
WTDZIALY POLITECHNICZNE KRAKOW

BIBLIOTEKA GEOWNA

L. inw. ..... . -....%.......

EINFÜHRUNG IN DIE HÖHERE 
MATHEMATIK



Meinen umfangreichen Verlag auf dem Gebiete der Mathematik, der 
Naturwissenschaften und Technik nach allen Richtungen hin weiter 
auszubauen, ist mein stetes durch das Vertrauen und Wohlwollen zahl­
reicher hervorragender Vertreter dieser Gebiete von Erfolg begleitetes 
Bemühen, wie mein Verlagskatalog zeigt, und ich hoffe, daß bei gleicher 
Unterstützung seitens der Gelehrten und Schulmänner des In- und Auslandes 
auch meine weiteren Unternehmungen Lehrenden und Lernenden in Wissen­
schaft und Schule jederzeit förderlich sein werden. Verlagsanerbieten ge­
diegener Arbeiten auf einschlägigem Gebiete werden mir deshalb, wenn 
auch schon gleiche oder ähnliche Werke über denselben Gegenstand in 
meinem Verlage erschienen sind, stets sehr willkommen sein.

Unter meinen zahlreichen Unternehmungen mache ich ganz besonders 
auf die von den Akademien der Wissenschaften zu Göttingen, Leipzig, 
München und Wien herausgegebene Encyklopädie der Mathematischen 
Wissenschaften aufmerksam, die in 7 Bänden die Arithmetik und Algebra, 
die Analysis, die Geometrie, die Mechanik, die Physik, die Geodäsie und 
Geophysik und die Astronomie behandelt und in einem Schlußband 
Geschichte, Philosophie und Didaktik besprechen wird. Eine französische 
Ausgabe, von französischen Mathematikern besorgt, hat zu erscheinen begonnen.

Weitester Verbreitung erfreuen sich die mathematischen und natur­
wissenschaftlichen Zeitschriften meines Verlags, als da sind: Die Mathe­
matischen Annalen, die Bibliotheca Mathematica, Zeitschrift für Ge­
schichte der Mathematischen Wissenschaften, das Archiv der Mathematik 
und Physik, die Jahresberichte der Deutschen Mathematiker-Vereini­
gung, die Zeitschrift für Mathematik und Physik, Organ für 
angewandte Mathematik, die Zeitschrift für mathematischen und natur­
wissenschaftlichen Unterricht, die Mathematisch-naturwissenschaft­
lichen Blätter, ferner das Archiv für Rassen- und Gesellschafts-Biologie, 
die Monatshefte für den naturwissenschaftlichen Unterricht aller 
Schulgattungen, die Geographische Zeitschrift, Himmel und Erde, 
illustrierte naturwissenschaftliche Monatsschrift u. a.

Seit 1868 veröffentliche ich: „Mitteilungen der Verlagsbuchhandlung 
B. G. Teubner“. Diese jährlich zweimal erscheinenden „Mitteilungen“, die 
in 30000 Exemplaren im In- und Auslande von mir verbreitet werden, sollen 
das Publikum, das meinem Verlage Aufmerksamkeit schenkt, von den er­
schienenen, unter der Presse befindlichen und von den vorbereiteten Unter­
nehmungen des Teubnerschen Verlags durch ausführliche Selbstanzeigen 
der Verfasser in Kenntnis setzen. Die Mitteilungen werden jedem In­
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von B. G. Teul 
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Vorwort.

In Ausführung eines langgehegten Planes habe ich in diesem 
Buche vornehmlich jene Materien zur Darstellung gebracht, die über 
den Rahmen des Inhaltes meiner „Vorlesungen über Differential- und 
Integralrechnung“ hinausgehend an unsern Technischen Hochschulen 
zum Vortrage gebracht werden. Ich habe aber die Anlage und Ge­
staltung so gewählt, daß das Buch auch seine selbständige Stellung 
behaupten könne als Einführung in das Studium der höheren Gebiete 
der Mathematik; darum sind auch die Elemente der Differentialrechnung 
aufgenommen worden, um ihre organische Verbindung mit den andern 
behandelten Gebieten herstellen zu können.

Das Buch umfaßt eine recht eingehende Entwicklung des Zahl­
begriffs, die Darstellung von Zahlen durch unendliche arithmetische 
Prozesse, eine Einführung in die Funktionentheorie, im Anschlusse 
daran die Elemente der Differentialrechnung nebst den ersten An­
wendungen der Differentialquotienten, weiter die Determinantentheorie, 
die zur Geltung kommt in der sich anschließenden Gleichungslehre, 
endlich die analytische Geometrie der Ebene und des Raumes in jenem 
Ausmaße und solcher Form, wie es namentlich als Vorbereitung auf 
das Studium der Mechanik erforderlich erscheint. Im übrigen habe 
ich dieselben Grundsätze befolgt, die mich bei der Abfassung der „Vor­
lesungen über Differential- und Integralrechnung“ geleitet haben.

Meinem Kollegen Prof. Dr. K. Zsigmondy bin ich für seine freund­
liche Unterstützung beim Lesen der Korrektur zu Danke verpflichtet.

Wien, September 1908.

Der Verfasser.
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I. Abschnitt.

Der Zahlbegriff.
§ 1. Reelle Zahlen.

1. Einleitende Bemerkung. Den Gegenstand der Arithmetik, 
Algebra und Analysis bilden die Zahlen.

Der allgemeine Zahlbegriff, der die verschiedenen Arten von Zahlen 
umfaßt, mit welchen sich die genannten Teile der Mathematik be­
schäftigen, hat sich aus dem Urbegrif der natürlichen Zahlen ent­
wickelt; den Anlaß dazu gaben einerseits das Bedürfnis der Anpassung 
an die reale Wirklichkeit, anderseits die abstrakten Forderungen der 
Wissenschaft.

Bei der Darstellung des Zahlbegriffs kann man, dem historischen, 
zugleich natürlichen Gange sich nähernd, den Ausgangspunkt von dem 
realen Ursprung der Zahlen nehmen oder aber auf den formalistischen 
Standpunkt sich stellen, der von einer Bezugnahme auf die reale Welt 
absieht. Darstellungen der letzteren Art sind im Gefolge der in neuerer 
Zeit gepflogenen kritischen Durchforschung der Mathematik auf ihre 
logischen Grundlagen entstanden.

Handelt es sich um eine Einführung in die Mathematik, bei der 
wie hier die Anwendungen in den Vordergrund rücken, dann wird der 
erste Ausgangspunkt vorzuziehen sein.

2. Natürliche Zahlen. Unter einer Menge versteht man einen 
Inbegriff von unterscheidbaren Objekten irgendwelcher Art. Die einzelnen 
Objekte werden Einheiten (Elemente) der Menge genannt.

Die Menge ist bestimmt, wenn in einer jeden Zweifel ausschließenden 
Weise die Zugehörigkeit der Objekte zu ihr erkennbar ist. Die Objekte 
können konkret, mit den Sinnen wahrnehmbar sein oder nur in der 
Vorstellung existieren.

Die Eigenschaften einer (konkreten) Menge, der Eindruck, den sie 
auf unsere Sinne ausübt, können von den verschiedensten Umständen 
abhängen und daher auch mannigfach abgeändert werden. Eine Menge 
verschieden gefärbter Kugeln wird je nach der räumlichen Anord­
nung, Konfiguration, je nach der Gruppierung der Farben einen ver­
schiedenen Eindruck auf das Gesicht machen, eine Menge von Pauken- 

Czuber, Höhere Mathematik. 1



2 Der Zahlbegriff. § 1. Reelle Zahlen.

Schlägen verschieden auf das Gehör wirken, je nachdem die Schläge 
in längeren Pausen aufeinander folgen oder zu einem Wirbel ver­
einigt sind.

Die Eigenschaft einer Menge, die unabhängig ist von der Natur der 
Einheiten, von ihrer (räumlichen oder zeitlichen) Anordnung, die also 
unverändert erhalten bleibt, wenn man die Einheiten einzeln durch andere 
unterscheidbare Objekte ersetzt oder untereinander vertauscht (sofern dies 
möglich), nennt man die Quantität der Menge.

Alle anderen Eigenschaften machen die Qualität der Menge aus. 
So verschieden aber die Eigenschaften der einzelnen Einheiten sein 
können, so werden sie doch „kraft ihrer Zugehörigkeit zur Menge" 
als gleichartig angesehen. Neben dieser rein konventionellen können 
die Einheiten auch eine wesentliche Gleichartigkeit aufweisen, in­
dem sie Spezialisierungen einer Gattung bilden. — Ein Kasten, ein 
Tisch, ein Stuhl, ein Mensch, ein Hund, ein Vogel und eine Pflanze 
bilden eine Menge, sofern sie z. B. die in einem geschlossenen Raume 
befindlichen Objekte ausmachen, und- nur insofern sie zum Inhalte des 
Raumes gehören, werden sie als gleichartig aufgefaßt. — Mehrere in 
einem Zimmer versammelte Personen bilden eine Menge von auch 
wesentlich gleichartigen Einheiten — Wenn von Mengen gleichartiger 
Einheiten gesprochen wird, so ist dies zumeist im letztgedachten Sinne 
gemeint. Es ist hiernach auch klar, was unter gleichartigen Mengen 
zu verstehen ist.

3. Um zwei Mengen auf ihre Quantität miteinander zu vergleichen, 
bildet man sie aufeinander ab. Hierunter soll ein (effektiver oder ge­
danklicher Prozeß) verstanden werden, durch welchen die Einheiten 
der einen Menge einzeln den Einheiten der andern Menge zugeordnet, 
auf sie bezogen werden.

Bei zwei Mengen von Kugeln kann man diesen Prozeß beispiels­
weise so ausgeführt denken, daß man jedesmal einer Kugel der einen 
Menge und gleichzeitig einer Kugel der andern Menge ein Zeichen 
macht, wobei eine bereits gezeichnete Kugel nicht wieder einbezogen 
werden darf.

Wenn bei dem Abbilden zweier Mengen aufeinander beide erschöpft 
werden, so nennt man die Mengen in bezug auf die Quantität gleich.

Alle Mengen, die sich in solcher Weise auf eine Vergleichsmenge 
abbilden lassen, sind quantitätsgleich. Denn mit der Abbildung auf 
die Vergleichsmenge geht auch eine Abbildung der Mengen aufein­
ander einher, indem die Einheiten der einzelnen Mengen, die auf die 
nämliche Einheit der Vergleichsmenge abgebildet werden, auch auf­
einander abgebildet sind.

Wenn bei dem Abbilden zweier Mengen aufeinander die eine er­
schöpft wird, während von der andern noch Einheiten verbleiben, die 
an der Abbildung nicht teilgenommen haben, so soll die Quantität 
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der zweiten größer heißen als die der ersten, jene der ersten kleiner 
als die der zweiten.

Die Quantität ist demnach eine Eigenschaft, die verschiedener 
Grade fähig ist.

4. Zur Bezeichnung dieser Grade dienen die Zahlen.
Eine Zahl ist hiernach der Ausdruck für den Quantitätsgrad einer 

Menge und aller mit ihr quantitätsgleichen Mengen. Die Beziehungen 
„größer“, „kleiner" überträgt man von den Mengen auf die zugehörigen 
Zahlen. Darin, daß die Zahl sich nur auf die eine Eigenschaft einer 
Menge bezieht und von allen andern absieht, liegt der Grund für die 
außerordentlich große Anwendbarkeit der Zahlen.

Um die Quantitätsgrade wohlgeordnet zu erzeugen, gehe man von 
einer Einheit (als einer uneigentlichen Menge) aus, füge zu ihr eine 
weitere Einheit, zu der so gebildeten Menge eine neue Einheit, und. 
fahre so fort; gedanklich besteht kein Hindernis, dieses Verfahren 
ohne Ende fortzusetzen. Den Quantitätsgraden der auf diese Art nach 
und nach entstandenen Mengen ordnet man (für den mündlichen Ver­
kehr) Namen — Zahlwörter —, (für die schriftliche Mitteilung) 
Zeichen — Zahlzeichen — zu.

Die hierdurch ausgedrückten Zahlen heißen natürliche Zahlen und 
bilden in der eben beschriebenen Aufeinanderfolge die natürliche 
Zahlenreihe. In Worten: eins, zwei, drei, vier . . ., in Zeichen: 1, 2, 
3,4....

Man kann mit den natürlichen Zahlen auch die Null (0) einführen 
als Ausdruck (Zeichen) für die Negation einer Menge, für das Nicht­
vorhandensein jeglicher Einheit. Indessen ist es nicht gebräuchlich, 
sie in die natürliche Zahlenreihe aufzunehmen, von der sie dann den 
Anfang zu bilden hätte.

Solange man es nur mit Mengen bis zu einer bestimmten (mäßigen) 
Größe zu tun hat, könnten Zahlwörter und Zahlzeichen willkürlich 
gebildet werden, um dem beschränkten Bedürfnis zu genügen. So­
bald aber die Notwendigkeit oder das Verlangen vorliegt, beliebig 
große Mengen ihrer Quantität nach zu kennzeichnen, ist ein Bildungs­
prinzip für Namen und Zeichen erforderlich. Wir besitzen hierfür 
jenes Prinzip, das dem dekadischen Zahlensystem zugrunde liegt.

5. Um die Quantität einer Menge zu bestimmen, sie zu zählen 
(abzuzählen), bezieht man ihre Einheiten in irgendeiner Anordnung 
auf die Glieder der natürlichen Zahlenreihe; die zur letzten Einheit 
gehörige Zahl bestimmt die Quantität der Menge.

Statt von der Quantität der Menge spricht man auch von der An­
zahl der in ihr enthaltenen Einheiten.

Insofern die Zahl dazu dient, die Anzahl der Einheiten in einer 
Menge auszudrücken, heißt sie Kardinalzahl. Sie kommt dann auf 
die Frage „wie viel?" zur Antwort.

1*
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Die beim Zählen einer „geordneten" Menge auf eine bestimmte 
Einheit treffende Zahl kann aber auch dazu dienen, die Stellung der 
Einheit in der Menge zu kennzeichnen. In dieser Verwendung heißt 
die Zahl eine Ordinalzahl] ihr Name (oder ihr Zeichen) wird adjek­
tivisch gebraucht und kommt in dieser Form auf die Frage „der (die, 
das) wievielte?" zur Antwort. Drei (3) Glockenschläge — der dritte 
(3.) Glockenschlag.

Es ist auch die Anschauung ausgesprochen worden, der Begriff 
der Ordinalzahlen sei der ursprüngliche und der der Kardinalzahlen 
von ihm abgeleitet. Auch die Auffassung ist in der Literatur ver­
treten, die in der Zahlenreihe nur Zeichen in bestimmter Sukzession, 
ohne Bezugnahme auf Mengen, erblickt.

Der eingangs beschriebene primitive Zählprozeß erfährt für prak­
tische Zwecke eine weitgehende Ausgestaltung, die schon in das Ge­
biet der Arithmetik fällt.

Der unmittelbaren Erfassung der Quantität einer Menge sind selbst 
bei großer Übung enge Schranken gesetzt; nur ganz kleine Mengen 
wird man auf den ersten Blick ihrer Quantität nach erkennen, und 
selbst da spielt die Konfiguration eine große Rolle. Man denke an 
Dominosteine, an Kartenblätter, an die regelmäßige Anordnung von 
Münzen u. dgl. zum Zwecke des Zählens. Kommt es so schon bei 
Mengen von fünf, sechs, sieben, . . . Einheiten auf die Konfiguration 
an, so wird es bei größeren Mengen auch trotz regelmäßiger Anord­
nung mit einem einfachen Apperzeptionsakt nicht abgehen.

Um sich von dem durch eine Zahl ausgedrückten Quantitätsgrade 
eine anschauliche Vorstellung zu bilden, konstruiert man auf dem­
selben Wege, auf welchem eine bereits vorliegende Menge gezählt 
wird, eine Menge aus beliebigen Einheiten [Kugeln, Münzen, Stäbchen, 
Strichen (1, Einern)]. Derselbe Vorgang wird befolgt, wenn es sich 
darum handelt, eine gegebene Zahl in vorgeschriebenen Einheiten zu 
realisieren (zuzählen von Äpfeln, Nüssen, Eiern, Münzen u. dgl.).

Neben den besonderen Zahlzeichen, welche die natürliche Zahlen­
reihe zusammensetzen, benützt man in der Mathematik allgemeine Zahl­
zeichen in Form von Buchstaben.

Mit der Aussage: a sei eine natürliche Zahl, ist gemeint, unter 
a könne jede Zahl der natürlichen Zahlenreihe verstanden werden.

Sind a, b zwei Zahlen dieser Reihe in der Sukzession, in welcher 
sie darin auftreten, so ist a kleiner als b (a <b), b größer als a 
(b > d).

6. Addition. Wenn zwei bereits gezählte Mengen A, B, denen 
die Zahlen a, b zukommen, zu einer Menge zusammengefaßt werden, 
so ensteht die Frage nach der ihrer Vereinigung entsprechenden Zahl. 
Die Forderung, diese zu finden, wird durch eines der Symbole

a + b, b + a (1)



Addition. 5

ausgedrückt; die Operation, durch welche die neue, stets existierende 
und einzige Zahl gefunden wird, nennt man Addition, ihr Resultat, 
eben die neue Zahl, Summe, die Zahlen a, b Summanden oder Addenden.

Die Addition kann so ausgeführt werden, daß man in der natür­
lichen Zahlenreihe, von der einen Zahl ausgehend, um so viele Ein­
heiten weiterzählt, als die zweite Zahl angibt; das Resultat ist eine 
bestimmte Zahl s, unabhängig von der Reihenfolge der Addenden. 
Diese Tatsachen drückt man in den Ansätzen

a + b = s (2)

a + b = b + a (3)

aus. Solche Ansätze nennt man Gleichungen', ihr Sinn erfordert in 
jedem Falle eine Erklärung.

Gleichung (2) besagt, daß s so viele Einheiten zählt als a und b 
zusammen. Aus ihr folgt a < s, b < s.

Gleichung (3) besagt, daß das Resultat der Addition unabhängig ist 
von der Ordnung der Summanden; sie drückt das kommutative Gesetz 
der Addition aus.

Sind drei Mengen A, B, C, welchen die Zahlen a, b, c entsprechen, 
zusammenzufassen, so wird die Forderung, die ihrer Vereinigung ent­
sprechende Zahl zu finden, durch das Symbol a + b + c oder ein ana­
loges ausgedrückt, das sich von diesem nur durch die Ordnung der 
Buchstaben unterscheidet; ausgeführt kann sie auch so werden, daß 
man erst irgend zwei der Mengen zusammengefaßt denkt und die zu­
gehörige Zahl bestimmt, daraufhin die dritte Menge einbezieht; die 
Ansätze

a + b + c = (a + b) + c = a + (b + c) = • • • (4)

drücken die Tatsache aus, daß das Resultat bei jeder dieser Aus­
führungsarten das nämliche ist, sie formulieren das assoziative Gesetz 
der Addition.

Die Klammern dienen dazu, die sukzessive Summenbildung anzu- 
deuten.

Man kann auf diese Art zu beliebig vielen Summandenfortschreiten.
Die Arithmetik hat mechanische Regeln ausgebildet, mit deren Hilfe 

die Addition von beliebig vielen, beliebig großen Zahlen mit einem 
geringen Wissensvorrat (die Summen je zweier der Zahlen 1,2, • • • 9) 
bewerkstelligt wird.

Die beiden an der Addition erkannten Gesetze, das kommutative 
und das assoziative, machen ihr Wesen aus. Ihr Begriff kann dahin 
erweitert werden, daß man jeder Verknüpfung von irgendwelchen Ob­
jekten, der in bezug auf ein bestimmt definiertes Resultat diese Ge­
setze zukommen, den Namen Addition beilegt. (Geometrische Addi­
tion gerichteter Strecken.)
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7. Multiplikation. Jeder Einheit der Menge B werde eine Menge 
A zugeordnet; es ist die Zusammenfassung dieser Mengen A zu zählen. 
Symbolisch wird diese Forderung durch

b X a (1) 
ausgedrückt; die Operation, die zu der neuen Zahl führt, heißt Mul- 
tiplikation, ihr stets einzig vorhandenes Resultat Produkt, b der Mul­
tiplikator, a der Multiplikand.

Im Wesen ist die Multiplikation von der Addition nicht verschieden; 
denn auch sie entspricht der Zusammenfassung von Mengen, nur sind 
diese nach einem besonderen Gesetz gebildet. Der Ansatz

1 2 b
b X a = a + ct + • • • — a (2)

zeigt die Zurückführung der Multiplikation auf die Addition und läßt 
das Produkt als die Summe einer Anzahl gleicher Summanden erkennen.

Die aus den A zusammengesetzte Menge kann man sich in der 
Weise in Mengen B aufgelöst denken, daß man je eine Einheit aus 
jeder Menge A entnimmt und diese Einheiten zusammenfaßt; es ent­
stehen so a Mengen B, so daß

b X a = a X b (3) 

ist. Das hierin ausgesprochene Gesetz heißt das kommutative Gesetz 
der Multiplikation. Es hebt den bisher zwischen Multiplikator und 
Multiplikand gemachten Unterschied als für das Resultat unwesent­
lich auf und gestattet, beiden Zahlen einen gemeinsamen Namen zu 
geben; man nennt sie Faktoren und bedient sich statt (1) der kürzeren 
Schreibweise a • b oder a b.

Wegen des besonderen Sach Verhalts, daß 1 • a = a • 1 = a, nennt 
man 1 den Modul der Multiplikation.

Die Produkte la, 2a, 3a, • • • heißen die Vielfachen von a. Weil 
im Sinne von (2) 12 e

c(a + b) =(a+b) c =a+b+a+b+. + a +b
12 c 1 2 c 

= a + a + • • • + a + b + b+.. b, 
so ist

c (a + b) = (a + b) c = ca + ob = ac + bc- (4)

bei nochmaliger Anwendung dieses Gesetzes findet man auch
(^a + b^ (c + d^ = ac + ad + bc + bd. (5)

Das in dieser Verknüpfung von Multiplikation und Addition aus­
gesprochene Gesetz heißt das distributive Besetz beider Rechnungsarten, 
das auf Summen beliebig vieler Addenden ausgedehnt werden kann. 

Aus (3) und (2) folgt, daß
/1 2 b\ /12 a\
a+a+.+a c=b+b-...+ b) c-
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führt man beide Formen nach der Regel (4) aus, so ergibt sich, daß 

(ab) c = (ac) b = (bc) a. (6) 
Das hierin liegende Verhalten eines Produktes von drei Faktoren nennt 
man das assoziative Gesetz der Multiplikation, das die Anschreibung 
des Produktes in der Form abc zuläßt; es kann auf beliebig viele 
Faktoren ausgedehnt werden.

Auch die Multiplikation beliebig großer Zahlen führt die Arithmetik 
auf ein mechanisches Verfahren zurück, das nur die Kenntnis der 
Produkte je zweier der Zahlen 1, 2, ■ • • 9 voraussetzt.

Das kommutative, assoziative und distributive Gesetz machen das 
Wesen der Multiplikation aus ohne Rücksicht auf das Substrat, an 
dem die Operationen ausgeführt werden.

8. Potenzieren. Aus der Menge A werde eine neue Menge nach 
folgendem Gesetz erzeugt: man ersetzt jede Einheit von A durch eine 
Menge A, in der neuen Menge wieder jede Einheit durch eine Menge A 
und führt diesen Prozeß n-mal nacheinander aus. Die Forderung, 
die zuletzt entstandene Menge zu zählen, soll durch das Symbol

an (1) 

angezeigt werden; die Operation, welche dazu führt, heißt das Poten­
zieren, ihr eindeutiges Resultat Potenz, a die Basis, n der Exponent.

Im Grunde genommen ist das Potenzieren eine unter besonderen 
Umständen wiederholte Multiplikation; der Ansatz

12 n
an = ää • • ä (2) 

erklärt diese Zurückführung des Potenzierens auf die Multiplikation, 
und da diese ihrerseits auf die Addition zurückleitet, so ist ein ge­
meinsamer Ursprung dieser drei Operationen dargetan.

Im Sinne von (2) ist al = a, dagegen 1" = 1, welche natürliche 
Zahl auch n sein möge.

Die Zahlen al, a2, a3 • • • nennt man die Potenzen von a. Ins­
besondere heißen die 2., 3., 4. Potenz auch Quadrat, Kubus und Bi­
quadrat.

Es ist eine wesentliche Eigenschaft der bisher vorgeführten drei 
Operationen, daß sie immer zu einem, aber auch nur einem Resultate 
führen.

9. Subtraktion. Die Subtraktion entspringt aus der Forderung, 
von einer Menge A eine bestimmte Teilmenge B (effektiv oder ideell) 
abzulösen und die zur verbleibenden Menge gehörige Zahl zu finden, 
wenn die Zahlen a, b bekannt sind. In arithmetischer Ausdrucksweise 
heißt dies, zu gegebener Summe a und einem Summanden b den 
andern Summanden bestimmen; die Forderung werde durch das Symbol

a ^b (1) 
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ausgedrückt. Die zur Lösung führende arithmetische Operation heißt 
Subtraktion, ihr Resultat Differenz, a, der Minuend, b der Subtrahend. 
Benützt man das Symbol (1) auch als Zeichen für das Resultat, so 
ist das Wesen der Subtraktion, das in ihrem Zusammenhang mit der 
Addition liegt, durch den Ansatz

b + (a — b) = (a — b) + b = a (2) 
erklärt.

Was nun diese neue Rechnungsart von den vorigen wesentlich 
unterscheidet, ist der Umstand, daß ihre Ausführbarkeit an eine aus 
der Natur der Addition hervorgehende Beschränkung geknüpft ist: da 
nämlich die Summe zweier Zahlen größer ist als jeder Summand (6), 
so ist die Subtraktion nur möglich, wenn der Minuend größer ist als 
der Subtrahend.

Hier tritt nun ein in allen Teilen der Mathematik befolgtes Prinzip 
zur erstmaligen Anwendung, darin bestehend, daß man den Operationen 
entgegenstehende Schranken durch Begriffserweiterungen beseitigt, die 
solcher Art sind, daß sie die früheren Begriffsbildungen mit den sie be­
herrschenden Gesetzen mit umfassen. Man nennt dies Prinzip nach 
H. Hankel, der es zuerst formuliert hat1), das Prinzip der Permanenz. 
Es hat sich gezeigt, daß den formalen Begriffserweiterungen in vielen 
Fällen auch eine reale Deutung unterlegt werden kann.

1) Theorie der komplexen Zahlsysteme, 1867.

In dem vorliegenden Falle soll nun die Begriffserweiterung darin 
bestehen, daß man das Symbol (1) immer, also auch dann als Zahl an­
sieht, wenn a <b und a = b ist; bei a>b hat man es wieder mit 
den bisherigen Zahlen zu tun.

Durch diese Festsetzung wird dem Symbol neben einem quanti­
tativen auch ein qualitativer Inhalt erteilt; bezeichnet man nämlich 
mit d den Überschuß der größeren der beiden Zahlen a, b über die 
kleinere, so sind zwei Qualitäten möglich: entweder liegt der Über­
schuß auf Seite des Minuends oder auf Seite des Subtrahends. Um 
diesen Qualitätsunterschied zum Ausdruck zu bringen, ist neben dem 
Zahlzeichen als Quantitätszeichen noch ein Qualitätszeichen erforderlich; 
als solches ist für den ersten Fall das Zeichen — (plus), für den zweiten 
das Zeichen — (minus) eingeführt worden; die mit diesen Vorzeichen 
ausgestatteten Zahlen werden positive, bzw. negative Zahlen genannt.

In dem Falle jedoch, daß Minuend und Subtrahend überein­
stimmen, gibt es keinen Überschuß, es entfällt also auch die Unter­
scheidung seiner Qualität: die quantitäts- und qualitätslose Zahl wird 
mit dem Namen Null und dem Zeichen 0 eingeführt.

Man hat hiernach , , 7, . , 
a—=abei a 0 
a — b = — d „ a <b (3) 
a — a = 0.
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Die aus dieser Begriffserweiterung hervorgehenden Zahlen bilden 
das System der relativen (qualifizierten, nach einer älteren Nomen­
klatur, der aber heute eine ganz andere Bedeutung unterlegt wird, 
algebraische) Zahlen. In seinem Bereiche ist jede Subtraktion aus­
führbar.

Die bloße Quantität einer relativen Zahl nennt man ihren ab­
soluten Wert. Bezeichnet « eine relative Zahl, so wird ihr absoluter 
Wert symbolisch durch « ausgedrückt. ( + 3 | = 3, ' — 3 =3).

Wendet man die unter (2) angeführte wesentliche Eigenschaft 
der Subtraktion auf den letzten der eben unterschiedenen Fälle an, so 
folgt, daß

a + 0 = 0 + a = a; (4)

wegen dieses Verhaltens wird 0 der Modul der Addition genannt. 
Trifft man in dem erweiterten Zahlensystem die Festsetzung, daß 

a — b^a ~b'

sein soll, je nachdem

a + b' < a + b,

so ist: 1. eine positive Zahl um so größer, je größer ihr absoluter 
Wert; 2. eine negative Zahl um so kleiner, je größer ihr absoluter 
Wert; 3. die Null kleiner als jede positive, größer als jede negative 
Zahl; 4. jede negative Zahl kleiner als jede positive Zahl.

Die positiven Zahlen zeigen hier dasselbe Verhalten wie die natür­
lichen, die negativen das entgegengesetzte. Vermöge dieses Gegen­
satzes passen sich die relativen Zahlen vielen konkreten Sachverhalten 
naturgemäß an.

Definiert man die Addition relativer Zahlen durch den Ansatz 

(a -b) + {a — b) = (a + a) — (b + b'),

so ist: 1. die Summe zweier positiven Zahlen die positive Summe 
ihrer absoluten Werte; 2. die Summe zweier negativen Zahlen die 
negative Summe ihrer absoluten Werte; 3. die Summe einer positiven 
und einer negativen Zahl der Überschuß des größeren absoluten Wertes 
über den kleineren, versehen mit dem Vorzeichen des größeren.

Dieser Sachverhalt gestattet die Auffassung von a — b als Summe 
der relativen Zahlen + a und — b, so daß nach Einführung der rela­
tiven Zahlen eine Unterscheidung zwischen Addition und Subtraktion 
überflüssig wird.

Definiert man die Multiplikation relativer Zahlen durch den Ansatz 

(a — b) (d — b') = (ad + bb') — (ab' + dd),

so ergibt sich, indem man der Reihe nach
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a = b + d, a = V + d'

b = a + d, b' = a — d'

a' = b + d, b' = a + d' oder b = a + d, a = b' + d'

b = a oder b' = d oder beides zugleich 

setzt und rechts die Regel 7, (5) anwendet: 1. das Produkt zweier 
positiven und zweier negativen Zahlen ist das positive Produkt ihrer 
absoluten Werte; 2. das Produkt einer positiven und einer negativen 
Zahl das negative Produkt ihrer absoluten Werte; 3. das Produkt aus 
0 mit einer relativen Zahl oder mit 0 selbst 0; in anderer Weise 
kommt 0 als Produkt nicht zustande.

Man erkennt, daß diesen Rechengesetzen gegenüber die positiven 
Zahlen sich so verhalten wie die natürlichen Zahlen.

10. Division. Die Forderung, eine gegebene Menge A in Mengen 
von der Quantität b aufzulösen und diese Mengen zu zählen, oder A 
in b gleiche Mengen zu teilen und die zu einer solchen Teilmenge 
gehörige Zahl zu bestimmen, führt zu der arithmetischen Aufgabe, 
die (natürliche) Zahl a als Produkt zweier Faktoren darzustellen, 
deren einer b ist; die Operation, die zur Auffindung des zweiten Fak­
tors führt, heißt Division, das Resultat Quotient, a der Dividend, b der 
Divisor-, deutet man die Forderung, aber auch ihr eventuelles Resultat, 
durch das Symbol a: b oder

: (!) 

an, so drückt sich das Wesen der neuen Rechnungsart durch den 
Ansatz

b a = ab - a (2)
b b

aus, der ihren Zusammenhang mit der Multiplikation darstellt.
Die Ausführbarkeit der Division ist aber an eine Schranke ge­

bunden: nur dann, wenn a ein Vielfaches von b ist, ergibt sich eine 
und dann immer nur eine Lösung.

Das Prinzip der Permanenz fordert neuerdings eine Begriffs­
erweiterung, die zu einer ausnahmslosen Durchführbarkeit der Division 
zu verhelfen hat, und dies soll wiederum darin bestehen, daß man das 
Symbol (1) immer, also auch dann als Zahl ansieht, wenn a kein Viel­
faches von b ist.

Durch diese Festsetzung treten zu den bisherigen (natürlichen) Zahlen 
neue Zahlen, die man gebrochene Zahlen oder Brüche nennt, während 
man den ersteren zum Unterschiede von diesen den Namen ganze 
Zahlen gibt.

In dem Bruche " heißt a Zähler, b Nenner, 
b 7
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Jede ganze Zahl a kann man in der Form eines Bruches darstellen, 
indem man sie schreibt I , da im Sinne der Division I = a, weil 

a . 1 = a ist.
Trifft man bezüglich der Größenvergleichung zweier Brüche ~, • 

die Festsetzung, daß
a < a

' b > b‘ 
sein soll, je nachdem

ab' A ab

ist, so steht die Vergleichung ganzer Zahlen hiermit im Einklang.
Es folgt aus dieser Festsetzung die Gleichheit zweier Brüche von 

der Form" und ‘d. DieserUmstand ermöglicht einerseits, einen Bruch 
b kb P ‘

auf die einfachste, die reduzierte Form zu bringen, bei der Zähler und 
Nenner keinen gemeinsamen Faktor haben; anderseits Brüche mit 
verschiedenen Nennern in solche mit einem und demselben Nenner 
umzuwandeln.

Definiert man Addition und Subtraktion von Brüchen durch die 
Ansätze:

a . d ’ab'-\-db o
b + 8 - 68—5 (35)
a d ab' — d b A
bb= bb ’ (4)

so passen diese Regeln auch auf ganze Zahlen, und hebt man bei der 
Subtraktion die Beschränkung I > g auf, so gelangt man zu dem 

Begriff der relativen (qualifizierten) Brüche.
Zwischen zwei Brüche kann man immer wieder Brüche einschalten; 

sind ", ", zwei ungleiche Brüche und I >", so bringe man sie auf 
b’ b P b b ‘ • 
.ab’ ab , . die form .,, -, ; dann istbb ’ bb 7

a z d
b > Tb’ 

wenn der Zähler z so gewählt wird, daß ab' > z > ab ist1). Die 
Menge der Brüche zwischen $ und F ist hiernach unbegrenzt.

1) Sollten ab' und d b nur um eine Einheit verschieden sein, so geht man 
. — kab' ka'b , _ .von der form ,. -» aus (k 1).kbb kbb

Für die Multiplikation gelte die Regel: 
a d_  ad
b b'^FF ’ (0)
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der sich auch die Multiplikation ganzer Zahlen unterordnet. Auf 
Grund dieser Regel kann der in 8 aufgestellte Begriff der Potenz 
auf den Fall ausgedehnt werden, daß die Basis ein Bruch ist.

Die Division hat notwendig der Regel
ad ab' 
b ' b' ab

- . , . .. , , ab' d adb’ a . , 
zu folgen, weil dann tatsachlich — — - == - ,7, = — ist.O 2 a b b b a b b

(6)

Eine besondere Hervorhebung beanspruchen die Fälle, in welchen 
die 0, als ganze Zahl aufgefaßt, zur Bruchbildung (Division) heran- 
gezogen wird.

Die Division • , wo b eine von 0 verschiedene Zahl ist, führt zum 

Quotienten 0, da 6-0 = 0 ist.
Die Division 8, wo a eine von Null verschiedene Zahl ist, ist un­

ausführbar, da a aus keiner Zahl durch Multiplikation mit 0 her­
vorgeht.

Der Division 8 kann jede beliebige Zahl q als Quotient zugeordnet 

werden, da Qq = 0, welche Zahl auch q sein möge; hier fehlt also 
die eindeutige Bestimmtheit des Resultats, die bisher durchgehends 
gewahrt blieb.

Es folgt daraus die für die Analysis wichtige Tatsache, daß die 
Null als Divisor (Nenner) unzulässig ist.

Die Division (natürlicher) Zahlen wird in der Arithmetik noch in 
einem andern Sinne definiert, der über die natürlichen Zahlen nicht 
hinausführt. Ist a > b, so soll a als Summe aus einem Vielfachen 
von b und einer Zahl dargestellt werden, die kleiner als b (eventuell 
0) ist; mit andern Worten, die natürlichen Zahlen q, r(< 6) sollen 
so bestimmt werden, daß

a = qb + r (7) 

sei. In dieser Auffassung stellt sich die Division als wiederholte 
Subtraktion des Divisors b vom Dividenden a dar, bis ein unter b 
liegender Nest r verbleibt; ist dieser 0 (wird a dadurch erschöpft), 
so heißt a durch b teilbar.

Schließlich sei noch bemerkt, daß die Einführung der Brüche die 
Unterscheidung zwischen Multiplikation und Division entbehrlich macht; 
denn die Division von a durch b kann als Multiplikation von a mit 
dem Bruche } aufgefaßt werden. Brüche mit dem Zähler 1 nennt 

man Stammbrüche.
11. Rationale Zahlen. Die relativen Brüche im Verein mit 

den relativen ganzen Zahlen bilden das System der rationalen Zahlen. 
Innerhalb dieses Systems sind Addition, Multiplikation, Subtraktion 
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und Division ohne Einschränkung ausführbar. Nennt man ein Zahlen­
system, das sich in bezug auf diese vier Rechnungsarten, die „vier 
Spezies“, in der beschriebenen Weise verhält, einen Zaidkörper, so hat 
man das System der rationalen Zahlen als einen Zahlkörper zu be­
zeichnen.

Man denkt sich die Brüche zwischen die bereits geordneten ganzen 
Zahlen nach ihrer Größe eingeordnet, so daß auch das System der 
rationalen Zahlen unter dem Bilde einer nach beiden Seiten unbe­
schränkt fortsetzbaren Reihe erscheint.

Mit der Schaffung der Brüche ist ein bedeutsamer Schritt von 
der Mengenlehre zur Größenlehre getan. Um nämlich einer extensiven 
Größe (das einfachste Bild einer solchen ist eine Strecke) eine Zahl 
zuzuordnen, verwandelt man sie durch Teilung in eine Menge, die 
man zählt; die Teile werden einer gleichartigen, als Einheit gewählten 
Größe „gleich“ gemacht. Bleibt bei der Teilung ein Rest (kleiner 
als die Einheit), so verfährt man mit diesem ebenso unter Zugrunde­
legung eines bestimmten aliquoten Teiles der früheren Einheit usw. 
In diesem Vorgänge ist der eigentliche Ursprung der Brüche zu er­
blicken.

12. Radizieren. Subtraktion und Division knüpfen mit ihrer 
Fragestellung an die Addition und Multiplikation an und sind inso­
fern als Umkehrungen dieser Rechnungsarten aufzufassen, als eine vor­
dem als gegeben vorausgesetzte Zahl nunmehr als zu bestimmende 
Zahl erscheint.

Nimmt man das Potenzieren zum Ausgangspunkt einer solchen 
Umkehrung, indem man nach der Basis fragt, die zu einem natür­
lichen Exponenten n erhoben werden muß, damit eine gegebene posi­
tive rationale Zahl a als Potenz hervorgehe, so entsteht eine neue 
Rechnungsoperation, die man das Radizieren oder Wurzelziehen nennt; 
die Potenz a heißt nun Radikand, der Exponent n der Wurzelexponent1}, 
und die gestellte Forderung sowie ihr eventuelles Resultat, die Wurzel, 
wird durch das Symbol

1) Auch Grad der Wurzel.

Va (1) 
dargestellt; das Wesen der neuen Rechnungsart, in ihrer Zurückführung 
auf das Potenzieren bestehend, ist durch den Ansatz

(Va) - a (2) 
bestimmt.

Die Ausführbarkeit ist jedoch auf solche Zahlen a beschränkt, 
die nte Potenzen rationaler Zahlen sind, d. h. die sich als Produkte 
von n gleichen rationalen Faktoren darstellen lassen. Will man also 
das Radizieren (mit den hier über die Natur der Zahlen a, n ge- 
troffenen Festsetzungen) bedingungslos ausführbar machen, so tritt 
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die Notwendigkeit einer neuerlichen Erweiterung des bisherigen Zahl­
begriffs ein, und diese soll zunächst wieder formal in der Weise ge­
schehen, daß man das Symbol (1) immer, also auch dann als eine 
Zahl erklärt, wenn a nicht die nte Potenz einer (positiven) rationalen 
Zahl ist.

Es handelt sich nun darum, die so eingeführten neuen Zahlen 
mit den rationalen in eine Beziehung zu bringen. Der hierzu führende 
Gedankengang soll zunächst durch Betrachtung einer speziellen Auf­
gabe vorbereitet werden.

Das Symbol V2 verlangt die Bestimmung einer Zahl, die zum 
Quadrat erhoben 2 gibt. Daß keine rationale Zahl dieser Forderung 
entsprechen kann, ist so zu erkennen. Wäre 7 eine solche — sie 

kann in der reduzierten Form vorausgesetzt werden —, so müßte 
p2 = 2q2 sein; dies hätte einerseits die Teilbarkeit von p2 durch 2, 
anderseits die Teilbarkeit von 2 durch p2, also p2 = 2 und q2 = 1 zur 
Folge; nun ist aber 2 nicht das Quadrat einer ganzen Zahl, somit 
die obige Annahme hinfällig.

1. Die durch das Symbol V2 ausgedrückte Forderung bewirkt 
demnach eine Scheidung der (positiven) rationalen Zahlen in zwei 
Klassen A, B in der Weise, daß alle Zahlen der ersten Klasse ein 
Quadrat kleiner als 2, alle Zahlen der zweiten Klasse ein Quadrat 
größer als 2 geben; infolgedessen ist auch jede Zahl der Klasse A 
kleiner als jede Zahl aus B.

Es gibt aber in der Klasse A keine größte und in der Klasse B 
keine kleinste Zahl.

Denn ist x eine Zahl aus A, also x2 < 2, so läßt sich ein posi­
tives h so bestimmen, daß auch (x + h)2 < 2 wird; denn aus

2ha < 2hx + 12 <2 — 22
2 _  2? • • 2 _  22 

folgt h < —___ , und jede rationale Zahl zwischen X und x   _— 2_______________________________ 2 OC
2 — xc2 . —= "9— gehört auch zur Klasse A. Und ist y eine Zahl der Klasse B, 

also y2 > 2, so läßt sich die positive Zahl k so bestimmen, daß auch 
(y — k)2 > 2 wird; denn aus

2ky<y2-2 + k2<y2- 1
y‘—1_y‘+1

^y ^y
folgt k < “2---- , und jede rationale Zahl zwischen y

und y gehört auch zur Klasse B.
Nach einer von R. Dedekind1) eingeführten Ausdrucksweise be­

wirkt also die Forderung V2 einen Schnitt im System der rationalen 
Zahlen, durch welchen eine neue, diesem System nicht angehörige 
Zahl vollkommen bestimmt erscheint, eben die durch das Symbol 
V2 definierte Zahl.

1) Stetigkeit und irrationale Zahlen, 1. Aufl. 1872, 3. Aufl. 1905.
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2. Das Verfahren, welches die Arithmetik zur Ausziehung der 
Quadratwurzel lehrt, auf den vorliegenden Fall angewendet, ist im 
Grunde genommen eine systematische Entwicklung von Zahlen der 
Klasse A, denen, wieder nach einem systematischen Vorgang, Zahlen 
der Klasse B zugeordnet werden können.

Bezeichnet nämlich, in der üblichen Ausdrucksweise der Arith­
metik gesprochen, an die auf n Dezimalen abgekürzte V2, so gehören 
die Zahlen

aQ7 a1, d2, ' ' ’ an^ ‘ ' ' (3)
d. i. 1, 1,4, 1,41, ••• der Klasse A an, weil ihre Quadrate kleiner 
sind als 2, und die aus ihnen durch Erhöhung der Ziffer an der 
niedrigsten Stelle um 1 abgeleiteten Zahlen

bo, b,, b,, * ' ' b, ’ ' ’ (4)
d. i. 2, 1,5, 1,42, • • • der Klasse JB an, weil ihre Quadrate größer 
sind als 2. Und so wie das arithmetische Verfahren keinen Abschluß 
findet, sind auch die beiden Zahlenfolgen (3), (4) unbegrenzt fortsetz­
bar, d. h. ist man bei einem noch so späten Gliede angelangt, so kann 
man immer wieder nach dem erwähnten Verfahren das folgende ab- 
leiten.

Jede Zahl aus (3) ist kleiner als jede Zahl aus (4); da nun 
bn — an - 10 und aus dem oben angeführten Grunde jedes auf an 

beliebig später folgende Glied an+p zwischen an und bn fällt, so ist
1“n + p dn 10% »

mit anderen Worten: zu einer beliebig klein festgesetzten positiven 
rationalen Zahl & läßt sich die Stellzahl n so bestimmen, daß

&+— an<£

wird bei beliebigem p. Ein ähnliches Verhalten zeigt auch die Reihe (4).
Der Sachverhalt ist nun der, daß, wiewohl keine der Zahlen am die 

Forderung, zum Quadrat erhoben 2 zu geben, streng erfüllt, sie dieser For­
derung, je weiter man in ihrer Reihe vorschreitet, immer näher kommen 
in dem Sinne, daß die Differenz 2 — a bei beständig zunehmendem n 
beständig kleiner wird und durch entsprechende Wahl des n unter 
jede noch so kleine positive Zahl herabgedrückt werden kann.

In diesem Sinne soll und kann die unbegrenzte Zahlenfolge (3) 
zur Definition der durch V2 symbolisch an gedeuteten ‘Zahl verwendet 
werden.

13. Irrationale Zahlen. Die aus der Betrachtung eines be­
sonderen Falles gewonnenen Gedankenbildungen sollen nun verallge­
meinert werden.
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1. Die Scheidung des Systems der rationalen Zahlen in zwei 
Klassen A^ B derart, daß jede Zahl a aus A kleiner ist als jede Zahl 
b aus B, soll ein Schnitt genannt werden (Schnitt (A, B)\

Der Schnitt kann durch eine rationale Zahl selbst geschehen; sie 
kann dann nach Belieben der Klasse A als größte oder der Klasse B 
als kleinste unter ihren Zahlen zugeschrieben werden.

Erfolgt der Schnitt so, daß A keine größte und B keine kleinste 
Zahl enthält, so bestimmt er eine neue, außerhalb des Systems der 
rationalen Zahlen stehende Zahl.

Durch derartige Schnitte definierte Zahlen nennt man irrationale 
Zahlen. 1)

Der Begriff der „einem Schnitt zugeordneten Zahl" umfaßt also 
die rationalen und die irrationalen Zahlen.

2. Eine unbegrenzt fortsetzbare Folge rationaler Zahlen

do, a,, a2,a, ** (1) 
der die Eigenschaft zukommt, daß sich bei beliebig klein gegebenem 
positivem e der Zeiger n so bestimmen läßt, daß

an+p~an <e (2) 

wird, welche natürliche Zahl man für p auch nehmen mag, soll eine 
Fundamentalreihe heißen.

Läßt sich eine rationale Zahl a solcherart angeben, daß zu einem 
beliebig klein festgesetzten positiven 3 eine natürliche Zahl m sich 
bestimmen läßt, derart daß

a,—a< 0, (3) 
solange n > m bleibt, so sagt man, die Glieder der Reihe (1) nähern 
sich der Zahl a als Grenze oder die Reihe konvergiere gegen die 
Grenze a. Symbolisch soll dies durch den Ansatz

lim an = a (4) 
ausgedrückt werden.

Eine Reihe, die gegen eine Grenze konvergiert, ist notwendig eine 
Fundamentalreihe.

Man kann nämlich n so bestimmen, daß, wie klein auch die po­
sitive Zahl e gewählt sein möge, nicht nur

“,—d -2, 
sondern auch

\an + p d — 2 ‘
1) Der Begriff der irrationalen Zahlen ist geometrischen Ursprungs; in­

kommensurable Streckenpaare führen auf irrationale Verhältniszahlen. Daher 
erklärt es sich, daß für sie ursprünglich der Name inkommensurable Zahlen üblich 
war. Das Wort „irrational" kommt zum erstenmal in einer lateinischen Über­
setzung eines arabischen Kommentars zu Euklid aus dem 12. Jhrh. vor. Später, 
bis ins 16. Jhrh., war die Bezeichnung surdus für irrational gebräuchlich.
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welche natürliche Zahl p auch sei; dann aber ist

a, + p d, < e, 
also das Merkmal einer Fundamentalreihe vorhanden.

Erfüllt insbesondere die Zahl 0 die Forderung (3), ist also

a,l<o, (5) 
solange n > m, so heißt die Fundamentalreihe insbesondere eine Ele­
mentare eilte:, es ist dann

lini an = 0. (6)

Läßt sich keine rationale Zahl an geben, die der Bedingung (3) 
genügt, dann ordnet man der Fundamentalreihe eine neue Zahl zu, 
die man als ihre ideelle Grenze auffaßt und eine irrationale Zahl nennt.

Der Begriff der „einer Fundamentalreihe zugeordneten Zahl“ um­
faßt also die rationalen und die irrationalen Zahlen.

Beispiele. 1. Die Reihe 3 , 5,2, 8 , • • • ist eine Fundamental­

reihe; denn
n — p n p 1

n +p " n + P + 1 n+1 (n + 1)(n + p + 1) n—1 
kann durch Wahl von n allein beliebig klein gemacht werden. Sie 
hat die Grenze 1, weil

1 _ _ 1 n+1 

durch Wahl von n beliebig klein gemacht werden kann. Die Reihe 
definiert also die Zahl 1; hiermit ist der Sinn des symbolischen An­
satzes

- - ( 2 ‘ 3 ‘ 4 ‘ ’ ’ / 
erklärt.

2. Die Reihe 1, 9, }, ••• ist eine Fundamentalreihe, und zwar 

eine Elementarreihe, weil an = , beliebig klein gemacht werden kann 

durch Wahl von n. Man drückt dies durch den Ansatz aus:

0-11 1
2‘3‘ /

3. Die mittels des Verfahrens der arithmetischen Quadratwurzel­
ausziehung unbegrenzt fortsetzbare Reihe 1, 1,4, 1,41, 1,414, • • • 
ist nach den unter 12,2. angestellten Betrachtungen eine Fundamental­
reihe und die ihr zugeordnete Zahl ist V2, so daß man schreiben kann:

V2 - (1,1,4, 1,41, 1,414, • • •).
14. Wenn die Reihen

«1, a,, «»,••• ■ (7)
b,, b,, b, - (8)

Czuber, Höhere Mathematik. 2
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gegen die Grenzen a, b konvergieren, so konvergieren die Reihen 

di + bi, a, + b2, as + b3, ’ ’ ‘ 
a, b,, a, b,, a, ba, ■ • • 
a, b,, a, b2, a3 b3, •
a, a, a, 
b,’ b,’ b, ‘ 

gegen die Grenzen a + b, a — b, ab, $ beziehungsweise: die letzte 

Behauptung nur unter der Voraussetzung b = 0.
Man braucht, um die Richtigkeit dieser Aussage einzusehen, sich 

nur klar zu machen, daß die Differenzen

^n + bn-<a + bl a,—b — (a—b), a„b,—ab, s—$, 

n 
die sich umformen lassen in

an ~ a + (bn ~ b) 
an - a - (bn ~ b) 

(an - a)b + (bn - b}a + (an - a)(bn - b) 
(an — a)b — (bn — b)a 

beliebig klein gemacht werden können.
Dadurch ist zugleich der Satz bewiesen: Sind die Reihen (7), 

(8) Fundamentalreihen, so sind es auch alle unter (9) zusammen­
gefaßten Reihen, die letzte unter der Voraussetzung, daß (8) nicht 
eine Elementarreihe ist.

Dehnt man die Resultate dieser Betrachtung auch auf den Fall 
ideeller Grenzen aus, so sind dadurch Definitionen für die Summe, 
Differenz, das Produkt und den Quotienten zweier irrationalen 
Zahlen gegeben.

Zwei Fundamentalreihen (7), (8) stellen eine und dieselbe Zahl 
dar (sind äquivalent), wenn a^ —61, a2 — b2, a3 — b3, • • • eine Elementar­
reihe ist.

Stellt die Reihe a,, a2, a3, • die Zahl a dar, so ist der Reihe 
— aA, —a2, —as, ••• die Zahl — a zuzuordnen.

Von den Zahlen a, b, die durch die Fundamentalreihen ay, a,, 
a3, • • • und 61, b2, b3, • • • definiert sind, sagt man, daß a > b, bzw. 
a < b sei, wenn die Fundamentalreihe a, — bi} a2 — b2, a3 — b3, • 
von einer Stelle ab lauter positive bzw. lauter negative Glieder hat, 
ohne eine Elementarreihe zu sein.

Damit sind für das Vergleichen durch Fundamentalreihen definierter 
Zahlen und für das Rechnen mit solchen Zahlen Regeln aufgestellt, 
welche die für rationale Zahlen geltenden Regeln mit umfassen.



Abbildung der reellen Zahlen. 19

15. Reelle Zahlen. Die positiven und negativen rationalen 
und die positiven und negativen irrationalen Zahlen machen zusammen 
das System der reellen Zahlen aus. Jeder seiner Zahlen ist durch die 
Festsetzungen über das „größer, kleiner“ eine bestimmte Stellung 
gegenüber jeder andern angewiesen, das System ist wohlgeordnet.

Das System der reellen Zahlen bildet einen Zahlkörper, welcher 
den der rationalen Zahlen als Teil umschließt.

Die Abbildung des Systems der reellen Zahlen auf eine gerade 
Linie ist geeignet, die Vorstellung von demselben schärfer und klarer 
zu machen, als dies durch die arithmetischen Betrachtungen allein 
möglich ist. Sie besteht in folgendem.

Man teile die unbegrenzt gedachte Gerade durch einen Punkt, 
dem man die Zahl 0 zuordnet, in zwei Strahlen und bestimme den 
einen (den rechten) als Träger der positiven, den andern (den linken) 
als Träger der negativen Zahlen. Ferner wähle man eine Strecke 
als Darstellung der Einheit.

Einem Punkte A, der in der Geraden angenommen wird, läßt 
sich immer eine bestimmte Zahl aus unserem System zuordnen.

Trägt man die Einheitsstrecke von 0 gegen A hin wiederholt 
ab, so kann es geschehen, daß der Endpunkt der a-ten Abtragung in 
den Punkt A fällt: dann entspricht diesem die ganze Zahl + a oder 
— a, je nachdem er rechts oder links von 0 liegt.

Tritt dieser Fall nicht ein, kann man jedoch eine natürliche 
Zahl b angeben, derart, daß der b-te Teil der Einheitsstrecke bei 
a-maligem Abtragen von 0 gegen A hin genau zu dem Punkt A 
führt: so entspricht diesem der Bruch + $ oder — % je nach der 

Lage von A gegen 0.
Ereignet sich auch dieser Fall nicht, — und daß es Punkte auf 

der Geraden gibt, die durch keine Teilung der Einheit in gleiche 
Teile erreicht werden können — dafür gibt die Geometrie Beispiele in 
beliebiger Zahl1) —, so kann durch systematisch fortgesetzte Teilung 
(etwa Dezimalteilung) eine Fundamentalreihe konstruiert werden, und 
diese bestimmt dann die zu A gehörige irrationale Zahl.

1) Das frühest erkannte Beispiel dürfte das der Quadratdiagonale in bezug 
auf die Quadratseite sein.

2) Auf die Notwendigkeit dieses Axioms für den Aufbau der Theorie der 
irrationalen Zahlen hat G. Cantor 1872 (Mathern. Ann. V) hingewiesen.

Daß auch umgekehrt jeder reellen Zahl ein bestimmter Punkt 
der Geraden entspricht, läßt sich in bezug auf irrationale, d. h. durch 
Fundamentalreiben allein darstellbare Zahlen nicht beweisen, sondern 
wird axiomatisch angenommen.2)

Im Grunde dieses Axioms ist aber dem System der reellen Zahlen 
dieselbe Eigenschaft zuzuschreiben, die der Geraden in bezug auf ihre 
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Punkte zukommt und die man als Stetigkeit bezeichnet; ihr Wesen 
hat Dedekind1) dahin formuliert, daß eine Scheidung der Punkte 
der Geraden in zwei Klassen A, B derart, daß jeder Punkt der 
Klasse A links von jedem Punkte der Klasse 3 liegt, immer nur 
durch einen Punkt erfolgen kann.

1) Stetigkeit und irrationale Zahlen. 3. Auf., 1905, p. 11.

Hierdurch erhält der Ausspruch: Das System der reellen Zahlen 
ist stetig — einen bestimmten Inhalt.

Der Gedankengang, durch welchen der Begriff der reellen Zahlen 
aufgebaut worden ist, führt über das praktische Bedürfnis, ja über 
die Grenzen dessen, was praktisch ausgeübt werden kann, weit hinaus. 
Das System dieser Zahlen ist nach beiden Seiten unendlich: unsere 
Rechnungen aber bewegen sich in einem verhältnismäßig engen Aus­
schnitt. Das System ist lückenlos: wir aber rechnen, wo es sich 
nicht um formale, sondern um ziffermäßige Resultate handelt, in einem 
System von rationalen Zahlen von unerheblicher Dichtigkeit; denn 
bei vielen Rechnungen wird man vernünftigerweise über 2, 3 Dezimal- 
stellen nicht hinausgehen, und selbst bei den subtilsten wissenschaft­
lichen Rechnungen nicht viel weiter. Das so fein ausgebildete Instru­
ment kommt also, könnte man sagen, gar nicht zu voller Anwendung.

Dazu ist zu bemerken, daß erst durch die Schaffung der irrationalen 
Zahlen der arithmetische Zahlbegriff dem geometrischen Größenbegriff 
adäquat wurde, und daß erst jetzt die Aussage volle logische Strenge 
besitzt, jede Strecke (als das Bild einer extensiven Größe überhaupt) 
lasse sich nach Annahme einer Einheit durch eine Zahl ausdrücken. 
Auf den so ausgebildeten Zahlbegriff erst lassen sich strenge analy­
tische Begriffsbildungen gründen.

Der Unterschied zwischen den abstrakten Begriffen und ihrer 
praktischen Anwendung, auf den hier soeben hingewiesen worden, hat 
Anlaß gegeben, zwischen Präzisions- und Approximationsmathematik 
zu unterscheiden. Jede Approximationsmathematik wurzelt aber in 
dem Boden der strengen Mathematik.

16. Logarithmieren. Neben der als Radizieren bezeichneten 
Umkehrung des Potenzierens gibt es noch eine zweite, bei der die 
Frage nach dem Exponenten gerichtet ist.

Die Forderung, den Exponenten zu finden, zu welchem eine 
positive reelle Basis b erhoben werden muß, um eine gegebene posi­
tive reelle Zahl a zu geben, führt zu einer Rechnungsart, die man 
das Logarithmieren nennt; für b wird der Name Basis beibehalten, 
a der Numerus genannt, die Forderung aber und zugleich ihr eventuell 
vorhandenes Resultat durch das Symbol

log,a (!)



Logarithmieren. 21

bezeichnet (zu lesen: Logarithmus von a inbezug auf b). Das Wesen 
der neuen Operation ist durch den Ansatz

log, a

6 = a (2)
gekennzeichnet.

Das Eingehen auf diese Frage setzt die Verallgemeinerung des 
Potenzbegriffs auch in bezug auf den Exponenten voraus, der bisher 
eine natürliche Zahl war. Diese Verallgemeinerung, wieder auf dem 
Prinzip der Permanenz ruhend, geht dahin, daß

P

30 = 1, b1 =Yip

6—= 1.
bY

(p, Q natürliche Zahlen)

(y positive rationale Zahl)

Gestützt auf die Tatsache, daß, sofern b > 1 gewählt wird, « < ß 
die Beziehung ba < bl zur Folge hat, ferner b? durch positive und 
negative rationale Exponenten beliebig groß, aber auch beliebig klein 
gemacht werden kann, läßt sich durch einen Gedankengang, der hier 
nicht näher ausgeführt werden soll, zeigen, daß der gestellten Forde­
rung entweder durch eine Rationalzahl oder durch eine Fundamental­
reihe genügt werden kann, kurz, daß die Aufgabe in der beschriebenen 
Einschränkung immer ein und nur ein Resultat ergibt, das dem Gebiet 
der reellen Zahlen angehört, daß sie also über den Begriff dieser 
Zahlen nicht hinausführt.

§ 2. imaginäre Zahlen.
17. Imaginäre und komplexe Zahlen. Das Radizieren als 

erste Umkehrung des Potenzierens ist in 12. mit der ausdrücklichen 
Einschränkung auf positive rationale Radikanden behandelt worden; 
es soll nun seine Erweiterung auf negative rationale 1) Radikanden in 
Angriff genommen werden.

Ist der Wurzelexponent n eine ungerade Zahl, n = 2p-\-l, so 
2p + 1

führt die Aufgabe: V— b, worin b eine absolute rationale Zahl be- 
2p+1

deutet, auf die Forderung V b zurück, die immer durch eine reelle
2 p + 1 2 p+1

Zahl erfüllt wird; es ist dann V—b=—V b .
Ist der Wurzelexponent n eine gerade Zahl, n = 2p, so stellt 

das Symbol y—b eine durch reelle Zahlen nicht zu befriedigende

1) Es könnte scheinen, als ob die Fragestellung noch allgemeiner würde 
durch Zulassung aller reellen, also auch der irrationalen Radikanden; aber das 
Radizieren solcher führt auf das Radizieren der Glieder der definierenden Funda­
mentalreihen zurück, also wieder auf rationale Zahlen.
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Forderung, weil im Grunde der Multiplikationsregeln für relative Zahlen 
weder eine positive noch eine negative Zahl zu einer geraden Potenz 
erhoben ein negatives Resultat ergeben kann. Läßt man, von dem 
Prinzip der Permanenz Gebrauch machend, die Regeln für das Rechnen 
mit Wurzelgrößen in bezug auf den gegenwärtigen Fall fortbesteben, so 

kann die gestellte Forderung auch durch die andere VV— b ersetzt werden 
und V— b wiederum durch VbV—1; was der erste Faktor fordert, 
ist durch eine bestimmte positive reelle Zahl ß erfüllbar; der zweite 
Faktor ist zunächst ein bloßes Symbol. Führt man dieses Symbol

V-1 (1) 

mit dem Zeichen i als eine neue Zahl ein, so stellt sich die Lösung 
von V—b durch

Bi (2) 
dar.

Um also die Aufgabe, welche durch das Zeichen VB, worin B 
eine relative rationale Zahl bedeutet, immer, somit auch dann aus­
führbar zu machen, wenn B eine negative Zahl ist, ist die Einfüh­
rung neuer Zahlen von der Form (2) erforderlich. Man nennt diese 
Zahlen zum Unterschiede von den reellen imaginäre Zahlen,1') nennt 
i die imaginäre Einheit,2) ß ihren Koeffizienten.

1) In diesem Sinne hat zuerst Descartes die Termini in seiner Geometrie, 
1637, benützt.

2) Der Gebrauch des i als Zeichen für V— 1 ist zum erstenmal in einer 
aus dem Jahre 1777 stammenden Abhandlung L. Eulers anzutreffen. Verall­
gemeinert wurde er jedoch erst durch Gauß’ Disquisitiones arithmeticae, 1801.

3) Diese Benennung stammt von Gauß, der sie in der Theoria residuorum 
biquadraticorum II (1828—1832) eingeführt hat.

4) Man sagt von der komplexen Zahl (4), sie sei aus zwei Einheiten, 1 und i 
(«1—Bi), zusammengesetzt. Die sogenannten höheren komplexen Zahlen, die 
sich aus mehr als zwei „Einheiten“ zusammensetzen, führen über die Grenzen 
dieses Buches hinaus.

Dem Prinzip der Permanenz zufolge hat diese Einheit dem Grund­
gesetz

i2 = - 1 (3) 
zu gehorchen.

Bezeichnet « eine zweite reelle Zahl, so wird das Aggregat

« + ßi (4) 

eine komplexe Zahl3) genannt.
Mit der Schaffung des Begriffs der komplexen Zahlen hat der 

Zahlbegriff einen gewissen Abschluß erlangt.4) Die Form (4) umfaßt 
die reellen Zahlen, wenn 3 = 0, die imaginären, wenn a = 0, die 
komplexen, wenn « = 0, ß = 0. Indessen begreift man unter dem 
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Worte imaginäre Zahlen auch die komplexen und nennt Zahlen von 
der Form (2) vorzugsweise rein imaginär.

18. Definitionen. Rechnungsregeln. 1. Die Null ist in der 
Form einer komplexen Zahl nur auf die einzige Art 0 — Oi darstellbar.

2. Zwei komplexe Zahlen « + ßi, a — ß'i sind dann und nur 
dann gleich, wenn «= «, ß = ß'.

3. Zwei komplexe Zahlen der Form a + ßi, — « — ßi heißen 
entgegengesetzt.

4. Zwei komplexe Zahlen der Form « + ßi, « — ßi heißen kon­
jugiert. 1)

5. Die Addition zweier komplexen Zahlen ist definiert durch den 
Ansatz:

(« + ßij + («+ ß'i) = a + a'-]- {ß + ßji. (5) 

Vermöge dieser Regel bleibt auch für die Addition komplexer Zahlen 
das kommutative und bei Ausdehnung auf mehr als zwei Summanden 
das assoziative Gesetz bestehen.

Die Subtraktion ist die Addition des entgegengesetzt genommenen 
Subtrahends zum Minuend: d. h.

(a + ßi) — {a' + ß'i) =(a-Jrßi)-]r (- « — ß'i) = a — a + (B — ßji. (6)

Folgerungen hieraus: Die Summe zweier konjugiert komplexen 
Zahlen ist reell, ihre Differenz rein imaginär:

(a + ßi) + (a — ßi) = 2 a

(a + ßi) — (a — ßi} = 2ßi.

6. Bei Aufrechthaltung des distributiven Gesetzes der Multipli­
kation reeller Zahlen auch bei Binomen der Form (4) und unter Be­
achtung des Grundgesetzes (3) ergibt sich für die Multiplikation 
komplexer Zahlen die Regel:

(c + ßi) (a' + ß' i) = a «‘ — ßß' + (« ß' + «‘ ß) i. (7)

Folgerungen daraus: Weil

(«c - BB*+ {aß' + «B)*- («3+ BD)(*+ ß'2),

so kann das Produkt zweier komplexen Zahlen nicht Null werden, 
ohne daß ein Faktor Null wird.

Das Produkt zweier konjugiert komplexen Zahlen ist reell und 
positiv:

(a + ßi) {a — ßi) = e‘+ 32. (8)

Man nennt a2 + ß2 die Norm aller in + a + ß i enthaltenen komplexen 
Zahlen.

1) Nach A. Cauchy, 1821.
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7. Setzt man, um zur Divisionsregel zu gelangen, den Quotienten 
in der Form einer komplexen Zahl an:

c+si="fyi, 
so ist

« + ß i = («‘ + ß’i) (x + yi) = a x — ß'y + (ß’x + ay)i 
die unmittelbare Folge, aus der sich auf Grund von 2. zur Bestimmung 
der Elemente x, y die Gleichungen

a'x — ß'y = a

ß'x + a' y = ß 

ergeben; eliminiert man einmal y, ein zweitesmal x, so kommt man 
zu den neuen Gleichungen

(«2 + ß‘2)x = «« + ßß'

(«*+ B‘*)y = aß — aß'-, 
sofern also a 2 + ß‘ 24 0, was mit Rücksicht auf 1. auch so viel heißt 
als a + ß'i = 0, ergibt sich für x, y die einzige Bestimmung:

, _ a«+B8‘ eß—es.
" «2 + ß' 2 ‘ • «‘2 + ß‘3‘

unter der soeben gemachten Voraussetzung ist also

«+ßi _ «« + ßß' । «B—«ß‘; /0\ 
a' + ß’i &2+B2a2+B*" Y

19. Trigonometrische Form einer komplexen Zahl. Die 
positive Quadratwurzel aus der Norm einer komplexen Zahl a -\- ßi7

r = Va + 83, (10)

nennt man deren Modul. Mit seiner Benützung schreibt sich 

. (c । ß “Pi=‘, 7‘) , 

und da ( ) + () = 1, so läßt sich in dem Intervall (0,2 A) ein und 

nur ein Winkel g bestimmen derart, daß

cosg =$, sing-P (11)

Dann hat man

a + ßi = r (cos g + i sin g) . (12) 
Diese Darstellungsform1) ist für die Ausbildung des Rechnens mit 
komplexen Zahlen von der größten Bedeutung geworden.

1) Ihr Urheber ist L. Euler.

Den Winkel 9 nennt man die Amplitude oder Anomalie von 
a + ßi. Unter Benutzung von r, g soll für die komplexe Zahl a — ßi 
auch das abgekürzte Zeichen r, verwendet werden.
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Multiplikation und Division stellen sich nun wie folgt dar:
Es ist

rar., = rr (cos q + i sin g) (cos g‘ + i sin g‘)
= rr [cos 9 cos g‘ — sin g sin q’—i (sin 9 cos go‘ — cos g sin q’)] 

d. i. 
1,%4, = rr { cos ( + g) + i sin‘(p + g‘) } = {rr'\p+lfl; (13) 

ferner 7 r . cos q + i sin q
"4 r cos 9 + i sin P

r /cos 9 cos g‘ + sin q sin q‘ sin 9 cos q‘ — cos g sin q‘ .\ 
r \ cos? g‘—sin? g‘ cos2 q‘ + sin2 g‘ )‘ 

d. i.

-9 = ‘ { cos (g — g‘) + i sin (g — 9)} = (7) • (14)

20. Moivresche Binomialformel. Dehnt man die Formel (13) 
auf n Faktoren r^, r^, . . . r^ aus, so ergibt sich für ihr Produkt 
der Modul r^r^ . . . r^, die Amplitude 91+9-...—9,; werden 
nun die Faktoren sämtlich gleich der Zahl T,, so geht ihr Produkt 
in die n-te Potenz, sein Modul in rn, die Amplitude in ng über, 
so daß

{r (cos g — i sin g) } n = rn (cos ng + i sin n g). (15)
Hieraus geht der Ansatz

(cos g — i sin g)" = cos ng + i sin ng (16) 

hervor, den man als Moivresche Binomialformel1} bezeichnet. Nach 
dem Gange der Herleitung ist bei n an eine natürliche Zahl zu denken. 
Daß die Formel auch für ein negatives ganzes n Geltung hat, wenn 
man die Permanenz in allen Belangen wahrt, ist so zu erkennen. 
Es ist

1) Dem Inhalte nach 1730 von A. de Moivre begründet, in der heutigen 
Form erst 1748 von L. Euler in der Introductio in analysin infinitorum gegeben.

1 cos0 — i sin 0
cos 1 — i sin 1 cos 1 — i sin 1 

Daher

= cos (— v) + i sin (— v) .

(cos q — i sin cp)~n =  --------—,7 1 7‘ (cos g — i sin g)" 
1

cosn g — i sin n g
= cos (— nep) — i sin (— n(p} .

21. Radizieren komplexer Zahlen. Um das Wurzelziehen 
an komplexen Zahlen zur Ausführung zu bringen, gehe man von dem 
Ansätze

V r (cos q — i sin q) = 0 (cos C — i sin C) 

aus, dessen unmittelbare Folge

| 9 (cos c — i sin co)}" = r (cos g + i sin g) 
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ist; wendet man links die Formel (15) und hierauf die Definition 18, 2. 
an, so ergeben sich zur Bestimmung von 0, 0 die Gleichungen:

0" cos n0 = * cos g

on sin n 0 = r sin q; 

sie liefern o2" = 72, somit o" = r und 0 = V r , worunter die einzige 
positive Zahl zu verstehen ist, die zur n-ten Potenz erhoben r gibt, 
die „arithmetische" n-te Wurzel aus r; ferner

nm = 9 — 2kn, 

worin k jede ganze Zahl, mit Einschluß der 0, bedeuten kann. Hier­
nach ergibt sich das anscheinend unbegrenzt vieldeutige Resultat:

«/— -------- 7—.----- - | nr - ( q — 2ka . . q-2k%)V r (cos 9 4- i sin 9) — V r I | cos 7 TT ? sin —,— ! .

Wenn man aber k nach und nach die Werte 0, 1, 2, ... n — 1 er­
teilt, so ergeben sich alle Werte, deren die rechte Seite fähig ist; 
jede andere Substitution führt nur zu einer Wiederholung. Bezeichnet 
man nämlich eine Zahl der obigen Reihe mit v, so läßt sich jede 
Zahl k außerhalb dieser Reihe in der Form in + v darstellen, wobei 
l eine ganze Zahl mit Ausschluß der 0 bedeutet; es ist aber

@ — 2 (ln — v) a go — 2 v 2------ - = — — Lla, n----------n
und da 2la auf den Wert von cos und sin ohne Einfluß ist, so gibt 
tatsächlich die Substitution k = In + v dasselbe Resultat wie die 
Substitution k = v. Daß endlich die aus den Substitutionen k = 0, 
1, . . . n — 1 hervorgehenden Werte untereinander verschieden sind, 
folgt daraus, daß die zugehörigen Werte von 9T2"T verschieden und 

sämtlich in dem Intervall (0,2 x) enthalten sind, innerhalb dessen es 
keine zwei Winkel gibt, die in Kosinus und Sinus übereinstimmen.

Es ist somit endgiltig
n r—7----------:—.—7——— n— f q — 2ka . . . q - 2kaVr (cos @ — ? sin @) = V cos —--------- — ? sin —------- ,‘ x 7 1 l n n ) (17)

(k = 0, 1, 2, . .. n - 1).

Hierin spricht sich der Satz aus, daß die n-te Wurzel aus jeder 
Zahl n von einander verschiedene Werte besitzt, wenn man reelle und 
komplexe Lösungen als gleichberechtigt ansieht.

Nunmehr kann gezeigt werden, daß die Moivresche Binomial- 
formet auch für gebrochene Exponenten gilt.

Im Hinblick auf die Multiplikationsregel (13) ist der zweite 
Faktor der rechten Seite von (17) das Produkt aus

q — 2 a , . . q — 2 k. a , 2 k9 a . . . 2 acos —------ — ? sin —-----— und cos - — ? sinn n n * n
k, — k, — k;



Moivresche Binomialformel. 27

die zweite dieser komplexen Zahlen kann aber, weil
cos 2k,% — i sin 2k,2 = 1

ist, als n-te Einheitswurzel gedeutet und demgemäß V1 geschrieben 
werden, so daß auch

n )—7-------- ;—•—•   n— | ( q — 2 b 2 , . . q — 2 b a ) n — .yr (cos 9 — / sin 9) = | V r |cos , — i sin - ----- —j V 1. (18)

Man erhält also die verschiedenen Werte in (17), indem man irgend 
einen bestimmten davon mit den Einheitswurzeln

i = cos 2" + i sin 24”, (k -0,1,2, ... n-V) (19) 

multipliziert.

22. Anwendungen. 1. Aus der Moivreschen Binomialformel (16) 
folgt, wenn man deren linke Seite wie ein reelles Binom entwickelt 
und dabei von dem Grundgesetz (3) Gebrauch macht:

cos" q — (2) cos”-2 q sin2 q + (4) cos”-4 q sin4 q — . . .

+ i | (]) cos”-1 q sin q — (3) cos”- 3 q sin3 9+}= cos n q + i sin nep, 

woraus sich

cos nq = cos" g — (2) cos"-2q sin® q + (4) cos"4q sin* q — . . .

sin ng = (]) cos"-1y sin q — (3) cos"3q sin3q + . . . 

ergibt; die Entwicklungen haben vermöge des Umstandes, daß in 
(”) k<n sein muß, einen bestimmten Abschluß. Beispielsweise 

ist also
cos 29 = cos2 g — sin2 9 

sin 29 =2 cos g sin g 

cos 39 = cos3 cp — 3 cos g sin2 g = 4 cos3 g — 3 cos g 

sin 39 = 3 cos2 g sin cp — sin3 g = 3 sin q — 4 sin3 g , 

usw.

2. Die dritten Wurzeln aus der positiven Einheit sind durch 

cos 2* + i sin 2 ’s" , (I = 0, 1, 2) 

bestimmt:
2 a 2 n 1 i w2 = COS 3 +isin 3 =2 2 Y3 

“i 1, 4* 4 1 i , 
w3 = cos 3 isin 3 = — 2 - 2 V3 ; 



28 Der Zahlbegriff. § 2. Imaginäre Zahlen.

aus ihrer trigonometrischen Form erkennt man unmittelbar, daß 
w = w2, aber auch, daß w9 = 202; bezeichnet man also eine der 
komplexen Wurzeln mit w, so können alle drei Wurzeln durch 

wo, w, w2 
dargestellt werden.

3. Die Forderung V — b, von der in 17 ausgegangen worden war, 
erscheint jetzt auf die Forderung Vi zurückgeführt; da nun i = cos 3 

+ i sin " gesetzt werden kann, so hat man nach (17)

Vi = cos 2p-----Hsmk 2p, (k = 0, 1, . . . p - 1).

Es ist also beispielsweise

3/ •Vi=

x ..a 13 — i
cos 6 + i sin 6 - 2 

cos 6 isin 6 = - 2
9 a , . . 9 a cos — — ? sin — = — ?.

23. Geometrische Darstellung der komplexen Zahlen. 
Zwei zueinander senkrechte Gerade OX, OY, Fig. 1, mit gemein-

Fig. 1.

samem Nullpunkt sollen nach Annahme einer 
Längeneinheit 1 jede für sich zur Darstellung 
des reellen Zahlensystems verwendet werden 
(15). Dem Punkte A auf OX entspreche 
die Zahl a, dem Punkte B auf 0 Y die 
Zahl ß; dann könnte das Punktepaar A, B 
als Bild der komplexen Zahl «— Bi ge- 

X nommen werden. Vollkommener wird die 
Abbildung durch den Punkt M erreicht, der 
«, ß zu rechtwinkligen Koordinaten hat1), 

1) Diese Darstellungsweise ist zum erstenmal von dem dänischen Feld­
messer Kaspar Wessel in einer aus dem Jahre 1797 stammenden Abhandlung 
angegeben worden; Anklänge an den gleichen Gedanken finden sich in der 
Dissertation von Gauß (1799); unabhängig von beiden erfand sie J. R. Argand 
(1806). Zur Verbreitung aber verhalf ihr erst Gauß durch seine Theoria resi- 
duorum biquadraticorum (1828—1832).

weil durch einen Punkt dem einheitlichen Charakter der Zahl « + ßi 
besser Rechnung getragen ist, als durch ein Punktepaar.

Jedem Punkte der Ebene entspricht auf diese Art eine bestimmte 
Zahl; diese ist reell, wenn der Punkt in OX liegt; rein imaginär, 
wenn er auf OY liegt; komplex, wenn er außerhalb beider Geraden sich 
befindet. In dieser Auffassung heißt die Ebene auch Zahlenebene 
oder komplexe Zahlenebene.



Geometrische Darstellung. Geometrisches Rechnen. 29

Die durch die Gleichungen (10) und (11) eingeführten Größen 
r, 9 sind unmittelbar als Radiusvektor OM und als dessen Winkel 
mit OX zu erkennen. Hieran knüpfen einige übliche Benennungen 
an; man hat die komplexen Zahlen auch Richtungszahlen genannt, weil 
nicht bloß die Größe von OM, sondern auch dessen Richtung auf 
die dargestellte Zahl Einfluß hat, als deren geometrisches Bild statt 
des Punktes M auch die gerichtete Strecke OM gelten kann. Während 
man weiter r als den absoluten Betrag von « — ßi ansieht und dem­
gemäß wie bei reellen Zahlen «+ßi dafür schreibt, nennt man das 
Binom cos p — i sin g den Richtungskoeffizienten dieser Zahl. Reelle 
Zahlen eines bestimmten absoluten Betrags gibt es nur zwei; kom­
plexe Zahlen hingegen unbeschränkt viele: ihre Bildpunkte liegen in 
einem um 0 beschriebenen Kreise.

24. Geometrische Ausführung der Rechnungsoperationen 
mit komplexen Zahlen. Den arithmetischen Operationen mit den 
Zahlen lassen sich gewisse geometrische Operationen mit den sie dar­
stellenden gerichteten Strecken an die Seite stellen; es ist damit ein 
graphisches Verfahren gegeben, das in gewissem Sinne die arithme- 
tischen Operationen zu ersetzen vermag.

Der Addition von a + ßi und a — ß'i entspricht die geometrische 
Addition der darstellenden Strecken OM, OM', die darin besteht, daß 
man die eine Strecke nach Richtung und Größe 
an die andere anfügt, Fig. 2; S oder OS ent­
spricht der Summe, so daß man symbolisch 
schreiben kann: Wenn OM = « + ßi, OM' 
= «‘ + ß'i, so ist OS = OM + OM'. Bei 
n Zahlen tritt an die Stelle des zweiseitigen 
ein n-seitiger Linienzug. Das kommutative 
und das assoziative Gesetz der Addition treten 
anschaulich hervor.

Der Subtraktion (« — ß i) — (a + ß' i) ent­
spricht die geometrische Addition einer mit 
OM' entgegengesetzten Strecke zu OM-, es 
ist dann ÖD = OM 
- OM'.

Die Multiplika­
tion erfolgt dadurch, 
daß man 0 M um den 
Winkel rp' weiter- 
dreht und aus OM, 
0 M' und 1 die 
Strecke 0 N kon­ Fig. 3.

struiert, deren Maßzahl rr ist, Fig. 3; es gilt dann der symbo­
lische Ansatz: OP = 0M. OM'.
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Zum Zwecke der Division hat man OM um den Winkel g‘ 
zurückzudrehen und aus OM, OM' und 1 die Strecke 0N zu kon-

struieren, deren Maßzahl

Fig. 5.

‘ ist, Fig. 4; es ist dann 0 @ = 8M •

Um die Potenzen von a + ßi dar­
zustellen, drehe man den abbildenden 
Strahl OM weiter um q, 29, . . . und 
trage auf den so erhaltenen Strahlen die 
Strecken OL2, OL.A, . . ., deren Maßzahlen 
vermöge der angewandten, aus der Figur 
ersichtlichen Konstruktion r2, r3, .... sind, 
nach OP2, OP3... ab, Fig. 5; darnach 
ist dann OP2 = OM2, OP3 = ÖM^,. . .

Die Darstellung beispielsweise der 4. Wurzeln aus a — ßi voll­
zieht sich in folgender Weise. Man beschreibe einen Kreis, dessen

Fig. 6.

Radius die Maßzahl Vr hat, teile den 
Bogen dieses Kreises, der zum Zentri­
winkel 9 gehört, in vier gleiche Teile, 
und vom ersten Teilungspunkte Wi aus 
den ganzen Umfang ebenfalls in vier 
gleiche Teile; dann sind OW, O W,, 
OW3I OW^ die Bilder der vier Werte 
von Va + ßi, Fig. 6. Denn die Ra­
dienvektoren der Punkte W1, W2, W3, 
Wa sind alle gleich Vr , und ihre 
Amplituden betragen

9
4 ‘

g — 27 q — 47 g — 6 2
44 4

Dieses Beispiel zeigt, daß die geometrische Darstellung der Wurzeln 
eines bestimmten Grades aus einer komplexen Zahl zusammenhängt 
mit einer Kreisteilungsaufgabe, nämlich mit der Teilung eines Kreis­
bogens und des Kreisumfangs in die entsprechende Anzahl gleicher 
Teile. Man kann daran ferner die Tatsache wahrnehmen, daß alle 
Wurzelwerte aus einer Zahl (ob reell oder komplex) den gleichen ab­
soluten Wert besitzen.
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II. Abschnitt.

Unendliche Reihen und Produkte.
§ 1. Grundlegende Begriffe.

25. Unendliche Zahlenfolgen. Eine unbegrenzt fortsetzbare 
oder unendliche Folge reeller Zahlen

@1, 42, 03,***
kurz (a,), kann bei fortschreitender Verfolgung ihrer Glieder ein ver­
schiedenes Verhalten zeigen.

Nähern sich die Glieder einer bestimmten Zahl a derart, daß 
a,—a mit beständig zunehmendem n schließlich unter jeden noch 

so klein festgesetzten Betrag sinkt, so nennt man die Zahlenfolge 
konvergent, a ihre Grenze und drückt diesen Sachverhalt durch den 
Ansatz

lim an = a (1)
n = x

aus. n = c bedeutet hier, daß n über jede noch so große natürliche 
Zahl hinauskommt.

Die notwendige und hinreichende Bedingung für die Existenz einer 
Grenze, also für die Konvergenz von (a^, besteht darin, daß an +,— an 
durch Wahl von n allein, also bei jedem p, beliebig klein gemacht werden 
kann. (Vgl. hiermit 13, 2., wo die an als rationale Zahlen voraus­
gesetzt waren.)

Daß die Bedingung notwendig ist, folgt aus dem Begriff der 
Grenze (13, 2.). Daß sie auch hinreicht, ist so zu erkennen. Ist 
einmal ^an+p—an\<Ze, so liegt an+p zwischen an—& und an-j~ £’, 
diese Werte können aber durch Wahl von n einander beliebig nahe 
gebracht werden, und da alle späteren Glieder der Folge zwischen 
ihnen enthalten sind, so ist damit gezeigt, daß sich die späten Glieder 
der Folge in beliebig eng zu ziehende Grenzen einschließen lassen, 
daß sie also selbst eine Grenze besitzen.

Überschreiten die Glieder von (a,) schließlich jede noch so groß 
festgesetzte positive Zahl k, oder sinken sie unter — k, so sagt man, 
die Grenze von an sei positiv unendlich (+ o oder kurz o), bzw. 
negativ unendlich (— o) und drückt dies durch die Ansätze

lim an = oo, lim an = — o (2)
n = x n = 0 

aus. Die Zahlenfolge heißt dann (eigentlich) divergent.
Es kann schließlich geschehen, daß an weder einer Grenze zu­

strebt noch unendlich wird; man nennt dann die Zahlenfolge (a^ un­
eigentlich divergent.
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Nur eine konvergente Zahlenfolge definiert eine bestimmte Zahl.
Die Zahlenfolge (af) soll monoton genannt werden, wenn ihre 

Glieder, wenigstens von einem bestimmten angefangen, niemals ab­
nehmen oder niemals wachsen.

Bei einer monotonen Zahlenfolge kann nur zweierlei stattfinden: 
Ist sie zunehmend, so kann das Wachsen der Glieder über jede Schranke 
hinausgehen (lim an = o) oder gegen eine bestimmte Grenze hin er- 
folgen: ist sie abnehmend, so können die Glieder schließlich unter 
jede Schranke fallen (lim an = — o) oder aber einer Grenze sich 
nähern. Für die Beurteilung ist der folgende Satz von Nutzen.

Wenn die Glieder einer monoton zunehmenden Folge unter einer 
festen Zahl G bleiben, so haben sie notwendig eine Grenze; gleiches gilt 
für die Glieder einer monoton abnehmenden Folge, wenn sie über einer 
festen Zahl g bleiben.

Bliebe nämlich immer, wie groß auch n genommen wird, 
a,+p - a2 €,

so wäre auch an^2p — an+P 2 8
an+3p Un + 2p € 8

^n + kp ^n + k — ip € 8
somit an+kp — an>hs

und an+kp 2 an + ke; an + ke kann aber durch entsprechende Wahl 
von k größer als G gemacht werden; dann aber wäre an + kp^> G, 
gegen die Voraussetzung. Es muß also schließlich anfp — an < £ 
werden, und damit ist die Konvergenz bewiesen. Ähnlich wäre der 
Beweis für den andern Fall zu führen.

26. Unendliche Reihen1). Begriff der Konvergenz und 
Divergenz. Es sei ak, a^, a3, . . . eine unbegrenzt fortsetzbare Folge 
reeller Zahlen; man bilde aus ihr eine neue Folge S1, s2, s3, ... sn • • •) 
indem man aus den ersten 1, 2, 3, . . . n . . . Gliedern die Summe nimmt:

S, = ak
S2 = S1 + a,

s, =8 + a, (1)

3, = «n-1 +4,=4+q++a.
Ist die Zahlenfolge S1, s2, ss, . . ., kurz (s^, konvergent, so nennt 

man auch die unendliche Feihe

a^a^a^------ , kurz X an, (2)
___________ i

1) Die Einführung unendlicher Reihen in die Mathematik reicht ins 17. Jahr­
hundert zurück; ihre richtige Behandlung lehrte aber erst das vorige Jahrhundert. 
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konvergent1} und bezeichnet die durch (sf) definierte Zahl s:

1) Das Wort „Konvergenz“ kommt, auf Umfänge von Sehnen- und Tan­
gentenpolygonen mit wachsender Seitenanzahl angewendet, zum erstenmal bei 
dem englischen Mathematiker J. Gregory (1667) vor und hat sich seither in 
der ganzen Mathematik eingebürgert.

2) Diese allgemeine Bedingung der Konvergenz hat zuerst B. Bolzano 
(1817) angegeben; doch ist sie erst durch Cauchys Schriften weiter bekannt 
geworden, dem auch meist die Priorität zugesprochen wird.

3) Dieses Wort in seiner Anwendung auf Reihen, aber wahrscheinlich noch 
nicht in dem heutigen Sinne gemeint, kommt zum erstenmal bei Nik. I. Ber- 
noulli (1713) vor.

C zuber, Höhere Mathematik.

lim sn = s (3)
n = GO

als Wert oder Summe oder als Grenze dieser Reihe.
Nach den Ausführungen des vorigen Artikels lautet die allgemeine 

Bedingung für die Konvergenz von (2) dahin, daß sich bei beliebig 
klein gegebenem positiven & eine natürliche Zahl m angeben lassen 
müsse derart, daß

8,+p—S,< e, (4) 
oder ausgeschrieben:

i d,+1 + d,+2 ++ an+p< e, (4*)
so lange n > m, in Worten: Soll eine Beihe konvergent sein, so muß 
sich eine Stelle bestimmen lassen, von welcher ab jede beliebig umfang­
reiche Gliedergruppe eine beliebig kleine Summe gibt2}.

Wendet man die allgemeine Bedingung auf den Fall 2=1 an, 
so besagt sie, daß die Glieder einer Reihe, soll sie konvergent sein, 
mit wachsendem Zeiger dem absoluten Betrage nach notwendig be­
liebig klein werden müssen, daß also, symbolisch ausgedrückt,

lim an - 0 (5)
n = c

bestehen müsse. Es wird sich jedoch zeigen, daß dieses Verhalten 
zur Konvergenz nicht hinreicht. Bei allen Reihen, die wir weiterhin 
betrachten, wird die Bedingung (5) als erfüllt vorausgesetzt.

Die Reihe (2) heißt divergent^}, wenn die Zahlenfolge (s^ eigent­
lich oder uneigentlich divergent ist. Im Falle der eigentlichen Diver­
genz von (sn} sagt man auch, die Reihe habe eine unendliche Summe.

Eine konvergente Beihe definiert eine bestimmte Zahl.
Die in (1) zusammengestellten Summen nennt man Partialsummen 

co

von ^an.
i

27. Folgerungen. 1. Die Ergänzung der Partialsumme sn zur 
unendlichen Reihe, d. i.

‘=4+1+4++***, (6) 
nennt man den zu sn gehörigen Best. Auch er bildet eine unendliche 

3
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Reihe, die mit der ursprünglichen zugleich konvergent oder divergent 
ist; denn die Partialsummen S1, S2, S3, • • • von (6) bilden die Zahlen­
folge

Sn +1 Snf Sn + 2 Sn) Sn + 3 Sn * 

deren Grenze s — sn ist, wenn die Reihe (2) konvergiert, dagegen un­
endlich oder unbestimmt, wenn (2) divergiert.

Dieser Umstand gestattet es, bei der Prüfung einer Reihe auf 
ihre Konvergenz beliebig viele Anfangsglieder fortzulassen.

2. Da bei einer konvergenten Reihe die Bedingung (4*) durch 
Wahl von n bei beliebigem p erfüllt werden kann, so besteht dann 
auch die Beziehung

Irl Se. (7)
Bei einer konvergenten Reihe kann man also in der Folge der 

Partialsummen so weit fortschreiten, daß der zugehörige Rest dem 
absoluten Werte nach unter eine im voraus beliebig klein festgesetzte 
positive Zahl herabsinkt.

Diese Zahl & bezeichnet dann auch die Schranke, unter welcher 
der Fehler liegt, den man begeht, indem man statt der unendlichen 
Reihe deren Partialsumme sn nimmt,

c
3. Besteht die Reihe X an aus lauter positiven Gliedern, und ist 

sie konvergent, so ist auch jede Reihe konvergent, die aus ihr durch 
Unterdrückung einer durchlaufenden Folge von Gliedern (z. B. jedes, 
zweiten, dritten Gliedes oder dgl.) entsteht.

Denn, ist die Bedingung
d,+1 + an + 2 ++ an+p < S 

erfüllt, so bleibt sie es auch dann, wenn auf der linken Seite Glieder 
ausfallen.

c
4. Besteht die Reihe X an aus lauter positiven Gliedern, und ist

1

sie konvergent, so ist auch jede Reihe konvergent, die aus ihr ent­
steht, indem man bei einer durchlaufenden Folge von Gliedern das 
Zeichen ändert.

Denn, ist die Bedingung

d+1 + d,+2 ++ Ch+p < e 

erfüllt, so bleibt auch nach Änderung des Zeichens einiger (oder aller) 
Glieder

I an + l + ttn + 2 +---------- an+p \ < e,

weil I a,41 + a,42 + • • ‘ + an+p I < | a,41 | + a,+2 I + • • • + I ^n+p I 
C

5. Ist die Reihe Ya, konvergent und s ihre Grenze, so ist auch 

die Reihe X kan (k = 0) konvergent und ks ihre Grenze.



