling states of each system
component inside interconnected infrastructures with respect to possible attacks.
The model introduces 7 states of the system. State 0 represents the case when there
are no attack attempts. The first attack changes the state into state 1. The system is in
this state when it is under undetected attack but has not been penetrated (ATTACK
IS NOT SUCCESSFUL). From state 1, the transition is made back to state 0 if an
attack is detected or into state 2 if an attack is successful. The system remains in
state 2 as long as confidential information is processed. The system is in state 3 if it is
modified by the attacker. The system is in state 4 if the access of authorised users to
programs, hardware and data are tied by the attacker. When an attacker is detected,
the system is in state 5. The transition from state 0 to state 6 occurs if a false alarm
is reported.

Markov Chain models the transition rate from state i to state j, the transition
probability from state i to state j and the probability of the system or network or
infrastructure to be in state i [81], for i, j ∈ {0,1, …, 6}. Equilibrium (steady-state)
equations for the Cloud model are established.

4.3. attaCK ConsequenCes measurement models

4.3.1. mean failure Costs model

Rabai et al. [95] proposed quantitative security metrics in the form of the vector of
mean failure costs.

A system S is modelled using H1, H2, H3, Hk, stakeholders, i.e. parties that have
a stake in the system. They may be, for example, H1-Cloud provider, H2, H3, Hk Cloud
end users. The authors proposed R1, R2, R3, Rn security requirements that should
be incorporated into the system. STi,j, for 1 <= i <= k, and 1 <= j <= n denotes the
stake that stakeholder Hi has in ensuring requirement Rj expressed as a real cost
of operation unit (for example in dollars per hour). For example, if R1 is the integrity
of critical data, ST1,1 = 100 dollars per hour, ST2,1 = 0.01 dollars per hour.

If we denote by PRj, for 1 <= j <= n, the probability that the security requirement Rj
is not introduced into the system, then MFC (Mean Failure Cost), for 1 <= i <= k,
is the random variable describing stakeholder’ Hi cost which may result from
a security failure:

 MFC ST PRi i j j
j

n

�
�
� ,

1

 (4.3)

68

4. cyberattack modelling techniques overview

This random variable value is also expressed in dollars/hour. The Stakes Matrix ST
is formulated from elements STi,j, for 1 <= i <= k, and 1 <= j <= n.

For C1, C2, C3, Ch components of system S, the authors define a set of complemen-
tary events:

 • El, 1 <= l <= h means that the work of component Cl is affected by a security
threat,

 • Eh+1 means that none of the components are affected.
Fj denotes that the system fails to fulfil requirement Rj . Later, the probability of

failure with respect to Rj may be represented by conditional probabilities as:

 PR P F P F E P Ej j j l
l

h

l� �
�

�

�() () ()
1

1

 (4.4)

According to the law of total probability, the equation above is true when
events El are disjointed, their probabilities are greater than zero, and their union
formulates the probability space. This condition has to be fulfilled for all conditional
probability equations formulated in this paragraph.

DP (Dependency) Matrix is formulated as DP P F Ej
l

j l= () matrix, which has n
rows and h + 1 columns, and where the entry at row j and column l is the probability
that the component l failed to fulfil requirement j. PE is the vector concatenated
from P(El).

T1, T2, T3, Tp, denotes threats which have occurred, and Tp+1 is the event that
no threat has occurred.

Additionally, PTq, for 1 <= q <= p, is the probability that threat Tq was active
during a unitary period of time (for example 1 hour). PTp+1 is the probability that
there was no threat in that time. Next, we may write the probability:

 P E P E T PTl l q
q

p

q() ()�
�

�

�
1

1

 (4.5)

IM (Impact) Matrix has h + 1 rows and p + 1 columns. Entry at row k and
column q is the probability that the component Ck fails because threat q has
occurred. When q = p + 1, no threats have occurred.

 IM P E Tl q l q, ()= (4.6)

Vector PT of length p + 1 is formulated from elements PTq.
Given the stakes matrix ST, the dependency matrix DP, the impact matrix IM

and the threat vector PT, the vector of mean failure costs (one entry per stakeholder)
is then given by the following formula (4.7):

 MFC ST DP IM PT� � � � (4.7)

69

4.3. attack consequences measurement models

Where matrix ST is formulated collectively by the stakeholders, matrix DP is
obtained by the systems architect, matrix IM is taken from security analysts, and
vector PT is gathered from security analysis of perpetrator models.

4.3.2. seCurity threat measurement model (stmm)

Lai et al. proposed in [71] the Security Threat Measurement Indicator (STMI),
representing a three-layered security model. For each of the layers, the relevant
measure was proposed, represented by the value from the interval [0, 1]. The first layer
of the Threats Measurement Model is SLSM: System Level Security Measurement.
It is divided into three categories:

 • UAMP: User Authorization Management Procedure with W1
1 : weight of

UAMP,
 • LMM: Logging and Monitoring Mechanism with W2

1 : weight of LMM,
 • SMSC: Security Management System Certification with W3

1 : weight of SSLC.
The aggregated measure for this layer is:

 SLSM UAMP LMM SMSC� � � � � �W W W1
1

2
1

3
1 (4.8)

with the additional condition W W W W W W1
1

2
1

3
1

1
1

2
1

3
11 0 1� � � �, , , [,].

The second layer is MLSM: Management Level Security Measurement. It is also
divided into three categories:

 • UQIP: User Qualification Inspection Procedure with W1
2 : weight of UQIP,

 • RCCM: Regulatory Compliance Contracts Management with W2
2 : weight of

RCCM,
 • DLMP: Data Location Management Procedure with W3

2 : weight of DLMP.
The proposed measure for this layer is:

 MLSM UQIP RCCM DLMP� � � � � �W W W1
2

2
2

3
2 (4.9)

under the condition W W W W W W1
2

2
2

3
2

1
2

2
2

3
21 0 1� � � �, , , [,].

Finally, TLSM: Technique Level Security Measurement formulates the third layer:
 • RSIA: Routine Security Inspection Activities with W1

3 : weight of RSIA,
 • EDRP: Events Detection and Recovery Procedure with W2

3 : weight of SEDP,
 • STEA: Security Technique Enhance Ability with W3

3 : weight of STLE.
The proposed measure for the third layer is:

 TLSM RSIA SEDP STEA� � � � � �W W W1
3

2
3

3
3 (4.10)

under the condition W W W W W W1
3

2
3

3
3

1
3

2
3

3
31 0 1� � � �, , , [,].

Finally, the authors combined SLSM, MLSM and TLSM in the form of a Security
Threat Measurement Indicator (STMI), with W1: Weight of SLSM, W2: Weight of
MLSM, W3: Weight of TLSM:

70

4. cyberattack modelling techniques overview

 STMI SLSM MLSM TLSM� � � � � �W W W1 2 3 (4.11)

where W1 + W2 + W3 = 1 , and W1, W2, W3 ∈ [0, 1].
The authors proposed the following use of these metrics in CC systems:
 • Step 1. Collecting and normalising security factors.
 • Step 2. Discovering Cloud security threats.
 • Step 3. Identifying unacceptable threats.
 • Step 4. Enforcing improvements.
 • Step 5. Repeating steps 1-4 regularly.

4.3.3. emPiriCal risK assessment equation

Noha E. El-Attar proposed in [36] the risk assessment function, based on NIST
likelihood and impact factors [111], but they introduced numerical values instead
of descriptive ones: Risk factor = (likelihood rate ∗ impact rate) ∗ [1 – (percentage
of current control/100) + (percentage of uncertainty degree/100)], where:

 • Likelihood is High – The threat is highly motivated and sufficiently capable.
Controls to prevent the vulnerability from being exercised are ineffective.

 • Likelihood is Medium – The threat-source is motivated and capable, but
controls are in place that may impede the successful exercise of the vulnerability.

 • Likelihood is Low – The threat-source lacks motivation or capability, or controls
are in place to prevent, or at least significantly impede, the vulnerability from
being exercised.

Impact rate is defined as:
 • Impact is High when the exercise of the vulnerability may result in the highly

costly loss of major tangible assets or resources; may significantly violate,
harm or impede an organisation’s mission, reputation or interest; may result in
human death or serious injury.

 • Impact is Medium when the exercise of the vulnerability may result in the
costly loss of tangible assets or resources; may violate, harm, or impede an
organisation’s mission, reputation or interest; may result in human injury.

 • Impact is Low when the exercise of the vulnerability may result in the loss
of some tangible assets or resources; may noticeably affect an organisation’s
mission, reputation or interest.

In the proposed system, likelihood rate and impact factors are measured as
quantitative values:

 • likelihoodrate = 1 for Likelihood Very High
 • likelihoodrate 0.7 to 0.9 for Likelihood High
 • likelihoodrate 0.4 to 0.6 for Likelihood Medium
 • likelihoodrate 0.2 to 0.3 for Likelihood Low
 • likelihoodrate = 0.1 for Likelihood Very Low

71

4.3. attack consequences measurement models

The impact rate for each threat is in [0.1, 1] interval. The Current Control
parameter measures the degree (in %) of control of the vulnerability, while the
uncertainty percentage is represented by describer unexpected errors in %:

 • percentage of current control ∈ [0, 100]
 • percentage of uncertainty degree ∈ [0, 100]

Therefore, Risk factor takes values from 0 to 2.

4.3.4. Common vulneraBility sCoring system metriCs

The Common Vulnerability Scoring System (CVSS) is an open industry standard
proposed by the National Infrastructure Advisory Council (NIAC) [2]. The standard
introduces the following set of metrics:

1. Base Metrics: used for vulnerabilities that may cause a successful attack:
 • Attack Vector (AV): representing vulnerabilities which can be exploited:

 – Network (N): a vulnerability exploitable with network access. The
vulnerable component is bound to the network stack, and the attacker’s
path is through OSI layer 3 (the network layer). Such a vulnerability is
often termed remotely exploitable. An attack can be performed one or
more network hops away. An example of a network attack is when an
attacker causes a Denial of Service (DoS) by sending specially crafted
TCP packets across the public Internet (e.g. CVE-2004-0230).

 – Adjacent (A): a vulnerability exploitable with adjacent network access.
The vulnerable component is bound to the network stack: however, the
attack is limited to the same shared physical (e.g. Bluetooth, IEEE 802.11)
or logical (e.g. local IP subnet) network and cannot be performed across
OSI layer 3 boundaries (e.g. via a router). An example of an Adjacent
attack would be an ARP spoof (IPv4) or neighbour discovery (IPv6).

 – Local (L): a vulnerability exploitable with local access. The vulnerable
component is not bound to the network stack, and the attacker’s path is
via read/write/execute capabilities. In some cases, the attacker may be
logged in locally in order to exploit the vulnerability: otherwise, he may
rely on User Interaction to execute a malicious file.

 – Physical (P): a vulnerability exploitable with physical access.
The attacker physically touches or manipulates the vulnerable
component. Physical interaction may be brief (e.g. evil maid attack1)
or persistent. An example of such an attack is a cold boot attack,
which allows an attacker access to disk encryption keys after gaining
physical access to the system, or peripheral attacks such as Firewire/
USB Direct Memory Access attacks.

 • Attack Complexity (AC): describes the conditions beyond the attacker’s
control that must exist in order to exploit the vulnerability:

72

4. cyberattack modelling techniques overview

 – AC=Low (L): specialised access conditions or extenuating circumstances
do not exist. An attacker can expect repeatable success against the
vulnerable component.

 – AC=High (H): a successful attack depends on conditions beyond the
attacker’s control. That is, a successful attack cannot be accomplished
ad hock but requires the attacker to invest in some measurable amount
of effort in preparation or execution against the vulnerable component.
For example, a successful attack may depend on overcoming any of
the following conditions: the attacker must conduct target-specific
reconnaissance (e.g. target configuration settings, sequence numbers,
shared secrets, etc); the attacker must prepare the target environment to
improve exploit reliability (e.g. overcoming advanced exploit mitigation
techniques); the attacker must inject himself into the logical network
path between the target and the resource requested by the victim in
order to read and/or modify network communications (e.g. man in the
middle attack).

 • Privileges Required (PR): describes the level of privileges which an attacker
must possess before successfully exploiting the vulnerability:

 – PR=None (N): the attacker is unauthorised before the attack and
therefore does not require any access to settings or files to carry out an
attack.

 – PR=Low (L): the attacker is authorised with privileges that provide basic
user capabilities that could normally affect only settings and files owned
by a user. Alternatively, an attacker with low privileges may have the
ability to cause an impact only on non-sensitive resources.

 – PR=High (H): the attacker is authorised with privileges that provide
significant (e.g. administrative) control over the vulnerable component
that could affect component-wide settings and files.

 • User Interaction (UI): the requirement for a user, other than the attacker,
to participate in the successful compromise of the vulnerable component.
This metric determines whether the vulnerability can be exploited solely
at the will of the attacker, or whether a separate user (or user-initiated
process) must participate in some manner:

 – UI=None (N): the vulnerable system can be exploited without
interaction from any user.

 – UI=Required (R): successful exploitation of this vulnerability requires
a user to take some action before the vulnerability can be exploited.
For example, a successful exploit may only be possible during the
installation of an application by a system administrator.

 • Scope (S): a vulnerability in one software component which can influence
resources or privileges beyond it:

73

4.3. attack consequences measurement models

 – S=Unchanged (U): an exploited vulnerability can only affect resources
managed by the same authority. In this case, the vulnerable component
and the impacted component are the same.

 – S=Changed (C): an exploited vulnerability can affect resources beyond
the vulnerable component. In this case, the vulnerable component and
the impacted component are different.

2. Impact Metrics: the properties of the impacted component:
 • Confidentiality Impact (C):

 – C=High (H): there is a total loss of confidentiality, resulting in all
resources within the impacted component being divulged to the
attacker. Alternatively, access to the restricted information is obtained.
The disclosed information presents a direct, serious impact. For
example, an attacker steals the administrator’s password or private
encryption keys of a web server.

 – C=Low (L): there is some loss of confidentiality. Access to some
restricted information is obtained, but the attacker does not have
control over what information is obtained, or the amount or kind of
loss is constrained. The information disclosure does not cause a direct,
serious loss to the impacted component.

 – C=None (N): there is no loss of confidentiality within the impacted
component.

 • Integrity Impact (I): measures the impact of a successfully exploited
vulnerability to the component’s integrity:

 – I=High (H): there is a total loss of integrity or a complete loss of
protection. For example, the attacker is able to modify any/all files
protected by the impacted component. Alternatively, only some files can
be modified, but malicious modification would present a direct, serious
consequence to the impacted component.

 – I=Low (L): modification of data is possible, but the attacker does not
have control over the consequences of a modification, or the amount
of modification is constrained. The data modification does not have
a direct, serious impact on the attacked component.

 – I=None (N): there is no loss of integrity within the impacted component.
 • Availability Impact (A): measures the influence of a vulnerability to the

availability of the impacted component:
 – A=High (H): there is a total loss of availability, resulting in fully

denied access to resources in the impacted component; this loss is
either sustained (while the attacker continues the attack) or persistent
(the condition persists even after the attack has been completed).
Alternatively, the attacker has the ability to deny some availability, but the
loss of availability presents a direct, serious consequence to the impacted

74

4. cyberattack modelling techniques overview

component (e.g. the attacker cannot disrupt existing connections but
can prevent new connections, or the attacker can repeatedly exploit
the vulnerability. In each instance of a successful attack, only a small
amount of memory leaks, but repeated exploitation, causes a service to
become completely unavailable).

 – A=Low (L): there is a reduced performance of components or
interruptions in resource availability. Even if repeated exploitation
of the vulnerability is possible, the attacker does not have the ability to
completely deny service to legitimate users. Resources in the impacted
component are either partially available at any time or not fully available
all the time. Overall, there are not direct, serious consequences to
the impacted component.

 – A=None (N): impacted component is fully available.
3. Temporal Metrics: measures the current state of exploitation techniques,

existence of any patches or workarounds and the confidence that known
vulnerabilities have been documented:
 • Exploit Code Maturity (E). This measures the likelihood of the usage of

a particular vulnerability in the code and is typically based on the current
state of exploit techniques, exploit code availability or active, in-the-wild
exploitation. The public availability of easy-to-use exploits in code increases
the number of potential attackers (including those who are unskilled).
Initially, real-world exploitation may be only theoretical. Publication of
proof-of-concept code, functional exploitable code or sufficient technical
details necessary to exploit the vulnerability may change theory into
practice. Furthermore, the available exploitable code may progress from
a proof-of-concept demonstration to exploitable code that allows one to
use vulnerabilities consistently:

 – E=Not Defined (X): assigning this value to the metric will not influence
the score. It is a signal to a scoring equation to skip this metric.

 – E=High (H): functional autonomous code exists, no exploit is required
(manual trigger), and details are widely available. Exploitable code
works in every situation or is actively being delivered via an autonomous
agent (such as a worm or virus). Network-connected systems are likely
to discover exploitation attempts. Exploit development has reached the
CVSS v3.0 Specification (v1.7) 13 / 21 level of reliable, widely-available
and easy-to-use automated tools.