Allgemeine Kriterien. 35

Hat nämlich sn die Grenze s, so hat ksn die Grenze ks.
Divergiert hingegen die erste Reihe, so divergiert auch die zweite.
Denn mit sn hat auch lisn eine unendliche oder eine unbestimmte 

Grenze.
0 00

6. Sind die Reihen Xa, und ^bn konvergent gegen die Gren- 
i . i 

zen s und t, so sind auch die Reihen
0 00 

X(a,+ba), X(a,—b,)
1 1 

konvergent und haben die Grenzen s + t, bzw. s — t.
Denn mit sn — s, tn — t werden gleichzeitig auch

3,+t,-(s + t), s,—t—(s-t) 
beliebig klein.

28. Beispiele. I. Es sei «,, «,, «3, . . . eine unbegrenzt fort­
setzbare Folge reeller Zahlen, und man bilde aus ihr die neue Folge

C1 — E1 C2, @2 = C2 C3, @3 — C3 C4, • * * 5

dann hat die Reihe X an die allgemeine Partialsumme 
i

Sn = C1 “n+1 
ist also die Zahlenfolge («,) konvergent und a ihre Grenze, so ist 

00 

auch die Reihe ) a, konvergent und 
i S = «1 — «

ihre Grenze; insbesondere ist S = «1, wenn « = lim an = 0 ist.
n = c

Spezielle Fälle. 1. Aus der Zahlenfolge (1, }, }, 1 , • ■ ), die Null 

zur Grenze hat, entsteht auf dem beschriebenen Wege die Reihe

12 2.3 3.4" ’ 
die konvergent ist und &, = 1 zur Grenze hat, so daß man schreiben 
kann: 0 

2nn+1 = 1. (8)

2. Die ebenfalls gegen Null konvergierende Zahlenfolge 

(1 1 1 1 . . ) 3'5'7' ) 
führt zu der Reihe

2 2 2 
18 + 3.6 + 5.7 +, 

deren Grenze 1 ist, so daß (27, 5.)

2 2,- 1) (2,41 =2 (9)
i

3*
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3. Aus der Zahlenfolge (1, q, q2, q3, • • •) entsteht auf dem be­
schriebenen Wege

(1 - 4) + (1 - 9)4 + (1 “ q)42 +------- ; 
nun ist die Zahlenfolge konvergent und 0 ihre Grenze, wenn | q | < 11), 
so daß für diesen Fall

1 = (1 - q) + (1 - 7)4 + (1 - q)^ +..,
also

" =---- -
1 — 9

(10)
o

Wemi hingegen q > 1, so ist die Zahlenfolge eigentlich diver- 

gent1) und mit ihr gleichzeitig die Reihe q”.
, 0

Bei q = 1 geht ^qn in die Reihe 1+1+1 + • • • über, die 
0 eigentlich divergent ist.

Bei q = — 1 wird aus q” die Reihe 1—1+1—14----- , deren 
0Partialsummen abwechselnd 1 und 0 sind: die Reihe divergiert un­

eigentlich, man sagt, sie oszilliere zwischen 1 und 0.3)
Als Ergebnis dieser Untersuchung kann man den Satz formu­

lieren, daß die geometrische Beihe ^qn nur dann konvergent ist, ivenn 
o _

q < 1, daß sie also in den Fällen | q > 1 divergiert; im ersten Falle ist

—-— ihre Grenze.
1—9

II. Eine der ersten Reihen, bei denen erkannt wurde, daß auch 
bei Abnahme der Glieder gegen 0 — was lange Zeit hindurch als zur

1) Die Richtigkeit der beiden Behauptungen ergibt sich aus folgender Er­
wägung. Ist 8 eine positive Zahl, so ist 1 — 3 > 1, —— <1. Nun ist 

1 T 0 
(1 + 8) > 1 + 28, (1 + 8)3 > 1 + 33, • • •

allgemein für jedes natürliche n

(1 + 8)" > 1 1

daraus schließt man auf lim (1 — ö)" = o und lim = 0.

Somit ist tatsächlich lim |q"=o oder = 0, jenachdem ] q | > 1 oder g|<1.
n = c

2) Die Summenformel für die fallende geometrische Reihe ist schon 1593 
von F. Vieta gefunden worden.

3) Ein Beweis für die naive Auffassung, der die unendlichen Reihen an­
fänglich begegneten, ist darin zu erblicken, daß G. Grandi 1703 für diese Reihe 
in unbedenklicher Anwendung der Formel (10) die Summe 3 angab und daß 

über die Möglichkeit dieses Resultates ein ernster Streit geführt wurde.
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Konvergenz hinreichend gehalten wurde — Divergenz vorhanden sein 
kann, ist die harmonische Reihe

1+}+}+|+2 (11)
1

Es ist nämlich

1 1-
n T n + 1 T n + 2 ' n~ n T n^ ‘ 

weil die rechte Seite aus der linken hervorgeht, wenn man in dieser 
vom zweiten Gliede an alle Glieder dem letzten, dem kleinsten, gleich 
macht; wie groß also auch n sein möge, immer läßt sich eine Gruppe 
aufeinander folgender Glieder

d, + dn + i 1------------ FU, 

konstruieren, deren Summe 1 übersteigt; die allgemeine Bedingung 
der Konvergenz ist mithin nicht erfüllt.1)

1) Auf diesem Wege hat Jak. Bernoulli die Divergenz der harmonischen 
Reihe zuerst erkannt (Wende vom 17. zum 18. Jhrh.).

2) Mittels dieses Paradoxons hat Joh. Bernoulli die Divergenz nach­
gewiesen.

Ein anderer Weg, die Divergenz dieser Reihe zu erkennen, be­
steht in folgendem. Man kann die um das erste Glied gekürzte Reihe 

31 -1411 + ••• 
_ n 2 3 4

2 
•umformen in

1-22-373-4 

und sodann zerfallen in 
111 ' 1-2 2.3 3.4"

+ 1, + 1 + . . .
1 2.3 3-4

...

Nun gibt die erste Zeile nach (8) die Summe 1, die zweite 1 — 15= ), 

die dritte 3— = 3 , • • , so daß man erhält

00 00 00 1-1+ 1- yi. 
_ n . n n 7

2 2 1

das Paradoxe an diesem Resultat verschwindet sofort, aber nur dann, 
© 1 

wenn man , —, also auch V durch oo ersetzt.2) 1n7 -In 7
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§ 2. Reihen mit positiven Gliedern.

29. Allgemeines. 1. Ist Xa, eine Reihe mit durchweg posi- 
1 tiven Gliedern, so bilden ihre Partialsummen S1, S,, S3, • • • eine mo­

noton zunehmende Zahlenfolge; eine solche hat entweder eine bestimmte 
Grenze oder die Grenze oo; ein drittes ist ausgeschlossen (25).

Demnach ist eine Reihe aus lauter positiven Gliedern entweder kon­
vergent, oder divergent mit der Grenze co.

Die Konvergenz ist erwiesen, wenn sich zeigen läßt, daß die Par­
tialsummen unter einer festen Zahl bleiben.c

Ist s die Grenze der Reihe ^an, falls sie konvergent ist, so
i

bleibt die Summe jeder beschränkten oder unbeschränkten Auswahl 
von Gliedern unter s.

2. Nimmt man an einer konvergenten Reihe aus positiven Gliedern 
eine durchgehende Umordnung vor, so bleibt die Konvergenz erhalten und 
die Grenze unverändert.

Die Umordnung von

a^ + a^ + a^ + • • • (1) 
in

d., +0„,+d,+: (2) 
ist eine durchgehende, wenn die umgeordnete natürliche Zahlenreihe 
«1, «,, «3, ‘ ‘ ’ von keiner noch so späten Stelle an mit der geord­
neten 1, 2, 3, • • • übereinstimmt. Bezöge sich die Umordnung nur auf 
ein endliches Stück der Reihe, so bedürfte der Satz keines Beweises.

Daß (2) konvergent ist, folgt daraus, daß jede ihrer Partial­
summen unter s, der Grenze von (1), liegt.

Man kann des weitern in (2) mit der Partialsummenbildung so­
weit gehen, bis man die ersten n Glieder von (1) umfaßt hat; heißt 
die so gebildete Partialsumme sa , so stammen ihre übrigen Glieder 
aus dem Rest rn zu sn = a a, — a„, so daß

Sav -3„<T

mit unbeschränkt wachsendem n wächst auch at über alle Schranken, 
rn dagegen konvergiert gegen Null; somit ist tatsächlich

lim Sa, = lim sn = s.

3. Wenn man in einer konvergenten Reihe aus positiven Gliedern 
durchgehend Gruppen sukzessiver Glieder bildet, so ist die aus deren 
Summen gebildete Reihe wieder konvergent und hat dieselbe Grenze.

Man braucht, um dies einzusehen, nur zu beachten, daß die Par- 
tialsummen der Reihe

(a,+a,++@)+(4,+1+a) + (a,+1+*)+ 
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unter den Partialsummen von

q,+a,+a, + * 
vorkommen, daher gegen dieselbe Grenze konvergieren wie diese.

Durch die beiden letzten Eigenschaften, die dem kommutativen 
und dem assoziativen Gesetz der Addition entsprechen, ist der Summen­
charakter der konvergenten Reihen aus positiven Gliedern dargetan; 
die Grenze einer solchen Reihe darf daher auch als ihre Summe be­
zeichnet werden.

30. Konvergenzkriterien. 1. Wenn die durchweg positiven 
Glieder der Beihe 2b, kleiner sind oder höchstens gleichkommen den 
korrespondierenden Gliedern einer als konvergent bekannten Beihe ^an, 
so ist auch ^ibn konvergent.

Wegen der Konvergenz von >a, kann

4,+1+4,+2+ +a+, 

durch Wahl von n allein unter die beliebig kleine Größe & herab­
gedrückt werden; das gilt aber auch von

6+1+b+2+ +6+, 

das nach Voraussetzung nicht größer sein kann als die vorige Summe ; 
damit ist aber die Konvergenz von ^bn erwiesen.

Sollte die Beziehung bn < an erst von einem Zeigerwert m an- 
m—1 m — 1

gefangen bestehen, so trenne man die Reihenanfänge a,, b, ab 
i i

und betrachte die gekürzten Reihen, auf welche die obigen Schlüsse 
Anwendung finden.

Aus dem Satze ergibt sich die Folgerung: Sind die Glieder von 
^bn größer oder mindestens gleich den korrespondierenden Gliedern einer 
als divergent bekannten Beihe ^an, so ist auch ^bn divergent.

Denn, aus der Annahme, S^bn sei konvergent, folgte mit Not­
wendigkeit die Konvergenz von ^aH, was gegen die Voraussetzung ist.

Als Beispiel diene die Reihe

1 + 1- ~ 22 • 32 । 4.2 । 7

ihre Glieder sind, vom zweiten angefangen, kleiner als die Glieder 
der konvergenten Reihe (28, 8.)

1 j----1—_ 1—_ 1—

daher ist sie selbst auch konvergent und ihre Summe < 2.
Die Glieder der Reihe

1+/+/+/+
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hingegen sind vom zweiten an größer als die Glieder der divergenten 
harmonischen Reihe; sie ist also auch divergent.

2. Ist das Bildungsgesetz der Beihe mit positiven Gliedern ^a^ 
ein solches, daß lim nan > 0 ist, so divergiert sie.

n = c
Angenommen, es sei lim nan = A; ist dann a eine Zahl, welche 

n= c
der Bedingung 0 < « < A genügt, so muß es einen Zeiger wert m 
geben, von dem ab nan beständig größer ist als a, so daß

mam > « 

(m + 1)a+1 > c 

(m + 2)a,+2 > a

Daraus folgt, daß von n = m angefangen die Glieder von ^an größer 
sind als die entsprechenden Glieder von ,; nun ist X,, also 

auch X, divergent, daher divergiert auch ^an.

Auf Grund dieses Kriteriums erkennt man, daß die Reihe 

—an+B ‘wo “, 8, 7 positive Zahlen bedeuten, divergiert; denn 

na =—"Y — hat die über 0 liegende Grenze 7.
n an — p D C

Ferner erschließt man daraus die Divergenz der Reihe X 1 für 
np

1) Reihen dieser allgemeinen Form bezeichnet L. Euler als harmonische 
Reihen; in der Tat ist auch die gewöhnliche harmonische Reihe darin enthalten 
(« = 7 = 1, ß = 0). (1734—1735.)

0 <p < 1; denn nan = n1~p wächst mit n sogar über jede noch so 
große Zahl. Es sind also beispielsweise die Reihen X , X,1 , X, 1 
divergent. ^n Vn Vn*

3. Ist das Bildungsgesetz der Beihe mit positiven Gliedern ^ait 

ein solches, daß der Quotient eines Gliedes durch das voraus- 
n

gehende beim Durchlaufen der Beihe einer Grenze A sich nähert, so ist 
die Beihe konvergent, wenn A < 1, divergent, wenn A > 1.

Im Falle 2 < 1 wähle man eine Zahl Q derart, daß A < q < 1, 
an + 1

also zwischen A und 1; es muß dann-------von einem Zeigerwert

n = m angefangen notwendig kleiner als 
q liegende Grenze A haben; aus

q bleiben, soll es die unter

folgt aber
a.

am + 1 .
-a—59. “m+2

a< g.
“m + 3

@m+2

^A, a, am(l\ am + 3 < a„93, • • • •

I • ■ *
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mithin sind die Glieder der Reihe Xa, von n = m 1 angefangen 
kleiner als die mit am multiplizierten Glieder der geometrischen Reihe 
Lq”; da diese wegen q<1 konvergiert, so konvergiert auch Za, 
1

In dem Falle 2> 1 wähle man q derart, daß 1>q> 1; soll

- die über q liegende Grenze A haben, so muß es von einem Zeiger 
an

m angefangen beständig über q bleiben, also
@m+1 .

-7> 9,

sein; daraus folgt weiter

“m+2

a, +1
9,

@m+1 • am^ am + 2> a„q3. a+3 > am^, ' ■
Da also nunmehr die Glieder von ^an von n = m + 1 angefangen, 

QO

die mit am multiplizierten Glieder der geometrischen Reihe ^qn über-

treffen, diese aber wegen q > 1 divergiert, so divergiert auch Xa, 

Der Fall, daß "n+1 die Zahl 1 selbst zur Grenze hat, bleibt also 
‘ an

unentschieden.
Als erstes Beispiel diene die mittels der positiven Zahl « ge­

bildete Reihe

o
in ihr ist

_a" _ a"+1 @,+1 _ “dn n! ‘ "n+1 (n + 1)!’ an n+1i

dieser Quotient läßt sich bei jedem a durch Wahl von n beliebig klein

machen; es ist daher lim " - = 0 < 1, die Reihe also bei jedem c 
n = c an

konvergent.
Die Reihe

zeigt ein wesentlich anderes Verhalten; in ihr ist

' an c"+1 d,+1 n
a»~ n ’ an+l~ n+1 a, ~ n+1". 

und da dieser Quotient « zur Grenze hat, so ist die Reihe nur dann 
konvergent, wenn « < 1 ist; bei « > 1 divergiert sie, aber auch schon 
bei « = 1, wo sie zur harmonischen Reihe wird.
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Keine Entscheidung ermöglicht das Kriterium bei der Reihe 

X — (p ) 0), da hier - n+1 = ( —, — ) die Grenze 1 hat. An anderer 
i np 7 % n + 1/

Stelle ist aber bereits erkannt worden, daß diese Reihe bei 251 
divergiert, bei p = 2 konvergent ist. o 0

4. Die beiden Reihen a, und 2" a2v sind unter der Voraus- 
1 0

Setzung, daß die Glieder der ersten niemals zunehmen, gleichzeitig kon­
vergent, bzw. divergent.

Aus der Tatsache, daß a, > a,>a>.. (statt > kann, jedoch 
nicht durchwegs, auch = eintreten), folgen einerseits die Relationen:

C1 = ax

2a, > a2 + a3

4a,> a, + a + a + a

2m a2m > a2m + am+1 + • • • + a2m + l - 

aus denen sich durch Addition

m
(A) 

o

ergibt; andererseits die Relationen: 

at <Z 2 ar

2a2 = 2a2

4a, < 2(a3 + a)

2ma2m<z2(a — a . 
2+i 2+2 

die, indem man sie addiert, zu der Ungleichung 
omm

@n (B)
0 1 

führen. Auf den beiden Seiten von (A) und (B) stehen nun Partial­
summen der beiden zu vergleichenden Reihen.

Ist ^an konvergent, so folgt aus (B) die Konvergenz von X2‘a,v; 
und ist X2‘a,v konvergent, so schließt man aus (A) auf die Konver­
genz von Xa,

Ist ^an divergent, so begründet (A) die Divergenz von X2‘a,v; 
und ist X2‘a,v divergent, so ist es wegen (B) auch X an.
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° i
Mit Hilfe dieses Kriteriums kann die Reihe _ p endgiltig er- 

i n
ledigt werden. Es ist nämlich

Vor 124
— 2 12.224P1 2P—1 4P—1 1 

eine geometrische Reihe mit dem Quotienten q = 1
qp- 1 i dieser ist < 1,

wenn p > 1; = 1, wenn p = 1; > 1, wenn p < 1. Demnach ist die 
geometrische Reihe und mit ihr zugleich die Reihe V 1 konvergent 

bei p > 1, divergent bei p < 1.
Die unter 2, 3 und 4 nachgewiesenen Kriterien stammen von 

A. Cauchy, dem Begründer der allgemeinen Reihentheorie.

§ 3. Reihen mit positiven und negativen Gliedern.
31. Absolut konvergente Reihen. Wenn von einer Reihe 

mit positiven und negativen Gliedern gesprochen wird, so ist damit 
gemeint, daß beide Arten von Gliedern durchgehend seien, d. h. daß 
es keine noch so ferne Stelle in der Reihe gibt, von der an nur mehr 
Glieder eines Zeichens vorkommen.

c
Hebt man in einer solchen Reihe a,, in welcher die an nun- 

i
mehr relative reelle Zahlen sind, den Zeichenunterschied auf, bildet 

man mit andern Worten die Reihean aus den absoluten Werten
i

der an, so kann diese konvergent oder divergent sein.
Ist Via konvergent, so ist es ya, notwendig auch: denn 

(27, 4.) eine konvergente Reihe aus positiven Gliedern bleibt konver­
gent, wenn man bei einer durchlaufenden Folge von Gliedern das 
Zeichen ändert

Wie es sich in diesem Falle mit der Grenze der Reihe verhält, 
darüber gibt der folgende Satz Aufschluß.

Stützt sich die Konvergenz der Reihe ^an auf die Konvergenz der 
Reihe X \an |, so ist ihre Grenze gleich der Summe der positiven Glieder 
vermindert um die Summe der Absolutwerte der negativen Glieder und 
unabhängig von der Anordnung der Glieder.

Die positiven Glieder von ^an in der Reihenfolge ihres Auf­
tretens seien

a., +4+a,+*, (1) 
die absoluten Werte der negativen Glieder in gleicher Anordnung O Ö Ö

1 a, I i a,, +|asl+.; (2)
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beide sind konvergent, denn jede besteht aus einer durchlaufenden 
Gliederfolge der konvergenten Reihe X an\ (27, 3.).

Eine Partialsumme sn von ^an stellt sich als Differenz einer be­
stimmten Partialsumme t von (1) und einer bestimmten Partial- 
summe u, von (2) dar, so daß

*=4—Ms;
indem nun n unaufhörlich wächst, nehmen auch a und ß, ohne Unter­
laß zu, und ta^, u, nähern sich den Summen t, u der Reihen (1), (2) 
als Grenzen; mithin hat sn die Zahl t — u zur Grenze- Damit ist die 
erste Aussage des Satzes erwiesen.

Nimmt man in Xa, eine durchgehende Umordnung der Glieder 
vor, so erfahren auch die Reihen (1), (2) eine solche; da aber ihre 
Grenzen dabei keine Änderung erleiden (29, 2.), so behält auch ^an 
die frühere Grenze s = t — u bei.

Einer Reihe von der hier in Rede stehenden Art kommt also der 
Summencharakter zu, indem ihre Grenze von der Anordnung der 
Glieder unabhängig ist; man spricht daher hier wie bei Reihen aus 
positiven Gliedern von der Grenze als von der Summe der Reihe.

Vorläufig sollen Reihen dieses Verhaltens als absolut konvergent 
bezeichnet werden.

32. Nichtabsolut konvergente Reihen. Es handelt sich nun 
um den Fall, daß eine Reihe ^an aus positiven und negativen Gliedern 
nach Aufhebung des Zeichenunterschiedes divergent wird. Die ur­
sprüngliche Reihe selbst kann, wie sich zeigen wird, konvergent oder 
divergent sein.

Zunächst ist unmittelbar einzusehen, daß ya nicht divergent 
sein kann, ohne daß wenigstens eine der Reihen (1), (2) divergent ist.

Ist nur eine von ihnen divergent, z. B. (1), dann wird ta größer 
als jede beliebige Zahl, während u^ eine Grenze besitzt; somit wird 
auch sn beliebig groß, die Reihe ^an ist also in diesem Falle divergent.

Sind beide Reihen, (1) und (2), divergent, so übertreffen ta , u^ 
schließlich jede noch so große vorgegebene Zahl; ihr allmähliches An­
steigen hängt aber von der relativen Häufigkeit ab, mit der positive 
und negative Glieder beim allmählichen Durchlaufen von ^an auf­
treten; es ist ebensowohl denkbar, daß dieses Auftreten so geregelt 
ist, daß die Differenz t — u. einer Grenze sich nähert, wie auch, 
daß die Glieder des einen Vorzeichens den andern so vorauseilen, 
daß ta — u^ dem Betrage nach größer wird als jede beliebige Zahl.

Uber alle diese Verhältnisse gibt der folgende Satz Aufschluß.
Die Grenze einer Reihe ^an, deren positive und negative Glieder 

je für sich divergente Reihen bilden, hängt von der Anordnung der
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Glieder ab und kann durch Regelung dieser Anordnung jeder beliebigen 
Zahl gleich gemacht werden.

Um der Reihe Xa, die (z. B. positive) Grenze G zu geben, nehme 
man von (1) eine solche Gliedergruppe

a ,+a+ + &,,‘ = & , 
daß ihre Summe G übertrifft, daß dies aber schon nicht der Fall ist, 
wenn man das letzte Glied der Gruppe fortläßt, so daß

s& Gs aa^'l 
hieran schließe man eine solche Gruppe aus (2),

! dA I 1 a^ I + • • • + ! dp,»l =$ , 

daß Sa—sj unter G sinkt, daß dies aber nicht mehr zutrifft, wenn 
man das letzte Glied fortläßt, so daß

G - ( - 5) <las,I;

nun gehe man in der Reihe (1) wieder weiter um

a,41 + +..+ a, " = s&

derart, daß G gerade noch überschritten wird, so daß

sa s} + s” G < a „ 
und schließe daran so viel von (2):

d,,+1 | + | dp,+2 I 4----- H da," ^s'^
daß gerade noch

G (ßa ss + s sß) < | ap, |

u. s. f. Auf diese Weise fortfahrend kommt man G beliebig nahe, da 

da,”’ I dB, “au”, 1 dB,” ' 
eine gegen Null konvergierende Zahlenfolge bilden (26).

Die Partialsummen sa, sa — ss, sa — s + sj, sa — s^ + s'j — S3, * 
oszillieren um G.

* 5 1) Bei einigen speziellen nichtabsolut konvergenten Reihen hatten schon
A. Cauchy (1823) und G. Lej eune-Dirichl et (1837) das eigentümliche Ver­
halten erkannt; den obigen allgemeinen Satz hat aber erst B. Riemann auf­
gestellt und bewiesen (1867).

Da man G beliebig groß, d. h. größer als jede noch so große 
Zahl festsetzen kann, so können aus ^an durch Gliederumordnung 
auch divergente Reihen erzeugt werden.

Während also die Konvergenz einer absolut konvergenten Reihe 
eine unbedingte, von der Anordnung der Glieder unabhängige ist, wird 
die Konvergenz einer nichtabsolut konvergenten Reihe durch die An- 
Ordnung der Glieder bedingt derart, daß mit der Anordnung die Grenze 
sich ändert und unter Umständen unendlich wird.1)
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Man hat demnach die Reihen mit positiven und negativen Gliedern 
in unbedingt und bedingt konvergente zu unterscheiden.

Den bedingt konvergenten Reihen geht der Summencharakter 
ab; es ist daher korrekter, bei ihnen nur von einer Grenze statt von 
einer Summe zu reden.

33. Alternierende Reihen. Von den Reihen mit positiven 
und negativen Gliedern heißen diejenigen, in welchen auf ein positives 
immer ein negatives Glied folgt, und umgekehrt, alternierende Reihen. 
Bei diesen gibt es einen Fall der Konvergenz, der an einem sehr ein­
fachen Kriterium zu erkennen ist; er ist durch den folgenden Satz 
gekennzeichnet:

Wenn die Glieder einer alternierenden Reihe dem Betrage nach 
beständig abnehmen 1) und überdies die unerläßliche Bedingung der Kon­
vergenz lim an = 0 erfüllen, so ist die Reihe konvergent. 2)

n = c

Aus der abnehmenden Folge positiver Zahlen ar, a,, a^, • • • sei 
die Reihe

X(— 1)n-la, = a, — a, + a3 — a, +------ .
1 

gebildet.
Die Beziehungen

S2n+1 = S2„-1 (a2n d2n+1)

82,41 = (a, - a2) +(a,-a) ++ (d2,41 - «2«) + A2n+1 

lehren, daß die ungeraden Partialsummen S1, S3, S5, • • • eine ab­
nehmende Folge positiver Zahlen bilden, die notwendig eine Grenze, 
lim S2 „41, hat. 
n= o

Die Beziehungen
S2 , = S2 n - 2 + (d, n -1 d2 n)

8,= a, (a, as) (d, %) ’ ‘ ’ (d2,-2 A2,-1) a2n

zeigen, daß die geraden Partialsummen s2, s^, s6, • • • eine zunehmende 
Folge positiver Zahlen bilden, die jedoch unter der Zahl a, bleiben, 
mithin notwendig eine Grenze, lims2n, besitzen.

n = c
Da aber

S2 n +1 = S2n T @2n+1,

so sinkt der Unterschied S2,41 — s2n= a2,4+1 mit wachsendem n unter 
jede noch so kleine Zahl, S2,41 und s2n haben also nicht verschiedene,

QO

sondern eine und dieselbe Grenze s, die auch der Reihe (— 1)”-la, 
i

zugehört.

1) Oder wenigstens von einer Stelle ab niemals zunehmen.
2) Dieses Kriterium hat Leibniz schon 1714 nachgewiesen.
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Zugleich geht aus der Betrachtung hervor, daß

82„< 8 < 8n+1
für jedes n; da ferner allgemein

r=(- 1"(a+1— ^n + 2~ 0,4+3)------- ),

so ist | rn | = | s — sn | < | @,41 |, d. h. nimmt man statt s eine Partial­
summe sn, so ist der begangene Fehler dem Betrage nach kleiner als 
das dem letztbehaltenen folgende Glied.

34. Beispiele. Die Ergebnisse der Untersuchungen der beiden 
letzten Artikel mögen nun an einigen Beispielen erläutert werden.

1. Die alternierende Reihe

2(1)-,
1

1 —1 — 1---  2232 421

ist unbedingt konvergent, weil die 
konvergent ist (30, 4.).

2. Die alternierende Reihe

Reihe der absoluten Gliederwerte

2-1,-1-4+}-4+
1

ist nach dem Kriterium 33 konvergent, aber nur vermöge der Glieder­
anordnung, weil die Reihe aus den absoluten Gliederwerten divergiert.

Ordnet man die Glieder nach irgend einem Prinzip um, so ist 
die Konvergenz schon fraglich, und besteht sie noch, so ist die Grenze 
eine andere.

Es soll dies für die folgende Anordnung gezeigt werden:

-------------------------------------------------- -

Die Partialsumme von 4n Gliedern der ersten Anordnung ist

/, 1 । 1 1 , 1 1)84n (1 2 + 3 4 ) + ( 5 6^7 s)T*

+ (_ 1_____ 1---- 1---- 1------- 1 ) •
4n — 3 4n — 2 4n — 1 4n/’

die Partialsumme von 3n Gliedern der zweiten Anordnung

4-(1+4-9)+0++-1)+.+ („La + al - %) ;
mithin ist

83n = S4n T 2 S2ni
d. i.
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nun hat S2, ebenso wie Sa, die Grenze s der Reihe in der ersten An-
3

Ordnung; folglich hat Ssn die Grenze 9 s, und dies ist die Grenze der

Reihe in der zweiten Anordnung. Durch die Umordnung, die die 
positiven Glieder voraneilen macht, hat sich also die Grenze um die 
Hälfte ihres ursprünglichen Betrages erhöht.

3. Die Reihe

erfüllt bei jedem p > 0 die Konvergenzbedingung des vorigen Artikels; 
absolut und daher unbedingt konvergent ist sie nur bei p > 1, da­
gegen bei p < 1 nur bedingt konvergent, weil dann 2 — divergiert 

(30, 4).
Diesen letzten Fall im Auge behaltend werde die Reihe um­

geordnet in
1 _1_1 1 _ 1 । ...

T3P 2P 5PT 7P 4P

Die Partialsumme s2n der ersten Anordnung und die Partialsumme s3n 
der zweiten Anordnung umfassen folgende Glieder:

S2n 2P T3” 47.1 T(2n—i)P (2nyP

= -— —   — . . . — —______—•
3P 2P (4n—3)P(4n—1)P ^ny^

in den negativen Gliedern stimmen sie überein, in den positiven geht 
die zweite um die Glieder von-----1------bis -------1— , deren Anzahl n 

(2n + 1)P (4n — 1)P‘ 
ist, weiter; folglich ist

3" 22n"(n+1)P(2n+31 T (4n— 1)77 

verkleinert man die rechte Seite dadurch, daß man alle Glieder einzeln 
durch - - — ersetzt, so ergibt sich, daß(4 n)P ‘ 8 ‘

, n nl-P 

wegen 0 < p < 1 wächst aber nt~p mit n über jede noch so große 
Zahl hinaus, und da s2n eine bestimmte Grenze hat, so wird San not­
wendig über jedes Maß groß. Die umgeordnete Reihe ist also divergent.

§ 4. Unendliche Produkte.
35. Begriff der Konvergenz und Divergenz. Wie die 

Addition, so kann auch die Multiplikation wegen ihres kommutativen 
Charakters auf beliebig viele, also auch auf unbeschränkt viele Zahlen



Allgemeine Konvergenzbedingungen unendlicher Produkte. 49

angewendet werden. Einem solchen unendlichen Produkt 1) gegenüber 
entsteht wieder die Frage, wann es eine bestimmte Zahl darstellt.

Aus der unbegrenzt fortsetzbaren Folge positiver Zahlen at, a,, 
a3, • • • werde nach der Vorschrift

21 = «i

P2 = dzPi
P3 = a,72 (1)

Px=“nPn-1=didz‘n
eine neue Folge 21, P2, p3, • • •, kurz {p^), gebildet.

Ist diese neue Folge konvergent, ohne jedoch eine Elementar­
reihe zu sein, so daß also ihre Grenze eine von Null verschiedene Zahl p 
ist, so bezeichnet man das unendliche Produkt

a, a, a3 • • •, kurz n»., (2)
1 

ebenfalls als konvergent und p = lim p, als seine Grenze, seinen Wert. 
n = 0

In jedem andern Fall heißt das Produkt divergent.
Wenn vorausgesetzt wurde, daß alle Faktoren positiv seien, so 

hat dies in folgender Erwägung seinen Grund. Negative Faktoren 
dürften nur in beschränkter Anzahl vorhanden sein, weil nur dann 
das Produkt ein bestimmtes Vorzeichen erhält; hat man dieses einmal 
bestimmt, so kommt es nur mehr auf den absoluten Wert des Pro­
duktes an.

Es kann auf den ersten Blick befremden, daß man die Grenze 
Null bei der Konvergenz ausschließt und Produkte mit dieser Grenze 
zu den divergenten zählt. Hält man daran fest, daß keiner der 
Faktoren an Null sein soll, so weist ein gegen Null konvergierendes 
Produkt die Anomalie auf, den Wert Null zu haben, ohne daß einer 
der Faktoren Null ist. Dies der Grund, warum solche Produkte zu 
den divergenten gezählt werden.

Die allgemeine Bedingung für die Konvergenz des Produktes II an 
ist identisch mit der Bedingung für die Konvergenz der Zahlenfolge (^J, 
(25), mit dem Zusatze, daß pn nicht beliebig klein werden darf; sie 
läßt sich also durch die Ansätze ausdrücken:

Pn+r~Pn <e, Pn>9, (3) 

die erste Ungleichung muß bei gegebenem & für ein hinreichend 
großes n bei jedem r stattfinden; in der zweiten bedeutet g eine

1) Unendliche Produkte sind fast gleichzeitig mit den unendlichen Reihen 
in der Literatur aufgetreten; das erste unendliche Produkt findet sich (1593) 
bei F. Vieta.

Czuber, Höhere Mathematik. 4 
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positive Zahl. Unabhängig von dieser kann man (3) durch die einzige 
Forderung

n+r - 1 < 8 (3*) 

ersetzen.
Auf den Fall r = 1 angewendet führt dies zu dem Ansätze

a,+1—1|<e, (4) 

welcher besagt, daß die Faktoren eines konvergenten Produkts schließ­
lich um beliebig wenig von der Einheit, dem Modul der Multipli­
kation, verschieden sind, analog wie sich die Glieder einer konvergenten 
Reihe schließlich beliebig wenig von Null, dem Modul der Addition, 
unterscheiden.

Schreibt man, von der Beziehung (4) Gebrauch machend, die Fak­

toren an in der Form 1 + an, das Produkt also in der Form na + Kn\ 
i

so drückt sich nunmehr die zur Konvergenz notwendige Bedingung 
dahin aus, daß die Zahlenfolge «1, «2, «3, • • • eine Elementarreihe, 
d. h. lim«, = 0 sein müsse; hinreichend aber ist diese Bedingung 

n = ©
nicht. Die Bedingung (3*) stellt sich jetzt in der Form

77(1+ «,) — 1 < € (3*4) 
I n+1

n + r
dar; na + «,) nennt man ein Restprodukt, für r = c wird es zu 

n+1
dem Restprodukt, das zum Partialprodukt pn gehört.

00

Ein unendliches Produkt I/(1 + «„) führt zu der unendlichen 
i

00

Reihe log(1 + a„) der Logarithmen seiner Faktoren; Konvergenz 
i

oder Divergenz des einen Gebildes zieht notwendig die analoge Eigen­
schaft des andern nach sich.

36. Konvergenzkriterien. Sind in dem Produkt /I(1 + «„) 
alle a, > 0, so sind alle Faktoren unechte Brüche, der Wert des 
Produkts, wenn es konvergiert, wird selbst auch > 1 sein, im andern 
Fall ist er unendlich.

Sind alle ccn < 0, also alle Faktoren echte Brüche, so wird bei 
einem konvergenten Produkt dessen Wert selbst auch < 1 sein; im 
andern Falle ist er Null.

Gibt es positive und negative an in unbegrenzter Anzahl, so kann 
jeder der unterschiedenen Fälle eintreten.
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Näheres hierüber lehren die folgenden Sätze:
00

1. Sind alle an > 0, so ist das Produkt II[(1 + «,) konvergent,

c

wenn die Beihe X an konvergiert, und seine Grenze dann unabhängig 
i

von der Anordnung der Faktoren; hingegen divergent und sein Wert o, 
wenn die Beihe divergiert.

Aus der Entwicklung des Restprodukts
n+r
II(1 + «,) = 1 + &,41 + &,42 H--- -  + an + r + S, 
n+1

worin S die Summe der Produkte der « zu zweien, dreien, • • • ver­
tritt, geht hervor, daß

n+
II ^+ «,) ~ 1 > &,+1+ a,424----- dn + r-,
n+1

ist nun die Reihe 2 an divergent, so kann die rechtsstehende Summe 
i

durch Wahl von n und r beliebig groß gemacht werden, die Be­
dingung (3**) ist also nicht erfüllt; da ferner p, mit n wächst, so 
ist p = oo.

Ist hingegen ^an konvergent, so kann zu dem positiven echten 
Bruch q ein hinreichend großes n derart bestimmt werden, daß bei 
beliebigem r

an+1F &,+2+------ - &,+,<{
sei; das hat zur Folge, daß für die in S enthaltenen Produktsummen 
S2, S3, • • • Sr von 2, 3, • • • r Faktoren folgende Beziehungen bestehen.

S, < (+1 + • • • + &,4°<q

S, < (d,+1 + • • • + ^n + r?< q°

Sr < (M,+1 +.+&+)< I,
weil die Potenzen außer den gedachten Produktsummen noch andere 
positive Glieder umfassen. Demnach ist jetzt

i[+o-1<+#+..+ 7-1=7" < , 

n+1

wählt man also q derart, daß 1 < e, wozu nötig ist, daß q < _—
" 7 1 — ( 7 ° 7 - 1 — 8 

genommen werde, so wird auch
n + r

n^ +«,) -1 < e;
n+1

die Konvergenzbedingung ist also tatsächlich erfüllt.
4*
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Da die konvergente Reihe aus den Logarithmen der Faktoren, C
log (1 + aj, im gegenwärtigen Falle aus lauter positiven Gliedern 

besteht und darum unbedingt konvergent ist, so gilt die gleiche 
Aussage für das Produkt; es kommt ihm die kommutative Eigen­
schaft des endlichen Produkts zu. 

00

2. Sind alle an > 0, so ist das Produkt no-aj konvergent,

wenn die Peihe 2 a, konvergiert, und seine Grenze dann unabhängig 

von der Anordnung der Faldoren; hingegen divergent und sein Wert 
Null, wenn die Peihe divergiert.

1 — & 2 1
Wegen 1 — «, = ——n < —---- ist auchO n 1 — C 1 — an 'n

. 1
Pn — n j 

n^+«,)
i

divergiert nunan, so wächst der Nenner rechts über jeden Betrag, 
folglich wirdpn mit wachsendem n beliebig klein, also ist p = lim pn = 0. 

n =00

Mit den vorhin benutzten Bezeichnungen ist jetzt das entwickelte 
Restprodukt

n (i -a^ - 1 - («,41 + «,42 + • • • + &,4) + s,- S,+—f (—1)s,, 
n + 1
und wenn a, konvergiert, kann n so gewählt werden, daß 
c,_, — «,_, + • • • + c,_ < q < 1 ist; dann wird aber

1-Äa-0)<+#++7-?%< 11, <
n+1 - -

wenn q < ■ — genommen wird. Die Konvergenzbedingung 
- i 8

I/(1 — a^) ist also erfüllt; die Unabhängigkeit des Wertes von

für

der
Anordnung der Faktoren ergibt sich durch denselben Schluß wie vorhin.

3. Sind die an teils positiv, teils negativ, beides in unbeschränkter

Anzahl, so ist das Produkt //(1 + a^ konvergent und sein Wert un-
1

00 

abhängig von der Anordnung der Faktoren, wenn die Peihe 2 an un-

bedingt, d. h. vermöge der Konvergenz von «,, konvergiert.

Das Partialprodukt pn wird jetzt zum Teil aus Faktoren von der 
Form 1 + av zum Teil aus Faktoren der Form 1 — aj bestehen; ihre 
Anzahlen seien n, n", ihre Produkte p p"• dann ist

p = P', p", •— n — n — n
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Weil nun bei der vorausgesetzten Konvergenz von a,| die beiden 
«; und 2 a, konvergent sind (31), so streben ph, p," bestimmten 

von der Faktorenanordnung unabhängigen Grenzen p, p" zu, daher 
besitzt auch pn eine von der Reihenfolge der Faktoren unabhängige 
Grenzep, nämlich p = p' p".

Anmerkung. Bei bloß bedingter Konvergenz der Reihe «, 
kann das Produkt 11 (1 + «,) konvergent oder divergent sein; doch 
ist Konvergenz aus der bloßen Konvergenz vona, nicht zu er­
schließen; findet sie aber wirklich statt, so ist sie auch eine bedingte 
in dem Sinne, daß der Wert des Produktes von der Anordnung der 
Faktoren abhängt und durch deren entsprechende Regelung jeder be­
liebig angenommenen Zahl gleich gemacht werden kann. Auf solche 
Produkte soll hier nicht eingegangen werden.

37. Beispiele. 1. Das Produkt

n^ + 1,2")=(i+1) (i+1,2) (i+14) • ■ ■ 

ist konvergent, wenn die Reihe
00

X 12" = k + k? + 14 4- k8 + ... 
0

konvergiert; vergleicht man sie mit der geometrischen Reihe k + k2 
+k3+l..., die bei k | < 1 konvergent ist, so erkennt man

n
(30, 1.), daß unter der gleichen Voraussetzung auch >k2 und so­
mit auch das vorgelegte Produkt konvergiert.

Das Partialprodukt1)

1) Von der Richtigkeit der Entwicklung überzeugt man sich durch die 
Erwägung, daß n — 1 Binome tatsächlich ein Produkt aus 2"1 Gliedern geben, 
wenn, wie hier, Reduktionen ausgeschlossen sind.

P.41 - (1 + Q (1 + 18) (1 + 14) ••■(! + 18")

-1+*+/++* =2* 

konvergiert denn auch tatsächlich, wenn | k < 1, gegen die Grenze

2. Die Produkte

1T(+5)-(+(1+5) (1+5)..
1

1I(1-$)-a-h(1-$) (1-5)-
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sind divergent, weil es die Reiheist; das erste divergiert gegen 
1 w

CO, das zweite gegen 0 (vorausgesetzt, daß k > 0).
Das Produkt

II (1 +
1

()-(1+/)(1-4)(1+5) (1 k
4

hingegen ist konvergent; die Aussage kann aber nicht durch den 
©___1-1/

Hinweis auf die Konvergenz der Reihe ——— begründet werden,
1 nweil diese zu konvergieren auf hört, wenn man den Zeichen wechsel 

aufhebt. Faßt man aber die Faktoren zusammen, so kommt man zu 
dem Produkt

(1+550+00+52)- ■

das konvergent ist, weil die Reihe 11, + 914 + ^7 + • • • konver­

giert (30; 27, 3).
3 3 5 5 7 7

3. Das Produkt ' • - - ... 1) lautet in der normalen Form 
2 4 4 6 6 8 7

(1+9)0-90+90-9).

Die Reihe 9 — 4 + 4 — — + • • • ist wohl konvergent nach 33, hört 

aber auf es zu sein, wenn man den Zeichenwechsel aufhebt, denn die 
Divergenz von 1 + 3 +}+.. hat auch die Divergenz von ) + 4

1 12 2+ 6 + • • • und von 9 + 4 + 6 + • • • zur Folge. Faßt man jedoch 

die Faktoren paarweise zusammen, so entsteht das gleichwertige Produkt 

und dieses konvergiert, weil die Reihe 1 9 + —— +3.4 - ** kon- 
vergent ist (28, I, 1.); erst hieraus ergibt sich die Konvergenz des 
obigen Produkts.

4. Das Produkt “ ■ " +1 • d+2... läßt sich auf die Form bringen: 
b b — 1 b — 2 0

(1+857)(1+37(1+349).,
in der man seine Divergenz sogleich erkennt aus der bekannten Di- O O 
vergenz von x d- b (30, 2.).

41) Dieses Produkt, dessen Wert die Zahl ■— ist, hat J. Wallis (1655) als
erster aufgestellt und auch schon seine Konvergenz bewiesen.
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5. Das Produkt

(1-12)(1+V2)(1-V3)(1+73) 
ist divergent, wiewohl die Reihe 

konvergiert (bedingt); man erkennt dies nach paarweiser Zusammen- 
111 fassung der Faktoren an der Divergenz der Reihe — — — — • • •.

III. Abschnitt.

Der Funktionsbegriff.
§ 1. Funktionen einer und mehrerer Variablen.

38. Grundvorstellungen, auf welchen der Funktions­
begriff beruht. Mit der Einführung der Bachstaben als Zeichen für 
Zahlen war einer der bedeutsamsten Schritte in der Entwicklung der 
Mathematik getan.

Bei einem arithmetischen Ausdruck, dessen Elemente besondere 
Zahlen sind, ist das Interesse auf die Ausführung der vorgeschriebenen 
Rechenoperationen gerichtet und mit der Auffindung des Resultates 
erschöpft.

Sind hingegen die Rechenelemente durch Buchstaben vertreten, 
dann wendet sich das Interesse der Zusammensetzung des Ausdrucks 
durch Rechenoperationen zu, und es treten neue Vorstellungen auf: 
die Vorstellungen der Veränderlichkeit, der Abhängigkeit, der Zu­
ordnung.

Indem man sich denkt, daß einzelnen oder allen durch Buch­
staben vertretenen Rechenelementen andere und wieder andere Werte 
erteilt werden, kommt man von dem Begriff der festen Zahl zur Vor­
stellung der veränderlichen Größe oder der Variablen.

Das Resultat, der Wert des Ausdrucks, wird dabei im allgemeinen 
auch jedesmal ein anderes, es erhält auch den Charakter der Variabilität.

Es ist erst dann bestimmt, wenn man den variabel gedachten 
Rechenelementen bestimmte Werte beigelegt hat, es ist also von 
diesen Werten abhängig.

Der Ausdruck wird mit einem Male zu einem Gegenstand der 
Untersuchung, indem man der Zuordnung zwischen den Werten der 
variablen Rechenelemente und dem Werte des Ausdrucks seine Auf­
merksamkeit zu wendet.

Die Vorstellungen der Variabilität, der Abhängigkeit und der 
Zuordnung bilden die Grundlage des Funktionsbegriffs, der die ganze 
Mathematik beherrscht. Durch seine Schaffung ist sie fähig geworden, 
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dem Wechsel der Erscheinungen, die uns umgeben, zu folgen. War, 
so lange man nur mit festen Zahlen operierte, nur die mathematische 
Beschreibung einzelner Zustande möglich, so setzt uns der Funktions- 
begriff in den Stand, den ganzen Verlauf einer Erscheinung mathe- 
mathisch zu fassen.

In seiner einfachsten Form trat der Funktionsbegriff auf, als 
Fermat und Descartes die Methode der arithmetischen Behandlung 

geometrischer Linien einführten. Durch die 
Beziehung einer gesetzmäßig erzeugten Linie 
auf ein rechtwinkliges Koordinatensystem 
XOY, Fig. 7, ist jedem ihrer Punkte, wie M, 
ein Zahlenpaar x, y zugeordnet, x die Maßzahl 
der Abszisse OP, y die Maßzahl der Ordinate 
OQ bezüglich einer festgesetzten Längenein­
heit OE.

Sobald x als veränderlich angesehen wird, 
nimmt auch y den Charakter der Variabilität an, und der Wert von y 
ist abhängig von dem Werte des x; die Kurve vermittelt die Zu­
ordnung der Werte von x und y.

Was die Linie geometrisch leistet, kann eine Gleichung zwischen 
x und y arithmetisch bewirken; erteilt man in ihr dem x nach und 
nach verschiedene Werte, so liefert die Auflösung der Gleichung die 
zugeordneten Werte von y.

Dem Anscheine nach wäre die geometrische Darstellung des 
Zusammenhangs der arithmetischen überlegen, weil sie sozusagen 
mit einem Schlag den ganzen Verlauf der Zuordnung überblicken 
läßt. Aber selbst abgesehen davon, daß alles Anschauliche nur ein 
angenähertes Bild des innerlich Gedachten zu geben imstande ist, wird 
sich bald die Überlegenheit der arithmetischen Darstellung in allen 
Belangen herausstellen.

39. Funktionen einer Variablen. I. Es sei f(x) ein durch 
arithmetische Operationen gebildeter Ausdruck, der außer festen oder 
festzusetzenden Zahlen — Konstanten — die Variable x enthält; sein 
von x abhängiger Wert heiße y\ dann drückt der Ansatz

y = f(x) (1)
die Zuordnung zwischen x und y aus. Man nennt y eine Funldion1} 

1) Das erste Auftreten des Wortes functio in der Bedeutung der Abhängig­
keit, allerdings noch in geometrischem Sinne, ist bei Leibniz (1692) nach­
gewiesen. Die erste Definition im heutigen Sinne gab (1718) Johann Bernoulli. 
Er erkannte auch schon die Notwendigkeit allgemeiner Funktionsbezeichnungen, 
und vor Mitte des 18. Jahrhunderts wurden solche fast gleichzeitig (1736) von 
Clair aut und (1740) von L. Euler vorgeschlagen; von letzterem stammt die 
typisch gewordene Schreibweise f^x).
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von x, und insbesondere eine Funktion der reellen Variablen x, wenn 
man dieser nur reelle Werte anzunehmen gestattet; weiters eine reelle 
Funktion dieser Variablen, wenn sie nur reelle Werte annimmt, oder 
wenn man nur solche zuläßt; ferner eine eindeutige Funktion, wenn 
nur eindeutige Operationen in dem Ausdruck vertreten sind oder im 
andern Falle eine solche Festsetzung getroffen ist, daß zu jedem (oder 
jedem zulässigen) Werte von x nur ein Wert von y gehört.

Den Inbegriff der Werte, welche der Variablen x anzunehmen 
gestattet sind, nennt man ihren Bereich oder ihr Gebiet. Sind es alle 
reellen Werte von a angefangen bis zu dem größeren b, so nennt 
man x stetig variabel in dem abgeschlossenen Intervall (a, b\ in Zeichen: 
a K x < b- bei Ausschluß der Werte a, b schreibt man a < x < b und 
nennt das Intervall ein nicht abgeschlossenes. Gibt es für x einen 
kleinsten Wert a, aber keinen größten, so deutet man das Intervall 
durch (a, c) an; gibt es einen größten Wert b, aber keinen (alge­
braisch) kleinsten, so schreibt man das Intervall (— c, b); gibt es 
weder einen größten, noch einen kleinsten Wert, so nennt man x 
unbeschränkt variabel und notiert das Intervall mit (— o, o).

Ist X nicht aller, sondern nur bestimmt qualifizierter Werte 
fähig, so heißt es eine unstetige Variable. Durch die Aussage, n be­
deute eine ganze Zahl, ist n als unstetige Variable definiert, deren 
Bereich die Reihe der positiven und negativen ganzen Zahlen ist; 
ebenso ist x eine unstetige Variable, wenn vorgeschrieben ist, daß es 
etwa nur alle rationalen oder alle irrationalen Zahlen innerhalb ge­
wisser Grenzen oder ohne weitere Beschränkung als Wert annehmen 
dürfe.

Die folgenden Beispiele werden zur Klärung und Festigung der 
vorstehenden Begriffe beitragen.

1. y = 3x2 — 2x + 1 ist eine von Natur aus eindeutige reelle 
Funktion der reellen Variablen x in dem Bereich (— c, co).

2. y =Vl — x2 ist mit der Festsetzung, daß der positive Wert 
der Wurzel zu nehmen sei, eine eindeutige Funktion, eine reelle nur 
dann, wenn man die Variable x auf das abgeschlossene Intervall (— 1,1) 
beschränkt; außerhalb desselben wird y imaginär.

3. y - —_La ist bei derselben Festsetzung eine eindeutige Funk­

tion; aber die Variable muß hier auf das nicht abgeschlossene Inter­
vall — 1 < x < 1 beschränkt werden, weil 0 als Divisor nicht zu­
lässig ist.

4. y =Vx ist bei Beschränkung auf positive Werte der Wurzel 
eindeutige reelle Funktion in dem Intervall 0 < x < o.

5. y = 1 ist bei der gleichen Beschränkung eine ebensolche 

Funktion, aber nur in dem Bereich 0 < x < o.
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6. P=n! ist eine Funktion der unstetigen Variablen n, deren 
Gebiet die Reihe der natürlichen Zahlen ist.

II. Der Funktionsbegriff in der eben erörterten Form, geknüpft 
an das Vorhandensein eines arithmetischen, die Variable x enthaltenden 
Ausdrucks, war lange Zeit hindurch herrschend, nachdem ihn Euler 
zur Grundlage einer Funktionentheorie gemacht hatte. Die weitere 
Entwicklung der Mathematik und ihre fortschreitende Anwendung auf 
die Darstellung der Naturerscheinungen veranlaßte aber eine Er­
weiterung, die von der Existenz eines arithmetischen Ausdrucks ab­
sieht und das Hauptgewicht legt auf den Gedanken der Zuordnung. 
So hat denn Dirichlet in der allgemeinsten Weise y als eine Funktion 
von x in dem Intervall (a,b) definiert, wenn jedem Werte von x aus 
diesem Intervall ein und nur ein bestimmter Wert von y zugeordnet ist.

Benutzt man als symbolischen Ausdruck dieser Definition auch 
wieder den Ansatz (1), so besteht der Unterschied in der Deutung 
dieses Ansatzes in folgendem: Früher vertrat das Funktionszeichen / 
einen bestimmten Komplex von Rechenoperationen, die unter Einbe­
ziehung von x ausgeführt werden, jetzt vertritt es ein Zuordnungs­
gesetz', denn nur ein Gesetz ist imstande, die Gesamtheit der Zuord­
nungen zu regeln.

Unter diesen allgemeinen Funktionsbegriff fallen nicht bloß die 
arithmetisch definierten Funktionen unter I, sondern auch Funktionen, 
die abteilungsweise durch verschiedene arithmetische Ausdrücke ge­
geben sind; es fallen darunter ferner die trigonometrischen Funktionen 
auf Grund ihrer geometrischen Erklärung, wiewohl diese noch keine 
Rechen Vorschrift an die Hand gibt, nach der zu einem beliebigen 
Winkel der Sinus, Kosinus usw. berechnet werden kann.

Die Frage, ob jedem Zuordnungsgesetz auch eine arithmetische 
oder allgemeiner eine analytische Darstellung entspricht, läßt eine ab­
schließende Antwort nicht zu; man kann nur darauf hinweisen, daß 
es gelungen ist, auch sehr komplizierte Zuordnungen analytisch aus­
zudrücken.

Während bei einer durch einen Ausdruck gegebenen Funktion 
der Bereich der Variablen x aus dem Bau dieses Ausdrucks zu er­
schließen ist, wird bei allgemeineren Definitionen zumeist der Bereich 
vorher bezeichnet, für den die Definition gelten soll.

Zur näheren Erläuterung folgen wieder einige Beispiele.
1. In dem Intervall — 1 < x < 1 sei f{x) durch folgende Fest­

setzungen definiert:

f(x) =9 + 1, so lange — 1 < x < 0

f(x) = — +1, so lange 0 < x < 1.

Wir haben es hier mit einer abschnittweise arithmetisch definierten
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Funktion zu tun, die außerhalb des Intervalls (— 1,1) nicht existiert; 
Fig. 8.

2. Unter sgn x (lies „signum x") soll jene Funktion verstanden 
werden, die für jedes negative x1) den Wert — 1, für jedes positive 
x den Wert 1, für x = 0 den Wert 0 hat, so daß also

Ihr Bild, Fig. 9, besteht aus zwei zu X’X parallelen Geraden, 
die beliebig nahe, aber nicht bis an YY' herantreten, und aus dem 
Punkte 0.

Die Funktion gestattet eine analytische Darstellung, sobald man 
den Grenzbegriff in einer Funktionserklärung zuläßt; so ist z. B.O • 7

sgn x = lim
n = c

nx
V1+ n2a? ‘

wenn die Wurzel mit ihrem absoluten Wert genommen wird; in der 
Tat, mit beständig wachsendem n nähert sich der Nenner der Zahl 
nx, der Bruch also der Zahl — 1 oder 1, je nachdem der Wert von 

x negativ oder positiv ist; für x = 0 wird aber der Ausdruck 0.
3. In dem unbeschränkten Gebiet der reellen Zahlen sei f(x) der­

art festgesetzt, daß es für jeden rationalen Wert von x Null und für 
jeden irrationalen Wert 1 sein soll. Von dieser Funktion läßt sich 
ein völlig zutreffendes anschauliches Bild nicht geben, weil sich nicht 
überblicken läßt, zu welchen Punkten einer Geraden nach Annahme 
des Nullpunktes und der Einheitsstrecke rationale, zu welchen irratio­
nale Zahlen gehören; das augenfällige Bild besteht aus der Achse X’X 
und aus einer zu ihr parallelen Geraden im Abstande 1. Hingegen 
läßt sich die Funktion trotz ihrer komplizierten Natur bei Zuziehung 
des Grenzbegriffs analytisch darstellen, so beispielsweise durch

f (x) = lim sgn(sin2k!xx); 
k = c

denn, ist x rational, so wird k! in seinem Wachstum schließlich immer 
so groß werden, daß k!x eine ganze Zahl, k\xx also ein Vielfaches

1) Abgekürzte Ausdrucksweise für „jeden negativen Wert von x".
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immer einen von Null 
Wert, dessen sgn-Wert

von A wird und bleibt, wenn k noch weiter zunimmt; sgn 0 ist aber 
0; bei irrationalem x tritt aber dieser Fall nie ein, sin k!aa behält 

verschiedenen, das Quadrat einen positiven 
1 ist.

4. In dem Intervall — 1 < x < 1 sei 
f(x) durch | x | definiert. Das geometrische 
Bild dieser Funktion besteht in den begrenzten 
Schenkeln eines rechten Winkels, Fig. 10. Mit 
Hilfe von sgn x kann diese Funktion auch durch 

f(x) = x sgn x, — 1 K x A 1 
dargestellt werden.

5. Die durch das Potenzsymbol ax ausgedrückte Zahl kann nur 
dann eine durchwegs reelle Funktion darstellen, wenn a > 0 ist. Für 
ganze Werte von x ergibt sich die Eindeutigkeit aus dem primären 
Potenzbegriff; für gebrochene x ist ax durch den erweiterten Potenz­
begriff (16) bestimmt und eindeutig, sofern man den einzigen posi­
tiven Wert der Wurzel meint. Ist endlich x eine irrationale Zahl 
und (xQ, x,, X2, • • •) eine sie definierende Fundamentalreihe, so ist 
auch (a”o, axi, axi, . . .) eine Fundamentalreihe1), und unter ax soll die 
ihr zugeordnete Zahl verstanden sein.

Mit diesen Festsetzungen ist also f(x) = ax eine eindeutige reelle 
Funktion von x und wird Exponentialfunktion genannt.

III. Die angewandten Gebiete führen zu empirischen Funktions­
bestimmungen, die aber nicht als Funktionsdefinitionen in dem bis- 
herigen strengen Sinne gelten können. So fehlt es einer graphisch, 
durch einen Linienzug gegebenen Funktion an der notwendigen Be­
stimmtheit, indem die zu einer scharf bestimmten Abszisse gehörige 
Ordinate innerhalb gewisser Grenzen unbestimmt bleibt; statt einer 
Funktion ist ein Funktionsstreifen gegeben. Einer tabellarisch, durch 
eine Auswahl zugeordneter Wertepaare, dargestellten Funktion mangelt

1) Um dies zu erweisen, machen wir die bestimmte Annahme, es sei a > 1 
und die Fundamentalreihe (x,) monoton zunehmend. Alsdann läßt sich n ohne 
Rücksicht auf p so wählen, daß &,+, — x < 1 , wobei v eine beliebig große 
natürliche Zahl bedeutet; daraus folgt für solche n die Beziehung

1
an+P _ a» = a\  ̂ *" — i) < an{pF - 1).

Aus der für positive ö geltenden Relation (28) (1 — 8f > 1 — v 8 ergibt sich aber 
i

(1—vö)r <1+8; ersetzt man hier 1 — v8 durch a, so kommt man zu der Be- 
1

ziehung a v — 1 < d 1, mit welcher schließlich a n+p — an < an   wird; 
v----------------------------------- 7

daraus geht aber hervor, daß tatsächlich anJrP—an durch Wahl von n beliebig 
klein gemacht werden kann. 
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die Vollständigkeit, indem für andere als die in der Tafel vorkommenden 
x eine Angabe nicht vorliegt.

Wenn hingegen von einer analytisch erklärten Funktion ein 
graphisches Bild angefertigt wird, so geschieht es, um von ihrem 
ganzen Verlauf eine Vorstellung zu geben. Und wird von einer arith­
metisch definierten Funktion eine Tabelle entworfen, so hat dies den 
Zweck, häufig auftretende Rechnungen mit speziellen Werten der 
Funktion zu erleichtern; eine solche Tabelle enthält übrigens zumeist 
nicht strenge, sondern innerhalb vorgezeichneter Grenzen angenäherte 
Funktionswerte.

40. Funktionen zweier und mehrerer Variablen. I. Es seien 
x, y zwei von einander unabhängige reelle stetige Variablen; durch 
das Wort „unabhängig" soll gesagt sein, daß der einzelne Wert, den 
man einer von ihnen beilegt, nicht beeinflußt ist von dem Wert, den 
man der andern erteilt hat. Der Inbegriff aller Wertverbindungen, 
deren x, y fähig sein sollen, bildet den Bereich oder das Gebiet dieser 
beiden Variablen; eine einzelne dieser Wertverbindungen, x\y, soll als 
Punkt oder Stelle des Bereiches bezeichnet werden.

Diese Ausdrucksweise erhält eine anschauliche Grundlage, wenn 
man x, y als Abszisse und Ordinate eines Punktes M, bezogen auf 
ein rechtwinkliges Koordinatensystem XOY, Fig. 11, auffaßt. Der 
Bereich ist dann durch einen bestimmt umschriebenen Teil der Ebene 
oder auch durch die unbegrenzte Ebene selbst dargestellt; in letzterem 
Falle heißen die Variablen x, y unbeschränkt 
achte, daß bei einem endlichen Bereich, der 
beispielsweise durch eine stets nach außen 
gewölbte Linie F begrenzt ist, wohl das In­
tervall der Werte x (bzw. y) abhängt von dem 
jeweiligen Werte von y (bzw. x), nicht aber 
der einzelne Wert. Ist insbesondere das Ge­
biet durch ein nach den Achsen orientiertes 
Rechteck AB CD dargestellt, so sind die Werte 
von x und von y je an ein festes Intervall ge­

veränderlich. Man be-

bunden. Das durch I’ begrenzte Gebiet umschließt das Gebiet AB CD, 
wenn kein Punkt des letzteren außerhalb des ersteren liegt. Das 
Gebiet heißt ein abgeschlossenes, wenn der Rand zum Gebiet gehört, 
dagegen ein nicht abgeschlossenes, wenn man ihm nur beliebig nahe 
kommen kann.

Wenn jedem Punkte eines Bereichs von x, y eine bestimmte reelle 
Zahl 2 nach irgend einem Gesetze zugeordnet ist, so nennt man z eine 
reelle Funktion der Variablen x, y und drückt diesen Sachverhalt sym­
bolisch durch den Ansatz aus:

z = f^, y\ (2)
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Die wichtigste Definitionsform besteht wie bei Funktionen einer 
Variablen darin, daß z durch einen arithmetischen Ausdruck mit x, 
y als Rechenelementen gegeben ist, der entweder nur eindeutige Ope­
rationen umfaßt, oder, wenn anders, durch entsprechende Festsetzungen 
zu einem eindeutigen gestempelt ist.

Wie bei Funktionen einer Variablen gibt es auch hier eine geo- 
metrische Zuordnung der Werte von z zu den Wertpaaren x, y, und 
zwar durch eine gesetzmäßig erzeugte Fläche] indem man von einem 
Punkte dieser Fläche ein Lot zur Ebene XOY fällt, hat man in der 
relativen Größe dieses Lotes die Darstellung von z und in seinem 
Fußpunkte die Darstellung von x\y.

Zur Illustration mögen die folgenden Beispiele dienen.
1. z = 2x + 3y — 1 ist von Natur aus eine eindeutige Funktion 

der unbeschränlden Variablen x, y.
2. z = yi — x2 — y2 ist, sobald man die Wurzel als positiv fest­

setzt, eine eindeutige reelle Funktion, jedoch nur in dem abgeschlossenen 
Bereich x2+ y’A 1, d. h. im Innern und am Rande einer Kreisfläche 
vom Radius 1 um den Ursprung als Mittelpunkt.

3. z = -------1—— ist bei derselben Festsetzung eine eindeutige
V1—x—y2 8

reelle Funktion in dem nicht abgeschlossenen Bereich x2+y2<1; 
denn am Rande wäre der Nenner Null.

II. Es unterliegt keiner prinzipiellen Schwierigkeit, den Funktions­
begriff auf drei und mehr unabhängige Variablen auszudehnen.

Bei drei solchen Variablen, x, y, z, ist noch die geometrische 
Veranschaulichung des Bereiches möglich, indem man x, y, z als 
rechtwinklige Koordinaten eines Punktes M im Raume gelten läßt; 
der Bereich, d. i. der Inbegriff der Punkte, für welche u als Funktion 
von x, y, z definiert ist, in Zeichen

u = f(x,y,z\ (3) 

hat dann den ganzen Raum oder einen begrenzten Teil desselben zum 
Repräsentanten. So ist u = 2x + ^y + 42 + 1 im ganzen Raume 
definiert, anders gesagt, für die unbeschränkten Variablen x, y, Z] 
u =V1 — x2 — y2 — z^ dagegen als reelle Funktion nur für solche 
Punkte des Raumes oder solche Wertverbindungen, für die x2 + y2 
+ 22 < 1, als eindeutige Funktion durch die Festsetzung, die Wurzel 
sei positiv zu nehmen; u =—— _ —-— hat die genannten Eigen-

V1 — x2 — y2 — z^ 
schäften in dem nicht abgeschlossenen Bereich x2 + y2 + z2 < 1.

Bei n > 3 Variablen 21; x,, . . . xn hört die Möglichkeit einer 
geometrischen Veranschaulichung des Bereiches auf. Es hat sich aber 
als vorteilhaft für die Formulierung der Sätze erwiesen, die geometrische 
Ausdrucksweise beizubehalten, von einer Wertverbindung A,x2|...x, 
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der Variablen als von einem Punkte im n-dimensionalen Raume Pn 
zu sprechen und zu sagen, w sei für diesen ganzen Raum oder einen 
Teil desselben als Funktion von AC, , XC, ,... AC, definiert, in Zeichen:

w=f(a,, 2, ..«„), (4) 

wenn jedem Punkte ein bestimmter Wert von w zugeordnet ist. 
Hiernach ist beispielsweise w = 21 — 2x2 + 32, + 42, + 5 im ganzen 
R,; w = V1 — x? — x3 — x3 — xl, die Wurzel positiv genommen, nur 
in jenem Teil definiert, in welchem x? + x3 + x + x? A 1 ist.

41. Implizite Funktionen. I. An einer früheren Stelle ist der 
geometrischen Zuordnung der Werte zweier Variablen x, y durch eine 
Kurve die arithmetische Zuordnung durch eine Gleichung gegenüber­
gestellt worden. Auf diesen letzteren Modus soll nun etwas näher 
eingegangen werden.

Es sei F(x,y) ein durch eindeutige arithmetische Operationen aus 
x, y gebildeter Ausdruck; durch ihn ist auf der ganzen Ebene oder 
einem Teile derselben eine Funktion der Variablen x, y definiert; der 
Ansatz

F(x,y) =0 (5) 
kann als Forderung aufgefaßt werden, jene Stellen der Ebene zu be­
stimmen, an welchen die genannte Funktion den Wert Null hat. Diese 
Bestimmung kann in der Weise erfolgen, daß man der einen Variablen, 
z. B. x, einen beliebigen Wert erteilt und prüft, welcher Wert von y 
ihm auf Grund der Gleichung (5) zugeordnet ist.

Findet man, daß zu jedem Werte x aus einem Intervall a < x S b 
(oder auch nur a < x < b) ein bestimmter reeller Wert von y gehört, 
so ist durch (5) y in dem bezeichneten Intervall als Funktion von x 
definiert. Eine derart gegebene Funktion nennt man eine implizite 
Funktion zum Unterschiede von der expliziten, wie sie in 39 an erster 
Stelle erklärt worden ist.

Ist die Gleichung (5) in bezug auf y allgemein, d. h. ohne Spe­
zialisierung des x auflösbar, so kann von der impliziten Definitions­
form F(x, y) = 0 zur expliziten y = fix) übergegangen und unmittel­
bar entschieden werden, ob und in welchem Bereiche y als reelle 
Funktion existiert.

Formal steht nichts im Wege, den Wert von y beliebig anzu­
nehmen und auf Grund von (5) nach dem zugeordneten Werte von 
x zu fragen. Doch brauchen nicht beide Auffassungen zu wohl­
definierten Funktionen zu führen.

Die Variable, deren Werte man beliebig (eventuell unter Be­
schränkung auf ein Intervall) annimmt, nennt man die unabhängige, 
die andere die abhängige. Abhängige Variable und Funktion sind 
also adäquate Begriffe.

Zur Erläuterung mögen folgende Beispiele dienen.
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1. Aus der Gleichung

ay + bx2 + ex + d = 0

ergibt sich durch Auflösung nach y:
bx* — ex — d-----------a-------- ‘ 

wodurch y als Funktion der unbeschränkten Variablen x bestimmt 
ist. Die Auflösung nach x hingegen gibt:

— c + Vc3 — ^b(ay + d)
X — 2b — ‘

und dies ist zweideutig, indem im allgemeinen zu jedem Werte von 
y zwei verschiedene Werte von x gehören; doch sind die beiden Lö­
sungen deutlich von einander unterschieden durch das Vorzeichen der 
Wurzel; ihre Realität erfordert, daß 4b(ay + d) < c2 oder y< qshd sei.

Während also die an die Spitze gestellte Gleichung y als Funktion 
der unbeschränkten Variablen x definiert, bestimmt sie x in zwei­
facher Weise als Funktion von 9 in dem beschränkten Gebiet y < c - 46 d • 

Insofern aber diese zwei Bestimmungen aus einer Gleichung hervor­
gehen, bezeichnet man sie als Zweige einer zweideutigen Funktion.

2. Durch die Gleichung

a4 + y? + a? = o,

in der a eine reelle Zahl bedeuten soll, ist weder y noch x als Funktion 
definiert, da sie keine reelle Wertverbindung dieser Variablen zuläßt.

3. Die Gleichung x2+y‘=0, die nur durch x == 0, y = 0 be- 
friedigt wird, bestimmt allerdings die eine der beiden Zahlen als 
Funktion der andern, aber jedesmal für einen Bereich, der nur aus 
einem einzigen Wert besteht.

II. Eine Gleichung zwischen drei Variablen x, y, z bestimmt im 
allgemeinen eine derselben als implizite Funktion der beiden andern; 
so wird aus

F(x, y, z) - 0, (6) 

wenn man x, y innerhalb eines entsprechenden Gebiets als unabhängig 
veränderlich ansieht, z als Funktion dieser beiden hervorgehen.

Allgemein, durch eine Gleichung zwischen n + 1 Variablen ist im 
allgemeinen eine jede derselben als Funktion der n übrigen definiert, 
z. B. durch

F(x„x, x„u) = 0 (7) 

u als Funktion von x,, x^, • • • xn. Ist die Bestimmung eine mehr­
deutige, so wird vorausgesetzt, daß es möglich sei, sie in mehrere ein­
deutige Zweige aufzulösen.
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42. Die elementaren Funktionen. Die Ausdrucksformen der 
elementaren Mathematik führen zu einer Reihe von Funktionen, mit 
denen sich schon ein weites Gebiet der reinen und der angewandten 
Mathematik beherrschen läßt;man bezeichnet sie sXs elementare Funktionen.

Es ist üblich, die analytisch definierten Funktionen in zwei Klassen 
zu sondern: in die algebraischen und die transzendenten.

I. Bei expliziter Darstellung versteht man unter einer algebraischen 
Funktion eine solche, deren Ausdruck durch eine begrenzte Anzahl 
auf die Variable angewendeter algebraischer Operationen entstanden 
ist; unter algebraischen Operationen werden die vier Spezies und das 
Wurzelziehen verstanden.

Sind nur Addition (mit Einschluß der Subtraktion) und Multipli­
kation (mit Einschluß des Potenzierens) im Spiele, so spricht man 
von einer ganzen Funktion. Ihr Typus ist ein nach positiven Potenzen 
der Variablen x geordnetes Polynom mit reellen Koeffizienten:

F(x) = da" + a,«"-1+------- + a,; (8) 
die Zahl n nennt man den Grad der Funktion.

Tritt noch die Division hinzu derart, daß die Variable an der 
Bildung des Divisors teilnimmt, so heißt die Funktion eine gebrochene. 
Der Typus einer solchen besteht in einem Bruche, dessen Zähler und 
Nenner ganze Funktionen sind:

F(^ =
a, x -+ a^ x + ■ * • + a, 
b.^ + b,a”-1 +..+ b„‘ (9)

sie heißt echt gebrochen, wenn m > n, unecht gebrochen, wenn m < n.
Zwischen diesen beiden Funktionsgattungen besteht ein tiefgehen­

der Unterschied; während die ganzen Funktionen für die unbeschränkte 
Variable definiert sind, versagt bei den gebrochenen Funktionen die 
Definition an allen jenen Stellen des reellen Zahlengebiets, aber auch 
nur an diesen, an welchen der Nenner Null wird.

Ganze und gebrochene Funktionen werden unter dem Namen der 
rationalen Funktionen zusammengefaßt.

Erstreckt sich auf die Variable auch die Operation der Wurzel­
ausziehung, so heißt die Funktion irrational. Eine typische Form 
dieser Funktionen gibt es nicht. Die Forderung der Realität reicht 
nicht immer aus, die Eindeutigkeit der Funktion herbeizuführen, unter 
Umständen sind noch besondere Festsetzungen dazu notwendig. Der 
Bereich der Variablen muß aus dem Bau der Funktion erschlossen
werden.

Die Funktion 1e-1
/ x — 1 beispielsweise ist eindeutig, wenn man das 

Vorzeichen der Wurzel festsetzt; sie ist definiert für das ganze Gebiet 
der reellen Zahlen mit Ausschluß des Intervalls — 1 < X < 1, inner­
halb dessen ihr Wert imaginär ist.

Czuber, Höhere Mathematik. 5
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Setzt man bei der Funktion Vx — Vx die Quadratwurzeln als 

positiv fest, so ist sie eindeutig und bestimmt in dem Intervall 
1Kx<o.

Bei dem Ausdruck 7 “±8 reicht die Forderung der Realität 

allein aus, um ihn als einwertige Funktion erscheinen zu lassen, die 
für alle Werte von x mit Ausschluß von — a und a bestimmt ist.

Eine zweite Definition der algebraischen Funktionen greift über 
das Gebiet der elementaren Funktionen hinaus. Ihr zufolge wird y 
als algebraische Funktion von x erklärt, wenn zugeordnete Werte bei­
der Variablen einer algebraischen Gleichung genügen. Die typische 
Form einer solchen Gleichung besteht darin, daß eine Summe von 
Gliedern der Form a„ x“y", worin u, v natürliche und a„ , reelle 
Zahlen bedeuten, der Null gleichgesetzt ist. Die größte Zahl u be­
deutet den Grad der Gleichung in Bezug auf x, die größte Zahl v den 
Grad in Bezug auf y, die größte Summe u + v den Grad der Gleichung 
überhaupt. Ordnet man eine solche Gleichung nach Potenzen von y, 
so sind die Koeffizienten ganze Funktionen von x (und umgekehrt).

Diese Definition umfaßt alle Funktionen, die in der vorigen ent­
halten waren, außerdem aber auch noch höhere Funktionen. Ist v = 1 
und der Koeffizient von y eine Konstante, so geht die ganze Funktion 
hervor; hängt der Koeffizient von x ab, so ergibt sich y als gebrochene 
Funktion. Von da ab, d. i. von v = 2 ab, wird y, sofern es über­
haupt reelle Bestimmungen zuläßt, im allgemeinen eine irrationale 
Funktion, läßt sich aber, sobald v die Zahl 4 überschreitet, von be- 
besonderen Fällen abgesehen, nicht mehr durch Wurzelgrößen allein 
darstellen.

Es definiert beispielsweise die algebraische Gleichung

422 + 3x — 2y + 1 = 0

die ganze Funktion y = 2x2 + 9 x + 9 ; die Gleichung

x2 + 2xy +x+6y+3 = 0

die unecht gebrochene Funktion y = — —22—6; die Gleichung

ax2 + 2bxy + cy2 + 2fx + 2gy + h = 0

die zweideutige Funktion y _ —(b.r + g)±V@. + 9)--- c(a.c*+ 2fr+1)

die sich durch Sonderung der Vorzeichen in zwei eindeutige Zweige 
auflöst; ihr Definitionsbereich ergibt sich aus der Bedingung 
^bx + g}2 5 clax2 + 2fx + h}.

II. Alle Funktionen, die nicht unter die Definition der algebra­
ischen fallen, heißen transzendente Funktionen.
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Zu dieser Klasse, die sich durch Angabe positiver Merkmale 
nicht um schreiben läßt, liefert die Elementarmathematik nur wenige, 
dafür aber außerordentlich wichtige Funktionsformen. Es sind das 
die aus geometrischen Definitionen hervorgehenden Kreis-, Winkel­
oder trigonometrischen Funktionen sin x, cos x, tg x, cotg x, sec x, 
cosec x, die beiden ersten für die unbeschränkte Variable, die dritte 
und fünfte mit Ausschluß der Stellen (21+1)7, die vierte und 

sechste mit Ausschluß der Stellen kn definiert, unter k eine beliebige 
positive oder negative ganze Zahl (Null eingeschlossen) verstanden; 
dann die logarithmische Funktion log,x und die mit ihr im Zusammen­
hang stehende Exponentialfunktion a"(39, II, 5), beide unter der Vor­
aussetzung a > 0, die erste in dem Intervall 0 < x < c, die zweite 
für die unbeschränkte Variable definiert. Eine weitere Gruppe von 
Funktionen wird alsbald hinzukommen.

43. Einige besondere Arten des Funktionsverlaufs. In­
verse Funktionen. Einige Erscheinungen im Verlaufe von Funk­
tionen, auf die häufig wird hinzuweisen sein, sollen schon hier ver­
merkt werden.

1. Die Funktion f(x) heißt in dem Intervall (a, b) konstant, wenn 
für jede zwei Werte x = x" aus demselben f(x'} = f(x") ist; es ist 
dann notwendig, für jeden Wert x aus (a, b) f(x) = k, wo k eine be­
stimmte Zahl bedeutet.

2. Eine in dem Intervall (a, b) definierte Funktion heißt monoton, 
wenn mit x < x" stets f(x} < f^x"} oder stets f(x) > f{x") verbunden 
ist. Im ersten Falle heißt die Funktion zunehmend, im zweiten Falle 
abnehmend.

Die Beziehung zwischen x und y = /(x) ist bei einer solchen 
Funktion ein-eindeutig, d. h. zu einem Wert von x gehört nur ein 
Wert von y und zu einem entsprechend gewählten Werte von y nur 
ein Wert von x. Hiernach bildet auch x eine Funktion von y, in 
Zeichen: x = q(y).

Zwei Funktionen, die aus einer solchen ein-eindeutigen Zuord­
nung zwischen x, y hervorgehen, indem man einmal x, ein zweitesma' 
y als die unabhängige Variable wählt, heißen inverse Funktionen. 
Schreibt man diesen Sachverhalt in der Form an:

y-/(), «x = (u), (10)

so geht daraus hervor, daß f[o(y)] = y und g [f(x)] = x für jedes 
zulässige y, bezw. x sein müsse; es kann also als analytisches Merk­
mal dafür, daß die durch f, g angezeigten Funktionen invers seien, 
der Umstand angesehen werden, daß f[o(t)] und g [(t)] gleichbe­
deutend sind mit t.

Will man in der zu y = f{x) inversen Funktion x = (ffy) die un­
abhängige Variable wieder mit x, die abhängige mit y bezeichnen 

5*
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und das geometrische Bild in demselben Koordinatensystem zur Dar­
stellung bringen wie das Bild AB, Fig. 12, von f, so braucht man

AB nur durch Spiegelung an der Linie OH, 
welche den Winkel X 0 Y halbiert, zu trans­
formieren; die neue Linie AB ist das Bild 
von y = (p(x).

3. Eine in dem Intervall (— a, a) oder 
auch (— 00, c) definierte Funktion heißt 
eine gerade Funktion, wenn f(— x) = f^'i 
hingegen eine ungerade Funktion, wenn

/(- x) =
Die erste Eigenschaft kommt einer geraden Potenz von x zu, weil 

(—x)2P = x2P; die zweite einer ungeraden Potenz, weil (—x)2±1= — x2p±1; 
daher stammen die Benennungen.

Aus der Goniometrie ist bekannt, daß cos x eine gerade, sin x 
eine ungerade Funktion ist; denn cos (— x) = cos x, sin (— x) =— sin x.

4. Eine Funktion f(x) der unbeschränkten Variablen, welche für 
jede zwei Werte von x, die sich dem Betrage nach um p von einander 
unterscheiden, gleiche Werte annimmt, heißt eine periodische Funktion, 
p ihre Periode. In Zeichen drückt sich die Eigenschaft in dem 
Ansatz

f(x+p) =f(x) (11) 
aus, der für jedes x gilt. Eine unmittelbare Folge davon ist, daß auch

/(r + kp) =f{x\

wo li jede (positive und negative) ganze Zahl bedeuten kann.
Unter den elementaren Funktionen sind es die trigonometrischen, 

die die Eigenschaft der Periodizität besitzen, und zwar haben sin und 
cos (ebenso sec und cosec) die Periode 22(360°), tg und cotg die 
Periode x (180°); denn es ist

sin (x + 2kx) = sin x, cos (x + 2kx) = cos x,

tg (x + liTt) = tg x, cotg (x + k^t) = cotg x.

Eine periodische Funktion ist zur Umkehrung nicht unmittelbar 
geeignet, weil die Zuordnung, in welcher x, y stehen, nicht ein-ein- 
deutig, sondern in dem einen Sinn ein-, in dem andern unendlich 
vieldeutig ist; die Umkehrung wäre demnach eine unendlich vieldeutige 
Funktion. Durch entsprechende Einschränkung kann man aber die 
Eindeutigkeit herbeiführen. Dies wird am besten an der Umkehrung 
der trigonometrischen Funktionen zu zeigen sein, die uns zu der bereits 
erwähnten weiteren Gruppe elementarer Funktionen führen wird.

5. Man nennt die Umkehrungen der trigonometrischen Funktionen 
zyklömetrisch e Funktionen.
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a) sin x ist in dem Intervall — 5 K x < % eine monoton zunehmende 

Funktion, weil hier mit x < x" zugleich sin x < sin x" stattfindet, 
und nimmt daselbst alle Werte an, deren der Sinus fähig ist.

Die aus der Umkehrung dieses monotonen Abschnitts hervor­
gehende Funktion wird

arc sin x (12) 

geschrieben; ihre Werte liegen hiernach zwischen---- 5 und , mit 

Einschluß der Grenzen, das Gebiet von x ist (— 1, 1).
Die vollständige Umkehrung von sin x soll

Arc sin x (13) 

geschrieben und (12) ihr Hauptwert genannt werden.
Aus den Beziehungen

sin x = sin (2k + 1 a — x) = sin (2ka + x) 

folgt:
Arc sin x = vi - arc sin x

wo das obere Zeichen für ein ungerades, 
das untere für ein gerades v gilt.

Fig. 13 bringt beide Funktionen in dem 
unter 2. erläuterten Sinne zur Anschauung; 
die schwach gezogene Linie stellt den Ver­
lauf von sin x, die stark gezogene den Ver­
lauf von arc sin x dar.

Es ist sin (arc sin t) = arc sin (sin t) = t.
b) cos x ist in dem Intervall 0 < x K a 

eine monoton abnehmende Funktion, weil 
hier x < x" immer cos x > cos x' nach 
sich zieht, und nimmt daselbst alle Werte 
an, deren der Kosinus überhaupt fähig ist. 
Aus der Umkehrung dieses monotonen Ab­
schnitts geht die Funktion

arc cos x

(14)

(15)
hervor, deren Werte somit dem Intervall (0, x) angehören, während 
x auf das Intervall (— 1, 1) angewiesen ist. Man nennt sie auch den 
Hauptwert der unendlich vieldeutigen Umkehrung des vollständigen cos:

Arc cos x; (16)
in Folge der Beziehung: cos x = cos (21c^ + x) ist

Arc cos x = 2ka + arc cos x. (17)
Vgl. Fig. 14.

c) tga ist in dem nicht abgeschlossenen Intervall— 7 <x < 7 eine 
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monoton zunehmende Funktion und nimmt hier alle Werte an, deren 
sie überhaupt fähig ist. Durch Umkehrung dieses monotonen Ab­
schnitts entsteht di Funktion

arc tg x, (18) 

der Hauptwert der vollständigen Umkehrung

Arc tg x; (19) 

zwischen beiden besteht wegen der Periodizität von tg x die Be­
ziehung:

Arc tg x = arc tg x + ka. (20)

Im Anschlusse an die Einführung der zyklometrischen Funktionen 
sollen einige wichtige Relationen zwischen ihnen festgehalten werden.

Aus der Beziehung sin x = cos (7 — x) folgt

arc sin x + arc cos x = 7; (21) 

da ferner tg x = cotg (7 — x), cotg x = und beide Funktionen 

ungerad sind, so ist

arc tg x + arc cotg x = arc tg x + arc tg — = — sgn x, (22 ) 

woraus sich eine neue analytische Darstellung der Funktion sgn x 
(39, II, 2.) ergibt:

sgn x = 4 (arc tg x + arc tg —).

Den Beziehungen sin (x ± y) = sin x cos y ± cos x sin y, cos (x ± y} = 

cos x cos y + sin x sin y, tg (x ± y) = “E4.s7 zwischen dentrigono- 
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metrischen Funktionen entsprechen die folgenden Relationen zwischen 
den zyklometrischen:

arc sin x — arc sin y = arc sin (x V1 — y2 — y V1 — x2)

arc sin x — arc cos y = arc cos (ry -11 — x2 V1 — y^) 

arc tg x — arc tg y = arc tg x ± y 
1-xy

die Wurzeln in den beiden ersten Formeln positiv genommen.

§ 2. Grenzwerte von Funktionen.
44. Grenzwerte im Endlichen. Ist die Funktion f(x) in 

dem ganzen Intervall («, ß) definiert, so gehört zu jeder Stelle a des 
Intervalls ein bestimmter Funktionswert f(a\ den wir den Definitions■ 
wert der Funktion an dieser Stelle nennen wollen. Er wird durch 
die Substitution x = a in f(x) und Ausführung der vorgeschriebenen 
Rechenoperationen gefunden.

Wesentlich verschieden hiervon ist die Frage nach dem Grenz­
wert der Funktion bei dem Grenzübergange lim x = a, d. h. die Frage, 
ob f{x\ wenn sich x unaufhörlich der Stelle a nähert, gegen eine 
Grenze konvergiert, und welches diese Grenze ist.

Während es im ersten Falle nur auf den Funktionswert an der 
Stelle a ankommt, bleibt bei der zweiten Frage gerade dieser außer 
Betracht, und nur um die Nachbarwerte handelt es sich. Es hat also 
die zweite Frage auch dann Berechtigung, wenn f(x) an der Stelle a 
nicht definiert ist.

Im folgenden werde, wenn nichts anderes bemerkt wird, voraus­
gesetzt, a befinde sich im Innern von («, ß).

Man sagt, f{x) habe bei dem Grenzübergange lim x = a einen 
Grenzwert, und dieser sei b, wenn die Differenz b — f(x) dem Betrage 
nach beliebig klein wird, während x sich dem a fortwährend nähert; 
es läßt sich dann zu einem beliebig klein festgesetzten positiven 8 ein 
hinreichend kleines positives 3 angeben, derart, daß

I b - f(x) <
wenn und solange 0<—a<0.

In kurzer Weise drückt man diesen Sach verhalt durch den Ansatz 

lim f{x) = b (2)
x = a

aus.
Es ist wichtig, daß man sich den Inhalt dieser Definition zu 

völliger Klarheit bringe, was wohl am-besten an einer geometrischen 
Verbildlichung gelingen wird. Zu einem beliebig engen Horizontal­
streifen der Ebene des Koordinatensystems (Fig. 16), dessen Mittel­
linie y = b ist, läßt sich ein hinreichend enger Vertikalstreifen mit 
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der Mittellinie x = a angeben derart, daß der ganze Verlauf der 
Funktion, soweit er dem zweiten Streifen angehört, auch in dem ersten

Streifen, also in dem beiden Streifen ge­
meinsamen Rechteck verbleibt; die Stelle a 
kommt dabei nicht in Betracht.

Man sagt, f(x) habe bei dem Grenz­
übergange lim x = a den Grenzwert co, 
bezw. —cc, in Zeichen:

lim f(x) = o, lim f(x) =o, (3) 
x=a x—a 

wenn f{x) beliebig groß, bezw. algebraisch 
beliebig klein wird, während x sich dem a 

fortwährend nähert, derart, daß zu der beliebig groß angenommenen 
positiven Zahl k eine hinreichend kleine 3 sich angeben läßt, so daß

f(x) > k, bezw. f(x) 

wenn und solange 0 < | x — a < 3. (4)

Mitunter ist es notwendig, den Grenzübergang näher zu quali­
fizieren, insbesondere dahin, daß man zwischen einem rechten (x > a) 
und linken (x < a) Grenzübergang unterscheidet. Man bedient sich 
für diese Unterscheidung der Schreibweise

lim f(x), lim f(x); (5)
x=a+0 x = a — 0 

im übrigen bleiben die früheren Erklärungen aufrecht.
An den Endpunkten des Definitionsbereichs ist schon durch die 

Natur der Sache nur ein einseitiger Grenzübergang möglich, und zwar, 
wenn a < ß, bei a nur ein rechter, bei ß nur ein linker.

45. Beispiele. 1. Die Funktion f(x) = sin — ist für x =0 

nicht definiert; sie besitzt aber auch keinen Grenzwert bei lim x = 0, 
Y weil sie, wie nahe an Null man auch 

x annimmt, bei dem weiteren Ab­
nehmen noch unbegrenzt oft zwischen 
den Werten — 1 und 1 schwankt; 
sie nimmt diese Werte abwechselnd 
an den Stellen an, welche durch die 
Glieder der gegen Null 'konvergie­
renden Zahlenfolgen

+90310-0,1,2...
bezeichnet sind. Man hat es hier mit 

Fig. 17.
einer Funktion zu tun, die in der un­

mittelbaren Umgebung von Null geometrisch nicht darstellbar ist; 
Fig. 17 deutet die Erscheinung, die sie hier darbietet, nur an.
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2. Für jeden Wert von x +0 sei f(x) =x cos 1 und /(0) sei = 0. 

Wie klein auch x dem Betrage nach angenommen wird, hört cos 1 

nicht auf, zwischen —1 und 1, f(x) also zwischen —x und x
zu schwanken, wird mit x selbst be­
liebig klein, lim f(x) = 0, so daß bei 

x=0
der obigen Festsetzung der Grenzwert 
mit dem Substitutionswert übereinstimmt. 
Fig. 18 kann das nicht darstellbare Ver­
halten in der Umgebung von 0 nur an­
deuten.

3. Die Funktion f(x) = 1 sin 1 ist 

für x = 0 nicht definiert, hat aber auch 
keinen Grenzwert für lim x = 0; denn sie 
hört, wie sehr man sich der Null auch 

schon genähert hat, nicht auf, zwischen — 

das dem Betrage nach beliebig groß wird;

Fig. 18.

1
x

sie
auf, immer wieder 0 zu werden; es sind also 
eines endlichen noch die eines un­
endlichen Grenzwertes vorhanden.
Da die Werte von 1 durch die 

x
Ordinaten einer gleichseitigen Hy­
perbel dargestellt sind, so bietet 
die Funktion ein Bild dar, wie es 
durch Fig. 19 angedeutet ist; in - 
der nächsten Umgebung von 0 ist 
sie überhaupt nicht darstellbar.

4. Bei der Funktion

/(x) - —1, (a > 1, z+0),

1+a"

und 1 zu schwanken, 
x

hört aber auch nicht
weder die Merkmale

Fig. 19.

die an der Stelle x = 0 nicht erklärt ist, kann auch von einem Grenz­
werte bei dem gewöhnlichen Grenzübergang lim x = 0 nicht die Rede 
sein; erst wenn man den Grenzübergang qualifiziert, ergeben sich be­
stimmte Resultate, und zwar

lim f(x) = 0, weil lim a

und lim f(x) = 1, 
x = — o

weil lim a" = 0 ist.
c=- o
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5. Die Funktion /() = lim 222+1 bietet ein Beispiel für den 

Unterschied zwischen Substitutions- und Grenzwert. Die Substitution

x = 0 gibt f(0) = 2. Bringt man den Bruch auf die Form

so erkennt man unmittelbar, daß f(x) = — ist für x + 0; folglich ist

lim f (x) = + c .
x=±0

6. Die Funktion f{x} = sin" ist für x = 0 nicht erklärt, hat aber 

bei dem Grenzübergang lim x = 0 einen Grenzwert, der, weil die 
Funktion gerad ist, ebensowohl als rechter wie als linker Grenzwert 

1 gerechnet und durch folgende geometrische 
Betrachtung gefunden werden kann.

B Wenn man den Radius des in Fig. 20 
\ aus 0 beschriebenen Kreises als Längenein- 

. ) heit benützt, so ist 
c ad ** BC = sin x, OC = cos x, BD = tg x, 

Fig 20 und es drücken sich die in steigender Größe
geordneten Flächen der Figuren AO CB, 

Sektor OAB, JOBB durch cos qsin «, 5, t" aus; folglich ist

cos x sin x
sin x
cos 2

COS X x 1
sin x cos x

1 — COS X > 1-----Zsin x cos x 2

x

1 — cos x und 1------ — werden mit abnehmendem x beliebig klein, cos X
weil cos x der Einheit beliebig nahe kommt, daher wird auch 1-----C— 

°-------------------- 7------------------------------------ sin x 
beliebig klein; infolgedessen ist 

. x ,. sin x hin . - = lim = I. x=o sin x 2=0 x

46. Grenzwerte im Unendlichen. 
ein einseitig unbegrenztes Intervall, (a, c) 
die unbeschränkte Variable definiert ist, so 

Wenn eine Funktion für 
oder (— oo, a), oder für 
entsteht die Frage nach

ihrem Verhalten bei unbegrenzt wachsendem oder abnehmendem Werte 
der Variablen oder, wie man dies auch auszudrücken pflegt, nach 
ihrem „Verhalten im Unendlichen“ oder nach ihrem „Endverlauf“.
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Man sagt von einer Funktion fix), daß sie bei dem Grenzüber- 
gange lim T = 00 den Grenzwert b habe, in Zeichen:

lim f(x) = b , (6)

wenn die Differenz b — fix) dem Betrage nach beliebig klein wird, 
während x beständig wächst; präziser und für die arithmetische Ver­
wertung geeigneter ausgedrückt, wenn zu einem beliebig klein fest­
gesetzten positiven & eine hinreichend große positive Zahl K angegeben 
werden kann derart, daß

1-/@)l<e, (7) 
wenn und so lange x > K. b±s

In geometrischer Darstellung, Fig. 21, b 
heißt dies, es lasse sich zu einem beliebig z f 
engen Horizontalstreifen der Ebene, dessen 
Mittellinie y = b ist, eine Begrenzungs­
linie x = K derart festsetzen, daß rechts — 
von ihr die Bildkurve der Funktion jenen 
Streifen nicht mehr verläßt.