 – E=Functional (F): functional exploitable code is available. The code
works in most situations where the vulnerability exists. The code or
technique is not functional in all situations and may require substantial
modification by a skilled attacker.

75

4.3. attack consequences measurement models

 – E=Unproven (U): no exploitable code is available, or an exploit is strictly
theoretical.

 • Remediation Level (RL): The Remediation Level of a vulnerability is an
important factor for prioritisation. The typical vulnerability is unpatched
when it’s initially published. Workarounds or hotfixes may offer interim
remediation until an official patch or upgrade is introduced. The less official
and permanent the fixes, the higher the vulnerability score.

 – RL=Not Defined (X): assigning this value to the metric will not influence
the score. It is a signal to a scoring equation to skip this metric.

 – RL=Unavailable (U): there is either no solution available, or it is
impossible to apply.

 – RL=Workaround (W): there is an unofficial, non-vendor solution
available. In some cases, users of the affected technology will create
a patch by their own or provide steps to work around or mitigate the
vulnerability.

 – RL=Temporary Fix (T): there is an official but temporary fix available.
This includes instances where the vendor issues a temporary hotfix, tool
or workaround.

 – RL=Official Fix (O): a complete vendor solution is available. Either the
vendor has issued an official patch, or an upgrade is available.

 • Report Confidence (RC): This measures the degree of confidence of the
vulnerability existence and the credibility of the known technical details:

 – RC=Not Defined (X): assigning this value to the metric will not influence
the score. It is a signal to a scoring equation to skip this metric.

 – RC=Confirmed (C): detailed reports exist or functional reproduction
is possible (functional exploits may provide this). The source code
allows one to independently verify the assertions of the research or the
author or vendor of the affected code has confirmed the presence of the
vulnerability.

 – RC=Reasonable (R): significant details are published, but researchers
either do not have full confidence in the root cause or do not have access
to the source code to fully confirm all of the interactions that may lead
to the result. Reasonable confidence exists, however, and the bug is
reproducible and at least one impact can be verified (proof-of-concept
exploits may provide this). An example is a detailed write-up of research
into a vulnerability with an explanation (possibly obfuscated or left as
an exercise to the reader). That provides assurances on how to reproduce
the results.

 – RC=Unknown (U): there are reports claiming that a vulnerability is
present. Reports indicate that the cause of the vulnerability is unknown,
and they may differ in the cause or impacts of the vulnerability. There is

76

4. cyberattack modelling techniques overview

little confidence in the validity of the reports, and there is uncertainty
in the static base score of the vulnerability. An example is a bug report
which claims that an intermittent but non-reproducible crash occurs,
with evidence of memory corruption suggesting a Denial of Service
attack, or possibly more serious impacts.

4. Environmental Metrics: these metrics enable the analyst to customise the
CVSS score depending on the importance of the affected IT asset of a user’s
organisation. They are measured in security controls complementary or
alternative to basic ones (confidentiality, integrity and availability). These
metrics are the modified equivalent of base metrics and have assigned values
based on the component placement in an organisation’s infrastructure.
 • Security Requirements (CR, IR, AR) are used to customise the CVSS score

depending on the importance of the affected IT asset of a user’s organisation,
measured in terms of Confidentiality, Integrity and Availability.

 – Not Defined (X), assigning this value to the metric will not influence
the score. It is a signal to the equation to skip this metric.

 – High (H), loss of confidentiality, integrity or availability is likely to have
a catastrophic effect on the organisation or individuals associated with
the organisation (e.g. employees, customers).

 – Medium (M), loss of confidentiality, integrity or availability is likely to
have a serious effect on the organisation or individuals associated with
the organisation (e.g. employees, customers).

 – Low (L), loss of confidentiality, integrity or availability is likely to have
only a limited effect on the organisation or individuals associated with
the organisation (e.g. employees, customers).

 • Modified Base Metrics enable the analyst to adjust the base metrics
accordingly to modifications that exist within the analyst’s environment:

 – Modified Attack Vector (MAV) contains the same values as the
corresponding base metric, plus: Not Defined (the default); Modified
Attack Complexity (MAC); Modified Privileges Required (MPR);
Modified User Interaction (MUI); Modified Scope (MS); Modified
Confidentiality (MC); Modified Integrity (MI); Modified Availability
(MA).

Qualitative Severity Rating Scale maps values of the above ratings into a qualita-
tive severity scale: None 0.0., Low 0.1–3.9, Medium 4.0–6.9, High 7.0–8.9,
Critical 9.0–10.0.

The base metrics are assigned by an analyst, and the base equation computes
a score ranging from 0.0 to 10.0. Firstly, the Impact Subscore (ISCBase) has to be
defined as:

 ISC C I ABase � � � � � � �1 1 1 1[() () ()] (4.12)

77

4.4. community, industry and expert surveys

The Exploitability Subscore is then given as follows:
 Exploitability AV AC PR UI� � � � �8 22. (4.13)

4.4. Community, industry and exPert surveys

‘Top 10’ Threat Lists publish by organisations like NIST, CSA, CERT or ENISA are
very valuable.

They are formulated based on the data from real systems and cover a lot of
incidents. In the next subsections, only Cloud-related lists will be presented.

4.4.1. Cloud seCurity allianCe top threats

This list is based on an industry expert survey and compiles opinions about the most
dangerous security issues within Cloud Computing [29]. The following 12 critical
issues (ranked in order of severity) were found:

1. Data Breaches: This is a situation when an unauthorised user get access to
critical data, such as usernames and passwords or any information which
shouldn’t be given to the public. Data breaches can be caused by many factors,
such as poor network security, application vulnerabilities or simply human
error. The risk related to information disclosure is currently one of the top
concerns of Cloud users and providers [29].

2. Weak Identity, Credential and Access Management: In this point, CSA pointed
out that lack of multifactor authentication, lack of appropriate cryptographic
key rotation, lack of appropriate certificates and password policies and
unscalable identity management systems can lead to: spoofing identity attacks,
tampering with data, repudiation, Denial of Service, information disclosure
and elevation of privileges [29].

3. Insecure APIs: Security of Cloud services depend on basic API security.
The following aspects should be taken into consideration: information
management, data security, interoperability, portability, incidents response,
applications security, encryption key management, encryption algorithms and
access management [29]. Possible threats are: tampering with data, information
disclosure, repudiation and elevation of privileges [29].

4. System and Application Vulnerabilities: System vulnerabilities are bugs which
can be used by an attacker to steal data or take control over a machine. The most
serious danger can be caused by bugs in critical parts of the infrastructure,
such as the kernel [29]. Threats caused by these vulnerabilities are the same
as mentioned in point 2 [29]. To prevent the system, the following security
aspects must be taken into consideration: CC Architectural Framework,

78

4. cyberattack modelling techniques overview

business continuity possibility, traditional security, operations performed
in data centres, appropriate risk management, disaster recovery, application
security and virtualisation [29].

5. Account Hijacking: This threat involves taking control over a user’s account
by an attacker. In the CC context, this attacks can lead to eavesdropping
of transitions, manipulating of data inside the Cloud, returning falsified
information and redirecting the user to illegible sites [29]. Possible consequences
are the same as mentioned in points 4 and 2. Prevention methods consider
risk, information, identity and access management, data security, disaster
recovery, business continuity, incident response, encryption and key manage-
ment [29].

6. Malicious Insiders: A person (e.g. a current or former employee) which can use
knowledge about the organisation and its structures to perform an attack. An
insider is: ...responsible for most Cloud computing security woes [29]. Possible
threats related to malicious insiders are: spoofing identity, tampering with
data and information disclosure [29]. To minimise these threats, CC providers
should consider risk, information, encryption algorithms, encryption keys,
identity and access management and data security aspects.

7. Advanced Persistent Threats (APTs): These kinds of threats are not
oriented towards fast system paralysis. The main idea is that the malicious
software will remain undetected as long as possible and will lead to
information disclosure or elevation of privileges over time [29]. To avoid
these kinds of threats, CC providers should consider: CC Architectural
Framework, risk management, data recovery, business continuity, traditional
security, operations performed in Data Centres, application security and
virtualisation [29].

8. Data Loss: This can be caused by malicious software, as well as by human error
or physical disaster. If the loss is permanent, the consequences for a business
organisation may be devastating (repudiation or denial of service) [29].
To avoid data loss problems, the following aspects should be taken into
consideration: risk, identity and access management, data security (disaster
recovery, back-up policies), information management, application security
and virtualisation [29].