In analoger Weise ist der Inhalt des Ansatzes 

lim ff) = b
x =-0 

durch die Ungleichungen 
b-ff)\<£
x<-K 

erklärt.

(8)

(9)

Man sagt, die Funktion habe bei dem Grenzübergange lim x = co 
den Grenzwert o, beziehungsweise — oo, in Zeichen:

lim f(f) = co, bzw. lim fix) = o, (10)

wenn sich zu einer beliebig groß festgesetzten positiven Zahl G eine 
hinreichend große positive Zahl K angeben läßt derart, daß 

fif > G bzw. fi^) <-G, 
wenn und so lange x > K.

In bezug auf das geometrische Bild 
besagt der erste Fall, es lasse sich zu einer 
beliebig weit über der x-Achse liegenden 
Geraden y = G eine hinreichend weit von 
der y-Achse nach rechts hin entfernte Ge­
rade x = K angeben solcherart, daß die Bild­
kurve rechts von der zweiten Geraden voll­
ständig über der ersten Geraden verläuft, 
Fig. 22.
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In ähnlicher Weise sind die Ansätze lim /(x)=c und lim f(x)=- c
x = — c x = — c

zu verstehen und zu erklären.
Es kann indessen geschehen, daß die Funktion bei dem Grenz­

übergange lim x = o oder lim x = — o weder einen endlichen noch 
einen unendlichen Grenzwert in dem eben erklärten Sinne besitzt, 
indem sie nie auf hört, zwischen zwei bestimmten oder zwischen be­
liebig weit werdenden Grenzen zu schwanken.

Beispiele. 1. Der Quotient ax. stellt, wenn d = C , eine
- ex — d 7 b d ‘ 

Konstante, hingegen wenn $+4, eine mit x veränderliche Funktion 

dar; diese hat für die Grenzübergänge lim T = 0 und lim x = — oo 

den Grenzwert — . DennC 
a ax — b ad — bc
c ex + d c (ex + d) 

kann durch Wahl eines entsprechend großen, gleichgiltig ob positiven 
oder negativen x dem Betrage nach beliebig klein gemacht werden; 
angenommen beispielsweise, a, 1), c, d seien so beschaffen, daß die 
— *. ... .. ... । ad bc - cd e Differenz tur positive 2 positiv ist, so genügt es, ET 

zu wählen, um jene Differenz unter das beliebig klein festgesetzte 8 
zu bringen.

2. Die Funktion f(x) = dsct (Fs läßt sich durch Ausführung 

der Division auf die Form Ax + B + ex 8 bringen; infolgedessen ist

lim f (x) = c sgn A, lim f(x) = — c sgn A.
x = c x = — oc

Daraus folgt, daß die reziproke Funktion q(x) = aassae bei 

den beiden Grenzübergängen gegen 0 konvergiert.

3. Die Funktion f(x} = x sin — hat für die beiden Grenzüber- 

gänge lim x = — o den Grenzwert 1. Um dies einzusehen, braucht 
. 1 sin —

man sie nur in der Form —1— zu schreiben und auf 45, 6. Bezug

x 
zu nehmen.

4. Der Endverlauf der Funktion f{x) = x cos x gestaltet sich 
derart, daß sie weder einen endlichen noch den Grenzwert o (oder 
— o) besitzt; je größer x wird, zwischen um so weiteren Grenzen 
schwankt sie, ohne jemals aufzuhören, auch den Wert 0 anzunehmen; 
wenn sich also auch bestimmte Stellen bezeichnen lassen, an denen
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die Funktion die beliebig große positive Zahl G überschreitet (bzw. 
unter — G fällt), so läßt sich doch keine Stelle angeben, von der 
an dies dauernd stattfindet. Man sehe
Fig. 23 und vergleiche sie mit den Fig. 18 
und 19.

47. Grenzwert der Funktion
i

f(oc) = (1 + x) " für lim x = O. Die 
vorgelegte Funktion ist für alle x> — 1 
wohl definiert [39, II, 5.], mit Ausnahme 
des Wertes x = 0. Besitzt sie bei 
lim x = + 0 einen Grenzwert, so hat sie 
denselben Grenzwert auch bei lim T = — 0. 
Denn, ersetzt man x durch — §, so wird Fig. 23.

§nun konvergiert 1—8

1—5/ 11—8

= y mit § zugleich gegen + 0, folglich ist 

lim/(- 6) = lim (1 + y^ (1 + y) = lim f(y) • 

Es bedarf daher nur der Prüfung des rechten Grenzübergangs.
Zu diesem Zwecke lasse man x zunächst die Zahlenfolge (1) 

P \n ), wo n
eine natürliche Zahl bedeutet, durchlaufen; es handelt sich dann um

Nun ist
1 \n n 1_n(n — 1) 1 n (n — 1) (n — 2) 1
n) T 1 n T 1-2 n^ ‘ 1-2-3 n3 

n (n — 1) • • • (n — n — 1) 1
1 ■ 2 • • • n n”

_41 “ 1.2 1-2-3
/ n — 1
\ n

1 • 2 • • • n
vom dritten angefangen nimmt mit wachsendem n jedes Glied dieser 
Entwicklung zu, und da zugleich die Anzahl der durchwegs positiven 

1 \n1 + ,) von n = 1 angefangen, ist 

aber bei jedem n 5 2 kleiner als

1 + 1 + 1 - 2 + 1.2.3 + • ' • + 1.2... = a, •
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Die Zahlen a^ o^ • ■ • bilden eine monoton zunehmende Zahlen­
folge, deren Glieder aber sämtlich unter einer festen Zahl bleiben; 
denn es ist, sobald n mindestens 3,

1 1
1 2 on 1 

«,<1+1+2+2+ H ,.-1 - 2 + 7 = 2 + 1 — ,1-1 < 3. 
- i  -

1) Auf 18 Dezimalstellen genau ist e = 2,718281 828459 045235...
2) Sind nämlich &,,«,,--. a, positive echte Brüche, so folgt aus (1 — «,) (1 — «,) 

= 1 — («, — «,) + C, &, zunächst, daß
(1 — «)(1—«)>1 — ( +«,);

multipliziert man beiderseits mit der positiven Zahl 1 — C3 und wendet rechts 
dieselbe Relation an, so entsteht

(1 — q) (1 — «,) (1 — as) > [1 — (q, + «,)] (1 —«)>1 — (q, +&, + «g),
so daß für jedes beliebige n

(1 - x)(1 — c)-(1 - *,)> 1—(,+a, +--------- «„).

2

Folglich haben die Zahlen der Folge (a„) eine Grenze, die zwischen 
2 und 3 liegt und fortan mit e bezeichnet werden soll; es ist also 

lim an = e, (12)

und gleichzeitig ergibt sich für e die Definition durch eine Reihe:

e-l+ithtmat: (13) 
von der schon die ersten zehn Glieder sieben festbleibende Dezimal­
stellen geben, so daß mit diesem Genauigkeitsgrade 1) 

e = 2,7182818 • • • 
gesetzt werden kann.

Gegen die nämliche Grenze e konvergiert aber auch (1 + ,) • 

Denn es ist2)

1-1-1-12 
n 21

(1-1) (1-2)(1-)>1- 3 - 4
\ n / X / n / 2 n

(1 1 \ (1 2 \ (1 n — 1) 1 (n — 1) n 
\ n)\ n) \ n / 22 ‘ 

folglich
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1 + 1 + 1 - “ 1 1.2 1:2) _1(1_ 2 • 3) 2n) TT 1.2.3 ( — 2n)
1 (1 (n — 1) n\

T1.2...n\ 2n )

und weiter

n 2 n \ 11.2 T 1 ■ 2 • • • {n — 2).

daher tatsächlich 

hm ld----- ) = hm a, = e

Um den Übergang zu einem stetigen x zu vollziehen, genügt es, 
rationale x in Betracht zu ziehen, die nicht der Zahlenfolge ( 1) an- 

gehören. Ist z eine solche Zahl, so fällt sie zwischen zwei aufeinander 
folgende Glieder —, -1 dieser Folge, so daß

1) Die Bezeichnung stammt von L. Euler.

P n ‘ n — 1 ° 7

1 1 
n n — 17 

also
1 + - > 1 + z > 1 +1

n ’n — 1

und in erhöhtem Maße

und konvergiert daher gegen e, ferner

und konvergiert daher auch gegen e, folglich ist für jedes rationale 
i

z:lim (1 + ^)z= e und nach den Ausführungen von 39, II, 5) auch 
z = 0

für ein reelles x
i

lim (1 + ay® = e. (14) 
x = o

Die Zahl e1) hat in der Analysis eine außerordentliche Bedeutung 
erlangt: als Basis einer Exponentialfunlition er, die man auch als 
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natürliche Potenz bezeichnet, und als Basis eines Logarithmensystems, 
welches man das natürliche nennt. Die Logarithmen dieses Systems 
sollen fortan durch l bezeichnet werden im Gegensätze zu den ge­
meinen, für welche die Abkürzung log gebräuchlich ist; dagegen 
sollen auf eine unbestimmte Basis a (> 0) bezügliche Logarithmen 
mit log, angeschrieben werden; all dies drückt sich in dem Ansätze 

el:= 10log:= aloga:= z
aus.

48. Grenzwerte von Funktionen zweier Variablen. Die 
Funktion f(x, y) sei für den Bereich P definiert, der durch die Rand­
kurve C begrenzt ist, Fig.

Fig. 24.

24. Der Wert f(a, b), der durch die 
Substitution x = a, y = b in den Funk­
tionsausdruck erhalten wird, heiße der 
Definitionswert der Funktion an der Stelle 
M(a, b), von der vorausgesetzt wird, daß 
sie sich im Innern des Bereichs befinde. 
Davon zu unterscheiden ist der Grenz­
wert der Funktion bei dem Grenzüber­
gange lim x = a, lim y = b, der von dem 
Werte an der Stelle M(a, b) gar nicht 
abhängt, daher auch dann existieren kann, 

wenn die Funktion an dieser Stelle gar nicht definiert ist, und der 
von dem Substitutionswert /(a, b) verschieden sein kann, falls dieser 
vorhanden ist.

Wir wollen sagen, die Funktion besitze bei dem Grenzübergange 
lim x = a, lim y = b den Grenzwert c, und dies in dem Ansätze

lim f(x, y) = c (15)
x = a, y — b

zum Ausdruck bringen, wenn sich zu einem beliebig klein festgesetzten 
positiven & ein hinreichend kleines positives 8 bestimmen läßt der­
art, daß

\c-f^,y}\<^

wenn und so lange x — a | < 3, \y — b|<3 (16)

x— a|+ly — b|> 0; 
der letzte Ansatz drückt aus, daß x | y nicht mit a b zusammenfallen 
dürfe.

Bei geometrischer Deutung ist hiermit folgendes gesagt. Denkt 
man sich eine Raumschichte, die von den Ebenen z = c — & und 
z = c + & (parallel zur xy-Ebene) begrenzt ist, so läßt sich eine Um­
gebung aßyö des Punktes M angeben derart, daß der über ihr liegende 
Teil der die Funktion darstellenden Fläche ganz in jener Raumschichte 
enthalten ist.
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Zeigt die Funktion ein solches Verhalten, wie es durch die An- 
S atze

f(x, y)> K, bzw. /(t, y) < - K, 
wenn und so lange x—al<3, y—b<8 (17)

x — a \ + \ y — b|> 0
beschrieben ist, die nach dem Vorausgeschickten keiner näheren Er­
klärung mehr bedürfen, so sagt man, es sei

lim f(x, y) = oo, bezw. lim f(x, y) =co (18)
x = a,y = b x = a,y = b

In einem Punkte am Rande des Gebiets muß die Umgebung so 
gehalten werden, daß sie beständig dem Bereich angehört.

Die folgende Ausführung soll noch auf gewisse Feinheiten des 
Grenzübergangs bei Funktionen zweier (und mehrerer) Variablen auf­
merksam machen.

Wenn für die Funktion f(x, y) ein Grenzwert im Sinne der An­
sätze (15) und (16) existiert, so ist es evident, daß man ihn finden 
müsse, auf welcher Bahn auch man sich dem Punkte M unbegrenzt 
nähert. Dies könnte auf den Gedanken bringen, den Grenzwert in 
der Weise zu suchen, daß man durch M eine passend gewählte Bahn, 
z. B. LM, führt und auf dieser dem Punkte M sich nähert. Das 
Zustandekommen eines solchen Grenzwertes gestattet keineswegs den 
Schluß, daß man damit einen Grenzwert im obigen Sinne gefunden 
habe; dieser Schluß wäre erst dann legitim, wenn man alle durch M 
führenden Bahnen verfolgt hätte und auf allen zu dem nämlichen 
Grenzwerte gelangt wäre; denn es ist denkbar, daß man auf ver­
schiedenen Bahnen verschiedene Grenzwerte findet, dann aber existiert 
ein Grenzwert im Sinne von (15) nicht. Ein Beispiel dieser Art bietet 
die Funktion 22,

"e, y} - a*+y* 
die für alle Wertepaare von x, y definiert ist mit Ausschluß von 0,0. 
Nähert man sich dieser Stelle 0 längs eines Strahls, der mit der 
x-Achse den Winkel 9 einschließt (s. die Fig.), so ist in einem Punkte 
dieses Strahls, der um r > 0 von 0 entfernt ist, x = r cos y,y = r sin 9, 

daher f(x, y) - sin 2«, 

und dieser Wert bleibt erhalten, wie klein auch r wird, so daß bei 
Verfolgung dieses Strahls

lim f(x, y) = sin 2 g .

Da nun g von Strahl zu Strahl sich ändert, so ändert sich auch 
lim f(x, y) von Strahl zu Strahl und nimmt, während g das Intervall 
(0, a) durchläuft, alle Werte von 0 bis 1, 1 bis — 1 und — 1 bis 0 
an. Es existiert daher lim /(x, y) nicht.

x = 0, y = 0
Czuber, Höhere Mathematik. 6
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49. Das Unendlichkleine und Unendlichgroße. Es empfiehlt 
sich, einige häufig wiederkehrende Vorstellungen und Prozesse durch 
Einführung kurzer Bezeichnungen zu formalisieren, um von ihnen im 
weiteren Verlaufe bequemer Gebrauch machen zu können.

Bei der Definition des Grenzwertes b einer Funktion f(x) bei 
einem Grenzübergange lim x = a sind die variablen Differenzen f(x)—b 
und x — a aufgetreten, von welchen die erste beliebig klein gemacht 
werden kann, indem man die zweite hinreichend klein werden läßt.

Wir werden von einer variablen Größe, von der wir uns vor­
stellen, daß sie im Verlaufe ihrer Änderung dem Betrage nach unter 
jede noch so kleine Zahl herabsinkt, sagen, sie werde unendlich Idein 
oder sei ein Unendlichkleines. Mit Benutzung früherer Ausdrucks­
weisen kann man auch sagen, ein Unendlichkleines sei eine Variable, 
die der Grenze 0 zustrebt. Das Unendlichkleinwerden bezeichnet also 
nicht einen Denkprozeß, der eines Abschlusses fähig ist, sondern, wie 
schon der Name andeutet, einen Vorgang, der, wie weit er schon ge­
führt sein mag, immer noch eine Fortsetzung zuläßt.

Die Tatsache, eine Veränderliche y werde unendlich klein, kann 
demnach symbolisch durch den Ansatz

lim y = 0 
ausgedrückt werden.

Bei der Betrachtung des Endverlaufs einer Funktion f(x) ist 
unter andern auch der Fall erwähnt worden, daß f(x) dem Betrage 
nach beliebig groß gemacht werden könne, indem man x hinreichend 
groß (oder algebraisch klein) werden läßt.

Von einer variablen Größe, von der wir uns vorstellen, daß sie 
im Verlaufe ihrer Änderung über jede noch so große (oder unter eine 
algebraisch noch so kleine) Zahl hinauskommt, soll gesagt werden, 
sie werde (positiv, negativ) unendlich groß, oder sie sei ein Unendlich­
großes. Durch Anwendung früher eingeführter Schreibweisen kann 
man diesen Sachverhalt durch die Ansätze

lim y = o, bzw. lim y = — o
zum Ausdruck bringen. Wiederum handelt es sich nicht um einen 
abgeschlossenen, sondern um einen stets fortsetzbaren, also um einen 
Werdeprozeß, der, soweit wir ihn verfolgen mögen, immer im End­
lichen verläuft1).

1) Man hat das Unendlichgroße im Sinne dieser Definition uneigentliches 
Unendlich genannt und ihm ein eigentliches 
Unendlich gegenüber gestellt. Die Vorstel­
lungen, die dieser Unterscheidung zugrunde 
liegen, werden sich am besten geometrisch 
deutlich machen lassen.

Als Axiom angenommen, daß zu einer 
Geraden g durch einen Punkt A eine Paral­
lele g' gelegt werden könne, Fig. 25, wird
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Das Unendlichkleine und Unendlichgroße ist einer Graduierung 
fähig. Man hat es nämlich nie mit einer solchen Größe allein, son­
dern stets mit zwei oder mehreren voneinander abhängigen zu tun; 
und dann kann bei irgend zweien das Unendlichklein- oder Unendlich­
großwerden in gleich raschem (starken) Maße vor sich gehen oder bei 
einer von beiden rascher (stärker) als bei der andern. So wird man 
bei dem Grenzübergange

lim f(x) = b für lim x = a

die Differenzen f(x) — b und x — a auf den Grad ihres Unendlich­
kleinwerdens vergleichen können. Die Graduierung soll sich auf den 
Quotienten

f(x) — b
x — a

stützen: hat dieser Quotient einen Grenzwert, so soll, je nachdem der­
selbe 0, eine endliche Zahl k oder c ist, gesagt werden, f(x) — b 
werde in höherem, gleichen oder niedrigeren Maße unendlich klein 
als x — a.

In gleicher Weise kann man, wenn

lim f(x) = o für lim x = co, 
über den Grad des Unendlichwerdens nach dem Verhalten des Quotienten 

f(a)
x

urteilen; hat dieser Quotient den Grenzwert 0, beziehungsweise k oder 
c, so erklärt man, f{x} werde in niedrigerem, gleichen oder höheren 
Maße unendlich groß als x.

In vielen Fällen ist es möglich, die Graduierung ziffermäßig aus­
zudrücken. Man stützt sich dabei auf folgende Erwägung. Ist y eine 
unendlich klein werdende Größe, so nimmt, sobald y einmal in das 
Gebiet der echten Brüche gekommen, yn im Vergleich zu y umso 
rascher ab, je größer (das positiv gedachte) n^ wird y unendlich groß, 

die Strecke OB bei unaufhörlicher Annäherung von AB an g‘ unendlich-, der 
Gegensatz in der Lage von B gegen 0 kommt im Vorzeichen des Unendlich­
werdens zum Ausdruck.

Bezüglich der Parallelen g' selbst könnte man sich der Ausdrucksweise be­
dienen, Punkt B und Strecke OB haben zu existieren aufgehört. Es hat sich 
jedoch als zweckmäßig erwiesen, zu sagen, der Punkt B sei nun im Unendlichen, 
und die Strecke OB sei (qualitätslos) unendlich, und dies ist ein Fall des eigent­
lich oder aktual Unendlichen.

In die Sprache der Arithmetik übertragen, wobei man sich an die Gerade 
g als Bild des Systems der reellen Zahlen hält, heißt dies: Man fügt zu den 
reellen Zahlen eine neue Zahl C hinzu, die ebenso qualitätslos ist wie die 
Zahl 0. Sowie nun eine Variable, die sich der 0 als Grenze nähert, unendlich 
klein wird, so kann auch von einer unendlich groß werdenden Variablen gesagt 
werden, sie nähere sich der fiktiven Zahl C als Grenze von der einen oder 
andern Seite.

6*
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so wächst, sobald y die Einheit überschritten, yn umso rascher im 
Vergleich zu y, je größer n ist.

Sind y, Y zwei voneinander abhängige Variable, die gleichzeitig 
unendlich klein, bzw. unendlich groß werden, und hat der Quotient

y

einen von Null verschiedenen endlichen Grenzwert k, so sagt man, 
Y werde in bezug auf y unendlich klein, bzw. unendlich groß von der 
Ordnung n. Die Worte „in bezug auf y^ können auch noch unter­
drückt werden, wenn man y von Anfang an als Vergleichsgröße von 
der ersten Ordnung festgesetzt hat.

Setzt man

y”
so bedeutet n eine mit y, Y gleichzeitig gegen Null konvergierende 
Größe, das Produkt ynr^ = & wird also in bezug auf n von höherer 
Ordnung unendlich klein als yn- die typische Form einer infinitesi­
malen Größe, die in bezug auf y von der Ordnung n ist, lautet sonach:

Y = kyn + 8; (19)
man nennt kyn den Hauptteil, 8 den sekundären Teil von Y. 

Ist
Y, = k y"+ «i

eine zweite infinitesimale Größe derselben 
der Quotient

Ordnung, so konvergiert

k-—
Y= ky"+e _ _______

Y ^i y11 +8, R+8

, yH
gegen die Grenze %,, in Worten ausgedrückt: Der Quotient zweier von 

einander abhängiger Inßnitesimalgrößen gleicher Ordnung hat den Quo­
tienten ihrer Hauptteile zur Grenze.

Zur Illustration dienen die folgenden Beispiele.
1. sin x und x werden zugleich unendlich klein, und da 45, 6. 

gezeigt wurde, daß lim "in " = 1 ist, so werden beide Größen unend- 
x=0 x

lieh klein von gleicher Ordnung. Sie streben im vorliegenden Falle 
der Gleichheit zu, weil die Grenze ihres Quotienten 1 ist. Wie rasch 
das vor sich geht, möge daraus entnommen werden, daß der Quotient 
schon bei 3° (= T) gleichkommt 0,999 542 7, und daß er bei 10' 

(= 1080) den von 1 ganz unerheblich abweichenden Wert 0,999 9940 

besitzt.



Ordnungen des Unendlichkleinen. — Stetigkeit. 85

2. Y= 1 — cos x und y = x werden gleichzeitig unendlich klein; da 
/ • xc2

Y Y 1 / sin 2 |
aber nicht .hingegen — == --- -------- einen endlichen von Null ver- y ’ PP------------I 

schiedenen Grenzwert hat, nämlich ), so ist Y unendlich klein von 

zweiter Ordnung in bezug auf y.
3. Man zeige, daß Y = tg x — sin x in bezug auf y = x unendlich 

klein von dritter Ordnung ist.

§ 3. Stetigkeit der Funktionen.
50. Der Stetigkeitsbegriff. Von der stetigen Variablen x 

sagt man, sie durchlaufe das abgeschlossene Intervall « S x < ß stetig, 
wenn sie jeden Wert aus diesem Intervall und jeden nur einmal an­
nimmt. Es kann dies in zwei Richtungen, von « oder von ß aus­
gehend, geschehen; wo nichts anderes bemerkt wird, stellen wir uns 
vor, daß x sich wachsend ändert.

Wenn eine andere, dem x zugeordnete Variable y während dieses 
Vorgangs auch ein abgeschlossenes Intervall (A, B) stetig durchläuft 
so heißt y = f(x) eine in dem 
Intervall («, ß) monotone Funk­
tion, und zwar eine wachsende 
oder eine abnehmende, je nach­
dem A < y < B oder Ay y 
> B. Das geometrische Bild 
einer solchen Funktion ist 
ein von links nach rechts 
auf steigend er, beziehungsweise abfallender Bogen, Fig. 26 a, 26 b.

Besteht der Bereich von y aus mehreren (beliebig vielen) anein­
ander gereihten Intervallen (A, C), (C, D}, (B, E), (E, B), welche stetig 
und in abwechselnder Richtung durchlaufen werden, während x sein 
Intervall stetig durchläuft, so ist y eine aus mehreren aneinander sich 
anschließenden monotonen Abschnitten zusammengesetzte Funktion, 
die abwechselnd zu- und abnimmt- ihr Bild setzt sich aus miteinander 
zusammenhängenden,. abwechselnd auf- und absteigenden Bogen zu­
sammen.

Funktionen von der beschriebenen Art bezeichnet man als in dem 
abgeschlossenen Intervall a K x K ß stetige oder kontinuierliche Funktionen.

Ist y in dem nicht abgeschlossenen Intervall a < x < ß eindeutig 
definiert, und besitzt es die eben angeführten Eigenschaften in jedem 
Intervall, das innerhalb («, ß) liegt, so heißt f(x) eine in dem Inter­
vall a < x < ß stetige Funktion.

51. Sätze über stetige Funktionen. Um die im vorstehenden 
anschaulich entwickelte Eigenschaft der Stetigkeit arithmetisch nutz­
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bar zu machen, sollen einige Folgerungen dieser Eigenschaft in Sätze 
gefaßt werden.

1. Wenn die Funktion Ax} in dem Intervall (a, ß) stetig ist, so 
läßt sich zu einem beliebig klein festgesetzten positiven s an jeder Stelle 
x = a im Innern des Intervalls ein hinreichend kleines positives 3 be­
stimmen derart, daß

V^-A^ <6, ‘ (1) 
solange x — a | < ö.

Der Wert f(al) gehöre dem Intervall (A, B) an, und & sei so klein 
festgesetzt, daß auch /(a) — & und A0^ — & ihm angehören: diesen 
letzteren entsprechen Werte von x aus (a, ß), die sich in einer der 
Formen a — h, a + h‘ oder a + h, a — h' darstellen lassen, je nachdem 
A < B oder A^> B ist; versteht man unter h die kleinere der beiden 
positiven Zahlen h, h', so genügt jedes ö, für das 0 < 3 < h besteht, 
der obigen Forderung.

Ist das Intervall (a, ß) ein abgeschlossenes, so gilt der Ansatz (1) 
an der Stelle « nur für eine rechte, an der Stelle ß nur für eine 
linke Umgebung. Bei einem nicht abgeschlossenen Intervall sind a, ß 
auszuschließen.

Der Ansatz (1) ist aber gleichbedeutend mit der Aussage1): 

lim f(=) = f(a), (2)
x = a

so daß man auch diese als Merkmal der „Stetigkeit an der Stelle a“ 
ansehen kann.

Man nimmt vielfach diesen Satz zum Ausgangspunkt des Stetig­
keitsbegriffs und erklärt dann eine Funktion als stetig in dem Inter­
vall («, ßf wenn sie die Eigenschaft (1) oder (2) in jedem Punkte 
des Intervalls besitzt, wenn also

lim /(=) = / (lim z)
so lange & < x A ß oder « < x < ß.

Sind x, x” zwei verschiedene Punkte aus der Umgebung (a — d, 
a + d) von a, so daß

\A^ -A  ̂I < 6

A^-A^ < e, 
so folgt daraus

I/(e")-/(r)<2e.

1) Es sei darauf hingewiesen, daß Ansätze wie 

lim f(x) = f^)
x = a

oder lim f(x+h) = f(x),
h =0

die auf den ersten Blick selbstverständlich scheinen, Stetigkeit voraussetzen.
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Es läßt sich also bei einer stetigen Funktion zu jeder Stelle eine hin­
reichend enge Umgebung konstruieren derart, daß irgend zwei Funktions­
werte aus dieser Umgebung sich beliebig wenig voneinander unter­
scheiden.

2. Eine im abgeschlossenen Intervall &ATsß stetige Funktion 
f(x) ist daselbst endlich und nimmt wenigstens einmal einen kleinsten 
Wert m und einen größten Wert M an.

Die erste Behauptung ist implizite in dem 50. entwickelten 
Stetigkeitsbegriff enthalten, da ja zu jedem « A x A ß ein bestimmter, 
also ein endlicher Wert von f(x) gehören muß.

Sind (A, C), (C, D), . . . (K, B) die Intervalle, welche fix) nach­
einander stetig durchläuft, so ist die kleinste der Zahlen A, B, C,.. .K,B 
das m, die größte das M.

Eine im nicht abgeschlossenen Intervall «<x<ß stetige Funktion 
braucht daselbst nicht endlich zu sein; existieren lim ff) und lim ff), 

x = a + 0 x=ß —0
so ist sie endlich, und bei der Aufsuchung der äußersten Funktions­
werte kommen diese Grenzwerte, die die Funktion innerhalb des Inter­
valls nicht anzunehmen braucht, mit in Betracht; es kann unter solchen 
Umständen die Funktion statt eines kleinsten und größten Wertes 
auch blos eine untere Grenze g und eine obere Grenze G besitzen, die 
sie wirklich nicht erreicht.

Den Unterschied M — m, bzw. G — g, bezeichnet man als die 
Schwankung der Funktion ff) im Intervall f, ß).

Einige kleine Beispiele werden diese Ausführung besser beleuchten. 
ff) = 3x — 5 für 1 < x < 2 ist eine stetige und endliche Funk­

tion mit m = — 2 und M = 1 und mit der Schwankung M — m= 3.
ff) = 3x — 5 für 1 < x < 2 ist eine stetige und endliche Funk­

tion mit der unteren Grenze 9 = — 2 und der oberen G = 1, die 
beide nicht erreicht werden, und mit der Schwankung G — q = 3.

ff) = 1 für 0 < x < 1 hat keine obere Grenze, weil lim ff) = c 

e x=+0 
ist, wohl aber einen kleinsten Wert m= 1; von einer Schwankung 
kann hier nicht gesprochen werden.

3. Wenn die Funktion ffl) in dem abgeschlossenen Intervall 
«Kasß stetig und wenn ff) = ff) ist, so gibt es zu jeder Zahl u 
zwischen ff) und ff) mindestens eine Stelle § in f, ß), an der 
ff) = u ist.

Ist die Funktion monoton, so ist (A, B) ihr Bereich, und da sie 
jeden Wert aus diesem Bereiche und jeden nur einmal annimmt, so 
gilt dies auch für u.

Besteht sie aus abwechselnd zu- und abnehmenden monotonen 
Abschnitten und sind (A, C), IC, D),. . . ff B) die Intervalle, die sie 
der Reihe nach durchläuft, so muß u in mindestens einem derselben 
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vorkommen; denn die Annahme, daß es außerhalb aller Intervalle 
liege, stünde entweder mit f(«) < u oder mit u < f(ß) im Wider­
spruch.

Es ist eine Folge des obigen Satzes, daß die Funktion auch jeden 
Wert zwischen m und M annimmt; denn die Steilen, an welchen 
f(x) gleich m, bzw. gleich M ist, gehören dem Intervall («, ß) an.

Eine weitere wichtige Folge spricht der folgende Satz aus:
Wenn die Funktion f(x) in dem abgeschlossenen Intervall «Kx K ß 

stetig ist und an seinen Enden entgegengesetzt bezeichnete Werte besitzt, 
so existiert wenigstens eine Stelle 6 in (a, B), an der /(§) = 0 ist.

Da nämlich f(x) jeden Wert zwischen f(«) und f(ß) innerhalb 
(«, ß) mindestens einmal annimmt, so gilt dies auch von 0, das nun 
zwischen f(«) und f(ß) liegt.

4. Hat eine in dem Intervall («, ß) stetige Funktion f(x) die 
Eigenschaft, daß zu einem beliebig klein festgesetzten positiven & ein 
hinreichend kleines positives 3 bestimmt werden kann derart, daß

I/G)-/)<e (4)
solange | x" — x' | < ,

so nennt man sie gleichmäßig stetig in dem Intervall. Der Sinn dieser 
Definition ist also der, daß, wo man auch zwei Stellen in («, ß) be­
zeichnet, deren Abstand unter 8 liegt, der Unterschied der zugehörigen 
Funktionswerte jedesmal dem Betrage nach kleiner als & ist.

Bei dieser Eigenschaft muß zwischen abgeschlossenen und nicht 
abgeschlossenen Intervallen wohl unterschieden werden; bezüglich der 
ersteren gilt der wichtige Satz:

Eine im abgeschlossenen Intervall (a, ß) stetige Funktion ist daselbst 
gleichmäßig stetig.

Es werde zunächst vorausgesetzt, die Funktion sei monoton 
wachsend und (A, B) ihr Intervall; man teile dieses in soviel (n)

___ _ f
gleiche Teile, daß = k < — sei. Zu den Funktionswerten P 7 n 2

/(), /() + I, /() +21,. /(a) + n - 1 k, /(B) 
sollen die (gleichfalls steigend geordneten) Argumentwerte

Jo =«, X,, a, • • • 2,-1 B = a, 
gehören; je zwei benachbarte bestimmen ein Intervall, und das kleinste 
unter diesen n Intervallen habe die Größe h] dann genügt jedes 3, für 
das 0 < ö < h besteht, der obigen Forderung. Nimmt man nämlich 
irgend zwei Werte x, x" an, für die x"—x ^h, so fallen sie ent­
weder in ein und dasselbe Intervall (xi} xi+1), oder sie verteilen sich 
auf zwei benachbarte Intervalle (xi_1, xß, (x,, x,41). Im ersten Falle 
ist unmittelbar

If(x")—f(x)<5<e;
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im zweiten Falle hat man sowohl

/(x) -/(,) 1 < 2
als auch /()-/)<{, 
daher wieder /(=") -/(x) [ < 6.

Besteht die Funktion aus mehreren monotonen Abschnitten, so 
führe man die beschriebene Operation für jeden Abschnitt gesondert 
aus; das kleinste unter den gefundenen h genügt dann für den ganzen 
V erlauf.

In einem nicht abgeschlossenen Intervall besteht gleichmäßige 
Stetigkeit nur dann, wenn die Funktion gegen die Enden hin be­
stimmten Grenzen sich nähert. So ist die Funktion f(x) = 3x — 5 
auch in dem Intervall 1 < x < 2 gleichmäßig stetig; nicht so jedoch 
die Funktion f{x) = 1 inO<^<l, weil lim f(x) - c; hier wird 

e x =+0
3, je mehr man sich der Anfangsstelle 0 nähert, bei gegebenem & 
immer kleiner, und es gibt kein genügend kleines 3, das durchwegs 
entsprechen würde.

52. Verschiedene Arten der Unstetigkeit (Diskontinuität). 
Wenn eine Funktion f(x) in der (ein- oder beiderseitigen) Umgebung 
einer Stelle x = a definiert ist, die Stetigkeitsbedingung (1) aber nicht 
erfüllt, so heißt sie an dieser Stelle unstetig oder diskontinuierlich. An 
der Stelle selbst kann die Funktion vermöge ihres analytischen Aus­
drucks auch definiert sein, oder es versagt dieser Ausdruck hier; in 
letzterem Falle kann die Definition durch eine Festsetzung ergänzt 
werden. Immer kommt es darauf an, das Verhalten der Funktion bei 
unbegrenzter Annäherung an die Stelle a zu prüfen, zu untersuchen, 
ob die Funktion Grenzwerte besitzt, und welcher Art diese sind. Auf 
eine Klassifikation der mannigfaltigen Möglichkeiten soll hier nicht 
eingegangen werden; es möge genügen, einige charakteristische Fälle 
vorzuführen und durch Beispiele zu belegen.

1. Es sei lim f(x) = lim f(x) = b eine endliche Größe, /(a) ent- 
x = a — 0 x=a+0

weder nicht definiert oder von b verschieden. Ergänzt oder ändert 
man die Definition dahin, daß f(a) = b sei, so verhält sich die Funk­
tion an der Stelle a wie eine stetige, man spricht daher von einer 
hebbaren Unstetigkeit.

Die Funktion f(x) = x cos 1 (45, 2.) verhält sich an der Stelle 

x = 0 wie eine stetige Funktion, wenn man /(0) = 0 festsetzt; bei 
jeder andern Festsetzung ist sie wesentlich unstetig.

Die Funktion f(x) = lim‘Vx2 (n eine natürliche Zahl) ist für jeden 
n = 0

Wert von x definiert, und zwar ist 1 ihr Wert, so lange x = 0, und
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0 für x = 0. Man hat also lim f(x) = lim f(x) = 1, hingegen f(0) = 0. 
„ x=-0 x =+0
Andert man die Definition dahin ab, daß f(0) = 1 sein solle, so ver­
schwindet die Unstetigkeit.

2. Es sei lim f(x) + lim f(x) und beide endlich; ohne Rücksicht 
x = a— 0 x = a+0

darauf, ob f(a) vorhanden und wie groß es ist, besteht Unstetig­
keit, weil sich keine Umgebung von a angeben läßt, in welcher 
\f(x'} — /(x'} |< £ wäre für beliebige x , x" und ein beliebig klein 
gewähltes &.

Man spricht hier von einem endlichen Sprung.

X 1

Die Funktion f(x) = 1 ist für x = 0 nicht definiert; es ist
e"+ 1

aber lim f(x) = — 1 und lim f(x) = 1; bei Überschreitung von 0 
X = — 0 x=+0

findet also ein Sprung von — 1 auf 1 statt, während sich die Funktion 
im übrigen stetig verhält.

Die Funktion f{x} = lim —14, (n = 1, 2, • • •) hat den Wert 0, 
n = 00 1 — a

solange x I > 1; den Wert 1, solange X <1; hingegen ist f(— 1) = 
f(1)=7; wenn also x wachsend die Stelle — 1 durchschreitet, springt 

der Funktionswert von 0 auf , und unmittelbar darauf auf 1, und 

das umgekehrte findet beim Passieren der Stelle 1 statt.
Die Funktion f(x) = x — [x], 

worin [x] die algebraisch größte in 
x enthaltene ganze Zahl bedeutet 
und deren Bild in Fig. 27 angedeutet 
ist, bietet ein Beispiel von unendlich 
vielen endlichen Sprüngen dar. Aus 
dem Bilde wären eigentlich die 
Punkte in den Linien y = — 1 und 

y = 1 auszuscheiden. Ist n eine positive ganze Zahl und 8 ein po­
sitiver echter Bruch, so ist

,/{n — ö) = n — ö — (n — 1) = 1 — d,

f(n + ö) = n — d — n = 3, 

während f(n) = n — n = 0 ist; 

ähnlich für negative n.
3. Wenigstens einer der Grenzwerte lim f(x), lim f(x) existiert 

x — a — 0 x = a+0 
nicht; es findet eine UnStetigkeit statt, was auch bezüglich f(a) selbst 
gelten möge.
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Ein Beispiel hierzu bietet f(x) = sin — an der Stelle x = 0 dar

(45,1.); denn lim sin — existieren nicht, weil die Funktion, wie klein 
z= +° e 

auch j x | werden möge, niemals aufhört, zwischen — 1 und 1 zu 
schwanken.

4. Wenigstens einer der Grenzwerte lim f(x), lim f(x), ist unend- 
x =a-0 a =a+0

lieh. Man nennt dann a eine Unendlictikeitsstelle der Funktion.
1

Bei der Exponentialfunktion  f{x) =e% ist lim f(x) =0, lim f(x) = o ; 
z=—o r= +o 

setzt man also f(0) = 0 fest, so verhält sich f(x) links von 0 stetig; 
wegen des rechtsseitigen Verhaltens ist aber x = 0 ein Unendlich­
keitspunkt.

Die Funktion f(x) = ) hat 0 zur Unendlichkeitsstelle, und zwar 

ist lim f(x) = — o, lim f(x) = o.
*=—o x=+0

Auch /(x) = 22 hat die Unendlichkeitsstelle x = 0, hier aber sind 
lim f(x) beide — oo.
x= +0

Die Funktion /(x) = Ix hat lim f(x) = — co, existiert aber links 
x = + 0

von 0 nicht (als reelle Funktion).

Die Funktion f(x) = tg x hat in x = 7 eine Unendlichkeitsstelle, 
indem lim tg x = c, lim tg x = - o. Man prüfe das Verhalten

*= 2 -0 *= 2 +0

an den Stellen x = ", + nx, wo n eine (positive oder negative) ganze 

Zahl bedeutet.
Ein eigenartiges Verhalten zeigt f(x) = tg 1 ; die Stellen x = +— 

2+n 

sind Unendlichkeitspunkte und auch x = 0 ist ein Unstetigkeitspunkt, 
indem f(x) in einer beliebig engen Umgebung unendlich oft das ganze 
Gebiet der reellen Zahlen durchläuft.

53. Stetigkeit von Funktionen mehrerer Variablen. Die 
Funktion /{x,y} der unabhängigen stetigen Variablen x, y, definiert 
für einen abgeschlossenen Bereich P mit der Randlinie C (40, 48), 
heißt an der Stelle x = a, y = b im Innern dieses Bereichs stetig, wenn 
sich zu einem beliebig kleinen positiven s ein hinreichend kleines 
positives 8 bestimmen läßt derart, daß

\f^,y) — f(a,b)|< e,

solange \x — a|<8, \y — b | < ö, (5)

x—al—y—b|> 0
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ist; mit Worten, wenn sich zu der Stelle a b eine (quadratförmige) 
Umgebung von so kleiner Ausdehnung 2 3 konstruieren läßt, daß jeder 
Funktionswert aus dieser Umgebung sich von jenem an der Stelle a b 
dem Betrage nach um weniger unterscheidet als s.

Nach den Ausführungen in 48 ist diese Definition gleichbedeutend 
mit der Erklärung des Ansatzes

lim f(x,y) =f(a^ (6)
x = a, y = b

Befindet sich der Punkt a j b auf der Randlinie C, so ist die Um­
gebung auf jenen Teil einzuschränken, der dem Bereiche P angehört.

Die Funktion f(x,y) heißt stetig im Bereiche P, wenn sie den Be­
dingungen (5) in allen Punkten von P genügt.

Verfolgt man eine in diesem Sinne stetige Funktion längs 
einer in P verlaufenden Linie, so verhält sie sich als stetig; insbe­
sondere auch dann, wenn man sie längs einer Parallelen zu einer der 
Achsen OX, OY verfolgt. Das zu 48 beigebrachte Beispiel allein, 
genügt aber, um die Umkehrbarkeit dieses Sach Verhaltes auszuschließen: 
die Funktion f(x,y) braucht an einer Stelle a b nicht stetig zu sein, 
wenn /(x/b) als Funktion von x stetig ist bei x = a und f(a,y) stetig 
ist bei y = b. Die Funktion f^x^ = x^^y^ in dem zitierten Bei­

spiel ist längs jeder durch die Stelle 0 0 gezogenen Geraden stetig, 
weil konstant, sie ist aber nicht stetig an der genannten Stelle selbst, 
weil sie hier nicht definiert ist.

Wichtig ist es, die gleichmäßige Stetigkeit hervorzuheben, die wie 
bei Funktionen einer Variablen eine notwendige Folge der Stetigkeit 
im abgeschlossenen Bereich ist; sie besteht darin, daß sich zu einem & 
ein 3 bestimmen läßt derart, daß

\Ax">y") -/(x,y)<e, 

solange x"— x‘<o, y"—y‘<ö, (7)
«"— x‘|+ y" — yr>0.

Die Definition der punktuellen Stetigkeit einer Funktion zweier 
Variablen ist wörtlich auf eine Funktion f(xv x, -xj übertragbar, 
die von n Variablen abhängt; man wird sie in dem „Punkte" a,a, • • • a, 
ihres „Definitionsbereichs“ Bn stetig nennen, wenn zu einem festge­
setzten & ein hinreichend kleines 3 bestimmbar ist derart, daß

f(x, «,,—* x^ —f(a, a,,*" aj I < e, 

solange 21 — a, | < 3, | X2 — a, | < 3, • • • | xn — an | < 3, (8)

X, — al + 2, — a,l+----- - | xn — an | > ö 
ist; und stetig im Bereich--Bn, wenn sie diese Eigenschaft in jedem 
Punkte des Bereichs aufweist.
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IV. Abschnitt.

Elemente der Differentialrechnung.
§ 1. Der Differentialquotient und das Differential.

54. Begriff des Differentialquotienten. Unter den Fragen, 
die sich beim Operieren mit Funktionen einstellen, ist eine der 
wichtigsten auf die Änderungen gerichtet, welche die Funktion bei 
bestimmten Änderungen der Variablen erfährt, und zwar auf die 
Änderungen im großen und kleinen; denn sie machen das aus, was 
man den Verlauf der Funktion nennt.

Es sind also Denkprozesse von fundamentaler Bedeutung für die 
Analysis, an deren Erklärung jetzt geschritten werden soll. In erster 
Linie wird dabei an Funktionen einer Variablen gedacht werden.

Es sei y = f(x) eine in dem Intervall («,ß) eindeutig definierte 
und stetige Funktion; unter x möge jetzt ein bestimmter Wert im 
Innern des Intervalls verstanden werden. Bei dem Übergange von x 
zu dem ebenfalls in («, ß) liegenden Werte x + h, wobei also die 
Variable die Änderung

4 x = h 

erfährt, geht der Wert der Funktion in fix + If) über und erleidet 
die Änderung

dy = Af(x) =f(x + h) -/(x).
Je größer bei einem festgesetzten Ax das dy, oder je kleiner 

bei einem angenommenen dy das zugehörige dx ausfällt, umso 
stärker, wird man sagen dürfen, hat sich die Funktion bei dem be­
schriebenen Übergang von der einen Stelle ihres Bereichs zu der 
andern geändert, so daß in dem Quotienten

Ay _ Af(x) _ f(x+h)—f(x) 1
Ax Ax h ‘ 

ein geeignetes Maß für die Stärke dieser Änderung zu erblicken ist. 
Da dx, dy Differenzen zwischen zwei Werten von x, bzw. y darstellen, 
so bezeichnet man sie als Differenz der Variablen, bzw. Differenz der 
Funktion und nennt (1) den Differenzenquotienten, gebildet an der 
Stelle x mit der Differenz dx = ~h.

Der Differenzenquotient erfordert also zu seiner Bildung zwei 
Stellen des Bereichs; läßt man die zweite der ersten unbegrenzt sich 
nähern, h also gegen die Grenze 0 konvergieren, so strebt wegen der 
vorausgesetzten Stetigkeit von f(x) auch der Zähler von (1) der Null 
als Grenze zu. Man hat es also mit dem Quotienten zweier unend­
lich kleinen Größen zu tun, der je nach der Ordnung dieser Größen 
einer bestimmten endlichen Grenze oder der Grenze 0 oder der Grenze co 
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(mit bestimmten V orzeichen) zustreben oder unbestimmt bleiben kann. In 
den drei erstgedachten Fällen, wo ein Grenzwert (im weitesten Sinne) 
existiert, nennt man eben diesen Grenzwert den Differentialquotienten, 
die Derivierte oder die Ableitung der Funktion ffx) an der Stelle x; 
er ist ein Maß für die Stärke der Änderung der Funktion an dieser 
Stelle.

Dieser Grundgedanke bedarf aber noch einer genaueren Ausführung. 
Bei der Allgemeinheit, welche wir dem Funktionsbegriff unterlegen 
müssen, können selbst bei der Einschränkung, die in der geforderten 
Stetigkeit liegt, so mannigfache Erscheinungen auftreten, daß wir ge­
nötigt sind zu unterscheiden, ob h von rechts oder links sich der Null 
nähert. Existiert

1 f(X + ll) — f(x) lim ——-—
*=+0 h

so soll er als rechter Differentialquotient, und existiert 
lim 5(a+1)—/(c),

*==0 h ‘

so soll er als linker Differentialquotient an der Stelle x bezeichnet 
werden; existieren aber beide und stimmen sie miteinander überein, 
so daß man sie gemeinsam unter das Symbol

lim ((+1)—f() (2)
*=0 h• 

stellen kann, so spricht man von einem Differentialquotienten schlecht­
weg, auch von einem vollständigen oder eigentlichen.

Es liegt in der Natur der Sache, daß es an der Stelle a nur 
einen rechten, an der Stelle ß nur einen linken Differentialquotienten 
geben kann.

Bei den Funktionen, welche wir hier zu betrachten haben werden, 
ist der Fall eines eigentlichen und endlichen Differentialquotienten 
typisch; die Fälle eines bloß rechten oder bloß linken, beiderseits ver­
schiedener, eines unendlichen und der Nichtexistenz eines Differential­
quotienten bilden- Ausnahmen.

Wenn daher in der Folge von der Existenz eines Differential­
quotienten oder von der Differenzierbarkeit einer Funktion an einer 
(inneren) Stelle x wird gesprochen werden, so soll darunter immer 
ein endlicher Differentialquotient von der Bildungsweise (2) gemeint 
sein. Mit diesen Festsetzungen kann man sagen:

Der Differentialquotient einer Funktion f(x) an einer Stelle x ist 
der Grenzwert, gegen den der an dieser Stelle gebildete Differenzen­
quotient konvergiert, wenn die Änderung h der Variablen, sei es durch 
positive, sei es durch negative Werte, der Grenze Null sich nähert.

Es ist oben bemerkt worden, daß der Differentialquotient ein 
Maß für die Stärke der Änderung der Funktion an der betreffenden 
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Stelle sei. Wie jedes Maß erfordert auch dieses eine Einheit] diese 
ist in der Stärke der Änderung der Variablen selbst gegeben. Ist 

nämlich f{x) = x, so ist der Differenzenquotient ' — p , also auch 

der Differentialquotient, und zwar an jeder Stelle, = 1. An einer 
Stelle also, an welcher der Differenzenquotient größer (kleiner) ist 
als 1, ändert sich die Funktion stärker (schwächer) als die Variable; 
dabei kommt zunächst nur der absolute Wert des Differentialquotienten 
in Betracht.

55. Die abgeleitete Funktion. Partielle Differential- 
quotienten. Besitzt die Funktion f(x) an jeder Stelle des Inter­
valls («, ß) einen Differentialquotienten, so heißt sie in diesem Inter­
vall differenzierbar. Die Werte des Differentialquotienten mit den zu­
gehörigen Stellen konstituieren dann eine neue Funktion von x, die 
man als abgeleitete, derivierte Funktion, auch kurz als Ableitung von 
f{x), aber auch als den Differentialquotienten von /{x) benennt; zu 
ihrer Bezeichnung bedient man sich der Symbole1)

df(x) 
dx , /‘(x), D,f(x)

Die analytische Bedeutung der neuen Funktion ist also durch 
den Ansatz

"Z" =/ W = DJ  ̂- lim‘“+"—7t6 (3) 
gegeben, der Grenzübergang bei unbestimmt gelassenem x ausgeführt.

Im allgemeinen gehören zu verschiedenen Werten von x auch 
verschiedene Werte ’ von/‘(x); nur bei einer einzigen Funktion, näm­
lich bei der rationalen ganzen Funktion ersten Grades, die man kurz­
weg als lineare Funktion bezeichnet, ist f‘(x) konstant. Ist nämlich 
fix} = ax Ab, so ist der Differenzenquotient

a(x + Ji) + b — (ax + b) _
h - = 0‘

folglich auch
Dx(ax A^) ^ a\

das geometrische Bild dieser Funktion — eine Gerade — spricht es 
ganz deutlich aus, daß die Stärke der Änderung überall die gleiche ist.

Setzt man in der letzten Formel a = 0, so geht sie über in

D,b = 0 (4)

1) Die drei Bezeichnungen stammen der Reihe nach von G. W. Leibniz 
(in einem Manuskript von 1676), J. J. Lagrange (Theorie des fonctions analy- 
tiques, 1797) und Arbogast (Calcul des Derivations, 1800). 
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und besagt nun, daß die Ableitung einer konstanten Funktion oder kurz 
einer Konstanten Null ist.

Mit a = 1 und b = 0 ergibt sich die schon früher festgestellte 
Tatsache

D,* =1, (5)
daß die Ableitung der Variablen selbst gleich 1 ist.

Der Begriff der Differentialquotienten, der hier ausdrücklich für 
eine Funktion einer Variablen entwickelt worden ist, läßt sich durch 
folgenden Gedankengang auf eine Funktion mehrerer Variablen über­
tragen: Man erteilt allen Variablen, bis auf eine, feste Werte, be­
trachtet die Funktion als von dieser einen allein abhängig und führt an 
ihr den durch (3) angezeigten Grenzprozeß aus. Unter diesem Gesichts­
punk te gebildete Differentialquotienten nennt man partielle Differential­
quotienten oder Ableitungen in bezug auf die betreffende Variable. 
Bei einer Funktion z = f(x, y) zweier Variablen hat man deren zwei 
zu unterscheiden und gebraucht dafür eines der Zeichen: 1)

2f(x,y) df^y}. dz 2z. T) -
2x ‘ dy ‘ dx^ dV

Allgemein: Ist u = f(x,, x,, • • • x„), so definiert

lim Z^L±ZL^?2AAj^lZLf^LiA (6)
*=0 h

den partiellen Differentialquotienten von u in bezug auf X1 , der mit 
2" bezeichnet wird.
cx,

56. Phoronomische und geometrische Interpretation des 
Differentialquotienten. Sobald man das Gebiet der Anwendungen 
der Analysis betritt, sind x und / (x) die Maßzahlen für irgendwelche 
voneinander abhängige Größen, und je nach der Bedeutung dieser 
letzteren erlangt auch der Differentialquotient eine spezielle Bedeutung. 
An dieser Stelle sollen jene zwei Fälle besprochen werden, von welchen 
die Differentialrechnung ihren Ausgang genommen, und die für zwei 
große Gebiete von grundlegender Bedeutung sind: für die Bewegungs­
lehre (Phoronomie) und die Geometrie.

1. Es sei x die von einem bestimmten Augenblicke an gezählte 
Zeit, die ein in gerader Linie sich bewegender Punkt gebraucht hat, 
um den Weg f(x) zurückzulegen; dann ist f(x+h) der in der Zeit 
x + h vollendete, somit f(x + h) — f{x) der in dem Zeitintervall 
(x, x — h) zurückgelegte Weg. Wäre die Bewegung eine gleichmäßige, 
d. h. eine solche, bei welcher in beliebig großen gleichen Zeitab-

1) Die Anwendung des d neben dem Leibnizschen d stammt von C. G. 
J Jacobi (Journal von Grelle, Bd. 22) und ist jetzt fast allgemein gebräuchlich. 
Daneben gehen noch andere Bezeichnungen, so z. B. f’xf’y; f (x,y), fi(x^y) u. a-
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schnitten gleiche Wege zurückgelegt werden, so stellte der Quotient

f(x + h) —fW
h

die Geschwindigkeit, d. i. den in einer von den Zeiteinheiten, in welchen 
x und h ausgedrückt sind, beschriebenen Weg dar.

Auf eine ungleichmäßige Bewegung läßt sich dieser Begriff der Ge­
schwindigkeit nicht unmittelbar übertragen; der angeschriebene Quotient 
bedeutet nunmehr die während des Zeitintervalls (x, x + h) auf die 
Zeiteinheit durchschnittlich entfallende Weglänge; je kürzer das Zeit­
intervall, umso geringer die Veränderlichkeit der Bewegung während 
desselben, umso näher rückt die Bedeutung des Quotienten der einer 
Geschwindigkeit; und nähert sich der Quotient bei stetig gegen Null 
abnehmendem h einer Grenze, so wird diese,

1imAle+h)—F(o),
1-0 h

als die im Augenblicke x herrschende Greschwindigkeit erklärt.
Wenn also f(x) den bei geradliniger Bewegung in der Zeit x zu­

rückgelegten Weg ausdrückt, so hat der Differentialquotient /‘(x) die Be­
deutung der am Ende dieser Zeit herrschenden Geschwindigkeit.

Mit Hilfe des Bewegungsbegriffs kann dem Differentialquotienten 
eine bemerkenswerte Deutung gegeben werden. Stellt man sich vor 
die Variable x durchlaufe ihr Intervall («, ß) gleichmäßig, so durch­
läuft die Funktion ihren Bereich im allgemeinen ungleichmäßig; bis 
zu dem Zeitpunkte, in welchem die Variable den Wert x, die Funktion 
den zugeordneten Wert f(x) angenommen, sei die Zeit t verflossen, 
und in dem weiteren Zeitintervall T mögen die Werte x + h und 
f{x + h) zustande kommen; dann ist " = c die Geschwindigkeit, mit 

welcher x sein Intervall durchläuft, und der Grenzwert von "e—h)—f()
‘ T 

für lim T = 0 die Geschwindigkeit, mit der sich f(x) am Schlüsse 
der Zeit t in seinem Bereich bewegt; da nun

fG + 1) ~f^ f(x+1)-f(a)
f(x+ h) —BP _ T =T 

h h c
T

und h mit T gleichzeitig gegen Null konvergiert, so ist der Differential­
quotient das Verhältnis der Geschwindigkeiten, mit welchen x und 
f(x) sich im gegebenen Augenblicke in ihren Bereichen ändern. Man 
kann somit den Satz aufstellen: Der Differentialquotient einer Funktion 
f(x) an einer Stelle x ist die Geschwindigkeit, mit der sich die Funktion

Czuber, Höhere Mathematik. 7
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an dieser Stelle ändert, wenn sich die Variable x gleichmäßig mit der 
Geschwindigkeit 1 ändert1).

1) Von Betrachtungen dieser Art ist J. Newton bei der Begründung der 
Infinitesimalrechnung (erste Publizierung 1687 in den Principia mathematicaphiloso- 
phiae naturalis) ausgegangen; an die Vorstellung des Verfließens der Zeit an­
knüpfend nannte er die Variablen Fuenten und die Änderungsgeschwindigkeiten 
Fluxionen, die Infinitesimalrechnung Fluxionskalkül. Newtons Bezeichnung für 

yden Differentialquotienten von y = f(x) ist 5 und erklärt sich aus obiger Dar­

legung.
2) Das Problem der Tangentenbestimmung einer ebenen Kurve bildete bei 

Leibniz den Ausgangspunkt für die Erfindung der Differentialrechnung (erste 
Publizierung 1684 in den Leipziger Acta eruditorum}, der er auch den Namen 
gegeben.

2. Man betrachte x als Abszisse und f(x) = y als Ordinate eines 
Punktes M in einem rechtwinkligen Koordi­
natensystem; während x das Intervall («, 3) 
durchläuft, beschreibt M eine Kurve AB, 
Fig. 28. Die den Abszissen OP = x und OP' 
= x A h entsprechenden Punkte haben die 
Ordinaten PM = f{x), P' M = f{x + h) und 
bestimmen eine Sekante, deren Richtung durch 
den Winkel QMS=(p festgelegt werden möge; 
dann ist

5e+n—/te) - tg«.
Konvergiert h gegen die Grenze Null, so nähert sich ^rl' längs der 
Kurve dem Punkte M, und die Gerade MS dreht sich dabei um den 
Punkt M. Die Aussage, der Differenzenquotient konvergiere dabei 
gegen eine bestimmte Grenze, ist gleichbedeutend mit der Aussage, 
die Sekante nähere sich einer Grenzlage; die Grenzgerade MT nennt 
man die Tangente der Kurve im Punkte M] wird ihre Richtung durch 
Angabe des Winkels QMT = a beschrieben, so hat man für diesen

1imZ(r+))—/te) - tga.
*=0 h

Ist also y = /(x) die auf ein rechtwinkliges Koordinatensystem be­
zogene Gleichung einer Kurve, so hat der zu einer Stelle x gehörige 
Bifferentialguotient f\x) die Bedeutung der trigonometrischen Tangente 
jenes Winkels, den die Tangente der Kurve in dem zur Abszisse x ge­
hörigen Punkte mit der positiven Richtung der Abszissenachse einschließt2).

Die Existenz eines eigentlichen Differentialquotienten an der Stelle 
x, oder, was dasselbe besagt, die Übereinstimmung des rechten und 
linken Differentialquotienten hat die geometrische Bedeutung, daß sich 
Sekanten, welche die Kurve rechts von M schneiden, derselben Grenz­
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läge nähern wie die links von M schneidenden, daß also die Kurve 
im Punkte M nur eine Tangente besitzt.

Auf die eben ausgeführte Betrachtung gründet sich die Aussage, 
eine Tangente habe mit der Kurve zwei vereinigt liegende Punkte 
gemein, die zusammen den Berührungspunkt ausmachen.

57. Stetigkeit und Differenzierbarkeit. Beispiele beson­
derer Fälle. Die Existenz eines endlichen Differentialquotienten an 
einer Stelle x setzt Stetigkeit der Funktion in der Umgebung dieser 
Stelle voraus; denn, soll der Differenzenquotient (1) bei gegen Null 
konvergierendem Nenner einer bestimmten endlichen Grenze (oder der 
Grenze 0) sich nähern, so muß auch sein Zähler gegen Null abnehmen; 
das aber erfordert die Stetigkeit der Funktion. Umgekehrt folgt aus 
der Existenz eines endlichen Differentialquotienten die Stetigkeit der 
Funktion an der betreffenden Stelle.

Daß aber die Stetigkeit keine zureichende Bedingung für das 
Vorhandensein eines Differentialquotienten überhaupt ist und auch 
nicht hindern kann, daß der rechte und linke Differentialquotient ver­
schieden ausfallen, wird aus den folgenden Beispielen hervorgehen, die 
im Grunde genommen recht einfach definierte Funktionen betreffen. 
Durch Heranziehung komplizierterer analytischer Hilfsmittel ist es ge­
lungen, Funktionen zu konstruieren, die trotz Stetigkeit an unzählig 
vielen, ja selbst an allen Stellen eines Differentialquotienten entbehren 
und daher auch die Möglichkeit einer geometrischen Darstellung aus­
schließen. Indessen genüge hier die bloße Anführung der Tatsache, 
da derlei Funktionen doch nur rein theoretisches Interesse besitzen.1)

1) Literaturangaben über solch besondere Funktionen findet man in E. Pascals 
Repertorium der höheren Mathematik, deutsch von A. Schepp, I. T., 1900, 
S. 110—111.

1. Ist f(x) = —2, solange x + 0 und f(0) = 0, so ist die so

1+e* 
definierte Funktion an der Stelle T = 0 stetig und ihr Differenzen­
quotient daselbst:

f(h) — f(0) 1 .
h 1‘ 

1+e" 
da nun

lim —-—, = 1 und lim —-—, = 0,
h = - 0 -— h = + 0 —

1+ eh 1+e"

so sind linker und rechter Differentialquotient verschieden. An dem 
Bilde der Funktion äußert es sich derart, daß im Ursprung, durch 
den die Kurve vermöge der Definition von f(x) geht, nicht eine, 
sondern zwei Tangenten existieren, oder daß dort die Tangente eine 

7 *
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plötzliche Richtungsänderung erfährt, die Kurve selbst eine Ecke 
aufweist.

2. Essei f(x) = x arc tg 1, solange x+0, und f(0) = 0. Der

Differenzenquotient an der Stelle x = 0:

f(h) — f(0) 
h

, 1= arctg %

konvergiert bei lim h = + 0 gegen 9, bei lim h = — 0 gegen — 2 ; 

f(x) zeigt also bei x = 0 ein analoges Verhalten wie im vorigen Falle.
3. Die in 52, 2. eingeführte Funktion f(x) = x — [x] hat, wie 

ihr Bild, Fig. 29, zeigt, im aUgemeinen den Differentialquotienten 1; 
ausgenommen sind aber die ganzzahligen Stellen; an diesen existiert, 
wenn sie positiv sind, nur der rechte, wenn sie negativ sind, nur der 
linke Differentialquotient; an der Stelle 0 ist ein eigentlicher Diffe­
rentialquotient vorhanden. Wollte man an einer positiven ganzzahligen 
Stelle den linken Differentialquotienten bilden, so ergäbe sich — oo 
als Grenze eines Quotienten, dessen Zähler der 1, dessen negativer 
Nenner der 0 als Grenze zustrebt. Das Unendlichwerden des Diffe­
rentialquotienten kann also ein Zeichen für die Unstetigkeit der Funk­
tion an der betreffenden Stelle sein.

4. Ein interessantes Verhalten zeigt die Funktion f(x) = ^^^

worin [A] die algebraisch größte in 1 enthaltene ganze Zahl be- 
x °

deutet.1) Bewegt sich X zwischen —1 und —, so liegt — zwischen 
7 P n — 1

1) E. Cesaro, Lehrbuch der algebraischen Analysis usw., deutsch von 
G. Kowalewski, Leipzig 1904, S. 223.

n und n + 1; in diesem Intervall ist also L=n und fQ^ = na, f(x) 

also durch ein Stück einer Geraden dargestellt, dessen Endpunkte die 
Koordinaten—1 /, 1/1 haben: somit besteht zwischen den

Fig. 29.

Koordinaten x | y des ersten Punktes die von n unab­
hängige Beziehung x + y = 1. Sobald x > 1 wird, bleibt 
f(x) = 0, weil dann [A = 0. Ähnlich für negative x. 

Fig. 29 zeigt das Bild für positive x und deutet seine 
Konstruktion an. Die Punkte in der Geraden y = 1 ge­
hören streng genommen nicht zum Bilde; der Punkt A 
aber ist ihm zuzuzählen, wiewohl es geometrisch unmöglich 
ist, ihn zu erreichen; in diesem Punkte ist die Funktion 

übrigens stetig. Es gibt wieder unendlich viele 
* Stellen, an denen wegen Unstetigkeit nur ein 

einseitiger Differentialquotient vorhanden ist.
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5. Die in 45, 2. eingeführte und 52, 1. neuerdings betrachtete 
Funktion

f(x) = x cos 1 bei x + 0, f(0) = 0

* ist an der Stelle x = 0 stetig und hat hier den Differenzenquotienten

f(h)—f(0) = sin ) ’h

der mit lim h = 0 keiner bestimmten Grenze sich nähert, sondern un­
aufhörlich zwischen — 1 und 1 schwankt. Geometrisch bedeutet dies, 
daß die aus dem Ursprung auslaufende Sekante, indem der zweite 
Punkt immer näher an den ersten heranrückt, keiner bestimmten 
Grenzlage zustrebt, sondern fortwährend zwischen zwei Lagen pendelt 
(vgl. Fig. 19).

58. Begriff des Differentials. Der begriffliche Inhalt der 
Gleichung

limf(«+h)—f(a) = f‘(x),
h=0 "

durch die der Differentialquotient an der Stelle x definiert wird, ist 
der, daß die Differenz

5+1)—5C) _ f‘(x) 

durch entsprechende Einschränkung von h unter einen beliebig kleinen 
Betrag gebracht werden kann; bezeichnet man sie mit &, so ist hier­
nach & eine mit h zugleich unendlich klein werdende Größe und

/(x + 1) — f(x) = hf‘(x) + eh

oder in andern, früher eingeführten Zeichen geschrieben:

Af(x) = f'^)^^ +edx. (7)

Von den beiden Teilen der rechten Seite wird der zweite unendlich 
klein von höherer Ordnung als der erste, sobald f (x) einen bestimmten, 
von Null verschiedenen Wert hat, weil

lim «4« - lim e - 0;
dx=o (o)4c / (x) ‘

das erste Glied stellt also den Hauptteil der Änderung Af(x) dar 
und wurde von Leibniz unter dem Namen Differential der Funktion 
mit dem Zeichen d/ (x) eingeführt. Darnach ist zunächst

df(x) = f‘(x)Ax; (8) 
wendet man diese Formel auf die Funktion /{x) = x an, so folgt

dx = Ax, (9)

so daß bei dieser speziellen Funktion die Begriffe „Differenz“ und 
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„Differential" sich decken, wie ja für sie auch Differenzen- und Diffe­
rentialquotient übereinstimmen; nach dieser Bemerkung kann also

df(x) = f‘(x)dx (10) 
geschrieben werden.

Formell ist also das Differential df(x) einer Funktion das Produkt 
aus ihrem Differentialquotienten mit dem Differential der Variablen; 
begrifflich stellt es eine Größe dar, deren Unterschied gegen die Ände­
rung Df{x) der Funktion durch gehörige Finschränkung von dx im 
Verhältnis zur letzteren Größe dem Betrage nach beliebig klein gemacht 
werden kann, indem zufolge (7), (8) und (9)

Um Af()—df() = 0. 
dx=0 de

Die aus der Definitionsgleichung (10) gezogene Folgerung

hat nur die Bedeutung, es sei f'(x) der Grenzwert von 4f(T) bei 

unendlicher Abnahme von Dx. Auf ihr beruht der Name „Differen­
tialquotient“ (Quotient aus dem Differential der Funktion durch das 
Differential der Variablen) und die von Leibniz dafür eingeführte 
Bezeichnung d{) •

Aus der Gleichung (10) erklärt sich auch die von Lacroix1) 
für den Differentialquotienten eingeführte Benennung „Differential­
koeffizient“ (Koeffizient des Differentials dx), der heute noch in engli­
schen Schriften üblich ist.

1) Traite du Calcul differentiel et du Calcul integral, I. Band, (1810), p. 240.

Die Bestimmung des Differentialquotienten einer Funktion und 
ihres Differentials laufen hiernach im Wesen auf dasselbe hinaus; die 
primäre Operation ist die Bestimmung des Differentialquotienten, man 
bezeichnet sie vorzugsweise als Differentiation. Wenn man trotzdem 
die Differentiale neben den Differentialquotienten weiterführt, so liegt 
der Grund darin, daß bei den Anwendungen auf Geometrie, Mechanik u. a. 
häufig die Aufstellung einer Relation zwischen den Änderungen mehrerer 
Funktionen einer Variablen den Ausgangspunkt bildet; ersetzt man 
die Änderungen durch die Differentiale, so kommt man zu einer Re­
lation, die, wie man sagt, „für den Grenzzustand“ richtig ist; analytisch 
heißt dies, daß sie richtig wird, nachdem man sie durch das Differential 
der unabhängigen Variablen dividiert hat und zur Grenze überge­
gangen ist.

In den beiden Fällen von 56 hat das Differential folgende Be­
deutung.
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Ist f(x) der in der Zeit x zurückgelegte Weg, also f^x) die am 
Ende dieser Zeit herrschende Geschwindigkeit, so stellt das Differential 
d/(x) =f\x)dx den in dem Zeitintervall (x, x + dx) beschriebenen 
Weg umso genauer dar, je kleiner dx, und man kann dx so klein 
wählen, daß der Unterschied zwischen dem wirklich zurückgelegten 
Weg Af(x) und diesem d/^x) im Verhältnis zu dx beliebig klein wird.

Wird f(x) in den Ordinaten einer Kurve zur Darstellung ge­
bracht, so ist d/(x) = f‘(x)dx = dx tg a = QR (Fig. 28) die Ände­
rung, welche die Ordinate der Tangente bei dem Übergänge von x zu 
x + dx erfährt; dies unterscheidet sich von der Änderung der Ordi­
nate der Kurve, von 4 f{x) = QM‘, umso weniger, je kleiner dx, und 
wiederum kann dx so eingeschränkt werden, daß das Verhältnis 

AJ(x) , df(e) = RM dem Betrage nach beliebig klein wird.dx MQ ° °

§ 2. Allgemeine Sätze über Differentiation.

59. Ableitung einer Summe. Sind f(x), g(x) zwei in dem 
Intervall («, ß) stetige und differenzierbare Funktionen, so hat auch 
deren Summe f(x) + g(x) einen Differentialquotienten; denn der Diffe­
renzenquotient

f(x+h)+9(x+h) — (()+9(x)) _ f(x + h) ~f^ g(x+h)—g(a)
h h h

konvergiert unter den obigen Voraussetzungen mit gegen Null ab­
nehmendem h gegen eine bestimmte Grenze:

DL/(x) + 9^} - D/(x) + DgOO. (1) 

Die Formel kann leicht auf Summen aus einer beliebigen endlichen 
Anzahl von Summanden ausgedehnt werden; sie spricht den Satz aus: 
Die Ableitung einer Summe kommt gleich der Summe der Ableitungen 
der einzelnen Summanden.

Ist die Funktion g(x) konstant = c, so ist ihr Differentialquotient 
Null, Formel (1) gibt dann

D[/(z) +8- D/(z). (2)

Hiernach verschwindet ein konstanter Summand beim Differenzieren, 
mit andern Worten: Zwei Funktionen, die sich nur um eine additive 
Konstante voneinander unterscheiden, haben gleiche Ableitungen.

60. Ableitung eines Produktes. Sind die Funktionen 
u==ffx), v — g(x) in einem Intervall stetig und differenzierbar, so 
gilt dies auch von ihrem Produkt. ) Der auf dieses bezügliche Diffe­
renzenquotient läßt folgende Umformung zu:

1

1) Den Nachweis der Stetigkeit überlassen wir dem Leser.
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f(x+hg(x—h)—f(x) g(x) 
h

_ f(x + ^g(x + K) ~f{x}g{x + h) + f(x)g(x+h)—f(x)g(c) 
h

-+”=76) o(x + J. +/()"+”—ote), 
und konvergiert bei gegen Null abnehmendem h auf Grund der ge­
machten Voraussetzungen gegen

D^uv) = uv + uv. (3)

Kommt zu uv noch ein dritter von x abhängiger Faktor w hinzu, 
der dieselben Eigenschaften besitzt wie u und v, so ist zunächst

D{(uvjw} = wD(uv) — uvw',

daher nach Benützung von (3):

D(uvw^) = uvw — uv'w + uvw'. (4)

Die Formel läßt sich auf dem angedeuteten Wege auf jede end­
liche Anzahl von Faktoren ausdehnen, so daß man allgemein sagen 
kann: Die Ableitung eines Produktes von n Funktionen einer Variablen 
wird gebildet, indem man je einen Faktor des Produktes durch seine 
Ableitung ersetzt und die so gebildeten n Produkte zu einer Summe ver­
einigt.

Ist in (3) einer der Faktoren konstant, etwa v = c, so ist v = 0, 
folglich

D(cu) = cu'. (5)
Hiernach geht ein konstanter Faktor unverändert als Faktor in die 

Ableitung über.
Wird die Formel (4) auf n Funktionen fi(x), /2(x), ' • • fn{x} aus- 

gedehnt und sodann durch deren Produkt dividiert1), so ergibt sich 
die Formel:

D[@)f@)-S@]_f@)_A)_. Ss). . 

aus ihr folgt weiter, wenn alle Faktoren ein und dieselbe Funktion 
f(x) bedeuten, der Ansatz:

D[f(] _,
/W f(a) ’ 

woraus sich ergibt:
D Lf(x)"] = nf{x}n - 1f‘(x). (7)

Für f(x) = x hat man also

Dxn = n^’1. (8)

1) Was nur für solche Werte von x geschehen darf, für die keiner der 
Faktoren verschwindet.
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Hierdurch erscheint die Ableitung der Potenz bestimmt, nach dem Gange 
der Herleitung vorläufig nur für einen positiven ganzen Exponenten.

61. Ableitung eines Quotienten. Der Quotient zweier in 
einem Intervall stetigen und differenzierbaren Funktionen u = f(x), 
v = g(x) ist daselbst ebenfalls stetig und differenzierbar, sofern der 
Nenner v an keiner Stelle des Intervalls verschwindet. Findet letzteres 
ein oder mehreremale statt, so hört der Quotient an solchen Stellen 
auf, definiert und im allgemeinen auch stetig zu sein; es gelten daher 
die nachfolgenden Formeln mit Ausschluß solcher singulären Stellen.

Transformiert man den Differenzenquotienten wie folgt:

f(+ h) _f(a)
g(x+h) g^

h

_ 5(x+h) g()—f() g(+h) 
hg(x) g{x + ti)

/C + 7) -C6),(a) f(x) 9+ 7) — 9(6)

g(x)g(x + h) ‘
so führt der Grenzübergang lim h = 0 zu der Regel:

7 u u'v — uv
V V2 1 ( )

Hs ist also die Ableitung eines Bruches gleich dem Produkt des Nenners 
mit der Ableitung des Zählers, vermindert um das Produkt des Zählers 
mit der Ableitung des Nenners, die Differenz dividiert durch das 
Quadrat des Nenners.

Man hätte zu dieser Regel auch von der Identität
U % = — VV

ausgehend gelangen können; denn aus ihr folgt nach der Produktregel

u = vD —) — — v ,v

woraus sich für D (" ) wieder der frühere Ausdruck ergibt.

Eine erhebliche Vereinfachung, die man sich oft zunutze machen 
kann, erfährt die Formel (9), wenn der Zähler konstant, u = c ist; 
alsdann hat man

Dz--% (10)

Setzt man hier c = 1 und v = xn mit positivem ganzen Exponen­
ten, so ergibt sich unter Benützung von (8):

Dx "=----- *==—na-"-1, (11)
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wodurch die Giltigkeit der Regel (8) auch für ganze negative Exponen­
ten erwiesen ist.

62. Ableitungen inverser Funktionen. Ist (A, B) das Wert­
gebiet einer in dem Intervall « S x A ß monotonen stetigen Funktion 
y = f{x), so gehört zu jedem Werte y aus (A, B) ein und nur ein 
Wert x aus (a, ß), so daß zugleich x als Funktion von y bestimmt 
ist: x = cp(y), und zwar ebenfalls als monotone stetige Funktion. 
Wie schon in 43, 2. erklärt worden, heißen derart bestimmte Funk­
tionen inverse Funktionen; nun soll die einfache Beziehung aufgezeigt 
werden, die zwischen ihren Ableitungen besteht.

Sind nämlich x, y und ebenso x — Ax, y + Ay zusammen- 

gehörige Werte, so ist 2% der Differenzenquotient von /(x), Zy 

der Differenzenquotient von g(y); beide Differenzenquotienten stehen 
im Verhältnis der Reziprozität zueinander und bleiben es, wie klein 
auch Ax und dy werden mögen; folglich sind auch ihre Grenz­
werte, falls solche vorhanden und bestimmte von Null verschiedene 
Werte sind, also die Differentialquotienten von f(x) und q){y\ rezi­
prok, d. h.

Dx(x)D,y(y)=1. (12)

Die Ableitungen zweier inversen Funktionen sind also für jedes Paar 
zusammengehöriger Werte der Variablen x, y reziprok.

Konvergiert — gegen die Grenze Null, so hat gleichzeitig —

den Grenzwert c und umgekehrt; ist also an einer Stelle Dx/(^x) = Q, 
so hat g(y) an der entsprechenden Stelle eine unendliche Ableitung 
und umgekehrt.

Y

Die Ergebnisse erlangen anschauliche Bedeutung, wenn man 
y = f(x) als Gleichung einer Kurve, Fig. 30, auffaßt; die Kurve ist 

auch durch die Gleichung X = g(y) dargestellt 
und der Unterschied beider Darstellungen liegt 
lediglich darin, daß das erstemal x, das zweite- 
mal y als unabhängige Variable aufgefaßt wird. 
Die Ableitung Dx/(x) bestimmt die trigono­
metrische Tangente des Winkels a, den die 
Tangente MT mit der positiven Richtung der 
Abszissenachse bildet, D,o(y) die trigonome­
trische Tangente des Winkels b, den dieselbe Tan­

gente mit der positiven Richtung der Ordinatenachse einschließt, und 
da a + b == 7, so ist tg a tgb = 1; dies also ist der geometrische In­

halt der Formel (12). Wird in einem Punkte, etwa E, Df{x} = 0’,
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so ist dort die Tangente parallel der Abszissenachse, also normal zur 
Ordinatenachse, folglich Depty) = c an dieser Stelle.

i

Wendet man die Formel (12) auf den Fall y = x™, x = ym an, 
i

wo unter m eine positive ganze Zahl, unter xm der positive reelle 
Wert von Vx verstanden wird, und x auf positive Werte beschränkt 
bleiben muß, wenn m eine gerade Zahl bedeutet, so findet sich mit Be­
nutzung von (8):

i 

rnym~lDxm = 1, 
woraus

i i
— m 1 1 1m Dx = —   =   = — x : 

my"-1 "-1 m 
mx m

1

und trägt man weiter in die Formel (7) f{x) = x™ ein, so kommt

" — i 1_1 , "_1 (13) Da"=nx m a” ="x" ; V ‘ m m 7 
dadurch ist die Giltigkeit der Formel (8) auch für positive gelorochene 
Exponenten dargetan. Wird schließlich in der Formel (10) c = 1 

n

und v = xm gesetzt, so gibt sie mit Beachtung von (13):

—_ i
_n _”sm

m m n m 

wodurch Formel (8) auch auf negative gebrochene Exponenten erweitert 
erscheint. Sie gilt also für jeden rationalen Exponenten.

63. Ableitung zusammengesetzter Funktionen. Es sei 
u = q (x) eine eindeutige stetige Funktion von x, y = f(u) eine 
eindeutige stetige Funktion von u, so ist mittelbar y auch eine ein­
deutige stetige Funktion von x: y = f[y(x)]; man nennt in solchem 
Falle y eine zusammengesetzte Funktion von x oder auch eine Funk­
tion von einer Funktion von x.

Ein bestimmter Wert von x hat einen bestimmten Wert von u 
und dieser einen bestimmten Wert von y zur Folge, und besitzt q(x) 
an der Stelle x und f(u) an der Stelle u eine Ableitung, so hat auch 
f[o(x)] an der Stelle x eine Ableitung. Geht man nämlich von x 
zu x + Ax über, so erfahren auch u, y gewisse Änderungen du, dy, 
die wegen der vorausgesetzten Stetigkeit mit dx zugleich gegen Null 
konvergieren, und es ist
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2" der Differenzen quotient von u in bezug auf x,

dy
70 » » » y » » » 4,
dy
A% » » » y » » »X;

zwischen diesen drei Differenzenquotienten besteht aber die Beziehung:
Ay dy du
dx ~du dx 

und bleibt in Geltung, wie klein auch Ax werden möge; somit be­
steht auch zwischen den Grenzwerten die Relation:

D,y= D.» D,u. (15)
Wäre v = v(x), u = g (v), V = /{u\ y also durch zweifache Ver­

mittlung eine Funktion von x, so ergäbe sich durch ähnliche Schlüsse

Dxy = DuyDvuDxv. (16)

Um also eine Variable y, die durch mehrfache eindeutige Vermittlung 
von u, v, w, • • • z mit der Variablen x zusammenhängt, nach dieser 
letzteren zu differenzieren, bilde man der Ueihe nach die Ableitungen von 
y nach u, von u nach v, von v nach w, ■ - ■ schließlich von z nach x, 
die sämtlich als vorhanden vorausgesetzt werden; dann ist die Ableitung 
von y nach x gleich dem Produkte aller dieser Ableitungen.

Die Formel (7) erweist sich als ein besonderer Fall der Formel 
(15), wenn man hier u = f(x), y = un setzt.

Nimmt man in (15) u = ax + b, y = un, wo n nun jede rationale 
Zahl bedeuten kann, so ergibt sich:

\D(ax + b)n= na(ax + b)n~1.

§ 3. Differentiation der elementaren Funktionen.
64. Die Potenz. Im Verlaufe des letzten Paragraphen wurde 

für die Differentiation der Potenz y = xn die für jeden rationalen 
Exponenten giltige Formel:

Da" = na"-1 (1) 

abgeleitet. Bei negativem n ist der Wert x = 0 als Unstetigkeits­
punkt auszuschließen.

Diese Formel in Verbindung mit den Sätzen des vorigen Para­
graphen setzt uns in den Stand, alle expliziten algebraischen Funk­
tionen zu differenzieren.

1. Für die ganze Funktion

y = aa"+ a^-1 +---------- a,-1% + ^n 
hat man unmittelbar (59, (1), (2); 60, (5))

Dy = nax"-1 + (n — 1) axn-2 + • • • + an_1;
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es ist hiernach die Ableitung einer ganzen Funktion eine ebensolche 
Funktion von nächst niedrigerem Grade.

2. Die gebrochene Funktion

a, xn + a, xn 1+*+a, _  Z
ba”+b,am-1+..+b - N

läßt Differentiation zu an allen Stellen, an welchen der Nenner nicht 
verschwindet, und zwar ist dann (61, (9))

y =
N(naoxn 1+*+ a,-1)—Z(mboxm 1-** bn-

N2

So besitzt beispielsweise y = 24— 1
24 + 1 an jeder Stelle eine Ab­

leitung, weil der Nenner für keinen reellen Wert von x verschwindet, 
und zwar ist

8x3
3 = (x4+ 1)2 i 

hingegen wird y = 24—1 unstetig an den Stellen C=-1 und x = 1, 

für welche die Definition ihre Geltung verliert; so lange jedoch 
x < — 1, — 1<x<1 und 1 < x ist, hat man

,_  823
3 (24 — 1)2

3. Die Differentiation einer Wurzel aus einer rationalen Funktion er­
ledigt sich durch Verbindung von 63, (15) mit den vorangehenden 

- /x2 — 1Fällen. Ist z. B. y =/ —., so beachte man zunächst, daß x auf 
oc2 — 1das Intervall 1<X< c beschränkt werden muß; setzt man u = . , 

so ist
- 1 - 1 - 24 — 322 + 2x
Dy == - M = — De =------------------------- , "• 2------------------ 2u‘ x (xc3 — 1)2 ’ 

folglich
7 _ 11 /X3— 1 24 + 3x2 + 2 X 
xJ. 2 / x? + 1 (23 — 1)2

65. Der Logarithmus. Der von der Funktion y = logx, 
wo a > 0 und x > 0 vorauszusetzen ist, gebildete Differenzenquotient 
lautet:

loga(x—h) — logax _1 (1 _ h\
h h -8a T x) 5 

setzt man darin = £> so vollführt & zugleich mit h den Grenz- x O
Übergang zur Null; somit ist

Dlog x = — log
1- 

lim (1 + &) e 
e=0
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Der hier auftretende Grenzwert hat in 47 den Gegenstand einer 
besonderen Untersuchung gebildet, und es ist dort unter (14) die 
Zahl e für ihn gefunden worden. Man hat also endgiltig

Dlog, s-1o&°. (2)

Bei dem Anlasse ist auch schon erwähnt worden, daß das 
Logarithmensystem mit der Basis e das natürliche genannt wird; jetzt 
sei hinzugefügt, daß dieses System in der reinen Analysis das allein 
gebräuchliche ist, während sich das praktische Rechnen des gemeinen 
Logarithmensystems mit der Basis 10 bedient.

Aus dem Ansätze
es =a‘0Ea®

folgt, wenn man ihn im natürlichen System logarithmiert,

Ix = log,x • la; (A) 

auf x = e angewendet gibt dies 1 = log,e-la, woraus log,e = 7, 
so daß statt (2) auch

D log x = - (2%)
P xla 7 

geschrieben werden kann.
Die Gleichung (A) drückt den Zusammenhang zwischen den 

natürlichen Logarithmen und den Logarithmen irgend eines künst­
lichen Systems aus; auf das gemeine System angewendet führt sie 
zu den Gleichungen:

Ix = 110 • logx, logx = 71o ix. (B) 

Die Zahl M= 1 = 0-434 294 481 903 •• •, durch welche die natür­

lichen Logarithmen in gemeine übergeführt werden, nennt man den Modul 
des gemeinen, ihren reziproken Wert ‘= l 10 =2302 585 092 994- • , 

der das entgegengesetzte leistet, den Modul des natürlichen Systems.
Durch die Wahl a = e geht die Formel (2*) über in

DI-2, (3) 

eine Formel, die durch ihre Einfachheit diese Wahl der Basis recht­
fertigt.

Die Formel (3) in Verbindung mit 63 gestattet, die Ableitung 
des Logarithmus einer jeden expliziten algebraischen Funktion zu 
bestimmen. Ist z. B.

y = l (c + V 1 + «3) , 

so setze man x + V1 +x‘=u und hat nun
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— 1 — i । xc u
x V1+a2 V1+a2‘ 

folglich

V1 — a"
Hat man weiter den Differentialquotienten von 

y=l/±«

zu bilden, einer Funktion, welche für alle Werte von x mit Ausschluß 
von —1 und 1 definiert ist, so setze man v=l, 7=Vu: als- 

dann ist
D.y = 1, Dv = - , D= - 2 .,, 

0 7 " 2]u‘ (1 — X) 47 

mithin
T) _ 1 — x 1 _ 1 
«3 i + x (i—xy i — ac2

Sind Y1, Y2, - y, Funktionen von x, deren keine an der be­
trachteten Stelle x Null ist, so ist auch y = Y, Y9 • • • yn nicht Null und 

ly =ly,+ly,++ ^yn; 
durch Differentiation dieser Gleichung ergibt sich

y Vi T yn ‘ 

die rechte Seite wird die logarithmische Ableitung des Produkts y ge- 
nannt; ihre Multiplikation mit y führt zum Differentialquotienten des 
Produkts selbst (60, (6)).

66. Die Exponentialfunktion. Die in 39, II, 5. entwickelte 
Definition der Exponentialfunktion y = ax setzt a>0 voraus; aus 
ihr folgt durch Umkehrung x =log y. Dem Satze in 62 zufolge 
ist also

D,a" D,log,s - 1 
und mit Benutzung von (2*) folgt daraus

Dax=axla. (4)
Insbesondere hat man für die Exponentialfunktion y = er, die 

in 47 unter dem Namen der natürlichen Potenz eingeführt worden ist,
De= e". (5)

Die natürliche Potenz ist die einzige Funktion, die sich beim Differen­
zieren unverändert reproduziert.

Ist der Exponent einer Exponentialfunktion eine explizite alge­
braische Funktion von x, so kann die Differentiation auf Grund des 

_i
Satzes 63 ausgeführt werden. Ist z. B. y = e", so gilt bei Aus­
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Schluß der Stelle x = a
1 

— 1 x — a Dy = — 7 19 e

Während bei der Potenz der Exponent, bei der Exponential­
funktion die Basis konstant ist, könnte es als wesentliche Erweiterung 
des Potenzbegriffs erscheinen, wenn man Basis und Exponenten als 
variabel voraussetzt. Sind aber u, v Funktionen von x und y = uv 
(Voraussetzung: u>0), so kann dafür y = evlu geschrieben, also die 
Exponentialform hergestellt werden; von dieser aus aber ergibt sich 

y' = evlu(v'lu + ") - u^^lu + ")

In dem einfachsten Falle u = x, v = x hat man

Dar = ^(Ix + 1).
67. Die trigonometrischen Funktionen. In 43, 4. ist die 

JPeriodizität als eine wesentliche Eigenschaft der trigonometrischen 
Funktionen hervorgehoben worden. Da nun periodische Funktionen 
an Stellen, die sich um ein Vielfaches der Periode unterscheiden, in 
allen Belangen gleiches Verhalten zeigen, so weisen sie daselbst auch 
gleiche Ableitungen auf; das heißt aber nichts anderes als, daß die 
Ableitungen der trigonometrischen Funktionen selbst wieder periodische 
Funktionen mit der gleichen Periode sind.

Wegen der Beziehungen, die zwischen den trigonometrischen 
Funktionen eines Bogens bestehen, lassen sich aus der Ableitung einer 
von ihnen die Ableitungen aller andern gewinnen. Wir wählen als 
Ausgangspunkt 

y = sin x. 
Der Differenzenquotient

_/h.h . h 
. • 2COS( ---) sin — - sin — sin (x — h) — sin x \ 2 / 2 / , h \ 2 
——— =   = cos Er + — -- h h \ 2 / h 

2 
. . h sin — 2 

konvergiert wegen der Stetigkeit von cos x, und weil lim —— = 1 ist 
*=0 "

2
(44, 6.) gegen cos x; mithin ist

D sin x = cos x. (6)

Da nun cos x = sin (" — x) und 3 — x die Ableitung — 1 hat, 

so folgt mit Anwendung von (6) 
v

D cos x = D sin — ) = — cos 
2 / 2 /

d. i.
D cos x = — sin x. (7)
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Für y = tg x = sine und y = cotg x = cose erhält man auf Grund 

der Regel für die Differentiation eines Quotienten und mit Benützung 
von (6) und (7):

— , cos22 — sin?x ——sin2« — cos2 « D tg X = —,— , D COtg SC = —. ,---------- ,
P COS2« 7 P sin’x 7 

also endgiltig
Dtgx = sec2x (8)

Dcotga =—cosec2«. (9)
Diese Formeln gelten jedoch nur unter Ausschluß der Unstetigkeits­
stellen, bei tg x also mit Auschluß der Stellen (2 n + 1)7, bei cotg x 

mit Ausschluß der Stellen nx, wobei n jede positive und negative 
ganze Zahl, die Null inbegriffen, bedeuten kann.

Schließlich erhält man nach der Vorschrift 61, (10) und mit Be­

nützung von (6), (7) für y = sec« = _ und y = cosec« = 4 :
P7J • cos« • sin a

D sec x = sine = sec x tg x (10)
COS2« ° > 7

Dcoseca = - in%, = - cosec x cotg x; (11) 

auszuschließen sind dieselben Stellen wie bei tg x, bzw. cotg x.

68. Die zyklometrischen Funktionen. Bei der Differentia­
tion dieser Funktionen kann man sich auf jenen Abschnitt beschränken, 
der die Hauptwerte der jeweiligen Funktion zusammenfaßt; denn jeder 
andere Abschnitt setzt sich aus dem Hauptwert und einer Konstanten 
additiv zusammen (43, 5.).

1. Aus y = arcsin x, wobei — 1 < x < 1 und —— < y < — , • 7 — — 2 — • — 2 7

• folgt durch Umkehrung x == sin y; daher ist nach der in 62 abge­
leiteten Regel: 

woraus
D arcsin x D sin y = 1,

1D arcsin x =------CosJ V1—x2‘ ‘ 7 
die Wurzel ist positiv zu nehmen, weil cosy in dem bezeichneten 
Intervall positiv ist.

2. Aus y = arccos x, wobei —1<x<1 und 0 < y < a, ergibt 
sich x = cos y und hiermit weiter

D arccos x D cos y = 1, 
woraus

I) arccos x =-----1 =-----1—: (13)
sin y V1— x*’ k 7

Czuber Höhere Mathematik. 8
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die Wurzel ist wieder positiv zu nehmen, weil sin y in dem bezeich­
neten Intervall von y positiv ist.

3. Kehrt man y = arctgx, wo bei unbeschränkt variablem x das 
y an das Intervall — 5 < y < $ gebunden ist, um, so entsteht 

x = tg y, und die Beziehung

I) arctg x D tg y = 1 
liefert

D arctgx = .als, = —4 (14)

4. In derselben Weise ergibt sich aus der Umkehrung von 
y = arccotg x (x unbeschränkt, 0 < y < x) x = cotg y, und aus

D arccotg x I) cotg y = 1 
folgt

D arccotg z =--------= — —1—, • (15)
P cosec’y 1 — a" ‘ J

Der Zusammenhang der Formelpaare (12), (13) und (14), (15) 
erklärt sich aus den in 43 nachgewiesenen Formeln:

arcsinx + arccos 2 = 9

arctgx + arccotg« = ^ •

Auf die Funktionen arcsec x und arccosec x soll hier wegen ihrer 
seltenen Verwendung nicht eingegangen werden; indessen würde ihre 
Differentiation nach dem vorausgeschickten keiner Schwierigkeit be­
gegnen.

Die Formeln (1) bis (15) dieses Paragraphen und die allgemeinen 
Sätze des vorigen reichen aus, um alle aus den elementaren Funk­
tionen durch eine endliche Folge von Operationen gebildeten Funk­
tionen zu differenzieren.

69. Die Hyperbelfunktionen. Zu den elementaren transzen­
denten Funktionen zählt man auch die Hyperbelfunktionen, so genannt, 
weil sie geometrisch mit der gleichseitigen Hyperbel in ähnlicher 
Weise Zusammenhängen wie die trigonometrischen (Kreis-)Funktionen 
mit dem Kreise. Sie sind um die Mitte des 18. Jahrhunderts von 
V. Riccati mit den heute üblichen Bezeichnungen ein geführt und 
besonders von Lambert weiter ausgebildet worden.

Ihre analytische Definition kann mit Hilfe der natürlichen Ex­
ponentialfunktion wie folgt gegeben werden. Ist u die unbeschränkte 
reelle Variable, so wird

e" + e-u
9 als hyperbolischer Kosinus (cosh U)

e"e-u
-----o—- als hyperbolischer Sinus (sinh w)
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von u erklärt; mit Hilfe dieser beiden Funktionen definiert man die 
hyperbolische Tangente, Kotangente, Sekante und Kosekante ganz 
nach Art der trigonometrischen Funktionen, indem man schreibt: 
, - sinh 26 , , cosh 21.1toh u = ——, cotoh u = —.—, sech I = —— , cosech I = . , •P cosh 2‘ P sinh u7 cosh u7 sinhe

Aus diesen Definitionen lassen sich Relationen zwischen den ge­
nannten Funktionen ableiten, ebenso zahlreich wie die trigonometrischen 
Formeln und von ähnlicher Bauart. Einige davon mögen hier zu­
sammengestellt werden.

Aus , eu-e-u . eude-u cosh u =-----o---, sinh u =-----------

folgt mit Rücksicht auf die anderen Definitionsformeln unmittelbar: 
cosh u — sinh u = e" 

cosh u — sinh u = e-u 

cosh2u — sinh2u = 1 

tgh2u + sech2u = 1 

cotgh2 u — cosech2 u = 1;

die leicht zu erweisenden Identitäten:
e2u — e- 2u = (e" — e-")(e" + e-u),

2(e"+— e-u-B} = (e"— e-u)(e + e-v) + (e® — e-")(e"+ e-u), 
2(e"+®+ e-u-e) = (e" + e-«)(e + e-r) + (e"— e-")(e — e-®) 

schreiben sich nunmehr:
sinh 2u = 2 sinh u cosh u, 

sinh (u — v) = sinh u cosh v — sinh v cosh u, 

cosh (u + v) = cosh u cosh v + sinh u sinh v.

Die Differentiation der neuen Funktionen ist auf die der Ex­
ponentialfunktion zurückgeführt; es ergibt sich:

eu _ e-u
D cosh u =-----9----- = sinh u.

eu > e-u

D sinh u = —9----= cosh u^

— . - cosh2w — sinh2w , , D toh u ==--------- —---------= sech“ u, °----------- cosn-nm 
— , , sinh2u — cosh2u , 0 D cotgh u = — . , = — cosech“ u: P sinh’l 

D sech u = —sinh." = — tgh u sech cosh’M P 7

D cosech u = cosh a, ,. 9— = — cotgh u cosech u.sinh2 w °
8*
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Die geometrische Bedeutung der Hyperbelfunktionen ergibt sich 
aus folgender Betrachtung. Der Kreis in Fig. 31 sei um 0 mit dem 
Radius 1 beschrieben. Ist 0 das Bogenmaß des Winkels AOM, RS 
die in M an den Kreis gelegte Tangente, so hat man:

OP = cos 6,

MP = sin 3,

OR = sec 3

OS = cosec 0
MR = tg 3, MS = cotg 3.

Wird nun RH senkrecht zu 0X und gleich MR gemacht, so ist 
der Ort des so bestimmten Punktes H eine gleichseitige Hyperbel, die

A zu einem ihrer Scheitel hat; be­
zeichnet man nämlich 'die Koordinaten 
von H mit x, y, so ist

x = sec 3, y = tg 3, 
folglich

x2—y2= 1.
Vergleicht man diese Gleichung mit 

cosh2u — sinh2u = 1, 
so folgt, daß

cosh u = OR, 
sinh u = HR

Fig- 31. gesetzt werden kann.
Man überzeugt sich ferner, daß der Halbmesser OH der Hyperbel 

auf der Tangente in A eine mit MP gleiche Strecke abschneidet und 
daß die Tangente der Hyperbel im Punkte H durch P geht; denn 
es ist

4 V = 04 , woraus A V = sin 3 - MP:

weiter ist der Richtungskoeffizient der Tangente (56, 2):

aber auch

Dy = DV22— 1 = “ = 1 , 
• ‘ y sin 0 7

tgRPH = ___9
X — COS0

tg0 4 1
sec 0 — cos 0 sin 0 >

so daß tatsächlich PH die Tangente ist.
Auf Grund dieser Ergebnisse erkennt man, daß, ganz entsprechend 

den Kreisfunktionen:
OR = cosh u OP = sech u

HR = sinh u OT = cosech u

HP = tgh u HT = cotgh u.
Die Analogie erstreckt sich selbst auf die Bedeutung der Argu­

mente: die trigonometrischen Funktionen können, da 3 3 die Fläche 
des Sektors OA M ist, auch als Funktionen des Doppelten dieses Sektors 
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aufgefaßt werden; in der Integralrechnung wird gezeigt werden, daß 
Ju die Fläche des Hyperbelsektors OAH ist.

Der Zusammenhang zwischen den beiden Argumenten u, 0 ergibt 
sich in folgender Weise: Die Relation

cosh u — sinh u = e"

verwandelt sich im Hinblick auf die Figur in

sec 0 + tg 0 = e";

die weitere Verfolgung dieses Ansatzes gibt:

1 + sin 6 
cos 0

woraus

1 4- cos

sin
e".

u = l tg 20
4 T 2

Diese Gleichung wurde bereits 1599, also lange vor der Einführung 
der Hyperbelfunktionen, von E. Wright gefunden als mathematischer 
Ausdruck der Skala, nach welcher in der Mercator-Projektion die 
Punkte eines Meridians je nach ihrer geographischen Breite 0 in be­
zug auf das Bild des Äquators angeordnet sind. Man nennt 0 die 
„hyperbolische Amplitude“ von 2 oder auch Lamberts transzendenten 
Winkel1).

70. Beispiele. In den nachstehenden Beispielen ist der Diffe­
rentialquotient zunächst in der Form angegeben, wie er sich bei An­
wendung der Regeln unmittelbar ergibt, an zweiter Stelle in seiner 
einfachsten Gestalt, mit Fortlassung der Zwischenrechnungen; in den 
späteren Beispielen ist nur das Resultat mitgeteilt.

1. Dxm(axn +b) = man- 1(az" + 1}/ + pxm(axn + b)-1. naxn~r 
= xm~1(axn -\- b)”-1[(m + np)axn + mt)].

o 7) x — a (x — b)(x — c) — (x — a)(x — c + x — ö) 
(x—b){x — c) (x—b)3(x — c)2

_ bc — ab — ac + 2ax — x2
(x — by^x — c)2

•.—/-T =------ ,----------=---------- / —.....- •
‘ Ve 2114__ — 4 xVx + Ve

• Vx

4. D(ax + b)Vax2+ 2bx-\- c = aVax‘+ 2bx + c
+ {ax +6)2 _ 2(ax + b)*+ ac—b*

. Vax‘+2ba+c Vax‘+2bx + c
1) Da die Hyperbelfunktionen sich auf verschiedenen Gebieten als zweck­

mäßig erwiesen, so sei angeführt, daß auch Tafeln derselben berechnet worden 
sind, so von Forti, Nuove tavole delle funzioni iperboliche, Rom 1892.



118 Elemente der Differentialrechnung. §3. Differentiation der elem. Funktionen.

5 pVa’+x+Va’—a*
Va‘+ ac? — Va? — 22

(1a2 — x- — Va? — xc2)( - - - -=----- —----- - )“‘ 1 ‘ Va‘+x2 Va‘— x2 /

_ - (Vr +**+ ve- •) (va,+voss) 

(Ya: + a? — Va: — 23 )2

2a2

X3
(1+')

VaA — x4 /

6 DI Vx + a + Vx + b_ Vx+a—Vx—b
Vx + a — Vx + b Vx + a + Vx + b

(ve + • - ve+6) (2 va+n+: vr+,)

-vs+a+v*+b(y.+a-av+s) ______1____
(Vx + a—Vx + b)2 V(x+ d){x + b)

7. Ded*+28t= 2(ax + b)eax- + 2bx + c

8. D^tr^^ mam-le-t— 2xmtle-e = xm-le-2(m — 2x2).

- — 7 ■ C COS C X .9. Di sm ax = —.------- = a coto ax. sin ax------------- P 

. — a sin ax , 10. Di cos ax = — = — a to ax. cos ax P

11. Dltg 5 = ------ ‘= . •P 2 . x sin OC

12. Dlig(^ + $) = 2----4—2/ 1 • 
94:2)---------, in , x\ cos x 6(4+2)

13. D tgasin* = Deinsttg* = esineltg*(eosal tg x + öin (gs&c"F) 

= tg xsinz(l tg acosr + sec x).

14. D arc sin 1 « = — 1 _---a+w-a -) - — —1 .
1fe 1/, (1—x\2 1T T) (1+x)Vx 

V “ (1+x)
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/x arc sin x , ..).----- ö\ arc sin c , X , x? arc sin x ------------ — l V1 — SC = ----------- + -——   , V1—a- - - - - - - - - - ) V1—4 1—8 *d—ay 

+ 1---------- — x-------- arc sin x 1
TVI=gV1=e Ä •

16. D(arcsin (a sin 2) —F arc cos(a COS R)) == —— ----- - ,--------- —
V1—a‘sin2x V1—a2cos2®

17. D arc tg (1 d—b tg F) =----- ----- d—b ' sec? g ' } PVa-b02/ _a—b,xl a—b 2 2 
114+6’852

Va — b3
2 (a + b cos x)

118. — b4-acosxD arc cos —,—-— a — b cos x 1/1 (b + a cos x) 2 
r \a -- b cos x)

— a(a — b cos x) sin x — b{b — a cos x) sin x Va2 — b2 
(a — b cos x)* a + b cos x

19. D arc sec x = D arc cos — =—- 1 —1=—1 • 
x 1=1 y" «Vx‘— 1 

r x2

20.

21.

22.

7 n • 1 1—1 11) arc cosec x = D arc sin = —= —, =--------- ■ - - • 
x 1,1 x xVx’— 1

y =x(1 + x%) 2—3 x3(1 + x2) *y=I- 

1 _3 1 _5 X2

3 = 3x3(1+a2) *—sa(1+a3) * y 5V1+23
23. y = 3 x + I sin 2x; y' = cos2 x.

24. y = 3 x — I sin 2 x; y' = sin2 x.

25. y = sin x — ~ sinx; y‘= cos3x.

26. y = cosa — cosx; y = sinx.

27. y = — tg3 x + tgx] y' = sec4x.

x arc sin x
1) Der Bruch —, 

V1— x2
1--  behandelt worden. 

V1 —x2

ist hier als Produkt der drei Faktoren x, arc sin x.
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28. y = 3 tg3 x — tg x + x; y = tg4 X.

29. y = 2 sin Vx — 2 Vx cos Va ; y' = sin Vx.

30. y = 3 arc cos (- 1 + 2x2);

31. y = } arc cos (— 3x + 4x3); ■ y =-------------
5 V1—x

32. y = 1 arc cos\l — 8x2 + 824);

2 1/3 , 2 X — 1 33. y^ s arc tg 73 ;

34. y = 1 arc tg - 2e ,: 
• 2 P 1— x2‘

.. 1 .20 30. y = - arc sin ——s; • 2 1 — x" 7 

, 1 1—ac? 30. y === — arc cos ——,: • 2 1 — x2 7

. -1/1-sin x ,37. y = l / ——.— ; y = • • 1 — sin x 7 •

, 1
3 1 + X + X2

sec X.

y 144

38. y = e®(x2 — 2x + 2); yr = ex2.

39. y = x arctg x — lV1 + x2; y' = arctg x.
40. y = 1 sinh 2 x + ) x; y‘= cosh’x.

41. y= I sinh 2x — ) x; y' = sinh2x.

42. y = l cosh x; y'=l^x.
43. y = l sinh x; y' = cotgh’x.

44. y = lcosh a—3 tgh2x; y‘=tgh3x.

§ 4. Sätze über den Zusammenhang einer Funktion 
mit ihrer Ableitung.

71. Vorzeichen des Differentialquotienten. Von einer Funk­
tion f(x) sagt man, sie sei in der Umgehung der (Innen-) Stelle x 
ihres Definitionsbereichs (a, ß) wachsend, wenn sich eine positive 
Zahl 3 bestimmen läßt derart, daß

/( — 1) </(e) <f^ + 1) (1) 
für alle 0 < h < 3. Besitzt die Funktion an der Stelle x einen 
Differentialquotienten, so kann dieser nicht negativ sein; denn aus 
(1) folgt: f(x _ h) —f^ 0 f(x + K) —f^ 0

—h > h /»
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und da beide Differenzenquotienten mit lim h == 0 nach Voraussetzung 
einer und derselben Grenze /‘(x) zustreben, so kann diese nicht 
negativ sein, da beide Brüche, wie klein auch h wird, positiv bleiben.

Die Funktion f(x) heißt in der Umgebung der Stelle x ab­
nehmend, wenn sich ein positives 3 bestimmen läßt derart, daß

/(x -)> /(x) > /( + I) (2)

für alle 0<h<3. In diesem Falle kann der Differentialquotient 
an der Stelle x, wenn er existiert, nicht positiv sein; denn aus (2) 
folgt:

f(x — h) —Ax') 0 f(x + h) —f{x) 0
— h " ’ h . 

es kann daher /‘(x) als gemeinschaftliche Grenze beider Brüche nicht 
positiv sein.

An den Stellen a, ß kann nur von einem rechts-, bzw. links­
seitigen Wachsen oder Abnehmen die Rede sein.

Aus den vorstehenden Erwägungen geht der Satz hervor: Wenn 
die Funktion f(x) in dem Intervall {a, ß) beständig, d. h. in der Um­
gebung jeder Stelle, wächst oder abnimmt und überall einen Differential- 
Quotienten besitzt, so bann dieser niemals negativ, bzw. niemals positiv sein.

In beiden Fällen ist also nicht ausgeschlossen, daß der Differential­
quotient an einzelnen Stellen Null werden kann.

Unter den elementaren Funktionen haben wir folgende Beispiele 
beständig wachsender und beständig abnehmender Funktionen.

Es ist Dax= axla, folglich ax beständig wachsend, wenn a > 1, 
hingegen beständig abnehmend, wenn 0 < a < 1 ist; er ist also 
wachsend.

Aus Dlx== ‘ erkennt man, da x > 0, daß Ix eine wachsende 

Funktion ist.
Da D tg x = sec2x, so ist tg x eine wachsende Funktion; in der 

Tat, indem x nacheinander die nicht abgeschlossenen Intervalle 
(— 3, 7), (3, 37) durchläuft, geht tg a beidemal durch das Inter- 

vall (— oo, oo).
In gleicher Weise schließt man aus D cotg x = — cosec2 x auf 

beständige Abnahme von cotg x.
Weil D arcto x = - 1, so wächst arctg x fortwährend; tatsächlich 

durchläuft es das Intervall (— 7, 3), während x von — o bis + o 

wächst.
Aus Darccotga =——1 schließt man in ähnlicher Weise auf 

die ständige Abnahme von arccotg x.
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Man kann — und ist dazu unter Umständen genötigt — in Be­
zug auf Zu- und Abnahme zwischen rechts- und linksseitiger Um­
gebung unterscheiden. So sind die Funktionen f(x) = x — [x] (52, 2.) 
und f(x) = x [4 (57, 4.) rechts von jeder Stelle wachsend, sie sind 

es aber nicht in der Umgebung jeder Stelle, wegen der Unstetigkeits­
punkte, daher auch nicht in einem Intervall, das einen oder mehrere 
Unstetigkeitspunkte enthält.

Wenn eine Funktion an einer Stelle trotz ihrer Stetigkeit da­
selbst keine Ableitung besitzt, so kann auch nichts über Wachstum 
oder Abnahme ausgesagt, daher auch keine geometrische Darstellung 
in der nächsten Umgebung gegeben werden. Dies trifft beispielsweise 
bei der schon wiederholt angeführten Funktion

f(x) = x sin 1 für x + 0, f(0) = 0

an der Stelle a = 0 zu; in der Tat läßt sich keine noch so enge Um­
gebung dieser Stelle abgrenzen, innerhalb deren alle f(x) größer oder 
kleiner als Null wären.

72. Der Satz von Rolle. Wenn die Funktion /(x) in dem 
abgeschlossenen Intervall a F x F ß stetig ist und an jeder Stelle im 
Innern einen endlichen oder bestimmt unendlichen Differentialquotienten 
besitzt, wenn ferner f(gxj = 0 und f(ß) = 0, so gibt es tvenigstens eine 
Stelle zwischen « und 3, an der /‘(x) verschwindet.

Behielte die Funktion den Wert Null im ganzen Intervall (oder 
auch nur in einem Teile desselben) bei, so wäre sie eine konstante 
Funktion und hätte als solche überall die Ableitung Null (55); der 
Satz bedürfte dann keines Beweises.

Diesen Fall ausgeschlossen, wird die Funktion von « an entweder 
wachsen oder abnehmen — wir nehmen das erstere an; das Wachsen 
kann aber nicht durch das ganze Intervall anhalten, soll /(ß) = 0 
werden, daher muß man zu einer Stelle § kommen, an der das Wachsen 
aufhört und das Abnehmen beginnt; diese Stelle ist dadurch gekenn­
zeichnet, daß sich ein positives 3 bestimmen läßt derart, daß

/G-1)</>/0+1)
für alle 0 < h < ö; zufolge der Beziehungen (1), (2) ist die Funktion 
an dieser Stelle weder wachsend noch abnehmend; ferner ist

Fi - 1) -.f^ .Fi + 1) -Fi')0.
— h 1 h

der erste Quotient kann mit lim h = 0 nur einer positiven oder der 
Grenze Null zustreben, der zweite nur einer negativen oder der Grenze 
Null; da aber beide Quotienten nach Voraussetzung einen gemein­
schaftlichen Grenzwert haben, so muß notwendig 

f® = o
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sein, womit der Satz erwiesen ist. — Im Falle des Abnehmens von 
« an ergeben sich analoge Schlüsse.

Bei geometrischer Deutung der Funktion hat der Satz von Rolle 
eine unmittelbar anschauliche Bedeutung. Eine Kurve AB, Fig. 32,
welche die Abszissenachse in den Punkten A, B 
schneidet und an jeder Zwischenstelle eine einzige 
bestimmte Tangente hat (die auch parallel zu 
OY sein kann), besitzt mindestens einen Punkt 
M, in welchem die Tangente MT parallel der 
Abszissenachse ist.

Die Voraussetzungen des obigen Satzes Fig. 32.

können auch dahin abgeändert werden, daß f(«) = /(ß) = C sei; denn 
die Funktion f(x) — C erfüllt dann die Bedingung, bei a und ß zu 
verschwinden, ihre Ableitung ist aber wieder f‘(x).

Die Funktion f(x) = (x — a) (x — b) hat, um ein Beispiel an­
zuführen, in dem Intervall (a, b) die oben vorausgesetzten Eigenschaften; 
ihre Ableitung /' (x) = 2 x — a — b wird denn auch Null an der 
zwischen a, b liegenden Stelle x =7". Desgleichen genügt die 

Funktion f(x) = sin x in dem Intervall (0, a) den Voraussetzungen 
des Rolleschen Theorems, und in der Tat verschwindet ihre Ab­

leitung f(x) = cos a an der Zwischenstelle x = 7 .

73. Der Mittelwertsatz. Wenn die Funktion f(x) in dem ab­
geschlossenen Intervall « < x < ß stetig ist und an jeder Stelle im 
Innern einen endlichen oder bestimmt unendlichen Differentialquotienten 
besitzt, so gibt es wenigstens eine Stelle zwischen a und ß, an der f‘(x) 

übereinstimmt mit dem Differenzenquotienten f_B~f^
ß — c

Dieser Satz, für die Analysis von großer Bedeutung, findet sich 
zuerst bei J. Lagrange und wird auch häufig nach ihm benannt.

Zum Zwecke des Beweises konstruieren wir aus f(x) die neue 
Funktion

f(B) -f^g (x) = f(x) — f(«) — (x — ü) ß — c
die ebenfalls an jeder Stelle zwischen « und ß einen Differential­
quotienten besitzt, da

f^-f^
‘ " • " ß—«’

und die überdies die Eigenschaft g(a) = 0, o (ß) = 0 hat. Demnach 
erfüllt sie die Voraussetzungen des Roll eschen Satzes, und es gibt 
daher wenigstens eine Stelle § zwischen « und ß, an der q‘(§) = 0, 
dort ist also

fH.~L^
3 —« (3)
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Der Satz kann auf irgend zwei Stellen x und x + h aus («, ß) 
zur Anwendung gebracht werden; § bedeutet dann einen zwischen x 
und x + h liegenden Wert und ein solcher kann in der Form x + Oh 
dargestellt werden, wenn 0< 0 < 1 ist; mithin gilt:

5+1-/)-/‘(r+0)

oder
f(x + h) — f(x) = hf‘(x + Oh). (4)

Die Darstellung einer endlichen Differenz der Funktion durch 
einen Zwischen- oder Mittelwert ihres Differentialquotienten findet sehr 

häufige Anwendung; einige wichtige Folgerungen 
sollen schon hier angeführt werden.

Vorher möge noch der geometrische Sinn 
der Formel (3) erwähnt werden für den Fall, daß 
man die Werte von f(x) durch die Ordinaten 
einer Kurve AB, Fig. 33, darstellt; hat diese 
Kurve in jedem Punkte eine einzige bestimmte 
Tangente (die an einzelnen Stellen auch parallel 
zu OY sein kann), so gibt es zwischen A und B 

mindestens einen Punkt M, in welchem die Tangente M T der Sehne A B 
parallel ist.

Um zu zeigen, daß der Mittelwertsatz versagt, wenn die Funktion 
nicht alle bei seiner Ableitung gemachten Voraussetzungen erfüllt, 

sei das folgende Beispiel durch geführt1).

1) E. Cesaro, Lehrb. d. algebr. Anal., usw., deutsch von Gr. Kowalewski, p. 233.

dagegen f(0) = 0, so gibt die Formel (3):

1 - ~ “ (B ~ c)
0 C V / 

Ist f(x) = l für x + 0,

i
g

woraus 8= aß', dies aber ist nicht möglich, wenn das Intervall (a, ß) 
die Null enthält, weil dann a, ß entgegengesetzt bezeichnet sind. Auch 
wenn die Null den Anfang des Intervalls bildet, kommt man zu einem 
Widerspruch, weil dann

10448 
ß 5"

und somit 82 = — 32 sein müßte. Der Grund dieser Erscheinungen 
liegt in der Nichtexistenz von f\x) bei x = 0.

An einer früheren Stelle (55) ist gefunden worden, daß der 
Differentialquotient einer konstanten Funktion Null ist; nun kann 
auch die Umkehrung des Satzes bewiesen werden, nämlich: Wenn die 
Ableitung f‘(x) einer Funktion f{x) an allen Stellen des Intervalls 
(a, ß) Null ist, so ist die Funktion in diesem Intervall konstant.
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Sind nämlich X1, X, zwei Stellen in («, ß), so ist zufolge (3) 

/,) -/(,) - (x, - ,)/0) 
mit 2,<$< X; da aber für jedes 6 zwischen «, ß f‘(§)=0, so ist 
f(x,) — f(xi) = 0, also / (x,) == f(x,); wenn aber jede zwei Werte 
von / (x) aus dem Intervall («, ß) einander gleich sind, so hat die 
Funktion notwendig einen konstanten Wert.

Aus diesem Satze folgt der weitere: Wenn zwei Funktionen f(x), 
q(x) in einem Intervall {a, ß) gleiche Differentialquotienten haben, so 
können sie sich nur durch eine additive Konstante unterscheiden.

Denn, aus
f‘(x) = q‘(x) 

folgt auch
DL/(x) “ q(x)] = 0 

und daraus nach dem vorigen Satze

f(x) - qp(x) = C,

wenn C eine Konstante bedeutet.
Im Artikel 71 ist gezeigt worden, daß die Ableitung einer in 

dem Intervall (a, 3) beständig wachsenden (abnehmenden) Funktion 
niemals negativ (positiv) ist; auch die Umkehrung dieses Satzes kann 
jetzt bewiesen werden: Wenn die Ableitung von f(x) in dem Intervall 
{a, ß) niemals negativ {positiv} und auch nicht in einem Teile des 
Intervalls beständig Null ist, so ist die Funktion wachsend {abnehmend} 
in dem Sinne, daß für irgend zwei Werte x, < x, aus {a, ß} die Re­
lation f(x1) < f(x,) Lf(x,) > f(x,)] stattfindet.

Bedeutet x einen Wert zwischen x, und x,, so daß 21, x‘, X, 
wachsend geordnet sind, so ist auf Grund der ersten Voraussetzung 

f^) -fM = (x‘— «,)/"(%) 2 0
/(^) - f^} = (x, - «)/‘($,) 2 0, 

wobei §1 einen Wert zwischen X, und x, §2 einen Wert zwischen x 
und X, bedeutet; daraus folgt

/(,) </() ^f ;̂
aber nicht für alle x können beide Gleichheitszeichen gelten, weil 
sonst für alle Werte x zwischen 2, und x, die Beziehung /{xf) = /{x') 
= / (x,) stattfände die zur Folge hätte, daß in diesem Teile von {a, ß} 
f{x} beständig Null wäre, was gegen die Voraussetzung verstößt. Es 
gibt also sicher einen Wert x, für den wenigstens eines der beiden 
Ungleichheitszeichen gilt, und darum ist notwendig

f() <(,).
Der zweite Teil des Beweises ist ebenso zu führen.

74. Der erweiterte Mittelwertsatz. Wenn die beiden Funk­
tionen f{x}, g (x) in dem Intervall {a, ß} eigentliche Differentialquotienten 
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besitzen, von welchen der letztere, g’(x), an heiner Stelle Null oder unend­
lich wird, so gibt es wenigstens einen Wert § zwischen a und ß derart, 
daß AP)—/) - 5© ist.

P(P)—9(x) 9(5)
Dieser Satz kommt zuerst bei Cauchy vor, wenn auch mit 

der speziellen Voraussetzung, daß /{a) == q(a) = 0 sei. .
Um ihn zu beweisen, konstruiere man aus f(x) und g(x) die 

neue Funktion

v (x) - /() “ /() - Is (z) - « ()] 48=46 ;

der hierin auftretende Bruch hat sicher eine bestimmte Bedeutung, 
da cp(ci), g(ß) nicht gleich sein können, indem sonst nach dem Satz 
von Rolle g‘(x) an einer Stelle zwischen a und ß verschwinden 
müßte, entgegen der Voraussetzung. Die Funktion v(x) hat nun im 
Intervall («, ß) eine Ableitung, nämlich

v(z) = j‘(x) — q’(x) FCB) -e) 
ferner ist g(a) = 0, q(ß) = 0; folglich existiert nach dem Satze von 
Rolle mindestens eine Stelle 5 zwischen « und ß, wo q‘(*) =0, 
d. h. wo

q(ß) — q(c) q‘($)

Die Formel kann auf zwei beliebige Stellen x und x — h aus 
(«, ß) angewandt werden und lautet dann:

(+»)-/) = 5+0) , (0 < 0 < 1) (6)
g(x—h) — g (x) 9 (x — Qhy v 77

Setzt man insbesondere g(x) = x, wodurch den Voraussetzungen 
des Theorems Genüge geleistet wird, so gehen die Formeln (5) und 
(6) in (3) und (4) über.

§ 5. Die höheren Differentialquotienten und Differentiale.
75. Der n-te Differentialquotient. Ist die Funktion y = fix) 

auf einem Gebiete der Variablen stetig und differenzierbar, so besitzt sie 
dort eine Ableitung oder einen Differentialquotienten, wofür bereits 
die Bezeichnungen

f‘(x), Df(x); y, Dy 
eingeführt worden sind.

Hat f‘(x) wieder die Eigenschaften, die soeben bezüglich f(x) 
vorausgesetzt wurden, so kommt ihr auch eine Ableitung zu, die man 
als zweite Ableitung, zweite Deri vierte oder zweiten Differentialquotienten 
von f(x) bezeichnet und mit

fW, D?f(x); y", D-y
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anschreibt. Begrifflich stellt jedes dieser Zeichen jene Funktion dar, 
die an der Stelle x durch

im"(«+n)—f"(a)
*=0 " 

bestimmt ist.
So fortfahrend gelangt man zu der dritten, vierten, • • • n-ten Ab- 

leitung; man gebraucht dafür die Bezeichnungen

/ " (x), /T (x) ,1/0 (x)
oder D^f(x), D/(x), • • • Dnf(x)

oder y", yTV, ■ • ■ y^ usw.

Sofern die Voraussetzungen der Stetigkeit und Differenzierbarkeit 
erhalten bleiben, hat die Bildung höherer Ableitungen keine Schranke.

Wenn man aus dem Gebiet der reinen Analysis auf dasjenige der 
Anwendungen sich begibt, wobei x und f(x) die Maßzahlen für ge­
wisse einander bedingende Größen bedeuten, können auch die höheren 
Ableitungen eine bestimmte Bedeutung erlangen. Bei der phorono- 
mischen Auffassung, bei der f(x) den in der Zeit x zurückgelegten 
geradlinigen Weg bedeutet, kommt zunächst der zweiten Ableitung 
eine wichtige Bedeutung zu.

Es ist 56, 1. erklärt worden, daß der erste Differentialquotient 
die am Ende der Zeit herrschende Geschwindigkeit ausdrückt. Ist 
die Bewegung so beschaffen, daß die Geschwindigkeit in beliebigen, 
aber gleich großen Zeitabschnitten sich um Gleiches ändert, so nennt 
man die während einer Zeiteinheit erfolgende Geschwindigkeitsänderung 
Beschleunigung und die Bewegung selbst eine gleichförmig beschleunigte 
(hingegen eine gleichförmig verzögerte, wenn die Beschleunigung 
negativ, die Geschwindigkeit also mit der Zeit abnehmend ist). Auf 
eine ungleichförmig beschleunigte ist der Begriff der Beschleunigung 
nicht unmittelbar übertragbar; der Quotient

f (x + h) —f (x) h

aus der während des Zeitintervalls (x, x—h) erfolgten Geschwindig­
keitsänderung durch die Größe h des Intervalls bedeutet die während 
desselben durchschnittlich auf die Zeiteinheit entfallende Geschwindig­
keitsänderung; je kleiner h, um so geringer die Ungleichförmigkeit in 
der Bewegung, desto näher kommt die Bedeutung des angeschriebenen 
Quotienten der einer Beschleunigung, und konvergiert der Quotient mit 
lim h = 0 gegen eine bestimmte Grenze, so wird diese:

Iim£(+1)-/(e)=0 h 
als die am Ende der Zeit x herrschende Beschleunigung erklärt.
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Drückt also f(x) den bei geradliniger Bewegung in der Zeit x 
zurück gelegten Weg aus, so hat die zweite Ableitung f"(x) die Be­
deutung der am Ende der Zeit x herrschenden Beschleunigung.

76. Wiederholte^Differentiation. Zur Bildung der höheren 
Differentialquotienten einer Funktion bedarf es neuer Regeln nicht, 
da es auf wiederholte Bildung des ersten Differentialquotienten an­
kommt. Wenn es sich jedoch darum handelt, für den allgemeinen 
oder n-ten Differentialquotienten eine independente Formel aufzustellen, 
dann führt das direkte Verfahren nur in einigen wenigen Fällen zum 
Ziele. In einigen anderen Fällen kann man sich dadurch helfen, daß 
man die Funktion als Summe oder als Produkt einfacher Funktionen 
darstellt, deren allgemeine Differentialquotienten in independenter Form 
bekannt sind.

I. Direktes Verfahren. 1. Für f(x) = xm ergibt sich durch suk­
zessive Differentiation

Dxm = mam-1, D’x" = m(m — l)xm~-, . . . 
so daß

Dnxm = mfm - 1) (m — n + V)xm~n. (1) 

Läßt man ax + b an die Stelle von x treten, so ändert sich die 
Formel nur insoweit, daß rechts der Faktor an hinzukommt, weil bei 
jedesmaliger Differentiation mit dem Differentialquotienten von ax + b, 
d. h. mit a multipliziert werden muß (60, 7.); es ist also

Dn{ax + b) = m(m — !)••• fm — n + l)an(ax + b)m~n. (2)
Ist m eine positive ganze Zahl, so wird der m-te Differential­

quotient eine Konstante:

Dmxm = m(m - 1) . 1, 

und alle höheren sind Null. In jedem anderen Falle kann die Bildung 
der Differentialquotienten unbeschränkt fortgesetzt werden.

2. Für f(x) = Ix hat man Dix == x-1, somit

Dvlx = Dn-1x-1;

hier tritt nun die Formel (1) in Kraft, und zwar ist m = — 1 und n 
durch n — 1 zu ersetzen, so daß

DAx - -1y-1.1.2..(-1) ; (3) 
xn

auch diese Formel kann dadurch verallgemeinert werden, daß man 
ax + b an die Stelle von x treten läßt; es wird

- , , (_1)"-1.1.2...(n—1)a" . Dnl(ax Ab) =   —  ——•  (4) 
{axpb)n

3. Aus der Formel D^ = ^ folgt unmittelbar

D’e = er; (5)
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dagegen ist Dek=keke und
Dn^x= Ttn^x^ 

und weil ax=exla, so ergibt sich hieraus

Dnax= (la)nax. (6)
4. Die Formel D sin: = cosa = sin (x + 3) zeigt, daß die ein­

malige Differentiation von sin x der Vermehrung des Arguments um 
7 äquivalent ist; infolgedessen wird n-malige Differentiation einer Ver­

mehrung des Arguments um n 7 äquivalent sein; es ist also

D" sin x = sin (x + n 3) . (7)

Durch denselben Schluß ergibt sich aus D cos x = — sin x 
= COS (x + 3):

Dn cos x = cos (x + n 3) • (8)

Vermöge der Periodizität nehmen die rechten Seiten der Formeln (7) 
und (8) nur je vier verschiedene Werte an, nämlich die n = 0, 1, 2, 3 
entsprechenden, und diese in zyklischer Wiederholung.

II. Zerlegung in Teile. Hat man /(x) als Summe zweier oder 
mehrerer Funktionen dargestellt, etwa f(x) = 9 (x) + v(x), so ist (51, 1) 

Dnf{x) = Dn(p(x) + Dnilj(^x).

1, Es ist a——b*x* = 2a La+ba + a—bai mithin
Dadbe - Ä [D" (a + bz) -1 + D"(a - bz) “"];

1 _ (— 1)"1 -2 n:b" 
a? — 6222 2a

auf die Ausdrücke der rechten Seite ist die Formel (2) anwendbar, und 
man findet:

Dn
_____ 1 , (-1)” ~

L(a+bx)" +1T {a— ba)"+1 (9)

Für a = 1 und l) = i ergibt sich hieraus

1 _ (— 1)” 1 • 2 • ■ • n P 1 1 -
1+x*? 2i Le— i"+1 (x+1"+1

Diese Formel kann dazu verwendet werden, den allgemeinen Differen­

tialquotienten von arc tg x zu bestimmen; da nämlich D arc tgx = 144 ,
so ist Dn arc to z = Dn-1 1 ,, also auf Grund der letzten Formel:

D” arc tg x _ (— 1)” 11 ■ 2 • ■ • (n — 1) r 1
2 i L@ — i)" ---- ----- • (10) (x + i)" • •

Czuber, Höhere Mathematik. 9
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2. Es ist cos ax cos bx = ~ [ cos (a + b)x + cos (a — b}x}, mithin

D" cos ax cos bx = (d4 cos [(a + b) x + n 7 ] (11)

+ (,‘" cos [(a _ b)z + n 7]. -

III. Zerlegung in Faktoren. Die Funktion y = f{x) sei in zwei 
Faktoren u = g (x) und v = v(x) zerlegbar, für welche der allgemeine 
Ausdruck des rten Differentialquotienten bekannt ist. Durch sukzessive 
Differentiation ergibt sich:

y = u v — uv'

y" = u' v + 2 u‘ v + uv"

y" = u" v — Zu'v + Zu v" + uv"\ 

woraus der Schluß gezogen werden kann, daß

y") = u")o + (7) u"-1) v + (2) uF~^v" +.+ uv^^ (12)

in der Tat, gilt diese Formel für n, so gilt sie auch für n — 1, denn 
eine neuerliche Differentiation gibt

y+1) = u""±1y + (1) u^v' + (2)u-D," + ■ • • + u'v^

+ U^V + (7) u^n~^v" +.+ (7) U v^ + UV^n + 1) ,

und weil allgemein ( ")+(") = ("1), so ist ° r — 1/r) \ r ) 2

y("+1) = U^ + ^V + (" 1 1) U^V + ("7 1) u"-1),"+ • • • + uv"+1);

da nun das Bildungsgesetz auf direktem Wege für n = 1, 2, 3 erwiesen 
ist, so gilt es allgemein. Die Gleichung (12), unter dem Namen der 
Leibnizschen Formel bekannt, läßt eine kurze symbolische Dar­
stellung zu; schreibt man nämlich

D" (uv) = (u + v}n, (12*) 

so bleibt nur zu beachten, daß man in den Gliedern der Potenzent­
wicklung die Potenzexponenten in Ordnungsexponenten von Differential­
quotienten zu verwandeln und die Endglieder unvQ und uQvn durch 
u^v, bzw. uv^ zu ersetzen hat.

Als Beispiel der Anwendung der Formel (12) möge dieselbe 
Funktion gewählt werden, welche in II. 2. als Summe dargestellt 
worden ist, nämlich cos ax cos bx^ man erhält unmittelbar
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Dn (cos ax cos bx) = an cos (ax + n^ cos bx

+ \ 1)a "710 Cos (ax —2 — 9) cos (bx + 9 ) —T

+ (")a"-262 cos(ax + n — 2 3) cos (bx + 2 5) +.

• • • + bn cos ax cos (b x + n 5) .

77. Das n-te Differential, Wir nehmen den in 58 ent­
wickelten Begriff des Differentials einer Funktion y = f(x) wieder 
auf, wonach

df(x) =/(x)dx; (1) 
die begriffliche Bedeutung desselben geht dahin, daß es die Änderung, 
welche die Funktion bei dem Übergänge von x zu x + dx erleidet, 
um so genauer darstellt, je kleiner dx ist, ja daß man durch Ein­
schränkung von dx den Unterschied zwischen der Änderung der Funktion 
und ihrem Differential nicht nur an sich, sondern auch im Verhältnis 
zu dx beliebig klein machen kann.

An dieser Stelle möge auf die Verschiedenheit der Bedeutung hin­
gewiesen werden, welche den Zeichen dx und d/(x) in der Gleichung 
(1) einerseits und in dem Leibnizschen Symbol für den Differential- 

quotienten anderseits zukommt. Hier bedeuten dx und d/(X) zu- 

gleich gegen die Grenze Null konvergierende, also unendlich klein 
werdende Größen und das Symbol "2 selbst den Grenzwert ihres 

Quotienten; dort bedeutet dx eine endliche und d/(x) eine dem dx 
proportionale ebenfalls endliche Größe, beide sehr klein in Ansehung 
der endlichen Rechnungsgrößen wie etwa x und /{x) selbst; der Grad 
der Kleinheit ist dabei relativ und abhängig von der Schärfe, in 
welcher die bezügliche Rechnung ausgeführt werden soll. So ist 
z. B. (30)

d log sin x = “It“ dx = M cotg xdx, 

für x = arc 300 = ^,dx = arc U = — = 0,000 290 88 • • • ergibt sich 

bei Abkürzung auf 5Dezimalen:

dlog sin 300 = 0,4342944 • 1,7320506 • 0,000 2909
= 0,00022,

und dies stimmt mit der in fünfstelligen Tafeln bei log sin 30° an­
gegebenen Differenz pro Minute überein; selbst bei einer auf 7 Dezi­
malen angelegten Rechnung erhält man

dlog sin 30° = 0,000 218 8 
9*
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erst in der siebenten Stelle abweichend von der in siebenstelligen 
Tafeln bei log sin 30° angegebenen Differenz 0,0002187.

Die mit einem feststehenden dx für verschiedeneWerte von x gebildeten 
Werte von d/(x) definieren eine Funktion von x, und von dieser kann 
neuerdings das Differential gebildet werden; man bezeichnet es statt 
mit d(df(x)) kurz mit d2f(x) und hat dafür den Ausdruck:

d2f(x} = D{f\x}dx}dx ^/''(x^dx2. (2)

Hiernach ist das zweite Differential formell das Produkt aus dem 
zweiten Differentialquotienten mit dem Quadrat des Differentials der 
Variablen, begrifflich aber stellt es den Unterschied der ersten Diffe­
rentiale an den Stellen x und x + dx mit Außerachtlassung von 
Größen höherer Kleinheitsordnung als dx2 dar.

Aus der Definitionsgleichung (2) ergibt sich als Folgerung

/"(„)-4; (3)
die rechte Seite ist das von Leibniz für den zweiten Differential­
quotienten gebrauchte Symbol, gleichbedeutend also mit f” (x) und 
D,‘(x).

Wird dx als gegen Null konvergierende, also als unendlich klein 
werdende Größe von der ersten Ordnung aufgefaßt, so ist das erste 
Differential d/{x) = f‘ (x) dx, vorausgesetzt, daß f'(x) einen bestimmten 
von Null verschiedenen Wert hat, ebenfalls eine unendlich klein werdende 
Größe der ersten, das zweite Differential d2/(x) = /"(x)dx2 unter 
einer analogen Voraussetzung über f"(x) eine unendlich kleine Größe 
zweiter Ordnung.

Bei der Darstellung der Funktion f{x) durch die Ordinaten einer 
Kurve kann auch das zweite Differential durch eine Liniengröße ver­
deutlicht werden; bezüglich des ersten Differentials ist es am Schlüsse 

von 58 geschehen. Ist (Fig. 34) OP = x, 
/ OP' = x + dx, OP" = x + 2dx, MR' die Tan- 

M’p» gente in M, M‘ R" die Tangente in M, MQ' 
/Is* sowie M‘ Q" parallel zu OX, so hat Q'R’ die 

M70" Bedeutung des Differentials an der Stelle x, Q" R"
—0 die Bedeutung des mit dem nämlichen dx gebil-

6------- 7—pp.—x deten Differentials an der Stelle x + dx\ der
— Unterschied dieser zwei Strecken, welcher nach 

Konstruktion des Parallelogramms Q Q S R 
in der Strecke S"R" erhalten wird, ist mit Außerachtlassung von 
Größen höherer Kleinheitsordnung als dx2 das zweite Differential.

Man kann in der Bildung der Differentiale fortschreiten und er­
hält — immer unter der Voraussetzung eines feststehenden dx — aus 
(2) das dritte Differential

d3/(x) = D{f"{x)dx2}dx = f‘(x)da3.
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und so fortfahrend allgemein für das nie Differential den Ausdruck: 

dnf(x) = f()(x) dxn. (4)

Daraus ergibt sich die von Leibniz eingeführte Bezeichnung für den 
nten Differentialquotienten:

'd”^ , dny
— - oder —•.

da dxn

Jeder Formel zwischen den Differentialquotienten mehrerer Funk­
tionen einer Variablen x läßt sich eine Formel zwischen den Differen­
tialen zuordnen, und es bedarf, um zu der letzteren zu gelangen, nur 
der Multiplikation der ersteren mit einer entsprechend hohen Potenz 
des Differentials dx der Variablen; so folgt aus

Dx (y(x)v (x)} = g (x) • (x) + I (x) • (x)
7 q (x) _ q‘ (x) v (x) — q(x)i‘(x) 

x 1(x) 1(x)2

durch Multiplikation mit dx:

d { q (x) v (x) } = v(x) • do(x) + g(x) • di(x) 
y 9(x) v(x).dg(x) — q (x) • d 1 (x). 

i(x) 1 (x)2 ’ 
aus (76, III.)

Dn(j.iv) - u^v + (7) u"-), + (")u"-3)," ++ uv®) 

durch Multiplikation mit dxn:

dn(irv) = dnu ■ v + (])d"-lu • dv + (")d"—u • d2v ++ udnv.

78. Die Konstanz des Differentials der unabhängigen 
Variablen. Die Formeln des vorstehenden Artikels sind unter der 
Annahme eines feststehenden, also konstanten dx abgeleitet worden. Der 
Sinn und die weittragende Bedeutung dieser von Leibniz schon bei 
der Begründung der Differentialrechnung getroffenen Annahme er­
fordern ein näheres Eingehen, weil davon ein tieferes Verständnis des 
Rechnens mit Differentialen abhängt.

Bei dem Differenzieren, gleichgiltig, ob darunter die Bildung von 
Differentialquotienten oder von Differentialen verstanden wird, werden 
verschiedene Funktionswerte und die zugehörigen Werte der Variablen 
zueinander in Beziehung gesetzt.

Bei der Bildung der ersten Ableitung einer Funktion f(x) kommt 
es darauf an, die Differenzen benachbarter Funktionswerte mit den 
Differenzen der zugehörigen Argumentwerte ins Verhältnis zu setzen 
und die Grenze dieses Verhältnisses bei unbegrenzter Annäherung zu 
bestimmen. Man kann sich diesen Vorgang in allgemeinster Weise 
wie folgt ausgeführt denken.
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Jeder Punkt x des Bereichs der Variablen geht in einen neuen 
x + dx, über, wobei dx eine von x abhängige Größe von der Form 

dx = ax(x) (5) 

sein möge; geometrisch gesprochen wird die x-Achse in sich seihst 
transformiert, wobei jeder der Punkte P, Pr, P2,-- in einen be- 
y stimmten andern P', P[, P>, • • • übergeht, 

A Fig. 35. Auf die solcherart einander zu-
1/ geordneten Punkte wird die Bildung der

1 : Differenzenquotienten gestützt und hierauf M,” i i durch den Grenzprozeß lim a = 0 der Über­
gang zu den Differentialquotienten herbei- 

: | geführt; & ist also hinterher eine Infinitesi-  ,   :  ! ‘>Y O 7
2 IP 22 2 R " malgröße, deren Ordnung mit 1 festgesetzt

werden soll. Kommt es bei diesem Vor­
gänge auf die Funktion x(x) gar nicht an, so steht die Sache anders, 
wenn man zur Bildung der Differentiale schreitet: in diese geht x(x) 
als Faktor ein. Die Bildung der höheren Differentiale gestaltet sich 
aber nunmehr wie folgt: Aus

dy = y dx 
ergibt sich sukzessive 

d2y = y" dx2 — y d^x 
(6) 

^y = y "dxz + 3y” dx d2x + y dfx,

und aus (5) erhält man zur endgiltigen Ausführung dieser Formeln:

d2x = a2x%‘
iPx = c3[z2”+ 2%%]. (7)

Man erkennt, daß dx, d2x, Px, • • • und wegen (6) ebenso dy, d2y, 
d3y, • • • infinitesimale Größen 1, 2, 3, • • • Ordnung werden.

Aus jeder Annahme über x(x) ergäbe sich so eine besondere 
Differentialrechnung. Die einfachste Annahme ist x(x)= 1; aus ihr 
folgt ein von x unabhängiges dx, und weiter, da alle Ableitungen von 
x (x) dann Null sind,

d2x = d3x = • • • = 0 (8)

PR‘
Fig. 36.

wodurch d2y, d3y, - ‘ ■ dny die einfachen Aus­
drücke des vorigen Artikels annehmen.

Geometrisch bedeutet diese Annahme 
so viel, daß als Transformation der x-Achse 
ihre Translation in sich gewählt wird, wo­
bei jeder ihrer Punkte um dieselbe Strecke 

PPX verschoben wird, Fig. 36. Auch der darauf­
folgende Grenzübergang besteht in einer 
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(entgegengesetzten) Translation, die beliebig nahe an die ursprünglichen 
Lagen heranführt.

Dies ist der tiefere Sinn der Ausdrucks weise, das Differential 
der unabhängigen Variablen werde als konstant, als unabhängig von 
der Variablen selbst, vorausgesetzt. Zugleich geht aus der vorstehen­
den Betrachtung die große Tragweite dieser Voraussetzung hervor: 
sie führt zu der einfachsten Differentialrechnung in den Differentialen^)

V. Abschnitt.

Anwendungen der Differentialquotienten.
§ 1. Unbestimmte Formen.

79. Die Form 8 • Wenn eine Funktion f(x) in einem Inter­

vall («, ß) eindeutig definiert und stetig ist mit Ausnahme einer 
einzigen Stelle x = a, die innerhalb (a, ß) liegt oder mit der einen 
Grenze zusammenfällt, so stellt sich die Aufgabe ein, das Verhalten 
der Funktion in der Umgebung dieser kritischen Stelle zu unter­
suchen. Diese Aufgabe erhält einen bestimmten Ausdruck in der 
Forderung, den Grenzwert von f(x) zu bestimmen für einen näher 
bezeichneten Grenzübergang lim x = a.

Das Versagen der Definition äußert sich in dem Auftreten einer 
sogenannten unbestimmten Form und nach dieser richtet sich der ein­
zuschlagende Weg. Welches diese Form auch sei, so bezeichnet man 
den Grenzwert lim f(x), falls er existiert, als einen uneigentlichen 

a = a
Funhtionswert, wohl auch, nicht gerade zutreffend, als den wahren 
Wert der unbestimmten Form, und ergänzt die an der Stelle x = a 
unterbrochene Definition der Funktion dadurch, daß man diesen Grenz­
wert als ihren Wert an dieser Stelle festsetzt, also

F(a) - lim f(x) (1)
x — a

annimmt; dies tut man auch dann, wenn der gedachte Grenzwert oo 
oder — o ist. Die Ergänzung geschieht also, falls der Grenzwert aus 
dem beiderseitigen Grenzübergange lim x = a hervorgeht und endlich 
ist, nach dem Grundsätze, daß die im Intervall mit Ausschluß von 
X = a herrschende Stetigkeit auch hier fortbestehe. Bei x = a, bzw. 
x — ß kann nur ein rechter, bzw. linker Grenzübergang in Betracht 
kommen.

1) Vgl. hierzu E. Cesaro, Lehrb. d. algebr. Analysis usw.; deutsch von 
G. Kowalewski, p. 493.
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Unter den unbestimmten Formen ist eine, auf die man die übrigen 
zurückführt-, sie hat folgende Entstehung:

Es sei f(x) = $&) eine gebrochene Funktion mit stetigem Zähler 

und Nenner, die- beide bei dem Grenzübergange lim x = a gegen Null 
konvergieren, so daß man wegen der Stetigkeit auch g(a) = 0, i^(a) = 0 
zu setzen hat. Man sagt dann, die Funktion nehme an der Stelle a 

die Form an.

Da g(x) und v(x) bei dem Grenzübergange gleichzeitig unend­
lich klein werden, so hängt der Grenzwert von der Ordnung des 
Unendlichkleinwerdens jeder einzelnen ab (49). Läßt sich hierüber 
auf irgend welche Weise ein Aufschluß erlangen, so ist die ganze Frage 
entschieden. Ein einfaches Beispiel dieser Art bietet die Funktion

f(x)=“. am
x — an

die an der Stelle x = a die Form — annimmt. Sind m, n zunächst 

natürliche Zahlen, so läßt sich vom Zähler wie vom Nenner der 
Faktor x — a abspalten, der allein das Verschwinden beider bei x = a 
zur Folge hat; Zähler und Nenner werden unendlich klein von der­
selben Ordnung wie x — a, daher ist

f(a) = lim f(x) = x"1+ axm~2+---- - a™-1] _ m 
«”-1+ax”-2+. • • + a"-1_,=4n

Den Fall, daß m, n positive gebrochene Zahlen seien, die man immer 
als gleichnamig voraussetzen kann, also etwa m=",=7, führt 

man durch die Substitution x° = y, a = « auf den früheren zurück 
und erhält schließlich dasselbe Resultat.

Ein anderes wichtiges Beispiel solch direkter Erledigung bildet 
die Funktion

f(x)=
anxm + a,a"+1 + ■ ■ • + akxm + k 
ba”+ba”+1+... + ban+‘

(m, n ganze Zahlen)

an der Stelle x = 0. Vom Zähler läßt sich der Faktor am, vom 
Nenner der Faktor a" abtrennen; Zähler und Nenner werden somit 
unendlich klein von der Ordnung m, n bzw., sofern x als Größe 
erster Ordnung gilt; man hat daher

wenn m = n^

„ m> n-

/(0) = lim f(x) = 8° 
x=0 0
= 0,
= C , „ m < n;
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im letzten Falle richtet sich das Vorzeichen von c nach dem Vor­

zeichen von -~ und darnach, ob n — m gerad oder ungerad ist; bei 

geradem n — m erhält c das Vorzeichen von “ bei ungeradem 

n — m rechts von Null das gleiche, links von Null das entgegen­
gesetzte Zeichen wie 4.

Zu einem allgemeinen Verfahren der Grenzwertbestimmung von 
Quotienten der eben betrachteten Art führt der folgende Satz:

Ist lim g(x) = 0 und lim v(x) = 0 bei lim x = a, besitzen ferner 
die als stetig vorausgesetzten Funktionen in einer (übrigens beliebig 
engen) Umgebung von a (ev. mit Ausschluß dieser Stelle selbst) eigentliche 
Differentialquotienten, und konvergiert $3 9e9en eine Grenze, so ist

. lim pl) _ lim s‘(x).

dabei wird weiter vorausgesetzt, daß v‘(x) in jener Umgebung nirgends 
verschwindet.

Wegen der Stetigkeit ist q(a) = 0, ^(d) = 0, daher kann $&3 

auch in der Form 9x)—Pd) geschrieben werden; wendet man hier- 

auf den erweiterten Mittelwertsatz (74) an, dessen Voraussetzungen 
nach obigem erfüllt sind, so ergibt sich, daß

q(x)— ^W _ q‘(§)
v (x)—p(a) 1‘(§)

ist, wobei § eine zwischen x und a liegende Zahl bedeutet; mit x 
konvergiert also auch § gegen a, mithin ist tatsächlich

lim Pl) = lim 
gela? (xc) qeat'(x) (2)

Existieren, wie dies in der Regel der Fall sein wird, g‘(x), v‘(x) 
auch an der Stelle a = a und ist überdies ^\a) = 0, so hat man auch

lim q(x) _ q (a)

—li(x) ^P'W (3)1)
Die Formel (2) versagt, wenn gleichzeitig lim g‘(a) = 0, lim 1‘(x)==0. 

Dann aber befindet man sich mit dem Bruche 9) in der gleichen 
? (x) P

Lage wie mit dem ursprünglichen, und sind auch die übrigen Be­
dingungen des Satzes erfüllt, so gilt wiederum lim 9) = lim 9), 

‘ © 1 (x) - ? (x)’ 
daher auch

lim I)=lim U""CE)
aea? (xc) (4)

1) Die in diesem Ansätze enthaltene Regel hat Johann Bernoulli zuerst 
gefunden. Acta erudit, 1704.
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Unter Umständen kann ein solches Verhalten fortdauern bis zu 
den n — 1-ten Ableitungen einschließlich; dann wird man als Schluß­
ergebnis erhalten:

lim gl) - lim ®"Ge)
a=a"(x) x=a t”) (x) (5)

Hiernach wird das Verfahren zur Auswertung der unbestimmten 
Form, wie man den Vorgang auch zu nennen pflegt, in folgendem 

( (Ac) . 
bestehen: Man differenziere Zähler und Nenner des Bruches 4(0) je 

für sich und wiederhole dies so lange, bis man zu einem Bruche kommt, 
dessen Zähler und Nenner nicht gleichzeitig gegen Null honvergieren; 
der Grenzwert dieses Bruches ist zugleich der Grenzwert des ursprünglichen.

Das Verfahren ist auch dann anwendbar, wenn die kritsche Stelle 
im Unendlichen liegt, d. h. wenn g(x), v(x) bei lim x = o (oder 
= — c) gleichzeitig gegen Null konvergieren. Setzt man nämlich

1
&=, so nimmt —-— die unbestimmte Form bei lim z = 0 (oder

= — 0) an; nun ist aber

wobei q‘(}) aus (p\x)

durch Anwendung von

lim p(a) = 1
*=) *=+0,(}) *=+0v(}) «=")‘

dabei muß im Sinne der Bedingungen des Hauptsatzes vorausgesetzt 
werden, daß es einen Wert von x gibt, von welchem an ip'(x) nicht 
mehr verschwindet.

Beispiele. 1. Das an erster Stelle behandelte Beispiel

durch dieselbe Substition x = — hervorgeht; 

(2) ergibt sich also

f(x)=
erledigt sich mit Hilfe der Differentialrechnung unmittelbar für be­
liebige rationale m, n, indem nach (3)

i

nx
m
— C 
N

2. fix) = —2s— gibt bei lim x = 0 nach zweimaliger Differentia­
tion :

- T 1 --  cos a .. sin x 1/(0) = lim —..— = hm —— = -•/ 32- 63 6
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3. Ebenso erfordert = x:—arctge bei lim 2=0 zweimalige 
• - 7 1 — COS X P 

Differentiation: 
x2 2x 

/(0) = lim -±^ - lim (1+22) = 0 . 
" sin a COS X

4. Man untersuche ferner: 
, \ x — 192 + 30 , . . ,/7 4\ /(X) = ——.9—— i — bei x = 2 und x = 3 - • • x3—22" — 92-18 (5 3/ 

sin x — x cos x , . - /1 \ 
/() =  08bei x = 0 (3) ’ 
> x ty ax — ax i - /a3\ f (x) = 0 — bei x = 0 (—.) • tgbx— bx \b3/ 

, . sin x—cos 2 , . a /12\ 
/(x) = —I   bei x = — o • " sin 22 — cos 22 — 1 4 2/
- x—sin x , . - /1\ — bei SC = 0 . • " tgx — x 2/

80. Die Form © . Diese Form entsteht, wenn in f(x} = I (e) 
CO 7 -a(x)

Zähler und Nenner bei einem bestimmten Grenzübergange ins Un­
endliche wachsen.

Zuerst handle es sich um den Grenzübergang lim X= c (oder 
= — co). Es gilt dann der Satz: Wenn q’(x) von einer Stelle X an 

( (AC) .
nicht mehr Null wird und 2h‘(a) einer Grenze 4 zustrebt, so konvergiert 

auch P) g^g^ diese Grenze, sofern cp(x), v(x) stetig bleiben und 
V (ec) 

eigentliche Differentialguotienten besitzen.
Sind xo < x zwei Werte aus dem Intervall (X, co), so ist nach 

dem erweiterten Mittelwertsatz
,()—(,) _ «‘().
1p(x) — 1(x) 1‘(§) ’ (x= ; = x). 

daraus schließt man weiter:

1 _9(x) 
q (x) q(x) _ q‘(§) 
v (x) 1  1(x) 1‘(§) 

v(x) 
und 

1 1 (x) 
q(x) _ UlH v(x) . 
1(x) ?‘(§) Aq(x) 

q(x)
Indem man nun x bei festgehaltenem x0 wachsen läßt, wird der erste 
Faktor rechts zwischen gewissen Grenzen A — & und A + 8 bleiben, 
die sich durch Wahl von xo beliebig eng ziehen lassen; und der zweite 
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Faktor, dessen Grenze 1 ist, wird schließlich auch über das Intervall 
1 — & bis 1 + & nicht hinausgehen, so daß man, unter 0, 6' echte 
Brüche verstanden, setzen kann:

V - (A+02)(1+0’) - A+(0 +40’+08‘e)e.
Ist A=0 und wird 8<A| genommen, so ist 6+A6‘+00‘8 

<1+2| A , somit

— — A <0, wenn & < — - o , - - 
| 1(xc) I 1 + 2 A |

gewählt wird.
Ist A = 0, so ist | 0 + A0' + 00'£ | < 1 + 8, daher

I olx) <8, wenn (1+8) <3, wozu ausreicht, daß & < , 
P(x)• 7 ‘ 1 — 3 

angenommen wird.
Da 3 selbst beliebig klein festgesetzt werden kann, so hat man 

tatsächlich, ob A = 0 oder A = 0 ist,

Iin g(x) _ A _ g‘(x) 
Jmo (x) 4 im w (x)

Um auf den Fall überzugehen, daß x gegen eine endliche Grenze a 
konvergiert, setze man « = a + ) und lasse z ins Unendliche wachsen; 

man hat dann wegen

D v(a —1) = —1, y‘ (a + 1) ,

wo unter y‘(a+1) das Resultat der [Substitution x = a — — in 

x‘(x) bedeutet,

es gilt also dieselbe Regel wie bei dem Grenzübergange limx == co. 
Voraussetzung aber ist, daß es eine Umgebung von a gibt, in der 
J’(x) nicht Null wird.

Sollte 9,) bei lim x = a sich wieder so verhalten wie 9 ,1 (x) 7 (x) 7
also neuerdings die Form 8 annehmen, so kann der Satz, wenn alle 

darin ausgesprochenen Bedingungen erfüllt sind, von neuem angewendet 
werden usw.

Mitunter bedarf es nur einer andern Schreibung, um eine Funk­
tion, welche die Form 8 annimmt, so darzustellen, daß sie die 

Form • erlangt: dies gilt beispielsweise von - S - für lim x = x , 0 P 7 P - ' tg (2 n — 1) a 2 ’
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wenn man es in cotg(2n — 1) x 
cotg x umsetzt, von

SC

cotg —P 2

für lim x = 0,

, TU SC
toO 2

wenn man A------- dafür schreibt.x

Beispiele. 1. Die Funktion f(x) =»(n> 0) zeigt bei lim x=° 

nach wiederholtem Differenzieren von Zähler und Nenner so lange 
die unbestimmte Form 8 , als im Nenner eine positive Potenz ver­
bleibt; da dies aber, wie groß auch n sein möge, einmal aufhören 
muß (76, 1.), so kommt man schließlich bei einem ganzzahligen n zu

€lim
x = 0

== lim —== c.

bei einem gebrochenen, zwischen die ganzen Zahlen p und p + 1 
fallenden n zu

lim — = lim---------------------------„ = lim 
z= oo x------------ nip — 1) • • • (n — p)x p

«”+ln”e__
n(p — 1) • • • (p —p)

Es wird also es bei unendlich wachsendem x unendlich groß von höherer 
Ordnung als jede positive Potenz von x.

2. Bei der Funktion /\x) =n(n>0), die bei lime = C die 

Form 8 annimmt, führt schon einmalige Differentiation zum Ziele; 
denn

1
, . lxc . xc ,. 1 - lim —- = hm —-—T = hm —— = (). 
2Ec O" nx nx

Es wird also Ix bei unendlich wachsendem x unendlich groß von 
niedrigerer Ordnung als jede positive Potenz von x.

3. Unter der Voraussetzung a > 0 erlangt f(c) = ‘[68 für 

lim x = + 0 die Form 8 ; einmalige Anwendung des Satzes gibt

a sec2ax
. - . tg ax . a sin 2x lim /(X) = lim —29— = lim ------ =+07 sec’x sin 2ax 

tge
und da der neue Bruch die Form 8 annimmt, so hat man weiter

lim f(x) = lim
x= + 0

2 a cos 2x
2a cos 2ax = 1.
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4. Auf die Funktion f(x) = « + cosc, deren Zähler und Nenner 
•x — sin X ‘

bei lim x = o unendlich werden, ist das Verfahren nicht anwendbar, 
weil die Ableitung des Nenners, 1 — cosx, niemals aufhört Null zu 
werden; es zeigt sich dies auch darin, daß der Quotient der Ab- 

leitungen, - ----------- , für lim x = C (oder — C) keiner bestimmten

Grenze zustrebt, vielmehr niemals auf hört, zwischen 0 und — o zu 
schwanken. Trotzdem konvergiert die Funktion gegen eine bestimmte 
Grenze, nämlich 1, wie unmittelbar ersichtlich ist.

81. Die Form 0 • o entsteht, wenn bei einem bestimmten Grenz­
übergange lim x = a in f(x) = p(x)v(x) der eine Faktor, z. B. q(x), 
gegen Null konvergiert, während der andere gleichzeitig unendlich wird.

Man führt diese Form auf eine der früheren zurück, indem man 

das Produkt in der Gestalt eines der Quotienten "21 schreibt
1 (x) g (x) ‘ 

worauf die früheren Sätze und Methoden angewendet werden können, 
sofern die hierzu erforderlichen Voraussetzungen erfüllt sind.

Beispiele. 1. f(x) = xm(lx')n nimmt bei lim x = — 0 die Form 0- co 
an, wenn m, n positiv sind; bezüglich n werde noch vorausgesetzt, 
daß es so beschaffen ist, daß (lx)n bei dem Grenzübergange reell bleibt.

Schreibt man die Funktionen in 

ein, man hat also

der Form (la) , so tritt der Fall 80 
x~m’

lim f(x) = lim "Qs) ‘e.| 
= 0 — mx 

n . (lx)"-1
— lim -——— m Am

die Form besteht weiter, wenn n > 1. Ist n eine ganze Zahl, so
ergibt sich nach n-maliger Wiederholung des Prozesses

lim f{x) =
= +o m

lim am = 0;

liegt hingegen n zwischen zwei ganzen Zahlen p und p — 1, so hat 
man nach p — 1-maliger Wiederholung

lim/(=) _ (-1En"p) "—) lim Coyne, 
: = + 0 «I X 

== 0,
weil------ —— ein Bruch ist, dessen Zähler gegen Null konvergiert 

und dessen Nenner unbegrenzt wächst.
Man kann den vorliegenden Fall übrigens durch die Substitution 

x = e~z auf einen früheren zurückführen; es wird nämlich

/(x)=*=T• , e"2 mn emz ‘
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und da lim x = — 0 zur Folge hat lim ms = co, so ist mit Berufung 
auf 80, 1:

lim f(x) = 1)" lim (mz)" = 0.
x = + 0 m m z = 0 €

/ 1 \
2. f{x} = xax — 1), worin a > 0, erlangt sowohl für lim x = c 

als auch für lim x = —c die Form oc-0; schreibt man dafür 
i

—1 und setzt — = z, so wird
1 x 7
x

f^ =

und nimmt für lim z = 0 die Form — an; man hat also nach 79:

Z 1 Z-1 
hm / [X) = hm  = hm ——- = la. 
x =c z = 0 Z

82. Die Form c — c tritt bei f{x) = g(x) — v(x) ein, wenn 
bei einem bestimmten Grenzübergange lim x = a Minuend und Sub­
trahend gleichzeitig gegen o oder — c konvergieren.

Man kann nun von der Differenz auf verschiedene Weise auf einen 
Quotienten übergehen, der dann eine der Formen 8,8 annimmt; so 

kann f(x) um gestaltet werden in

1________ 1(1- @1 yePte) 7 e-vte) 
qp(a)"1 o()-1 p (a)- 1, (x)-1 ‘ evoe)’ e—4p() ‘ 

und man hat es im ersten und dritten Falle mit ° , im zweiten mit 

8 zu tun.

Beispiele. 1. f(x} = 1 —1, ist bei x = 0 nicht definiert und 

nimmt für lim x = 0 die Form c — c an, in der Gestalt f{x) = 
3c2 _  sin2A . — 0

, . 0 aber die Form ~ an: man hat also JC” sin’a o

lim f(x) = lim 
x = 0

2 x — sin 2 x
2x sin2x + x^ sin 2x

lim 2 — 2 cos 2 x
2 sin2x — 4x sin 2x — 2 x2 cos 2x

= lim

= lim

4 sin 2 X
6 sin 2x + 12x cos 2x — 4x2 sin 2x

8 cos 2 x _ 1
24 cos 22 — 32x sin 20— 8x2 cos 22 3

2. /(x) = — cotg’x, das bei lim x = 0 in unbestimmter Form 

erscheint, kann um gestaltet werden wie folgt:
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, . sin2x—xc? cos’x
/(X) == --------- -----------------  

x’sin’a

sin x — x cos x sin x — x cos x x2 
x x3 sin2x

/sin x , \ sin x — x cos x /x\2
== (---------- — COS X) ------------3------- I  ------- ) :\ x / xs sin X/ 7

der erste Faktor konvergiert gegen 2, der dritte gegen 1; der mittlere, 

der die Form 0 zeigt, gegen die Grenze 3(79); folglich ist 

lim /(x) = ? • 
x =0 •

3. f(x) = x — V(x — a) (x — b), worin die Wurzel positiv zu 
nehmen ist, nimmt für lim x = 0 die Form 00 — 0 an, geht aber 
durch die Substitution x = 1 über in

2

1 — V(1 — az^l — bz) 
z . ‘ 

das für lim z = + 0 die Form ° erlangt; mithin ist 

lim fix) _ lim da - 2)+ba-a2) - a+b . 
x=o 2=+0 2V(1 — az)(1 — bz) 2

Der Fall läßt sich indessen durch algebraische Umgestaltung 
elementar erledigen; es ist nämlich auch

, x x3 — (x—a) (x—b) (a-^b^x — ab
x +V(x — a) (x—b) x +V(x — a)(_x — b) 

, ab a — b-------x

woran der Grenzübergang lim T = 0 unmittelbar ausgeführt werden 
kann.

4. f(x) = cos a l sin x — l tg 9 zeigt bei lim x = + 0 die Form 

c — oo, läßt sich aber wie folgt um gestalten:

cos . X Xsm 2 cos 2 .2 7 2sin-- + Co 2

= cosx. 12 — (1 —Z^X^l sin 4 + (1 + cos x)l COS % ; 

das erste Glied konvergiert gegen 12; das zweite gegen Null, weil es 

sin
in die Form —1— gebracht werden kann (80, 2.); das dritte gegen 0;

. 9 x
sin" 2 

folglich ist
lim /(x) = 12.
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83. Die Formen 0°, oo°, 1° entspringen aus einer Funktion
des Baues f(x)= g(x)Y(), wenn 
gange lim x = a gleichzeitig

bei einem bestimmten Grenzüber-

oder 

oder

lim g (x) = 0, 
lim g(x) = oc 

lim g(x) = 1,

lim v(x) = 0

lim v(x) = 0

lim v(x) = c (oder — o)

wird; damit eine solche Funktion wohl definiert sei, ist noch erforder­
lich, daß g (x) > 0 sei.

Schreibt man f(x) in der Form einer natürlichen Potenz: 
f(x) = ev (e)lsp (x),

so nimmt der Exponent in allen drei Fällen die Form 0.c an. 
Hierdurch ist die vorliegende Aufgabe auf den Fall 81 zurückgeführt.

Beispiele. 1. /(x) = x® erscheint bei lim x = + 0 in der Form 0°; 
schreibt man dafür erle und beachtet, daß der Exponent gegen 0 kon­
vergiert (81, 1.), so ergibt sich

lim f{x) = 1.

2. /(x) = (tg x)eosr nimmt bei lim x = 9 — 0 die Form oo° an; 

schreibt man f(x) = ecos altg", so zeigt der Exponent, in der Gestalt 
‘tge geschrieben, die Form 9, und sein Grenzwert ist 
sec a P ’ O0‘ 

sec2 x 
. to ac . sec a seca tg ac . 1 _ hm t— = hm , , = hm —,  5— = hm — = O: sec x tg a tg "a 2tg a sec’a 2 sec a 

daher hat man 
lim f(x) = 1.

c = -—o 2
3. Für lim 2 = c und ein beliebiges, aber

AC \ 2 . . .
1 + 7) die Form l00. Bringt man es in die 

mittelt

bestimmtes x erlangt 
l (1+—)

Gestalt e 2 und er-

lim

so kommt man

1
z'

zu der

x

= lim  ----- —-—— = lim
(1+T): 1,
\ z) 

wichtigen Formel

x
"a =X, +z

er.
die eine Erweiterung der Formel 47, (14) bildet.

Czuber, Höhere Mathematik. 10 
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b
4. Auch f(x) = (cos ax)x? wird bei lim x = 0 unbestimmt in der 

bl cos ax
Form 1°; setzt man aber in e "2 um, so wird der Exponent un­
bestimmt (8), und sein Grenzwert ist

so daß

lim — ab sin ax
22 cos ax = lim — a-b cos ax

2 cos ax — 2ax sin ax
a’b

2 ,

a^b
lim f(x) — e 2 
x = 0

84. Vermischte Beispiele. Nachstehende Funktionen nehmen 
bei den verzeichneten Grenzübergängen die danebenstehenden Grenz­
werte an:

tg x sin x — x cos x tgax — ax x — sin x 
x ‘ xz ‘ tgbx — bx ‘ tg x — x

a" — b
cx— dx

lim x - 0; 1, }, p, 1
2 ,

sin x — cos x 
sin 22 — cos 2 xc X =

sin — (lim x = co; a).

2a(a — a) tg ZE(lim «=a;

2x tg x — z sec x (lim x = 7 ;

xx (lim x = c; 1). 

(sinz)" * (lim x = + 0; 1). 

(tg z)*62(lim x = + 0; 1).

§ 2. Maxima und Minima expliziter Funktionen einer Variablen.
85. Begriff der extremen Werte einer Funktion. In dem 

Verlaufe einer nicht monotonen Funktion sind solche Stellen von be­
sonderer Bedeutung, an welchen ein Übergang vom Wachsen zum 
Abnehmen oder umgekehrt stattfindet. Die zugehörigen Funktions­
werte trennen die Kontinua; die von der Funktion nacheinander im 
abwechselnden Sinne durchlaufen werden; man bezeichnet sie als ex­
treme Werte der Funktion oder kurz als deren Extreme.

Die im Intervall (a, ß) stetige Funktion /(x) hat an der Stelle 
x = a im Innern des Gebiets einen relativ größten Wert oder ein
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Maximum, wenn sie daselbst vom Wachsen zum Abnehmen übergeht; 
und einen relativ kleinsten Wert oder ein Minimum, wenn sie vom 
Abnehmen zum Wachsen übergeht. Präziser und für die analytische 
Verwertung geeigneter gesagt, findet ein Extrem statt, wenn sich eine 
positive Zahl ö angeben läßt derart, daß entweder

f{a — I) < /(a) > /(a + I) (1)

oder f{a - )> f(a) < /(a + h), (2)

so lange die positive Variable h der Bedingung

I < ö

genügt; die Beziehung (1) kennzeichnet ein Maximum, (2) ein Minimum.
Die zulässige Größe von 4 hängt davon ab, wie häufig die Funk­

tion den Sinn ihrer Änderung wechselt; bei Funktionen, bei denen 
Maxima und Minima in rascher Folge abwechseln, wird 8 klein ge­
wählt werden müssen; für die Zwecke der folgenden Untersuchung 
kann 8 beliebig klein gedacht werden.

Die Begriffe des Maximums und Minimums sind von den Be­
griffen des größten und des kleinsten Wertes der Funktion im Inter­
vall (a, 3) wohl zu unterscheiden; der größte Wert schlechtweg braucht 
nicht mit einem Maximum und der kleinste Wert nicht mit einem 
Minimum im Sinne der obigen Definition identisch zu sein. Bei der 
Beurteilung dieser Frage muß der ganze Wertevorrat der Funktion, 
müssen also auch ihre Werte an den Enden des Intervalls in Betracht 
gezogen werden.

Die Feststellung der extremen Werte hat in den angewandten 
Gebieten besondere Bedeutung, weil es sich hier häufig darum handelt, 
gerade diese Werte zu erzielen.

86. Notwendige Bedingung bei Vorhandensein eines 
eigentlichen Differentialquotienten. Der Übergang vom Wachsen 
zum Abnehmen oder vom Abnehmen zum Wachsen kann in ver­
schiedener Weise vor sich gehen. Der gewöhnliche, die Regel bildende 
Fall ist der, daß die Funktion eigentliche Differentialquotienten be­
sitzt bis zu jener Ordnung, die bei der Untersuchung noch in Betracht 
kommt. Unter dieser Voraussetzung läßt sich zunächst der Satz 
nachweisen, daß an einer Stelle, an welcher die Funktion ein 'Extrem 
erlangt, ihre Ableitung notwendig verschwindet.

Im Falle des Maximums folgt nämlich aus (1), daß

f(g — h) —f(a) > 0 f(a + 1) —ftg}0 

und da beide Quotienten mit lini h = 0 gegen eine und dieselbe Grenze 
konvergieren, so kann /'(a) weder positiv noch negativ sein, es ist 
also notwendig gleich Null.

10*
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Im Falle des Minimums ist wegen (2)
f[a — h) —Aa) 0 /(a + h) —/^ 0

— h - h 
und die gleiche Schlußfolgerung führt zu der Erkenntnis, daß not­
wendig /\a) = 0 sein müsse.

Hiernach lautet die erste Regel: Um die Stellen zu finden, an 
ivelchen eine mit einem eigentlichen Differentialguotienten begabte Funk­
tion f(x) extreme Werte annehmen kann, setze man f(x) = 0 und löse 
diese Gleichung nach x auf.

Die bedingte Formulierung ist dadurch geboten, daß ja f'{x) auch 
an einer Stelle Null werden kann, in deren Umgebung f(x) wächst 
oder abnimmt (71).

Die unmittelbarste Entscheidung darüber, ob f(x) an einer Stelle 
x = a, die aus f(x) = 0 als Wurzel hervorgeht, tatsächlich einen ex­
tremen Wert erreicht, besteht in der Untersuchung des Verhaltens 
von f\x) in einer beliebig engen Umgebung (a — 8, a — 3) in Bezug 
auf das Vorzeichen. Ist f‘(x) in (g — 8, a) positiv, in (g, a — 0) 
negativ, so ist /(g) ein Maximum, bei dem umgekehrten Verhalten 
ein Minimum.

Die Funktion f(x) = 2x” — 3x2 + b beispielsweise hat die Ab­
leitung

/'(x) = 6x(x — 1),

die an den Stellen x = 0 und x = 1 verschwindet. Nun ist, sobald 
0 < ö < 1,

/‘(- ö) = 6ö(ö + 1) > 0, f\ö} = - 6 ö(1 - ) < 0, 

daher fW) = b ein Maximum; ferner unter der gleichen Voraussetzung

/‘(1 -) = - 60(1 - ö) < 0, f‘(1 + ö) = 60(1 + ö) > 0,
daher f(1) = b — 1 ein Minimum.

87. Unterscheidung zwischen Maximum und Minimum. 
Bei Existenz auch höherer eigentlicher Differentialquotienten läßt sich 
die Entscheidung auf Grund dieser systematisch treffen.

Da ein Maximum dadurch gekennzeichnet ist, daß innerhalb einer 
genügend eng begrenzten Umgebung

f\a — h~) > 0, f‘(a) = 0, /'(g + 1) < 0,
so folgt, daß

f{g — h) > /\a) > f\a + h\ 

daß also f^ in der Umgebung von a abnehmend ist; infolgedessen 
ist /"(a) < 0 oder = 0.

Einem Minimum entspricht das durch die Ansätze

f\a — h) < 0, f‘(a) = 0, f\a + hi) > 0
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gekennzeichnete Verhalten von f‘(x), das zu
J‘(a — I) < J’(a) < f\a + I)

führt und zeigt, daß /\a) in der Umgebung von a wachsend ist; 
folglich ist f"{a) > 0 oder = 0.

Sieht man also von dem Falle f"(a) = 0, der noch keine Ent­
scheidung bringt, ab, so kann als zweite Regel ausgesprochen werden: 
„ Wenn an der aus f‘(x) = 0 berechneten Stelle x = a /"(a) < 0 ist, 
so ist f(a) ein Maximum, hingegen ein Minimum, wenn /"(a) > 0 ist.

Es steht fest, daß /‘(x) in der Umgebung der Stelle eines Maxi­
mums abnehmend, in der Umgebung der Stelle eines Minimums 
wachsend ist; wenn dabei /"(a) = 0 ausfällt, so zeigt /"(x) in der 
Umgebung des Maximums folgendes Verhalten:

/"(a — h~) < 0, f"(a) = 0, f\a + h) < 0,

so daß /"(a — h) < f"(a) > /"(a + h), 
in der Umgebung des Minimums das Verhalten

f'{a — h) > 0, /"(a) = 0, /"(_a + h) > 0,

so daß f"(a — h)^ f"(a) < f"(a + h\,
es ist also im ersten Falle /"(a) selbst ein Maximum, im zweiten 
Falle ein Minimum von /"(x), infolgedessen /" (a) = 0 und fT(a), 
wenn es nicht verschwindet, negativ, bzw. positiv.

Daraus ergibt sich die weiter tragende Regel: Wenn an der Stelle 
x = a, die aus f‘(x) = 0 berechnet worden, f"(x) verschwindet, so kann 
f(x) einen extremen Wert daselbst nur dann erlangen, wenn auch 
f"\a) = 0 ist-, die Entscheidung ist dann endgiltig möglich, wenn 
f^^aö = 0, und zwar ist /(o) ein Maximum oder Minimum, je nach­
dem /T(a) < 0 oder > 0 ist.

88. Allgemeines Kriterium. Um ein alle Möglichkeiten um­
fassendes Kriterium zu gewinnen, setzen wir voraus, es sei außer 
/'(a) = 0 auch /"(a) = 0, /'"(a) = 0, .... f(n-D(a) = 0, hingegen 
/^(a) + 0. Die mittels f(x) gebildete Funktion

f(xc) — f(a)

------------------ (n eine positive ganze Zahl) 
(x — al1

zeigt dann bei lim x = a die unbestimmte Form 8, die bei Anwendung 

des in 79 entwickelten Verfahrens auch nach n — 1 maliger Differen­
tiation von Zähler und Nenner noch anhält, so daß auch

lim/t)fa) - lim___  y -Va)_____
x = a (x — d)n n(n — 1) • • • 2 (x — a)

noch nicht zur endgiltigen Bestimmung des Grenzwertes führt; da aber 

lim /"- ‘) - lim/" » )—/- »(a) _ 70/4
x — a x — a /)
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ist, so wird
lim "r)—@@) = 1 f(m(a),

(x-a}n nl k " 

woraus der für unsern Zweck wesentliche Umstand folgt, daß f(x) — f(a) 
schließlich, d. h. in einem genügend engen Intervall (a — 8, a + ö), 
das Vorzeichen von (x — a)nn)(a) besitzt.

Ist nun n gerad, so hat f(x) — f(a) in der ganzen durch dieses 
Intervall bezeichneten Umgebung beständig dasselbe Vorzeichen, und 
zwar das von f(n) (a); folglich ist f(a) ein Minimum, wenn f(n) (a) > 0, 
ein Maximum, wenn f")(a) < 0 ist.

Bei ungeradem n hingegen wechselt f(x) — /(a) sein Vorzeichen 
beim Übergang von der einen Seite der Stelle a zur andern, es findet 
ein extremer Wert nicht statt; vielmehr ist f(x) in der Umgebung 
von a wachsend, wenn f()(a) > 0, abnehmend, wenn f(")(a) < 0 ist.

Demnach lautet die alle Fälle umfassende Regel: An einer Stelle 
x = a, die der Gleichung f‘(x) = 0 genügt, erlangt /(x) ein Extrem nur 
dann, zcenn die nächste an dieser Stelle nicht verschwindende Ableitung 
von gerader Ordnung ist; ist sie negativ, so ist /{a) ein Maximum, 
dagegen ein Minimum, wenn diese Ableitung positiv ist.

Bei der Darstellung von f(x) durch die Ordinaten einer Kurve 
hat das gemeinsame Merkmal von Maximum und Minimum, d. i. 
f’(a) = 0, eine anschauliche Bedeutung; es besagt, daß in den Punkten 
der Kurve, zu welchen extreme Werte von f(x) gehören, die Tan­
gente parallel ist zur Abszissenachse (56).

89. Beispiele. 1. Die in 86 behandelte Funktion /(x) 
= 2x3 — 3x2 + b erledigt sich mit Hilfe der zweiten Ableitung f"(x) 
= 12x — 6, wie folgt: es ist

/"(O) = — 6 < 0, daher f(0) = b ein Maximum,

/"(1) = 6 > 0, daher /(l) = b — 1 ein Minimum.

2. Für f{x) = ‘, ergibt sich durch Nullsetzen von /‘ (x) = 1—2 

x = e als die einzige Stelle, an der ein extremer Wert stattfinden 

kann; da ferner f'\x) = 2 14, 3 , somit f"(e) ==l<0, so ist f(e) = 1 
der Maximalwert der Funktion.

3. Die Frage, ob es ein Logarithmensystem gibt, in dem einmal 
der Logarithmus mit dem Numerus übereinstimmt, kann in folgender 
Weise erledigt werden. Setzt man

logac - x = y, a>l,
so hat man es mit einer Funktion zu tun, die sowohl für kleine 
(unter 1 liegende) als auch für große positive Werte von x negativ 
ist; wenn also ihr Maximalwert positiv oder Null ist, so tritt der 
Fall y = 0 notwendig (zwei- oder einmal) ein (51, 3).
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Nun ist y‘= —d------ 1, verschwindet bei x = log e, ist vor dieser 
Stelle positiv, jenseits derselben negativ, folglich ist

log, log, e - log, e 
ein Maximum1) von y; man hat also zur Lösung der Frage den Ansatz 

log log e — log e > 0, 
woraus

log e 
log, 8* 2 0, 

log e 
1, e — 7

log, ee 2 1
i

und schließlich a < e = 1,444667... folgt. Nur in solchen Loga­
rithmensystemen tritt also der oben erwähnte Fall ein, deren Basis 
unter dieser Zahl liegt.

4. Handelt es sich um die Extreme einer Funktion, welche die 
Form eines Bruches " besitzt, dessen Zähler und Nenner von x ab- 

v 7
hängen, so kann die Rechnung eine wesentliche Vereinfachung er­
fahren. Zunächst ist für das Verschwinden von

U V — uv
72

notwendig, daß
u’v—uv‘=0 («)

sei, wenn nicht für den aus dieser Gleichung berechneten Wert x = a 
ausnahmsweise auch v = 0 ist. Diesen Fall ausgeschlossen, hat man 
weiter

(u" v — uv"}v^ — 2vv‘(u‘v — uv') 
v” 

also
’u V — UV

0
Mithin hat man nur den Ausdruck

u'v — uv" (3)
auf sein Vorzeichen zu prüfen, um über Maximum oder Minimum zu 
entscheiden.

So lautet für f(x) = &s± &±1 die Gleichung (a)

221*0

i) y" =
log e ... . , . . 1 —_ kann nicht verwendet werden, weil man über das Vor- 

x2
Zeichen von log e von vorneherein nichts aussagen kann.
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und der Ausdruck (B) — 4x; er ist für x = — 1 positiv, für x = 1 
negativ; folglich ist

f(— 1) = 3 ein Minimum, /(l) = 3 ein Maximum.

5. Die Zahl a ist in zwei Teile zu zerlegen derart, daß das Pro­
dukt dieser Teile den größtmöglichen Wert annehme.

Ist der eine Teil x, so ist a — x der andere, und es handelt sich 
um das Maximum von

f(x) = x(a — x).

Aus f‘(x) = a — 2x = Q folgt x = 9 , und da /"(x) = — 2 negativ 
ist, so ist tatsächlich

, /a\ a2
/ 2) 4

der größtmögliche Wert des Produktes.
Auf diesen einfachen Fall lassen sich mancherlei Probleme zurück­

führen; als Beleg dafür mögen die folgenden dienen.
a) Unter den Rechtecken von gegebenem Umfange 2a jenes von 

der größten Fläche zu bestimmen.
Heißt eine Seite des Rechtecks x, so ist a — x die andere; es 

soll also x(a — x) ein Maximum werden. Das verlangte Rechteck 
ist demnach das Quadrat.

ß) Unter den einem gegebenen Kreise vom Durchmesser a ein­
geschriebenen Rechtecken dasjenige von» der größten Fläche aufzu­
suchen.

Ist x die eine Seite des Rechtecks, so ist das Quadrat der anderen 
a2 — x3, xVa2 — x2 die Fläche; ihr Quadrat x2(a2 — x2) wird ein Maxi- 

mum für a* = 9, die Fläche selbst ist dann ebenfalls ein Maximum 

= und der Gestalt nach ein Quadrat, weil z= 1a?—2= C_.
2 ] 2

7) Den Elevationswinkel bei dem schiefen Wurf zu bestimmen, 
bei welchem sich die größte Wurfweite einstellt.

Heißt c die Wurfgeschwindigkeit, g die Beschleunigung der 

Schwerkraft und x der Elevationswinkel, so ist 2c sin x cose die Wurf- 

weite; sie wird zu einem Maximum, wenn sin x cOS X oder sin2x cos2x 
= sin2x(1 — sin2x) seinen größten Wert erlangt; dies aber geschieht 
für sin? = 1, also für x = x , d. i. bei einem Winkel von 450.

3) Die Höhenlage der Öffnung in der Seitenwand eines bis zu 
einer gewissen Höhe mit Flüssigkeit gefüllten Gefäßes zu bestimmen, 
bei welcher die Ausflußweite am größten ist.

Bedeutet h die Tiefe der horizontalen Grundebene und x die 
Tiefe der Öffnung unter dem Flüssigkeitsspiegel, so ist die Ausfluß-
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weite 2 V x(h — x); sie wird am größten, wenn x(h—x) ein Maximum 
erreicht, und dieses tritt für x = " ein. Die Ausflußweite selbst ist 

dann x = h.
&) Einem Dreieck ein Rechteck derart einzuschreiben, daß eine 

Seite des Rechtecks in die Basis des Dreiecks fällt und seine Fläche 
möglichst groß wird.

Bezeichnet man mit c, h Basis und Höhe des Dreiecks und mit 
x den Abstand der gegenüberliegenden Rechtecksseite von der Spitze, 

so drückt sich die Rechtecksfläche durch 7 x(h—2) aus, wird also 
h.ein Maximum, wenn x = 9 ist.

6. Einer Kugel einen Kegel von maximalem Volumen einzu­
schreiben.

Ist r der Radius der Kugel und x der Abstand ihres Mittel­
punktes von der Kegelbasis, so hat das Volumen des Kegels den 
Ausdruck

v = 3 (r3 — 23) (r + x).

Der variable Teil, (r2—a?)(r — x), erlangt ein Maximum, wenn

72 — 2ra — 32* = 0,
d. h. wenn x = 3; die andere Wurzel, x = — r, führt auf einen be- 

329 8langlosen Grenzfall. Es ist demnach max =“973, d. i. 97 vom 

Inhalt der Kugel.
7. Einer Kugel einen Kegel von maximaler Mantelfläche einzu­

schreiben.
Mit Beibehaltung der vorigen Bezeichnungen ist die Mantelfläche

M=% V2r(— x?)(r + x) .
Hiernach hat derselbe Kegel, dessen Volumen ein Maximum, auch die 
größte Mantelfläche; max M = 87 r’V 3 .

8. Aus einer Kreisscheibe einen Sektor so auszuschneiden, daß 
der aus dem Rest der Scheibe geformte Trichter einen möglichst 
großen Fassungsraum besitze.

Bezeichnet r den Radius der Scheibe, x das Bogenmaß des Zentri­
winkels des restlichen Sektors, so ist das Volumen des kegelförmigen 
Trichters

/ x \ 2 . . --------
Setzt man (24) = y, so handelt es sich um das Maximum vony v^-y
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oder von y2(1 — y); dieses tritt ein für 2y — 3y2= 0, also, von der 

belanglosen Bestimmung y = 0 abgesehen, für y = 3 , mithin für 

x = 2x1 3 , d. i. für einen Zentriwinkel von 293, 94, und zwar ist 

max v = ?7 7V3.

9. An den Ecken einer rechteckigen Tafel sind quadratische 
Ausschnitte anzubringen derart, daß der aus dem Rest geformte pa- 
rallelepipedische Behälter einen maximalen Fassungsraum annehme.

Sind a, b die Seitenlangen des Rechtecks, x die Seite des Aus­
schnitts, so ist der Inhalt des Behälters

v = (a — 2x) (b — 2x)x = 4x3— 2(a + b)a*+ abx.
Zur Bestimmung von x hat man also die quadratische Gleichung 

12x2 — 4(a + b) x + ab = 0, 
deren Wurzeln

_  a + b — ya^^-b^ — ab a+b+Va?+b — ab
^i — 6 » 82 = 6 

sind; die zweite Ableitung, 24x — 4(a + b), nimmt an diesen Stellen 
die Werte

- 4Ya?+6—ab, 4Ya?+ 62 -ab
an, so daß X1 zu dem verlangten Maximum führt. Der zweiten 
Lösung X2 würde arithmetisch ein Minimum entsprechen; mit Bezug 
auf das gestellte Problem ist sie aber unzulässig; denn, ist b die 
kürzere der beiden Seiten, so ist

1 _ 9 _ 2b—a—Va’+b’—ab . 0

weil (2b — a)2 = a2 — 4b(a — b) < a2 + b2—ab = a2 — b(a — V), da­
her 2x2 > b und der Ausschnitt nicht möglich.