9. Insufficient Due Diligence: This considers Cloud technologies and
CC providers. The problem is quite general and touches upon commercial,
technical, financial as well as legal issues. Diligence in every CC layer is a basis
during developing new CC technologies or evaluating Cloud Providers. Lack
of diligence can lead to all problems mentioned in this chapter [29]. To avoid
these problems, all aspects mentioned in points 1–8 have to be taken into
consideration, plus: legal aspects (contracts and electronic discovery), audit
management and security as service framework usage [29].

79

4.4. community, industry and expert surveys

10. Abuse and Nefarious Use of Cloud Services: The attacker may use delivered
CC power as leverage for attacking purposes [29]. Sometimes it is simplified
thanks to free trials of Cloud services and poorly secured CC systems.
Possible threats are Distributed Denial of Service (DDoS) attacks, e-mail
spam or phishing attacks [29]. To avoid these problems, the following aspects
should be taken into consideration: traditional security, business continuity,
disaster recovery, incident response and legal aspects [29].

11. Denial of Service: In this point, CSA focused on a DoS attack (a simplified
version of DDoS mentioned in point 10). A classic DoS attack is oriented
towards flooding a service with data and making it unstable or useless.
In CC systems, an asymmetric application-level DoS attack may be even more
dangerous than DDoS, because in some circumstances, it allows an attacker
to take out an application with an extremely small payload (sometimes less
than 100B) [29]. To protected the CC infrastructure, the following aspects
should be taken into consideration: operations performed in Data Centres,
incident response, application security, virtualisation and security as a service
framework usage [29].

12. Shared Technology Issues: Underlying components of Cloud infrastructure
(e.g. GPUs) may not provide enough isolation levels. This leads to a set of
vulnerabilities, such as information disclosure or elevation of privileges [29].
A single vulnerability can compromise the whole Cloud system [29]. To prevent
CC infrastructure, the following aspects should be taken into consideration:
CC Architectural Framework, information, encryption, key, identity and
access management, data security (defence in depth) and virtualisation.

4.4.2. oWasP Cloud top ten

In this section, we will describe the Open Web Application Security Project (OWASP)
top 10 risks related to Cloud users and providers. This list is formulated based on
community reports, security experts and security incidences submitted by Cloud
Providers [92]:

 • Risk 1: Accountability and Data Risk: data stored locally is fully managed by an
organisation. Responsibility for data security is also fully on the organisation’s
side (which has pluses and minuses). A decision about transferring data into
the Cloud put this responsibility fully or partially on the Cloud Provider
(backups, data recovery, etc.). This is a critical risk which should be carefully
considered by the organisation or a private user [92].

 • Risk 2: User Identity Federation: There must be full control over users’
identities in the Cloud and between Cloud Providers if a particular user wants
to transfer data. There should be a unified identification system which works
across platforms and allows one to identify users uniquely [92].

80

4. cyberattack modelling techniques overview

 • Risk 3: Regulatory Compliance: Each country (or union) has its own law
concerning data security and security system requirements. Security systems
considered as secure in one country may not be perceived as secure in another
[92], which may be a problem in naturally distributed CC systems.

 • Risk 4: Business Continuity and Resiliency: In CC systems, business continuity
aspects are delegated (fully or partially) to the Cloud Provider [92]. The business
organisations depend on Cloud Provider competences and possibilities in case
of disaster, as well as when it comes to the Quality of Service (QoS). Thus,
appropriate Service Level Agreement (SLA) and other contractual solutions
are mandatory [92].

 • Risk 5: User Privacy and Secondary Usage of Data: Policies of web services
concerning personal data usage are mostly imprecise [92]. In many cases, it is
easy to obtain personal data directly or deduct it indirectly based on behaviour
(e.g. via clicks) [92]. It should be clearly pointed out what data can be used for
secondary purposes.

 • Risk 6: Service and Data Integration: This point concerns the risk of capturing
data during transfer over the Internet. This risk is much higher for CC users
during transfer between a user and a Cloud Data Centre [92].

 • Risk 7: Multi-tenancy and Physical Security: Multi-tenancy means sharing
resources and services between multiple users [92]. Logical segregation should
be done in a way that one user will not influence the security of the other
users [92].

 • Risk 8: Incidence Analysis and Forensics: After a security violation in the
CC system, it may be hard to obtain all necessary data needed for investigation
and forensic recovery [92]. This is caused by the distributed nature of
CC systems. The Cloud Provider should ensure appropriate measures for
incident analysis.

 • Risk 9: Infrastructure Security: A Cloud system must be configured securely,
which means: it should base on Industry Best Practices, applications should
be configured with security zones, access must be configured to allow only
required networks and protocols, administrative access must be role-based
and based on need-to-know practice, risk assessment must be done [92].
Cloud Provider should also ensure security patches based on any appearing
security issues [92].

 • Risk 10: Non-production Environment Exposure: Non-production
environments, such as development activities or testing activities, are very
often not secured to the same extent as production environments [92]. This
should be taken into consideration, especially when the non-production
environment is in the Cloud, because it may lead to unauthorised access,
information modification and information theft [92].

81

4.4. community, industry and expert surveys

4.4.3. enisa risks list

The European Network and Information Security Agency (ENISA) in Cloud
Computing: Benefits, Risks and Recommendations for Information Security [114]
proposed another list of eight top security risks based on likelihood and the impact
risk assessment process.

ENISA proposes formulating the level of risk based on the likelihood of an
incident. The likelihood of an incident is defined by a threat exploiting a vulnerability
with a given likelihood, see fig. 4.5. Such a measure defines the risk level as depending
on the business impact and likelihood of the incident. The risk is measured on a scale
from 0 to 8 and may be presented in numerical form as follows:

 • Low risk: 0-2
 • Medium Risk: 3-5
 • High Risk: 6-8

ENISA’s list takes into consideration the following aspects: Loss of governance:
in Cloud infrastructures, it is necessary for the client to give control to the Cloud
Provider (CP) over some issues that may affect security. At the same time, SLAs may
not offer a commitment to provide such services by the Cloud Provider, thus leaving
a gap in security defenses. This also includes compliance risks, because of investment
in achieving certification (e.g., industry standard or regulatory requirements)
may be put at risk by migration to the Cloud: if the CP cannot provide evidence
of his own compliance with the relevant requirements, if the CP does not permit
audit by the Cloud customer. In certain cases, it also means that using a public
Cloud infrastructure implies that certain kinds of compliance cannot be achieved
(e.g. PCI DSS).

Fig. 4.5. Risk level as a function of the business impact and likelihood of the incident scenario
presented in [114]

82

4. cyberattack modelling techniques overview

Lock-in: there is still deficiency in tools, procedures or standard data formats,
as well as service interfaces that could guarantee data, the application and service
portability. This can make it difficult for the customer to migrate from one provider
to another or migrate data and services back to an in-house IT environment.
This introduces a dependency on a particular CP for service provision, especially
if data portability, as the most fundamental aspect, is not enabled.

Isolation failure: multi-tenancy and shared resources define the characteristics of
Cloud Computing. This risk category covers the failure of mechanisms separating
storage, memory, routing and reputation between different tenants (e.g. so-called
guest-hopping attacks). However, it should be noted that attacks on resource
isolation mechanisms (e.g. against hypervisors) aren’t very common, and they are
much more difficult for an attacker to put into practice in comparison to attacks on
traditional OSs.

Management interface compromise: customer management interfaces of a public
Cloud Provider are accessible through the Internet and mediate in access to larger
sets of resources (than traditional hosting providers). Therefore, these pose an
increased risk, especially when combined with remote access and web browser
vulnerabilities.

Data protection: Cloud Computing poses several data protection risks for Cloud
customers and providers. In some cases, it may be difficult for the Cloud customer
(in his role as a data controller) to effectively check the data handling practices of the
Cloud Provider and thus to be sure that the data is handled law-fully. This problem
is exacerbated in cases of multiple transfers of data, e.g. between federated Clouds.
On the other hand, some Cloud providers do provide information on their data
handling practices. Some also offer certification summaries on their data processing
and data security activities and the data controls they have in place, e.g. SAS70
certification.