10. Es sind zwei Punkte A, B und eine sie nicht trennende Ge­
rade XX’ gegeben (Fig. 37). Man soll den kürzesten über einen

Fig- 37.

Punkt von XX’ führenden Weg von 
A nach B bestimmen.

Einem Grundsätze der Geometrie 
zufolge wird der Weg aus zwei gerad- 

X linigen Strecken sich zusammensetzen, 
so daß es darauf ankommt, den Punkt 
P in XX’ so zu bestimmen, daß 

s = AP — PB ein Minimum werde.
Setzt man AA' = a, BB'=b A'B'=c, AP = x, so ist 

s = Va2 + x2 + Yb2 + (c — x)2, 
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und die notwendige Bedingung für ein Extrem lautet:
ds x c — x
dz - Va*+2* ~ V6*+(—«,? = 0, (") 

oder in den Linien der Figur ausgedrückt:
A‘ P _ PJP 
AP — BP i

daraus schließt man auf die Ähnlichkeit der Dreiecke AA'P und 
BB'P und hieraus wieder auf die Gleichheit der Winkel X’ PA und 
XPB. Die Konstruktion von P geschieht in der Weise, daß B'Br 
= BB' gemacht und A mit B, verbunden wird.

Hiernach ist das Reflexionsgesetz ein Ökonomiegesetz der Natur: 
die Fortpflanzung des Lichtes, des Schalles u. a. durch Reflexion er­
folgt so, daß von einer Stelle zur andern der kürzestmöglichste Weg 
erforderlich ist.

Die direkte Verfolgung der Bedingungsgleichung («) führt nach 
Beseitigung der Irrationalitäten und der Nenner zu der quadratischen 
Gleichung

(b3—a?)a + 2a‘cx — ac= 0, (B) 
und diese gibt die beiden Wurzeln 

ac ac
1 a—0‘ - a — 0 

die erste leitet auf die gefundene Lösung hin: denn aus der hervor- 
gehobenen Ähnlichkeit folgt

A‘ P : a = (c — Ä P) : b, 
woraus

-, — a c AP = —== a — o 1
Die zweite Lösung ist der gestellten Aufgabe fremd und rührt daher, 
daß die Gleichung (ß) umfassender ist als («) infolge der ausgeführten 
Quadrierung; die Gleichung (3) schließt auch die Bedingung für das 
Maximum von AP — BP oder von

Va3 +a—Vb+(c- x)2
in sich und hierfür gilt X2, das den Schnittpunkt Q der Geraden AB 
mit XX' bestimmt; in der Tat ist

AP - PB < AB,

daher AB der Maximalwert der Differenz AP—PB, welcher sich 
dann einstellt, wenn P mit Q zusammenfällt.

Man hätte auch von der folgenden Betrachtung ausgehen können.
Der Ort der Punkte P, für welche AP + PB einen bestimmten 

konstanten Wert s hat, ist eine Ellipse mit den Brennpunkten AB 
und der großen Achse s (Fig. 37); die kleinste unter diesen (konfo­
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kalen) Ellipsen, welche mit der Geraden XX' reelle Punkte gemein 
hat, ist diejenige, welche sie berührt; der Berührungspunkt bestimmt 
die Lösung der Aufgabe und hat nach einer bekannten Eigenschaft 
der Ellipsentangente eine solche Lage, daß 3. X' PA = 9. XPB.

11. Es sind zwei Punkte A, B und eine sie trennende Ebene AIM' 
gegeben (Fig. 38). Man soll den Weg von A nach B bestimmen, 

A N welchen ein Bewegliches in der kürzesten 
|   Zeit zurücklegt, wenn es sich von A bis 
| VH, B7 zur Ebene mit der Geschwindigkeit u und 
,—— 7 von da ab bis B mit der Geschwindigkeit v 

0/../ bewegt.
B Der Weg wird sich notwendig aus zwei 

A geradlinigen Strecken zusammen setzen und be­
stimmt sein, sobald man den Punkt P der 

Ebene kennt, über welchen er führt. Von diesem läßt sich ferner 
erweisen, daß er in die Verbindungslinie der orthogonalen Projektionen 

« A', B' von A, B auf MM’ falle, daß der Weg selbst also in der 
durch A, B zu MM’ gelegten Normalebene verlaufe. Denn zu einem 
Wege wie AQB, der über einen Punkt Q außer A'B' führt, läßt sich 
immer ein Weg finden, der in kürzerer Zeit zurückgelegt wird als 
AQB‘^ man braucht nur QP senkrecht zu A B' zu ziehen, und er­
kennt sogleich, daß AP < AQ, BP < BQ, daß also auch APB in 
kürzerer Zeit zurückgelegt wird als AQB.

Ist AA' = a, BB'—b, A'B'=c, A'P = x, so ist die für den 
Weg APB erforderliche Zeit

, _ Va?+a* Vh*+ (c — ac)3 
U 0 7 

und ihr kleinster Wert ergibt sich, wenn P so gewählt wird, daß 

dt _ x c — x 0 
da ua3+x* «Vb3+(c — x)2 ‘ 

oder in den Linien der Figur ausgedrückt, daß

1 A‘ P _ 1 PB‘ 
u AP 7 BP;

bezeichnet man also die Winkel, welche die Wegteile AP und BP 
mit dem Lote zur Ebene einschließen, mit a, ß, so ist der verlangte 
Weg durch die Beziehung

sin a u 
sin ß v 

gekennzeichnet, wonach das Sinusverhältnis der genannten Winkel 
gleich sein muß dem analog gebildeten Verhältnis der Geschwindig­
keiten.
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Man erkennt hierin das Refraktionsgesetz der Optik. Die Fort­
pflanzung des Lichtes aus einem Medium nach einem von anderer 
optischer Dichte geht also so vor sich, daß das Licht von einer 
Stelle zu einer andern in möglichst kurzer Zeit gelangt.

12. Ein Kreiszylinder von gegebenem Volumen ist so zu formen, 
daß er eine, möglichst kleine Oberfläche erhalte.

Bezeichnet man Radius, Höhe und Volumen des Zylinders mit 
x, y, v, so ist seine Oberfläche

0 = 2xx(x + y), 
und weil xx2y = v, auch

0 = 27= (x 4—= 272% + —
\ nx-J x

sie erlangt ihren größten Wert, wenn

22% _‘=0,
3 /  3 /— 

also c =/—, und weil dann y =/ , so ist y = 22, der frag- 

liehe Zylinder also gleichseitig; min 0 = 3 72v.

90. Außergewöhnliche Extreme. Darunter werden solche 
Maxima und Minima verstanden, die mit einem besonderen, von dem 
bisherigen abweichenden Verhalten des Differentialquotienten verbunden 
sind und daher durch das in 86 entwickelte Verfahren nicht gefunden 
werden können.

1. Wenn die abgeleitete Funktion f‘(x) an einer Stelle a = a 
aufhört definiert zu sein, wenn aber f(x) selbst an dieser Stelle be­
stimmt ist und einen linken und einen rechten Differentialquotienten 
zuläßt, die ungleich bezeichnet sind, so ist f(a) ein Maximum oder 
ein Minimum je nach der Aufeinanderfolge der Vorzeichen.

Ist z. B. der linke Differentialquotient positiv, so wird 
f(a — h) —f(a)

— h
schließlich, d. h. in gehöriger Nähe von a, positiv, folglich

f^ - 1) </(a)

bleiben müssen; ist gleichzeitig der rechte Differentialquotient negativ, 
so wird

f(a + h) —fW
h 

schließlich negativ, also
f(a) > f(a + h)

bleiben müssen; durch diese Relationen

f(a - 1) <f(a) >/(« + 1)
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ist aber f(a) als Maximum gekennzeichnet. Ähnlich für den Fall des 
Minimums.

Bei geometrischer Darstellung tritt eine solche Stelle derart in 
die Erscheinung, daß die Kurve dort eine Ecke bildet.

Als Beispiel diene die Funktion

f(x) = b + V (x — (i)2, 

die Wurzel positiv genommen;

f‘(x)
x — a

V(x — a)2

Fig. 39.

existiert an der Stelle x = a nicht, wohl aber ist 
ein linker Differentialquotient vom Werte — 1, ein 
rechter vom Werte — 1 vorhanden, f(a) = b also 
ein Minimum. Die Funktion ist geometrisch durch 
einen rechten Winkel dargestellt, Fig. 39, dessen 
Scheitel ab ist und dessen Schenkel gegen die 
Achse gleich geneigt sind.

2. Ein besonderer Fall des vorigen besteht darin, wenn an der

Fig. 40.

der f\(i) nicht definiert ist, der linke und rechte 
Differentialquotient unendlich werden mit verschie­
denem Vorzeichen. Je nach der Aufeinanderfolge 
der Vorzeichen, ------ oder------ -, findet ein Maximum 
oder Minimum statt. Im geometrischen Bilde äußert 
sich eine solche Erscheinung in einer Spitze mit zur 
y-Achse paralleler Tangente, Fig. 40.

Ein Beispiel hierzu bietet die Funktion 

f(x) = b + V(x — a)2;
ihre Ableitung f‘(x) = -3------  existiert für x = a nicht; es ist aber 37x — a 
lim /‘(x) = — co, hingegen lim f'(x) = + o, daher f(a) = b ein x=a-o------------------------- x=a+o 
Minimum.

VI. Abschnitt.

Determinanten.
§ 1. Über Permutationen.

91. Inversionen; gerade und ungerade Permutationen. 
Jede Nebeneinanderstellung von n verschiedenen Elementen heißt eine 
Permutation derselben. Um die Anzahl Pn der Permutationen zu be­
stimmen, ordne man sie nach dem an der ersten Stelle stehenden 
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Element in Gruppen; da in jeder dieser n Gruppen jeweilen die n — 1 
übrigen Elemente auf alle Arten permutiert sind, so ist Pn = n Pn_1, 
und da weiters P = 1 ist, so findet man Pn = 1 ■ 2 •• - n = nl.

Dadurch, daß man die Elemente mit Nummern oder Buchstaben 
bezeichnet, erteilt man ihnen einen Pang.

Zwei Elemente einer Permutation stehen in der natürlichen Ord­
nung, wenn das höhere dem niederen nachfolgt; im andern Falle bilden 
sie eine Inversion.

Diejenige Permutation, in der alle Elementenpaare in der natür­
lichen Ordnung stehen, heißt die niedrigste. Jede andere Permutation 
enthält Inversionen. Deren größte Zahl befindet sich in der höchsten 
Permutation, welche die Umkehrung der niedrigsten ist; da hier jedes 
Element mit jedem nachfolgenden in Inversion steht, so ist die Anzahl 
der Inversionen ) n(n— 1).

Die Permutationen der n Elemente lassen sich in Paare von Per­
mutationen zusammenstellen, deren eine die Umkehrung der andern 
ist. Da in einem solchen Permutationspaar jedes Elementenpaar ein­
mal in Inversion steht, so kommen darin ebenso viele Inversionen 
vor als in der niedrigsten und höchsten Permutation zusammen, näm­
lich ) n(n — 1). Folglich enthalten alle Pn Permutationen zusammen

-^ n{n — 1) Inversionen.

So sind beispielsweise in den 24 Permutationen von 4 Elementen 
72, in den 120 Permutationen von 5 Elementen 600 Inversionen zu 
zählen.

Nach der Anzahl der in ihnen vorkommenden Inversionen können 
die Permutationen einer Elementenreihe in zwei Klassen geschieden 
werden, indem man in der einen Klasse die Permutationen mit einer 
geraden Anzahl von Inversionen und in der andern jene mit einer 
ungeraden Anzahl von Inversionen vereinigt; man spricht kurz von 
geraden und ungeraden Permutationen.

Die Permutation
hecda

der Elemente abcde gehört zu den geraden, weil ihre Elemente der 
Reihe nach 1, 3, 1, 1 zusammen 6 Inversionen mit den folgenden 
bilden; hingegen gehört die Permutation

641532 

der Elemente 123 45 6 zu den ungeraden, weil ihre Elemente der 
Reihe nach zu 5, 3, 0, 2, 1, also zu 11 nachfolgenden Elementen in 
Inversion stehen.

92. Der Satz von Bezout. Die Vertauschung zweier Elemente 
in einer Permutation nennt man eine Transposition. Alle Permutationen 
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einer Elementenreihe lassen sich aus einer von ihnen durch sukzessive 
Transpositionen herstellen. Für die Klassenzugehörigkeit ist der fol­
gende Satz von maßgebender Bedeutung:

Wenn man in einer Permutation eine Transposition ausführt, so 
ändert sich die Anzahl der Inversionen um eine ungerade Zahl; infolge­
dessen geht dadurch die Permutation aus einer Klasse in die andere über.

Sind i, k zwei Elemente, A, B zwei Elementengruppen, und 
transponiert man in der Permutation

AikB 
die Elemente i, k, wodurch sie in

AkiB 

übergeht, so tritt eine neue Inversion hinzu oder geht eine verloren, 
je nachdem i, k in der natürlichen Ordnung sind oder nicht.

Sind die zu transponierenden Elemente nicht benachbart, sondern 
durch eine m-gliedrige Gruppe C getrennt, so gehe man von

AiCkB 
zu

ACikB, 
davon zu

ACkiB 
und schließlich zu

AkCiB 

über; dazu sind 2m — 1 Transpositionen benachbarter Elemente er­
forderlich, folglich ändert sich die Anzahl der Inversionen eine un­
gerade Anzahl male um 1, unterscheidet sich also tatsächlich um eine 
ungerade Zahl von ihrem ursprünglichen Wert.

Beispielsweise enthält die Permutation

becda
sechs Inversionen, die Permutation

decba, 
die aus ihr durch Transposition der Elemente b, d hervorgeht, deren 9.

Da zu jeder Permutation von n Elementen eine andere gehört, 
die aus ihr durch Transposition zweier Elemente entstanden ist, so 
ist die eine Hälfte aller Permutationen gerad, die andere ungerad.

93. Zyklische Permutationen. Schreibt man die n Elemente 
—1 1, 2, - n in einer bestimmten Umlaufsrichtung an 

/n 2 den Umfang eines Kreises, Fig. 41, so heißt jede An-
7 \ Ordnung, in der sie in eben dieser Richtung gelesen 

" ‘ ) werden können, eine zyklische Permutation von 1, 
. 3 2,-n.
- „/ Die erste zyklische Permutation heißt also

Fig. 41. 2 3 • • • n 1 
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und entsteht aus der vorigen, indem man das erste Element an die 
letzte Stelle bringt, was auch durch n — 1 Transpositionen benach­
barter Elemente erzielt werden kann.

Es gilt daher der Satz: Eine einmalige zyklische Permutierung 
einer Reihe von n Elementen ist äquivalent mit n — 1 Transpositionen; 
somit gehören beide Permutationen zur selben oder jede zu einer andern 
Klasse, je nachdem n ungerad oder gerad ist.

Die zweite zyklische Permutation ist

34. .. 212, 

die n — l-te, zugleich letzte

n 1 2 • • • n — 1;

mit der ursprünglichen gibt also es n zyklische Anordnungen von n 
Elementen.

Die Anzahlen der Inversionen in den aufeinanderfolgenden An­
ordnungen sind

0, (»-1)1, (»-2)2,-. 1(» - 1); 

die Summe dieser Zahlen ist 1 (n — l)n(n + 1), beträgt also beispiels­

weise bei sechs Elementen 35.
Jede Anordnung, in der die Elemente in der entgegengesetzten 

Umlaufsrichtung gelesen werden können, ist eine zyklische Permutation 
der ursprünglichen Form

n(n — 1) • • • 2 1.

§ 2. Definition der Determinante.
94. Quadratische Matrix und ihre Determinante. Wenn 

m • n Elemente — worunter wir uns fortab Zahlen denken wollen — 
in m Reihen zu je n Elementen geordnet sind, so bilden sie in dieser 
Anordnung eine Matrix. Zur Darstellung einer solchen empfiehlt sich 
für allgemeine Untersuchungen vorzugsweise das folgende Bezeichnungs­
system :

“11 “12 ’ ' ' “in

"21 "22 ‘ ' ’ "2n (1)

Umi “m2 ’ ’ ' ^mn

das so eingerichtet ist, daß aus dem ersten Zeiger die Zeile (horizon­
tale Reihe), aus dem zweiten die Kolonne (vertikale Reihe) zu erkennen 
ist, in der das betreffende Element steht. Indessen kann es manchmal 
vorteilhaft sein, die Kolonnen durch Buchstaben und die Zeilen durch 
Zeiger zu unterscheiden und umgekehrt:

Czuber, Höhere Mathematik. 11
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a, b, *k, a^ a2 • ■ • a,

a, b, ‘ * ' k, b, b, • • ^n

a Kn I K ha*** h.

Zur Darstellung (1) zurückkehrend wollen wir sagen, die Matrix 
sei rechteckig, wenn m + n, und sie sei quadratisch, wenn m = n. Der 
Typus einer quadratischen n-zeiligen oder n-reihigen Matrix oder einer 
Matrix von n2 Elementen ist:

“11 @12 • • ' din

"21 “22. ttin (2)

anl an2 ' ‘ * ann’

Wenn man in dem Produkte der auf der Hauptdiagonale stehenden 
Elemente .

°iW^‘"ann (3) 
die zweiten Zeiger auf alle möglichen Arten permutiert und jedem so 
enstandenen Produkt

C1a,@2., • ’ • C,K, (4) 

das Zeichen — oder das Zeichen — vorsetzt, jenachdem die Permutation 
«, «, - - - an gerad oder ungerad ist, so heißt die Summe dieser Produkte 
die Determinante der Matrix (2).

Vermöge dieser Definition sind die Produkte der Matrix derart 
gebildet, daß keine zwei Faktoren aus einer und derselben Reihe (Zeile 
oder Kolonne) stammen.

Vertauscht man die Faktoren in (4) so untereinander, daß die 
zweiten Zeiger wieder in die natürliche Ordnung kommen, so bilden 
in dem umgestalteten Produkt

02,1d, ' • ‘ “A„"
die ersten Zeiger eine Permutation ßi ß, • • • ßn, die zur selben Klasse 
gehört wie «,C2 ‘' ’ an'i denn Bi ß, • • • ßn ist aus 1 2 • • • n durch eben- 
soviele Transpositionen entstanden, als nötig waren, um aus && «, 
die Form 12... zu erzeugen.

Demnach kann die obige Definition auch so formuliert werden, 
daß sich die Permutierung auf die ersten Zeiger bezieht, während die 
zweiten in ihrer natürlichen Ordnung belassen werden.

Das Glied (3), aus dem hiernach alle andern Glieder abgeleitet 
werden, heißt das Hauptglied der Determinante.

95. Struktur und Bezeichnung der Determinanten. Aus 
der Definition geht hervor, daß eine n-reihige Determinante in einer 
Summe von n \ Gliedern besteht, deren jedes ein Produkt von n Faktoren 
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ist; einer bestimmten Hälfte dieser Glieder ist das Operationszeichen —, 
der andern Hälfte das Zeichen — vorgesetzt; da eine solche Determi­
nante also einen Ausdruck n-ten Grades ihrer Elemente darstellt, wird 
sie auch als Determinante n-ten Grades bezeichnet.

Zur Bezeichnung der Determinante bedient man sich des Symbols 

± a@,2 • • • d,

(Cauchy, Jacobi),das auf wesentliche Momente der Definition hinweist, 
oder des kürzeren

(a,@22 d„)

(Cauchy). Eine Schreibweise, die das ganze Elementensystem zur 
Anschauung bringt, besteht in der Einschließung der Matrix zwischen 
zwei Vertikalstriche:

“11 @12 " ' ‘ din

@21 422 ' ‘ ‘ C(2n

I anX an2 ‘ ' ‘ ann

(Cayley). Eine besonders kurze Bezeichnung besteht in der Ein­
schaltung des allgemeinen Elements zwischen Vertikalstriche unter 
Angabe der Zeigerwerte:

I da \ (i, k = 1, 2, n).
(Kronecker).^

96. Entwicklung von zwei- und dreizeiligen Determi­
nanten. Die zweizeilige Determinante besteht aus zwei Gliedern, 
eines additiv, das andere subtraktiv:

a, b,
' 7 == A,b2 — ab •

Der Ansatz

ist hiernach gleichbedeutend mit der Proportion

____ «i : a, = b, : b,
1) Die erste Erfindung der Determinanten durch Leibniz (1693; veröffent- 

licht 1700 in den Acta Eruditorum) geriet in Vergessenheit, bis Cramer 1750 (Intro- 
duction ä l’analyse des courbes algebriques) sie zum zweitenmal selbständig er­
fand; beidemal war es dasselbe algebraische Problem, das zu ihnen hinführte. 
Den Grund zu einer selbständigen Theorie legte Cauchy; den Namen gab 
Gauß (1821). Ihre bleibende Stellung in der Mathematik erhielten die Deter­
minanten erst durch die Abhandlungen von Jacobi (1841).

11*



164 Determinanten. § 3. Haupteigenschaften der Determinanten.

Bei der Entwicklung der dreizeiligen Determinante

01 b, C1 
a, b, C2 
a, b, c.

kann man in dem Hauptgliede a, b, C3 entweder die Zeiger oder die 
Buchstaben permutieren und hat dann aus der Anzahl der Inversionen 
das Zeichen zu bestimmen; man findet so:

R = atb2c3 — arbäc2 — a,b, C3 + 0,b3C1 + A3b,C2 — 0,b2C1
R — a,b2€3 a, c2 b3 b^a2c^ + b,C2 d3 + C10,ba Ciba@s;

die Zeichenstellung ist in beiden Entwicklungen dieselbe, weil das 
Permutieren nach der nämlichen Regel erfolgte; die Übereinstimmung 

erkennt man durch gliedweise Vergleichung.
Nach einem von Sarrus angegebenen Ver­

fahren geschieht die Entwicklung der dreizeiligen 
Determinante mechanisch so, daß man die Pro­
dukte der drei im nebenstehenden Bilde durch volle 
Linien verbundenen Elemententripel additiv, die 
Produkte der drei durch punktierte Linien ver­
bundenen Elemententripel subtraktiv ansetzt. Nach 

diesem Verfahren ergibt sich beispielsweise

123
456
789

= 45 + 84 + 96 - 105 -48 - 72 = 0.

§ 3. Haupteigenschaften der Determinanten.
97. Gleichberechtigung von Zeilen und Kolonnen. Wenn 

man in einer Determinante die Kolonnen in derselben JReilienfolge zu 
Zeilen macht, so behält sie ihren Wert bei.

Die beschriebene Umgestaltung verwandelt nämlich

und läßt die Hauptdiagonale, also auch das Hauptglied, a,1 a22 • • • ann 
ungeändert; die Entwicklung von R durch Permutierung der Kolonnen­
zeiger gibt dasselbe wie die Entwicklung von R' durch Permutierung 
der Zeilenzeiger; mithin ist R‘ = R.

Vermöge dieser Gleichberechtigung gelten Sätze, die man bezüg­
lich der Zeilen nachgewiesen hat, auch bezüglich der Kolonnen und 
umgekehrt.
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98. Vertauschung paralleler Reihen. Wenn man in einer 
Determinante zwei parallele Beihen mit einander vertauscht, so ändert 
der Wert der Determinante bloß sein Vorzeichen.

Transformiert 
zwei Kolonnen

man beispielsweise durch Vertauschung der ersten

R = “11 @12 ' ' ' din @12 “11 • • * “in
@21 @22 ' ' ’ @2n in B = @22 @21 • • • a2n ,

@n1 U22 ** * ann @22 anl ' ' ' ann

so erscheint das additiv zu setzende Hauptglied a,2 a,1 a33 • • • ann von 
B' in B als subtraktives Glied, entstanden aus an a22 a33 • • • ann durch 
Vertauschung der ersten zwei Kolonnenzeiger; dies hat zur Folge, daß 
jedes Glied von B' mit entgegengesetztem Zeichen in B vorkommt; 
es ist also tatsächlich B' = — B.

Wenn man daher in einer Determinante Zeilen und Kolonnen in 
irgendeiner Weise umstellt, so ändert sie ihren absoluten Wert nicht; 
nur das Vorzeichen kann sich ändern.

Ob das letztere geschieht, hängt von der Anzahl der Transpo­
sitionen ab, die man mit den Zeilen und Kolonnen bei der Umstellung 
vorgenommen hat, in letzter Linie also von den Klassen ab, denen 
die Permutationen der Zeilen- und Kolonnenzeiger in der neuen Form 
angehören. Gehören beide Permutationen zu derselben Klasse, so 
bleibt auch das Vorzeichen erhalten; gehören sie zu verschiedenen 
Klassen, so ändert sich das Vorzeichen; denn im ersten Falle kann 
die Umstellung durch eine gerade Anzahl von Transpositionen, im 
zweiten Falle durch eine ungerade Anzahl erzielt werden. Bringt man 
beispielsweise in der Determinante

a, b, q d,

R 4 ag b^ C d2 

da ba C3 da
a, b, Ca da

die Kolonnen in die Reihenfolge cadb, die Zeilen in die Reihenfolge 
3241, so geht sie über in 

C3 @3 da b3 | 
R‘ _ c a, d,b,

C, a, d^ bi
C1 ar dr b |

und es ist B' = — B, weil cadb eine ungerade, 3241 eine gerade 
Permutation ist.

99. Gleiche parallele Reihen. Wenn in einer Determinante 
zwei parallele Beihen übereinstimmen, so hat sie den Wert Null.
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Nach dem vorangehenden Satze ändert sich durch Vertauschung 
zweier paralleler Reihen das Vorzeichen der Determinante, es wird

R‘=-R;

nimmt man die Vertauschung an den übereinstimmenden Reihen vor, 
so erfährt die Determinante überhaupt keine Veränderung, daher ist 
dann

R‘=R
folglich R = 0.

Demnach ist beispielsweise 

a, b, a, 

a, b, a2 = 0. 

a, b, a.
100. Multiplikation und Division einer Determinante mit 

einer Zahl. Stellt man die Elemente einer Reihe als Produkte mit 
einem gemeinsamen Faktor dar, so wird, da jedes Glied der ent­
wickelten Determinante aus jeder Reihe ein und nur ein Element 
enthält, dieser Faktor auch allen Gliedern gemeinsam sein und kann 
daher herausgehoben werden, so daß

d, k b C • • ■ di bi Ci •
j d,k b, 9* _ I: d2 b. Cs ' ' ■
a,k b, C3 • a, b, C3 • • •

Eine Determinante kann hiernach mit einer Zahl multipliziert 
oder dividiert werden, indem man alle Elemente einer Reihe mit dieser 
Zahl multipliziert, bzw. dividiert.

Mit der Annahme k = 0 ergibt sich weiter, daß eine Determinante 
in der eine volle Reihe von Nullen vorkommt, den Wert Null hat. 
Es ist also, ohne Rücksicht auf die übrigen Elemente,

ooo-.. 
a, b2 ^2 ' ’ ‘ 

a, b, c -
= 0.

Eine Determinante hat auch dann den Wert Null, wenn die 
Elemente einer Reihe proportional sind den Elementen einer parallelen 
Reihe. Es ist nämlich

d, d, k C, • 
a2 d, k c^ * * 

a, a3 k C3 * *

C1 C1 C1*: 
a.2 a2c2- •

C3 C3 C3 ■ -



Weitere Eigenschaften. — Unterdeterminanten. 167

§ 4. Unterdeterminanten.

101. Unterdeterminanten verschiedener Grade. Wenn 
man in der Matrix einer Determinante n-ten Grades hinter der r-ten 
Kolonne und unter der r-ten Zeile einen Teilstrich gezogen denkt, 
so zerfällt sie im allgemeinen in zwei quadratische und zwei recht­
eckige Matrizen; von den ersteren besteht die eine aus r2, die andere 
aus (n — r)2 Elementen.

Aus den quadratischen Matrizen können wieder Determinanten 
gebildet werden, und diese heißen Unterdeterminanten, Subdeterminanten 
oder Partialdeterminanten der ursprünglichen.

Der beschriebene Vorgang liefert für

“1 012.......... dir I “1,7+1...........................Cin
a,1 a,2 • ' ' • ■ a2r I 42,,+1.............  ' ’ d,,

d, a, ..........d,d,41...................arn

“r+1,1 @,+1,2 ’ ' ' “,+1,r । “,+1,7+1.................“,+1,n

......................- I...............................
a,1 a,2....... anr 1a,,+1.................. a,.

die beiden Unterdeterminanten:

A, =

“1 “12 • • • alr

(21 (22 '" ' C2r B, =

arl 0,2 **: arr

“,+1,r+1 “,+1,r+2 ‘ ‘ ' ar + l,n

ar + 2,r + l ar + 2,r + i ’ ‘ ’ ar + 2,n

................. I

a,pa, a,24,..............a, I
Allgemein: entnimmt man aus einer beliebigen Kombination 

von r Zeilen diejenigen Elemente, die in einer beliebigen Kombination 
von r Kolonnen stehen, so erhält man die Matrix für eine Unter­
determinante r-ten Grades; da es nun (") derartige Kombinationen 

von Zeilen und ebenso viele von Kolonnen gibt, so hat eine Deter- 

minante n-ten Grades (,) Unterdeterminanten r-ten Grades und eben­

so viele des n-r-ten Grades.
Die einzelnen Elemente sind als Unterdeterminanten ersten Grades 

aufzufassen.
102. Adjungierte Unterdeterminanten. Den Unterdeter­

minanten Mr Bi kommt die bemerkenswerte Eigenschaft zu, daß je 
ein Glied von A mit einem Glied von B multipliziert ein Glied von 
R gibt.
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Von den Hauptgliedern ist dies unmittelbar zu erkennen; daß 
es auch von irgendzwei andern Gliedern gilt, ist in bezug auf den 
absoluten Wert daraus ersichtlich, daß aus jeder Zeile und jeder 
Kolonne von R ein Element in einem solchen Produkt vorkommt; in 
bezug auf das Zeichen ergibt sich die Richtigkeit der Behauptung aus 
folgender Erwägung: Ist aia, @2a, * a,c, ein Glied von A,, ar + i,^ 
d,+2,8, * ' ’ an,ßn ein Glied von Bv so richten sich deren Vorzeichen 
nach den Permutationsformen («) = &, «, • • • ar und (ß) = ß, 3,- ßn-r> 
das Vorzeichen des Produktes aber ist nach der Permutationsform 
C1 C2 • • • «, Bi 32 • • • ß zu bestimmen; diese hat nun so viel Inver­
sionen als («) und (3) zusammen, gehört also zur geraden oder un­
geraden Klasse, jenachdem («) und (3) zur selben oder zu verschiedenen 
Klassen gehören; dies stimmt aber mit der Zeichenregel der Multipli­
kation überein.

Man nennt Paare von Unterdeterminanten, die im Produkt Glieder 
von R ergeben, adjungierte Unterdeterminanten.

103. Den Elementen adjungierte Unterdeterminanten. 
Jedem Element von

an «12 • • • «in !

— «21 «22 ' ’ * @2n i

I an «n2 • • ’ ann I

ist eine Determinante n—l-ten Grades adjungiert; die zum Element 
aik gehörige werde mit &i bezeichnet. Unmittelbar abzulesen ist die 
zum ersten Element un adjungierte an, indem

«32 «33 ‘ ’ ’ @3n

«22 «23 ' * * C2n

Un2 Uns ’ ’ ‘ Unn

Ihre Matrix wird erhalten, indem man in der Matrix von R jene Zeile 
und Kolonne unterdrückt, denen d,1 angehört.

Um &i zu erhalten, hat man nur nötig, R derart umzuformen, 
daß aik an die erste Stelle kommt; dann läßt sich aik wieder unmittel­
bar ablesen.

I. Die Umformung kann dadurch geschehen, daß man die ersten 
i Zeilen und die ersten k Kolonnen zyklisch permutiert. Nach 93 ist 
dies äquivalent mit i — 1 + k — 1— i+k — 2 Transpositionen von 
Reihen; die umgeformte Determinante erhält daher das Zeichen 
(— iy+*-2 = (— 1)+*, so daß
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anl @22* ' ' Cn,*-1 an,k+l • ' ' ann

aik di ai2 ‘ ’ ‘ @,*-1 ai,k + l 'ain

aik a»

a2k ' ^n

R = (- 1)+*
ai-l,k ai-l,n

5

ai + l,k

ank anl an2 ’ ' an,k-l an,k + l • • • a,n

infolgedessen ist

di 012 ’ ’ “1, *-1 ai,k + l * • • ^n

“21 ‘ a2n

«a = - 1)"+* «<-1,1 • d,-1 n
Ci+1,1 d,+1 , n

Die Matrix dieser Determinante geht wieder aus der Matrix von 
R durch Unterdrückung der Zeile und Kolonne hervor, in denen aik 
vorkommt-, das Vorzeichen aber hängt von der Summe i + k, dem 
Gewicht des Elements ai k ab. Die Regel, die sich daraus ergibt, 
lautet:

Man erhält die zu einem Element adjungierte Unterdeterminante, 
indem man Zeile und Kolonne, denen das Element angehört, streicht 
und der Determinante aus der verbleibenden Matrix das Zeichen + 
oder — gibt, je nachdem das Gewicht des Elements gerad oder un- 
gerad ist.

Sind die Elemente nicht mit Doppelzeigern geschrieben, so zähle 
man längs einer Zeile oder Kolonne von Element zu Element bis zur 
Hauptdiagonale: gerad, ungerad geben das Zeichen +, —.

Nach diesem Verfahren ergeben sich für

a, b, cx d 

a, b2 C2 d, 
aa ba cs ds 
a, ba Ca d

beispielsweise die folgenden zu C1, a, adjungierten Unterdeterminanten:
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II. Das Element aik wird auch dadurch an die erste Stelle ge­
bracht, daß man alle Zeilen 7—1-mal und alle Kolonnen k — 1-mal 
zyklisch vertauscht. Da dies äquivalent ist (i — 1 + k — 1)(n — 1) 
=(i+k)(n — 1) — 2(n — 1) Transpositionen von Reihen, so kommt 
der umgeformten Determinante das Vorzeichen (—1)+h(n-1)- 20-1) 
= (— 1)+k)(n-1) zu, das sich auch auf die jetzt unmittelbar abzu­
lesende Unterdeterminante überträgt; diese lautet, da die zyklische 
Ordnung der Reihen ungestört bleibt, wie folgt:

di+1,*+1 ■ ■ ■ “i+1,n di+1,1 ■ ■ ■ di+1,*-1

Ci+2,k+1......................................................................................“i+2,k-1

&,== (—1)+H)(n-1) “n,k+1........................................................... an,k-l

C1,*+1................................ a\,k-l

ai-\,k + l ' ’ ‘ ai-l,n ai-l,l ‘ ’ ’ ai-l,k-l

Bei ungeradem n ist das Vorzeichen immer +, bei geradem n 
richtet es sich nach dem Gewicht wie bei der vorigen Regel. 

Nach diesem Verfahren ergeben sich für

a, bi C1 
a, b, c, 
a, b, € 

die Unterdeterminanten:

ba Ca a, b, 
d? b, c‘ 71 5 a, b 

für die obige Determinante vierten Grades 

d, a^ b, 

da @3 bs , 
da a, b.

C1 C1
usw., 

c2a, \

die Unterdeterminanten:

b, c3 d, 
b, C, da 
b, c, d.

usw.

104. Zusammenfassung der Glieder einer Determinante, 
die ein oder mehrere Elemente gemein haben. Es liegt im 
Begriff der adjungierten Unterdeterminanten, daß das Produkt aus 
einem Element aik mit der ihm adjungierten Unterdeterminante aik 
die Zusammenfassung aller Glieder von R gibt, die aik zum Faktor 
haben; solcher Glieder gibt es also (n — 1)!.

Ist alm ein Element von aik und alm seine adjungierte Unter­
determinante in bezug auf aik, also eine Unterdeterminante n — 2ten 
Grades von R, so ist a,a,na‘m die Vereinigung aller Glieder von R, 
die das Elementenpaar aik, alm (i = l, k + m) enthalten; ihre Anzahl 
ist (n — 2)! Das Elementensystem von a'/m entsteht aus der Matrix 
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von R, indem man die Zeilen und Kolonnen unterdrückt, in denen 
aik und aIm stehen.

So fortfahrend kommt man bis zu einem Einzeigliede von R, 
das n bezeichnete Elemente enthält.

So gibt beispielsweise in bezug auf die Determinante

a, b, C1 dx

a, b, C2 d, 
da ba Cs da
a, b, Ca d, 

das Produkt
a, b, d,

G, a, b, da
a, b, d, |

alle Glieder mit C,, das Produkt

| a, b,
— C1 C3 

d,ba 
alle Glieder mit c1d3, endlich

G d^ b, a, 

das einzige Glied, das C1, d3, b, als vorbezeichnete Elemente enthält. 
105. Erster Hauptsatz. Die Summe der Produkte aus den 

Elementen einer Reihe mit ihren adjungierten Unterdeterminanten gibt 
den Wert der Determinante.

Hebt man aus der Determinante

“i @12 *‘*din
R = “21 a^ ' ' ' a2n

a, d,2 ' ‘ ‘ d,n

beispielsweise die Elemente der i-ten Zeile heraus:

@1» Ci2, ’ • ‘ din»
und berücksichtigt, daß jedes Glied von R aus jeder Zeile ein und 
nur ein Element enthält, daß ferner a,1 a^ die Vereinigung aller 
Glieder mit dem Element a,1 usw. ist, so kommt man zu der Er­
kenntnis, daß aaaa + a,2 412 ++ ainain die Zusammenfassung aller 
Glieder von R überhaupt ist; mithin hat man

0,0+a,&, +------a„c.= R 0=1,2,...") (I)
und in gleicher Weise in bezug auf die Kolonnen:

a 0 +ac +.. + a c = R (*= 1,2,...m). (I*)
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Man nennt die linke Seite von (I) die Entwicklung von R nach 
den Elementen der i-ten Zeile und analog die linke Seite von (I*) die 
Entwicklung von R nach den Elementen der k-ten Kolonne.

Die nächstliegende Folge dieses Hauptsatzes ist es, daß mit seiner 
Hilfe die Ausrechnung einer Determinante n-ten Grades zurückgeführt 
werden kann auf die Ausrechnung von Determinanten n— 1-ten Grades 
und so fortschreitend bis zu Determinanten 3. und 2. Grades.

In den Gleichungen (I) und (I*) sind 2n verschiedene Wertdar­
stellungen der Determinante R zusammengefaßt. Einzeln lauten sie 
z. B. für die Determinante dritten Grades

R =

wie folgt:

a, br c1 

a, b, c^ 

a, b, C3

R — a,«1 + 61ß1 + C1?1 — a,C, + baß, + C2Y2 — a,«3 + baßs + C373 
— a,«1 + a^ «2 + a^ «3 — 6, 31 + b, 3, + b, 33 C, 71 + C2 72 + C3 73.
106. Zweiter Hauptsatz. Die Summe der Produkte aus den 

Elementen einer Reihe mit den adjungierten Unterdeterminanten zu einer 
andern parallelen Reihe ist gleich Null.

Ersetzt man in R die Elemente

dii» C12, ’ ain

der i-ten Zeile durch jene einer andern, z. B. der j-ten Zeile:

ajl) “j2, ’ ’ ’ ajny

so hat dies auf die Unterdeterminanten

“in» “i2‘ • * * Uin

keinen Einfluß, R aber geht in eine Determinante mit zwei gleichen 
parallelen Reihen über, und eine solche hat den Wert Null (99); 
mithin ist

a,1(+ayq+ + a„«,= 0; «+1 (II) 
ebenso ergibt sich in bezug auf Kolonnen:

a,“+a,0+*1+ü,G,== 0 0+4) (II*)
In den Ansätzen (II) und (II*) sind 2n(n — 1) einzelne Gleich­

ungen enthalten, die mit den 2n-Gleichungen aus dem ersten Haupt­
satze 2 n2-Gleichungen zwischen den Elementen von R und den ihnen 
adjungierten Unterdeterminanten darstellen.

Für die obige Determinante dritten Grades lauten die zwölf 
Gleichungen des zweiten Hauptsatzes:
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0 = 4,Q+biß, + C1 72 = d, «s + bi ßs + ct 73 
=4«, + baß, +07 = a,«a + b, ß, + €273

= a(,+ baß, +G7 = da«, + baß, + 672
0 = aß, + a,ß, + a^ = a^ + a,72 + a,73 

= b,C, + b,«2 +ba&, = b,71 +6,72 + b,7s
= ca, + c,a, + cas = c,ß, + c,ß, + c,ß,.

107. Additionsregel. Wenn man zu den Elementen einer Eeihe 
die mit einem beliebigen Faktor multiplizierten Elemente einer parallelen 
Beihe addiert, so ändert die Determinante ihren Wert nicht.

Aus (I*) und (II*) folgt beispielsweise

(a,, + pa) &,+ (^^1^21)^ + + fak +pa,)«k = R,
d. h.

du @12 ' ’ d, k • '^r- din
an @22 ’ ‘ a, k • • an” • A2

anl a,2- ..a. ■•anr . a nn

du dndutPdutdu’din
@21 C22 ‘ ' ‘ a2k F P ^^l ‘ ’ • C21 • ‘ * C2n

a,1 a,2-a, +pa, .a,.a,.
Die Regel kann auch auf Zeilen angewendet und auf mehrere 

Reihen ausgedehnt werden.
Hiernach ist z. B.

1 x, — a yr — b

1 x,— a y^ — b 

1 X3 — a ys — b

1 2 yt
i a, 92,

i x, y^

wie man durch Addition der mit a, bzw. b multiplizierten ersten 
Kolonne zur zweiten, bzw. dritten findet; es hängt also der Wert der 
linksstehenden Determinante von a und b gar nicht ab.

108. Verminderung und Erhöhung des Grades einer 
Determinante. Der Grad einer Determinante vermindert sich sofort 
um 1, wenn in einer Reihe nur ein von Null verschiedenes Element 
steht; es ist nämlich eine Folge des ersten Hauptsatzes, daß dann die 
Determinante gleich ist dem von Null verschiedenen Element multipliziert 
mit der ihm adjungierten Unterdeterminante.

So ist

0 an2 -^nn

“1 012 ■ “in a,2 ‘ • a2.0 C22 * • d,.
432 ' ■ (3n0 032 ’ ‘^n an

a,, • • a,.
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auf den Wert der linksstehenden Determinante haben also die Ele­
mente der ersten Zeile außer d,1 keinen Einfluß.

Durch wiederholte Anwendung dieses Satzes ergibt sich der 
weitere: Wenn alle Elemente zu einer Seite der Hauptdiagonale Hull 
sind, so reduziert sieh die Determinante auf ihr Hauptglied.

In der Tat ist beispielsweise

b, e da cd
i 0 c da = a, b, " " = a, b, c, da 5

0 0 d, ° 44

aY bL ct di 

0 b, C2 d, 
0 0 c, d, 
0 0 0 d.

der Wert der ersten Determinante hängt also von den Elementen 
zur andern Seite der Hauptdiagonale nicht ab.

Auf dem ersten Satze beruht das Verfahren, durch das man den 
Grad einer Determinante ohne Veränderung erhöht; es besteht in der 
Hinzufügung eines rechtwinklig gebrochenen Randes von Elementen, 
an dessen Ecke 1 steht, während der eine Schenkel mit Nullen be­
setzt ist; auf die Elemente des andern Schenkels kommt es nicht an, 
ihre Plätze mögen zum Zeichen dafür mit * besetzt werden; in der 
Regel wird man auch hier zweckmäßig Nullen verwenden.

Geschieht dieses „Rändern“ links und oben oder rechts und unten, 
so bleibt auch das Vorzeichen erhalten; in den zwei anderen Fällen 
kommt es auf den Grad der Determinante in leicht zu bestimmender 
Weise (103, I.) an.

Beispiele werden dies am besten erläutern. Es ist

• 1 * * 1 * * 0
di bi 
a, b^

= 0 a b, 

0 ab.

0
0
0

a, 

a, 
0

b, 0 
b, o 
01

i

ferner

a. 
a2 

a.

b, 
b, 

ba

G 
6
Ca

- -

0 a, bx q
0 42 b, C
0 a3 b, c3
1 * * *

0 0
0 a,
0 a^

0 as

0 
b, 
b, 
b.

0
G 
G
Ca

1
*
*
*

1 * * * *

109. Determinanten mit aggregierten Elementen. Wenn 
in einer Determinante die Elemente einer Reihe m-gliedrige Aggregate 
sind, so läßt sie sich als Summe von m Determinanten desselben Grades 
mit einfachen Elementen darstellen. ‘ •
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Entwickelt man beispielsweise

C i + a i + al b, C, 

a2 + a 2 + a 2 b2 C2 

«3 + a" + a”’ b, c.

nach den Elementen der ersten Kolonne und nennt die adjungierten 
Unterdeterminanten «,, a2, aä, so ergibt sich:

(«1 + af + aY)«+ (a, + a 2 + a")«+ (a + as + as )«, 

= (ai &1 + az «2 + asas) + (al «1 + a, «, + as «3) + (al «1 + a, &2 + as «3), 
d. h.

al + al — al bi C1
r I rr I rrr 7

02 A2 42 02 C2

as + ag + a‘ b3 C3

al bi Ci 
a, b^ C2 
«3 b3 C3

a'i bi Ci 

az b2 C2 
al b3 C3

al bi Ci 
fff 7a2 bi C2

«3 bi Ci
+ —

Umgekehrt kann die Summe mehrerer Determinanten n-ten 
Grades, die in n — 1 Reihen übereinstimmen, durch eine Determinante 
n-ten Grades dargestellt werden. So ist z. B.

a, b, cx 

a2 b^ C2 
a, ^3 c.

C1 (2 (3 

b, b, ba

C, C, C3

«i + ai bi Ci 

a2 + ai bi c2 • 

a3 + ®3 bi Ci

Sind mehrere Reihen aggregiert und bestehen ihre Elemente aus 
m, m, m" • • • Gliedern, so ist die Determinante auflösbar in m m m" • • • 
Determinanten mit einfachen Elementen.

110. Nulldeterminanten. In den Anwendungen hat man es 
vielfach mit Determinanten vom Werte Null, die man als Nulldeter­
minanten bezeichnet, zu tun. Eine der wichtigsten Eigenschaften 
solcher Determinanten sagt der folgende Satz aus: In einer Null­
determinante sind die den Elementen paralleler Reihen adjungierten 
Unterdeterminanten zueinander proportional, d.h. die den Elementen einer 
Zeile (oder Kolonne) adjungierten Unterdeterminanten verhalten sich 
ebenso wie die zu irgendeiner andern Zeile (oder Kolonne) gehörigen.

Es genügt, den Satz an einer Determinante bestimmten, z. B. 
vierten Grades und für zwei Paare homologer Unterdeterminanten 
nachzuweisen. Sei also

a, b, C1 d, 
P _ d, \ c2d2 . 

as ba Cs ds ‘ 
a, ba Ca da i
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bildet man auf Grund derselben 
dargestellt werden:

&, ß, — «,ß1, so kann dies wie folgt

«1ß4 &,ßi &,
a, C, d, 

@2 C2 d2 
a, C3 d3

— ßi
b, C1 d, 

b, €2 d, 
b, c, da

d,C,+bißi G di
a, C1 — b, 3i C2 d2 ;
a, Q, + b, B. c, d.

multipliziert man jetzt die zweite Kolonne mit 71, die dritte mit 0, 
und addiert dann beides zur ersten, so wird nach den beiden Haupt­
sätzen (105, 106):

JR cldl J
&,B,—c,B, = 0 c,d, = R 2 22

- , C3 d3 0 C3 da 
ist nun R = 0, so ist auch

«,B, «,B, = 0, 
d. h.

&,:ß, = &4:ß4 oder auch &,: C4 = ß,: 3a.

Die Unterdeterminanten, die den Elementen einer Determinante 
R adjungiert sind, lassen sich wieder zu einer quadratischen Matrix 
zusammenstellen:

C, ß, 7i ö, 
«, 32 72 ö, 

«a ßs 7z ös 

«, B.Y.da, 

die man der Matrix von R adjungiert nennt. Ist nun R = 0, so sind 
(100) alle Determinanten, die man aus Partialsystemen dieser Matrix 
bilden kann, somit auch die Determinante der adjungierten Matrix 
selbst gleich Null.

Man schreibt einer Nulldeterminante n-ten Grades den Hang r zu, 
wenn mindestens eine ihrer Unterdeterminanten r-ten Grades nicht 
Null ist, dagegen alle Unterdeterminanten höheren Grades verschwinden. 
Die Determinante hat den Rang 1, wenn sie selbst und alle ihre 
Unterdeterminanten bis zum Grade 2 Null sind, während nicht zu­
gleich alle Elemente durch Nullen vertreten sind. Es ist beispiels­
weise die Determinante

12 3
4 5 6 ,
7 8 9

die 96 als Nulldeterminante erkannt wurde, vom Range 2, weil schon 
18+0 ist.



Umformung und Ausrechnung von Determinanten. 177

111. Beispiele der Transformation und Ausrechnung von 
Determinanten. Um Anwendungen der bisher bewiesenen Sätze 
zu zeigen, seien einige Beispiele vorgeführt.

1. Die Determinante
1 a a2

1 b b2

1 c c2

kann in der Weise umgeformt werden, daß man ihre erste Kolonne 
mit abc multipliziert, worauf sich aus den Zeilen der Reihe nach 
a, b, c herausheben läßt; hiernach ist

R, =l
abc

abc a a2

abc b 62
i abc c c2

bc 1 a 

ac 1 b 

ab 1 c

Subtrahiert man, anders vorgehend, die erste Zeile von den beiden
folgenden, so wird

1 a a2

R, = 0 b - a b2—a2 

0 c—a c2 — a2
= (b — a^c — a)

16+ a

1 c+ a
(b — a^c — a^c — b).

Um die analoge Determinante

R, =

1 a a2 a^

1 b 62 b^

1 C c2 c3
1 d d2 43

zu entwickeln, kann man auch in der Weise verfahren, daß man die 
folgeweise mit a, a2, a3 multiplizierte erste Kolonne von der 2., 
3., 4. subtrahiert:

10 0 0
1 b — a b2 — a2 68 — a3

* 1 c — a c2 — a2 c3 — a3

1 d - a d2 — a2 d3 — a3

1 b + a b2-\-ab ■}■ a2

= (b — a) (c — a) (d—a) 1 c + a c2 + ac + a2 ; 

| 1 d + a d2 + ad-{- a2

und wird nun die erste Zeile von den folgenden subtrahiert, so kommt 
schließlich

Czuber, Höhere Mathematik. 12
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R, = (b — a) (c — a)(d — a)

1 b + a b2 + ab + a2
0 c—b c- 62+ a(c — b)

0 d—b 72—62+a(d—b)

== (b — a)(c — a) (d — a^c — b) (d — b)
1 c + b + a

1 d + b + a

= (b — a) (c — a) (d — a){c — b) (d — b^d — c). 

Allgemein kommt die Determinante n-ten Grades

1 x^

1 xc.

— 1• 1
22 ... An — 1* 2

— 1 

dem Produkt der ) n (n — 1) Differenzen x, — x,, x, — x,, • • • xn — xn _ 1 

gleich.
Während R,, R, als Determinanten dritten und vierten Grades 

6, bzw. 24 Glieder ergeben, liefert die Entwicklung des Produkts von 
3, 6 Binomen 23= 8, 26= 64 Glieder; daraus folgt, daß die letztere 
Entwicklung Reduktionen gestattet.

2. Die Determinante

R =
a, + x b, C1
a, b2 + x C2
a, b^ c3 + x

läßt sich, indem man alle Elemente unter Benutzung von Nullen zu 
Binomen macht, nach 109 in acht Determinanten auf lösen. Die erste 
ist (a,b,C3); drei enthalten je eine Kolonne mit x und reduzieren sich 
auf den zweiten Grad: ^c^x, ^a^x, (a^b^x, drei enthalten je zwei 
Kolonnen mit x und reduzieren sich auf ax x , b2 x , C3 x 2; die letzte 
enthält alle drei Kolonnen mit x und reduziert sich auf ihr Haupt­
glied x3. Mithin ist

R = (a,b,C3) + [(bacs) + ^a^) + (a^^x + [a, + \ + c3]x2 + x3.

Dasselbe Verfahren auf
a, — x bi C, di

R -
a. b. x c2 d2

da b. c3 — x d3

angewendet gibt:
a. b. C d^ — x

R = (a, b2 c3 d^) — [(b, c3 d^ + (d, c3 d^) + (ax b2 d4) + (d, b2 Ca)] x
+ [(d, b,) + (4, ©) + (a, d.) + (b, c) + (b, d,) + (Cs d,)] x2
— (a, + b, + c,+ da) a3 + a4 •
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Beispielsweise ist

1 — X 2 3 4 —
1 2 - x 3 4
1 2 3 - x 4

- — 1028 +*= x^^x — 10)

1 2 3 4— x

indem die Determinante, die nach Unterdrückung der x verbleibt, 
eine Nulldeterminante vom Range 1 ist.

3. Die Entwicklung von
x b, C1 d,

R d, x c^ d2 

a, b, X d,
a, ba Ca x

führt auf den vorletzten Fall zurück; man braucht nur das Zeichen
von x zu ändern und zu beachten, daß a, == b = c = = d^ = 0 ist;
hiernach ist 0 b, c, 4,

a, 0 c, d.== - — -@3 03 o C3
a, ba Ca 0

0 d, 0 c, d, 0 b, d. 0 b, c.

+ b, 0 dz + a, 0 d^ + a, 0 d, + a, 0 c2 • X
b^ Ca 0 a, Ca 0 a, b 0 a, b3 0

( 0 b. 0 c, l | 0 d, 0 Co 0 d. 0 d,)+ 1+ 1+ 1++,+ ‘ x2—24.
(a20 a3 0 (,O b, 0 b^ 0 Ca 0 J

4. Bei der Ausrechnung einer numerischen Determinante mit 
ganzzahligen Elementen kommen die Sätze in 107 und 108 zu be­
ständiger Anwendung. Ist ein Element 1 oder — 1, so kann man 
mit Hilfe von 107 die übrigen Elemente derselben Zeile oder Kolonne 
auf Null bringen und dann nach 108 den Grad der Determinante 
um 1 erniedrigen. Kommt — 1 als Element nicht vor, so kann dies 
durch Anwendung von 107 erzielt werden; denn der Fall, daß alle 
Elemente gerade Zahlen sind, kann ausgeschlossen werden, da man 
ihn durch Herausheben des Faktors 2 umgehen kann.

Es sei beispielsweise die Determinante

2-3 2,5 3
-3 4 -2 -5 -4

2 -2 6 2 -5
5 —5 2 8 —6
3 _4 -5 _6 io

12*
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auszurechnen. Durch Addition der zweiten Kolonne zur ersten ensteht

-1-3 253

1 4-2-5-4

0 -2 6 2 -5

0-5 2 8-6

-1 -4 -5 -6 10

5

nachdem 
daraus

man die zweite 2 eile zur ersten und 1

10 0-1

-2 6 2 -5

-5 2 8-6

0-7-11 6

etzten addiert hat, wird

nach Addition der ersten Kolonne zur letzten weiter

6 2-7 6 2 1 6 2 1 6 8 73
— 2 8 -11 == — 2 8-1 = — 2 8-1 = — 2 10 23

-7-11 6 -7-11 -12 1-1-12 10 0

= 730 - 184 = 546 •
es sind dann weiter die zwei ersten Kolonnen zur dritten, hierauf die 
zwei ersten Zeilen zur dritten und schließlich die erste Kolonne zur 
zweiten und ihr 12-faches zur dritten addiert.

§ 5. Auflösung einer Determinante in Produkte adjungierter 
Unterdeterminanten.

112. Entwicklung nach den Unterdeterminanten einer 
Reihenkombination. Der in 105 bewiesene erste Hauptsatz be­
trifft einen speziellen Fall der Entwicklung einer Determinante in 
Produkte adjungierter Unterdeterminanten: nämlich in Determinanten 
1 und n—1-ten Grades. Der allgemeine Fall besteht in der Ent­
wicklung nach den Unterdeterminanten einer bestimmten Kombination 
von r Reihen mit den adjungierten Unterdeterminanten n — r-ten Grades.

Um ein bestimmtes Problem vor Augen zu haben, handle es sich 
um die Entwicklung nach den Unterdeterminanten der ersten r Zeilen von
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wie in 101 erklärt worden, ist ein erstes Paar adjungierter Unter­
determinanten der vorgezeichneten Art

A1 = (@11 @22 ’ ' ' @,r), Bi = (@,+1,7+1 d,+2,7+2 ' ‘ ' @,n) •
Um ein neues Paar zu erhalten, das andere Glieder von R liefert 

als AlBi, hat man eine andere Kombination von r Kolonnen an den 
Anfang zu stellen, die übrigen Kolonnen in der natürlichen Ordnung 
folgen zu lassen und unter Berücksichtigung des Vorzeichens der um­
geformten Determinante dieselbe Teilung der Matrix vorzunehmen usw. 
Bezeichnet man die (") = 9 Kombinationen 7-ter Klasse der Elemente

1, 2, • • • n in der Reihenfolge, in der sie nach den Regeln der Kom­
binationslehre aufeinander folgen, mit 1, 2, -0, bestimmt zu jeder 
durch die übrigen n — r Elemente ergänzten Kombination das Vor­
zeichen gemäß der Anzahl der Inversionen, so geben die zugehörigen 
Produkte AB, A^B2, • • ■ A^B^ mit den betreffenden Vorzeichen ver­
sehen sämtliche Glieder von R, so daß sich B in der Form

B - 3 + A.B,

i

darstellt. In der Tat gibt jedes Glied dieser Summe rl(n—r)! Glieder 
von B] alle Glieder zusammen liefern also

orl (n— )! = _—- r! (n — 7)! = 7!
"7 r! (n — T)!7

verschiedene, somit alle Glieder von B.
Man hat also den Satz: Eine Determinante n-ten Grades ist auf- 

lösbar in (") Produkte von Unterdeterminanten r-ten und n — r-ten 
\r /

Grades, wovon die ersten einer bestimmten Kombination von r parallelen 
Beihen, die andern den übrigen n — r Beihen gleicher Art entnommen sind.

Als Beispiel diene die Entwicklung von

R=

C1 (2 (3 C4 C5

b, b, ba ba b, 

G C2 C, C4 c 
dt d2 d, d^ d5 

e, e, e, ea e. 
nach den Unterdeterminanten der ersten zwei Zeilen; sie ist durch 
das folgende Schema in leicht verständlicher Weise dargestellt:

B = 12 | 345 - 13 | 245 + 141 235 - 15 | 234 

+23 1145-24| 135 + 25 1134

+ 34 1125-35| 124

+45 123;
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das zweite Glied bedeutet nämlich das Produkt

ai C3 
b, b.

C2 C4 C 
d, da d.
€2 *4 *

dem das Zeichen — zukommt, weil die Permutation 13245 ungerad 
ist; und ähnlich die andern Glieder.

113. Die Sätze von Jacobi. I. Wenn r Zeilen (Kolonnen) 
einer Determinante n-ten Grades n — r Kolonnen (Zeilen) von Nullen 
enthalten, so reduziert sich die Determinante auf das Produkt einer 
Determinante r-ten mit einer n — r-ten Grades.

Denn, entwickelt man die Determinante nach den Unterdeter­
minanten jener r parallelen Reihen, 
mit dieser Bemerkung ist aber der 

Beispielsweise ist

so ist nur eine davon nicht Null; 
Satz schon erwiesen.

a, b. ea da e.
A, b. G

c.
d, 
d.

e,

e.

a. bi 0 0 0

a. b. 0 0 0

a. b. Ca d. e. =

a. b. G da e.

b. c d. e.
II. Wenn r Zeilen (Kolonnen) einer Determinante n-ten Grades 

mehr als n—r Kolonnen (Zeilen) von Nullen enthalten, so hat die 
Determinante den Wert Null.

Da nämlich keine der Unterdeterminanten r-ten Grades aus den
r Reihen von Null verschieden 
konjugierter Unterdeterminanten, 
bilden hätte.

ist, so verschwinden alle Produkte 
die man nach den Satze in 112 zu

Hiernach ist also
a. b. 0 0 0

a. b. 0 0 0

a. ba 0 0 0 = 0
a. b. C, d. e.
«5 b. c. d. e.

§ 6. Multiplikation von Determinanten.
114. Produkt zweier Determinanten n-ten Grades. Das 

Produkt zweier Determinanten n-ten Grades: 
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besteht im allgemeinen aus (n!)2 Gliedern, also schon bei zwei Deter­
minanten 3. Grades aus 36, bei zwei Determinanten 4. Grades aus 
576 Gliedern, und die Gliederzahl wächst mit dem Grade außer­
ordentlich rasch. Bei dieser Komplikation bedeutet nun der folgende 
Satz eine wesentliche Vereinfachung:

Das Produld zweier Determinanten n-ten Grades läßt sich wieder 
als Determinante n-ten Grades darstellen.

Zunächst ist eine Darstellung des Produkts durch eine Deter­
minante 2n-ten Grades mit Hilfe des ersten Jacobischen Satzes ohne- 
weiteres möglich, indem, neben unbegrenzt vielen andern Formen, 

a,1 @12 - a, , 0 0 • • • 0 

a,1 a,2 - a, n 0 0 • • • 0

a,1 d,2—* ^n0 0 0 

' -1 0 ... 0 bba ibai’ 

0 1 • • • 0 b,2 b22 * b,,2

0 0 -1 b„ b, • •.. 
dabei ist das linke untere Feld, das mit willkürlichen Elementen 
besetzt werden könnte, so eingerichtet, daß es nun möglich wird, die 
Determinante auf den n-ten Grad zu reduzieren. Multipliziert man 
nämlich die ersten n Kolonnen der Reihe nach mit 

ba, b,2, ‘ ‘ ‘ bi. 

und addiert zur n+1-ten, hierauf mit
021 , 022, ' ‘ ' Ö2» 

und addiert zur n+2-ten usw., endlich mit 

bi, b,2, ' * ’ ^nn 

und addiert zur 2n-ten Kolonne, so nimmt das Produkt AB folgende 
Form an:

An d,2 * a, n Cu C12 • ' ' G, n 

(21 “22 *‘* “2 n C21 €22 ■ ’ ■ C2 n

AB _ ^nl Gn2 ‘ Cnn Cni Cn2 ' ' ’ ^>in 
“ -1 0 ••• 0 0 0 ...0 ■ 

0-1__ ... 0 0 0 •••0

0 0---------1 0 0 • •-0

Die neu entstandenen Elemente cik sind Aggregate, zusammen­
gesetzt aus den Elementen von A und B nach folgendem Gesetz:
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Cu — dnbn + 012012 + * * ’ + di„bin

C12 = a, b21 + 012 b22 + * ’ * + ain^2n usw., 
also allgemein

Ga= daba + dzba +--- +d„beni 
man nennt diese Art der Zusammensetzung von cik, wonach es ent­
steht, indem man gleichstellige Elemente der i-ten Zeile von A und 
der k-ten Zeile von B miteinander multipliziert und die Produkte addiert, 
die Komposition der i-ten Zeile von A mit der k-ten Zeile von JB.

Indem man nun in dem letzten Resultat die sämtlichen Kolonnen 
n-mal nacheinander zyklisch permutiert, wird weiter (93)

also schließlich (nach dem zweiten Satze in 108)

C11

©21

C12 * 

€22
‘Cin

C2„

C11 “12 *
(21 “22 ’

• «In

' (l2n

c 9 • • • c a , a 0 • • a
AB= (—1)" nn

0 0 • • •0 - 1 0 • • 0
0 0 • ••0 0-1 • • 0

0 0 . ••0 0 0 • • -1

C1 C12 ■ 4G. -1 0 •. 0

-(-1)” ©21 C22 ■ ■ ■ C2 n 0-1 .. 0

C,1 Cn2 ■ • C, 0 0 — 1

C11 “12 ‘ ’ Cln

AB = ©1 C22 ‘ ‘ C2 „

Cnl Cn2 ‘ C,,

Wegen der Gleichberechtigung der Zeilen und Kolonnen kann 
das Produkt zweier Determinanten auf vier im allgemeinen voneinander 
verschiedene Arten dargestellt werden, indem man Zeilen mit Zeilen, 
Kolonnen mit Kolonnen, Zeilen mit Kolonnen und endlich Kolonnen 
mit Zeilen komponieren kann. Wendet man diese vier Modalitäten 
bespielsweise auf zwei Determinanten zweiten Grades an, so ergibt sich:

K b, «, B.
a, b, a, B,

Q1“1+ bißi q1Q2+ biß2 
a,&, + baß, @,Q,+ baß, 
a,«, + b,«, a, ß, + b, ß, 
42 &1 + b2 «2 a, Bi + baß

d1“1+ d,«2 aißi+ a,ß, | 

b,4+ b, «2 b. Bi + b, ß2 
q,«,+ a,B, q,«+ a2ß2 | 

b,«, + b, ßi b, «, + b, 3,
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Um eine Anwendung von dem Multiplikationstheorem hier schon 
zu geben, seien a, b, c, d vier komplexe Zahlen und a', b', c', d' die 
ihnen konjugierten, so daß aa' eine Summe von zwei Quadraten, die 
Norm von a (und von a'), N(a), ist (18); ebenso für die andern 
Paare. Unter dieser Annahme hat man:

b , = N(a) + N(b)

= N(c) + N^ 
c d

1 —d' c

j a b cd
— b' a —d'c'

ac + bd

—b'c + a'd
— ad’ + bc' 

b'd' + a c
N(ac-\- bd) + N(— ad’ + bc),

folglich

[N(a) + N(6)] [N(c) + N(d)) = N(ac + bd) + N(-ad' + bc).

Hierin spricht sich die Tatsache aus, daß das Produkt zweier 
Summen von je vier Quadraten wieder als Summe von vier Quadraten 
dargestellt werden kann.

Ist beispielsweise

a =1+2i, b = 3 + 4i, c=5+6i, d=l-]-8i,

so hat man im Sinne obiger Ausführung
(12 + 22+32 + 42) (52 + 62+72+ 82) = 42 + 162 + 182 + 682.
115. Produkt zweier Determinanten ungleichen Grades. 

Um von dem Satz der vorigen Nummer Gebrauch machen zu können, 
erhöht man den Grad der niedrigeren Determinante durch Rändern 
auf den der höheren; dabei wird, es im allgemeinen am zweckmäßigsten 
sein, die willkürlichen Elemente durch Nullen zu besetzen.

Indem 
spielsweise:

man Zeilen mit Zeilen komponiert, ergibt sich also bei-

a, b, Ci di 
a, b, C2 d^ | C, Bi 

da ba C, da «2 B2
a, ba Ca da

a, 61 

a, b, 

aa ba 
a, \

C.
C2
c.

di
d2 
da 

da

E1

«2
0
0

ß2
0
0

0 0
0 0
1 0
0 1

ßi«i + Mi 

«2^1 + baß, 
a,C, + baßi 

a4«, + b,B,

di «2 + bi ß2 C1 di
a, «2 + b, B2 c, d2 I

a, C, + ba ß2 Ca da
a,«, + baß, c, da4
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116. Quadrat einer Determinante. Die Identität von 
Lagrange. I. Um das Quadrat einer Determinante wieder in Deter­
minantenform zu erhalten, braucht man sie nur mit sich selbst zu 
multiplizieren. Komponiert man dabei gleichartige Reihen, also Zeilen 
mit Zeilen oder Kolonnen mit Kolonnen, so zeigt das Resultat eine 
besondere Bauart. So gibt beispielsweise das Quadrat einer Deter­
minante 3. Grades bei Komposition der Zeilen:

a, bi C1

a, b, C2 
a, b, cs

a,3 + b,3 + c?

q@, + b,b, + C1C2
a, a, + \&3 + C,c3

d,@,+ b,b, + clc.i d,@, + biba + G1C3

a,2 + b,2 + c,2 a, a,+ b,b,+ c,C3
a,a, + b,b, + C,c3 a,2 + b,2 + c,2

In dem Resultat sind also Elemente, die symmetrisch zur Haupt­
diagonale angeordnet sind, einander gleich; das Quadrat einer Deter­
minante gibt bei der beschriebenen Ausführung eine symmetrische 
Determinante desselben Grades. Dies gilt für Determinanten beliebiger 
Grade.

II. Die Determinante zweiten
| a,‘+a,‘+...+a,*

a^b^ a^b2^---------- anbn 

Grades 

q,b+ a,b,+------- - anbn

b^+b^^------ + b^

deren Elemente Summen von je n Gliedern sind, läßt sich in n2 Deter­
minanten mit einfachen Elementen auf lösen (109); von diesen sind 
n identisch Null, diejenigen nämlich, die aus beiden Kolonnen Glieder 
desselben Zeigers zusammenfassen, wie z. B. 

es verbleiben also n2 — n = n(n — 1) im allgemeinen nicht verschwindende 
Teildeterminanten.

Löst man hingegen die Determinante («) in Teildeterminanten 
von dem Schema

a2+a,2 ^ik+^k
a,b,+d,b, b,3+b," " 

auf, indem man i, k alle Kombinationen zweiter Klasse der Elemente 
1, 2, . . . n durchlaufen läßt, so entstehen ihrer —; jede davon 

ergäbe bei weiterer Auflösung vier Determinanten mit einfachen Ele­
menten; im ganzen gäbe es also solcher 2n(n — 1); da aber darunter 
jede Determinante des Typus (3) n— 1-mal auftritt, so sind ihrer 
n(n — 1) identisch gleich Null und verbleiben n(n — 1) im allgemeinen 
von Null verschiedene Determinanten, so daß

a,2+a,3+ +a,2 q,b,+a,b,++a,b,_l a,2+a,2 a,b,+a,ba. 
a,b,+a,b,+------+a,%, b,2+b,2+---- +b,2 — ''aihi+akbk b.^-\-bk
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nun ist aber die unter dem Summenzeichen stehende Determinante 
les Typus (7) das Quadrat von

ai ak 
b,b. = (aM,

mithin gilt die von Lagrange zuerst bemerkte Idendität:

2 a^ 3 63 - (2 ajb} - 2 (a,b,)3. (8)
1 1 \ 1 /

Für dreigliedrige Summen lautet sie ausgeschrieben:

(a,2 + a/ + a^} (b,2 + b,2 + 6,2) — (a,b, + a^K + a,b,)2
= (a^b3— a,b,)2+ (a^- a^ ^ {axb.2 — a^. (e)

117. Determinante der adjungierten Matrix. Es ist in 
110 von der Matrix gesprochen worden, die aus den den Elementen einer 
Determinante 

“11 412 ' ‘ • ain

R = “21 “22 • • • a2n

a,1 a, ' ’ ’ a.

adjungierten Unterdeterminanten zusammengesetzt ist; die aus ihr ge­
bildete Determinante

“11 “12 ' ' ' “in

«21 «22 * “2,

&,1 C,2 ‘ ’ ' «,, 

steht zu R in einer einfachen Beziehung, die sich durch Multiplikation 
bei Komposition gleichartiger Reihen ergibt; unter Anwendung der 
beiden Hauptsätze 105, 106 ergibt sich nämlich

1 R 0 • • • 0

0 0... R

woraus, wenn R = 0, folgt, daß

S-Pn-1

Es ist also die Determinante des adjungierten Systems eine Potenz 
der Determinante des ursprünglichen Systems, und zwar ist der Expo­
nent der um 1 erniedrigte Grad.

Daß bei R = 0 auch S = 0 ist, wurde bereits in 110 bemerkt.
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VII. Abschnitt.

Gleichungen.

§ 1. Lineare Gleichungen.
118. Nichthomogene Gleichungen mit nichtverschwin­

dender Determinante. Ein System von n linearen Gleichungen 
mit n Unbekannten hat die allgemeine Form:

@1121 + @1222 ++ ain®, = u,

a,12, + a22 x, + ■ • ’ + a,,x, = u, .

dm“i + Un282 +---- F “m®,= ^n

Es heißt nichthomogen, wenn wenigstens eines der absoluten Glieder 
M, u2, - u, nicht Null ist. Die Koeffizienten aik, unter welchen wir 
uns reelle Zahlen denken wollen, bilden eine quadratische Matrix, 
deren Determinante

“11 @12 ‘ ‘ ' “in
R = "21 022 ' ' ' d2n (2)

@,1 0,2 ** a,n

als Determinante des Gleichungssystems (1) bezeichnet wird.
Jedes Wertsystem X1, X2, • • • X„, das die Gleichungen (1) befriedigt, 

heißt eine Wurzel oder Lösung von (1). Die zu entscheidende Frage 
geht dahin, ob und welche Lösungen das System besitzt.

Es ist
aH di2 * aik Xk' ' ' ain 

@21 C22 * ' ' a2k Xk‘ ' ' C2nRr=

anl an2 * ' ’ ank Xk ’ ‘ ’ ann

addiert man zur k-ten Kolonne die übrigen, nachdem man sie folgeweise 
mit X1, x,,--X,_1, &,41,..0, multipliziert hat, so entsteht mit 
Rücksicht auf (1)

@11 @12 ’ ’ ' 41 ’ ' ’ ^kn

Kxn = (21 (22 ’ ’ ‘ "2 ‘ ' ' C2n — ^k^ (3)
C, CL,o • • • I, ... CL 21 T2 n nn 

wenn man Kk als Zeichen für jene Determinante benutzt, die aus R 
hervorgeht, indem man die k-te Kolonne durch die absoluten Glieder 
ersetzt.
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Ist nun R + 0, so ergibt sich

xk - * a - 1, 2,... „ (4) 

als die einzige Lösung, die das System (1) besitzt. Man hat also 
den Satz:

Das nichthomogene System (1) hat eine und nur eine Lösung, wenn 
seine Determinante nicht Null ist; jede Unbekannte stellt sich als Quo­
tient mit dieser Determinante als Nenner und einer Determinante als 
Zähler dar, die aus jener entsteht, wenn man die Koeffizienten der zu 
berechnenden Unbekannten durch die Absolutglieder ersetzt.

Entwickelt man Dk nach den Elementen der k-ten Kolonne, so 
erscheint

R, = C,r", + Caz", ++ ankun (5) 

als eine homogene lineare Funktion oder Form der u; mithin kann 
man auch sagen, jede Unbekannte ergebe sich als eine lineare Form 
der absoluten Glieder.

119. Nichthomogene Gleichungen mit verschwindender 
Determinante. Ist die Determinante R des Gleichungssystems (1) 
gleich Null, hingegen Bk = 0, so kann die Gleichung (3), d. i.

Rz, = R, 

für ein endliches xk nicht bestehen; die Gleichungen (1) besitzen keine 
Lösung, sie stehen miteinander im Widerspruch.

Ist jedoch neben R = 0 auch Rk^= 0, so verschwinden auch alle 
andern Zählerdeterminanten; denn wegen (5) hat man

Cnz", + Cgz"2 ++ G",= 0, 

und wegen R = 0 nach dem Satze in 110:

&ai@i—*tG,=ai&2:*=:U, 
folglich auch

“1+&*++&,= R== 0. (+*)
Die Gleichung

R&= Dk (k = 1, 2, • • • n)

wird also jetzt durch jeden Wert von xk befriedigt, die Lösung ist 
unbestimmt, die Gleichungen sind voneinander abhängig; denn aus 
R = 0 folgt nach dem ersten und zweiten Hauptsatze (105, 106):

Cudi + Ca,@a1 ++ ankanl = 0 
C1d,2 + C2,@22 + + ^nk^ni = 0

a,a, + ^kaik -..+&,a, = 0

Klkain + ^ka2n +---------+ %kann = 0 ; 
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fügt man hierzu
Cnz" + a2kU2 +-------- - + ankUn = 0 

und addiert sämtliche Gleichungen, nach dem man sie der Reihe nach 
mit X1, x,,--X,-- X,, — 1 multipliziert hat, so ergibt sich 

^k (an 2,+a,224-----   q,„x,—u) + C2x (a,1 2, +0,2,4 +a,a,— u,) +
• • • + Knk{Vi +a„x,+...+ annxn - uj = 0.

120. Homogene Gleichungen mit nichtverschwindender 
Determinante. Das Gleichungssystem (1) heißt homogen, wenn 
alle absoluten Glieder Null sind; es hat dann die Form

«11^1 + ana +---------- alnxn = 0

@21%, + 02232 + • • • + a2nXn = 0

a,12, + %2X2 +..+ Vn = 0.

(6)

Ist nun R = 0 und führt man an dem Produkt Bxk dieselbe 
Umformung aus wie vorhin, so erhält man 

R&,=

dn 012 0-* aln

@21 @22 • ■ . 0 • • • @2n
(k = 1, 2, ■ ■ • n)

ttnX a,2 0 .. a,n

eine Gleichung, der nur durch
xk = 0

= 0,

(k = 1, 2, • • • n)

genügt werden kann. Es gilt also der Satz: Ein System von n ho­
mogenen Gleichungen mit n Unhehannten, dessen Determinante nicht 
Null ist, hat nur die eine Lösung ^ = 0, X, = 0, • • • xn = 0.

Diese Lösung soll die triviale heißen, weil ihr Bestand unmittel­
bar zu erkennen ist.

Soll das System neben der trivialen noch eine andere Lösung 
haben, so muß notwendig R = 0 sein.

121. Homogene Gleichungen mit verschwindender Deter­
minante.

I. Ist R = 0 und ist die Determinante vom Range n — 1, so daß 
mindestens eine Unterdeterminante dieses Grades nicht Null ist, so 
kann die Untersuchung in folgender Weise geführt werden. Sei

411 “12 “’ai,n-l 

(21 “22 ‘‘‘“2, n-1

an-l,l an-l,2 ‘ * ‘ an-\, n-1 
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eine nichtverschwindende Unterdeterminante, so ordne man die ersten 
n — 1 Gleichungen von (6) wie folgt:

Ana, +0,22, +*+d,,-17,-1 = a„a, 
@212, +dpa, +*+d,n-14,-1 = az„E,

d,-1,1 x, + d,-1,2 &,+ + d,-1,»-1 2,-1 = - d,—1,n «,;
sie liefern nach dem Vorbilde von (3) die Gleichung

du @12 ■ ‘ ■ “in %n* ' ai,n-l

^»^^ a21 C22 @2n «,* • @2,n-1

an-l 1 an-1,2 ' ■ an-l, n x. an-l,n-l

«11 @12 din • ai,n-l

= - x. “21 022 ’ • ' a2n • C2,n-1

a,-1,1 a,-12 - a,- 1,n ' ’ @n — 1, n — 1

bringt man die Kolonne a,,, a2n, • • • a,_1 n, die jetzt an der Stelle 
der k-ten steht, durch zyklische Vertauschung der letzten n — k Ko­
lonnen an die letzte Stelle, wodurch die Determinante das Vorzeichen 
(— 1)2-*-1 erhält (93), so verwandelt sie sich, von diesem Vorzeichen 
abgesehen, in

“11 “12 ’ ' ’ d1,*-1 “1,*+1 ' ‘ ' Cin
“21 422 * * ‘ “2,*-1 “2,k+1 ‘ ’ ‘ a2n

an-l,l Un-1,2 ’ ’ ‘ an-l,k-l an-l,k + l ’ ’ ' an-

infolgedessen ist, unter Berücksichtigung aller Zeichenfaktoren,

c&= ^nk^n a=1,2, «-1); (7)
es bleibt also xn willkürlich, und mit der Wahl eines Wertes für xn 
sind die Werte der andern Unbekannten bestimmt. Aus (7) folgt 
überdies

qi2niiz,= C, : C,2 : • • • : C, , 

und da wegen R = 0

C, • C,2 :*: C,n = Ca ■* C,2 ::« 
bei beliebigem i (110), so verhält sich auch

qi2:—niz,= C, : C,2 : • • • : ain. (8)
Das Ergebnis läßt sich nun so zusammenfassen: Ein System von 

n homogenen Gleichungen mit n Unbekannten, dessen Determinante gleich 
Null und vom Bange n — 1 ist, ist einfach unbestimmt, indem eine 
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Unbekannte willkürlich angenommen werden kann-, das System bestimmt 
lediglich das Verhältnis der Unbekannten, das gleichkommt dem Ver­
hältnis der Unterdeterminanten zu irgendeiner Zeile von Id.

Es bleibt noch der Beweis nachzutragen, daß durch die Lösung (7) 
auch die letzte Gleichung des Systems (6), die ausgeschaltet worden 
war, befriedigt wird; in der Tat verwandelt sich die linke Seite dieser 
Gleichung durch die Substitution (7) in

x I I Rx
Vm + An2Un2 + • • • + Vnn = —" 

nn v ) nn 

und dies ist Null, weil R = 0 ist.
II. Angenommen, R sei wieder = 0, aber vom Range n — 2 und

«ii “12 ‘*G1,n-2
“21 “22 '"a2,n-2

| “n-2,1 “n-2,2 ' ‘ ‘ an-'2,n-’i 

eine der nichtverschwindenden Unterdeterminanten dieses Grades. 
Ordnet man dann die ersten n — 2 Gleichungen nach dem Schema 

«ii ^Va^ x,+*+d,»-2 «,-2=-d,»-1 2,-1—An a, 
@21 q, + d22 2,+:*+d2,»42 &,-:= d2,n-1 2,-1 d2, x, 

an-2,l 2, + an-2,1 «2 + - an-2,n-2 2,-2 = - d„-2,n-1 2,-1 an-2,nXn) 

so ergeben sich daraus 21, X2, ••• 2,12 als lineare Formen von T,_1, 
x,, und erteilt man diesen zwei Unbekannten beliebige Werte, so sind 
die Werte der vorangehenden dadurch bestimmt. Die Unbestimmtheit 
ist also nunmehr eine zweifache. Der Beweis, daß die beiden letzten 
Gleichungen des Systems (6), die jetzt ausgeschaltet waren, durch die 
so gefundenen Lösungen auch befriedigt sind, wird ebenso geführt 
wie unter I.

Wie man erkennt, kann diese Schlußweise fortgesetzt werden und 
führt zu dem allgemeinen Ergebnis, daß, wenn R = 0 und vom Range 
n — r ist, n — r Unbekannte durch die r übrigen linear ausgedrückt 
werden können, so daß die Unbestimmtheit eine r-fache ist. Der 
interesselose Grenzfall, daß R vom Range 0, also deshalb verschwindet, 
weil jedes einzelne Element Null ist, führt zur völligen Unbestimmt­
heit der Unbekannten.

III. Erfüllen die Koeffizienten des Systems (6) die Bedingung 
R = 0, so daß neben der trivialen noch andere Lösungen bestehen, so 
kann dieses System, indem man die Verhältniszahlen

XC, X2 En — 1
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als neue Unbekannte 21,2, .2,1 betrachtet, in 
nichthomogenen Gleichungen mit n — 1 Unbekannten

an 4,+4, 2+ + a,,-1 %,-1 + an 

«21 21+ a,2 2+ + @2,n-1 Zn-\ + d2n

die Form von n 
gebracht werden:

(9)

= 0
= 0

«m F1 +a,2+ + @„,n-1 2-1+@„=0.

In bezug auf ein solches System gilt also der Satz: Ein System 
von n nichthomogenen linearen Gleichungen mit n — 1 Unbekannten be­
sitzt nur dann eine Lösung, mit andern Worten, es kann nur dann be­
stehen, wenn die Determinante aus den Koeffizienten und den absoluten 
Gliedern Null ist.

IV. Man nennt die Gleichung R = 0 mit Bezug auf das System (6) 
oder das System (9) dessen Resultante', sie drückt die Bedingung der Auf­
lösbarkeit des Systems aus. Man kann aber dieselbe Gleichung auch als 
das Resultat der Elimination der Unbekannten aus dem betreffenden 
System auffassen, bei welcher Elimination die Existenz einer Lösung 
schon vorweg genommen wird. Aus diesem Grunde wird die Deter­
minante R auch als Eliminante des Systems (6) oder (9) bezeichnet ). 

122. Beispiele. 1. Es sind die Gleichungen
1

1) Neben dieser Terminologie ist auch eine andere gebräuchlich, derzufolge 
R als Resultante bezeichnet wird; alsdann muß gesagt werden, der Bestand des 
einen oder andern Gleichungssystems erfordere das Verschwinden der Resultante. — 
Das Eliminationsproblem bei linearen Gleichungen bildete für Leibniz und 
Cramer den Ausgangspunkt für die Erfindung der Determinanten. Vgl. hierzu 
die Note zu 95.

Czuber, Höhere Mathematik.

aufzulösen.
Ihre Determinante

2x — 3y + 42 = 
x+4y—52 =—

3x — 7y + 42 =

11

6
1

R=
2-3 4

1 4-5

3-7 4

ist von Null verschieden; 
die Zählerdeterminanten:

R,=

11-3 4

6 4-5

1-7 4

0-11 14

4-5 = 19(11 — 14) = —3.19
0-19 

darum

5
-6

19

gibt es eine Lösung. Man hat weiter

1-1

4-5
1-7 4

0 36-21

1

0-38

1 -7
19 = 19(36-42) = -6.19,

4

13
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2 11 4 3 5-1

r,- 1 -6-5 = 1-6-5

3 14 3 14

0 23 14
= 1 -6 -5 = 19(14-23) - - 919,

0 19 19

2-3 11 3 15

r,- 14-6= 1 4-6
3-7 1 3-7 1

0-11 23

= 1 4-6 =19(11-23) = -12.19,
0-19 19

folglich ist
x = 2, y = 3, z= 4.

2. Die Determinante des Gleichungsystems 
x + 2y + 3z = 6

4x + 5y + 6z = — 2

7x + 8y + 9z = 9

ist Null (96); die Zählerdeterminante

6 2 3 623 - 423

R = - 256 = - 25 6 = - 27 5 6 = 24-81
9 8 9 5 1 0 010

verschwindet aber nicht; man hat es also mit einem System einander 
widersprechender Gleichungen zu tun. In der Tat erhält man durch 
Subtraktion der ersten Gleichung von der verdoppelten zweiten

7x + 8y + 92 = — 10

im Widerspruch zur dritten.
3. Das Gleichungssystem 

x + 2y + 3z = 4 

4x + 5y + 6z = 7 

7x + 8y + 9, = 10

gibt keine Bestimmung für x, y, 2, weil nicht nur R = 0, sondern auch

R, =

4 2 3
7 5 6

10 8 9

2 2 1

2 5 1

2 8 1

= 0
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und darum notwendig auch R, = 0, R, = 0 ist. Die Gleichungen 
sind nicht unabhängig von einander; man erkennt dies u. a., wenn 
man von der verdoppelten zweiten die erste subtrahiert; es ergibt 
sich die dritte. Da R vom Range 2 ist, kann man einer Unbekannten 
einen beliebigen Wert beilegen, aus zweien der Gleichungen die beiden 
andern Unbekannten rechnen; die dritte Gleichung ist durch jede so 
gefundene Lösung befriedigt.

4. Das Gleichungssystem 

2x — 3y+4: = 0
x + 4y — 5z = 0

3 x — 7 y + 4 z = 0

besitzt einzig und allein die Lösung x = 0, y = 0, z = 0, weil seine 
Determinante R + 0 ist (vgl. 1).

5. Hingegen hat das Gleichungssystem

x + 2y + 3z = 0

4x + 5y + 6z = 0
7 x + 8y + 9z = 0

einfach-unendlich viele Lösungen, weil seine Determinante R = 0 und 
vom Range 2 ist; es bestimmt das Verhältnis

23 3 1 12
X’y’.z= 2 : : ._ =—3:6: — 3 = 1: — 2:1, • 56 6 4 45 ’

ist also durch x = 1, y = — 2X, z = 2 bei beliebigem A erfüllt.
6. Das Gleichungssystem

x + 2y + 8z + 4u = 0
5x + 6y + 7z + 8u = 0
9x + 10y + 11z + 12u = 0

13x + 14y + 152 + 16u = 0

hat eine verschwindende Determinante; denn

R=

12 3 4

5 6 7 8

9 10 11 12

13 14 15 16

113 1

5 17 1

9 1 11 1

13 1 15 1

= 0;

R ist ferner vom Range 2, weil alle Unterdeterminanten dritten Grades 
Null, hingegen die Unterdeterminanten zweiten Grades nicht Null sind. 
Es gibt deshalb zweifach-unendlich viele Lösungen, die man in folgen­
der Weise darstellen kann. Aus den ersten zwei Gleichungen folgt 

13*
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x = —

y =-

32+4u 2 
72 + 8u 6 
1 3z + 4u
5 7:+ 8u

1 2
5 6
1 2
5 6

= z + 2u

= — 2z - 3u;
durch

x = 2 + 2, t

y = - 21 — 3, i

z = 2

u = u

sind also bei beliebigem 2, u alle vier Gleichungen befriedigt.
7. Durch das Gleichungspaar

ax + by + :2 = 0
a'x + b'y + f z = 0

sind die Verhältnisse x:y:z bestimmt, sofern nicht alle zweireihigen 
Determinanten, die aus der rechteckigen Matrix

a b c

a' b' c

gebildet werden können, Null sind; unter dieser Voraussetzung ist 

b c c a a b 
xty:z = ,, , : ,,:,,. 

b c C a \ a b

§ 2. Allgemeine Sätze über höhere algebraische Gleichungen.
123. Hauptsatz der Algebra. Eine ganze Funktion n-ten 

Grades der Variablen x hat die allgemeine Form:

f(x) = aQxn + ax"-1 + • • • + an.

Von den Koeffizienten a, a,, • ■ • an wird hier ein für allemal voraus­
gesetzt, daß sie reelle Zahlen seien; hingegen soll x nicht auf reelle 
Zahlen beschränkt, sondern auch komplexer Werte fähig sein.

Die Aufgabe, zu einem gegebenen Werte des Arguments xden 
zugehörigen Wert der Funktion zu bestimmen, hat immer eine und 
nur eine Lösung; ihre Auffindung erfordert nur die vier Spezies.

Die umgekehrte Aufgabe, zu einem gegebenen Funktionswert b 
einen Argumentwert zu bestimmen, der ihn herbeiführt, bildet ein 
neues Problem, dem man folgende typische Form geben kann: Sub­
trahiert man b von an und schreibt a'n für an — b, so kommt es nun 
darauf an, der so abgeänderten Funktion den Wert Null zu geben.

Auf diese Weise entsteht das durch den Ansatz

f(x) = aQxn + a,x"-1+ • + a, = 0 (1)
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ausgedrückte Problem, wobei für a n wieder das Zeichen an geschrieben 
wurde. Diesen Ansatz nennt man eine algebraische Gleichung n-ten Grades, 
einenWert X1, der die Forderung erfüllt, eine Wurzel der Gleichung oder 
eine Nullstelle (auch Wurzel) von f(x); x heißt nunmehr die Unbe­
kannte, das von von x freie Glied an das absolute Glied der Gleichung.

Daß jede Gleichung ersten und zweiten Grades eine Wurzel be­
sitzt, lehren einfache arithmetische Überlegungen; die Frage, ob dies 
für jede Gleichung beliebig hohen Grades gelte, erfordert zu ihrer 
Erledigung über das Gebiet der Arithmetik hinausreichende Unter­
suchungen. Den ersten befriedigenden Beweis, daß dem so sei, hat 
Gauß gegeben und in seiner Doktordissertation (1799) veröffentlicht. 
Wir nehmen hier den Hauptsatz der Algebra, der diese Tatsache aus­
drückt, als bewiesen an und formulieren ihn wie folgt: Jede algebra­
ische Gleichung beliebig hohen Grades besitzt eine Wurzel.

124. Entwicklung einer ganzen Funktion nach einem 
Inkrement der Variablen. Wir stellen uns die Aufgabe: Wenn

f(x) = da" + a,x"-1+------ + a, (2)

ist, so soll f(x + h) nach Potenzen von h entwickelt werden.
Die Lösung könnte so geschehen, daß man in (2) x + h für x 

setzt, die verschiedenen Potenzen dieses Binoms ausführt und schließ­
lich nach den Potenzen von h, deren höchste hn sein wird, ordnet; 
das Resultat wird ein Ausdruck von der Form

fix + K) = X, + Xji + X^ +...+ XnlG (3) 

sein; X, X,-X, werden sich aus x und den Koeffizienten a zu­
sammensetzen.

Ohne die beschriebene Entwicklung vorzunehmen, kann man 
X,, X1, • • • Xn durch folgende Betrachtung gewinnen. Ist das Argu­
ment irgend einer Funktion f(u) eine Summe von zwei Variablen 
x + y, so kann dem Differenzenquotienten "19—F auch eine 

der Formen F(+8+ »-F(+», Fs+y+ö)=F(+» gegeben 

werden; geht man mit 8 zur Grenze Null über, so ergibt sich aus 
dieser Bemerkung, daß F'(u) = F(x + y} = F'y(x + y) ist.

Hiervon machen wir bei der Gleichung (3) Anwendung und 
differenzieren sie n-mal nacheinander in bezug auf h rechts, in bezug 
auf x links; das Ergebnis dieser Differentiationen lautet:

/(+h)= X1+2X1+ 3X,h2+: + nX,^-1
/(+h)= 1.2X, + 2.3X,h++ (n-1)nX,h"—2
^\x+K)= 1-2-3 X, +..+(n-2)(n—1)nX,hn-3 (4)

/n(x+h)= 12..X,
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Setzt man in (3) und (4) h = 0, so ergibt sich, wenn man bei 
den Ableitungen von f(x) den jetzt überflüssigen untern Index fort­
läßt:

X,=f(x)

- _f"(x)
3 1.2

_ f((x) .
” 1-2--W

Führt man diese Werte in (3) ein, so ergibt sich die verlangte 
Entwicklung:

/r+1)-/)+"21+721+.+2Zte*". (5)

Bei ihrer Ableitung kam der Umstand, daß fQT) eine ganze 
Funktion ist, nur insofern zur Geltung, als die Bildung der Ableitungen 
(4) mit der n-ten einen natürlichen Abschluß fand.

125. Algebraische Teiler einer ganzen Funktion. Horner- 
sches Divisionsverfahren. Nach dem Hauptsatze der Algebra hat 
die Funktion f(x) eine Wurzel, sie heiße X1, so daß f(xi) = 0 ist. 
Mit Bezug auf diese gilt nun der Satz: Die Differenz x — X, ist ein 
algebraischer Teiler von f(x).