Insecure or incomplete data deletion: when a request to delete a resource in the
Cloud is made, as in most operating systems, it may not result in a true wiping of
the data. Adequate or timely data deletion may also be impossible (or undesirable
from a customer perspective), either because extra copies of data are stored but
are not available, or because the disk to be destroyed also stores data from other
clients. In the case of multiple tenancies and the reuse of hardware resources,
this represents a higher risk to the customer in comparison with dedicated hardware.
Malicious insider: the damage which may be caused by malicious insiders is often
far greater. Cloud architectures necessitate certain roles which are extremely high-
-risk. Examples include CP system administrators and managed security service
providers. Customers security expectations: the perception of security levels by
customers might differentiate from the actual security (and availability) offered by
the CP or the actual temptation of the CP to reduce costs further by sacrificing some
security aspects.

83

4.4. community, industry and expert surveys

Availability Chain: reliance on Internet connectivity at the customers’ end device
creates a potential single point of failure.

4.4.4. nist issues and ConCerns list

The National Institute of Standards and Technology (NIST) in [14] proposed 3 lists
of issues, each concerning a different type of Cloud environment.

The first list concerned the SaaS type and raised the following problems [14]:
 • Browser-based Risks and Risk Remediation: In this point, NIST pointed

that even appropriately secured client web browsers allow attackers to gain
some important information. Message sizes, time of sending these messages
and all metadata related to network traffic may lead to the leak of important
information [14]. Another important fact is that not all client web browsers
are secure enough. Potential vulnerabilities are implementation mistakes
in cryptographic protocols, insecure cryptographic keys or passwords
generation and man in the middle (MITM) attacks on cryptographic protocols
(e.g. SSLStrip) [14]. Other risks come from the Cloud architecture and human
imperfections: visiting malicious websites (phishing) and inaccurate services
or data separation [14].

 • Network Dependence: An SaaS Cloud application depends on access to the
Internet. The Internet is not controlled by either the customer or by the Cloud
Provider, and thus potential availability problems may occur [14]. This risk can
be reduced by dedicated and protected links (which demand additional costs)
or an application structure which allows one to perform some operations
offline [14].

Fig. 4.6. Impact of loss of governance and control on an organisation’s strategy
presented in [114]

84

4. cyberattack modelling techniques overview

 • Lack of Portability between SaaS Clouds: The format of export and import of
data to and from the Cloud may not be unified among SaaS providers [14].
Even unified formats may not concern some special categories of data, such as
application settings or data extensions [14].

 • Isolation vs. Efficiency: The more security measures, the more costs or
the less system efficiency. In this point, NIST focuses on data and service
isolation problems in SaaS systems. One approach is to launch an instance
of the application for each client separately (separation is done by the server
operating system), which is more secure but also more expensive (individual
copies of an application and databases) [14]. The second approach assumes that
a server uses a combined database to serve multiple customers simultaneously,
which is more efficient but less secure [14].

The second list concerns the PaaS type, which shares all SaaS type issues
mentioned above [14]. Three additional concerns were [14]:

 • Lack of Portability between PaaS Clouds: Use of the PaaS Cloud environment
for application development may involve usage of Cloud Provider specific
interfaces. This reduces the portability of such application [14]. One possible
solution which allows one to avoid this problem is the use of generalised
interfaces. However, this involves additional costs and may reduce the
possibility of use of specialised tools of specific Clouds [14].

 • Event-based Processor Scheduling: Event-driven applications containing
HTTP requests may be cost-effective, though they involve some additional
constraints (e.g. response time interval, processing long-running
requests) [14]. Because of this, tasks execution in a PaaS Cloud may exceed
execution of the same set of tasks performed locally [14].

 • Security Engineering of PaaS Applications: PaaS applications are more
complex in comparison to applications executed in isolated environments,
which makes them also harder to secure [14]. PaaS apps have to use explicit
cryptography, interact with many browsers and use a set of web protocols and
languages (such as XML, HTML or JavaScript), which increases the number
of potential security exploits [14].

When it comes to the IaaS model, NIST pointed out six basic issues:
 • Compatibility with Legacy Security Vulnerabilities: Users can use legacy

software in IaaS Clouds. In such a case, Cloud users are exposed to all security
vulnerabilities related to the outdated software [14].

 • Virtual Machine Sprawl: Cloud users can create or maintain many Virtual
Machines (VMs), and each of them may be in a different state. A VM which is
currently suspended or off will not receive a software update, which may make
it vulnerable [14]. Such a VM may be used as an entry point for an attacker.

 • Verifying the Authenticity of an IaaS Cloud Provider Web Site: Even
a perfectly secured IaaS Cloud will not help a customer when he connects

85

4.5. strategic models

with the wrong IaaS website. Responsibility for a secure connection is
on the client’s (especially the client’s browser) side. It is also the client’s
responsibility to verify the identity of the IaaS Cloud Provider [14].

 • Robustness of VM-level Isolation: In the IaaS Cloud, customers can use
resources from the same pool. Thus, appropriate isolation is crucial, at least
to the point when clients want to interact with each other. To avoid problems
related to inadequate isolation, such as eavesdropping or data tampering,
Cloud Providers introduced an additional layer called: hypervisor [14].
The hypervisor layer allows one to split the physical machine (and its parts)
into many VMs in a secure way [14]. This is called hardware virtualisation.

 • Features for Dynamic Network Configuration for Providing Isolation: the
Cloud network infrastructure also creates a pool which is used by a client’s
VMs. These configurations should allow one to communicate with client
and external entities; however, it should also be isolated to prevent one from
observing other client network packets [14]. What’s more, this network should
be easy and fast to configure (as fast as the VM creation time) [14]. This can
be reached, for example, via appropriately configured VLANs (Virtual Local
Area Networks).

 • Data Erase Practices: This point concerns data erase, replication and backup
practices. After the client releases some resources, data should be removed
permanently so that another client using the same pool will not gain access to
it [14]. The problem is that strong erase policies are time-consuming and not
always compatible with high-performance solutions [14].

4.5. strategiC models

Strategy modelling is related to all methods that are able to find not the security
threat model itself, but also the plan to defend resources under given conditions and
uncertainty.

4.5.1. game theoretiC models

Yuzhe Li et al. [74] proposed using a non-zero sum Nash game for protecting wireless
sensor networks serving for remote state estimation of the system. The threat that was
prevented by using this procedure was one chosen type of threat, i.e. fake information
substitution. On the contrary, a zero-sum was used in [35] for protecting a network
of computers (that includes users and servers) against node-capturing and false
signal transmission.

Nicola Basilico [17] considered the case of protecting a set of software modules by
using a multi-stage two-player competitive game with a infinite horizon.

86

4. cyberattack modelling techniques overview

Jing Zhu [123] adopted a two-player Bayesian game to defend elastic optical
networks against cross-domain physical-layer attacks.

Maria Pia Fanti [38] described how to defend Satellite Base Station networks
with the use of stochastic game models. Several types of attacks were considered, for
example, attack via HTTP, sniffing, virus, cracking root password and capturing data.

The Smart Grid was protected against a coalitional attack by using Iterated Public
Goods Game (IPGG), as presented in [117]. Multiple adversaries were considered.

Ahmed H. Anwar et al. [10] successfully applied games for wireless network
protection against stealthy decoy attacks that disrupt network operations by creating
cascading channel conflicts.

Rui Zhang et al. [122] used a bi-level game theoretic model for Computer Network
protection. The authors used a zero-sum game in a moral-hazard type of principal-
-agent game.

Table 4.1
Game Theoretic Models for attack modelling

Sol. Player 1
Payoff 1

(minimised
or maximised)

Payoff 2
(minimised

or maximised)
Equilibrium Type

[74] sensor sensor error sensor error cost
of attack

Nash non-zero sum

[35] network
administrator

network
bandwidth or

attacker cost and
the defender cost

Nash zero sum

[17] software developer the prob. of
software update

the prob. of
successful attack

Leader-
-Follower

non-zero sum

[123] domain manager harm of the
attack

harm of the
attack

Bayesian
Nash

non-zero sum

[38] network
administrator

damages importance of
the data stolen

Nash non-zero sum

[117] grid administrator gain from attack
penalty when the
attack is detected

importance of
the data stolen

Zero-
-determinant

zero sum

[10] wireless network
administrator

the cost of a
attack – the cost
of defense

importance of
the data stolen

Nash zero sum

[122] computer network
administrator

risk importance of
the data stolen

Nash zero sum

87

referenCes

[1] Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the processing of
personal data and on the free movement of such data.

[2] Cvss special interest group. common vulnerability scoring system v3.0:
Specification document. First.org Inc., 2017.

[3] I. M. Abbadi. Cloud Management and Security. Wiley Publishing, 1st edition,
2014.

[4] N. M. AbdElnapi, F. A. Omara, and N. F. Omran. A hybrid hashing security
algorithm for data storage on cloud computing. International Journal of
Computer Science and Information Security, 14(4):175, 2016.