Schreibt man nämlich f(x) in der Form f^ + x — X) und 
wendet darauf die Entwicklung (5) an, so wird:

/(u) -/(«,) + "() (x ~ «,) +5 (,) (x - «,)*+ • • • + "6.), (z—x,)"; (6) 

da nun f(x.) = 0, so ist tatsächlich x — X, ein Faktor der rechten 
Seite, also auch von f(x), d. h. f(x) ist durch x X1 teilbar. Der 
Quotient ist

5+ 120-*)+ .+(0-s)n, co 
also wieder eine ganze Funktion, fx (x), vom Grade n — 1, der Koeffi­
zient ihrer höchsten Potenz, wie aus dem Divisionsverfahren hervor­
geht, wieder ao; man hat also

/(x)-(x-t)/(x). (8)

Man nennt x — X, den zur W urzel X, gehörigen Wurzelfaktor 
von f(x).

Ist X, nicht Wurzel von f(x\ so erstreckt sich die Teilbarkeit 
nur auf die Glieder vom zweiten angefangen in der Form (6), folg­
lich ist f(x,) der verbleibende Divisionsrest. Dieser wichtige Sach­
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verhalt kann so ausgesprochen werden: Dividiert man f(x) durch 
x — 21, so gibt der verbleibende Rest den Wert von f(x,) an-ist er Null, 
so war X, eine Wurzel.

Hierin liegt das bequemste Mittel, den zu einem Argumentwert 21 
gehörigen Funktionswert zu berechnen und von einem Argumentwert 
zu entscheiden, ob er eine Wurzel sei. Die dazu führende Division 
läßt sich nach einem von W. G. Horner (1819) angegebenen Schema 
mechanisch ausführen. Man hat nach den gewöhnlichen Divisions­
regeln:

(a, a" + a,«"-1+a,«"-2+..+ a^ : (x — «,) = 

a, xn — a, x, xn “1

+(x,a +ajxn 2
+ [x,(x,0,+a,)+a,]a" 3 
+.. ..

(x, a0 + a,) xn 1+a, a" 2 
(x, a, + a,) xn 1—x, (x, a, — a,) x" 2 
[x, (x, a0 + a,) + a,] x" 2 — a, x"3 

das Bildungsgesetz der Koeffizienten A,A,, A,, .. des Quotienten 
ist hiernach folgendes:

Ao = do
A, = x,A0 + ax

A, = x, A, + a.

und führt, an einem speziellen Fall erläutert, zu folgendem Schema: 
Um f{x) = 5x3 — 2x2 + 4x — 8 durch x — 2 zu dividieren, schreibe 
man die Koeffizienten über einem Strich nebeneinander und rechne 
an ihnen mit der Zahl 2 wie folgt:

5 —2 4 —8
2 5 8 20 (32)

man bildet nämlich nach und nach 2 • 5 — 2 = 8, 2 • 8 + 4 = 20, 
2 • 20 — 8 = 32; 32 ist als Divisionsrest durch Einklammerung ge­
kennzeichnet; es ist also
(5x3 - 2x2 + 4x - 8) : (x - 2) = 5x2 + 8x + 20 +41,/(2) = 32.

Um auf alle in Betracht kommenden Umstände aufmerksam zu 
machen, sei noch die Division von f(x) = x4 — 5x2 — 6 durch x + 2 
ausgeführt; das Schema lautet hier so:

1 o —5 0 —6
— 2 1 — 2 — 1 2 (— 10) 

und gibt
(x4 — 522 — 6) : (x + 2) = 23 — 222 — x + 2 — al,, /(- 2) = — 10.
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126. Anzahl der Wurzeln einer algebraischen Gleichung. 
Durch wiederholte Anwendung des Hauptsatzes, daß jede ganze Funk­
tion eine Nullstelle besitzt und durch den zugehörigen Wurzelfaktor 
teilbar ist, ergeben sich die folgenden Ansätze:

f(x) = (x - «)/(x) 
f(x) = (x — x)/(x) 
f(x) =(x—«)/(x)

/-1(x) = (x-x)f„(x); 

dabei bedeutet ,41 eine Nullstelle von f(x), das eine ganze Funktion 
vom Grade n — i mit dem Anfangskoeffizienten a ist; folglich ist 
f„(x) = a selbst. Die Multiplikation vorstehender Gleichungen führt 
also zu /() - Q^x _ x,)(x -,)-(- z,), (9) 

aus welcher Darstellung unmittelbar hervorgeht, daß f(x) die Null­
stellen X,, x,, • • • xn hat. Es gilt sonach der Satz: Eine Gleichung 
n-ten Grades besitzt n Wurzeln.

Die Annahme, f(x) besitze außer den genannten Nullstellen noch 
eine weitere, von ihnen verschiedene Nullstelle x, hätte den Ansatz 

fix'} = aü(x' — x)(x‘ — x) - (x‘ — x^ = 0

zur Folge, der aber, da die sämtlichen Differenzen von Null ver­
schieden sind, nur bestehen kann, wenn a = 0 ist. Dann aber wird 
fix} vermöge (9) durch jeden Wert von x auf Null gebracht;

aQxn + ax"-1 • • • + an

kann aber nur dann identisch Null sein, d. h. für jeden Wert von x 
verschwinden, wenn die Koeffizienten einzeln Null sind:

a = 0, a, = 0,** an = 0.
Wenn also eine ganze Funktion n-ten Grades mehr als n Null­

stellen hat, so hat sie deren unendlich viele, indem sie für jeden Wert 
von x verschwindet.

Haben die zwei ganzen Funktionen

fix} = aoxn + a,x"-1+------ + an

gif} = boxn + b,a"=1+------ - bn

für mehr als n Werte von x gleiche Werte, so besitzt die Gleichung 

fix} - g (x) = ia0 — b) xn + iat - b) x"—1 +-------- ian -bn} =0 

mehr als n Wurzeln; infolgedessen ist notwendig

ao — b = 0, a, - \ = 0, • • • an - bn = 0, 
also

a, = bo, a, = b,, ••• a, = b,.
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Zwei nach x geordnete Polynome sind also nur dann identisch 
gleich, wenn sie in den zu gleichen Potenzen gehörigen Koeffizienten 
ü ber einstim m en.

Auf diesen Satz stützt sich ein vielfach angewendetes Verfahren 
der Algebra, das von Descartes unter dem Namen „Methode der 
unbestimmten Koeffizienten“ eingeführt worden ist.

127. Mehrfache Wurzeln. Die Ableitung der Gleichung (9) 
schließt nicht aus, daß sich unter den Werten X, , x, ,--- x, , die als 
Nullstellen der Funktionen f (x), fi(x), • • • f„_1(x) auftreten, gleiche 
befinden. Sind beispielsweise X1 --  x, --  • . = xx, alle folgenden aber 
hiervon verschieden, so tritt der Faktor x X, nicht einmal, sondern 
k-mal auf, und X, heißt dann eine h-fache Wurzel] die Gleichung (9) 
aber nimmt die Gestalt an:

/(x) = a0(x - «X(z.- Tk+1) ( - x^. (10)

Um die Bedingungen zu finden, welche f(x) erfüllen muß, um x, zur 
k-fachen Wurzel zu haben, entwickeln wir f(x) = f(x, + x — X) nach 
Potenzen von x — X, (124):
/(x) -/(x,) +"«) (x - x,) + 1) (x - *i)* ++ fT^n (ax,); 

soll X1 k-fache Wurzel sein, so muß sich von der rechten Seite der 
Faktor (x — x^, und kein höherer, abspalten lassen; dies tritt aber 
nur dann ein, wenn

/w-o, /‘(x) =0, ••■ j"-"(x,)-0, J0(x,)+0
ist. In Worten heißt dies: Eine h-fache Nullstelle von /(x) bringt 
nicht nur diese Funktion, sondern auch ihre Ableitungen bis zur k-l-ten 
Ordnung einschließlich auf Null.

Ist X1 eine k-fache Nullstelle, so lautet also die Entwicklung 
von /(xß.

" . f()(x,) f , f(+1(x,) / , , । f(n)(x,), , /(x) = 1.2...% (x ~ ^i) + 1.2...(141) (x ~ ^i) + ‘ • • + 1.2...%(—) n, 
und es ergibt sich daraus: 

/‘() -82y@-x)-1

T 1-2 "1 T T1-2..(n—1)" "1 ’ 

folglich hat f\x) dieselbe Nullstelle nurmehr k — 1-fach, /"(x) nur- 
mehr k — 2-fach, • • • schließlich /1(x) nurmehr einfach.

Bestimmt man demnach den gemeinsamen Teiler von f(x) und 
f‘(x), so enthält er alle Wurzelfaktoren von /(x), die zu mehrfachen
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Wurzeln gehören, in einer um 1 niedrigeren Multiplizität; spaltet man 
also diesen Teiler g(x), der durch das Verfahren der Kettendivision 
zu gewinnen ist, von f(x) ab, so hat die verbleibende Funktion 
f(x) • 9 (x) nurmehr einfache Nullstellen.

128. Komplexe Wurzeln. Substituiert man in einer ganzen 
Funktion f(x) (mit reellen Koeffizienten, wie hier ausdrücklich her­
vorgehoben werden soll) für x die komplexe Zahl a — ßi, vollführt 
die angezeigten Operationen und faßt schließlich die reellen und die 
imaginären Bestandteile zusammen, so ergibt sich eine Zahl A + Bi. 
Wiederholt man den Vorgang mit der Substitution « — ßi, so ent­
steht das Resultat A — Bi.

Ist nun « + ßi eine Wurzel, also A — Bi = 0, so ist notwendig 
A = 0, B = 0 (18); dann aber ist auch A — Bi = 0, also auch 
« — ßi eine Wurzel.

In einer Gleichung mit reellen Koeffizienten zieht also eine kom­
plexe Wurzel die konjugiert komplexe notwendig nach sich.

Da hiernach komplexe Wurzeln stets paarweise vorkommen, so 
hat eine Gleichung mit der k-fachen Wurzel « + ßi auch a — ßi zur 
k-fachen Wurzel. Weiter folgt daraus, daß eine Gleichung ungeraden 
Grades notwendig mindestens eine reelle Wurzel besitzt.

Die von einem einfachen konjugiert komplexen Wurzelpaar her­
rührenden Wurzelfaktoren x — « — ßi, x — « — ßi geben zum Produkt 
(x — cff + ß2 = x2 — 2ax + a2 + ß2, also ein im reellen Gebiete nicht 
zerlegbares quadratisches Trinom x2 + px + q; zwei k-fache konjugiert 
komplexe Wurzeln führen demnach zur k-ten Potenz eines solchen 
Trinoms.

Alle Fälle zusammengefaßt, kann man somit sagen, daß eine 
ganze Funktion mit reellen Koeffizienten sich darstellen läßt als Pro­
dukt von Faktoren, die vier Typen aufweisen können: x X,, (x X1) , 
a2+px — q, (x2+px — qf-, abgesehen ist dabei von dem immer auf­
tretenden konstanten Faktor a0. Die Herstellung dieser Produktform 
und die Auflösung der Gleichung sind äquivalente Probleme.

129. Zusammenhang zwischen den Wurzeln und den 
Koeffizienten. Wenn man die beiden Darstellungen einer und der­
selben ganzen Funktion f^x), das Polynom und das Produkt, einander 
gleich setzt, so entsteht die identische, d. h. für alle Werte von x 
gütige Gleichung

aQxn + q,x"-1-.+a,= a0(x — x)(x — x,) • • • (x — xf).

Entwickelt man das Produkt rechter Hand und ordnet es nach 
Potenzen von x, so ergibt sich auf Grund des letzten Satzes in 126 
die Übereinstimmung der beiderseitigen Koeffizienten, derzufolge also
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2,8 &,=(-1)"dg;

(11) 

die Summenzeichen beziehen sich der Reihe nach auf alle Kombi­
nationen ohne Wiederholung der 1., 2., • • • n — l-ten Klasse aus den 
Zeigern 1, 2, ■ • • n.

Diese Relationen zwischen den Wurzeln und den Koeffizienten ge­
statten die Lösung der Aufgabe: Eine Gleichung aufzustellen, die ge­
gebene Wurzeln besitzt. Es sind dazu nur die vier Spezies im Gebiete 
der komplexen Zahlen erforderlich.

Die auf den linken Seiten von (11) stehenden Wurzelfunktionen 
haben die Eigenschaft, sich nicht zu ändern, wenn man die Wurzeln 
irgendwie untereinander vertauscht; Funktionen dieses Verhaltens be­
zeichnet man als symmetrisch in Bezug auf ihre Argumente und 
nennt die in (11) auftretenden die symmetrischen Grundfunktionen der 
Wurzeln der Gleichung. Jede andere symmetrische Funktion der 
Wurzeln läßt sich durch sie, also auch durch die Gleichungskoeffi­
zienten rational darstellen. So kann man beispielsweise die Quadrat­
summe der Wurzeln einer beliebigen Gleichung berechnen, ohne diese 
aufzulösen, aus den Koeffizienten allein. Denn

C=) - N* + 23**, 
und mit Zuziehung der ersten zwei Relationen aus (11) ergibt sich 
daraus:

" , 2 _( 1 , ____ 9 ‘ r r — a,?—2a a, .

130. Transformation der Unbekannten. Ein wichtiges Hilfs­
mittel der Umformung von Gleichungen zum Zwecke ihrer leichteren 
Lösung bildet der Übergang zu einer neuen Unbekannten, oder, wie 
man dies ausdrückt, die Transformation der Unbekannten. Die neue 
Unbekannte steht dabei mit der ursprünglichen in einer bekannten 
Beziehung. Drei wichtige Fälle seien hier angeführt.

I. Setzt man x = kz, so geht die Gleichung f(x) = 0 über in 
die neue f(lez) = aglena + a,l"-12"-1+ • • . + an = 0 (12) 

und in der Produktform:

f(lz) = a0(kz — x)(kz — x) - ^z — x) = 0; 
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aus der letzteren erkennt man, daß die Wurzeln der neuen Gleichung: 
x,_  n

durch Division der Wurzeln der ursprünglichen Gleichung mit k entstehen.
Man macht von dieser Transformation Gebrauch, um die Koeffi­

zienten der Gleichung auf größere oder kleinere Zahlen zurückzuführen.
Von der speziellen Transformation, die sich für k = — 1 ergibt, 

wird häufig Gebrauch gemacht; man kann sie kurz als Zeichen­
änderung der Unbekannten oder als den Übergang von f(x) = 0 zu 
— f(— x) = 0 bezeichnen, wobei das Vorzeichen links so gewählt wird, 
daß das erste Glied positiv ausfällt.

II. Die Substitution x = z + h verwandelt die Gleichung f(x) = 0 in 

/(= + Ä) =/0) + 59) - +50 28 + • ■ ■ + Tf^-n , = 0, (13) 

eine Gleichung, die bereits geordnet ist nach den Potenzen der neuen 
Unbekannten.

Die Berechnung der Koeffizienten kann in folgender Weise ge­
schehen:

f(h) ist der Rest, der bei der Division von f(x) durch x — h 
verbleibt (125); der Quotient dieser Division ist

f()_/()_... f^. „n-1
1 T 1-2 e T T 1.2... '

-( ist der Rest, der bei der neuerlichen Division dieses Quo­

tienten durch x — h verbleibt; der Quotient dieser Division ist

f"(h) I I I f1.2 1.2.3 — 1 • 2 • • AC n-2.• n 7
1 (" ist der Rest, der bei der Division dieses Quotienten durch

x — h verbleibt usw.
Man erhält also die Koeffizienten von (13) als Reste bei der 

wiederholten Division durch x — h, und zwar in der Reihenfolge von 
der niedrigsten Potenz zur höchsten; die Divisionen werden am be­
quemsten nach dem Horn er sehen Schema ausgeführt.

Um z. B. die Gleichung x* — 2x3— 3x2 + 1=0 durch die Sub­
stitution x = z + 3 zu transformieren, hat man folgende Rechnung: 

12 3 0 1
1 1 0 0 (1) ‘
1 4 12 (36)
1 7 (33)
1 (10)

(1) 
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und die transformierte Gleichung lautet:

24 + 1028 + 3322 +36;+1 = 0
III. Durch die Substitution x - 1 geht f(x) = 0 über in 

©)->+=+2++*+**+4=o
und nach Beseitigung der Nenner weiter in 

s"f (})=a,="+0,-12"-1+1,-92"-2+ +a,=3+a,3+a,=0. (14)

Die Wurzeln dieser Gleichung sind die Reziproken von den Wurzeln 
der ursprünglichen Gleichung.

Ist insbesondere

an-i = ± a, (i = 0, 1, 2, - n\ (15). 
wobei durchwegs das eine oder das andere Zeichen gilt, so stimmt 
die transformierte Gleichung mit der ursprünglichen — bis auf das 
Zeichen der Unbekannten — überein, hat also auch deren Wurzeln. 
In einer Gleichung mit der Koeffizientenrelation (15) gehört also zu 
jeder Wurzel x, auch deren Reziproke 4; ist der Grad der Gleichung 

ein gerader, so teilen sich die Wurzeln in zwei gleich starke Gruppen, 
deren eine die reziproken Werte der andern umfaßt; ist der Grad ein 
ungerader, so verbleibt noch eine vereinzelte Wurzel, die notwendig 
1 ist. Gleichungen dieser Art bezeichnet man als reziproke Gleichungen.

§ 3. Resultante und Diskriminante.
131. Resultante zweier algebraischer Gleichungen. I. Wenn 

zwei Gleichungen

f(y) - %ym + q,y"-1+ —- a - o (i)
9@y)=bs"+b*"1 + + • = 0 (2) 

mit unbestimmten Koeffizienten vorliegen, so kann die Frage aufge­
worfen werden, unter welcher Bedingung sie mindestens eine gemein­
same Wurzel besitzen. Da die Wurzeln von den Koeffizienten ab­
hängen, so wird es dabei auf einen aus den Koeffizienten beider 
Gleichungen zusammengesetzten Ausdruck, also auf eine Funktion 
dieser Koeffizienten ankommen, der von vornherein der Name Resul­
tante beider Gleichungen gegeben werden soll.

Um dies zunächst an einem speziellen Fall zu erklären, seien die 
Gleichungen quadratisch:

ay2+a,y + a, = 0
boy? + by + b, = 0;
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multipliziert man unter der Vorstellung, y könne in beiden dieselbe 
Zahl bedeuten, die erste mit b,, die zweite mit —a, und addiert, so 
entsteht:

yL(ab, — a,bo)y+ q,b— «2M = 0; 
der Fall, daß y = 0 eine gemeinsame Wurzel sei, ist ausgeschlossen, 
wenn man nicht die einschränkende Voraussetzung a, = 0, b, = 0 
machen will; darum muß

(ab, — a2b^)y + a^ — a^b^ = 0 

sein. Multipliziert man hierauf die erste der Gleichungen («) mit 
— bo, die zweite mit a und bildet ihre Summe, so ergibt sich

(agb, — a^y + a0b2 — a,b = 0.

Aus den beiden linearen Gleichungen folgt aber (121, III)

do ba d, bo d, b, ab, 0 
a,b, — a, b0 aüb2 — a, bQ

und in ausgeführter Form:

(ab — a2b^- (aob, — abo)(a,b,— a,b) = 0. (B)

Dies ist also die Bedingung für das Vorhandensein einer gemein­
samen Wurzel, die linke Seite mithin die Resultante der beiden 
quadratischen Gleichungen («); der ausgeführte Prozeß ist aber die 
Elimination von y zwischen diesen Gleichungen, (3) die daraus hervor­
gehende Endgleichung.

II. Um nun die Aufgabe der Resultantenbildung oder der Eli­
mination allgemein an den Gleichungen (1) und (2) zu lösen, multi­
pliziere man die erste der Reihe nach mit y"-1, y"-2, • 1, die zweite 
mit ym~1, ym~2, • • • 1; das so entstandene System:

aoym +"-1 + a.ym +n~2 +.+ a„z"-1 = 0 
dy"+"-2+ + d„*"-9 =0 

dos" + q,y"-1 + • • • • + a„=0 
boy"*"-1 + b3"±"-2 + • • • + b^-1 = 0 

bo3"+"-*+ +Kym~2 - =0

\yn + by"-1 + • • • • + 8, = 0
kann als ein System von m + n nichthomogenenen linearen Gleich­
ungen mit den m + n — 1 Unbekannten ym^n~x^ ym+n-2-.y ange­
sehen werden, und die Bedingung für seinen Bestand lautet (121, III):
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do a, • • am

do a— a.

_ a, a, • • • am
l = 0.bo bitiba

bo b, • • • b.

bo b—" b.

(3)

Hiermit ist die Aufgabe formell gelöst; die Resultante, durch 
eine Determinante m + n-ten Grades dargestellt, in der alle nicht­
besetzten Stellen durch Nullen auszufüllen sind, umfaßt die Koeffi­
zienten beider Gleichungen in einer leicht zu überblickenden gesetz­
mäßigen Form.

Das hier befolgte Verfahren ist von J. Sylvester (1840) an­
gegeben worden und wird als die dialytische Methode bezeichnet.

Für die zwei quadratischen Gleichungen («) ergibt sich nach 
diesem Verfahren die Resultante zunächst in der Form:

a, d, a, 0 
0 a, a, a, 

bo b, b, 0 
0 b. b, b.

multipliziert man die dritte Zeile mit ao und subtrahiert von ihr die
mit b multiplizierte erste, so wird

a R —

a a, a, 0
0 a, a, a,

0 ab, — a, b. ab, — ab 0
0 b. b, b.

= »0

do di 2
aob, ab aob2 agbo 0 ;

b b, b.

woraus weiter, wenn man die dritte Zeile mit a, multipliziert und die 
mit b, multiplizierte erste von ihr subtrahiert, hervorgeht:

a,R =

so daß schließlich

do di d2
a^— ab ab, — ab 0 
a, b. — aob2 a, b, — ab, 0

ab, ab a,b2 a,bi 
ab, — ab ab2 — a, b.

folgt in Übereinstimmung mit (B).
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132. Der Satz von Bezout. Wir kehren zu den Gleichungen (1), 
(2) zurück, als deren Resultante das in (3) angeschriebene R erkannt 
worden ist, und nehmen an, jedes a, und b, sei eine ganze Funktion 
von x vom Grade i: dann sind / und g ganze Funktionen von x, y 
vom Grade m, bzw. n, geordnet nach Potenzen von y^ R aber ist 
jetzt eine ganze Funktion von x, deren Grad nun bestimmt werden 
soll. Bezeichnet man das Elementensystem von R symbolisch durch

“11 “12........................C1,m+n

, C21 “22 * ' C2,m + n

Cn1 ^n2 ' ' ' n, m+n (4)
Cn+1,1 “n+1,2 * * * * cn+1^m+n

‘ m + n,1 m + n,2 m +n^7n + n 

und vergleicht dies mit dem faktischen Elementensystem, so bemerkt 
man, daß in der. ersten Zeilenserie

cik = 0, wenn k — i < 0 und k — i > m, sonst aber cik = ak_i,

in der zweiten Zeilenserie

cn + i k = 0, wenn k—i<0 und k — i > n, sonst aber C,4|=b_4

Nun lautet das allgemeine Glied von R in der Schreibung (4), 
vom Vorzeichen abgesehen,

G c, C2 a, ' '' Cna, ’ Cn+1,3, Cn+2,32' '' Cn+m,8m‘ 

und enthält es keines der Elemente von den leeren Plätzen, in welchem 
Falle es ja Null ist, so ist sein Grad

«,-1+«, — 2+.+« — n+B — 1+8-2+ + 8 — m
-=+*,+1..+«,+8,+8,+--+8- "0 +1t" + ‘, 

also, da die Summe der a und ß gleichbedeutend ist mit der Summe 
der Kolonnenzeiger 1, 2, • • • m + n in irgend einer Anordnung,

(m + n](m — n — 1) — m(m + 1) — n(n + 1) _

Somit sind alle Glieder von R, daher auch R selbst, ganze Funk­
tionen vom Grade mn und die Gleichung

R=0,

die die Bedingung gemeinsamer Wurzeln y ausdrückt, mn-ten Grades; 
es gibt also mn Werte von x, für welche die Gleichungen f= 0, 
g = 0 eine gemeinsame Lösung nach y haben. Dies gibt den Satz 
von Bezout:



Satz von Bezout. — Diskriminante. 209

Zwei algebraische Gleichungen mit den Unbekannten 21, yv vom 
Grade m und n, besitzen mn Lösungen.

Hierbei sind wiederholte Lösungen entsprechend ihrer Multiplizität 
und komplexe Lösungen ebenso zu zählen wie reelle.

Es ergeben also beispielsweise zwei quadratische Gleichungen 
vier gemeinsame Wertepaare, eine quadratische mit einer kubischen 
deren sechs usw.

133. Diskriminante einer algebraischen Gleichung. Unter 
den Wurzeln einer Gleichung mit unbestimmten Koeffizienten werden 
sich mehrfache nur dann befinden, wenn die Koeffizienten in einer 
gewissen Beziehung zueinander stehen. Einen Ausdruck aus den 
Koeffizienten, welcher geeignet ist, darüber zu entscheiden, wollen wir 
als die Diskriminante der Gleichung bezeichnen. Ein solcher Aus­
druck leistet noch mehr; da nämlich der Übergang von reellen zu 
komplexen Wurzeln durch wiederholte Wurzeln erfolgt, so dient die 
Diskriminante auch dazu, solche Wertverbindungen der Koeffizienten, 
die zu reellen Wurzeln in bestimmter Anzahl führen, zu sondern von 
andern Wert Verbindungen, die zu einer größeren oder geringeren An­
zahl reeller Wurzeln Anlaß geben.

Die quadratische Gleichung bietet das einfachste Beispiel der 
Diskriminantenbildung. Man erhält als Auflösung von

a,x2 + 2arx + a, = 0 
die beiden Wurzeln

_ — a # Va? —a^^ .

ihre Beschaffenheit hängt von dem Ausdruck

D = al — aja,

ab, der unter dem Wurzelzeichen steht; ist er positiv, so sind die 
Wurzeln reell und verschieden; ist er negativ, so sind sie imaginär 
und auch verschieden, weil konjugiert komplex; nur wenn D = 0, 
werden die Wurzeln einander gleich. Der Ausdruck D ist also ge­
eignet, als Diskriminante der obigen quadratischen Gleichung ange­
sehen zu werden, und D = 0 ist die Bedingung einer zweifachen 
Wurzel.

Nun ist in 127 die notwendige und hinreichende Bedingung da- 
für erkannt worden, daß eine Gleichung f(x) = 0 beliebigen Grades 
mindestens eine mehrfache Wurzel besitze; sie besteht darin, daß für 
eine solche Wurzel auch fix) = 0 sein muß. Daraus ergibt sich 
der Satz:

Soll die Gleichung f(x) = 0 eine mehrfache Wurzel haben, so ist 
notwendig und ausreichend, daß das Gleichungspaar f(x) = 0, f‘(x) = 0 
eine gemeinsame Wurzel besitzt; mithin kann die Resultante der leiden 
letzten Gleichungen als Diskriminante der ersten genommen werden.

C zuber, Höhere Mathematik. 14
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Das allgemeine Verfahren zur Bildung der Resultante zweier 
Gleichungen ist aber bereits in 131, II angegeben worden.

Auf den Fall der quadratischen Gleichung

a,x2i2alxi a2=0

angewendet führt dies zu folgender Rechnung: Durch Differentiation 
und nachherige Kürzung mit 2 erhält man

ax + a, = 0;

die Resultante beider Gleichungen ist

R=
ao 2a, a, 
ao a, 0 
0 a a.

— ao(a? — a,a,).

und daraus ergibt sich, nach Weglassung des Faktors — a, der not­
wendig von Null, verschieden ist, die vorhin gefundene Diskriminante 
D = a — a, a,; tatsächlich ist aber mit R = 0 auch D = 0.

Für die Gleichung dritten Grades

ac3 + px + q = 0,

deren Ableitung lautet:
3x2 +p = 0,

läßt sich die Aufsuchung der Bedingung für gleiche Wurzeln dadurch 
vereinfachen, daß man erst aus der ersten Gleichung x3 mit Hilfe 
der zweiten eliminiert;

328+ 3px + 3q = 0

3.3+ px = 0

geben nämlich durch Subtraktion
2px +39 = 0;

der hieraus für x gezogene Ausdruck in die quadratische Gleichung 
eingesetzt führt zu

27 q2 i - 
4p" - 

oder zu
27q2+4p8= 0;

das Vorhandensein gleicher Wurzeln ist also durch das Verschwinden 
des Ausdrucks 27 q2 + 4p3 bedingt, der hiernach in der Diskriminante 
als Faktor enthalten sein muß.

Man kann der Diskriminantenbildung auch den folgenden Ge­
danken zugrunde legen. Das Quadrat des Produkts aus allen Wurzel­
differenzen einer Gleichung ist eine symmetrische Funktion der Wurzeln, 
weil es bei irgendwelcher gegenseitiger Vertauschung derselben un­
verändert bleibt — vom Produkt selbst würde dies nicht gelten. Nach
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einer am Schlüsse von 129 gemachten Bemerkung ist aber jede sym­
metrische Funktion der Wurzeln durch die Gleichungskoeffizienten 
rational darstellbar; die so erhaltene Funktion der Koeffizienten hat 
aber vermöge ihres Ursprungs die Eigenschaft, dann, aber auch nur 
dann Null zu sein, wenn sich unter den Wurzeln gleiche befinden; 
sie kann sich somit von der Diskriminante nur durch einen konstanten 
Faktor unterscheiden 1).

Bei der quadratischen Gleichung ist beispielsweise die einzige 

— 2Va?Wurzeldifferenz — —1— °, je nachdem man die eine oder die Co
. • • 4 (a? — a a )andere Wurzel als die erste annimmt; ihr Quadrat -1 9 0 27 enthält 

Co
tatsächlich D = ai — a,a, als Faktor.

§ 4. Numerische Gleichungen.
134. Allgemeine Grenzen der Wurzeln. I. Unter einer 

numerischen Gleichung versteht man eine Gleichung, deren Koeffizienten 
besondere Zahlen sind. Die Wurzeln einer solchen sind somit be­
stimmt. Zu ihrer Auffindung sind Methoden ausgebildet worden, die 
unabhängig von dem Grade der Gleichung Geltung haben. In der 
Regel haben nur die reellen Wurzeln ein Interesse; wir beschränken 
uns daher auf die Aufsuchung dieser.

Als ein wichtiger Umstand erweist sich die Stetigkeit der ganzen 
Funktion, die wieder eine Folge ihrer Endlichkeit ist. Eine ganze 
Funktion

f(x) = aoxn + ax" ~1 +---------+ a, 
ist für jeden endlichen Wert von x endlich, weil sie das Ergebnis 
einer endlichen Anzahl von Multiplikationen und Additionen bildet. 
Das gleiche gilt von ihrer Ableitung

/‘(x) = nax"-1+ (n— 1)a,x"-2+— • + «„_!,
die ja wieder eine ganze Funktion ist. Die Endlichkeit der Ableitung 
hat aber die Stetigkeit der ursprünglichen Funktion zur Folge (57).

Von den Eigenschaften einer stetigen Funktion kommt hier ins­
besondere die in Betracht, daß sie jeden zwischen zweien ihrer Werte 
liegenden Wert annimmt (51, 3.). Hat also f(x) für a und b ent­
gegengesetzte Werte, so muß es zwischen a und b mindestens eine 
Stelle geben, an der f(x) Null wird. Dies führt zu dem für die vor­
liegende Aufgabe wichtigen Satze:
-— -------- — n(n — i)

1) Man definiert die Diskriminante als das mit (—1) 2 «2 n-2 multipli­
zierte Quadrat des Wurzeldifferenzenprodukts, wobei n den Grad der Gleichung 
bedeutet.

14*
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Sind f(a) und /(b) ungleich bezeichnet, so liegt in dem Intervall 
(a, b) mindestens eine Wurzel der Gleichung f(x) = 0, und wenn mehr, 
so deren eine ungerade Zahl.

Dieser Sachverhalt gestattet schon mancherlei Schlüsse. Man 
kann immer bewirken, daß in der Gleichung

f(x) = aoxn + a, xn~1 + • • • + an = 0

der erste Koeffizient a positiv sei; ist n ungerad, so ist f(— oo) = — oo, 
f(oo) = o; da f(G) = an, so findet bei dem Übergänge von x = — o 
zu x = 0 eine Zeichenänderung bei f(x) statt, wenn a,> 0; ist hin­
gegen an<Z 0, so erfolgt die Zeichenänderung bei dem Übergange von 
x = 0 zu x = o. Demnach:

Eine Gleichung von ungeradem Grade hat mindestens eine reelle 
Wurzel, deren Zeichen das entgegengesetzte des absoluten Gliedes ist.

So besitzt 4x3— 5x2+6x+3=0 sicher eine negative, 2x5 — 3x2—4 
= 0 eine positive Wurzel.

Ist n gerad, so ist f(+ o) = o und da f(0) = an, so erfolgt 
eine Zeichenänderung nur dann, wenn an<Z0 ist, dann aber sowohl 
von x = — o zu x = 0 als auch von T = 0 zu x = oc. Hiernach 
gilt die Regel:

Eine Gleichung von geradem Grade, deren absolutes Glied negativ 
ist, hat sicher sowohl eine positive als auch eine negative Wurzel.

Von einer Gleichung dieser Art, aber mit positivem absoluten 
Glied läßt sich nur aussagen, daß sie entweder keine oder eine gerade 
Anzahl reeller Wurzeln hat.

Das erstausgesagte gilt beispielsweise von der Gleichung x^ — 2x2 
+ 3x — 4 = 0, das letztere von a4— 2x2 + 3x + 4 = 0.

II. Eine Vorfrage, durch deren Erledigung mitunter umständliche 
Rechnungen vermieden werden können, ist die nach den Schranken 
der Wurzeln. Ein zweckmäßiges Mittel, solche zu finden, bietet die 
Newton sehe Regel, welche besagt:

Wenn f(l),/‘(l),f"(), • • • f(-1() sämtlich positiv sind, so kann 
keine Wurzel der Gleichung f{x) = 0 über l liegen; folglich ist l eine 
obere Schranke der Wurzeln.

Denn,

/(x) = fg + 2-1) -/(i) + ‘" (x - 1) +79 (-)+-

+ .£77, ( - 0-1 + Y. ( - Ir
ist unter den gemachten Voraussetzungen positiv für jedes x > l, da 
/^(f) = 1 • 2 • • • na0 immer positiv ist, wenn man für a,> 0 sorgt.

Geht man zu — f(— x) = 0 über und bestimmt zu der so trans­
formierten Gleichung wieder die obere Schranke l', so hat man in 
— V die untere Schranke für die Wurzeln von f(x) = 0.
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Bei der Ausführung geht man von f(-1(x) aus, wählt x (ganz­
zahlig) so, daß gerade noch f(-1(x)5 0 wird, schreitet dann zu den 
niederen Ableitungen vor und erhöht dabei x nach Bedarf, um das 
positive Zeichen zu erhalten. Das folgende Beispiel die Gleichung 
2x3— 5x2— 8x+ 3 = 0 betreffend, wird dies erklären: 

/(x)_____
2x3 — 5x2 - 8x + 3 4
622 — 10x — 8 3

12x - 10 1

-/—a)
2x3+ 522—8x — 3 2
6x2 + 10x — 8 1

12x + 10 0

f‘(x) ist positiv von & = 1 aufwärts; f‘ (1) ist aber negativ, auch 
f‘(2) und erst f'^) ist positiv; f(3) fällt negativ aus, aber schon 
f(4) ist positiv; also ist l = 4. Ähnlich schließt man im andern 
Schema und kommt so zu l' = — 2.

135. Der Satz von Descartes. Man spricht in einer nach 
den Potenzen von x geordneten Gleichung von einem Zeichenwechsel, 
wenn zwei aufeinander folgende Glieder ungleich bezeichnet sind; im 
andern Falle von einer Zeichenfolge. Zwischen der Anzahl der Zeichen­
wechsel und der Anzahl der positiven Wurzeln besteht ein gewisser 
Zusammenhang, der sich auf die folgende Tatsache stützt: Wenn man 
ein geordnetes Polynom mit x — p multipliziert, worin p eine positive 
Zahl bedeutet, so wächst mindestens ein Zeichenwechsel zu oder deren 
eine ungerade Zahl.

Faßt man nämlich die gleichbezeichneten Glieder, wie sie auf­
einander folgen, gruppenweise zusammen, so hat das Polynom

(a,a"+a,a"-1+---- )—(ax"+ax"-1+----- ) + (aZa""+a"x""-1+----- )------ 

+ (— 1 )"(ag at”4------- a^}

v Zeichenwechsel; bei der Multiplikation mit x ändert sich an dieser 
Sachlage nichts; bei der Bildung des zweiten Teilprodukts mit —p 
schieben sich die Glieder um eine Stelle nach rechts vor, das Endglied einer 
Gruppe kommt unter das Anfangsglied der nächsten mit dem Vor­
zeichen, das dieses letztere schon hat, so daß vom Anfangsglied der ersten 
Gruppe zum Anfangsglied der zweiten, von da zum Anfangsglied der 
dritten Gruppe usw. immer'wieder ein Zeichenwechsel stattfinden muß] 
die im Innern der Gruppen etwa zuwachsenden Zeichenwechsel sind 
notwendig von gerader Anzahl; denn der Übergang von + zu — oder 
von — zu —, wenn er nicht durch einen Zeichenwechsel erfolgt, kann 
nur durch eine ungerade Zahl von Zeichenwechseln geschehen; mithin 
wächst bis zum letzten Glied der letzten Gruppe entweder kein Zeichen­
wechsel zu oder deren eine gerade Zahl. Nun aber rückt das Glied 
— (— 1)‘a/p über die letzte Gruppe hinaus und bewirkt immer einen 
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neuen Zeichenwechsel. Demnach ist die Gesamtzahl der zugewachsenen 
Zeichenwechsel entweder 1 oder eine ungerade Zahl.

Es seien nun pY, p^, • • • p^ die sämtlichen positiven Wurzeln der 
Gleichung f(x) = 0 und

f(x) = (x - p^^x — p) (x — P.)sp(x),
so daß die Gleichung g(x) = 0 vom Grade n — 7 nurmehr negative 
und komplexe Wurzeln besitzt; dann sind in g(x) erstes und letztes 
Glied gleich bezeichnet, weil sonst noch eine positive Wurzel darin 
enthalten sein müßte (134. I), g(x) kann also nur eine gerade An­
zahl von Zeichenwechseln enthalten. Da nun mit jedem Faktor x — pt 
mindestens ein Zeichenwechsel zuwächst, und, was etwa darüber hinaus­
geht, eine gerade Zahl ist, so enthält fffc) mindestens a Zeichenwechsel, 
und was etwa darüber hinausgeht, ist gerad.

Aus diesen Erwägungen geht der erste Teil der Descartesschen 
Zeichenregel hervor: Die Zahl der Zeichenwechsel in fffff) = 0 ist gleich 
der Anzahl der positiven Wurzeln oder übertrifft sie um eine gerade 
Zahl. In Zeichen:

w = n + 21, (1) 

wo w die Anzahl der Zeichenwechsel ist und k eine der Zahlen 

0, 1, • • • —2 bedeuten kann.

Geht man von der Gleichung f{x) = 0 zu fff- x) = 0 über, so 
gehen die positiven Wurzeln der letzteren aus den negativen Wurzeln 
der ersteren hervor; demnach steht die Anzahl v der negativen Wurzeln 
von f(x) = 0 mit der Anzahl w' der Zeichenwechsel von f(— x) = 0 
in einem Zusammenhänge, der sich in dem zweiten Teil der Des­
cartesschen Zeichenregel ausspricht: Die Zahl der Zeichenwechsel der 
transformierten Gleichung fff- x) = 0 ist gleich der Zahl der negativen 
Wurzeln von fffc) = 0 oder übertrifft sie um eine gerade Zahl. In 
Zeichen:

w =v+2k, (2)
. M — y 

wo jetzt k sein kann 0, 1, • • • 9

Ist fffff = 0 eine vollständige Gleichung, d. h. eine solche, in der 
alle Potenzen von x von x" abwärts vorkommen, so gehen bei dem 
Übergang von ff) = 0 zu f(— x) = 0 die Zeichenfolgen in Zeichen­
wechsel und umgekehrt über. Daraus ergibt sich die weitere Regel: 
In einer vollständigen Gleichung kommt die Zahl der Zeichenwechsel 
und die Zahl der Zeichenfolgen beziehungsweise der Anzahl der positiven 
und negativen Wurzeln gleich oder übertrifft sie um eine gerade Zahl.

Diese Regeln gestatten in manchen Fällen die strikte Bestimmung 
der Anzahl der positiven und negativen Wurzeln; in andern Fällen
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führen sie nur zu einer oberen Grenze derselben. Einige Beispiele 
werden dies zeigen; die Aufschreibungen bedürfen keiner weiteren 
Erklärung.

a) 24+3x3+2x2+52—6=0 (w = 1, a = 1; w = 3, v = 1 oder 3).

b) a5 + 322— 1=0 (w = 1, n = 1)

- x+ 3x2 — 1 = 0 (w' = 2, 7 = 0 oder 2).

•) a4 - 422 + 3x — 8 = 0 (w = 3, n = 1 oder 3)

a4 — 4x2 - 3x — 8 = 0 (w' =1, V = 1).

d) a3n — 1 = 0 (w =1, n = 1; w‘= 1, v=l).

e) a"+1=0 (w = 0, a = 0; w = 0, v = 0).

136. Aufsuchung rationaler Wurzeln. I. Einer Gleichung 
mit ganzzahligen Koeffizienten gegenüber wird man zuerst die Frage 
stellen, ob sie ganzzahlige Wurzeln besitze, also im Gebiete der ganzen 
Zahlen in Faktoren zerlegbar sei.

Soll die Gleichung

f(x) = aQxn + arxn~1 + • • • + an = 0,

in der die Koeffizienten ganze Zahlen sind, durch die ganze Zahl p 
befriedigt werden, so muß diese ein Faktor von an sein, weil nach 
der Substitution x = p alle vorangehenden Glieder durch p teilbar sind. 
Die ganzzahligen Wurzeln von /(x) = 0 sind also unter den Faktoren 
des absoluten Gliedes zu suchen.

Die Anzahl der zu prüfenden Faktoren vermindert sich einmal 
dadurch, daß nur die innerhalb der Wurzelschranken gelegenen in 
Betracht kommen können, kann aber oft noch weiter reduziert werden 
auf Grund folgender Bemerkung. Ist

f(x) = (x -p^^

so hat q(x) notwendig auch ganzzahlige Koeffizienten, und darum' ist 
sowohl

,+1--#(-1)
wie auch

,70, - - vW 

eine ganze Zahl. Man berechne also mittels des Hornerschen Schemas 
f(— 1) und /(1), wodurch zugleich — 1, 1 eventuell als Wurzeln er­
kannt und ausgeschieden werden; ein Faktor p von an kann nur dann 
Wurzel sein, wenn p + 1 in f[— 1) und p — 1 in /(l) ohne Rest 
enthalten ist.

Sind auf diese Weise die zu prüfenden Faktoren auf ihre kleinste 
Anzahl reduziert, so erfolgt ihre endgiltige Prüfung und eventuelle 
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Auscheidung einzeln mittels der Hornerschen Division; zum Schlüsse 
verbleibt eine Gleichung, die keine ganzzahligen Wurzeln mehr zuläßt.

Beispiel. Die Gleichung

f(x) = 244+ 4x‘— 5942— 61x + 3 0 = 0

kann nach ihrer Zeichenstellung 0 oder 2 positive und ebensoviel 
negative Wurzeln haben; die Schranken der Wurzeln ergeben sich 
durch die nachfolgenden Schemata:

/(- %)
224+ 4x3- 5922612+30 6
828+ 12x2— 118x — 61 4

24x2 +24x -118 2
482 +24 0

2a- 4x3— 5922+612+30 7
823—12x2—1182+61 5

24x2—24x -118 3
482 -24 1

es sind dies — 7 und 6; infolgedessen sind nur die folgenden Faktoren 
von 30 zu prüfen:

±1, ± 2, ± 3, ±5, — 6.

Von diesen scheiden weiter aus ± 1, weil f^— l) = 30, /(l) = — 84, 
dann 3 und — 5, weil 3 + 1 und — 5 + 1 in f(— 1) nicht enthalten 
sind; es bleiben also

± 2, - 3, 5, - 6

zur endgiltigen Prüfung, für die das folgende Schema eintritt.

2 4 -59 — 61 30

- 1 2 2 -61 0 (30) =/(- 1)
1 2 6 -53 -114 (-84)=/(l)

- 2 2 0 — 59 57 (-84)
2 2 8 -43 -147 (-264)

- 3 2 -2 -53 98 (- 264)
5 2 14 11 -6 (0)

-6 2 2 - 1 (0)
— 2, — 3 sind, wie das Schema zeigt, nicht Wurzeln; 5 ist eine solche, 
und nach ihrer Ausscheidung verbleibt eine kubische Gleichung mit 
den Koeffizienten 2, 14, 11, — 6, die — 6 zur Wurzel hat, nach deren 
Ausscheidung die quadratische Gleichung

2.2 + 2x — 1 = 0

verbleibt. Es hat also die vorgelegte Gleichung die Wurzeln 5, — 6, 
_1V3 _ 1 _ V3
22’2 2

II. Nach Erledigung und Ausscheidung der eventuell vorhandenen 
ganzzahligen Wurzeln wird nach gebrochenen Wurzeln zu fragen sein. 
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Soll die Gleichung

f{x) = a x" + arxn-14------ + an_} x + an = 0 

mit ganzen Koeffizienten durch den Bruch x = , befriedigt sein, so muß

a,zn
+ a,2"-1+ a,pz"~2+------ + ^n-\Pn~^Z + a,p"-1 = 0

sein; da nun, vom zweiten angefangen, alle Glieder ganze Zahlen sind, 
so erfordert der Bestand dieser Gleichung, daß auch das erste Glied 
eine ganze Zahl sei, was nur in der Weise möglich ist, daß p ein 
Teiler von a, weil z und p als teilerfremd vorausgesetzt werden 
können. Die Nenner der gebrochenen Wurzeln sind also unter den 
Faktoren des Koeffizienten der höchsten Potenz zu suchen; die Zähler 
ergeben sich als die ganzzahligen Wurzeln der Gleichung

aQzn + axpzn~1 + a,p?2"-2 + • • • + anpn = 0.

Hieraus geht unmittelbar hervor, daß eine Gleichung mit ganzen 
Koeffizienten, deren erster 1 ist, gebrochene Wurzeln nicht haben kann.

Bei Ausführung des eben erörterten Verfahrens wählt man p ent­
weder = a selbst oder einem passenden Faktor davon, befreit die 
Gleichung von den Nennern und geht dann wie in I. vor.

Beispiel. Die Gleichung

24245023+ 3522— 102 + 1 = 0
kann an ganzzahligen Wurzeln nur ± 1 haben. Da sie vollständig 
ist und keine Zeichenfolge aufweist, so hat sie keine negative Wurzel, 
wodurch schon 0 als untere Schranke erkannt ist. Bei der Bestim­
mung der oberen Schranke: *

_______/(r)__________
2 4x^— 5023 + 3522— 10x fi- 1
96x3- 15022+ 70x - 10

28822— 300x + 70
Ö16x — 300

1
1
1
1

zeigt sich, daß 1 obere Schranke und zugleich Wurzel ist. Nach ihrer 
Ausscheidung, die durch das Hornersche Schema bewerkstelligt wird, 
verbleibt die kubische Gleichung

24xs- 2622 + 9x - 1 = 0,

die sich durch die Substitution x = 9 verwandelt in

23—13 22+542 — 72 = 0;
ihre obere Wurzelgrenze bestimmt sich aus dem Schema
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g(z)

z3— 1322+ 542 — 72 
322— 26, + 54
62 - 26

6
6
5

mit 6, das gleichzeitig als Wurzel erkannt wird; es bleiben also nur 
die Faktoren 1, 2, 3, 4 von 72 noch zu untersuchen:

1 -13 54 -72

1 1 -12 42 (-30)

2 1 -11 32 (- 8)
3 1 -10 24 (0)
4 1 - 6 (0)

und es erweisen sich 3 und 4 als Wurzeln; die letzte Zeile weist 
nochmals 6 als Wurzel aus.

Mithin sind 1, 3, 4, 6 oder 1, 1, 1, 1 die Wurzeln der 

vorgelegten Gleichung.
13 7. Differenzenreihen. Bevor an die näherungsweise Be­

stimmung irrationaler Wurzeln geschritten wird, muß einiges aus der 
Differenzenrechnung vorausgeschickt werden.

I. Aus einer endlichen oder unbegrenzt fortsetzbaren Folge reeller 
Zahlen

«o, ", U2, **u, (1) 
werde die neue Folge

Auo, Au,, • • • dun_Y (2) 
nach dem Prinzip gebildet, daß jede Zahl in (1) von der ihr nach­
folgenden subtrahiert wird, so daß also du0 = ut — uQ, Au, = U, — utf 
• • • dun_r = un — un_x ist. Man nennt (2) die Differenzenreihe von (1).

Wird auf sie dasselbe Prinzip angewendet, so entsteht die ziveite 
Differenzenreihe von (1):

43u,, A%u,, • • • J2un_2, (3) 
in der also

A2u, = Au, — DUq, D2ur = du2 — dux, • • • J-un_i = Au,-1 — Dun_2 
ist.

In dieser Weise kann man zu immer höheren Differenzenreihen 
fortschreiten.

Ist (1) endlich und aus n + 1 Gliedern bestehend, so ist der 
Bildung von Differenzenreihen dadurch ein Ziel gesetzt, daß schließ­
lich eine eingliedrige Differenzenreihe A"u, zustande kommt. Bei un­
begrenzt fortsetzbarer (1) aber kann die Bildung von Differenzenreihen 
im allgemeinen unbegrenzt fortgesetzt werden.
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Es gibt jedoch Reihen, bei denen sie einen Abschluß dadurch 
findet, daß man nach r-maligem Differenzenprozeß zu einer Reihe 
von gleichen Gliedern kommt; denn dann bestände die nächste und 
jede weitere Differenzenreihe aus Nullen. Eine so geartete Reihe be­
zeichnet man als arithmetische Reihe r-ter Ordnung. Die als arithme- 
tiche Reihe schlechtweg bezeichnete Zahlenfolge ist eine arithmetische 
Reihe erster Ordnung.

IL Stellt man aus (1) die Reihe

auQ, au1} au2, • • • aun (4)

her und wendet auf sie Differenzbildung an, so wird

Aau=au,1—au,= a(u1—u) = adu,; (5) 
dieses Verhalten überträgt sich auf die höheren Differenzen, so daß auch 

^au^ adru^ (6) 

war also (1) eine arithmetische Reihe r-ter Ordnung, so ist es (4) 
auch.

III. Sind ferner die Glieder von (1) Aggregate von der Form 

au, + bv, + cw, d----- , 
so wird

d(au,+bu,+cw,+*)=au+1+bu41+cw,14------- {au^bv^civ^---)

=adu+b4v+cdw,+--- ; (7) 

auch dieses Gesetz überträgt sich auf die höheren Differenzen, indem

^(ai^ + bv^ cw^ •) = ad‘u,+bA‘v,+cAw,+. • • (8) 
wird. Sind ui} v, w, - (i = 0, 1, 2, • • •) arithmetische Reihen von 
der Ordnung r, r—1, r — 2, • beziehungsweise, so ist die aus den 
Aggregaten au, + bv. ff- cw{ + • • • gebildete Reihe ebenfalls eine arith­
metische, und zwar von der Ordnung r.

IV. Die r-ten Potenzen der natürlichen Zahlen bilden eine arith­
metische Reihe r-ter Ordnung.

Die Richtigkeit des Satzes ergibt sich durch folgende Induktion. 
Es ist

An = (n + 1)2 — n2=2n+ 1
A‘n‘=2(n+1)+1—(2n+1)=1.2, (9) 

also konstant, daher 12, 22, 32, • • • eine arithmetische Reihe 2. Ord­
nung; weiter

Znz = (n + 1)3 — n3 = 3n2 +3n+1, 

folglich unter Benutzung von (6), (8) und (9):

An3=3An*+3An+41=1 .2.3, (10)



220 Gleichungen. § 4. Numerische Gleichungen.

13, 23, 33, • somit eine arithmetische Reihe 3. Ordnung; ferner

An = (n + 1)4 — 24 = 4n3 + 6n2+ 4n + 1
An = 448n8 + 64n‘+ 44*n+ 41 =12:3.4,

14, 24, 34, • • • daher eine arithmetische Reihe 4. Ordnung usf.; all­
gemein gilt also

Zlranr = aArnr = 1 • 2 • • • ra. (12)

138. Anwendung auf ganze Funktionen. Die zur Zahlen­
folge ) ■•• —2, — 1, 0, 1, 2, ••• gehörigen Werte einer ganzen Funk­
tion n-ten Grades Inlden eine arithmetische Feihe n-ter Ordnung.

1

1) Statt dieser Folge kann auch eine Folge von Brüchen mit diesen Zählern
und irgend welchen Nenners genommen werden.

Ist f(x) = ax" + a1xn~i + • • • — an, so ist nach dem Voraus­
geschickten

dnf{x) = a,d"a" + a,2"x"-1 +.+ Dnan = 1 • 2 • • • na0. (13)

Die Berechnung der Werte •./ 2),/- 1),/(0),/(1),/(2), ' * • 
gestaltet sich auf dieser Grundlage sehr leicht, wenn man die Struktur 
des Tableaus einer Reihe mit ihren Differenzenreihen:

u, Du0 J2u0 J^Uq D^Uq

u^ du^ d^u^ A3u, •
u, Au, D^u^ •

u^ Du^ • :

: :

näher betrachtet; es ist beispielsweise

D^u^ = Au, — Au, 
folglich

Au, = Au, + J^u^ (a)
dur= Zu.2— A2u, , (B)

und analoge Beziehungen bestehen zwischen jeden drei derart situierten 
Zahlen der Tabelle. In Worten: (a) Eine Zahl ist gleich der über 
ihr stehenden plus der rechts neben der letzteren befindlichen, und: 
(ß) Eine Zahl ist gleich der unter ihr stehenden minus der rechts neben 
ihr befindlichen. Mittels der Regel («) kann die Tabelle mechanisch 
nach abwärts, mittels der Regel (ß) nach aufwärts fortgesetzt werden. 
Als Grundlage sind n sukzessive Werte von f(x) notwendig, die man 
am besten mittels des Horner sehen Schemas berechnen wird; denn 
dann können Differenzen bis zur n— l-ten Ordnung gebildet werden, 
und die konstante n-te Differenz ist laut (13) von vornherein bekannt.
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139. Trennung der Wurzeln. Die Tabelle für f(x), die zum 
Zwecke der Wurzeltrennung d. h. zur Aufsuchung solcher Intervalle 
von x angelegt wird, innerhalb deren sich je eine Wurzel befindet 
(134, I.), braucht nur innerhalb der Wurzelschranken berechnet zu 
werden.

Als Beispiel diene die Gleichung

f(x) = 23 + 3x2 - 17x+5 = 0.

Zuerst hat man zur Bestimmung der Schranken:

f(x) —/(—x)
23+322—172+5 3 23 32’— 172— 5 6

3x2+ 6x —17 2 3x2— 6x —17 4

6x+6 -1 62—6 1;

sie ergeben sich mit — 6 und 3.
Sodann berechnet man drei sukzessive Werte von f(x), hier und

in der Regel am einfachsten f(— 1) = 24, /(Q) = 5, /(l) = — 8; aus
diesen und A3/(x) = 1 • 2-3 = 6 entwickelt sich die folgende Tabelle:

x / a/ 4/ 4/
6 - 1 41 -24 6

-5 40 17 -18 6
-4 57 - 1 -12 6

-3 56 -13 - 6 6

-2 43 -19 0 6
-1 24 -19 6 6

0 5 -13 12 6
1 - 8 - 1 18

2 - 9 17

3 8

Aus ihr geht hervor, daß die Gleichung drei reelle Wurzeln hat, 
die in den Intervallen (— 6, — 5), (0, 1), (2, 3) liegen; dies stimmt 
auch zu den zwei Zeichenwechseln und der einen Zeichenfolge.

140. Näherungsverfahren. Hat man ein Intervall {a, b) ge- 
funden, das eine Wurzel x der Gleichung enthält, so handelt es sich 
darum, ihre Lage in demselben mit jenem Grade der Annäherung zu 
bestimmen, der jeweilen erforderlich ist. Eine wesentliche Hilfe 
wird dabei das innerhalb der Wurzelschranken gezeichnete Bild der 
Funktion f(x) bieten, zu dessen Herstellung man zweckmäßig Milli­
meterpapier verwendet und die Funktionswerte aus der vorstehenden
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Tabelle benutzt. Dort, wo die Bildkurve die Abszissenachse schneidet, 
befinden sich die Wurzeln; man kann aus der Zeichnung ihre Lage 
etwas näher abschätzen als aus der Tabelle und so das Intervall (a, b) 
von einer Einheit etwa auf ein Zehntel herabmindern. Dadurch kürzt 
sich das rechnerische Näherungsverfahren ab.

Von solchen Näherungsverfahren sollen hier zwei besprochen 
werden: die Begula falsi und das Newtonsche Verfahren.

I. Die Regula falsi. Setzt man x = a + h = b — k, so ist

/(a) = /(x ~ 1) - /(x) — /‘ (x) h + • • •
/(b) =/( + I) =/(x) +/‘(x)% +;

beschränkt man sich auf die Glieder mit der ersten Potenz der Korrek­
tionen h, k und beachtet, daß f(x)=0 ist, so folgt aus den beiden 
Gleichungen:

h_f(a) 1 
und daraus mit Rücksicht auf h + k = b — a-.

und
h flg)

b — a ~fia)—/^

] _ (b — a) f(a)
f(a)—f(b) '

Der Näherungswert a + h teilt das Intervall in 
auf denjenigen dieser Teile, an dessen Enden f(x) 

(2)

zwei Teile, und 
entgegengesetzt

bezeichnete Werte zeigt, wendet man denselben Vorgang an wie früher 
auf (a, b) usw., bis man die nötige Zahl unveränderlich bleibender 
Dezimalstellen erlangt hat.

Daß man es mit einem Näherungsverfahren zu tun hat, ist 
geometrisch so einzusehen. Im Sinne der 
Gleichung (1) wird das Intervall (a, b), Fig. 42, 
in zwei Teile geteilt, die sich so verhalten 
wie die (absoluten) Funktionswerte an den 
Enden; diese Teilung besorgt die Sehne AB-, 
ihrem Schnittpunkt mit XX' entspricht also 
der Wert a + lr, die zweite Näherung wird 
durch die Sehne AC erreicht und liegt näher 
an der Wurzel usf., vorausgesetzt, daß die 

Funktion zwischen a und b einen ähnlich einfachen Verlauf hat, wie 
er in der Figur angenommen ist.

II. Das Newtonsche Näherungsverfahren. Mit denselben Bezeich­
nungen wie vorhin ist

0 - f(x) - f(a + h) =f(a) + f(a) A + "(9 13+-----

0 - f(x) =/(b—1)=/()—/‘()}+"+..;
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bricht man, um zu einer ersten Näherung zu kommen, bei den Gliedern 
mit der ersten Potenz von h, k ab, so ergibt sich

1--P (3)
A- /L, W

Mit Rücksicht auf die geometrische Bedeutung von /‘(a) stellt 
h den Abschnitt aH, den die Tangente in A, Fig. 43, auf dem Inter­
vall (a, b) bildet, und ebenso k den Abschnitt Kb, den die Tangente 
in B bestimmt. Wenn f"(x) im ganzen Intervall (a, b) dasselbe 
Zeichen beibehält, fällt einer der Schnittpunkte H, K sicher in das 
Intervall; ist z. B. f"(x) beständig positiv, der Neigungswinkel der 
Tangente gegen die Abszissenachse beim Durchlaufen des Bogens AB

also wachsend, wie in («), so schneidet die Tangente in B innerhalb 
(a, W) ein, während die Tangente in A ganz wohl an (a, b) vorbei­
gehen kann; und ist f"(x) beständig negativ, der Neigungswinkel 
also abnehmend, wie in (ß), so führt die Tangente in A sicher zu 
einem Innenpunkt, während die in B auch außerhalb (a, bf einschneiden 
kann. Durch Vergleichung dieser Fälle kommt man zu der Regel, 
daß von den beiden Bormeln (3) und (4) diejenige zu einer Annäherung an 
die Wurzel fuhrt, in welcher der Zähler dasselbe Vorzeichen besitzt wie 
f"(x) im ganzen Intervall. Die zweite Näherung ergibt sich jedesmal, 
wenn man von dem erlangten Näherungswert, b — k im ersten, a + h 
im zweiten Falle, ausgeht, wodurch man zu K', beziehungsweise H' 
kommt usw.

141. Beispiele. 1. Am Schlüsse von 139 ist für die Gleichung

23 + 3a2- 17x+5 = 0

die Trennung der Wurzeln vollzogen worden; es sollen nun die in 
den Intervallen (—6, —5), (0, 1), (2, 3) liegenden Wurzeln 21, X2, X3 
approximiert werden.

Wurzel X1.
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N Näherungswert:
a = — 6 f(a)=-1
b=-5 /)- 40 - +a—-5,98
a=-6 /(a)=-1 -6 10.02 15982

a = — 5,98 /(a) =

b =-5,982 f(b)=

0,0940

-0,01483

21 =—5

3

-5,98--

,9817.

-17

,002 • 0,094   - 091 „
0,10883 ' ‘

51

- 5,98 1 -2,98 0,8204 0,0940

-5,982 1 -2,982 0,83832 -0,01483

-5,9817 1 -2,9817 0,62044 0,00145

Wurzel T2. Hier ist durch Teilung in Zehntel zuerst das engere
Intervall (0,3, 0,4) festgestellt.

a = 0,3 f(a) = 0,197

b = 0,4 /()=- 1,256

Näherungswert:

0,3 +01,223""-0,313

a = 0,313 /(a) = 0,00355 
6=0,4 /(&) = -1,256

9.9 i 0,087 ’ 0,00355 96
0313+ 1,25955 = 03132

Ay == 0,3132.
1 3 17 5

Wurzel

0,3

0,4 

0,313 

0,3132 

x,. Tei

1 3,3 -16,01 0,197

1 3,4 -15,64 -1,256

1 3,313 -15,9631 0,00355

1 3,3132 -15,96231 0,00061

lung in Zehntel führt zu dem engeren Intervall
(2,6, 2,7)

a = 2,6 /(«) = - 1,344
Näherungswert:

- 0,1 • 1,344
6=2,7 /(b = 0,653 2,6 +1,997 = 2,667

a= 2,667 /(«) = -0,03026 o , 0,033-0,03026 .2,6b ( — - —— = 2,6685
6 =2,7 /(b = 0,653 0,68326
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N03 == 2,6685.
1 3 -17 5

2,6 1 5,6 -2,44 - 1,344

2,7 1 5,7 -1,61 0,653

2,667 1 5,667 -1,88611 - 0,03026

2,6685 1 5,6685 - 1,87362 0,00026
Die Summe der drei Näherungswerte ist — 3 in voller Über­

einstimmung mit der Gleichung.
2. Die Gleichung

225+4233=0

hat nur eine positive und sonst keine reelle Wurzel, weil f(—x) = 0 
keinen Zeichenwechsel aufweist; ferner ergibt sich aus

2x5+ 4x3—3
10.4 + 12x2
40x3 + 24x

120.2+24
240%

0

0

0

0

1 als obere Wurzelschranke, folglich (0, 1) als ein Wurzelintervall, 
durch dessen Zehnteilung das engere (0,8, 0,9) gefunden wird. Die 
Anwendung des Newton sehen Verfahrens führt zu folgender Rechnung:

b /C) Fo,
0,9 

0,833 

0,8244

1,09698 16,281 0,067

0,11419 13,1415 0,0086

0,00274 12,7 7466 0,00021

x = 0,82419

Czuber, Höhere Mathematik.

2 0 4 0 0 -3

0,8 2 1,6 5,28 4,224 3,3792 - 0,29664

0,9 j 2 1,8 5,62 5,058 4,4522 1,09698

0,833 2 1,666 5,38778 4,48802 3,73852 0,11419

0,8244 2 1,6488 5,35927 4,41818 3,64233 0,00274

0,82419 2 1,64838 5,35856 4,41647 3,64001 0,00005

15
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§ 5. Algebraische Auflösung der Gleichungen dritten 
und vierten Grades.

142. Die kubische Gleichung. Man kann die allgemeine 
kubische Gleichung

a.x3+ a,x2 + a,x + a, = 0 (1) 
zunächst durch Division mit ao vereinfachen; bezeichnet man die 

Quotienten —1, —, — mit a, b, c, so lautet sie dann

1) Der erste, der die Auflösung der (reduzierten) kubischen Gleichung fand, 
war Scipione del Ferro (zu Beginn des 16. Jhrh.); nach ihm, vielleicht nicht 
selbständig, gelangte dazu Nicolo Tartaglia, der sie Hieronimo Cardano 
mitteilte, durch den die erste Veröffentlichung (1545) erfolgte.

Co Co (o
f(x) = x3 + ax? +bx + c = 0. (2)

Für die weitere Behandlung ist es von Vorteil, sie derart zu 
transformieren, daß die zweite Potenz der Unbekannten ausfällt; setzt 
man zu diesem Zwecke

x = z + h, 
so wird

SW) -/() +/‘()s+79-+120-- 0; 

das Ziel ist erreicht, wenn man h so bestimmt, daß 

f"(!1} = 6h + 2a = o 

wird; dies führt zu 1=-, also zu der Transformation

x-z-S (3)

Die Koeffizienten der transformierten Gleichung ergeben sich aus 
dem folgenden Schema (130, 2.):

1 a b c

1 3. —9+9 (27
1 : (-$+)-p
1 (0)

(1) 
die Gleichung selbst lautet also:

23 + pz + q = 0 (4) 

und heißt die reduzierte kubische Gleichung.
143. Lösung der reduzierten kubischen Gleichung. ). Zum 

Zwecke der Lösung von (4) werde
1
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z = u — v . (5) 

gesetzt): eine solche Substitution bietet den Vorteil, daß man den 
neuen Unbekannten u, v eine Bedingung auferlegen und diesen Um­
stand zur Vereinfachung der Gleichung benutzen kann.

Die Substitution (5) führt zunächst auf

13 + 3u?v + 3uv? + v + p(u + v) + g = 0 

und wegen 3u2v — 3uv2 = 3uv(u — v) weiter auf 

u3 + v3 + (3uv + p) (u + v) + q = 0.

Diese Gleichung erfährt eine erhebliche Vereinfachung, wenn man 
über u, v so verfügt, daß

3uv + p = 0 (6) 

wird; denn sie reduziert sich dann auf

u8 + v3 + q = 0. (7)

Bildet man auf Grund von (6) und (7)

u3 — v3 = — q

«Pp --(), 68) 

so ist zu beachten, daß die zweite dieser Gleichungen umfassender 
ist als die Gleichung (6), aus der sie hervorgegangen ist; denn sie 
bliebe dieselbe, auch wenn statt p genommen würde pw oder pw2, 
wobei w, w2 die komplexen dritten Wurzeln aus 1 bedeuten (22, 2.); 
es ist ja w3 = (w2)3 = 1.

Wegen den Eigenschaften (8) sind aber u3, v3 die Wurzeln der 
quadratischen Gleichung

02+90 - (%)*= 0, (9) 
die man als die quadratischen Itesolvente von (4) bezeichnet; man 
kann also

"*—1+V()+(£), "—-!-V(3)+()’

setzen und erhält im Sinne von (5) die Lösung in der Gestalt

=-V- +V(2)+ G) + V- % -V(2)+ G) ■ (10)

Diese Formel, die Cardanische Formel genannt, liefert aber, da 
jede Kubikwurzel drei verschiedene Werte besitzt, neun verschiedene

1) Dieser Vorgang wird mit dem Namen des Amsterdamer Bürgermeisters 
J. Hudde in Verbindung gebracht, der ihn 1657 publizierte; doch hatte Huygens 
schon 1655 die nicht wesentlich verschiedene Substitution z = u — v zu dem 
gleichen Zwecke verwendet.

15*
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Lösungen: in der Tat, sie löst nach einer oben gemachten Bemerkung 
nicht allein die Gleichung (4):

z3 + pz + q = 0,

sondern auch die beiden Gleichungen:

z3 + pwz + q = 0

z3 + pw^z + q = 0;

es gilt also, die Wurzeln der ersten aufzusuchen.
Dabei hat die Beziehung (6), oder

puv = — ,

als Richtschnur zu dienen; hat man Werte A, B der beiden Kubik­
wurzeln in (10) bestimmt, die dieser Gleichung genügen, so daß

AB--2,
so sind Aw, Aw2 die übrigen Werte der ersten, Bw, Bw2 die übrigen 
Werte der zweiten Kubikwurzel, und nur die Paare Aw, Biv2 und 
Aw2, Biv genügen noch, indem

Aw • Bw2 = Aw2 • Bw = A Bw3 = AB = — 2 

ist. Folglich hat man in
21 = A + B

z^ = Aw + Biv2

z3= Aw2A Bu; 
die Lösung von (4).1)

Setzt man für w und w2 die Werte ein, so lauten die Ausdrücke 
für die Wurzeln:

. zt = A + B

s—-4t"+45P/y3 an
-,--4t"-A,"/vs.

Schließlich ist mittels der Formel (3) der Übergang zu AC.,AC,xc, 
zu vollziehen.

144. Diskussion der Cardanischen Formel. Die Natur der 
Wurzeln ist bedingt durch die Größe

n-(2)+(.),
1) Die Gleichung z3 — pwz — q = 0 hat die Wurzeln Aw — B, A — Bw, 

Aw2 + Bw2, die Gleichung 23+p w2z + q = 0 die Wurzeln Aw2 + B, A + Bw2} 
Aw — Bw.
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die in der Cardanischen Formel unter der Quadratwurzel steht und 
nach den Ausführungen in 133 von der Diskriminante der Gleichung (4) 
sich nur durch einen konstanten Faktor unterscheidet. Es sind fol­
gende Fälle zu unterscheiden.

I. Ist R> 0, so steht unter jeder Kubikwurzel eine reelle Zahl; 
A, B bedeuten dann die reellen Werte der Kubikwurzeln, und da sie 
voneinander verschieden sind, so ist 21 reell und %,, 23 ein Paar kon­
jugiert komplexer Wurzeln; dasselbe gilt von 21, X2, X3.

II. Bei R = 0 ändert sich die Sachlage nur insofern, als nun 
unter beiden Kubikwurzeln dieselbe reelle Zahl, nämlich — 9 steht; 

infolgedessen ist A= B, daher
2, = 2A

2=*= A;
auch die ursprüngliche Gleichung hat jetzt drei reelle Wurzeln und 
darunter zwei gleiche.

III. Algebraisch am interessantesten ist der Fall R < 0, der nur 
bei negativem p auftreten kann; er gibt der Cardanischen Formel eine 
komplexe Gestalt und mußte daher vor der Einführung des Rechnens 
mit komplexen Zahlen unüberwindliche Schwierigkeiten bereiten; darum 
auch der Name Casus irreducibilis, unter dem er in der Literatur seit 
jener Zeit erscheint.

Bringt man den ersten Radikanden in die trigonometrische Form, 
indem man

— 9 + i V — R = r (cos q + i sin 9) 

setzt, so folgt daraus:
qr cos 9=9

r sin 9 =V — R

Durch die letzte dieser Formeln, in der die Wurzel absolut zu nehmen 
ist, ist ein Winkel aus dem Intervall (o, a) bestimmt, dieser soll fortab 
unter g verstanden werden. Es ist dann (20):

V-{+iV=n -V-, (cOS • + 91* + i sin • +,*)

—3/ q ---— - / q-2k% . . q—2k%\ / - — iV — R ==— , (cos ---- isin - b
folglich

- = 2V- , cos v+,21 (i - 0, 1, 2),
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so daß die Wurzeln einzeln lauten:

o/p go21 =2/ —3 COS 3

22 = 2V- , COS (, + 1200) (13)

z,= 2]/- P cos (TP+2400).

Sie sind also reell und untereinander verschieden und lassen sich, 
nachdem man den Hilfswinkel 9 aus (12) bestimmt hat, auf loga­
rithmischem Wege rechnen.

145. Beispiele. 1. Um die Gleichung 
a3 — 422 + 4x — 3 = 0

zu lösen, hat man sie zuerst mittels der Substitution T = 2 - - zu 

reduzieren; hierzu dient das Schema:
1 — 4 4 — 3

4 i 8 4 65)
3 3 9 \ 27)

aus dem sich die reduzierte Gleichung

abliest. Bei dieser ist nun

somit liegt der Fall I, 144 vor; die reellen Werte der Kubikwurzeln 
sind:

P _ /G5\2 /4\8 _ 652 — 256 _ 3969 . o 
‘F\54) T (9) — 2236 — 2’3029

und sie ergeben laut (11):

2 =3, *, =6+2V3 * =6 2V3, 

woraus schließlich

“1 =3, 82 =2 + 2 V3, “3 =2 - 2 V3 

erhalten wird.
2. Die in 141, 1. nach den Methoden für die Auflösung nume­

rischer Gleichungen behandelte Gleichung 

x8 + 322 — 17x + 5 = 0
soll nun nochmals nach der Auflösungsmethode für kubische Gleichungen 
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erledigt werden. Zur Reduktion hat man x = z — 1 zu setzen und 
findet aus dem Schema: 

1 3 —17 5 
— 1 1 2 — 19(24)

1 1 (-20) 
die reduzierte Gleichung

23 - 202 + 24 = 0.

Hier ist nun

es liegt also der casus irreducibilis vor, für den die Formeln (13) 
gelten. Man hat in siebenstelliger logarithmischer Rechnung:

log 2
log V-(2)"

1,079 1812

1,235 8631

log cos (180° — q) 

180° - q
9,843 3181 
45° 48' 8"

134 11 52

44 43 57

log 2 
log V— 

log 2]- ,

0,301 0300

0,411 9544

0,712 9844
9
q
3

9 + 1200,164 43 57 
5

P + 2400 284 43 573

log COS ( 3 + 120°) 

log (- z,)

log COS $
0,712

9,851

9844

5032

log 2, 0,564 4876

z. 3,668 49

2,668 49
22
x.

0,712 9844 

9,984 3954 (n)

0,697 3798
- 4,98172

- 5,98172

0,712 9844
log COS (% + 2400) 9,405 3576

log 2, 0,118 3420

za 1,313 23

x. 0,313 23

Die Probe X1 + X2 + X3 = — 3 gibt ein völlig zutreffendes Re­
sultat.

3. Dreiteilung des Winkels. Das Problem, einen Winkel durch 
Konstruktion in drei gleiche Teile zu teilen, gehört zu den klassischen 
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Aufgaben der Mathematik. Der Nachweis der Unmöglichkeit seiner 
elementaren Lösung im allgemeinen, d. h. abgesehen von besonderen 
Annahmen, gehört der neueren Zeit an.

Man nennt die konstruktive Lösung einer Aufgabe elementar, 
wenn sie sich durch Anwendung von Lineal und Zirkel streng aus­
führen läßt. Elementar darstellbar sind nur solche Ausdrücke, die 
sich aus den gegebenen Größen — Strecken — durch rationale Ope­
rationen und durch Quadratwurzeln in einer endlichen Anzahl von 
Verbindungen zusammen setzen. So können also beispielsweise Aus­
drücke, die sich als Wurzeln von linearen und von quadratischen 
Gleichungen ergeben, elementar konstruiert werden.

Ist eine Gleichung vom dritten Grade in bezug auf die zu be­
stimmende Größe, so ist eine elementare Konstruktion ihrer Wurzeln 
nur dann möglich, wenn sie sich zerlegen läßt in drei Gleichungen 
ersten Grades oder in eine Gleichung ersten und eine Gleichung zweiten 
Grades mit Koeffizienten, die sich aus jenen der ursprünglichen Gleichung 
rational zusammensetzen; man sagt in solchem Falle, die Gleichung 
sei reduzibel. Im andern Falle heißt sie irreduzibel, und da ihre 
Lösung dann Kubikwurzeln enthält, so ist die elementare Konstruktion 
der Wurzeln ausgeschlossen. Die Betrachtung kann auf Gleichungen 
höherer Grade ausgedehnt werden.

Die Aufgabe der Dreiteilung eines Winkels g führt auf eine 
kubische Gleichung. Ein Winkel kann linear bestimmt sein durch 
eine seiner trigonometrischen Funktionen in bezug auf eine gegebene 
Einheit; es sei z. B. cos g = a- nun ist

cos 0=4 cos3 P — 3 cos P ; 

setzt man also cos 9 = a, so hat man zur Bestimmung dieser Größe 

die Gleichung:
4.3 — 3 x — a = 0. (1)

Diese Gleichung löst die Aufgabe der Dreiteilung für drei Winkel; 
a ändert sich nämlich nicht, wenn man g um ein Vielfaches von 
360° ändert; es ergeben sich also außer 21 = cos % noch die Wurzeln 

., - cos 94,360 -cos(2+1 200) und., - cos •+2;---" - cos (2 + 240) ; 

alle andern Vielfachen führen über die Figur, die die Teilungsstrahlen 
zu diesen drei Wurzeln enthält, nicht hinaus.

Keine der drei Wurzeln ist im allgemeinen aus der Strecke a 
und der Einheit elementar konstruierbar.

Man kann die Fragestellung umkehren und nach solchen Winkeln 
fragen, die eine elementare Dreiteilung zulassen. Die Antwort darauf 
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ist die folgende: Ist 6 irgend eine Strecke, die aus der Einheit durch 
elementare Konstruktion gewonnen wurde und kleiner ist als 1 dem 
Betrage nach, und erzeugt man aus ihr, was wieder durch elementare 
Konstruktionen möglich ist, die neue Strecke a = 483 — 36, so liefert 
jede so gewonnene Strecke, für a in (1) eingesetzt, eine Gleichung, 
deren Wurzeln elementar konstruiert werden können.

Es mögen noch einige spezielle Fälle zur Erläuterung angeführt 
werden.

Die Annahme a = 1 führt zu einer reduziblen Gleichung; denn 
4x3— 3x — 1 = 0 zerfällt in die Gleichungen

x - 1= 0, (2x + 1)2 = 0,
deren Wurzeln 1, — 3, — 3 sind. Es ist dies die Dreiteilung der Winkel 

von 0, 360 und 810°.
Mit a = 0 gelangt man zu der Gleichung 4x3 — 3x = 0, deren 

Reduzibilität unmittelbar zu erkennen ist; sie zerfällt in

x = 0, 4x2 — 3 = 0,

ihre Wurzeln sind also 0, — V3,‘3 . Hierin ist die Dreiteilung der 

Winkel von 90, 450 und 810° enthalten.

Auch die Annahme a -7, ergibt eine reduzible Gleichung; denn 

423—32—1 läßt sich auflösen in 4 (~2 — 1) —(x -1) =(x+ 1 )
V22/ \ V2) \ V2)

44* — 72—1), somit zerfällt die kubische Gleichung jetzt in

T - = 0, x2----- — — , = 0
V2V2 4 

und hat die der elementaren Konstruktion zugänglichen Wurzeln — 77,

1 V3 1+V3 Hiermit ist die Dreiteilung der Winkel von 45, 
212 ‘ 212 8 ‘ 

405 und 765° erledigt.

Aber schon die Annahme a = 9 führt auf eine irreduzible Glei- 

chung, die Dreiteilung des Winkels von 60° kann elementar nicht 
ausgeführt werden.

146. Die biquadratische Gleichung. Indem man die all­
gemeine Gleichung vierten Grades

ax4 + a,x3 + a, x2 + a,x + a, = 0 (1)
durch den Koeffizienten der höchsten Potenz dividiert und die auf­
tretenden Quotienten mit a, b, c, d bezeichnet, nimmt sie die Gestalt an:
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f(x) = x4 + ax3 + bx2 + ex + d = 0. (2)

Wie bei der kubischen Gleichung erweist es sich als vorteilhaft, 
durch eine Substitution

x = z + h

so zu transformieren, daß die nächstniedere Potenz der Unbekannten 
nicht erscheint. Da

F(= + Ä) -/() +/, , + 0 28 +20 2 + / 9 —0
bereits die nach Potenzen von z geordnete transformierte Gleichung 
darstellt, so hat man h so zu bestimmen, daß f‘(h), d. i.

24 h + 6a = 0 

werde; daraus folgt h = — 2; die endgiltige Substitution lautet also:

«=3-1 (3)

Zu ihrer Durchführung benützt man das Schema:

1 a b c d
a . 3a 3a2, 3a3 ab ,

1 4 + @4 te

. 2a ba^ , 7 /a3 ab . \1 4 -(s 2+o-

, a / 3a2 , 7\1 4 (—8+b) = P,

/ 3a‘ a^b ac 7\ 
~ 256 T 16 41")

3

4

das die Koeffizienten der reduzierten Gleichung

24 + pz2 + qz + r = 0 (4) 
liefert.

147. Lösung der reduzierten biquadratischen Gleichung.1) 
Setzt man nach dem Vorgänge Eulers

z = u + v + w (5)
so ergibt sich daraus nach und nach: 

z^ = u2 + v2 + w2 — 2(pw + wu + uv)
24 — 2(u2 + v2 + 13) z2 + (u + v2 + w2)2 = 4(v3w? + iv2u2 + u2v2) 

+ 8(u2vw 4- uv2 w + uvw2)

0^ — 2 (u2 +v+ w?) 22 — 8 uv w z + (u2 + v2 + w2)

- 4 (vw? + 2%u3 + u2 v2) = 0.

1) Die Entdeckung der Auflösung der reduzierten quadratischen Gleichung 
ist Ludovico Ferrari (1522—1565) zu danken, einem hervorragenden Schüler 
Cardanos, der sie vor 1545, also vor Vollendung seines 23. Lebensjahres, ge­
funden haben muß; denn 1545 erschien sie in Cardanos „Ars magna", und der 
Druck dieses Werkes begann zu Nürnberg 1544.
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Damit diese Gleichung dieselben Wurzeln besitze wie (4), ist not­
wendig, daß

— 2 (u2 + v2 + w2) = p

— Suvw = q (6) 

(u2 + v2 + w?)2 - 4(v?w? + 23u2 + u3v?) = r 

sei; woraus zu schließen ist auf:

U2 + V2 + 22 = — 2
2202 + iv2u2 + 4302 = p‘ — r (7)

9 9 9 q 2

"*"*"*= 64: 

doch ist zu beachten, daß die letzte Gleichung umfassender ist als 
die ihr korrespondierende mittlere Gleichung (6), indem sie dieselbe 
bliebe, auch wenn q ersetzt würde durch — q.

Zufolge der in (7) ausgedrückten Eigenschaften der drei Zahlen 
u2, v2, w2 sind diese die Wurzeln der kubischen Gleichung

0+[08+8*2*0-2-0, (8) 

die man als die kubische Resolvente der Gleichung (4) bezeichnet. 
Sind 01, 02, 0, ihre Wurzeln, so können zwei davon für u2, v2 genommen 
werden, die dritte ist dann w2. Setzt man also

U2 = 0,, V2 = 0,, W2 = 0,,

so ergibt sich daraus nach der Vorschrift (5) für z die Eulersche Formel:

s - Ve, + Vo, + M, (9)

die aber, weil die Quadratwurzeln zweiwertig sind, acht verschiedene 
Werte darstellt, nach einer eben gemachten Bemerkung nicht bloß 
die Wurzeln der Gleichung (4), sondern auch die der Gleichung 
24 + pz — qz + r = 0.

Es handelt sich um die Feststellung der ersteren, und hierzu 
bietet die mittlere der Gleichungen (6) einen Anhalt, indem die 
Wurzelwerte, die zur Bildung der Wurzeln von (4) geeignet sind, 
so beschaffen sein müssen, daß

Ve, Ve, Ve, - - s

ist. Bilden A, B, C ein Tripel solcher Werte, so ergeben sich die
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drei andern Tripel durch Zeichenänderung an zwei Gliedern; mithin 
sind dann

*, = A + B + C

z,= A-B-C

z3 = -A + B-C 
z^-A-B+C 

die Lösungen von (4)1).

148. Diskussion der Eulerschen Formel. Da das absolute 
Glied der Resolvente (8) wesentlich negativ, das Produkt 0, 0, 63 ihrer 
Wurzeln also stets positiv ist, so läßt sich über diese Wurzeln eine 
Aussage machen, nämlich: Sind alle drei reell, so sind sie entweder 
sämtlich positiv, oder eine positiv und zwei negativ; ist nur eine reell, 
so ist sie notwendig positiv, weil das Produkt der beiden andern, die 
konjugiert komplex sind, positiv ist.

Es sind daher folgende Fälle zu unterscheiden:

I. 01, 0,, 03 reell und positiv; dann sind A, B, C und mit ihnen 
alle vier Wurzeln (10) reell.

II. 01, 0,, 03 reell und nur 0, positiv; A ist dann reell, während 
B, C imaginär sind; infolgedessen sind im allgemeinen alle vier Wurzeln 
(10) komplex und die Paare 21, 22; z3, z^ konjugiert. Nur wenn die 
negativen Wurzeln auch gleich ausfallen, werden zwei von den 
Wurzeln (10) reell und auch gleich.

III. 01 reell und positiv, 0,, 03 konjugiert komplex; dann sind A 
reell und entweder B, C oder B, — C konjugiert komplex, so daß 
unter allen Umständen zwei der Wurzeln (10) reell und zwei kon­
jugiert komplex ausfallen.

Das Gesamtergebnis lautet dahin, daß die biquadratische Gleichung 
entweder vier reelle, oder zwei reelle und zwei konjugiert komplexe oder 
endlich vier komplexe Wurzeln besitzt, die zu zwei Paaren konjugiert 
sind; dies alles unter der Voraussetzung reeller Koeffizienten.

149 . Beispiel. Es ist die Gleichung

a4 — 8a3 +3 = 0 
aufzulösen.

Zum Zwecke der Reduktion ist

1) Der Gleichung 24+pz2 — qz — r = 0 kommen die Wurzeln — A — B — C 
A — B + C, A + B — C und — A — B — C zu.
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x = z + 2

zu setzen; die Koeffizienten der reduzierten Gleichung gehen aus dem 
Schema hervor:

1 -8 0 0 3
1-6
1 -4
1 - 2

- 12 - 24 (- 45) = r
- 20 (— 64) =q

(- 24) = p.

Die Gleichung selbst lautet also

24 — 2422 — 64: — 4 5 = 0,

und ihre kubische Resolvente:

03 - 12 02 + 189 0-6 4 = 0.

Um diese zu lösen, wird man sie zunächst mittels der Substitution 

0 = 9 +4
reduzieren; dazu dient das Schema:

4 1-8 I (-3)

1 -4 (-2),
das zu der Gleichung

führt. Für diese ist nun

93393=0 
4

also positiv, mithin ist eine ihrer Wurzeln reell, die beiden andern 
sind imaginär, man hat es also mit dem Fall III des vorigen Artikels 
zu tun. Die weitere Rechnung ergibt:

3 /-------------7- 3 /-------------
A=V 3 + V’- 1,44141, B = yl - V13 - 0,17347;

9. = 1,61488, , = - 0,80744 — 1.09807U

,=0,80744 - 1,09807 i

01 = 5,61488, 0, = 3,19256 + 1,09807 i,
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0, = 3,19256 - 1,09807:

V6, = ± 2,36957, Ve, = ± (1,81227 + 0,302951),
Ve, = ± (1,81227 - 8,302951);

die mit + bezeichneten Werte bilden eine den Bedingungen ent­
sprechende Kombination; aus ihr ergeben sich die andern nach der 
Vorschrift (10) und mithin die folgenden Wurzeln der reduzierten 
Gleichung: 

z, = 5,99411

„= - 1,25497

E, - - 2,36957 + 0,605901

z= - 2,36957 - 0,605907;

hiernach hat die vorgelegte Gleichung die folgenden Lösungen:

x, = 7,99411

x, = 0,74503

x, = - 0,36957 + 0,60590 7

x, = - 0,3695 7 - 0,60590 7.

150. Auflösbarkeit von Gleichungen höheren als des 
vierten Grades. Algebraische Zahlen. Die algebraische Auf­
lösung einer Gleichung ist den Methoden zur Auflösung numerischer 
Gleichungen dadurch wesentlich überlegen, daß mit ihr alle Gleichungen 
des betreffenden Grades als gelöst betrachtet werden können; denn 
es bleibt in jedem besondern Falle nur mehr die Einsetzung der 
speziellen Koeffizienten statt der allgemeinen und die Ausführung der 
angezeigten Rechenoperationen zu vollziehen.

Es ist darum begreiflich, daß man Anstrengungen machte, auch 
für die allgemeinen Gleichungen fünften und der höheren Grade die 
algebraische Auflösung zu finden. Die Gleichungen dritten und vierten 
Grades konnten dazu ermutigen; denn die kubische Gleichung führte 
auf eine quadratische, die biquadratische auf eine kubische Resolvente; 
es schien daher nicht aussichtslos, daß man bei Einschlagen des 
richtigen Weges auch bei der Gleichung fünften Grades zu einer Re­
solvente niederen Grades gelangen und so zu immer höheren Gleichungen 
werde fortschreiten können.

Alle Bemühungen nach dieser Richtung erwiesen sich aber als 
fruchtlos, und so stellte sich denn die Frage ein, ob die algebraischen 
Operationen überhaupt ausreichen, die Wurzeln der allgemeinen Glei­
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chungen höheren als des vierten Grades durch die Koeffizienten dar­
zustellen; mit andern Worten, ob es möglich sei, die Wurzeln solcher 
Gleichungen durch die Operationen bis zum Radizieren einschließlich 
auszudrücken. Der erste, der die Verneinung dieser Frage aussprach 
und den Beweis hierfür zu erbringen versuchte, war P. Ruffini (1813). 
Ein vollgiltiger Beweis für die Unmöglichkeit der algebraischen Auf­
lösung von höheren Gleichungen allgemeiner Form als des vierten Grades 
wurde zuerst von N. H. Abel (1826) gegeben. Neben dieser Be­
weisführung für eine negative Aussage ging die Forschung nach 
solchen Formen höherer Gleichungen einher, die eine algebraische 
Auflösung zulassen. Derartige Gleichungen bilden ein wichtiges Glied 
der neueren Algebra.

Im Rückblick auf das Vorangehende sei noch das Folgende bemerkt.
Eine algebraische Gleichung mit ganzzahligen Koeffizienten kann, 

von imaginären Lösungen abgesehen, rationale und irrationale Wurzeln 
haben; die letzteren sind bei den Gleichungen zweiten, dritten und 
vierten Grades immer, bei den Gleichungen höherer Grade nur ganz 
ausnahmsweise durch die algebraischen Rechenoperationen, deren 
höchste das Radizieren ist, berechenbar. Man hat nun allen Zahlen, 
die als Wurzeln von algebraischen Gleichungen mit ganzzahligen 
Koeffizienten, welchen Grades immer, auftreten können, den Namen 
algebraische Zahlen gegeben. Diese Zahlenkategorie umfaßt also außer 
den rationalen Zahlen irrationale Zahlen, die sich durch die algebra­
ischen Operationen berechnen lassen, und irrationale Zahlen, die durch 
algebraische Rechenoperationen nicht gewonnen werden können. — 
Darüber hinaus gibt es aber noch Zahlen, die auch nicht als Wurzeln 
einer algebraischen Gleichung was immer für hohen Grades mit ganz­
zahligen Koeffizienten zu erhalten sind: man nennt sie im Gegensätze 
zu den algebraischen transzendente Zahlen. Die beiden für die Ana­
lysis wichtigen Zahlen e und a gehören zu dieser Kategorie.



VIII. Abschnitt.

Analytische Geometrie der Ebene.

§ 1. Der Koordinatenbegriff.

151. Allgemeine Begriffsbestimmung. Es gibt zwei Methoden 
der Untersuchung geometrischer Figuren und der Lösung geometrischer 
Aufgaben; die eine, die synthetische, vollzieht ihre Schlüsse im geo­
metrischen Gebiete, operiert also mit den geometrischen Gebil­
den selbst; die andere, die analytische, überträgt die Untersuchungen 
auf das Gebiet der Arithmetik, der Analysis, und operiert mit Zahlen.

Um dies ausführen zu können, bedarf es der Kennzeichnung oder 
Beschreibung geometrischer Gebilde durch Zahlen. Solche Zahlen, 
die geeignet sind, ein geometrisches Gebilde vollständig zu kenn­
zeichnen, nennt man im weitesten Sinne des Wortes seine Koordinaten.

Das einfachste Gebilde, auf das man die Untersuchung aller 
andern zurückführen kann, ist der Punkt. An ihm ist lediglich die 
Lage innerhalb eines andern, höheren Gebildes zu beschreiben; dazu 
dienliche Zahlen werden als Punktkoordinaten bezeichnet.

152. Der Punkt in der Geraden. Zwei Punkte einer Geraden 
begrenzen eine in ihr liegende Strecke. Mißt man diese mit einer als 
Einheit angenommenen Strecke, so erhält man eine Zahl, die die ab­
solute Länge der Strecke bestimmt.

Die Gerade kann in zweierlei Sinn durchlaufen werden; setzt man 
. , den einen Sinn als positiv, den andern als 

 * 1 +7 negativ fest, so spricht man von einer gerich-
Fig- 44. teten Geraden-, der positive Sinn soll durch 

einen Pfeil angedeutet werden (Fig. 44).
Liegt eine Strecke auf einer gerichteten Geraden und unterscheidet 

man ihre Grenzpunkte als Anfangspunkt A und als Endpunkt B, so 
erhält auch die Strecke einen Sinn, und zwar den positiven, wenn 
das Fortschreiten von A nach B dem positiven Sinn der Geraden 
entspricht; im andern Falle den negativen. Die hiernach mit dem 
positiven oder negativen Vorzeichen versehene absolute Länge wird 
die relative Länge der Strecke genannt. Im Grunde dieser Auffassung 
gelten die Ansätze:

AE^-BA, AB + BA^O, AB + BC+CA = G 

der letztere für jeden dritten Punkt C der Geraden.
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Nimmt man in einer gerichteten Geraden einen Nullpunkt 0 und 
eine Strecke als Einheit an, so ist sie zur o, M 
Zahlenlinie ausgestattet, Fig. 45. Jeder Punkt • 1 1 >A

P 7 9 Fig 45M bestimmt mit 0 als Anfangspunkt eine 
positive oder negative Strecke, und die dieser entsprechende positive 
oder negative Zahl x heißt die Abszisse des Punktes M.