[5] A. Achuthshankar and A. Achuthshankar. A novel symmetric cryptography
algorithm for fast and secure encryption. In 2015 IEEE 9th International
Conference on Intelligent Systems and Control (ISCO), pages 1–6, Jan 2015.

[6] S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption:
New perspectives and lower bounds. In Advances in Cryptology – CRYPTO
2013 – 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part II, pages 500–518, 2013.

[7] B. Alese, A. Adetunmbi, O. Adewale, et al. Elliptic curve cryptography for securing
cloud computing applications. International Journal of Computer Applications,
66(23):10–17, 2013.

[8] Amazon. Networking and content delivery. CloudFront documentation, 2018.
[9] Amazon. Amazon ec2 key pairs. Amazon Web Services documentation, 2019.

[10] A. H. Anwar, G. Atia, and M. Guirguis. Game theoretic defense approach to
wireless networks against stealthy decoy attacks. In 2016 54th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pages
816–821, Sept 2016.

[11] AWS. AWS Encryption SDK. Amazon Web Services documentation, developer
guide, 2019.

[12] AWS. Cryptographic algorithms. Amazon Web Services documentation, 2019.
[13] M. Babitha and K. R. Babu. Secure cloud storage using AES encryption. In 2016

International Conference on Automatic Control and Dynamic Optimization
Techniques (ICACDOT), pages 859–864. IEEE, 2016.

88

references

[14] L. Badger, T. Grance, R. Patt-Corner, and J. Voas. Nist special publication 800-
-146: Cloud computing synopsis and recommendations: Recommendations of the
national institute of standards and technology. National Institute of Standards
and Technology, 2012.

[15] E. Barker. Nist special publication 800-57 part 1 rev. 4: Recommendation for key
management part 1: General. National Institute of Standards and Technology,
2016.

[16] E. Barker, W. Barker, and A. Lee. Nist special publication 800-21: Guideline
for implementing cryptography in the federal government. National Institute of
Standards and Technology, 2005.

[17] N. Basilico, A. Lanzi, and M. Monga. A security game model for remote software
protection. In 2016 11th International Conference on Availability, Reliability
and Security (ARES), pages 437–443, Aug 2016.

[18] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerat-
ing a faulty minority. Journal of Cryptology, 4(2):75–122, Jan 1991.

[19] G. Blakley and C. Meadows. Security of ramp schemes. Volume 196, pages 242–
–268, 01 1984.

[20] W. Bogorad, S. Schneider, and H. Zhang. Norton zone: Symantec’s secure cloud
storage system. In 2016 IEEE 35th Symposium on Reliable Distributed Systems
(SRDS), pages 81–90, Sept 2016.

[21] D. Boruah and M. Saikia. Implementation of elgamal elliptic curve cryptography
over prime field using c. In International Conference on Information
Communication and Embedded Systems (ICICES2014), pages 1–7. IEEE,
2014.

[22] C. Brenton. The basics of virtualization security. Cloud Security Alliance, 2011.
[23] A. Castiglione, F. Palmieri, C.-L. Chen, and Y.-C. Chang. A blind signature-

based approach for cross-domain authentication in the cloud environment.
International Journal of Data Warehousing and Mining (IJDWM), 12(1):
34–48, 2016.

[24] Certicom. Ecc tutorial. Certicom Corp. a subsidiary of BlackBerry, 2016.
[25] D. Chaum. Blind signatures for untraceable payments. In Advances in cryptology,

pages 199–203. Springer, 1983.
[26] B. Chevallier-Mames, P. Paillier, and D. Pointcheval. Encoding-free elgamal

encryption without random oracles. In M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, editors, Public Key Cryptography – PKC 2006, pages 91–104, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[27] R. Cramer, I. Damgrd, and Y. Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. Volume 3378, pages 342–362,
02 2005.

[28] CSA. Cloud security alliance releases (secaas) implementation guidance. Cloud
Security Alliance, 2012.

89

references

[29] CSA. The treacherous 12: Cloud computing top threats in 2016. Cloud Security
Alliance, 2016.

[30] P. Czernik. Cryptographically secure pseudorandom number generators in
low power distributed measurement and control systems. Transactions of the
Institute of Aviation, 6(201):5–19, 2009.

[31] C. A. B. de Carvalho, M. F. De Castro, and R. M. de Castro Andrade. Secure cloud
storage service for detection of security violations. In Proceedings of the 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
pages 715–718. IEEE Press, 2017.

[32] M. J. Dworkin. Nist special publication 800-38a: Recommendation for block
cipher modes of operation, methods and techniques. National Institute of
Standards and Technology, 2001.

[33] M. J. Dworkin. Federal inf. process. stds. (nist fips) – 202: Sha-3 standard:
Permutation-based hash and extendable-output functions. National Institute of
Standards and Technology, 2015.

[34] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham, E. Roback,
and J. F. Dray Jr. Federal inf. process. stds. (nist fips) – 197: Advanced encryption
standard (AES). National Institute of Standards and Technology, 2001.

[35] E. Eisenstadt and A. Moshaiov. Novel solution approach for multi-objective
attack-defense cyber games with unknown utilities of the opponent. IEEE
Transactions on Emerging Topics in Computational Intelligence, 1(1):16–26,
Feb 2017.

[36] N. E. El-Attar, W. A. Awad, and F. A. Omara. Empirical assessment for security
risk and availability in public cloud frameworks. In 2016 11th International
Conference on Computer Engineering Systems (ICCES), pages 17–25,
Dec 2016.

[37] K. Eldefrawy, S. Faber, and T. Kaczmarek. Proactively secure cloud-enabled
storage. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 1499–1509, June 2017.

[38] M. P. Fanti, M. Nolich, S. Simi, and W. Ukovich. Modeling cyber attacks by
stochastic games and timed petri nets. In 2016 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pages 2960–2965, Oct 2016.

[39] D. George Amalarethinam and H. Leena. Enhanced RSA algorithm for data
security in cloud. Int. J. Control Theor. Appl., 9:147–152, 2016.

[40] Google. Key purposes and algorithms. Google Cloud documentation, 2018.
[41] Google. Encrypting and decrypting data with an asymmetric key. Google Cloud

documentation, 2019.
[42] Google. Encryption at rest in google cloud platform. Google Cloud documen-

tation, 2019.

90

references

[43] D. Gordon. Discrete logarithm problem. In H. C. A. van Tilborg and S. Jajodia,
editors, Encyclopedia of Cryptography and Security, pages 352–353, Boston,
MA, 2011. Springer US.

[44] N. C. C. S. W. Group. Nist special publication 500-299: Nist cloud computing
security reference architecture. National Institute of Standards and Technology,
2013.

[45] K. K. Hingwe and S. M. S. Bhanu. Two layered protection for sensitive data
in cloud. In 2014 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages 1265–1272. IEEE, 2014.

[46] R. Holland. The CISOs Guide To Virtualization Security. Forrester, Inc., 2012.
[47] IBM. IBM marketplace, 2019.
[48] A. Ibrahim, W. Cheruiyot, and M. W. Kimwele. Data security in cloud computing

with elliptic curve cryptography. International Journal of Computer (IJC), 26:
1–14, 06 2017.

[49] ICO. Key definitions of the Data Protection Act. Information Commissioner’s
Office, 2017.

[50] ISO. ISO/IEC 19790:2012 Information technology – Security techniques –
Security requirements for cryptographic modules. International Organization
for Standardization, 2012.

[51] ISO. ISO/IEC 29192-2:2012 Information technology – Security techniques
– Lightweight cryptography. International Organization for Standardization,
2012.

[52] ISO. ISO/IEC 20008-1:2013. International Organization for Standardization,
2013.

[53] ISO. ISO/IEC 19592-2:2017. International Organization for Standardization,
2017.

[54] T. Jaeger, R. Sailer, and Y. Sreenivasan. Managing the risk of covert information
flows in virtual machine systems. In Proceedings of the 12th ACM Symposium
on Access Control Models and Technologies, SACMAT ’07, pages 81–90,
New York, NY, USA, 2007. ACM.

[55] A. Jakóbik, D. Grzonka, J. Kołodziej, and H. González-Vélez. Towards secure
non-deterministic meta-scheduling for clouds. In 30th European Conference
on Modelling and Simulation, ECMS 2016, Regensburg, Germany, May 31 –
June 3, 2016, Proceedings., pages 596–602, 2016.

[56] A. Jakóbik, D. Grzonka, and F. Palmieri. Non-deterministic security driven meta
scheduler for distributed cloud organizations. Simulation Modelling Practice
and Theory, 76:67–81, 2017.

[57] N. Jayapandian, A. M. Z. Rahman, and I. Nandhini. A novel approach for
handling sensitive data with deduplication method in hybrid cloud. In 2015
Online International Conference on Green Engineering and Technologies
(IC-GET), pages 1–6. IEEE, 2015.

91

references

[58] M. Jebalia, A. B. Letafa, M. Hamdi, and S. Tabbane. A secure data storage based
on revocation game-theoretic approaches in cloud computing environments.
In 2017 13th International Wireless Communications and Mobile Computing
Conference (IWCMC), pages 435–440, June 2017.

[59] K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and Validation
of Concurrent Systems. Springer Publishing Company, Incorporated,
1st edition, 2009.

[60] P. Johnson, A. Vernotte, M. Ekstedt, and R. Lagerstrm. pwnpr3d: An attack-
-graph-driven probabilistic threat-modeling approach. In 2016 11th International
Conference on Availability, Reliability and Security (ARES), pages 278–283,
Aug 2016.

[61] N. Kaaniche. Cloud data storage security based on cryptographic mechanisms.
PhD Thesis, TELECOM SUDPARIS et L’UNIVERSIT PIERRE ET MARIE
CURIE, 2015.

[62] X. Kaiqi. Resource Optimization and Security for Cloud Services. IT Governance
Publishing, 1st edition, 2012.

[63] B. Kaliski. RSA digital signature scheme. In H. C. A. van Tilborg and S. Jajodia,
editors, Encyclopedia of Cryptography and Security, pages 1061–1064, Boston,
MA, 2011. Springer US.

[64] D. Karras. On scalable and efficient security risk modelling of cloud computing
infrastructure based on Markov processes. ITM Web of Conferences, 9:03006,
01 2017.

[65] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of
applied cryptography. CRC press, 1996.

[66] N. Kaur and H. Singh. Efficient and secure data storage in cloud computing
through blowfish, RSA and hash function. International Journal of Science and
Research (IJSR), 4(5), 2012.

[67] R. Kaur and A. Kaur. Digital signature. In 2012 International Conference on
Computing Sciences, pages 295–301. IEEE, 2012.

[68] R. L. Kissel. Nist interagency/internal report (nistir) – 7298 rev. 2: Glossary of
key information security term. National Institute of Standards and Technology,
2013.

[69] J. Kołodziej. Evolutionary Hierarchical Multi-Criteria Metaheuristics for
Scheduling in Large-Scale Grid Systems. Springer Publishing Company,
Incorporated, 2012.

[70] R. Kumar and M. Stoelinga. Quantitative security and safety analysis with attack-
-fault trees. In 2017 IEEE 18th International Symposium on High Assurance
Systems Engineering (HASE), pages 25–32, Jan 2017.

[71] S. T. Lai and F. Y. Leu. A security threats measurement model for reducing cloud
computing security risk. In 2015 9th International Conference on Innovative

92

references

Mobile and Internet Services in Ubiquitous Computing, pages 414–419, July
2015.

[72] D. Lalar and R. Nahta. Stream cipher. International Journal of Advanced
Research in Computer Science, 7(7), 2016.

[73] B.-H. Lee, E. K. Dewi, and M. F. Wajdi. Data security in cloud computing using
AES under heroku cloud. In 2018 27th Wireless and Optical Communication
Conference (WOCC), pages 1–5. IEEE, 2018.

[74] Y. Li, D. E. Quevedo, S. Dey, and L. Shi. A game-theoretic approach to fake-
-acknowledgment attack on cyber-physical systems. IEEE Transactions on
Signal and In formation Processing over Networks, 3(1):1–11, March 2017.

[75] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog. Threat modeling for CSRF attacks.
In 2009 International Conference on Computational Science and Engineering.
Volume 3, pages 486–491, Aug 2009.

[76] X. Liu and Z. Liu. Evaluating method of security threat based on attacking-path
graph model. In 2008 International Conference on Computer Science and
Software Engineering. Volume 3, pages 1127–1132, Dec 2008.

[77] N. Lynch, R. Segala, and F. Vaandrager. Hybrid i/o automata. Inf. Comput.,
185(1):105–157, Aug 2003.

[78] P. K. Manadhata and J. M. Wing. An attack surface metric. IEEE Transactions
on Software Engineering, 37(3):371–386, May 2011.

[79] K. Mandeep and M. Manish. Implementing various encryption algorithms to
enhance the data security of cloud in cloud computing. VSRD International
Journal of Computer Science & Information Technology, 2(10):831–835, 2012.

[80] P. Mell and T. Grance. Nist special publication 800-145: Nist definition of cloud
computing. National Institute of Standards and Technology, 2011.

[81] S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge
University Press, New York, NY, USA, 2nd edition, 2009.

[82] Microsoft. Data encryption in onedrive for business and sharepoint online.
Microsoft OneDrive documentation, 2018.

[83] Microsoft. Ecdsa class. Microsoft Azure documentation, 2018.
[84] F. Minfeng and C. Wei. Elliptic curve cryptosystem elgamal encryption

and transmission scheme. In 2010 International Conference on Computer
Application and System Modeling (ICCASM 2010). Volume 6, pages V6–51.
IEEE, 2010.

[85] P. Mistry. OpenStack Barbican, Cryptography for Managing Secrets in the Cloud.
The New Stack, 2014.

[86] M. Mohsin and Z. Anwar. Where to kill the cyber kill-chain: An ontology-driven
framework for IOT security analytics. In 2016 International Conference on
Frontiers of Information Technology (FIT), pages 23–28, Dec 2016.

[87] W. C. Moody, H. Hu, and A. Apon. Defensive maneuver cyber platform
modeling with stochastic petri nets. In 10th IEEE International Conference

93

references

on Collaborative Computing: Networking, Applications and Worksharing,
pages 531–538, Oct 2014.

[88] L. Newcombe. Securing Cloud Services – A pragmatic approach to security
architecture in the Cloud. IT Governance Publishing, 1st edition, 2012.

[89] NIST. Federal inf. process. stds. (nist fips) 186-4: Digital signature standard
(dss). National Institute of Standards and Technology, 2013.

[90] NIST. Federal inf. process. stds. (nist fips) 180-4: Secure hash standard (shs).
National Institute of Standards and Technology, 2015.

[91] A. Omotunde, F. Adekogbe, E. Onuiri, and P. Uchendu. An implementation
of a one-time pad encryption algorithm for data security in cloud computing
environment. Research Journal of Mathematics and Computer Science, 1:1–8,
12 2017.

[92] OWASP. Owasp cloud top ten project. Open Web Application Security Project,
2014.

[93] N. Padmaja and P. Koduru. Providing data security in cloud computing using
public key cryptography. International Journal of Engineering Sciences
Research, 4(1):1059–1063, 2013.

[94] I. Petri, J. Diaz-Montes, M. Zou, O. F. Rana, T. Beach, H. Li, and Y. Rezgui.
In-transit data analysis and distribution in a multi-cloud environment using
cometcloud. In 2014 International Conference on Future Internet of Things
and Cloud, pages 471–476, Aug 2014.

[95] L. B. A. Rabai, M. Jouini, M. Nafati, A. B. Aissa, and A. Mili. An economic
model of security threats for cloud computing systems. In Proceedings Title:
2012 International Conference on Cyber Security, Cyber Warfare and Digital
Forensic (CyberSec), pages 100–105, June 2012.

[96] D. S. Raghuwanshi and M. R. Rajagopalan. Ms2: Practical data privacy and
security framework for data at rest in cloud. In 2014 World Congress on
Computer Applications and Information Systems (WCCAIS), pages 1–8,
Jan 2014.

[97] W. Reisig. Petri nets and algebraic specifications. Theoretical Computer Science,
80(1):1–34, 1991.

[98] S. Delfin, Rachana Sai. B., Meghana J.V., Kundana Lakshmi. Y., and Sushmita
Sharma. Cloud data security using AES algorithm. International Research
Journal of Engineering and Technology (IRJET), 5(10):1189–1192, 2018.

[99] C. Saravanakumar and C. Arun. Survey on interoperability, security, trust,
privacy standardization of cloud computing. In 2014 International Conference
on Contemporary Computing and Informatics (IC3I), pages 977–982,
Nov 2014.

[100] S. Sathish, D. Sumathi, and P. Sivaprakash. Security services using ECDSA in
cloud computing. International Journal of Advanced Research in Computer
Science and Software Engineering, IJARCSSE, 4(5), 2014.