Zu einem Punkte gehört nur eine Abszisse und zu einer Abszisse 
nur ein Punkt (15).

153. Der Punkt in der Ebene. Parallelkoordinaten. 
Nimmt man in der Ebene zwei gerichtete Gerade an, die sich schneiden, 
setzt den Schnittpunkt als gemeinsamen Anfangspunkt und außerdem 
eine Einheitsstrecke fest, so sind beide Ge­
raden als Zahlenlinien ausgestattet, Fig. 46. TY I 
Projiziert man dann einen beliebigen Punkt /
M der Ebene parallel zu jeder der Geraden QL______ 
auf die jeweilige andere, so entsprechen den /_________ / 
Projektionen P, Q Zahlen x, y, die geeignet Fe / 
sind, die Lage des Punktes in der Ebene zu  o—-—;__ 6—-X 
beschreiben: man nennt 2c, y ParaUeTkoor- _7 _ 
dinaten des Punktes M, insbesondere 2 die / 
Abszisse, y die Ordinate. Das aus den bei- Fig. 46. 
den gerichteten Geraden zusammengesetzte Ge­
bilde heißt ein Parallelkoordinatensystem, die Geraden selbst nennt 
man Achsen, insbesondere OX die Abszissenachse (x-Achse), OY die 
Ordinatenachse (y-Achse); die Strahlen, in welche sie durch den An­
fangspunkt oder Ursprung zerlegt sind, werden Halbachsen genannt 
und als positive und negative Halbachsen unterschieden. Die Ebene 
ist durch die Achsen in vier Felder, Quadranten, geteilt, die in der 
angedeuteten Reihenfolge gezählt werden.

Man schreibt symbolisch:

II(x/J)
T = 0P = QM, y^0Q = PM-,

es bedeuten, wenn a, b absolute Zahlen sind,

M^a/b), M^-a/U), M^-al~b\ M^a'-b)

Punkte, die der Reihe nach im 1., 2., 3., 4. Quadranten liegen, Mr, M, 
ein Punktepaar, das symmetrisch zu 0 Y in Richtung von OX, Mx, 
M^ ein Punktepaar, das symmetrisch zu OX in Richtung von OY, M,, 
M, ein Punktepaar, das symmetrisch zu 0 angeordnet ist. M(x/0) 
ist ein Punkt der x- Achse, M(0/y) ein Punkt der y-Achse, M(0/0) 
der Ursprung.

Czuber, Höhere Mathematik. 16
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Als positiv sei jener Prelmngssinn in der Ebene festgesetzt, der 
y dem Laufe eines Uhrzeigers entgegengesetzt ist, 

M der also der Aufeinanderfolge der Quadranten ent- 
2 I spricht.

Der in diesem Sinne gezählte Winkel ® zwischen 
  .X der positiven x- und der positiven y-Achse heißt 

0________P der Koordinatenwinkel. Unabhängig von der Auf-
Fig- 47. fassung der Geraden als Achsen eines Koordinaten­

systems nennt man ® auch den Richtungswinkel von 0 Y gegen 0 X.
Ist 0+5 und *, so heißt das Koordinatensystem schief \ im andern 

Falle, wenn also 0 =7 oder = 47 ist, nennt man es ein rechtwink­

liges oder Cartesisches1) (Fig. 47).

1) R. Descartes gilt als der Begründer der analytischen Geometrie durch 
ein 1637 ohne Nennung des Verfassers zu Leyden erschienenes Werk, dessen 
dritter Abschnitt als „Geometrie“ betitelt ist; doch war P. Fermat unabhängig 
von ihm zu der analytischen Methode gelangt und weiter vorgedrungen.

Man sagt, ein Koordinatensystem sei positiv orientiert, wenn bei 
Verfolgung der x- Achse im positiven Sinne die positive y- Achse links 
liegt, im andern Falle, es sei negativ orientiert. Bei dem positiv 
orientierten Cartesischen System, wie es in der Regel angenommen 
werden wird, ist 6=7, bei dem negativ orientierten 6 =".

154. Polarkoordinaten. Wird in der Ebene eine gerichtete 
y Gerade und in dieser ein Punkt 0 angenommen,

, so kann die Lage eines Punktes M der Ebene 
: f beschrieben werden durch die absolute Länge 

P , r der Strecke OM und durch den Richtungs- 
is : winkel q der gerichteten Strecke OM mit der 

0 x P - gerichteten Geraden OX, Fig. 48. Man nennt 
Fig. 48. r, cp die Polarkoordinaten des Punktes M, r den 

Leitstrahl oder Radius vector, 9 die Amplitude. Der Strahl OX wird 
die Polarachse, 0 der Pol genannt.

Man schreibt symbolisch:

M("/ 9)

r=OM, y = LXOM,

es bedeutet M(r/0) einen Punkt der Polarachse, M(r/x) einen Punkt 
ihrer Verlängerung über 0, M(0/g) den Pol.

Faßt man r als relative Strecke auf, so ist ein negatives r in 
der entgegengesetzten von derjenigen Richtung aufzutragen, die durch 
9 bestimmt ist.
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Stellt man durch Hinzufügung einer zweiten durch 0 gehenden 
Achse ein positiv orientiertes Cartesisches System her, so bestehen 
zwischen den rechtwinkligen und den Polarkoordinaten eines Punktes 
die Beziehungen:

x = r cos 9, y = r sin 9, x2 + y2 = r2. (1)

155. Bipolare Koordinaten. Sind in der Ebene zwei Punkte
F, G, Fig. 49, angenommen, so kann die Lage M 
eines beliebigen Punktes M durch die absolu- A 
ten Längen u, v der Strecken FM, GM be- V V 
schrieben werden; man nennt F, G Pole, u,    x 
v bipolare Koordinaten von M. Während F G 
aber zu jedem Punkte ein bestimmtes Zah- Fig. 49. 
lenpaar u, v gehört, führt nicht auch umgekehrt jedes Zahlenpaar 
u, v zu einem Punkte.

Legt man durch F und G eine gerichtete Gerade und bestimmt 
die (hohlen) Richtungswinkel g, v der durch F, M und G, M 
laufenden Geraden, so sind auch g, i bipolare Koordinaten; jetzt aber 
gehört auch zu jedem Zahlenpaar q, i (0 A q, 1 Am), die Fälle, 
wo g = v, ausgenommen, ein bestimmter Punkt der Ebene.

156. Die Linie. Eine Linie ist geometrisch definiert, wenn 
ein konstruktives Verfahren angegeben ist, durch das man beliebig 
viele ihrer Punkte bestimmen kann.

Wird eine geometrisch definierte Linie auf ein Koordinatensystem 
bezogen, so hat die Gesetzmäßigkeit ihrer Entstehung zur Folge, daß 
zwischen den Koordinaten ihrer Punkte eine für alle gleichlaufende 
Gleichung besteht; man nennt diese die Gleichung der Linie, sie bildet 
deren analytische Beschreibung.

Umgekehrt entspricht einer Gleichung zwischen den Punkt­
koordinaten, wenn man sie auf ein bestimmtes Koordinatensystem be­
zieht, im allgemeinen eine Linie.

Dieser Gegenüberstellung entsprechen zwei Grundaufgaben der 
analytischen Geometrie: 1. Für eine geometrisch definierte Linie eine 
Gleichung aufzustellen. 2. Die zu einer gegebenen Gleichung gehörige 
Linie herzustellen.

Zu diesen Aufgaben gesellt sich als dritte: 3. Die Eigenschaften 
der Linie aus ihrer Gleichung abzuleiten.

Zu der Aufgabe 1 ist zu bemerken, daß vor allem eine zweck­
mäßige, den Angaben der Definition angepaßte Wahl des Koordinaten­
systems getroffen werden muß.

Bei der Aufgabe 2 muß das Koordinatensystem angegeben sein, 
wenn es nicht schon aus der konventionellen Form der Gleichung 
ersichtlich ist.

16 *
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Bei der Aufgabe 3 kommen die Methoden der analytischen Geo­
metrie zur Anwendung, die im Laufe der Zeit mit der Algebra und 
Analysis immer weiter ausgebildet worden sind.

§ 2. Analytische Darstellung geometrisch definierter Linien.
157. Kreis. Der Kreis ist eine Linie, deren Punkte von einem 

festen Punkte — Mittelpunkt, Zentrum — gleichen Abstand — 
Radius — haben.

Bezieht man den Kreis auf ein Polarsystem, dessen Pol im Mittel­
punkt, dessen Polarachse in beliebiger Richtung angenommen ist, so 
lautet seine Gleichung

r = a, (1) 
wenn a der Radius ist.

In dem zugeordneten rechtwinkligen System (154) heißt die 
Gleichung

a2+y2 = a2. • (2)

158. Ellipse. Die Ellipse ist eine Linie, deren Punkte von 
Y, zwei festen Punkten, den Brennpunkten, Ent­

fernungen von konstanter Summe haben.
M ° .

1 Wählt man die Brennpunkte als Pole
• “ eines bipolaren Systems, so ist, Fig. 50, 

P F *X 2+7=2 (1) 
Fig. 50. 

die Gleichung der Ellipse, sofern 2a die konstante Summe der Ab­
stände bezeichnet.

Legt man ein rechtwinkliges Koordinatensystem zugrunde, dessen 
Abszissenachse die nach rechts gerichtete Gerade durch die Brenn­
punkte, dessen Ordinatenachse das nach aufwärts gerichtete Mittellot 
dieser Punkte ist, so drückt sich, wenn F'F = 2 c, wobei notwendig 
c < a, Gleichung (1) wie folgt aus:

Vy + (c — x)2 + Vy + ( + «)? = 2a- 

quadriert man, um rational zu machen, so entsteht

a2+y‘+c+ V(x3 +y+ c2)2 — 4ca* - 2a‘, 

und nach nochmaligem Quadrieren

a”(x2 + y2 + c2) - x—a = 0, 

nach x, y geordnet:

(a2 — c2)^2 +a‘y? = a2(a2 — c2);

setzt man die positive Differenz
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a2 _ c2 = b2,

so nimmt die Gleichung der Ellipse schließlich eine der Formen 

b2x2 + a2y2 = a2b2

a* । y2 _ i (2) a? T 62 = - 
an.

Wegen des zweimal ausgeführten Quadrierens würden diese 
Gleichungen auch dann zustande kommen, wenn an die Stelle von 
(1) eine der folgenden Relationen träte:

u — v = 2a

— u + v = 2 a

— u — v = 2a^

keine davon stellt ein reelles Gebilde dar, weil jede einen Widerspruch 
involviert: die beiden ersten den, daß die Differenz zweier Dreiecks­
seiten größer sein solle als die dritte, die letzte den, daß die Summe 
zweier negativen Zahlen positiv sein solle; folglich stellen die Gleich­
ungen (2) nur das durch die Eigenschaft (1) gekennzeichnete Ge­
bilde dar.

159. Hyberbel. Die Hyperbel ist eine Linie, deren Punkte 
von zwei festen Punkten, den Brennpunkten, Entfernungen von kon­
stanter Differenz haben.

Mit Benützung derselben Annahmen und Bezeichnungen ergeben 
sich die Gleichungen

+ (u — v) = 2a (1) 

und 6322 — a2y2 - a2b2
4 (2) 

a2 b2 ‘ 
wenn c2 — a2 = b2 gesetzt wird, indem jetzt notwendig c > a ist.

Auch hier umfassen die Gleichungen (2) al­
gebraisch mehr als (1), indem sie auch dann zu­
stande kämen, wenn an Stelle von (1) eine der 
Relationen + (u + v) = 2a genommen würde; bei­
des aber steht mit Tatsachen im Widerspruch.

160. Parabel. Die Parabel ist eine Linie, 
deren Punkte von einem festen Punkte, dem Brenn­
punkte, und einer nicht durch ihn gehenden festen 
Geraden, der Direktrix, gleich weit entfernt sind. Fig. 51.

Nimmt man, Fig. 51, die nach rechts gerichtete Normale der 
Direktrix DD' durch den Brennpunkt F als Abszissenachse und den
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Mittelpunkt 0 der Strecke AF = p als Ursprung eines rechtwinkligen 
Koordinatensystems an, so drückt sich die Eigenschaft

FM = R M

in den Koordinaten, wie folgt, aus:

V*+(- %)- , +7, 

und in rationaler Form: 
y2 = 2 p x.

(1)

(2)
Der Rückblick auf die Gleichungsformen (2) der behandelten vier 

Linien zeigt, daß ihre Gleichungen in bezug auf die rechtwinkligen

Fig. 52.

Koordinaten x, y algebraisch und vom zweiten 
Grade sind. Man nennt aus diesen Gründen 
Kreis, Ellipse, Hyperbel und Parabel alge­
braische Linien und bezeichnet sie als von 
zweiter Ordnung.

~Y 161. Strophoide. Die Strophoide ist eine 
Linie, deren Punkte durch folgende Konstruk­
tion erzeugt werden: Gegeben sind ein fester 

Punkt A, Fig. 52, und eine nicht durch ihn gehende feste Gerade YY - 
man zieht durch A die zu YY' senkrechte Gerade OX, dann einen 
beliebigen Strahl A L und trägt auf diesem die Strecken LM = LN = OL 
ab; dann sind M, N Punkte der als Strophoide benannten Linie.

Benützt man die nach rechts gerichtete Gerade OX als Polar­
achse und 0 als Pol, bezeichnet mit a die absolute Länge der Strecke 
0 A und beachtet, daß in dem Dreieck OAM die Winkel bei A und

M beziehungsweise 3 — 2 q), 3 + 9 sind, so ergibt sich die Beziehung:

a . (A , \ sin (2 +9)

die unmittelbar zur Polargleichung

führt.
Geht man von dieser auf das zugehörige rechtwinklige System 

über mittels der Relationen 154, (1), so entsteht zunächst

x2 _y3 
72 72 

r = a a
r
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und daraus
(x2 +y2) a = a(x2 — y^. (2)

Durch Auflösung ergibt sich:

q/a—X 
y = — x / —j—. (3)

Man liest hieran ab: 1. daß die Linie symme­
trisch ist zur Abszissenachse; 2. daß sie reelle 
Punkte nur in dem nicht abgeschlossenen 
Intervall — a < x < a besitzt; 3. daß y am 
oberen Ende dieses Intervalls = 0 ist, während 
es bei rechtsseitiger Annäherung von x an 
das untere Ende unendlich wird; es zieht sich 
also die Linie längs der Geraden SS', Fig. 53,

A>X

S
Fig. 53.

ohne Ende hin, sich ihr beliebig nähernd; man nennt eine solche Ge­
rade eine Asymptote der krummen Linie.

Aus (1) ist zu erkennen, daß r sich der Grenze Null
wenn q gegen 7 und gegen " konvergiert; 

Richtungswinkeln durch 0 geführten Ge­
raden fallen also zwei kurz vorher noch 
getrennte Punkte in einen zusammen, diese 
Geraden sind somit Tangenten an die Kurve 
in 0 (56) : die Erscheinung, welche diese 
hier darbietet, wird als ein Knoten (Kno­
tenpunkt) bezeichnet.

162. Zissoide. Zu dieser Linie führt 
folgende Konstruktion. Aus einem Punkte 
0 des Umfangs eines Kreises werden nach 
der Tangente im diametral gegenüberliegen- 
den Punkte A Strahlen gezogen und auf 
jedem derselben die zwischen Tangente und 

nähert, 

diesenauf den unter

Fig. 54.

Kreis eingeschlossene Strecke PQ, Fig. 54, nach OM übertragen; 
M ist ein Punkt der Kurve.

Auf das Polarsystem OX bezogen hat die von M bei Drehung 
des Strahls beschriebene Linie die Gleichung

ar — — a cos ( ,
COS 9 7 7 

vereinfacht: . „
«sin” (

T =------(1)COS 977 

wenn OA = a der Durchmesser des Kreises ist. In dem zugeordneten 
rechtwinkligen System kommt ihr die Gleichung

(x2 + y2) x = ay2
zu.
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Aus der Auflösung von (2):

y ==-X —• — V C — x (3)

ließt man folgende Eigenschaften ab: 1. die Kurve ist symmetrisch zur 
x-Achse; 2. reelle Punkte sind in dem Intervall 0 < x < a vorhanden; 
3. bei lim x = a — 0 wird y unendlich, so daß die bei der Konstruk­
tion benützte Kreistangente zugleich Asymptote ist.

Aus (1) entnimmt man, daß r gegen Null konvergiert, wenn g 
sich von der einen oder anderen Seite der Null nähert; mithin be­
rührt die x- Achse sowohl den oberen als den unteren Zweig der Kurve 
in 0; die Erscheinung, die sich hier darbietet, wird Spitze genannt.

Die beiden zuletzt besprochenen Linien sind nach dem Bau ihrer 
mit (2) bezeichneten Gleichungen algebraische Kurven dritter Ordnung.

Fig. 55.

163. Cassinische Linien. 
Als solche bezeichnet man Li­
nien, deren Punkte von zwei 
festen Punkten, den Brennpunk­
ten, Entfernungen von konstan­
tem Produkt haben.

Im bipolaren System F, F, 
Fig. 55, haben diese Linien 
die Gleichung

uv = a2. (1)

Geht man auf das rechtwinklige System über, so ergibt sich zunächst: 

Yy2 + (c — x)2 • Yy2 + (c + x)2 = a2,

wenn F'F =2c, und nach Herstellung der rationalen Form:

(x2+y)3 + 20(y?—z) = a‘- c (2)
Die Auflösung von (2), zunächst nach y2^ gibt:

y2 - — {x2 + c2) + V4c43 + at;

von diesen Lösungen kann nur die mit dem oberen Zeichen zu reellen 
y führen, aber auch sie liefert solche nur so lange, als:

(x? + c2)2 < 4ca* + a4,
so lange also

(x2 - c2)2 < a\

somit bei x2 — c2 < a2 und c2 — x2 < a2, woraus sich einerseits die 
obere Grenze für x mit Vc2 + a2, andererseits die untere mit Vc2 — a2 
bestimmt. Während die obere Grenze immer reell ausfällt, ist es die 
untere nur für c) a.
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Daraus ergeben sich drei Formen der Cassinischen Kurven:

L c > a; y reell bei Ve2 — a? < x < Ve3 + a2,

II. c = a; y „ „ x|<Vc + a3;
III. c < a; y „ „ | x < Vc2 + a2.

Die Form II, deren Gleichung im rechtwinkligen System 

(x2 + y2)2 = 2a?(x2 — y2), (3)
im Polarsystem

r2 = 2a2 cos2 q (4) 

lautet, führt den Namen Lemniskate] sie geht durch den Ursprung 
und hat hier, da r bei lim 9 = 7 und lim q=7 gegen Null konver­

giert, zwei Tangenten, die unter 45 und 145° gegen die x- Achse ge­
neigt sind. In der Figur sind die drei Y 
Typen veranschaulicht. ”

164. Konchoide. Mit diesem Na- A‘ B C A 
men wird die durch folgende Konstruktion 
erzeugte Linie belegt: Aus einem festen s 
Punkte 0, Fig. 56, werden nach einer / 
nicht durch ihn gehenden festen Ge- —— *X 
raden A'A Strahlen gezogen und auf 
jedem derselben vom Schnittpunkt C 
aus zwei gleiche Strecken CM, CN von gegebener Länge l abgetragen; 
die Punkte M, N gehören der Linie an.

Die durch 0 zu A' A gezogene nach rechts gerichtete Parallele 
diene als Polarachse, 0 als Pol; dann gilt für die Punkte M, d. i. 
über A'A:

a , 7• T — • — LSin gp 7

für die Punkte N, d. i. unter A' A:
a

sin g

wobei a = OB, beide Ansätze sind aber in der einen Gleichung

enthalten, die auch in der Form

(,—) = l (1)
\ sin 9/ " 7 

geschrieben werden kann.
Geht man zu dem zugeordneten rechtwinkligen System über, so- 

entsteht zuerst
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und daraus schließlich

(23 + y3)(J ~ a)2 = [3y?. (2)

Diese Gleichung lehrt: 1. daß die Linie symmetrisch ist zur y- 
Achse, weil x nur in gerader Potenz vorkommt; 2. daß die Gerade A' A 
eine Asymptote ist, weil bei y = a die Gleichung nur bei unendlichem 
x bestehen kann; 3. daß der Ursprung der Kurve angehört.

Aber aus

sin 9
C 7 

r = . — l

dazu gehören zwei supplementäre Werte von 9, sofern a < l; nur 
der eine Wert q = 5, wenn a =l; hingegen kein Wert, wenn a> L 

im ersten Falle hat die Kurve im Ursprung zwei Tangenten und bildet 
hier einen Knoten; im zweiten Falle berührt sie die y-Achse zu beiden 
Seiten und bildet eine Spitze; im dritten Falle hat sie in einer ge­
wissen Umgebung des Ursprungs keine weiteren Punkte, der Ursprung 
ist ein von der Linie isolierter Punkt (Einsiedler). Die drei so unter­
schiedenen Typen

I. a < l, II. a = l, III. a > l.

sind in Fig. 57 zur Darstellung gebracht.
Die Cassinischen Linien und die Konchoide sind nach dem Bau 

ihrer mit (2) bezifferten Gleichungen algebraische Kurven vierter 
Ordnung.

165. Rosette. Eine Kurve werde derart erzeugt, daß auf eine 
mit ihren Endpunkten auf zwei zueinander senkrechten Geraden gleitende
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Strecke AB = a vom Schnittpunkte 0 dieser Geraden eine Normale 
gefällt wird; ihr Fußpunkt M beschreibt die Linie (Fig. 58).

Auf das Polarsystem OX bezogen hat 
Linie, wie aus den rechtwinkligen Dreiecken 
mittelbar zu entnehmen, die Gleichung

a . 0T = C cos 9 sin 9 = 9 sin 2 9;

die 
un-

daraus ergibt sich die auf das zugeordnete 
winklige System bezogene Gleichung

(a2 + 33)3 = a?x2y?.

(1) 

recht-

Fig. 58.

*X

(2)
Aus der Gleichung (2) schließt man auf Symmetrie bezüglich

beider Achsen. Aus (1) ist zu erkennen: 1. daß

von r, die Kurve also in

2. daß sie diesen Kreis

einem Kreise vom Radius

9 die obere Grenze

9 eingeschlossen ist;

indem an diesen r = a

. - J 33 5373erreicht an den ptellen cp = - , —, —, —T 4 7 4 7 4] 7 4 7
oder = — a wird; 3. daß r bei lim 9 =0,5,

7,7 gegen Null konvergiert, die Kurve, also 

die beiden Achsen in 0 zu beiden Seiten be­
rührt. Fig. 59 zeigt ihre Gestalt.

166. Asteroide. So benennt man die Kurve, 
welche der Punkt P derselben Strecke M B, Fig. 58, 
beschreibt, der symmetrisch zu M in bezug auf 
die Mitte von AB liegt, den man also erhält, 
indem man aus der Ecke Q des Rechtecks OA QB 
auf AB eine Senkrechte fällt.

Fig. 59.

Nennt man die auf dasselbe Achsensystem bezogenen Koordinaten 
von P§, n, so bestehen zwischen §, n und den Koordinaten x, y von 
M die aus der Figur ersichtlichen Beziehungen:

( + xf +(+ yf = a3,
^ = y\

ny = «2;
aus der ersten folgt mit Rücksicht auf die beiden anderen

g + » + 3(8 + y?) - a,
und aus den zwei letzten allein

^y = En;
trägt man dies in die Gleichung (2) der vorigen Kurve ein, so entsteht

3 a2§2n2 (1)
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als Gleichung der neuen Kurve; schreibt man dies in der Gestalt 
2 2 2 

§2 + 2 + 3 a3 63 n 3 = a2,
so erscheint (1) als das Ergebnis der Kubatur der Gleichung

2 2 2
8+7’= a5, (2) 

die demnach auch als Darstellung der 
Kurve gelten kann.

Aus (1) entnimmt man, daß mit 
62 + 2 = a2 entweder 6 = 0 oder 1=0 
notwendig verbunden ist, daß also die 
Linie durch die Punkte [0ld),(0/ — a\ 
(a/0), (—a/0) hindurch geht. Ihre Ge­
stalt ist aus Fig. 60 ersichtlich.

Die beiden zuletzt vorgeführten Li­
nien sind, wie aus ihren mit (2), bzw. 
(1) bezeichneten Gleichungen zu erkennen, 
von der sechsten Ordnung.

§ 3. Koordinatentransformation.

167. Allgemeine Begriffsbestimmung. Schon die vorstehen­
den Beispiele zeigen deutlich, daß die Wahl* des Koordinatensystems 
nicht gleichgültig ist für die analytische Darstellung; eine zweckmäßige 
Wahl kann wesentliche Vereinfachung der Rechnungen herbeiführen. 
Darum tritt bei größeren Untersuchungen häufig die Notwendigkeit 
ein, das Koordinatensystem zu ändern, um eine sich einstellende Frage 
in möglichst einfacher Weise zu lösen. Man kann geradezu die 
passende Anordnung des Koordinatensystems zu den Methoden der 
analytischen Geometrie zählen.

Bei dem Übergang zu einem anderen Koordinatensystem handelt 
es sich nun darum, die maßgebenden Gleichungen, die sich auf das 
ursprüngliche System beziehen, für das neue zu transformieren. Die 
Elementaraufgabe, auf die das hinausläuft, besteht darin, die Relationen 
zwischen den ursprünglichen und den neuen Koordinaten eines Punktes 
aufzustellen.

Nachstehend soll eine Auswahl häufig gebrauchter Transfor­
mationen behandelt werden.

168. Translation eines Parallelkoordinatensystems. Hier­
unter versteht man den Übergang von einem Parallelkoordinaten­
system zu einem andern mit parallelen und gleichgerichteten Achsen. 
Die gegenseitige Anordnung ist bestimmt, wenn die Koordinaten Xo, y0 
des neuen Ursprungs 0', Fig. 61, in bezug auf das alte System XOY 
gegeben sind.
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Es seien x, y und x' y' die auf die beiden Systeme bezüglichen 
Koordinaten eines Punktes M; dann entnimmt man der Figur un­
mittelbar, daß

0P = 0A+ O'P'
PM = A0' + P'M, 

daß also
• — •
J =% + y‘;

daraus ergibt sich die inverse Transformation:

(2)
y =9-Vo-

Während (1) den Übergang vom alten System zum neuen, ver­
mittelt (2) das umgekehrte.

Soll beispielsweise die Gleichung der Ellipse (158)

62x2 + a^y2 = a2b2

auf den linken Scheitel als Ursprung transformiert werden, so hat 
man x = — a T■ x', y = y’ zu setzen; die Gleichung lautet dann:

b2x"2 + a2y" = ^a^x.

169. Rotation eines Cartesischen 
Systems um den Ursprung. Es ist dies 
der Übergang von einem rechtwinkligen System 
zu einem gleich orientierten anderen mit dem­
selben Ursprung. Die Anordnung beider Sy­
steme ist durch den Rotationswinkel « bestimmt, 
worunter der Winkel verstanden werden soll,
durch den die positive x-Achse in positiver Drehung in die positive
x’-Achse übergeführt wird (Fig. 62).

Man liest an der Figur unmittelbar ab:

0P = OP"~ QP'

PM=P"P' + QM,

d. h. in den Größen x, y^ x‘, y' und a ausgedrückt:

x = x' cos a — y' sin «

y = x‘ sin « + y’ cos «. (1)

Die inverse Transformation ergibt sich durch Auflösung dieser 
Gleichungen nach x', y', aber auch durch die Bemerkung, daß die 
Drehung des neuen Systems um — « wieder zum alten führt; man
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braucht also nur x, y mit x‘, y' zu vertauschen und das Vorzeichen 
von & zu ändern und erhält so:

x‘= x cos « — y sin « 

y' = — x sin « + y cos a.
(2)

Als Beispiel diene eine Hyperbel, bei der b = a ist — man 
nennt sie eine gleichseitige Hyperbel —, deren Gleichung also

«2—y‘= a?
lautet (159); das System, das dieser Gleichung zugrunde liegt, werde 

um —(also um 45° nach abwärts) gedreht; die Transformation wird 

dann durch die Substitution

vermittelt und verwandelt die Gleichung in

170. Allgemeine Transformation rechtwinkliger Koor­
dinaten. So wollen wir den Übergang von einem rechtwinkligen

System zu einem beliebigen andern gleichartig 
orientierten verstehen. Die gegenseitige Anord­
nung ist durch die Koordinaten xo, y0 des neuen 

,x Ursprungs bezüglich des alten Systems und durch 
den Rotationswinkel im vorhin erklärten Sinne 

*X* gegeben (Fig. 63).
Der Übergang zu dem Hilfssystem X'O'Y" 

, y ist eine Translation, daher

Fig. 63. x = x — x"

3= 9 + y"; 
der Übergang von diesem zu X'O'Y' ist eine Rotation, daher 

x" = x' cos a — y' sin « 

y" = x' sin « + y' cos «; 

durch Superposition ergeben sich die endgültigen Transformations-

x = xo + x‘ cos « — y' sin «

y = Y + x‘ sin « + y‘ cos « . (1)

Die Gleichungen für die inverse Transformation erhält man aus 
(2) der vorigen Nummer, indem man x, y durch x — xo, y — yQ ersetzt; 
sie heißen also:

x‘ = (x — xo) cos « + (y — Y) sin « 

y' = — (x — xo) sin a + (ij — yo) cos « .
(2)
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171. Rechtwinklige und Polarkoordinaten. Bei der Ein­
führung des Polarsystems (154) ist bereits auf ein bestimmtes, mit 
ihm zusammenhängendes rechtwinkliges System hin- K ~ 
gewiesen worden; der Übergang von dem einen X
zu dem andern kam im Laufe der Beispiele auch / \ ,r
wiederholt zur Anwendung. Jetzt soll der all- Le pr 
gemeine Fall erledigt werden, darin bestehend, daß 8
man von einem rechtwinkligen System zu einem _______
polaren übergeht, dessen Pol O‘, Fig. 64, im alten 0 P 
System die Koordinaten Xo, Y, hat, und dessen Fig. 64. 
Polarachse gegen die gerichtete x-Achse des rechtwinkligen unter dem 
Winkel « geneigt ist.

Diese Transformation kann aufgelöst werden in die vorangehende 
und in den darauffolgenden Übergang zu Polarkoordinaten im Sinne 
von 154; demnach lauten die Substitutionsgleichungen:

x = To — r (cos a cos 9 — sin « sin g) = Xo — r cos (a — g)

y = Y + r (sin «cos g + cos«sin g) = Yo +r sin (« + g);
und für die inverse Transformation:

• -V- x,)*+ (y _ »o)3, cos (a+s) -**, 
sin («+,)-","; 62

die beiden letzten Gleichungen bestimmen einen Winkel im Intervall 
(0,2 x) eindeutig, aus dem sich dann durch Subtraktion von a die 
Amplitude g ergibt.

Als Beispiel zu diesem Falle diene die Transformation der Ellipsen- 
gleichung nach dem rechten Brennpunkt als Pol und der gerichteten 
Abszissenachse als Polarachse. Die zugehörigen Transformations­
gleichungen

x = c + r cos q , y = r sin g

verwandeln die Gleichung

b322 + a^y2 = a2b2 
in

r2 (b2 cos2 q + a2 sin2 q) + 2b2 er cos g = b^,

deren positive Wurzel
_ — b2c cos g + ab2

‘ a2—c? cos‘9 

sich weiter vereinfacht zu

a — c cos q ’

. 62 
bei 9=9 erhält r den Wert — = 2, den man als Parameter der 
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Ellipse bezeichnet; führt man weiter das Verhältnis “ als relative 

oder numerische Exzentrizität mit dem Zeichen & ein, so schreibt sich 
schließlich die Brennpunktsgleichung der Ellipse:

P
1 — & cosg

§ 4. Die Gerade.

172. Die Gleichung ersten Grades. Jede Gleichung ersten 
Grades in x, y stellt eine Gerade dar.

Die allgemeine Form einer solchen Gleichung lautet:

Ax + By + C = 0. (1)

Die Aussage wird bewiesen sein, wenn gezeigt ist, daß die Gleichung 
bei allen zulässigen Annahmen über ihre Koeffizienten eine Gerade 
bestimmt.

1. A + 0, B = 0, C+0; die Gleichung

Ax + C = 0 (2) 
c

führt zu x =---- T und kennzeichnet alle Punkte mit einer und der- 

selben bestimmten Abszisse; ihr Ort ist eine Gerade parallel der 
Ordinatenachse.

2. A = 0, B + 0, C + 0; die Gleichung

By + C^0 (3)
Cergibt y = — B und kennzeichnet alle Punkte mit einer und derselben 

bestimmten Ordinate; der Ort solcher Punkte ist eine Gerade parallel 
der Abszissenachse.

3. A = 0, B = 0, C = 0 führt zu Ax = 0, und dies kann nur mit 

x = 0 (4) 

bestehen; hierdurch sind aber die Punkte der Ordinatenachse selbst 
charaktersiert.

4. A = 0, B={= 0, C = 0 hat By = 0 und dies wiederum 

y - o (5) 

zur Folge; hiermit sind die Punkte der Abszissenachse gekennzeichnet.
5. A + 0, B + 0, C=0 liefert die Gleichung

Ax + By = 0, (6) 
aus der 3 = — A folgt; alle Punkte aber, deren Koordinaten in einem 

konstanten und bestimmten Verhältnisse zueinander stehen, liegen 
auf einer bestimmten Geraden durch den Ursprung.
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6. A + 0, B + 0, C + 0 endlich führt auf

A C —
y - - bx - B (7)

und läßt die zu einer Abszisse gehörige Ordinate als Summe aus 
— Ax und — $ erscheinen; das erste ist nach 5. die Ordinate einer 

bestimmten Geraden durch den Anfangspunkt, das zweite eine konstante 
Größe; es sind also die Ordinaten jener Geraden um eine konstante 

cStrecke verlängert oder verkürzt, je nachdem — B positiv oder negativ 

ist; der Ort der so erhaltenen Punkte ist eine Gerade von allgemeiner 
Lage, die parallel ist der durch den Anfangspunkt gehenden Geraden (6).

Hiermit ist der Beweis erbracht, und er gilt für jedes Parallel- 
k o ordinatensystem.

173. Segmentgleichung. Die zu y = 0 gehörige Abszisse a 
und die zu x = 0 gehörige Ordinate b sind die Abschnitte oder 
Segmente, welche die Gerade

Ax + By + C = 0 (1) 

auf den Koordinatenachsen bildet; sie ergeben sich aus den Ansätzen

Aa + C = 0, Bb + C = 0, 
und zwar ist 

«=-% b=-%i (2) 
C C 

ersetzt man also A, B in (1) durch , —— und unterdrückt . a ’ b 
hierauf den Faktor C = 0, so entsteht die Segmentgleichung der 
Geraden:

“+=1. (3)
a b 2

Ihre Herstellung aus der Gleichungsform (1) erfolgt also mittels
der Division durch — C.

174. Richtungswinkel der Geraden. So­
lange eine Gerade nicht gerichtet ist, d. h. so­
lange nicht ein bestimmter Sinn in ihr als posi­
tiv festgesetzt ist, kann ihre Richtung durch 
den hohlen Winkel «, Fig. 65, bestimmt werden, 
den sie mit der gerichteten x-Achse bildet. Bei 
dieser Auffassung haben parallele Gerade gleiche 
Richtungswinkel.

Ist g durch Ax + By + C = 0, so ist die Parallele g' durch den
Ursprung dargestellt durch Ax + By = 0 und

y MP sin c A
----- __________ ____________________ M ===== -- ___  • 

X 0P sin (0 — a)______ B ‘ 
0zuber, Höhere Mathematik.___________________________________________ 17 
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mit Rücksicht auf 172, (7) und 173. (2) schreibt sich dann die 
Gleichung: , , 

y = m 2 — b; (2) 

die Bedeutung von m geht aus (1) hervor, und b ist das Segment auf 
der Ordinatenachse.

Ist das Koordinatensystem rechtwinklig, also 0=7, so ist ins­

besondere m = tg « . (3)

Man nennt m, weil es in dem einen wie in dem andern Falle 
lediglich mit der Richtung der Geraden zusammenhängt, ihren Richtungs- 
koeffizienten.

Anders, wenn es sich um eine gerichtete Gerade handelt. Zieht 
man eine dazu parallele und gleichgerichtete Gerade durch 
den Ursprung, so sollen die im positiven (oder negativen) 
Drehungssinne gezählten hohlen Winkel, welche diese letztere 
Gerade mit der gerichteten x- und y-Achse bildet, als die 
Richtungswinkel «‘,ß‘ der ursprünglichen Geraden betrachtet 

werden, Fig. 66. Unter der Voraussetzung eines 
___ jy rechtwinkligen, positiv orientierten Koordinaten­

systems ist dann immer (eventuell mit Außer-
Fig. 66. achtlassung von 2 2)

*‘-«-%; (4) 

denn, fällt z. B. g' in den ersten Quadranten, so wird ß‘ als der 
negativ gezählte Komplementswinkel von a' zu nehmen sein; ähnlich 
überzeugt man sich von der Richtigkeit des Ansatzes (4) bei jeder 
andern Anordnung.

Man nennt cos «‘, cos ß‘ die Richtungskosinus der Geraden und hat 
also im rechtwinkligen System

cos ß‘= sin «‘. (5)
Was nun den positiven Sinn in einer nicht durch den Ursprung 

gehenden Geraden anlangt, so sei hierüber folgende Vereinbarung ge­
troffen: Als positiv möge in einer solchen Geraden derjenige Sinn 
gelten, bei dessen Verfolgung der Ursprung zur linken Seite der 
Geraden liegt. Die Festsetzung steht im Einklang mit dem positiven 
Drehungssinn der Ebene.

Zu jeder Geraden g gehört eine Normale n durch den Ursprung; 
um auch diese zu einer gerichteten zu machen, werde als positiver 
Sinn derjenige bestimmt, der vom Ursprung zur Geraden führt; die 
so gerichtete Normale werde als positive Normale bezeichnet. Diese 
Festsetzung ermöglicht es, die beiden Seiten der Geraden voneinander 
zu unterscheiden; als positiv gelte diejenige Seite, nach welcher die 
positive Normale verläuft, die andere als negativ; letztere enthält den 
Ursprung (Fig. 67).
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Sind nun wie vorhin «, ß‘ die Richtungswinkel der gerichteten Geraden, 
«, ß die der gerichteten Normalen, so bestehen immer (eventuell mit Außer­
achtlassung von 22) die Relationen:

«-«+7, B‘=8+7 (6)

175. Hessesche Normalgleichung.1) 
Man kann zur Beschreibung einer Geraden 
die absolute Länge p der vom Ursprung zu 
ihr geführten Normalen und die Richtungs- 
winkel «, ß ihrer positiven Richtung verwenden; Fig. 67.

unter der Voraussetzung eines rechtwinkligen Systems besteht zwischen 
diesen die Beziehung 174, (4).

Sind a, b die Segmente, welche die Gerade g, Fig. 67, auf den 
Achsen bildet, so schreibt sich ihre Gleichung:

x
a

7 —1 = 0. b
Nun ist aber unter allen Umständen

a cos « = b sin « = p;

erweitert man also den ersten Bruch in der vorstehenden Gleichung 
mit cos«, den zweiten mit sin a und macht von dem letzten Ansätze 
Gebrauch, so entsteht die Gleichung:

x cos « + y sin « — p = 0, (1) 

die man als die Normalgleichung von Hesse bezeichnet.
Um die allgemeine Gleichung

Ax + By + C = 0 (2) 
auf diese Form zu bringen, wird man sie mit einem Multiplikator A 
multiplizieren, der so gewählt werden muß, daß

2342+ 2382= 1
sei, damit kA, kB tatsächlich den cos und sin eines Winkels dar- 
stellen: die Unbestimmtheit des Vorzeichens von

eVA‘+B"’

die durch den Zeichenfaktor & (+ 1 oder — 1) angezeigt ist, behebt 
sich durch die weitere Forderung, daß kC mit —p übereinstimmen, 
daher negativ sein muß; sonach hat k das entgegengesetzte Zeichen 
von C zu erhalten, was durch den Ansatz

8 = — sgn C (4) 
ausgedrückt werden soll.

1) Nach 0. Hesse benannt, der zur Ausbildung der modernen Methoden 
der analytischen Geometrie wesentlich beigetragen hat.

17*
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Um also die allgemeine Gleichung (2) auf die Hessesche Normal­
form umzuwandeln, hat man sie durch — sgn C^/A2-]- li2 zu dividieren.

Hiernach sind die Richtungskosinus der positiven Normalen von (2):

• o A. B cos a = sin 0 = , , cos p = sma = —   ,— sgn CVA2+ B2 —sgnCy/A^ + B2 

und wegen der Beziehungen (6) der vorigen Nummer die Richtungs­
kosinus der gerichteten Geraden selbst:

, B , A COS C = — -- , COS 3 = - ------- • sgnCVA2+ B2 sgn CVA2+ B-

Nach der vorstehenden Regel ergeben sich beispielsweise für die 
Geraden

3x — 4y — 5 = 0, x + 2y + 3 = 0

die Hesseschen Normalgleichungen

3 41 2 3 , x — . y — 1=0, -x — —y   = 0,5 5 • ‘ V5 V5J V5
aus denen man ersieht, daß das Lot der ersten, von der absoluten 
Länge 1, vom Ursprung aus in den vierten, das Lot der zweiten,

3von der absoluten Länge —, in den dritten Quadranten verläuft.

176. Parametrische Darstellung der Geraden. Ist M. 
(xo/Yo) ein fester Punkt der gerichteten Geraden g, « ihr Richtungs­
winkel, s der Abstand des variablen Punktes M{xfy) von M,, so 
ist unter Voraussetzung eines rechtwinkligen Koordinatensystems:

T—X= s cos a, y — y^ = s sin «; 

daraus ergeben sich die parametrischen Gleichungen der Geraden g:

x = To + s COS « 
y = y^ + s sin «; (1)

s gilt darin als positiv oder negativ, je nachdem die Strecke MQM 
die positive oder negative Richtung der Geraden hat.

177. Geradenbüschel, bestimmt durch einen Punkt. Die 
allgemeine Gleichung der Geraden

Ax + By + C = 0 (1)
enthält drei Koeffizienten, die sich auf zwei Konstanten reduzieren 
lassen, indem man durch einen von ihnen die Gleichung dividiert.
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In der Tat treten in den speziellen Gleichungsformen

a b
y = m x — b

x cos a — y sin « — 2 =0 

nur zwei Konstanten oder Parameter auf: die Gesamtheit der Geraden 
in der Ebene ist von der Mächtigkeit oc2.

Daraus folgt, daß eine Gerade im allgemeinen durch zwei Be­
dingungen bestimmt ist.

Ist der Geraden nur eine Bedingung auferlegt, so bleibt einer 
der Parameter unbestimmt, aus der Gesamtheit der Geraden ist eine 
niedere Gesamtheit von der Mächtigkeit o01 herausgehoben.

Einen wichtigen Fall dieser Art bilden die Geraden durch einen 
gegebenen Punkt, deren Gesamtheit man einen Geradenbüschel nennt. 
Heißt der gegebene Punkt M,(x,/y1), so führt die Forderung, daß er 
der Geraden angehöre, zu der Bedingung

Ax^B^A 0=0 (2) 

zwischen den Koeffizienten, mit deren Hilfe sich einer derselben, am 
einfachsten C, aus (1) eliminieren läßt; man erhält so

A^x- x^ + B(y — y^ - 0, (3)
A 

oder, indem man — B = m setzt,

y — y^ m(x - «,) (4) 

als Gleichung des Geradenbüschels mit dem Träger Mr
Im rechtwinkligen System kann derselbe Geradenbüschel auch 

durch die Gleichungen (176)
x=x+s cos «

y = Y1 — S sin &
dargestellt werden, wenn man darin nicht allein s, sondern auch a als 
veränderlichen Parameter auffaßt; bei festgehaltenem a und variablem s 
bestimmen die Gleichungen (5) eine spezielle Gerade des Büschels, 
diejenige, die gegen die gerichtete x-Achse den Richtungswinkel « hat.

178. Gerade durch zwei Punkte. Durch zwei Punkte 
M,(x,/y,), M,(x,/Y2) ist eine Gerade bestimmt. Denn jede Gerade, 
die durch den ersten Punkt geht, ist in der Gleichung

A(x — x,) + B(y — y) = 0

enthalten; soll sie auch durch den zweiten Punkt gehen, so müssen 
die Koeffizienten A, B der Bedingung

A(x, “ x,) + B(J, - y,) = o
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Fig. G8.

entsprechen; aus beiden Gleichungen ergibt sich durch Elimination 
von A, B: x -z, _ y—J, 1

oder in anderer Anordnung:

J—y,=*%(—x,) (2) 

als Gleichung der durch M, und M, bestimmten 
Geraden.

179. Teilungsverhältnis in der Ge- 
>x raden. Ein Punkt M in einer Geraden g, 

Fig. 68, bestimmt in bezug auf eine in der 
Geraden gegebene Strecke M, M, ein Teilungsver­

hältnis] es soll darunter das Verhältnis
M, M
MM, (1)

verstanden werden. Umgekehrt ist die Lage eines Punktes in der 
Geraden durch die Angabe seines Teilungsverhältnisses bestimmt, 
A also eine Koordinate des Punktes.

Der Definition (1) zufolge ist A positiv für einen Punkt der 
Strecke M.M2, negativ für einen Punkt außerhalb derselben und 
unabhängig davon, welche Richtung in der Geraden als positiv an­
genommen wird. Während der Punkt die genannte Strecke durch­
läuft, variiert Z von 0 bis o, und indem M den Punkt M, über­
schreitet, ändert 2 sein Vorzeichen und variiert bei der weiteren Be­
wegung von M von — o bis — 1, und nimmt schließlich die Werte 
von — 1 bis 0 an, indem M von der anderen Seite her immer näher 
an den Ausgangspunkt M, heranrückt. Sowie jedem andern Werte 
von 2 ein und nur ein bestimmter Punkt entspricht, ordnet man auch 
dem Werte — 1 einen einzigen Punkt zu und nennt ihn den unendlich 
fernen Punkt der Geraden. Dem Mittelpunkt von M,M, entspricht 
2 = 1.

Bezeichnet man mit x^ya ^^y^ x/y die Koordinaten von M1, 
M,, M, und beachtet man, daß auch

P,P_QQ _ , 
PP, QQ, "‘ 

also
2—, _3—9 42
&, — x y^—y 

ist, so ergibt sich:

"-1+1" (2)
Da durch diese Gleichungen, indem man 2 von — oc bis o 

variieren läßt, nach und nach alle Punkte der Geraden g zur Dar­
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Stellung kommen, so kann man sie als parametrische Gleichungen der 
durch die Punkte M,, M, bestimmten Geraden auffassen.

Zwei Punkte M‘, M" mit den Teilungsverhältnissen A‘, A" be­
stimmen das Doppelverhältnis

M, M‘ Mx M" _ ä ,
M’M, M"M,FA”’ (5) 

das positiv oder negativ ausfällt, je nachdem die Punkte in bezug 
auf M,, M, gleichartig oder ungleichartig liegen, d. h. beide innen 
oder außen, oder einer innen, einer außen.

Ist insbesondere 2‘ = — A", so nimmt das Doppel Verhältnis den 
Wert — 1 an, und man sagt dann, daß die Punkte JI', M" die Strecke 
M,M, harmonisch teilen; da aus (3) auch

M' Mt M‘ M, _ V 
M, M" : M, M" Ta"

folgt, so teilen bei l"= — X' auch die Punkte M,, M, die Strecke 
M’M" harmonisch, und man sagt daher, die Punktepaare M,, M, 
und M‘, JI" trennen einander harmonisch, nennt auch M,, M2, JI', JI" 
vier harmonische Punkte.

Bezeichnet man die relativen Strecken JI^JI^, M,M‘, M,M" der 
Reihe nach mit s, s', s", so lautet der Ansatz (3) für harmonische 
Punkte so:

s s" _  1
s — s' ’ s — s"

daraus ergibt sich durch Umformung die für harmonische Punkte 
charakteristische Streckenrelation:

die auch in der Gestalt ________.
M, M. M” 

1(1 + 1) = 1

2 8 s Fig. 69.

geschrieben werden kann. Den linksstehenden Ausdruck bezeichnet 
man als das harmonische JUttel von s', s".

Um zu M‘ den vierten harmonischen Punkt in bezug auf M,, M,, 
Fig. 69, zu finden, schneide man zwei beliebige Parallelen durch JL, M, 
mittels einer durch M‘ laufenden Transversale N|N,, übertrage M,N, 
nach JI2N2 und bringe M1N mit der Geraden zum Schnitt; dieser 
Schnittpunkt ist der gesuchte JI", da sein Teilungsverhältnis, vom 
Zeichen abgesehen, dasselbe ist wie das von JI'.

Dem Mittelpunkt von M, M, entspricht der unendlich ferne Punkt 
der Geraden als vierter harmonischer.



264 Analytische Geometrie der Ebene. § 4. Die Gerade.

Auf Grund von (2) sind

„ _ x,+1x, , _ Y, + Ay, 
" 1+2 ‘ • 1+2 

die Koordinaten zweier Punkte M', M", die M,M, harmonisch teilen 
in den Verhältnissen 2 und — 2(1 + 1) beziehungsweise.

Als Beispiel der Anwendung des Teilungsverhältnisses diene die 
Bestimmung der Koordinaten des Schwerpunktes S eines Dreiecks 
M, M, M, aus den Koordinaten seiner Eckpunkte.

Der Mittelpunkt M‘ der Seite M, M, hat das Teilungsverhältnis 1, 
daher sind

, _ x, + x, — Y, + Y,
• — 2 » 9 — 2

seine Koordinaten; der Schwerpunkt S teilt M’M, in dem Verhältnis 
3 , daher sind

x 125_«,+x,+«, ,_" 12"3,+y,+ y, 

1+1 8 ’ 1+3 

seine Koordinaten.

180. Abstand eines Punktes von einer Geraden. Die in 
der festgesetzten Art (174) gerichtete Gerade g, Fig. 70, sei im recht­

winkligen System durch ihre Hesse sehe Nor­
malgleichung

x cos « + y sin « — P = 0 (1) 

und der Punkt M. durch seine Koordinaten 
To, Jo gegeben.

Projiziert man den Linienzug OMJM, 
Fig- 70 rechtwinklig auf die positive Normale n von 

g, so ist die relative Länge der Projektion 

0Q= x, cos « + Yo sin a. 

und setzt man fest, als Abstand 3 des Punktes M. von g solle die 
relative Strecke PQ gelten, so ist

3 = 0 Q — OP = x cos « — Y sin a — p (2) 

und fällt positiv oder negativ aus, je nachdem M. auf der positiven 
oder negativen Seite der Geraden liegt.

Per relative Abstand eines Punktes von einer Geraden wird also 
erhalten, indem man seine Koordinaten in die linke Seite der Hesse­
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sehen NormalgleKhung der Geraden statt der veränderlichen Koordinaten 
einsetzt.

Ist hiernach die Gerade durch die Gleichung
Ax + By + C=Q (3) 

gegeben, so ist nach den Ausführungen in 175:
s _ Ax + B y0 + C. (4)

—sgnCyA?+B?
Nach dieser Vorschrift findet man den Abstand des Punktes 

M,(3/5) von der Geraden bx — 12y + 3 = 0:
s _ 15—60+3 _ 42

— V25 + 144 13 ’

der durch sein Vorzeichen anzeigt, daß der Punkt auf der positiven 
Seite der Geraden liegt. Der Abstand des Ursprungs von derselben 
Geraden ist 3 3

. 0 — V25 + 144 13 

und fällt notwendig negativ aus, weil der Ursprung gemäß der ge­
troffenen Vereinbarung bezüglich jeder nicht durch ihn gehenden Ge­
raden auf der negativen Seite liegt.

181. Dreiecksfläche. Erteilt man den Eckpunkten eines Dreiecks 
eine bestimmte zyklische Ordnung, so gibt man damit seinem Um­
fang eine bestimmte Umlaufsrichtung und macht so die Dreiecksfläche 
zu einer relativen Größe. Sie soll positiv sein, wenn der Umlaufs­
sinn mit dem positiven Drehungssinn der Ebene K 
übereinstimmt (153), im anderen Falle negativ.

Betrachtet man zunächst ein Dreieck ONL M,, g 
Fig. 71, dessen eine Ecke im Ursprung liegt, so 
wird seine Fläche positiv ausfallen, wenn der Sinn 
der Strecke M, M, mit dem positiven Sinn der 
durch die Punkte M. , M, bestimmten Geraden 
übereinstimmt, im andern Falle negativ.

Die absolute Größe der Strecke M,M, er 
nuse eines Dreiecks, dessen Katheten die absol 

Fig. 71.

sich als Hypote-

renzen ihrer Endpunkte sind; ihre relative Länge ist hiernach

J,M,= «‘Y(n,-x,)*+(y, - v), e= sgn M, M,. (1)
Da die Gleichung der durch M, und M, laufenden Geraden nach 

178, (2) in der Form
(Ji -y^x~ (x, - x) y + 3,32 — 2,91 = 0 

geschrieben werden kann, so ist auf Grund der Schlußbemerkung in 
180 die absolute Länge des vom Ursprung zu ihr gefällten Per­
pendikels _ 

h =“132 “231 - , & = sgn (x, y, — xy). (2) sV(x, — x,)2 + (Y, — Y2)2‘ 8 172 21
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Daraus berechnet sich die relative Größe des Dreiecksinhaltes 
J = 3 ^M^h, d. i. 

J=2 (2,92 — 391).

Sind nun rllcplJ T2/92 die Polarkoordinaten von Mv M, in bezug 
auf OX, so folgt aus 

xc, • y, 
COs 91 =2, sin9i=r,

Cos 902 = / , sin 92 = 7, '2 ‘ 2 
daß

• / - x, y, — xc, y, sin (9,—91) =212, 1,

und weil die Punkte an die Gerade gebunden sind, so ist 92 — 9,<x, 
folglich

sgn (92 — 9,) = sgn sin (9, — 9,) = sgn (x, y2 - x, y^,

und da nach den getroffenen Vereinbarungen

sgn (9P, - 9.) = sgn Mi M,, 
so ist &‘ = 8, folglich

1 \ 12Y1J = 9 (21 32 — 2231) = 9
- - X232 (3)

Diese Formel gibt also den relativen Inhalt des Dreiecks OM{ M, 
entsprechend den über den Umlaufssinn getroffenen Festsetzungen.

Um den relativen Inhalt eines Dreiecks M.M,M, in allgemeiner 
Lage zu bestimmen, braucht man sich nur zu denken, das Koordinaten­
system sei durch Translation nach dem Anfangspunkt M, verschoben 
worden (168); dann sind X, — x^/y^ — y^ x, — x?J y, — y3 die Koordi­
naten der Punkte M,, M, im neuen System, auf das die Formel (3) 
zur Anwendung gebracht werden kann; demnach ist nun

J = 2 | (x, “ «) (J2 ~ 93) ~ (x, “ x) (J, “ 93) }

1 “183 Mi— V3
2 x, - x, J2 “ Y3

% - Es 31 - y^ 1

2,—X, 92—93 1 
x, - x, 93 - J3 1

%1 yi 1

x, 32 1

x, y^ 1
(4)

Die geometrische Tatsache, daß bei syldischer Vertauschung der 
Buchstaben M,, M,, M3 der Umlaufssinn des Dreiecks sich nicht 
ändert, hat ihr arithmetisches Äquivalen darin, daß die letztangeschriebene 
Determinante bei zyklischer Vertauschung der Zeilen ihr Zeichen nicht 
ändert; wohl aber ändert sie es bei Vertauschung zweier Zeilen, es 
kehrt sich aber auch der Umlaufssinn des Dreiecks um, wenn man 
zwei der Buchstaben miteinander vertauscht.
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Das Verschwinden der Determinante in (4) zeigt an, daß die 
drei Punkte M,, JM2, M^ in einer Geraden liegen; denn nur dann 
wird J = 0.

Haben M,, M,, M, beispielsweise die Koordinaten — 1/4, 3/2,
1 / — 6, so ist

- 1 4 1

3 2 1

1-61

-1 4 1
4 - 2 0 =1(4-40) = - 18;
2-10 0

der Umfang von M. M,M3 hat sonach den negativen Umlaufssinn und 
die absolute Größe beträgt 18 Flächeneinheiten.

182. Schnittpunkt zweier Geraden. Jedes Wertepaar x, y, 
das die Gleichungen zweier Geraden:

Ax + By + C = 0

A'x + B'y + C' = 0
(1)
(2)

zugleich erfüllt, gehört einem beiden Geraden gemeinsamen Punkte an.
Die Gleichungen geben aber eine Bestimmung für x, y nur dann, 

wenn (118)
A B| = AB’—A‘B+0 (3)

ist, und zwar besteht dann:
BC
B’C BC' — B'C

CA
C'A CA—C'A

(4)" “ AB
AB'

- AB’ — A B ‘ y — AB
A B'

AB'—AB

Man nennt den hierdurch bestimmten Punkt den Schnittpunkt der 
beiden Geraden (1) und (2).

Ist hingegen AB' — A B = 0, d. h.

während einer der Zähler in (4) oder beide nicht Null sind, so kann 
den Gleichungen (1), (2) durch kein endliches Wertepaar x, y genügt 
werden. Man behält die vorige Ausdrucksweise bei, sagt, die beiden 
Geraden haben einen unendlich fernen Schnittpunkt und bezeichnet sie 
als parallel. Demnach ist (5) die Bedingung für den Parallelismus 
von (1) und (2).

Wenn schließlich neben

AB'—A'B = Q 
auch

BC'-B'C = 0

ist, so ist auch CA'—C'A = 0; denn aus den beiden letzten Glei­
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chungen folgt ABB C = A'BB'C, woraus tatsächlich AC — A'C=0 
hervorgeht. Die Folge davon ist, daß

A B C "‘ 02 
daß also die Gleichung (2) sich von (1) nur durch den konstanten 
Faktor k unterscheidet, indem statt ihr

k(Ax + By + C) = 0

geschrieben werden kann. Der Fall läßt dann die Auffassung zu, daß 
beide Gleichungen eine und dieselbe Gerade darstellen, oder zwei 
vereinigt liegende Gerade, so daß jeder Punkt der einen zugleich ein 
Punkt der andern ist.

183. Dreiseitfläche. Die Bestimmung der relativen Fläche eines 
von drei Geraden 91, g^, g3:

AT + Bty +0=0

A,x + B2y + C= 0 (1)
A^x + B^y + C, = 0

begrenzten Dreiecks ist mit Hilfe der vorigen Aufgabe auf den Fall 181 
zurückführbar. Bezeichnet man die Schnittpunkte der Geradenpaare 
9,93, 9391, 9199 folgeweise mit M,, M,, M3, ihre Koordinaten mit 
X/Y1, X2/ Y,, x^!yz^ so ergibt sich für diese mit Hilfe der Unter­
determinanten von

4BC1 
A, B,C, (2)

zufolge 118, (4) die folgende Darstellung:

^i = — , 91 =,,
X, == > y^ = ,

_ ft93 .»
73 73

Mithin ist der relative, von der Ordnung der Geraden und hier­
mit von dem Umlaufssinn M|M,M, abhängige Fläche des Dreiecks:

J-}

“1 ft 1
71 71 &,B,Y
&, ft . 1D2 /3)
y^ 72 271 72 73 144271 72 7s
«, ft 1 «a ßa 73
73
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Das Verschwinden der Determinante I) zeigt an, daß die drei 
Geraden (1) durch einen Punkt gehen; denn nur in diesem Falle ist 
die von ihnen umschlossene Fläche Null.

184. Winkel zweier Geraden. Von dem Winkel zweier 
Geraden kann in bestimmter Weise nur dann gesprochen werden, 
wenn sie gerichtet sind und ihre Reihenfolge festgesetzt ist. Sind 
91, 9, zwei gerichtete Gerade, g{, gi die gleich gerichteten Parallel­
strahlen durch O, «1, «2 ihre Richtungswinkel, so soll der Winkel co 
von 91 und g2 definiert werden durch:

co = « — at. (1)

Sind die Geraden nicht gerichtet, und ist ihre Ordnung nicht fest­
gesetzt, so bestimmen sie zwei absolute Winkelgrößen, die sich zu 
180° ergänzen, und eine davon ist durch den Winkel der positiven 
Normalen gegeben; es ist diejenige, in deren Winkelfläche der Ur­
sprung nicht enthalten ist. Nennt man die Richtungswinkel der Nor­
malen «{, «{, so ist, vom Vorzeichen abgesehen,

co = «2 — a{ (2) 

einer der Winkel der Geraden.
Hat man die Hess eschen Normalgleichungen der Geraden, so 

enthalten sie unmittelbar die Daten zur Berechnung von

cos co' = cos az cos &{ + sin «2 sin «i, (3) 

sin co' = sin a^ cos aj — cos a^ sin a^. (4)

Sind die Geraden in der allgemeinen Form

Ax + B,y +0=0 (5)

A,x + B,y + C, = 0 (6) 

gegeben, so setze man sie nach der in 175 entwickelten Regel in die 
Hessesche Normalform um und erhält dann nach Vorschrift von (3) 
und (4)

, A, A, — B, B, COS CO = ----- —- 2_____ — 
sgnC, C,V(Ai+By)(A3 + B])’

A, B, — A, B, sm co =--------- —— —. (Q)
sgn C2 y^A2 + Bi)(A3 + B3) •

Die beiden Geraden (5), (6) stehen aufeinander senkrecht, wenn 
cos c‘ = 0, wenn also 

A,4, + B, B2 = 0, (9) • 

und sie sind zueinander parallel, wenn sin co' = 0, d. h. wenn

4-% (10)
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Für die Geraden
3x — 4y — 8 = 0

5x + 12y + 4 = 0 
ergibt sich beispielsweise 

wodurch der Winkel (21, 22) als negativer spitzer Winkel gekenn­
zeichnet ist; der absoluten Größe -nach bestimmen die Geraden die 
Winkel 59029’23" und 120030’37".

Die Geraden 
2x— 3y—5 =0

— 4x + 6y + 7 = 0

sind parallel, weil ihre Gleichungen die Bedingung (10) erfüllen, und 
die Geraden

3x + 4y — 2 = 0
8x — 6y + 3 = 0

stehen aufeinander senkrecht, weil sie der Bedingung (9) genügen.
185. Geradenbüschel, bestimmt durch zwei Gerade. Zwei 

Gerade 91, 92, die durch die Gleichungen
91 = 4x + BJ+C =0 (1)

92 - A, + ^y + C = 0 (2) 
gegeben sein mögen, bestimmen den Geradenbüschel, der ihren Schnitt­
punkt zum Träger hat. Alle Geraden dieses Büschels sind in der 
Gleichung

91 - Ag, = A,x + ^y + C, — A(A,% + ^y + Q - o (3) 

enthalten, in der A einen willkürlichen Parameter bedeutet; denn diese 
Gleichung stellt bei angenommenem 2 eine Gerade g; dar, weil sie in 
x, y vom ersten Grade ist, und da sie ferner durch jenes Wertepaar 
x, y befriedigt wird, das den Gleichungen (1) und (2) zugleich ge­
nügt, so geht 92 durch den Schnittpunkt von 91 und y2.

Bei der hier eingeführten Schreibweise dienen die Buchstaben 
yr, g2 zur Bezeichnung der Gleichungspolynome Ax — Bxy — C, 
A,x + B2y — C2, so daß man die drei Geraden 91, g2, g; kurz dar­
stellen kann durch die symbolischen Gleichungen1):

1) Die abgekürzte Schreibweise der Gleichungen ist zu einer wichtigen 
Methode der analytischen Geometrie geworden; wiewohl in ihren Anfängen auf 
französische Geometer zurückgehend, hat sie ihre Ausbildung doch erst durch 
J. Plücker erhalten.

9, = 0, y2 = Q, 9i - ^92 = o.
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Multipliziert man die erste Gleichung mit — 1, die zweite mit 

A, so geben alle drei zur Summe eine identische Gleichung. Diese 
Bemerkung kann dahin verallgemeinert werden, daß drei Gerade glr 
92, g3} zu deren Gleichungen sich Multiplikatoren u,, u,, U3 bestimmen 
lassen derart, daß

4191 + 4292 + 4,93 — 0
ist, durch einen Punkt gehen; denn aus dieser Relation folgt

u, u,93 =-4, 91—«, 92,
somit ist 9, = 0 gleichbedeutend mit "1 9, + "2 g^ = 0 oder gt — kg2 = 0, 

s Us 
wenn “= — 2 gesetzt wird; das heißt aber, daß g3 dem Büschel der 

Geraden gr, g^ angehört.
Aus dem Büschel (3) wird eine einzelne Gerade durch Speziali­

sierung des Parameters A herausgehoben; so ergibt sich mit A = 0 
die Gerade 91 = 0, mit l = c die Gerade 92 = 0, wie man erkennt,, 
wenn man (3) vorher auf die Form 1 91 — 92 = 0 gebracht hat. Ist 

der Büschelgeraden eine Bedingung auferlegt, so bestimmt sich durch 
diese das A. Zwei Fälle mögen besonders angeführt werden.

Um jene Gerade des Büschels (3) zu finden, die der Geraden

A’x + B'y + C' = 0 (4)

parallel ist, bringe man (3) in die Form

(A, - 2 A,)« + (B, - XB^y + (C, - iC) - 0

und wende die Bedingung 184, (10) an; sie lautet

und ergibt 

so daß

A\B. - XB^ - B\Är - XA^ = 0
, _ A'B1 -B'A, 
" A'B. — B'AA 

(AB,-BA,)(4x+By+C)-(AB—B‘A)(A,x+B,J+C2)=0 (5) 
die Gleichung der gesuchten Geraden ist.

Soll diejenige Gerade des Büschels bestimmt werden, die zur 
Geraden (4) senkrecht ist, so hat man in Anwendung der Bedingung

184, (9): A‘(A, _ 2 A,) + B‘(B, _ ^ = o,
woraus

mithin ist
_ A’A + B’B 

A’A, + B’B,’

(AA,+BB,)(A,x+By+C)—{A A+B B)(A,a+ B2y +C2)—0 (6) 

die Gleichung- der verlangten Geraden.
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186. Teilungsverhältnis im Geradenbüschel. Die beiden 
Geraden 91, 92, Fig. 72, welche das Strahlenbüschel bestimmen, seien

in der 174 festgesetzten Art gerichtet und 
durch ihre Hess eschen Normalgleichungen

91 = x cos «1 + y sin &, — 21 = 0 (1)

92 = x cos «2 + y sin «, — P2 = 0 (2)

gegeben. Sie zerlegen die Ebene in vier Felder, 
die sich in zwei Paare gegenüberliegender sondern; 
geht keine der Geraden durch den Ursprung, so 
lassen sich die Paare derart voneinander unter­

scheiden, daß man das den Ursprung enthaltende als innere Winkel- 
fläche, das andere als äußere Winlcelßäche der beiden Geraden bezeichnet.

Es sei nun
9; = 9t~ '-9t = 0 (3)

eine bestimmte Gerade des Büschels und M^x/y) ein Punkt derselben; 
dann haben die Ausdrücke g^g^, mit diesen Koordinaten gebildet, die 
Bedeutung der Abstände Ö,, 3, des Punktes M von den beiden Grund- 
geraden; für diese Abstände besteht somit die Gleichung:

ö, - 20, = 0, 
aus der sich

24* * sin (9192)
3, sin (9192) 

ergibt.
Bei der vorausgesetzten Darstellung der Geraden bedeutet also 

der Parameter A das Abstandsverhältnis eines beliebigen Punktes der 
g} von den beiden Grundgeraden, zugleich das Sinusverhältnis der 
Winkel, in welche (glf g^) durch g} geteilt wird. Man bezeichnet 
dieses letztere Verhältnis als das Teilungsverhältnis der Geraden g- in 
bezug auf 91, 92; es ist positiv in der inneren Winkelfläche, negativ 
in der äußeren, weil im ersten Falle 31, 3, entweder beide positiv 
oder beide negativ sind, während sie im zweiten Falle ungleiche 
Zeichen haben; unabhängig ist das Teilungsverhältnis von der Reihen­
folge der Grundgeraden.

Für die Halbierungslinie der inneren Winkelfläche ist 2 = 1, für 
jene der äußeren Winkelfläche = — 1; hiernach sind

-9=0 (6)
g. +9, =0

die Gleichungen dieser Halbierungslinien.
Sind g\ g" zwei Gerade des Büschels, so nennt man den Quo­

tienten ihrer Teilungsverhältnisse ihr Doppelverhältnis in bezug auf 

91‘ 92 sin (9, g). sin (9,9") _ U (6)
sin (g’g,) sin (g" g,) 2" -
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Dieses Doppelverhältnis ist positiv, wenn beide Gerade derselben 
Winkelfläche angehören, und negativ, wenn sie in verschiedenen 
Winkelflächen verlaufen; für das Doppelverhältnis kommt es auf den
Sinn der Grundgeraden nicht an.

Ist das Doppelverhältnis insbesondere = — 1, 
so nennt man die Teilung harmonisch, die vier 
Geraden 91, g2, g', g" harmonische Strahlen.

Um zu g' den vierten harmonischen Strahl 
g" zu konstruieren, mache man, Fig. 73, einen 
Punkt M von g' zum Eckpunkt eines Parallelo­
gramms MNrSN2, dessen Seiten die Richtungen 
von gv g2 haben; dann ist g" parallel der Dia­ Fig. 73.

gonale N|N,; denn die Diagonalen eines Parallelogramms teilen dessen 
Winkel in gleichem absoluten Sinusverhältnis.

Es bleibt noch festzu stellen, welche Bedeutung dem Parameter g 
zukommt, wenn man den Geradenbüschel durch die Gleichung

91 - «92 = 0, (7)
die Grundgeraden aber durch die Gleichungen

gr - 4,x + BLy +C= 0, (8)

g2 = A,= + B2y + C2 = Q (9) 
darstellt.

Setzt man in die Hessesche Normalform um, so schreibt sich (7):

91 ____  sgn c,VA; + B 9,___ _ 0 
sgn C, VÄl+Bl " sgn C, VA? + B? sgn C, VA3+ B2

und es vertritt nun u sgn CVA3 + B3 das frühere 2: infolgedessen ist 
sgn C,VAi + B{

u—*gnG,VAt+B1, 
sgn C,VA]+B]

187. Beispiele. 1. Ordnet man das Dreiseit 9,9293, dessen 
Ecken mit A,, A,, As bezeichnet werden mögen, so an, daß der Ur­
sprung im Innern der Dreiecksfläche liegt, so schreiben sich die 
Halbierungslinien der Innenwinkel in Hessescher Normalform:

9, — 9 = 0
9, - 91 = 0

91 - 92 = 0;
da die Summe dieser Gleichungen eine Identität ergibt, so schneiden 
sich die genannten Halbierungslinien in einem Punkte (Mittelpunkt 
des eingeschriebenen Kreises).

Czuber, Höhere Mathematik. 18
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2. Die Halbierungslinien des Innenwinkels bei A, und der Außen­
winkel an den beiden andern Ecken sind durch die Gleichungen

92 - 9 -a = 0
9 a + 9i - 0
9i + 9^ = 0

dargestellt, deren Summe, nachdem man die dritte mit — 1 multi­
pliziert hat, 0 = 0 ergibt. Es schneiden sich also die Halbierungs­
linie eines Innenwinkels und die Halbierungslinien der beiden nicht an­
liegenden Außenwinkel in einem Punkte (Mittelpunkte der ange­
schriebenen Kreise).

3. Nennt man die Kosinus der inneren Winkel bei A,, A,, A, 
der Reihe nach c., c,, c., so sind - ,3, ‘1 die Teilungsverhältnisse, 

nach welchen die Winkel des Dreiseits durch die Höhen geteilt werden: 
folglich sind die Höhen durch die Gleichungen

^92 ~ (93 = 0

4193 - C91 = o
c29i — 6192 = 0

bestimmt; multipliziert man diese mit C,, C,, C3 und bildet hierauf die 
Summe, so entsteht 0=0, womit erwiesen ist, daß sich die Höhen 
in einem Punkt schneiden.

4. Bezeichnet man die den Eckpunkten A,, A9, A, gegenüber­
liegenden Seiten mit a1} a^, a3, so gehören zu den Mittellinien des 

Dreiecks in bezug auf die Winkel die Teilungsverhältnisse —, —, —;
n C3 C1 C2 

diese Bemerkung führt zu dem Nachweis, daß sich die drei Mittel­
linien in einem Punkte schneiden.

5. In bezug auf die Geraden

62 — SJ + 3 = 0

3x — 4y — 5 = 0

hat die ihrem Büschel angehörende Gerade

62 — 8y + 3 + 3x + 4y—5 = 0,

d. i. 9x — 4y — 2 = 0 das Teilungsverhältnis

_  V3*+43 _ 1
—V6*+82 2 ‘

aus dessen Vorzeichen zu erkennen ist, daß sie in der inneren Winkel­
fläche liegt.
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§ 5. Der Kreis
188. Gleichung des Kreises in rechtwinkligen Koordi­

naten. Drückt man die geometrische Tatsache, daß ein beliebiger 
Punkt M(xly) des Kreises vom Mittelpunkt L(a/b) die Entfernung 
r hat, analytisch aus, so ergibt sich die Gleichung des Kreises, die 
in rationaler Form lautet:

(x — a)2 + (y - b) - r3. (1)

An der entwickelten Form

a3+y- 2az — 2by + a’+b - = 0 (2) 
bemerkt man, wenn man sie mit der allgemeinen Gleichung zweiten 
Gnade8: Az? + 2 Bxy + Cy2 + 2 Da + 2 Ey + F - 0 (3) 

vergleicht, das Fehlen des Gliedes mit xy und die Gleichheit der 
Koeffizienten von x2, y2, so daß man die Kreisgleichung unter die all- 
gemeine Form , 
> A(x2 + y2) + 2 Dx + 2 Ey + F = 0 (4) 

stellen kann. Mit (2) verglichen führt dies zu
2 D o 2 E F 2 i 79 2 A = - 2a, A = - 2b, A=+b— 73, 

woraus sich
D , E VD2—E2— AF .

“=A‘ 6=A ‘F—A— (5) 

ergibt.
Setzt man die Koeffizienten in (4) als reell und A = 0 voraus, 

so sind die Koordinaten von 2 reell und endlich; hingegen fällt r nur 
dann reell aus, wenn

F + F-AF^

tritt das Gleichheitszeichen in Kraft, so wird 7=0; bei D2 + E2 — AF< 0 
gibt es also keinen reellen Punkt, der der Gleichung (4) genügt.

Um eine einheitliche Ausdrucksweise zu haben, sagt man unter 
allen Umständen, die Gleichung (4) stelle einen Kreis dar, der reell, 
ein Nullkreis oder imaginär sein kann.

189. Gleichung des Kreises in schiefwinkligen Koordi­
naten. Bezeichnet 0 den Koordinatenwinkel, so erhält die geometrische 
Grundeigenschaft des Kreises den analytischen Ausdruck

(x — a)2 + (gj — b)2 + 2 (x — ai)(y — 6) cos 0 = r2. (1)

Die entwickelte Form

x2 + 2xy cos 0 + y2 — 2(a + b cos@)x — 2(6 + a cos &)y

+ a2 + 62 + 2ab cos 0 — r2 = 0 (2) 
18* 



276 Analytische Geometrie der Ebene. § 5. Der Kreis.

fällt unter den Typus:

A(x? + y?) + 2Bxy + 2Dx + 2Ey + F = 0, \A | > B 

und zwar ist P
. = COS 0 4
7 = — (a +b cos 6)

5 = — (b + a cos 6)

I= a+b+ 2 ab cos 0 - 2;

aus diesen Gleichungen ergeben sich cos 0, a, b, r als Funktionen der 
Koeffizienten.

Der bezeichnende Unterschied gegenüber der Gleichung in recht­
winkligen Koordinaten ist das Auftreten eines Gliedes mit xy.

190. Polargleichung des Kreises. Be­
zeichnet man die Koordinaten des Mittelpunktes 
& mit c, y, den Radius mit a, Fig. 74, so schreibt 
sich die Gleichung des Kreises:

72 + c2 — 2 er cos (g — 7) = a2. (1)
Geht insbesondere der Kreis durch den Pol,

so ist c = a, und die Gleichung vereinfacht sich dann auf

72 — 2ar cos(g — 7) = 0,

und dies hat außer der von g unabhängigen Wurzel r = 0 noch die

Fig. 75.
Kreise k, k', Fig.

weitere
r = 2 a cos (9 — 7). (2)

Liegt der Mittelpunkt des Kreises im 
Pol, so ist C =0, und die Kreisgleichung er­
langt die einfachst mögliche Form r = a 
(157).

Von der Gleichungsform (2) kann, um 
ein Beispiel zu geben, bei Lösung der 
folgenden Aufgabe Gebrauch gemacht werden: 
Durch den einen Schnittpunkt 0 zweier 

75, eine Gerade zu führen, auf der die beiden 
Kreise gleiche Sehnen abschneiden. Wählt man nämlich 0 als Pol 
und einen beliebigen von 0 auslaufenden Strahl als Polarachse, so 
haben die Kreise Gleichungen der Gestalt

r = 2a cos (g — 7), 

r = 2 a' cos (g — y‘).
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Ist g die unbekannte Amplitude der einen Sehne, so ist g — a die 
Amplitude der andern; man hat also zur Bestimmung von g die 
Gleichung: , , , 

a cos (9 — 7) — a cos (9 — 7 ) = 0, 

die sich umformen läßt in

(a cos y — a cos 7‘) cos g + (a sin 7 — a sin 7) sin 9 == 0, 

woraus .( COS y — O COS y to ( == — . -—•21 a sin 7 — a sin 7

Es sind aber a cos y/a sin y, a' cos y f a sin y' die rechtwinkligen Ko­
ordinaten der Mittelpunkte S, &‘, folglich a cos y + a' cos y I a sin y 
— a’ sin y' die Koordinaten der vierten Ecke P des aus 09, O&‘ 
konstruierten Parallelogramms; die gesuchte Gerade steht also senk­
recht zu OP.

191. Kreis durch drei Funkte. Die Gleichung des Kreises 
in rechtwinkligen Koordinaten enthält vier Koeffizienten, daher, da 
sich einer davon durch Division beseitigen läßt, drei Konstanten. 
Folglich bestimmen im allgemeinen drei Bedingungen einen Kreis. 
Der nächstliegende Fall ist der, ihn durch drei gegebene Punkte zu 
führen.

Sind M,(x,/y,)(i = 1, 2, 3) diese Punkte, so sind die Koeffizienten 
in der Gleichung

A(x? + y?) + 2 Da + 2 Ey + F = 0 (1)

so zu bestimmen, daß die Gleichungen

A(x + 5) + 2D^ + 2 EV1 + F = 0
A(x + yi) +2Dx, + 2Ey2 + F = 0 (2)

A(x$ + yT) + 2Dx. + 2Ey3 + F - 0 
bestehen können. Durch diese Gleichungen sind die Verhältnisse von 
A, J), E, F bestimmt, und dies reicht aus, um die Gleichung (1) her­
zustellen. Schließlich kommt es also auf die Elimination der Koeffi­
zienten zwischen den vier Gleichungen (1), (2) an, und ihr Resultat 
(121) ist die Kreisgleichung:

x2 — y2 x y 1 
a? + yl x, y, 1i 
Fi + y 82 32 1 

aß + yl ^3 33 1

Um sie in die Form (1) zu bringen, hat man die Determinante 
nach den Elementen der ersten Zeile zu entwickeln; nur wenn der 
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Koeffizient von x2 — y2 nicht Null ist, stellt die Gleichung einen 
eigentlichen Kreis dar, also nur dann, wenn

2, J1 1
«, 9 1 + 0,

a, 33 1

d. h. wenn die drei Punkte M, nicht in einer Geraden liegen (181). 
Im andern Falle wird die entwickelte Gleichung vom ersten Grade, 
stellt also eine Gerade dar. Außer den Punkten dieser Geraden ge­
nügen ihr unendlich ferne Punkte der Ebene, deren Ort man als un­
endlich ferne Gerade der Ebene erklärt.

Beispielsweise hat der durch die Punkte (— 2 / 3), (1 / 4), (0 / 0) 
gehende Kreis die Gleichung 

x2 + y^ x y 1

13 — 2 3 1
= — 11 (x2 + — x + 47 y = 0,17 14 1 " •

0 0 0 1 

seine Parameter sind also a = — 1 , b = 37, r = } 110.

192. Der Kreis und die Gerade. Ein Kreis k und eine Ge­
rade y seien durch die Gleichungen

/=( - a)2 + {y — b)2 — r2 = Q (1)
(i = y — mx — n = 0 (2) 

gegeben.
Nach dem Satze von Bezout (132) haben eine Gleichung zweiten 

und eine ersten Grades zwei gemeinsame Lösungen, die gemeinsamen 
Punkten beider Linien entsprechen. Kreis und Gerade haben also, 
allgemein gesprochen, zwei Punkte miteinander gemein. Die Natur 
der Lösungen und dieser Punkte hängt von den Gleichungskoeffi­
zienten ab.

Eliminiert man y, so entsteht die Gleichung:

(x — a)? + (mx + n — b)2 — r2 = 0, 

die nach x geordnet lautet:

(1 + m2)x2 + 2[m(n - ) - a]x + a2 + (n — bf2 -*= 0;

über die Natur ihrer W urzeln entscheidet die Diskriminante (133)
D = [m(n - ) - a]? — (1 + m2}[a2 + fn — b)2 — r2]

= (1 + m2)r2 —(b — ma — n)2; 

ist D positiv, also- 1 b — ma — n < . 
r > —-------—- = 0,• 11 + m2
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so sind die Wurzeln reell und verschieden; hingegen reell und gleich, 
wenn r = ö|, endlich imaginär, wenn r < | 3 ; dabei bedeutet (180) 
3 den Abstand des Kreismittelpunktes von der Geraden.

In dem mittleren der drei unterschiedenen Fälle hat die Gerade 
mit dem Kreise zwei vereinigt liegende Punkte gemein, man sagt dann, 
sie berühre oder tangiere den Kreis; die Bedingung dafür drückt sich 
also in dem Ansätze aus:

(1 + m^r1 = (b — ma — n^. (3)

193. Die unendlich fernen imaginären Kreispunkte. Ist 
M(x/y) ein Schnittpunkt der Geraden g mit dem Kreise k, wobei, 
wie im vorigen Artikel, die beiden Linien durch

I = (x — a)? + (y — b)2 — r2 = 0 (1)
g = y — mx — n = 0 (2) 

gegeben sein sollen, so ist 7 a = u der Richtungskoeffizient des nach 

ihm geführten Halbmessers; fügt man also zu den Gleichungen (1), 
(2) noch die dritte

y — b — y{x — a) = 0 (3) 

und eliminiert aus allen drei Gleichungen x — a und y — b, so ent­
steht eine Gleichung zwischen den Parametern von g und k und dem 
Richtungskoeffizienten u. Zu ihrer Ableitung bringe man (2) auf 
die Form- . 

y — b — m(x — a) + b —• ma — n = 0 (2) 

und berechne aus (3) und (2*)
b — ma — n 7 u (b — m a — n} x — a =   , y — b = : m — u 7 • m — u ’ 

die Einsetzung dieser Werte in (1) liefert die erwähnte Gleichung:
9 , 2mr2(b — ma — n)2 — m2r2 - 

U — 9 U —  —  19 ,— = O:1 (b — ma — n)2 — r- ‘ (b — ma — ny — r- 

ihre Wurzeln bestimmen die Richtungskoeffizienten der nach den 
Schnittpunkten von g mit k laufenden Kreisradien.

Nun ist aber (133)
32 (b—ma— ti)2

1 — m2

das Quadrat der Entfernung des Kreismittelpunktes von g: führt man 
diese Größe in die vorige Gleichung ein, so lautet diese:

2 2mr2 1 (1 + m2)32 — m2r2
" T (1 + m2) S^^r2 " T(1+ m2^2 — r2 — (4)

Wächst 8 ins Unendliche, so konvergiert der Koeffizient von u 
gegen Null, das absolute Glied gegen 1; folglich bestimmen sich die 
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Richtungskoeffizienten derjenigen Radien, die nach den (imaginären) 
Schnittpunkten von k mit der unendlich fernen Geraden der Ebene 
laufen, aus der Gleichung

u2 + 1 = 0, (5)
sind also selbst imaginär und unabhängig von den Parametern des 
Kreises. Darin liegt der analytische Grund für die Aussage, daß alle 
Kreise der Ebene durch zwei feste Punkte, die unendlich fernen imagi­
nären Kreispunkte, gehen-

194. Tangentenprobleme. Die Differentialrechnung löst die 
Aufgabe, an eine Kurve in einem ihrer Punkte die Tangente zu legen, 
für alle analytisch dargestellten Linien in einheitlicher Weise; denn 
unter Voraussetzung rechtwinkliger Koordinaten ist der Richtungs­
koeffizient der Tangente durch den Differentialquotienten y' von y 
nach x an der betreffenden Stelle M(x y) bestimmt (56). Heißen 
also die Koordinaten eines beliebigen Punktes der Tangente §, n, so ist

v-y-y'^-^) (i) 
deren Gleichung.

Über die Bestimmung von y' ist nichts weiter zu bemerken, 
wenn die Gleichung der Kurve in der Gestalt

y - f(x)
gegeben ist oder leicht auf diese Form gebracht werden kann. 

Hat sie hingegen die Gestalt

f&y} = 0,

(2)

(3)
dann führt folgende Betrachtung zum Ziele. Nimmt man auf der 
Linie neben M noch einen zweiten Punkt M‘ (x — h y + k) an, so
besteht auch 

und somit weiter
fix + h, y + k) = 0 

f(x + h,y + I) - fix, y) = 0,

wofür in erweiterter Form

fix + h, y + I) - fix, y + I) + f(x, y + Id) — fix, y) - 0 

geschrieben werden kann. Nach dem Mittelwertsatz 73 ist 

fix ph,y-\- X) — fix, y + if = hfxix + 3h, y + ld), 0 < 0 < 1, 

f(x,y+1)-f(x,s) - lf(x,y + 0,1), 0 <0,<1, 
wobei fx, f'y Zeichen für die partiellen Ableitungen von fix, y) nach 
x, bzw. nach y sind (55); infolgedessen verwandelt sich die obige 
Gleichung nach Division durch h in die folgende:

fxi% + Oh, y+ty+f^y + 0rk)^ = 0;
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indem nun h der Grenze Null zustrebt, wird auch k unendlich klein, 
und sind überdies f%, fy stetige Funktionen der beiden Argumente x, 'yr 
so lautet die letzte Gleichung an der Grenze

fx^, y) + f (x, y)-y = 0, (4) 
woraus sich

f%(x,y) 5\ 

ergibt. Durch Einsetzung dieses Ausdruckes in (1) erhält man nun

( - «)f +(- yYv — 0 (6) 
als Gleichung der Tangente.

Diese allgemeinen Ergebnisse sollen nun auf den Kreis angewendet 
werden.

I. An den Kreis

f(x, y) = (x — a)e + (y — b)? - *=0 (1) 
im Punkte M(x/y) die Tangente zu legen.

Gegenwärtig ist

f:= 2(x — a), fy = 2{y — b\ 
folglich

(x - a)(5 - x) + (y - b^rj — y) = 0

die Tangentengleichung. Man kann ihr übersichtlichere Gestalt geben, 
indem man für § — x, n — y schreibt § — a — x — a, n —b — y — b 
und die Multiplikationen ausführt; mit Rücksicht auf (1) ergibt sich 
dann

(x — a)^ — a) + (y — b^y -b) = "2 (2) 
als Gleichung der Tangente.

Zur Mittelpunktsgleichung des Kreises:

a+y= r2 (3) 
gehört also die Tangentengleichung

xE + yy - 73; (4) 
der nach dem Berührungspunkte gezogene Radius hat in diesem Falle 
die Gleichung

8—1= 0, 
woraus nach 184. (9) zu erkennen ist, daß er auf der Tangente senk­
recht steht.

Beispiel. An den Kreis (x — 3)2 + (y — 6)2 = 25 in den Punkten, 
in welchen er die y-Achse schneidet, die Tangenten zu legen und ihren 
Schnittpunkt zu bestimmen.
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Diese Punkte haben x = 0 und die aus {y — 6)2 = 16 resul­
tierenden Ordinaten yv = 10 und y2 = 2] die Tangentengleichungen 
sind also:

— 34 + 41 — 40 = 0
- 3} - 41 + 8 = 0;

aus ihnen erhält man durch Addition und Subtraktion

"=6 
als Koordinaten des Schnittpunktes.

II. An den Kreis
I = a2 + y^ - r^ = 0 (1) 

durch den Punkt P(xo/y,) Tangenten zu führen.
Bezeichnet M(xly) dennoch unbekannten Berührungspunkt einer 

solchen Tangente, so muß ihre Gleichung

x}+y»= 72 (2) 

durch die Koordinaten von P befriedigt werden; man hat also zur 
Bestimmung von x, y die beiden Gleichungen:

p = xx0 + yy0 - r2 = 0, (3)
* = x* +y — ,* = 0. (4)

Die erste stellt eine Gerade p dar, die somit aus dem Kreise k 
die Berührungspunkte der möglichen Tangenten ausschneidet; es können 
demnach bei diesem Problem dieselben drei Fälle eintreten, die in 192 
unterschieden worden sind. Die Gerade p, die bei reellen und ver­
schiedenen Tangenten die Berührungssehne enthält, bei reellen vereinigt 
liegenden Tangenten mit diesen selbst zusammenfällt, bei imaginären 
Tangenten aber an dem Kreise vorbeigeht und in allen Fällen auf 
dem durch P laufenden Durchmesser senkrecht steht, nennt man die 
Polare des Punktes P in bezug auf den Kreis k, den Punkt P 
ihren Pol.

Zur Konstruktion der Berührungspunkte im ersten Falle ergibt 
sich das bekannte Verfahren mittels der folgenden Betrachtung. Die 
Schnittpunkte von k und p genügen auch der Gleichung

k - p = x2 + y2 — xx. - yyQ = 0;

diese aber stellt einen Kreis dar, dessen Parameter aus der umgeformten 
Gleichung

unmittelbar abzulesen sind. Der Kreis (5) ist aus der Mitte von OP 
mit der Hälfte dieser Strecke als Radius beschrieben.
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Beispiel. An den Kreis x2 — y2 = 25 durch P(— 8/6) die 
Tangenten zu legen und ihren Winkel zu bestimmen.

Die Berührungspunkte ergeben sich aus dem Gleichungspaar

— 8x + 6y = 25,

x2 + y2 = 25;

Elimination von y führt zu der Gleichung

a + 4x — 11 = 0, 

derenWurzelnx-- 2+ 3 V3 sind; aus der ersten der beiden Gleichungen

ergeben sich die zugehörigen Werte von y, nämlich J = 92V3; 

mithin lauten die Gleichungen der beiden Tangenten:

(- 2 + 2 V3) E + (3 + 2V3) , - 25, 

(-2-3V3):+(-2V3)»-25.

Der Winkel der äußeren Winkelfläche findet sich mittels
1 

cos Co = — 9,

ist also 120°, der Winkel der inneren Winkelfläche, zugleich der­
jenigen, die den Kreis enthält, beträgt daher 60°. 

III. An den Kreis
k = a2 + y^ — 72 = 0 (1)

sollen schließlich die zur Geraden

g = 7 - mg = 0 (2)

parallelen Tangenten gelegt werden.
Ist M(xly} der Berührungspunkt einer solchen Tangente, 

xg + yy = 12

also ihre Gleichung, so erfordert der Parallelismus mit g, daß (184. (10)) 
1 m .= — , oder 
y x my + x = 0 (3) 

sei. Es bestimmen sich also die Berührungspunkte der gesuchten 
Tangenten aus dem Gleichungspaar (1), (3), dessen zweite Gleichung 
eine Gerade durch den Ursprung darstellt, die zu (2) senkrecht steht. 
Geometrisch ergeben sich also die Berührungspunkte als die End­
punkte des zu g normalen Kreisdurchmessers.

Beispiel. Um an den Kreis x2 + y2 = 36 die gegen die positive 
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x- Achse unter 30° geneigten Tangenten zu bestimmen, hat man die 
Gleichungen „* + , - 36

y + xV3 = 0

aufzulösen; Elimination von y ergibt

a*=9;

somit sind x = — 3 und y = + 373 die Koordinaten der beiden Be­
rührungspunkte und

$ — V3 = 12
- } + »V3 - 12

die Tangentengleichungen.
195. Potenz eines Punktes in bezug auf einen Kreis. 

Bei der Hess eschen Normalgleichung einer Geraden y(x, y) = x cos « 
+ ysin« — p = 0 kommt dem Substitutionsresultat g{xQ, yf) eine geo­
metrische Bedeutung zu: sein absoluter Wert bedeutet den Abstand 
des Punktes P^x^y^ von der Geraden g, und sein Vorzeichen gibt 
Aufschluß darüber, auf welcher Seite der Geraden der Punkt liegt.

Wir stellen nun die Frage, welche Bedeutung dem. Substitutions­
resultat k(x, y) zukommt, wenn

I(x, y) - (x - «)e + (y — W -*-0 (i) 

die Gleichung eines Kreises im rechtwinkligen System ist.
Da, mit bezug auf Fig. 76, (xo — a)2 + (y — b)2 = PS", so ist

1:(x, 30) = P^ — 72 = (PH — r^PSl + r)

k(x,90) = PQ.PQ‘= PR.PR. . (2)
Das für alle durch P geführten Sekanten gleiche Segmentprodukt 

PR • PR' nennt man die Potenz des Punktes P in bezug auf den Kreis 1\

Figur, so haben

Man hat also den Satz: Das Substitutionsresultat 
k(xo,Y0) bedeutet die Potenz des Punktes P{xQ,yf) 
in bezug auf den Kreis k.