94

references

[101] A. Shamir. How to share a secret. Communications of the ACM, 22(11):
612–613, 1979.

[102] A. P. U. Siahaan. Securing short message service using vernam cipher in android
operating system. INA-Rxiv, 2017.

[103] V. Sidorov and W. K. Ng. Transparent data encryption for data-in-use and
data-at-rest in a cloud-based database-as-a-service solution. In 2015 IEEE
World Congress on Services, pages 221–228. IEEE, 2015.

[104] S. Singh, P. Sharma, and D. Arora. Data integrity check in cloud computing
using hash function. International Journal of Advanced Research in Computer
Science, 8(5), 2017.

[105] U. Somani, K. Lakhani, and M. Mundra. Implementing digital signature
with RSA encryption algorithm to enhance the data security of cloud in cloud
computing. In 2010 First International Conference On Parallel, Distributed
and Grid Computing (PDGC 2010), pages 211–216. IEEE, 2010.

[106] S. Son, D. J. Kang, and J. M. Kim. Design considerations to realize automated
sla negotiations in a multi-cloud brokerage system. In 10th IEEE International
Conference on Collaborative Computing: Networking, Applications and
Worksharing, pages 466–468, Oct 2014.

[107] M. Souppaya, K. Scarfone, and P. Hoffman. Nist special publication 800-
-125: Guide to security for full virtualization technologies. National Institute
of Standards and Technology, 2011.

[108] W. Stallings. Kryptografia i bezpieczeństwo sieci komputerowych. Matematyka
szyfrów i techniki kryptologii. Helion, 5th edition, 2012.

[109] A. Stiglic. Safe prime. In H. C. A. van Tilborg, editor, Encyclopedia of
Cryptography and Security, pages 541–541, Boston, MA, 2005. Springer US.

[110] A. Stiglic. Strong prime. In H. C. A. van Tilborg and S. Jajodia, editors,
Encyclopedia of Cryptography and Security, pages 1265–1266, Boston, MA,
2011. Springer US.

[111] G. Stoneburner, A. Goguen, and A. Feringa. Nist special publication 800-30:
Risk management guide for information technology systems. National Institute
of Standards and Technology, 2002.

[112] M. Szpyrka and B. Jasiul. Evaluation of cyber security and modelling of risk
propagation with petri nets. Symmetry, 9(3), 2017.

[113] J. Tchórzewski and A. Jakóbik. Theoretical and experimental analysis of
cryptographic hash functions. Journal of Telecommunications and Information
Technology, (1): 125–133, 2019.

[114] H. Thomas and D. Lionel. Cloud computing: Benefits, risks and recommendations
for information security, rev. b. European Network and Information Security
Agency, 2012.

95

references

[115] J. Wu, C. Liu, J. Ma, Y. Cheng, J. Ren, and Z. Wang. A case for the cloud storage
system supporting sensitive data application. In IEEE Conference Anthology,
pages 1–4. IEEE, 2013.

[116] A. S. C. X9. American national standard x9.62-1998 public key cryptography
for the financial services industry: The elliptic curve digital signature algorithm
(ECDSA). American National Standards Institute, 1998.

[117] X. Yang, X. He, J. Lin, W. Yu, and Q. Yang. A game-theoretic model on coalitional
attacks in smart grid. In 2016 IEEE Trustcom/BigDataSE/ISPA, pages 435–
–442, Aug 2016.

[118] A. A. Yassin, H. Jin, A. Ibrahim, W. Qiang, and D. Zou. Cloud authentication
based on anonymous one-time password. In Ubiquitous Information
Technologies and Applications, pages 423–431. Springer, 2013.

[119] P. Yellamma, C. Narasimham, and V. Sreenivas. Data security in cloud
using RSA. In 2013 Fourth International Conference on Computing,
Communications and Networking Technologies (ICCCNT), pages 1–6,
July 2013.

[120] J. Yu and H. Wang. Strong key-exposure resilient auditing for secure cloud
storage. IEEE Transactions on Information Forensics and Security, 12(8):
1931–1940, Aug 2017.

[121] J. Zhang, Y. Yang, Y. Chen, and F. Chen. A secure cloud storage system based on
discrete logarithm problem. In 2017 IEEE/ACM 25th International Symposium
on Quality of Service (IWQoS), pages 1–10, June 2017.

[122] R. Zhang, Q. Zhu, and Y. Hayel. A bi-level game approach to attack-aware
cyber insurance of computer networks. IEEE Journal on Selected Areas in
Communications, 35(3):779–794, March 2017.

[123] J. Zhu, B. Zhao, and Z. Zhu. Leveraging game theory to achieve efficient
attack-aware service provisioning in eons. Journal of Lightwave Technology,
35(10):1785–1796, May 2017.

[124] S. Y. Zhu, R. Hill, and M. Trovati. Guide to security assurance for cloud
computing. Springer, 2016.

[125] Zscaler Inc. Stopping zero day threats. SlideShare, 2016.

96

A
AES decryption 29
AES encryption 6, 9, 28, 29, 30, 31, 33,

35, 87, 89
AES notation 6, 30
Asymmetric ciphers 6, 21, 22
Attack Graphs 7, 62
Attack Surface 7, 64, 92
Attack Trees 7, 65, 66
Attack Vector 7, 76
Availability Impact 73

B
Base Metrics 71, 76
Base Metrics Attack Complexity 71, 76
Base Metrics Privileges Required 72, 76
Base Metrics Scope 72, 76
Base Metrics User Interaction 71, 72, 76
Blind RSA 7, 43
Block Ciphers 17, 18, 21, 22

C
CC horizontal and vertical scaling 56
CC parts 77
CC security of data storage 58
Certificates for Clouds 60
Cipher Block Chaining 9, 18
Cipher Feedback 9, 19
Cloud Computing 6, 9, 13, 14, 37, 43,

44, 53, 59, 61, 77, 78, 81, 82, 87, 88,
89, 90, 91, 92, 93, 94

Cloud cryptography 55

Cloud deployment models 14
Cloud ISO/IEC and NIST standards 59
Cloud layers 14
CLOUD SECURITY ALLIANCE Top

Threats 7, 77
Cloud services models 13
Common Vulnerability Scoring System

7, 9, 71, 87
Confidentiality Impact 73
Counter Mode 9, 20, 30
Cryptographic libraries 27, 45
Cyberattack modelling 7, 62, 64, 66, 68,

70, 72, 74, 76, 78, 80, 82, 84, 86

D
Digital Signature creation 24, 40
Digital Signature verification 25
Digital signatures 6, 24, 25, 27, 37, 40,

42

E
EC adding points 45
EC doubling point 46
EC NIST curves 46
EC parameters 7, 44, 45, 48
ECDSA creation 45
ECDSA verification 50
Electronic Codebook 9, 18
ElGamal Ciphering 48
ElGamal deciphering 48
Empirical Risk Assessment Equation 7,

70

index

97

index

ENISA Risks List 7, 81
Environmental Metrics 76
Exploit Code Maturity 74
Exploitability Subscore 77

G
Game Theoretic Models 7, 85, 86

H
Hashing functions 6, 22, 23, 24, 37

I
Impact Metrics 73
Impact Rate 70
Impact Subscore 76
Integrity Impact 73
ISO CC security levels 55, 60, 82

K
Kill Chain 7, 64, 65, 92

L
Light cryptography libraries 63

M
Markov Processes 7, 67, 91
Mean Failure Costs Model 7, 67
Modified Attack Vector 76
Modified Base Metrics 76

N
NIST IaaS Issues and Concerns 83
NIST PaaS Issues and Concern 84
NIST SaaS Issues and Concerns 85

O
Output Feedback 10, 19
OWASP Cloud Top Ten 7, 79, 93

P
Petri Nets 7, 66, 89, 91, 92, 93, 94

Q
Qualitative Severity Rating Scale 76

R
Redundancy of trust in CC 57
Remediation Level 75
Report Confidence 75
RSA ciphering 6, 41
RSA deciphering 42
RSA digital signature 7, 40, 42, 91

S
Security Requirements 27, 42, 44, 55,

56, 67, 76, 90
Security Threats Measurement Model

69, 91
SHA-2 padding 6, 23, 24, 37, 50
SHA-256 algorithm 6, 24, 36, 37, 41
SHA-512 algorithm 6, 24, 36, 38
Shamir Secret Sharing Scheme 26
Symmetric ciphers 6, 17, 18, 21, 22

T
Temporal Metrics 74

V
Vernam Cipher 18, 51, 52, 94
Virtualisation in CC 57, 59, 78, 79, 85

eISBN 978-83-67188-62-3