Durch den Kreis wird die Ebene in zwei 
Gebiete geteilt; jenes Gebiet, das den Mittelpunkt 
& enthält, soll als das innere, das andere als das 
äußere bezeichnet werden.

Liegt P im äußeren Gebiet, wie in der 
die Strecken PR, PR' gleiche Richtung; ihr

Produkt ist positiv und gleich dem Quadrat der Tangentenstrecke
PT, also

k(xo, yo) - PT2. (3)
Gehört P dem inneren Gebiet an, so sind die Strecken PR, PR'
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ungleich gerichtet, ihr Produkt ist negativ und an Größe gleich dem 
Quadrat der Hälfte der kürzesten durch P gehenden Sehne SS', somit

I(x,,v.) - PS • (4)

Fällt P auf die Grenze beider Gebiete, also auf den Kreis selbst, 
so ist jedesmal das eine Segment Null, folglich

1t(o,o) = 0. (5)
An dem Substitutionsresultat k(x,Y0) ist also unmittelbar auch 

zu erkennen, welche allgemeine Lage der Punkt P in bezug auf den 
Kreis hat.

Die gleichen Erwägungen und Resultate gelten auch für das schief­
winklige Koordinatensystem.

Die entwickelte Gleichung (1) lautet:

le(x, y) = =+y‘- 2az — 2by + a? + 62 — 72 - 0;

so bedeutet hiernach a2 — 62 — 72 = 1(0,0) die Potenz des Ursprungs 
in bezug auf k; bezeichnet man diese mit x, so schreibt sich die Kreis- 
Bleichung: *(«,") - «8 + y _ 2az _ 2by + « - q (1%)

Das Vorzeichen von % gibt Aufschluß darüber, ob der Ursprung 
innerhalb oder außerhalb des Kreises liegt; bei x = 0 geht der Kreis 
durch den Ursprung.

Beispiel. Es ist zu entscheiden, wie die Punkte A(— 3/6), 
B(6/ — 7), 0^—21^ und 0(0/0) zu dem Kreise

liegen. KX,V) =x2+y2—82 + 6J - 75 = 0
Da

*(—3/6) = 30, 1(6/— 7) = - 80, /(—2,5) = 0, %(0,0) = - 75, 

so liegen A außerhalb, B und 0 innerhalb des Kreises und C auf 
ihm selbst.

196. Zwei Kreise und ihre Radikalachse. Zwei Kreise

k,(x,3) = «2 + y? — 2atx — 2bvy + %, = 0 (1)

I,(x,3) = x+y- 24* - 28,1 + >, = 0 (2) 
haben, da ihre Gleichungen vom zweiten Grade sind, nach dem Satze 
von Bezout vier gemeinsame Punkte. Zwei davon sind die unendlich 
fernen imaginären Kreispunkte (193), die ja allen Kreisen der Ebene 
gemeinsam sind; es verbleiben somit noch zwei Punkte im Endlichen, 
die wieder, entsprechend den Möglichkeiten, welche algebraische 
Gleichungen mit rellen Koeffizienten darbieten, reell und verschieden 
oder reell und vereinigt oder imaginär sein können.
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Wie dem aber auch sei, immer genügen sie auch der Gleichung

R(x,3) =h(x,y) — k,(x,y) = 0, (3) 
gehören also vermöge der im vorigen Artikel erkannten Bedeutung 
von k(x,y) dem Orte jener Punkte an, die in bezug auf beide Kreise 
dieselbe Potenz haben. Dieser Ort ist aber, da die ausgeführte Gleichung 
(3) lautet:

R2(x,9) = 2(4, - a)a + 2(b, - bi)y — (2, — x) = 0, (4) 
eine Gerade, die man als Potenzachse oder Hadikalachse der beiden 
Kreise kv, k^ bezeichnet. Schneiden sich die Kreise reell, so verbindet 
sie die Schnittpunkte und heißt dann auch Chordale, weil sie die ge­
meinsame Sehne beider Kreise enthält; berühren sie einander, so wird 
die Radikalachse zur gemeinsamen Tangente im Berührungspunkte; 
haben die Kreise keine reellen Punkte miteinander gemein, so er­
fordert die Radikalachse eine besondere Konstruktion.

Eine Eigenschaft derselben ist aus derselben Gleichung (4) un­
mittelbar zu erkennen, wenn man sie mit der Gleichung der Ver­
bindungslinie der Kreismittelpunkte, der Zentrallinie beider Kreise (178):

(b, — b^x — (a, - a^y - 01b, + ^^ = 0 
vergleicht: beide Geraden stehen aufeinander senkrecht, weil ihre Glei­
chungen der Bedingung 184, (9) genügen.

Aus der Eigenschaft der Radikalachse, in allen ihren Punkten 
gleiche Potenz zu haben bezüglich beider Kreise, geht hervor, daß 
ein auf ihr angenommener Punkt entweder gleichzeitig im Innern oder 
außerhalb oder auf dem Umfang beider Kreise liegen muß. Liegt er 
innen, so sind die durch ihn gehenden kürzesten Sehnen der beiden 
Kreise gleich groß; liegt er außen, so gehen aus ihm an beide Kreise 
gleich lange Tangentenstrecken, er ist somit Mittelpunkt eines beide 
Kreise orthogonal schneidenden Kreises.

197. Drei Kreise und ihr Radikalzentrum. Drei Kreise 
11, k,, k3, deren Gleichungen abgekürzt

1,(x,») = 0, (1)
I(x,#) = 0, (2)
ka(x,3) =0 (3) 

geschrieben werden können, lassen sich zu den drei Paaren k^, k^, k^, 
k,; k,, k, verbinden, deren jedem eine Radikalachse zukommt; die 
Gleichungen dieser Radikalachsen sind:

Rg, (a, y) = kg (x, y) - ^ (x, y) - 0 
Ra (x, y) - ^ (x, y) - h (x, y) = 0

R,2(x, y) = k,(x, y) — k,(x, y) = 0,
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und weil R2s(x,y) + Ra1(x,y) + R2(x,y) = 0,

so schneiden sich die drei Achsen in einem Punkte. 
den Satz: Die drei Badikalachsen, die drei 
Kreise paarweise bestimmen, schneiden sich 
in einem Punkte, den man das Potenz- oder 
Kadikalzentrum der drei Kreise nennt; ihm 
kommt als wesentlich die Eigenschaft zu, 
daß er in bezug auf alle drei Kreise die­
selbe Potenz hat.

Dieser Satz führt zu der einfachsten 
Konstruktion der Radikalachse zweier Kreise,

Man hat also

Fig. 77.

die sich nicht reell schneiden. Man nehme einen sie schneidenden
Hilfskreis k, Fig. 77, an; dann sind zwei der Radikalachsen, somit

auch das Radikalzentrum I’ bestimmt; die dritte, das ist eben die ge­
suchte, geht durch r und ist senkrecht zur Zentrallinie 22122.

Das Radikalzentrum liegt in bezug auf alle drei Kreise gleichartig.
Ist es ein Außenpunkt, so gehen von ihm gleich lange Tangenten­

strecken aus, es ist also Mittelpunkt des alle drei Kreise rechtwinklig 
schneidenden Kreises 0, Fig. 78, ihres gemeinsamen Orthogonalkreises.

Ist es ein Innenpunkt, so ist es zugleich Mittelpunkt von drei gleich 
langen Sehnen, also auch Mittelpunkt eines Kreises D, der die drei 
Kreise diametral schneidet und daher ihr gemeinsamer Diametralkreis 
heißt, Fig. 79.

Liegt das Radikalzentrum auf den Umfängen, so kann es eben­
sowohl als Orthogonal- wie als Diametralkreis vom Radius Null an­
gesehen werden.

Die Begriffe Radikalachse und Radikalzentrum bleiben auch dann 
in Geltung, wenn die Kreise in Punktkreise — mit dem Radius 0 — 
oder in Gerade — Kreise mit unendlichem Radius — ausarten. Bei 
den bezüglichen Konstruktionen hat man sich folgende zwei Sonder­
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stimmten Kreises.
Das Radikalzentrum

fälle gegenwärtig zu halten: Die Radikalachse eines eigentlichen Kreises 
und eines auf seinem Umfange liegenden Nullkreises ist die zugehörige 
Tangente, und die Radikalachse eines eigentlichen Kreises und einer 
Geraden ist diese selbst.

Um demnach die Radikalachse eines Kreises k und eines Punktes P 
Fig. 80, zu erhalten, legt man durch P einen k schneidenden Hilfskreis 

k‘, bestimmt das Radikalzentrum von k, P, k' 
und führt durch dieses die gesuchte Radikal­
achse R senkrecht zu & P. Ihr kommt die 
Eigenschaft zu, daß jeder Kreis, der aus 
einem ihrer Punkte durch P beschrieben 
wird, den Kreis k orthogonal schneidet.

Die Radikalachse zweier Punkte ist 
ihre Symmetrale, das Radikalzentrum dreier 
Punkte der Mittelpunkt des durch sie be-

ines eigentlichen Kreises oder eines Null­
kreises und zweier Geraden ist der Schnittpunkt der letzteren, das 
Radikalzentrum dreier Geraden der Inkreismittelpunkt ihres Dreiecks. 

Mit Hilfe dieser Bemerkungen kann bei­
spielsweise die Aufgabe gelöst werden, zu zwei 
Kreisen kx, k, den Orthogonalkreis zu zeichnen, 
der durch einen gegebenen Punkt geht. Der 
Mittelpunkt des gesuchten Kreises ist das Radi­
kalzentrum I‘ von 11, k, und P.

Ferner die Aufgabe, zu einem Kreise k und 
einer Geraden g den Orthogonalkreis zu zeichnen, 
der durch einen gegebenen Punkt P geht. Mittel-

Fig. 81. punkt des gesuchten Kreises 0 ist das Radi- 
kalzentrum r von k, g, P, Fig. 81.

198. Kreisbüschel. Wir knüpfen an die einleitende Bemerkung 
von 191 an, wonach ein Kreis im rechtwinkligen Koordinatensystem 
im allgemeinen durch drei Bedingungen bestimmt ist. Sind weniger 
als drei Bedingungen vorhanden, so genügt ihnen nicht ein Kreis, 
sondern ein System von Kreisen.

Insbesondere bezeichnet man die Gesamtheit der Kreise, die durch 
zwei gegebene Punkte gehen, als einen Kreisbüschel, die gegebenen 
Punkte als dessen Grundpunkte. Diese Definition ist jedoch nur dann 
geometrisch unmittelbar zu verwenden, wenn die Grundpunkte reell 
sind und auch da nicht etwa als Endergebnis eines Grenzprozesses 
vereinigt liegen.

Eine alle Fälle umfassende Definition erhält man, indem man 
die Grundpunkte nicht als solche, sondern als die gemeinsamen 
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Punkte zweier Kreise oder eines Kreises und einer Geraden angibt; 
sie können dann sowohl reell und getrennt, wie auch reell und in 
bestimmter Weise vereinigt, wie auch imaginär sein.

I. Sind R,(x,y) = a3 + y2 _ 2a,% _ 21)^ + 2, = 0 (1)

L(x,3) = x*+*— 2a,c - 2b,y + x, = 0 (2) 
die Gleichungen zweier Kreise, so ist jeder Kreis k,, der durch ihre 
gemeinsamen Punkte geht, in der Gleichung

h(x,3) — 2k,(x,y)-0 (3) 
enthalten; denn diese Gleichung heißt entwickelt:

(1 - 2)(a3 + y^ - 2(d, — 2d,)e — 2(b— ib^y +*— Axa = 0, (4) 
stellt somit wieder einen Kreis vor, und da sie durch die gemeinsamen 
Punkte von R1, kg befriedigt wird, so geht der Kreis durch diese 
Punkte. Die Normalform seiner Gleichung ist

1, (, y) = 46s,y)—14(6,» - 0, (4*)

sein Mittelpunkt 2, hat die Koordinaten
L a, — A a, 
$ * 1—2

V = b, — 2 b, 
1—2 ,

(5)

liegt also in der Zentrallinie der Grundkreise k,, k, und teilt die

Strecke 2,2, im Verhältnis A in dem Sinne, daß

Erteilt man der Gleichung (4*) die Form

2, 22,2,25 - 2 ist (179).

^,y>=h ^y) + 111[h ^y) - 1 (x,3)] = k,(7,3) + 1 11R2 (x,3) = 0, 

so liest man unmittelbar ab, daß jeder Punkt der Kadikalachse von 
k, und k, in bezug auf einen beliebigen Kreis des Büschels dieselbe 
Potenz hat wie in bezug auf k,, also auch in bezug auf k,; denn ist 
X1/Y1 ein Punkt dieser Achse, so wird für ihn

h,(z,, yi) = h(x, yi) - 111R2(%, yi) = h(x, yi).

Man nennt aus diesem Grunde die Gerade R,2(x, y) = 0 die Radikal­
achse des Büschels.

Sind k(x, y) = a* + y? _ ^ax — 2by + % - 0 (1)

g{x, y) = y — mx — n = 0 (2) 
die Gleichungen eines Kreises und einer Geraden, so erkennt man 
durch die gleichen Schlüsse wie oben, daß

li,(x, y) = I:(x, y) - ^9^, y) =0 (3)
Czuber, Höhere Mathematik. 19
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bei variablem 2 die Gesamtheit aller Kreise darstellt, die durch die 
gemeinsamen Punkte von k und g gehen, und daß jeder Punkt von g 
in bezug auf jeden dieser Kreise dieselbe Potenz hat wie in bezug 
auf k, daß also g(%, y) = 0 die Radikalachse des Kreisbüschels (3) ist.

Was dessen Zentrallinie anlangt, so entnimmt man der aus­
geschriebenen Gleichung (3):

x2+ y2 - (2a — 1m)a — (2b + ^)y + x + In = 0 
die Koordinaten des Mittelpunktes von k,: 

, 2m 
6=d-2

1=8+2

durch Elimination von 2 ergibt sich daraus als Ort der Mittelpunkte
6 — a + m(n — b) = 0,

also eine Gerade, die durch den Mittelpunkt 22 von k geht und auf g 
senkrecht steht.

III. Man hat drei Arten von Kreisbüscheln zu unterscheiden: 
1. Büschel mit reellen und getrennten Grundpunkten; 2. solche mit 
reellen und vereinigten Grundpunkten; 3. Büschel mit imaginären 
Grundpunkten. Ein Kreisbüschel kann als gegeben betrachtet werden 
durch einen seiner Kreise, k, und die Radikalachse R; im Falle 1. wird 

k von R geschnitten, im Falle 2. berührt, im 
/ c ) Falle 3. haben k und R keinen eigentlichen

  Punkt gemein. Die Zentrallinie geht in allen 
)_____________ Fällen durch 2 senkrecht zu R.

“76,-/Durch einen Punkt M, der weder k noch 
---- ----- \ \ R angehören soll, geht ein und nur ein Kreis 

--------- i L des Büschels. Über seine Konstruktion in 
\ o/ / den Fällen 1. und 2. braucht nichts be- 

.,-----6 /__________ / merkt zu werden; im Falle (3) führt dazu 
TN________/ folgende Erwägung. Der aus dem Schnitt-

—----------- punkte A der Zentrallinie c mit R, Fig.‘82, 
beschriebene Orthogonalkreis 0 zu k ist 

Orthogonalkreis zu allen Kreisen des Büschels; somit können 
diese Kreise definiert werden als solche, die 0 und C orthogonal 
schneiden; die Aufgabe, den Büschelkreis durch M zu bestimmen, 
kommt also darauf hinaus, den durch M gehenden Orthogonalkreis 
zu k und c zu bestimmen; diese Aufgabe ist aber am Schlüsse von 
197 gelöst worden.

Die Schnittpunkte G1, G, von 0 mit c, als Nullkreise aufgefaßt, 
erfüllen die Forderung, 0 und c orthogonal zu schneiden, gehören 
also dem Büschel an und heißen seine Grenspunkte. Jeder durch sie 
gelegte Kreis k hat seinen Mittelpunkt in R und ist somit Orthogonal­
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kreis zu allen Kreisen des Büschels Qi, R), weil er Orthogonalkreis 
zu G,, G, ist. Es entstehen solcher Art zwei Kreisbüschel, die in 
folgender Beziehung zueinander stehen: das Büschel der Kreise k mit 
der Zentrallinie c, der Radikalachse R und den Grenzpunkten Gv G2, 
und das Büschel der Kreise f mit der Zentrallinie R, der Radikal­
achse C und den Grundpunkten G,, G^ verhalten sich so, daß jeder 
Kreis des einen Büschels alle Kreise des andern orthogonal schneidet. 
Man nennt Kreisbüschel, die einander in dieser Weise zugeordnet 
sind, konjugierte Kreisbüschel.

199. Pol und Polare. Zu dieser Begriffsverbindung hatte das 
Problem Anlaß gegeben, durch einen Punkt P(xo/yo) Tangenten an 
einen Kreis

ItQc, y) = Qc — a)2 + {y — b)2 — r2 = 0 (1) 
zu legen (194, II). Drückt man die Forderung aus, die Tangente 
in einem noch unbestimmten Kreispunkte M(xjy):

Qc - a)Q - a) + {y — b)(g - b) — 72 - 0 
habe durch P zu gehen, so ergibt sich zur Bestimmung von M 
nebst (1) noch die Gleichung:

Qc - a)(%, - a) + Qj - b)^ ^-b^-^^O, (2) 

die, weil vom ersten Grade in x, y, eine Gerade vorstellt, die man 
als Polare des Punktes P in bezug auf den Kreis k bezeichnet.

In entwickelter Form lauten die Gleichungen (1) und (2), wenn 
man von der Abkürzung a2 p 62—r‘=x Gebrauch macht:

k(x,y) = x?+y2— 2ax — 2 + * = 0, (1*)
pQc, y) - Toa + yoy - aQc + To) — b(y + y^ + * = 0. (2*)

Wir bringen nun mit dem System dieser 
zwei Linien den Geradenbüschel mit dem X 1 
Träger P in Verbindung, dessen parametrische / \
Gleichungen lauten: 4(00)

c =x+s cos a \ \ JM"
(3) 

y = %o + S sin c.
Substituiert man (3) in (1*), so ergibt P \ 

sich die in bezug auf s quadratische Gleichung Fig. 83.

s2— 2[(a — x) cos a + Q) — y^) sin a] s + k(x,, yQ) = 0; 
ihre Wurzeln s', s" bestimmen die Abstände der Schnittpunkte M‘, M" 
des Strahls («) mit dem Kreise k, vom Punkte P aus gemessen, 
Fig. 83; es bestehen also zwischen diesen Abständen die Relationen: 

s‘ + s" = 2[(a — xj) cos a + (b — yj) sin «], s's" = k(x,, J). (4)
19*
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Substituiert man (3) in (2*), so ergibt sich die in bezug auf s 
lineare Gleichung:

L(xo — a) cos «+(— b) sin a] s + k(xo, 30) = 0, (5) 
deren Wurzel den Abstand des Schnittpunktes Q des nämlichen Strahls 
mit der Polare p bedeutet.

Aus (4) und (5) folgt die von « unabhängige Beziehung: 

s(s‘ + s") = 2s's",
in der man die charakteristische Streckenrelation eines Systems har­
monischer Punkte erkennt (179, (4)).

Dies gibt den Satz: Die Schnittpunkte der von einem Punkte P 
ausgehenden Strahlen mit dem Kreis k werden durch die sugeordnete 
Polare p von dem Punkte P harmonisch getrennt.

Auf dieser Grundlage läßt sich die Polare eines im Innern des 
Kreises gelegenen Punktes P konstruieren; man führt durch P eine 
beliebige Gerade, bestimmt den harmonischen Punkt Q zu P in bezug 
auf die Schnittpunkte der Geraden mit dem Kreise; dann ist die durch 
Q zu &P geführte Senkrechte die Polare.

§ 6. Die Linien zweiter Ordnung.

200. Die allgemeine Gleichung zweiten Grades. Die 
allgemeine Gleichung zweiten Grades in den Parallelkoordinaten x, y 
umfaßt sechs Glieder: drei vom zweiten, zwei vom ersten, eines vom 
nullten Grade; sie lautet:

f(x, y) = Ax2 + 2Bxy + Cy2 + 2Dx + 2 Ey pF^Q. (1)
Alle Gebilde, die durch eine in dieser allgemeinen Form ent­

haltene Gleichung dargestellt sind, nennt man „Linien zweiter Ordnung.“
Die Koeffizienten A, B, . . . F werden als reelle Zahlen voraus­

gesetzt. Da einer von ihnen durch Division auf 1 reduziert werden 
kann, so enthält die Gleichung fünf Konstanten. Dies hat zur Folge, 
daß eine Linie zweiter Ordnung im allgemeinen durch fünf Bedin­
gungen bestimmt ist.

Jede in Form einer Gleichung ausgedrückte Beziehung zwischen 
den Koeffizienten vermindert die Anzahl der Konstanten um eins. 
Insbesondere führen bei rechtwinkligen Koordinaten die Beziehungen

A = C, B = 0 

zur allgemeinen Gleichung des Kreises (188), die nur noch drei 
Konstante enthält.

Zu einer geometrischen Grundeigenschaft der Linien zweiter Ord­
nung führt die Verbindung der Gleichung (1) mit der Gleichung

g(x, y) = ax + hy + c = 0 (2) 
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einer Geraden. Nach dem Satze von Bezout (132) haben die Glei­
chungen (1) und (2) allgemein gesprochen zwei Lösungen. Jede 
Linie zweiter Ordnung wird also von jeder Geraden ihrer Ebene in zwei 
Punkten geschnitten, wobei imaginäre und unendlich ferne Punkte 
ebenso gezählt werden wie eigentliche Punkte.

Die Diskussion der Gleichung (1) läuft auf die Erforschung der 
Abhängigkeit des y von x hinaus; diese Untersuchung gestaltet sich 
verschieden, je nachdem die Gleichung in bezug auf y quadratisch oder 
vom ersten Grade ist, d. h. je nachdem C = 0 oder C = 0 ist. Der 
Fall, daß die Gleichung y überhaupt nicht enthält (B =0, (7=0, 
E = 0), läßt sich unmittelbar erledigen: sie stellt dann zwei zur 
y-Achse parallele Gerade vor, die getrennt oder vereinigt sind, je nach­
dem D2— AF> 01) oder D2— AF =02) ist; bei D2 - AF < 0 
wird ihr durch keinen reellen Punkt genügt.

201. Erster Hauptfall: C + 0. Nach y geordnet 
sich die Gleichung (1):

Cy2 + 2(Bx + E)y + Ax? + 2Dx + F = 0 

und gibt für y die explizite Darstellung:

1) Bei A = 0 wird die eine Gerade uneigentlich, indem sie ins Unendliche 
rückt.

2) Bei A = 0, D = 0 werden beide Gerade uneigentlich, indem sie ins Un­
endliche rücken.

schreibt

Y =
— (Bx + E) + }/(Bx + Ey — (VAx2 + 2 Dx-YF)

C
der mit den Abkürzungen:

MEB AC

die Form:

gegeben werden kann. Hiernach erscheint y als Summe und Differenz von

N=BE-CD (3)
P = E2~CF

X = Ma2+2Nx+P (4)
Bx + E V 3 (5)

1 =--- C - (6)
und

Y= ‘ (7)

(6) aber stellt unter allen Umständen eine im Endlichen liegende 
Gerade dar; in bezug auf diese ist also wegen des oben angeführten 
Sach Verhaltes das Gebilde symmetrisch, wobei die Ordinatenachse die 
Richtung der Symmetrie anzeigt. Diese Gerade soll im folgenden 
konsequent mit d bezeichnet werden.
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Das weitere Verhalten von y hängt von Y und dieses wiederum 
von der im allgemeinen quadratischen Funktion

X^2IxlY2Nx-YP (4) 

ab. Hierbei sind die Fälle M = 0 und M = 0 wesentlich zu unter­
scheiden.

Wenn M= 0 ist, so kann X umgesetzt werden in

. —/ । N\2 N^-MPX-MCty) 1‘ 
was sich durch die Substitution

z+n=% (8) 

und die Abkürzung 
N2 — M P = d (9) 

weiter vereinfacht zu
X - Mg-A (10)

Die Substitution (8) bedeutet eine Translation des Koordinaten­
systems parallel zur Abszissenachse um die Strecke — • (168), und 

die Gleichung (10) zeigt, daß nun auch in bezug auf die neue 
Ordinatenachse Symmetrie stattfindet, wobei die Gerade d die Symmetrie­
richtung bezeichnet.

Es kann nun X folgende Verhaltungsweisen zeigen:
I. Ist M < 0 und a)/1 > 0, so ist X eine Differenz, die ihren 

größten Wert — • erlangt, wenn der variable Subtrahent verschwindet, 

also bei § = 0; ferner hat X die beiden reellen Nullstellen

zwischen denen es positiv, außerhalb deren Intervall es negativ ist.
Bei b) 4 < 0 ist X die Summe zwei negativer Größen, bleibt 

beständig negativ und Y imaginär.
Schließlich, wenn c) / = 0, reduziert sich X auf ein negatives 

Glied, das für ^ = 0 verschwindet; infolgedessen ist Y imaginär bis 
auf die Stelle 6 = 0, an der es = 0 ist.

II. Ist M > 0 und a) 4 > 0, so erscheint X als Differenz mit 
einem variablen Minuend, hat die reellen Nullstellen

zwischen denen es negativ ist, während es außerhalb ihres Intervalls 
positiv bleibt.

Wenn b) 4<0, wird X eine Summe von zwei positiven Größen, 
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die ihren kleinsten Wert — y annimmt, wenn der variable Summand 

verschwind et, d. i. bei § = 0; im übrigen ist, da X positiv bleibt, 
Y durchaus reell.

Ist endlich c) 4 = 0, so reduziert sich X auf das positive Glied 
ME2, Y auf das durchwegs reelle LVM.

III. Wenn M = 0, hingegen N = 0, so läßt sich X auf die Form

X-2N(r+,s)
bringen und ist a) bei N> 0 s lange positiv, Y so lange reell, als 

x 2 — —N; hingegen b) bei N < 0 so lange positiv, Y so lange reell, 

als« s - 2N*

Bleibt noch der Fall c) N = 0 übrig, in welchem sich X auf 
das absolute' Glied P reduziert, Y somit konstant und reell ist, wenn 
P20, imaginär, wenn P < 0.

Es handelt sich jetzt darum, diese algebraischen Resultate ins 
Geometrische zu übertragen; dabei möge die obige Reihenfolge der 
Fälle beibehalten werden.

Fall I.
Ia): M<0, 4> 0. Die Punkte, welche der Gleichung f(x, y)= 0 

unter diesen Voraussetzungen genügen, sind symmetrisch zur Geraden d:
Bx + E 

"7 = —C (11)
in der Richtung OY und symmetrisch zur Geraden d': 

«X (12)
in der Richtung d ungeordnet und eingeschlossen einerseits von den

der ihren Mittelpunkt bildet. Sie heißt Ellipse.
Ib): M < 0, 4 < 0. Bei diesem Verhalten der Koeffizienten gibt 

es keinen reellen Punkt, der der Gleichung f(x, y) = 0 genügt.
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I): M <0, A = 0 In diesem Falle ist

,_YM,_B+EVM, N
3 "—05 C — C V" T M) i

dies hat, was das Auftreten von x, y anlangt, die Form der Gleichungen 
zweier Geraden; wegen des imaginären Koeffizienten V M aber spricht 
man von imaginären Geraden; nichtsdestoweniger kann von einem 
reellen Schnittpunkt derselben:

__N _BN-EM 
" — M‘ 37 CM 

gesprochen werden, und dieser ist der einzige reelle Punkt überhaupt 
welcher der Gleichung f(x, y) = 0 genügt.

Um für diese drei durch das gemeinsame Merkmal M < 0 ge­
kennzeichneten Fälle auch eine einheitliche Ausdrucksweise zu haben, 
kann man bei b) von einer imaginären, bei c) von einer punktförmigen 
Ellipse sprechen und I. als den Fall der Ellipse bezeichnen.

Fall II.
IIa): M > 0, A > 0. Die Symmetrieverhältnisse in bezug auf 

die Geraden d, d', Gleich. (11) und (12), bestehen fort; der Schnitt­
punkt 2 der letzteren ist Mittelpunkt des Gebildes; reelle Punkte aber 
liegen nur außerhalb des von den Geraden (13) begrenzten Streifens.

VX=VMg—
wächst mit | § j über alle Grenzen, und es ist beständig

VX<VM;
aber der Unterschied

VMLVX- M
§ VM + V X

wird mit wachsendem | § | beliebig klein; 
das Gebilde nähert sich also unaufhör­
lich und unbegrenzt den beiden Ge­
raden a, a':

, B&-E EM / , N\ 
6 = C-± C (x M) 

die man als Asymptoten der Linie bezeichnet; die Linie selbst heißt 
Hyperbel] Fig. 85.

Aus den Gleichungen der Asymptoten ersieht man unmittelbar, 
daß sie sich in dem Punkte mit den Koordinaten

NBN-EM
M CM ’
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d. i. im Mittelpunkte 2 schneiden, und daß sie symmetrisch zu den 
Geraden d, d' in demselben Sinne angeordnet sind wie das Gebilde selbst. 

IIP): M > 0, 2 < 0. Symmetrieverhältnisse und Mittelpunkt S
bleiben aufrecht; reelle Punkte liegen 

den Geraden (14) begrenzten Streifens, 

mit 6 ins Unendliche; jetzt ist aber 
beständig_

VX> VM

und der Unterschied

VX—VM- MVX+syM 
wird mit wachsendem § beliebig 
klein. Die Geraden (15) sind auch 
jetzt Asymptoten der Linie, haben aber 
als im Falle lla) (Fig. 86). Die Linie 
Lage gegen das Koordinatensystem.

aber nur außerhalb des von

Fig. 86.

gegen diese eine andere Lage 
ist eine Hyperbel in anderer

IIc): 
und

M > 0, A = 0. Nunmehr ist X = ME3, folglich VX = zVM,

, EVM Bx—Ey =±‘c =- c V M / , N\ 
C (x + M) ’—

d. h. die Linie f{x, y) = 0 zerfällt, wenn die Koeffizienten diese 
Bedingungen erfüllen, in zwei sich schneidende Gerade. Es sind, was 
den Bau der Gleichungen betrifft, dieselben Geraden, die in den Fällen 
II a) und IIb), wo 4= 0 war, als Asymptoten aufgetreten sind.

Um eine einheitliche Ausdrucksweise zu haben, kann man die 
beiden Geraden des Falles IIc) als eine zerfallene Hyperbel bezeich­
nen und demgemäß den Fall II als Fall der Hyperbel erklären.

Fall 111.
In diesem Falle bleibt nur die Symmetrie in bezug auf die 

Gerade d bestehen. Im übrigen findet folgendes statt.
p

IIIa): M = 0, N > 0. Y hat von a = — 9N angefangen reelle 

Werte, die mit wachsendem x dem Betrage nach beständig und über 
jede Grenze hinaus wachsen, Fig. 87.

Die zugehörige Linie führt den Namen Parabel.

IIP): M = 0, N < 0. Y hat nur bis « = — ,” reelle Werte, 

die mit wachsendem x beständig und über jeden Betrag zu nehmen.
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Die zugehörige Linie ist eine Parabel in anderer Lage gegen das 
Koordinatensystem, die als der früheren entgegengesetzt bezeichnet 
werden kann, Fig. 88.

IIP): M =0, N = 0. In diesem Falle wird

, _ - (Bx + E)±VP 
9 C ‘

und dies stellt, zunächst wenigstens vermöge seiner Form, zwei parallele 
Gerade dar; wirkliche Gerade sind es aber nur dann, wenn P > 0 oder 
P = 0, unter der ersten Voraussetzung getrennt, unter der andern 
vereinigt; bei P < 0 kann von imaginären parallelen Geraden ge­
sprochen werden.

Um auch hier eine einheitliche Ausdrucksweise zu haben, faßt 
man die unter IIP) aufgezählten Gebilde als zerfallene Parabeln auf 
und nennt sonach den Fall III den Fall der Parabel.

202. Zweiter Hauptfall: C=0. Die nach y geordnete Glei­
chung (1) lautet nun:

2 (Idx + E^y + Ax2 + 2 Dx + F = 0. (16) 

Das Trinom Ax2 + 2 Dx — F ist entweder teilbar durch das Binom 
Bx — E, oder es ist nicht teilbar. Darnach sind zwei Fälle zu unter­
scheiden.

IVa) Ist Bx + E nicht Teiler von Ax2 + 2 Dx + F, so bleibt 
bei der Division ein konstanter Rest übrig, und es kann das Trinom 
auf die Form

Ax2 + 2Dx + F = — 2{Bx + E) (mx + n) — B 

gebracht werden; dann folgt aus (16): 

y = mx + n + — — ; (17) 

y erscheint also als Summe von 
n = mx — n (18) 

und 

Y=—"E (19) 2B(+B)
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Die Gleichung (18) stellt eine Gerade a dar, Fig. 89, und das 
R 

zu ihrer Ordinate hinzutretende Y hat das Vorzeichen von , so

mx + n und a : x = — B , und mit dem Mittelpunkt —B-----B , 

Fig. 89.
IVb) Ist Bx + E Teiler von Ax2-\-^Bx-]-F, so kann dieses 

Trinom auf die Form
Ax2 + 2Dx + F = — 2(Bx + E) (mx + n) 

gebracht werden; die Gleichung (16) schreibt sich dann

(Bx + E)(y — mx — n) = 0 
und zerfällt in die beiden: —

x = - B
y = mx + n, 

von denen jede eine Gerade darstellt. Im Sinne einer vorhin ein­
geführten Redeweise hat man es also mit einer zerfallenen Hyperbel 
zu tun.

V. Ist neben C= 0 auch B = 0, so läßt sich der Gleichung (16) 
die Gestalt

y = ax2 + 2bx + c (20) 
geben, wofür weiter. ,, ° ’ / , b\2 , ac— 62y = a\x + ) —

geschrieben werden kann. Mit Hilfe der Substitution x +=5 er- 

kennt man, daß das betreffende Gebilde bezüglich der Geraden 

symmetrisch ist in der Richtung der x-Achse; y wächst mit zu­
nehmendem | $ | über alle Grenzen. Man hat es mit einer Parabel in 
einer dritten Lage zu tun.

203. Degenerierte Linien zweiter Ordnung. Die vor­
stehende Untersuchung ergab, daß die Gleichung zweiten Grades außer 
Kreis, Ellipse, Hyperbel und Parabel auch zwei Gerade darstellen kann, 
die entweder reell und getrennt oder reell und zu einer vereint oder 
imaginär sein können, in welch letzterem Falle sie einen reellen Punkt 
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gemein haben als das einzige reelle Gebilde, das der Gleichung genügt. 
Man unterscheidet demgemäß zwischen eigentlichen und degenerierten 
Linien zweiter Ordnung.

Die Bedingungen, unter welchen Linien der letzteren Art auftreten, 
sind im ersten Hauptfalle, C + 0:

Ie): M < 0, 4 =0
IIc): M > 0, 4= 0
IIP): M=0, N=0;

mit Rücksicht darauf, daß d = N2 — MP, ist die Bedingung

2 = 0 (21)
allen drei Fällen gemeinsam;

IV"): Teilbarkeit von 
. Diese Teilbarkeit führte

— im zweiten Hauptfalle, C = 0: 
Ax2 + 2Dx + F durch Bx + E.
zu dem Ansätze:

Ax2 + 21)x + F = — 2(Bx + E^mx + n\ 

der bei beliebigem, x nur dann besteht, wenn
2Bm + A = 0

Em + Bn + I) = 0
2 En + F= 0;

und die notwendige Bedingung für die Koexistenz dieser Gleichungen 
lautet (121, III): 2B o A

E B I) =0,
0 2E F 

ausgeführt:
AE2E B2F -2BDE = 0. (22)

Diese Bedingung ist aber in der vorigen, (21), enthalten. Es 
ist nämlich

4 = (BE- CD)2 - {B2 -AC){E2- CF) 
= C[AE2 + BF+ CD2 -ACF-2BDE], 

und da im ersten Hauptfalle C = 0, so ist hier die Bedingung für 
den Zerfall:

A E2 + B2F + CD2 - ACF -2BDE^O, (23) 

und dies geht tatsächlich in dem zweiten Hauptfalle, wo C = 0, in 
(22) über.

Man kann sich umgekehrt die Frage vorlegen, unter welcher 
Bedingung die allgemeine Gleichung (1), f(x,y) = O, zwei Gerade 
darstellt; notwendig und ausreichend hierfür ist, daß sich die quadra­
tische Funktion f(x, y) in zwei lineare Faktoren

g = ax + ßy + 7
/= a’x + ß'y + y'
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mit reellen oder imaginären Koeffizienten zerlegen lasse, daß also 

f(x, y) = 99

sei. Daraus ergeben sich durch partielle Differentiation nach x und y 
die ebenfalls identischen Gleichungen:

2Ax + 2By + 2D = ag' + a'g

2Bx + 2Cy + 2E = ßg' + ß'g-
(24)

bringt man aber f{x, y) einerseits und gg’ anderseits in die Gestalt: 

f(x, y) = {Ax + By + D^x + {Bx + Cy + E)y + Dx + Ey + F

99r- (ax + ßy)g' + («‘x + ß'y)g + 79' + 7'9,

so ergibt sich daraus und aus (24) mittels eines einfachen Schlusses,
daß auch identisch 

sein müsse.
2Dx — 2 Ey — 2 F= yg' + y'g (24*)

Da nun g =0 und g' = ^ unter allen Umständen einen reellen 
Punkt, sei es im Endlichen oder Unendlichen, gemein haben, so existiert 
ein Wertepaar x, y, das die drei Gleichungen

Ax + By + D = 0
Bx + Cy + E = 0
Dx + Ey + F = 0

zugleich befriedigt, was aber nur dann geschehen kann, wenn (121, III)

A B
B C
D E

D
E = 0 (25)
F

ist. Die Entwicklung dieser Determinante stimmt aber, vom Vor­
zeichen abgesehen, mit der linken Seite von (23) überein.

Man nennt die Determinante in (25), deren Verschwinden also 
den Zerfall der Linie anzeigt, die Diskriminante der Gleichung (1).

204. Beispiele. Es sollen nun die vorstehenden Kriterien auf 
eine Reihe von speziellen Gleichungen zur Anwendung gebracht werden.

1. In der Gleichung x2 — 2xy + 4y2 — 6x + 4y + 3 = 0 ist:

A=1, B = -1, C^4, D = -^, E=2, F^3:

M=-3, N=10, P=-8; 
4=76; 

man hat es mit dem Fall Ia) zu tun, die Gleichung stellt eine wirk­
liche Ellipse dar.
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2. Zu der Gleichung x? — 2xy—4y2—63-41-10 = 0 gehören 
die Zahlen: 7—2%, NE10, P-E3,

4=-8;
es findet der Fall Ib) einer imaginären Ellipse statt.

3. Bei x2 — 2xy + 4y? — Gx + 4y + 3 = 0 hat man
V=-3, N=10, P=-190;

A= 0; 

die Bedingungen des Falles Ic) sind erfüllt, x = 19, y = 3 ist der 
einzige reelle Punkt, welcher der Gleichung genügt.

4. 2x2 +4xy+y2—22—4+1 =0; M = 2, N=-3, P=3, 
△ = 3; Fall IIa) der Hyperbel in der ersten Lage.

5. 2x2 + 4xy + y2 — 2x — ^y — 1 - 0; M = 2, N- — 3, P = 5 ; 
△ = — 1; Fall IIb) der Hyperbel in der zweiten Lage.

6. 2x2 + 4xy + y2 - 2x - ^y - ! = 0; M=2, N=-3, P=2; 
△ = 0; Fall IIc) der in zwei Gerade zerfallenen Hyperbel-, diese Ge­
raden sind: _ _ J=-(2*V2).+2+3V2.

7. 422 - 4xy + y — 4x — 8J - 2 = 0; J=0, N=10, P=18; 
Fall IIIa) der Parabel in der ersten Lage; die reellen Punkte be­
ginnen bei x = — %.

8. ±x2 - ±xy + y2 - ±x + 3y-2 = G, M=0, N=-6, P=18; 
Fall HP), Parabel in der zweiten Lage, die reellen Punkte reichen 
bis x = 3.

9. 422 - ^xy + y2 - 4x + 2y - 2 = 0; M = 0, N = 0, P - 3; 
Fall IIIC), eine in zwei parallele Gerade zerfallene Parabel, und 
zwar sind

y = 2x — 1 ± V3 
diese Geraden.

10. Die Gleichung 3xy — 4x + 2y — 6 = 0 fällt unter den Ty­
pus IVa) und stellt eine Hyperbel dar, deren Asymptoten y = ^, 
x = — 3 sind; der rechte Ast liegt oberhalb der ersten Asymptote.

11. 822 — 4x — 2y + 1= 0 fällt unter den Typus V und zeigt, 
auf die Form

J =4(x—1)2 + 1
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gebracht, daß die Parabel symmetrisch ist in bezug auf die Gerade 
x = 1, wobei die x-Achse die Richtung der Symmetrie angibt, und 
daß die reellen Punkte auf und über der Geraden y = 1 liegen.

205. Translation des Koordinatensystems. Die folgenden 
Untersuchungen werden es häufig notwendig machen, zu einem pa­
rallelen und gleichgerichteten Koordinatensystem überzugehen. Sind 
§/n die Koordinaten des neuen Ursprungs, x‘/y' die neuen Koordinaten 
des Punktes xjy, so gelten die Transformationsgleichungen (168):

a =x+5, y = y' + V^

durch deren Anwendung sich die Gleichung (1) verwandelt in: 

f(x‘ +5,y+7) = Ax" + 2Bx‘y + Ctj"1 + 2(AE + By + D)a‘

+ 2(BE + C» + E)y‘+ f(,7) - 0;
dies kann noch kürzer dargestellt werden, wenn man beachtet, daß aus

f(,7) - Ag + 2 BE» + c^ + 2DE +2E7+F 

durch partielle Differentiation nach § und n erhalten wird: 

f’C, 0 = 2(A}+ By + D)
1C,")-2(B}+Cn+E);

die transformierte Gleichung lautet dann endgiltig:

Ax'2 + 2Bx'y' + Oy'2 + "(L, »)x‘ + f^Al^y' + f(,7) - 0. (1*)
Hieran ist als bemerkenswert hervorzuheben: 1. daß die Koeffi­

zienten der quadratischen Glieder gegenüber der Transformation in­
variant sind; 2. daß das absolute Glied in das Substitutionsresultat der 
Koordinaten §, n in die linke Seite der ursprünglichen Gleichung 
übergeht, somit verschwindet, wenn der neue Ursprung auf der Linie 
selbst liegt.

206. Mittelpunkt. Bei dem Kreise, der Ellipse und Hyperbel 
hat die Untersuchung zentrale Symmetrie, also das Vorhandensein 
eines Mittelpunktes ergeben. Die Frage seiner Bestimmung soll nun 
selbständig auf Grund der allgemeinen Gleichung

f\x,y) = Ax2 + 2Bxy + Cy2 + 2Bx + 2 Ey + F = 0 (1) 
gelöst werden.'

Wir gehen dabei von dem Gedanken aus, daß der Ursprung dann, 
aber auch nur dann Mittelpunkt, also Zentrum der Symmetrie des 
Gebildes (1) ist, wenn die Gleichung bloß Glieder zweiten Grades 
enthält; denn nur dann wird sie, wenn durch xjy befriedigt, auch 
durch — xl— y erfüllt; Bedingung für die erwähnte Anordnung ist 
also das Fehlen der Glieder ersten Grades, d. h.

D =0, E=0
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Ist rQlyQ der Mittelpunkt, so muß die nach ihm transformierte 
Gleichung

Ax" + 2Bxy' + Cy'2 + f,(o,Vo)a‘ + fi,(To»Vo)y( + f(xo,3o) = 0
diese Beschaffenheit haben, es muß also

f %„(%o, Jo) 0
f‘,(xo, Jo) = 0 (2)

sein; mit andern Worten, die Koordinaten des Mittelpunktes, falls ein 
solcher vorhanden, genügen den Gleichungen

Ax^ + By0 + D = Q

Bx, + Cy + E = 0 (3)
Jede dieser Gleichungen stellt bei variabel gedachten xo, y^ eine 

Gerade dar, die Aufgabe der Bestimmung von x^y^ kommt also geo­
metrisch auf die Bestimmung der gemeinsamen Punkte zweier Geraden 
hinaus; die in 182 hierüber angestellte Untersuchung hat zu folgenden 
Ergebnissen geführt.

Es existiert ein und nur ein bestimmter Punkt im Endlichen, 
der den Gleichungen (3) genügt, wenn

A B
B C

M = 0

ist, also in den Fällen I, II (Ellipse, Hyperbel).
Die Gleichungen (3) bestimmen einen unendlich fernen Punkt, 

wenn M = 0 und eine der Zählerdeterminanten nicht verschwindet. Ist
beispielsweise

B D

C E = N = 0,

so erkennt man, daß vermöge M = 0 auch die zweite Zählerdetermi­
nante von Null verschieden ist; man hat es mit einem der Fälle IIIa), 
IIIb), Parabel in der ersten und zweiten Lage, zu tun. Den vor­
stehenden Bedingungen ist auch dann entsprochen, wenn B = 0, C = 0 
ist; denn dann wird M und die erste Zählerdeterminante Null, während 
die zweite von Null verschieden ist; die erste der Gleichungen (3) 
liefert für Xo einen endlichen Wert, der zweiten kann aber nur durch ein 
unendliches y0 genügt werden; es ist dies der Fall V einer Parabel 
in der dritten Lage.

Den Gleichungen (3) genügen unendlich viele Punkte, wenn sie 
sich nur durch einen konstanten Faktor voneinander unterscheiden, 
wenn also

BC_E =A = B “ D = h
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ist; die Punkte erfüllen die einzige durch (3) bestimmte Gerade. Weil 
nun sowohl M = B2 — AC als auch N = BE — CD = 0, so tritt 
der Fall III’) ein, der auf zwei parallele Gerade führt.

Ist die erste der in vorstehender Untersuchung unterschiedenen 
Möglichkeiten eingetreten und xo, Y, bestimmt, so ist mit der Be­
rechnung von f^,yf) die Transformation zum Mittelpunkte — so soll 
die Translation des Koordinatensystems nach dem Mittelpunkte heißen 
— vollzogen.

Die eigentlichen Linien zweiter Ordnung scheiden sich hiernach 
in zwei Klassen: solche mit einem Mittelpunkt im Endlichen — Kreis, 
Ellipse und Hyperbel und solche mit einem Mittelpunkt im Un­
endlichen — Parabel.

207. Beispiele. 1. Für die 204 unter 1. behandelte Gleichung 

x2 — 2xy + 4y2 — 6x + 4y + 3 = 0 

ergeben sich zur Bestimmung des Mittelpunktes die Ansätze:

&-9-3 = 0
- % + ^yo +2=0,

aus denen xo = 19, y0 = 3 folgt; da weiter f(xQ, Y) = — 19, so lautet 
die zum Mittelpunkt transformierte Gleichung:

x'~ — 2x' y' + 4y"2 — y = 0.
2. Die Gleichung 4. in 204:

2x2 + 4xy + y2 - 2x — ^y + 1 = 0
ist als die einer Hyperbel erkannt worden; aus den Gleichungen

2^ + ^yQ - i - o
2x, + Jo - 2 - 0

erhält man den Mittelpunkt xo = 3, y0 = — 1, und da f(xQy yf) = 3, 
so ist

2x'2 + 4x‘y‘ + y'2 + 2 = 0

die zum Mittelpunkt transformierte Gleichung.
208. Durchmesser. Im Laufe der Diskussion der allgemeinen 

Gleichung zweiten Grades sind gerade Linien erkannt worden, in be­
zug auf welche Symmetrie nach einer bestimmten Richtung stattfindet, 
mit andern Worten gerade Linien, welche Sehnen einer bestimmten 
Richtung halbieren. Dies soll Anlaß geben zur Erörterung der Frage 
nach dem geometrischen Ort der Halbierungspunkte paralleler Sehnen 
irgend einer Richtung; ein solcher Ort möge den Namen Durchmesser 
erhalten.

Die nun folgenden Untersuchungen setzen ein rechtwinkliges 
Koordinatensystem voraus.

Czuber, Höhere Mathematik. 20
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Verbindet man mit der Gleichung

f{x,y) = Ax? + 2Bxy + Cy? + 2Dx + 2 Ey + F - 0 (1)
die parametrischen Gleichungen (177)

x =8COS c
. (2) 

y = "7 — s sm C

der Geraden, die durch den Punkt §/n geht und mit der x- Achse den 
Winkel « bildet, so liefert die Gleichung

f(8 — s cos«, n—ssin a) = (A cos2« + 2B cos« sin a + C sin2«) s2

+ [fK^'tl') cos« + fi(,7) sin «]s + f^,v) = 0 (3) 
in ihren Wurzeln S1, S, die Abstände des Punktes §/n von den 
Schnittpunkten M,, M, der Geraden (2) mit der Linie (1). Der 
Punkt s/n ist insbesondere der Mittelpunkt der Sehne M, M,, wenn 
S1, S, entgegengesetzt bezeichnet und dem Betrage nach gleich sind, 
und dies findet dann statt, wenn die Gleichung (3) rein quadratisch, also

f($,n) cos « + f(5,n) sin « = 0 (4) 
ist. Diese Gleichung stellt den Ort der Mittelpunkte aller Sehnen 
vom Richtungswinkel « oder vom Richtungskoeffizienten m=tg« 
dar; ersetzt man f{, f^ durch ihre Ausdrücke, so wird aus (4)

(A + Bm)^, + {B + Cm)ri + D + Em = 0. (5)
Hiermit ist erwiesen, daß die Durchmesser einer Linie zweiter 

Ordnung gerade Linien sind. Die Gleichung (5), in symbolischer Form

fiC,1) + mf:(k,r) = 0,
stellt bei variablem m einen Geradenbüschel dar, dessen Träger durch 
die Gleichungen 7) _ 0, f,^ 7) - 0 

gegeben ist; diese Gleichungen bestimmen aber (206) den Mittel­
punkt.

Die Durchmesser einer Linie zweiter Ordnung bilden demnach einen 
Geradenbüschel, dessen Träger der Mittelpunkt der Linie ist; bei den 
Linien mit einem Mittelpunkt gehen also alle Durchmesser durch einen 
eigentlichen Punkt, bei der Parabel sind sie untereinander parallel.

209. Paare konjugierter Durchmesser. Der Durchmesser, 
der die Sehnen vom Richtungskoeffizienten m halbiert, hat selbst, wie 
aus seiner Gleichung (5) hervorgeht, den Richtungskoeffizienten

m’ ändert sich mit m nur dann, 

A B 

B C

A+B m
~ E+~Cm i
wenn

= M=0
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ist, also bei der Ellipse und Hyperbel; ist hingegen M=0, also 
A B
7 = = k, so bleibt m' konstant = — l.

Von diesem Falle abgesehen besteht zwischen dem Richtungs­
koeffizienten der Sehnenschar und dem Richtungskoeffizienten des zu­
gehörigen Durchmessers die Gleichung:

Cmm' + B(m + m‘) — A = 0. (6)
Diese Gleichung hat einen solchen Bau, daß sie sich nicht ändert, 

wenn man m und m' miteinander vertauscht; daraus entspringt der 
folgende Sachverhalt: Wählt man von zwei Zahlen m, m', die der 
Gleichung (6) genügen, die eine als Richtungskoeffizienten einer 
Sehnenschar, so bedeutet die andere den Richtungskoeffizienten des 
die Sehnenschar halbierenden Durchmessers.

Die Durchmesser einer Linie zweiter Ordnung mit eigentlichem 
Mittelpunkt ordnen sich hiernach zu Paaren solcher Art, daß der eine 
die zu dem andern parallelen Sehnen halbiert. Man bezeichnet die 
Durchmesser eines solchen Paares als konjugierte Durchmesser.

Der Durchmesser vom Richtungskoeffizienten m schließt mit dem 
ihm konjugierten zwei supplementäre Winkel ein, deren einer, w, durch

. m'— m A — 2 Bm — Cm1 _
tg CO = , . ,=, . — — (0° 1 — mm Bm3 — (A — C)m — B 

bestimmt ist.
210. Achsen. Daran knüpft sich naturgemäß die Frage nach 

solchen Paaren konjugierter Durchmesser an, die aufeinander senk­
recht stehen; derartige Durchmesser sind Achsen orthogonaler Sym­
metrie und werden darum als Achsen der betreffenden Linie bezeichnet.

Zufolge der Formel (7) haben die Richtungskoeffizienten der 
Achsen der Gleichung

Bm2 + (A — C)m — B = 0 (8) 
zu genügen.

Diese Gleichung ist identisch, d. h. durch jeden Wert von m, er- 
füllt, wenn gleichzeitig A = C B = 0 

ist, Bedingungen, die den Kreis kennzeichnen (188, 200). Der Kreis 
hat sonach unendlich viele Achsenpaare, mit andern Worten, von 
welchem Durchmesser man auch ausgeht, der dazu konjugierte steht 
immer senkrecht auf ihm.

In den Fällen der Ellipse und Hyperbel gibt es nur ein Paar von 
Achsen, denn die Gleichung (8) liefert dann stets ein Paar reeller 
Wurzeln m1, m^, die die Eigenschaft haben, daß n^ m2 = — 1 ist; 
diese Wurzeln sind in der Formel

„ _ - (A- C) ±V(A-c% + 48* (9) 
enthalten. 23

20*
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Bei der Parabel sind alle Durchmesser parallel und derjenige 
unter ihnen, der die zugehörigen Sehnen rechtwinklig halbiert, ist die 
einzige Achse. In der Tat gibt die Formel (9), wenn M = 0, also 
B2 = AC ist, die beiden Werte

_ A C
B ‘ B’

deren einer = — k, gleich dem Richtungskoeffizienten der Durchmesser 
ist (209), während der andere die dazu senkrechte Richtung be­
stimmt.

211. Transformation der Ellipsen- und Hyperbelgleichung 
zu den Achsen. In den Achsen ist für die genannten Linien ein 
natürliches rechtwinkliges Koordinatensystem gegeben, bei dessen An­
wendung ihre Gleichungen eine besonders einfache Gestalt annehmen. 
Da nämlich der Mittelpunkt dann Ursprung ist, entfallen die Glieder 
ersten Grades in x, y, und da weiter bezüglich beider Koordinaten­
achsen Symmetrie herrscht, ist die Gleichung rein quadratisch in be­
zug auf x sowohl als y, es entfällt also auch das Glied mit dem 
Produkt xy.

Ist die Gleichung bereits zum Mittelpunkt transformiert, also auf 
die Form

Ax2 + 2Bxy + Cy2 + G = 0 (1) 

gebracht (206), so handelt es sich um eine solche Rotation des 
Koordinatensystems um den Ursprung, daß das Glied mit dem Pro­
dukt der neuen Koordinaten ausfällt; ist • der Rotation swinkel, so 
lauten die Transformationsgleichungen (169):

x = x' cos 9 — y' sin 9

y = x' sin • + y' cos 9,

durch die (1) verwandelt wird in:

(A cos2^ + 2B cos % sin • + C sin28)x‘2

— 2[A cos % sin 9 — B(cos2% — sin2^) — C cos • sin 3]x 'y'

+ (A sin2^ — 2B cos • sin • + C cos?%)y‘2 + G = 0;

die angestrebte Form
A‘x‘+ B’y+G =0 (2) 

tritt also ein, wenn man • derart bestimmt, daß

. , (A — C) sin 29 -- 2B cos 29 = 0 (3 ) 
wird. 7 7

Diese Gleichung läßt • unbestimmt, wenn gleichzeitig A — G 
und B = 0 ist, also im Falle des Kreises.

In jedem andern Falle gibt sie in

tg29=22P. (4) 
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die Bestimmung zweier Winkel, die sich um 180° von einander unter­
scheiden, also zweier Werte von 9, die um 90° differieren; mit dem 
einen ist der andere gegeben. Behält man den hohlen Winkel bei, 
so folgt aus (4)

sin29 = cos29 = _ 4—C —  & = sgn B. (5)

Die in (2) eingeführten neuen Koeffizienten Ä', C haben zunächst 
folgende Bedeutung:

A' = Acos28 + 2 Bcos 9 sin • + Csin28

C' = A sin2 8 - 2 B cos • sin + C cos2 • ;

daraus ergibt sich durch Addition:

A'+ C'=A + C, (6) 

und durch Subtraktion, wenn man gleichzeitig auf der rechten Seite 
von den Formeln (5) Gebrauch macht:

A' - C' = 6 V{A - Cy + 4B; (7) 

aus (6) und (7) erhält man schließlich:

A'^t{A+ C+eV(A-C+48) ■

C' = i [AA C- £y(A- C)2 + 4B2,t •

Aus der hieraus folgenden Relation

A'C'=AC- M 

geht hervor, daß bei der Ellipse A' und C' gleich, bei der Hyperbel 
ungleich bezeichnet sind.

Es nimmt also (2) im Falle der eigentlichen Ellipse schließlich 
die Form ,2 ,/2

a2 Tb 1‘
im Falle der Hyperbel eine der Formen

an, wobei in beiden Gliedern entweder das obere oder das untere 
Zeichen gilt.

Hiermit ist der Anschluß an die Definitionen gewonnen, aus 
welchen die letzten Gleichungen ursprünglich abgeleitet worden sind 
(158, 159).

Aus dem Gange der Untersuchung in 206 und in diesem Ar­
tikel geht hervor, daß das absolute Glied F der Gleichung weder 
auf die Lage des Mittelpunktes, noch auf die Richtung der Achsen, 
noch auf das Verhältnis der Achsenlängen Einfluß hat; denn auf die 
Koordinaten des Mittelpunktes wirken alle Koeffizienten mit Ausschluß
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von F, auf die Richtungswinkel der Achsen und das Verhältnis ihrer 
Längen nur die Koeffizienten A, B, C der quadratischen Glieder ein.

Hiernach stellen Gleichungen der Form (1), die sich nur in F 
unterscheiden, Ellipsen und Hyperbeln dar, die im Mittelpunkt, den 
Achsen und dem Verhältnis ihrer Längen übereinstimmen. Man 
nennt Linien dieser Art homothetisch.

212. Scheitelgleichung der Parabel. Wegen der Beziehung 
M = B2 — AG = 0, die die Parabel kennzeichnet, kann deren all­
gemeine Gleichung auf die Form

C (y + 5 «)*+ 2Dx + 2Ey + F - 0 (1) 

gebracht werden; es ist also ein charakteristisches Merkmal der Parabel- 
gleichung, daß in ihr die Glieder zweiten Grades, eventuell nach Ab­
sonderung eines konstanten Faktors, ein vollständiges Quadrat bilden.

Als Richtungskoeffizient der Parabeldurchmesser, also auch der 
AParabelachse, ist — B , das gleich ist —<, gefunden worden (210); 

bezeichnet man also den hohlen Richtungswinkel mit 0, so ist 

tg=P, sin9 =B , cos? = _ 8=-sgn B (2)
6 C‘ 8 VB2+ C2‘ 8]/B2FC2

Die Rotation des Koordinatensystems um diesen Winkel ver­
wandelt die Gleichung (1) in die folgende:

-—. y'2 + 2 (D cos 9 + E sin 9) x' + 2 (— D sin 9 — E cos 9) y' + F= 0, 
COS U

deren allgemeine Gestalt durch

C'y'2 + 2 D’x’ + 2 E' y' + F = 0

bezeichnet ist, wobei unter Berücksichtigung von (2)

(3)

w_x+0 D= DBF
C ‘ sV B2+C2

BD + CE 

• \ /: c (4)
Übt man jetzt eine Translation nach dem noch unbestimmten 

Ursprung xQlyQ aus, so verwandelt sich (3) weiter in

C'y"2 + 21)' x" + 2 (C yQ + E) y + c 98 + 2D x, + 2E y0 + F = 0,

und verfügt man über den neuen Ursprung derart, daß

C‘y+E-0 (5)

C’y+2D%+2E‘y + F=0
wird, so vereinfacht sich die Gleichung schließlich auf

C'y"2F2D'x"^0. (6)

Die zweite der Gleichungen (5) läßt erkennen, daß der Ursprung
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der Parabel selbst angehört, und für seine Koordinaten ergeben sich
aus (5) die Werte: E‘

Jo C‘ ,
E'2~C'F

«o = 2C'D'

es ist jener Punkt, in welchem die Parabel von ihrer Achse ge­
schnitten wird, da vermöge der jetzigen Gleichungsform in bezug auf 
die X-Achse orthogonale Symmetrie besteht. Man nennt den Punkt (7) 
den Scheitel der Parabel, (6) ihre Scheitelgleichung.

In der Form 7 

läßt sie ihre Übereinstimmung mit jener Gleichung erkennen, die aus 
der ursprünglichen Definition abgeleitet worden ist (160).

Wie die Ansätze dieses Artikels zeigen, hat das absolute Glied F weder 
auf die Richtung der Achse, noch auf die Ordinate y^ des Scheitels (im 
System x, y), also auf die Lage der Achse, noch auf den Parameter Einfluß.

Es gehören demnach Gleichungen der Form (1), die sich nur in 
dem absoluten Gliede unterscheiden, Parabeln an, die dieselbe Achse, 
denselben Parameter und nur verschiedene Scheitel haben. Man be­
zeichnet derartige Parabeln als homothetisch.

213. Beispiele. 1. Um die Ellipse, die durch die Gleichung 
004 1 •

x2 — 2xy + 4y2— 6x + 4y + 3 = 0
bestimmt ist, auf die Achsen zu transformieren, transformiere man 
sie zuerst zum Mittelpunkt 19/3; dies ist in 207, 1. geschehen und hat 
— mit Unterdrückung des Akzents —

x2 — 2xy + 4y2 — 19 = 0

ergeben.
Zur Bestimmung der Rich­

tung der Achsen hat man

tg20-3,
und für die endgiltigen Koeffi­
zienten ergeben sich aus 211, (8)
die Werte: A - , (5 - 113) , B‘=*(5+V13);
die Achsengleichung lautet also:

(5 - V13) «"2 + (5 + V13) y'^ - 33 - 0 
und läßt, in der Gestalt 

a‘2 I y‘ _ 1
38 T 38

3(5 — V13) 3 (5+V13)



312 Analytische Geometrie der Ebene. § 6. Die Linien zweiter Ordnung.

geschrieben, unmittelbar die Halbachsenlängen

1------38 = 1,21... erkennen.
‘ 3 (5+113)

2 . Die durch die Gleichung 204. 4.:

1/38__  
‘ 3(5— V13) 3,01..,

2x2+ 4xy + y2— 2x — 4y—1 = 0
dargestellte Hyperbel ist in 207, 2. zum Mittelpunkt 3/— 1 trans­
formiert worden, und es ergab sich, wieder in x, y geschrieben, die 

Gleichung:
2x2 + ^xy + y2 + 3 = 0.

Die Richtung der Achse ist durch

tg 2 • = 4
bestimmt-, ferner hat man 

A‘= 1(3+V17),

Fig. 91. V17 — 3
die reelle Halbachse hat sonach die Länge /

B‘= 1(3—V17),
und hiermit ergibt sich die Achsen- 
gleichung:

(V17 +3)x"
-(V17-3),*+3-0,

wofür geschrieben werden kann: 
y' 2 x‘* = 1 .
3 3 ’

V17 + 3
= 1,63 • • • undV17— 3 

gtfällt in die y'-Achse, die imaginäre Halbachse beträ

3
V17 + 3 = 0,65 • •

Die Konstruktion gestaltet sich in den beiden Fällen wie folgt. 
Nachdem man den Mittelpunkt & mittels seiner Koordinaten 19/3 in 
Fig. 90, 3/—1 in Fig. 91 aufgetragen, konstruiert man den Winkel 
29 = 0JK aus seiner Tangente, 3 in dem einen, 4 in dem andern 
Falle, halbiert ihn und führt durch & die Parallele zur Halbierungs­
linie JL, so ist damit die eine Achse, zugleich die x-Achse des neuen 
Koordinatensystems gefunden; die andere steht auf ihr senkrecht. 
Durch Abtragen der Halbachsenlängen ergeben sich die Scheitel A, A‘; 
B, B' in Fig. 90, A^ A' (und die uneigentlichen B, B') in Fig. 91; 
in der letzten Figur liefert das Achsenrechteck in seinen Diagonalen 
die Asymptoten a, a.
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3. Um für die Parabel 204, 8.:

422— 4xy + y2-42 + 8y - 2 = 0 

die Scheitelgleichung herzustellen, hat man zuerst mittels 

tg 9 = 2 

die Achsenrichtung zu bestimmen und die Koeffizienten 
zu berechnen; man findet:

C‘=5, D • , FAS;
V5 V5 

hieraus ergeben sich die Koordinaten des 
Scheitels in dem um • gedrehten System 
und der Parameter:

«0= #V5=0,85.,
„--&V5--0;72—, 
p--£V5--0,5+.

Konstruktiv geht man so vor, daß man zu­
erst den Winkel 9 mittels des rechtwinkligen 
Dreiecks OJK, Fig. 92, dessen Katheten
OK, OJ im Verhältnis 2 : 1 zu einander stehen, herstellt, und daß
man sodann in dem Koordinatensystem X' OY', das um diesen Winkel 
gegen das ursprüngliche gedreht ist, den Scheitel mittels seiner Koor­
dinaten aufträgt, in diesen, A, das endgiltige Koordinatensystem X" A Y" 
verlegt und mit Benützung von p den Brennpunkt F der Parabel 
einzeichnet, mit dessen Hilfe diese selbst konstruiert werden kann.

214. Identität der Linien zweiter Ordnung mit den 
Kegelschnittslinien. Es soll nun gezeigt werden, daß alle die 
Gebilde, die durch eine Gleichung zweiten Grades darstellbar sind, 
erhalten werden können, indem man den geraden Kreiskegel und den 
geraden Kreiszylinder, der als eine Ausartung des Kegels aufgefaßt 
werden kann, in geeigneter Weise mit Ebenen schneidet. Dieser Um­
stand rechtfertigt es, die erwähnten Gebilde als Kegelschnitte zu be­
zeichnen.

Vom Kreise selbst braucht nicht mehr gesprochen zu werden, 
weil er den genannten Flächen ihrem Entstehungsprinzip nach zu­
grunde liegt und darum diesem Prinzip entsprechend aus ihnen wieder 
gewonnen werden kann.

Um für die Ellipse, Hyperbel und Parabel den Nachweis zu 
führen, wollen wir den Gleichungen dieser Linien eine einheitliche 
Form geben, und diese Form wird in der Scheitelgleichung zu finden 
sein. Um die Ellipsengleichung

a2 62
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auf den linken Scheitel zu transformieren, hat man x durch x — a zu 
ersetzen; die transformierte Gleichung

x2 2x _  0 
a? a T b2

nimmt nach Einführung des Parameters 
62 . . . cp = und der relativen Exzentrizität & = a

(171) die Gestalt an:

y? = 2pa - (1 — 28)22. (1)
Die Transformation der Hyperbel-

gleichung
SC y?
a2 62

= 1

geschieht, indem man x durch x — a ersetzt; 
sie führt wieder auf (1), doch mit der Maßgabe, daß & nunmehr ein 

unechter Bruch ist, während es bei 
der Ellipse einen echten Bruch be­
deutet.

Die Gleichung (1) umfaßt also 
Ellipse, Hyperbel und Parabel, in­
dem man der Reihe nach & < 1, > 1 
und = 1 festsetzt, und ist deren ge­
meinsame Scheitelgleichung. Sie umfaßt 
auch den Kreis, den sie dann dar- 
stellt, wenn man & = 0 setzt.

Ein gerader Kreiskegel werde nun 
mit einer durch seinen Scheitel S 
gelegten Ebene in Verbindung ge­

bracht; diese kann mit ihm a) nur den Scheitel, ß) zwei verschiedene 
Seitenlinien, 7) zwei vereinigt liegende Seitenlinien gemein haben, in­

dem sie ibn berührt. Es soll nun unter­
sucht werden, wonach eine zu der ge­
dachten parallele Ebene den Kegel in den 
drei Fällen schneidet.

In den Figuren 93,94, 95, die den Fällen 
a), ß), 7) entsprechen, stellt E die Spur der 
schneidenden, zur Zeichenebene senkrechten 
Ebene dar; MN, M'N' ein Paar von Kreis­
schnitten des Kegels, von denen je eine 
Hälfte parallel zur Zeichenebene gedreht ist, 
um die Ordinaten PQ,P'Q' der betreffen­
den Punkte der Schnittlinie ersichtlich zu 
machen; als Abszissenachse dient dabei 
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der Achsenschnitt der Ebene mit dem Kegel, als Ursprung der 
Punkt A.

In Fig. 93 ist PQ2 - ALP PN, P'Q'2 = APP' • P'N', woraus 
PQ- MP PN HP PA .
P’Q’^ - M'P' ' P'N' “ BP' ’ P’A^ folglich ist

~PQ2 ^li-BP PA,

d. i., wenn B A = 2a gesetzt wird:

y2 = lc(2a — x)x = 2kax — lex2. (2)

T — —PQ% MP PN PB PA 1 —2 7 , In Fig.94 istpon- MPPNFPB p’Aalso Pe ^PBPA, 
und wenn AB = 2a gesetzt wird, 

y2 = lc(2 a + x)x = 2kax + kx2. (3)

T TV — , PQ2 MP PN PN PA , —2 , — InFig.95 hat man p/0/2 M P. P N—P' N' p’A’also - I k-PA 
oder 

y2 = kx. (4)

Setzt man im ersten und zweiten Falle
7 62 ka = y = , so wird k = —, 

also bei der Ellipse k = d " C = 1 — 83, bei der Hyperbel k = —ai“ 

= 82 — 1, und hiermit gehen die Gleichungen (2), (3) tatsächlich in 
(1) über.

Im dritten Falle braucht nur k = 2p gesetzt werden, um auf die 
frühere Form zu kommen.

Wollte man das Quadrat über y in ein inhaltsgleiches Rechteck 
verwandeln, dessen eine Seite x ist, so würde die zweite Seite bei der 
Ellipse unter 2 p, bei der Hyperbel über 2p, bei der Parabel gerade 
2p betragen, daher an 2p gemessen bei der Ellipse etwas übriglassen, 
bei der Hyperbel darüber hinausreichen, bei der Parabel gerade an­
liegen. Aus diesem Sachverhalt sind die klassischen Namen der drei 
Spezies von Kegelschnitten hervorgegangen.

Wird an Stelle des Kegels der Zylinder zur Grundlage genommen, 
so kann der Schnitt mit einer Ebene außer dem Kreise und der Ellipse 
auch ein Paar von parallelen, reellen oder imaginären, Geraden sein.

Hiermit sind aber alle Gebilde erschöpft, die in der allgemeinen 
Gleichung zweiten Grades enthalten sein können.1)

1) Bis auf den imaginären Kreis und die imaginäre Ellipse, die auf diesem 
Wege nicht Zustandekommen.

215. Tangentenprobleme. I. Bei gegebenem Berührungspunkt 
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x/y stellt sich die Tangente an die Linie f(x,y} = 0 durch die Glei­
chung (194)

($ - x)f +(n- y)fy = 0 

dar. Dies auf die allgemeine Gleichung zweiten Grades

f{x,y) = Ax? + 2Bxy + Cy2 + 2Dx + 2Ey + F- 0 (1) 

angewendet, führt, da
t"x{x, y) = 2(Ax + Ey + D),

fi(x,3) - 2(Bx + Gll + E), 

zunächst zu der Gleichung:

2{Ax + By + D)E + 2{Bx + Cy + E), — (xfx + yQ - 0; (2) 

es ist aber

xf£ + yfy = 2 (Ax2 + 2Bxy + Cy2 + Dx + Ey) = — 2(Dx + Ey + F), 

infolgedessen schreibt sich die Gleichung der Tangente endgiltig:

(Ax + By + D)E + (Bx + CyA E)y + (Dx + Ey + F) = 0 (3)

Nach x, y geordnet lautet sie:

(Al + By + D)x + (Bl + CV + E)y + (Dl + Ev + F) = 0, (3%) 

der Vergleich mit (3) zeigt die Vertauschbarkeit von xfy und E/n. 
II. Sollen die Tangenten durch einen gegebenen Punkt P(x/ y0) 

gelegt werden, so hat man zur Bestimmung ihrer Berührungspunkte 
x/y außer der Gleichung (1) die aus (3*) resultierende Gleichung

(Ax, + By^ + D)x + (Bxq + Cy^ + F)y + (DxQ + Ey0 -{- F) = Q, (4) 

die eben die Forderung ausdrückt, daß die Tangente durch P zu gehen 
hat. Bei veränderlichem x, y stellt diese Gleichung eine stets reelle 
Gerade p dar, die in ihren Schnittpunkten mit (1) die gesuchten Be­
rührungspunkte liefert; je nachdem diese Schnittpunkte reell und ver­
schieden und vereinigt oder aber imaginär sind, gibt es zwei, eine 
oder keine Tangente durch P.

Man nennt die Gerade p die Polare von P in bezug auf den 
Kegelschnitt (1), P den Pol von p.

Die vorhin bemerkte Vertauschbarkeit der beiden Koordinaten­
paare in (4) hat folgendes zu bedeuten: Die Polare eines Punktes 
von p geht durch P und der Pol einer Geraden durch P liegt auf p.

III. Sollen die Tangenten einer gegebenen Geraden parallel sein, 
also einen bestimmten Richtungskoeffizienten m haben, so dient zur 
Bestimmung ihrer Berührungspunkte x/y neben der Gleichung (1) 
noch die aus (3) resultierende Gleichung

Ax — By — D
Bx^Cy + E "‘ (5)
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die den Ausdruck für die eben gestellte Forderung bildet; in der 
Gestalt

(A + Bm)x + {B + Cm)y + I) + Em = 0

geschrieben erkennt man in ihr die Gleichung jenes Durchmessers, 
der die Sehnen vom Richtungskoeffizienten m halbiert (208). Dieser 
Durchmesser bildet die Polare zu dem unendlich fernen Punkt der 
Geraden, der die Tangenten parallel sind.

216. Pol und Polare. In bezug auf den Kegelschnitt

f(x,y) - Aad + 2Bxy + Cy2 + 2Da + 2Ey + F - 0 (1) 

hat der Punkt P(xQly^ die Polare
p (x,y)=(A % + By^ ED^xA^BxQECyQEEyjpl.Bx^ Ey^ + F) = 0. (2)

Mit diesen beiden Gebilden bringen wir 
nun den Geradenbüschel aus P, der 
parametrisch

T = XL s cos a \ • (3)
y = Vo + S sin« 

geschrieben werden kann, in Verbindung.
Gleichung (1) geht durch die Sub­

stitution (3) in die bezüglich s quad­
ratische Gleichung (208):
(A cos2« — 2 B cos « sin « + C sin2 a) s2 

+ [f%, cos a+f, sin «] sFf(xw y^) = 0 (4)

über, deren Wurzeln s', s" die Strecken zwischen P und den Schnitt­
punkten BI', BL" der Geraden («) mit dem Kegelschnitt (1) bedeuten, 
Fig. 96.

Gleichung (2) verwandelt sich durch dieselbe Substitution in

(Axo + By0 + B}^o + (Bao + Cyo + E)Yo + (Dxo + -^yo + F)

+ [(Ax0 + By0 + D) cos a + (fBxQ + Cy + E) sin a] s = 0, 
d. i. in

(f cos« + fisin «) s + 2f(o,J) = 0; ■ (5) 
das hieraus berechnete s bestimmt die Strecke zwischen P und dem 
Schnittpunkt Q der Geraden («) mit der Polare p.

Nun folgt aus (4), daß
/' cos & — f sin & 

s' — s" =___________ °___  .
Acos2«—2 B cos c sin c — C sin2 & ‘

,,”___  _ _ 76)
A cos’a + 2 B cos « sin « — C sin’«’ • 

wonach also 
, । " f‘ cos & — sin &S— S _ 0 ‘ Vo 

s’s" - f^.y^ 3
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andererseits führt (5) auf
2 f%, cos « + f%, sin a
s " t\x^Vi) ‘ 

demnach ist
s’+s" 2
s's " s •

Dadurch ist (179) erwiesen, daß die Schnittpunkte einer jeden 
Geraden durch P mit dem Kegelschnitt von P und seiner Polaren 
harmonisch getrennt werden. Dieser Sachverhalt kann dazu verwendet 
werden, die Polare von P auch dann zu konstruieren, wenn aus P 
keine reellen Tangenten an den Kegelschnitt gehen.

An die Gleichung (6), die das Produkt PM' • P M" der Seg­
mente bestimmt, sei die folgende Bemerkung geknüpft.

Bei dem Kreise, wo A = C und B=Q ist, hängt dieses Produkt 
von der Richtung des Strahls nicht ab und führt zu dem Begriff der 
Potenz (195). Zugleich zeigt die Gleichung (6), daß in diesem Falle 
der Ort der Punkte x^/y^, die in Bezug auf den Kreis f(x,y} = ^ 
gleiche Potenz haben, ein mit ihm konzentrischer Kreis ist.

Bei den anderen Kegelschnitten ist das Segmentprodukt s' s” von 
der Richtung des Strahls abhängig; hält man diese Richtung fest 
und setzt s' s" ■ (A cos2a + 2B cos « sin a + C sin2 «) = k, so schreibt sich 
der Ort von Punkten xQlyQ, für die das Segmentprodukt bei der an­
genommenen Richtung « konstant ist,

f (xo, Jo) = k.
Dies stellt aber nach den Bemerkungen am Schlüsse von 211 und 
212 einen zu f\x,y) = O homothetischen Kegelschnitt vor.

Es gehört also zu jedem Kegelschnitt, der mit einem Grund­
kegelschnitt homothetisch ist, eine (und wegen der Symmetrie eine 
zweite) Richtung, bei welcher der erstgedachte Kegelschnitt der Ort 
von Punkten ist, denen in Bezug auf den Grundkegelschnitt ein kon­
stantes Segmentprodukt s's" zukommt.

IX. Abschnitt.

Analytische Geometrie des Raumes.
§ 1. Der Koordinatenbegriff.

217. Das rechtwinklige Koordinatensystem. Nimmt man 
im Raume drei gerichtete Gerade an, die durch einen Punkt gehen, 
und deren jede auf den beiden anderen senkrecht steht, wählt den ge­
meinsamen Punkt für alle drei Geraden als Nullpunkt (Anfangspunkt)
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und eine Strecke als Einheit, so sind damit die drei Geraden zu Zahlen- 
linien ausgestattet und geeignet, ein Koordinatensystem zu bilden. 
Man nennt die Geraden die Koordinatenachsen, ihren gemeinsamen 
Punkt Anfangspunkt oder Ursprung, die drei durch sie bestimmten 
Ebenen die Koordinatenebenen. Die Achsen sollen der Reihe nach
als x-, y-, z-Achse, die Ebenen als yz-, zx-, 
xy-Ebene bezeichnet werden, Fig. 97.

Projiziert man einen Punkt M des 
Raumes mit Hilfe von Ebenen, die zu den 
Achsen senkrecht stehen, auf diese, so ge­
hört zu der Projektion Q1 auf der x- Achse 
eine bestimmte Zahl x, zu der Projektion 
Q2 auf der y-Achse eine Zahl y und zu 
der Projektion s auf der z-Achse eine ri” Mig 97 3
Zahl z, und diese drei Zahlen x, y, z sind 
geeignet, die Lage des Punktes M zu beschreiben. Denn nicht allein 
gehört zu jedem Punkte des Raumes ein und nur ein solches Zahlen­
tripel; auch umgekehrt führt ein gegebenes Zahlentripel nur zu einem 
Punkte des Raumes, dem 0 gegenüberliegenden Endpunkte des Parallel- 
epipeds mit OQ=x, 0Q2 = y, 0Q, = z als Kanten.

Bei dem beschriebenen Vorgang entstehen auch die Projektionen 
P1, P2, Ps des Punktes M auf den drei Koordinatenebenen yz,zx, xy. 
Diese Projektionen haben in den betreffenden Ebenen die Koordinaten 
y /z, zIx, x/y, wenn x)yjx die Koordinaten von M sind.

In dem Linienzuge OffP^Ak sind alle drei Koordinaten des 
Punktes M zur Anschauung gebracht: x in 0Q1, y in QtPä, z in P3M. 
In der Folge wird daher in der Regel dieser Linienzug allein verzeichnet 
werden.

Durch die drei Koordinatenebenen ist der Raum in acht Fächer 
— Oktanten — geteilt, und jedem derselben entspricht eine andere 
Verbindung der Vorzeichen bei den Koordinaten seiner Punkte.

Liegt ein Punkt in einer der Koordinatenebenen, so ist eine 
seiner Koordinaten Null; so bedeutet Al(afb/kP) einen Punkt der 
xy-Ebene.

Liegt der Punkt in einer der Achsen, so sind zwei seiner Koordi­
naten Null; so ist z. B. M(0/b/0) ein Punkt der y-Achse.

Nur im Ursprung sind alle drei Koordinaten Null.
Durch M (afb I c\ N(a/b/—c) ist ein zur xy- Ebene, durch M(a[b] c\ 

N(a/—b/—c) ein zur x-Achse, durch Af(a lb / c), N(—a/—b/—c) ein 
zum Ursprung symmetrisches Punktepaar bestimmt.

218. Abstand eines Punktes vom Ursprung. Die Strecke, 
die den Ursprung mit dem Punkte M verbindet, erscheint als Diago­
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nale in dem zugehörigen Koordinatenparallelepiped. Bezeichnet man 
ihre absolute Länge mit r, die Koordinaten von M mit x, y, z, so ist

r - V2 + y + 23, (1)
die Quadratwurzel mit dem absoluten Betrag genommen.

Faßt man x, y, 2 als variabel auf, so ist durch die Gleichung

2? + y2 + 23 = 72 (2) 
der Inbegriff aller Punkte gekennzeichnet, die vom Ursprung den Ab­
stand r haben; ihr Ort ist die mit dem Radius r um 0 beschriebene 
Kugel, (2) also die Gleichung dieser Kugel.

1) Und weiter &+"> ß,B+ "> a.
2 2 ---

219. Abstand zweier Funkte. Legt man durch zwei Punkte 
M(x1/Y1/21), M,(x,/Y2/2,) zu den Achsen senkrechte Ebenen, so be­
grenzen diese bei allgemeiner Lage der Punkte ein Parallelepiped, 
dessen Kanten an Länge gleich sind den absoluten Koordinatendiffe­
renzen der beiden Punkte. Demnach ist die absolute Länge d der 
Strecke M,M, bestimmt durch

d - ys - ^7+(J, - »2)3 + (z, - z, )3 (3)
220. Richtungswinkel einer Geraden. Eine Gesamtheit 

von parallelen und gleichgerichteten Geraden des Raumes ist hinsicht- 
Z lieh ihrer Richtung durch eine unter ihnen 

q bestimmt; als solche werde diejenige, g, ge- 
wählt, die durch den Ursprung geht, Fig. 98. 

Die hohlen Winkel, welche g mit den 
positiven Richtungen der Achsen bildet, — 

Q sie seien «, ß, 7 — bezeichnet man nicht nur 
, " als ihre eigenen, sondern auch als die Richtungs­

winkel jeder Geraden aus der erwähnten Ge­
samtheit.

Durch eine gerichtete Gerade sind die drei Winkel a, ß, y ein­
deutig bestimmt. Das Umgekehrte trifft nicht zu. Sind «, ß ge­
geben, so kommt es darauf an, körperliche Ecken zu konstruieren, 
deren eine Seite XOY ist, während die den Kanten OY, OX gegen­
überliegenden Seiten a, ß sind; das ist jedoch nur möglich, wenn 

« + ß 2 —ist; gilt das obere Relationszeichen, so ergeben sich zwei 

körperliche Ecken, also auch zwei Gerade mit den Richtungswinkeln 
a, ß, deren dritter Richtungswinkel schon bestimmt ist; gilt das untere 
Zeichen, so fällt die Ecke in die xy-Ebene zusammen, es gibt nur 
eine Ecke mit den Richtungswinkeln a, ß, während der dritte 5 ist. Ist
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hingegen ‘« + ß < 9, so ist keine Ecke konstruierbar, somit auch keine 

Gerade mit den Richtungswinkeln «, ß möglich.
Die Richtungswinkel einer Geraden sind also nicht unabhängig 

voneinander.
Die Art der Abhängigkeit ergibt sich aus folgender Erwägung. 

Trägt man auf der Geraden die positive Strecke OM = r ab, so sind 
deren Projektionen auf den Achsen die Koordinaten x, y, 2 des Punktes 
M, mithin ist

x = r cos « 

y = r cos ß 

z=r COS 7;

die Quadratsumme dieser Gleichungen ergib

COS2 « + COS3 ß + COS2 7

Man nennt cos«, cos ß, cos y die Bich- 
tungskosinus der Geraden g und jeder mit ihr 
parallelen und gleichgerichteten. Es besteht 
also der Satz: Im rechtwinkligen System ist 
die Summe der Quadrate der Richtungskosinus 
einer jeden Geraden gleich 1.

Ist beispielsweise « = 45°, ß = 60°, so 
hat man .. „21+ cos? = 1, 

woraus cos y = jr^ es gibt also zwei Ge­

mit Rücksicht auf (1):

= 1. (4)

rade, die der gestellten Bedingung genügen, und ihre Ri chtungs winkel 
sind 45°, 60°, 60° und 45°, 60°, 120°.

221. Winkel zweier Geraden. Um den Winkel c zweier 
gerichteten Geraden 91, ’g2, Fig. 99, aus ihren Richtungskosinus zu 
bestimmen, verlege man sie nach dem Ursprung und trage auf jeder 
vom Ursprung aus in positiver Richtung die Längeneinheit auf; die 
Endpunkte M,, M, dieser Strecken haben dann die Koordinaten 
cos «1/cos ß,/cos 71, cos «, /cos ß,/cos 72; folglich ist das Quadrat der 
sie verbindenden Strecke d (219):

d2 = (cos «1 — cos &,)2 + (cos Bi — cos 3,)2 + (cos 71 — cos 72)2 

= 2 — 2(cosa, cos «2 + cos ßi cos 3, + cos 71 cos 72);

andererseits folgt aus dem Dreieck 0MrM2:

d2 = 2 — 2cosc;
mithin ist

COS 0 = COS «1 COS C, + COS Bi COS 3, + COS 71 COS 72. (1) 
Czuber, Höhere Mathematik. 21
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Daraus berechnet sich (116)
sin2 o = 1 — (cos &, cos «2 — cos 3. cos ß, + cos^ cos 79)2 

= (cos2«! — cos2^ — cos271) (cos2«2 — cos2ß, — cos2y2)

— (cos«, cos «2 + cosß, cosß, + COS7, COs 7,)2

= (cos 3. COS 72 — COS 32 COS 71)2 + (cos 71 COS «2 — COS 72 COS «,)2

woraus
+ (cos &, COS ß, — COS «, COS 3.)3, 

sin c =

= V (cos ß. COS 72 — COS ß, COS 71)2+ (cos 71 COS «2 — COS 72 COS «J2 +(cos «1 COS ß, — COS «2 COS 31)3, (2) 

die Wurzel positiv genommen, weil <u unter allen Umständen hohl ist. 
Aus (1) ergibt sich die Bedingung für das Senkrechtstehen: 

cos « cos «2 + cos ß. cos ß, + cos 71 cos 72 = 0, (3)

aus (2) die für den Parallelismus:
cos &, COS ß. COS 71
COS &, COS ß, COS 72 ‘ (4)

sind die Geraden auch gleich gerichtet, so haben die drei Quotienten 
den Wert 1, im andern Falle den Wert — 1.

222. Räumliche Polarkoordinaten. Die Lage eines Punktes

Fig. 100.

im Raume kann in bezug auf ein recht­
winkliges Koordinatensystem auch in folgen­
der Art beschrieben werden. Man gibt die 
Länge r der Strecke an, die den Punkt M 
mit dem Ursprung verbindet (den Radius 
vektor), ferner den Winkel 9, den die Rich­
tung OP mit der positiven Richtung der 
x-Achse, endlich den Winkel 0, den die 
Richtung OM mit der positiven Richtung 
der z- Achse bildet, Fig. 100. Die drei 

Zahlen r, q, 0 bezeichnet man als die räumlichen Polarhoordinaten des 
Punktes M und schreibt M{r/ 9 / 6).

Um alle Punkte des Raumes beschreiben zu können, genügt es, 
0 auf das Intervall (0, x), g auf das Intervall (0, 2 2) zu beschränken, 
während r alle Werte aus (0, o) annehmen kann.

223. Flächen. I. Eine Fläche ist geometrisch definiert, wenn 
ein Konstruktionsverfahren angegeben ist, durch das beliebig viele 
ihrer Punkte bestimmt werden können.

Bezieht man eine so definierte Fläche auf ein Koordinatensystem, 
so hat die Einheitlichkeit des Konstruktionsverfahrens zur Folge, 
daß zwischen den Koordinaten eines Punktes der Fläche eine für alle 
Punkte gleichlaufende Gleichung besteht, die man als die Gleichung 
der Fläche bezeichnet.

I
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Umgekehrt entspricht einer Gleichung zwischen den Koordinaten, 
wenn man sie in einem System deutet, im allgemeinen eine Fläche, 
unter Umständen ein System von Flächen.

Diese letztere Aussage soll nun näher erörtert werden.
1. Enthält die Gleichung nur eine der Koordinaten, lautet sie z. B.

F(o) - 0, (1)

so liefert die Auflösung nach x eine oder mehrere Gleichungen von 
der Form

x = a,

wobei nur reelle Lösungen in Betracht gezogen werden sollen; 
das Gebilde aber, dessen sämtliche Punkte ein und dasselbe x haben, 
ist eine zur x-Achse senkrechte Ebene; sind mehrere Lösungen vor­
handen, so bestimmen sie ebenso viele Ebenen dieser Art.

2. Enthält die Gleichung zwei Koordinaten, lautet sie beispiels­
weise

f^ - 0, (2)

so bestimmt sie, auf die xy-Ebene bezogen, eine Linie; es genügen 
ihr aber, da sie z nicht enthält, auch alle 
Punkte des Raumes, die sich in Punkte 
dieser Linie projizieren; der Ort solcher 
Punkte ist jene Zylinderfläche, die die ge­
dachte Linie zur Leitlinie hat, und deren 
Seitenlinien der z-Achse parallel sind, Fig. 101.

3. Sind alle drei Koordinaten in der 
Gleichung enthalten, hat sie also die Form

F(x, y, 2) = 0, (3) Fig. 101.

so stelle man folgende Betrachtung an. Punkte des Raumes, deren 
z = C ist, und die zugleich der Gleichung

F(a,y,6) =0 
genügen, liegen auf einer Linie 71, die' sich in der zur xy-Ebene 
parallelen Ebene im Abstande q befindet, Fig. 102; in gleicher Weise 
führt die Annahme z = C, zu einer Linie l,, deren x, y der Gleichung

F(x, y, c) = 0
genügen; zu einer dritten solchen Linie l3 gelangt man durch die An­
nahme z = C3 usw. Die Punkte aller dieser Linien entsprechen der 
Gleichung (3). Stellt man sich nun vor, daß statt des unstetigen 
Übergangs von einem Werte des z zum anderen eine stetige Änderung 
erfolgt, so werden auch die Linien l stetig aufeinander folgen und 
eine Fläche beschreiben, deren Punkte der Gleichung (3) genügen.

Diese Betrachtung gibt zugleich einen Weg an, wie man sich
21*
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eine Vorstellung von der Gestalt einer Fläche verschaffen kann, deren 
Gleichung gegeben ist.

II. Ist die Gleichung F(x, y, z) = 0 in bezug auf die Koordinaten 
algebraisch und vom n-ten Grade, so wird 
die zugehörige Fläche eine algebraische Fläche 
n-ter Ordnung (oder n- Grades) genannt.

Auf Grund der Gleichung (2), 218 ist 
die Kugel als algebraische Fläche zweiter 
Ordnung zu bezeichnen.

224. Linien. Eine Linie im Raume 
erscheint häufig und kann immer aufgefaßt 
werden als Schnitt zweier Flächen. Ihre 
analytische Darstellung besteht daher in zwei 

koexistierenden Gleichungen zwischen den Koordinaten, hat also im 
allgemeinen die Form

F(x,3,2) =0) ,
G(x7 y, z) = 0. \ (

Eliminiert man eine der Koordinaten, so ergibt sich der Ort der 
Projektionen der Punkte der Linie, also deren Projektion selbst, auf 
der Ebene der beiden andern Koordinaten; so bestimmt die Gleichung, 
die aus der Elimination von z resultiert — sie heiße

q (x, y} = ^ (2)
— die Projektion der Linie (1) auf der xy-Ebene.

Da nun zwei Projektionen im allgemeinen ein Gebilde im Raume 
bestimmen, so sind zwei derartige Eliminationsresultate, etwa:

q (x, J) = 0 | (3)
v (x, z) = 0 i

im allgemeinen geeignet, die Linie im Raume zu beschreiben.
Die Gleichungen (3) lassen noch eine andere Auffassung zu. 

Nach 223, 2. stellt jede derselben eine Zylinderfläche dar, die erste 
eine solche parallel zur z-, die zweite parallel zur y-Achse, und die 
Linie im Raume erscheint als Durchschnitt beider. Es ist aber zu 
beachten, daß die beiden Zylinderflächen, zu denen die Linie im Raume 
geführt hat, außer ihr noch eine andere Linie gemein haben können; 
so schneiden sich die zwei projizierenden Zylinder, die man durch einen 
Kreis im Raume parallel den genannten Achsen legt, im allgemeinen 
noch nach einem zweiten Kreise, und es bedarf einer weiteren An­
gabe, wenn man den ersten Kreis allein zur analytischen Darstellung 
bringen will.

Für die Untersuchung der Flächen sind deren ebene Schnitte von 
besonderer Wichtigkeit. Hier sollen zunächst nur die Schnitte mit 
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den Koordinatenebenen betrachtet werden. Man erhält sie, indem man 
die Gleichung der Fläche: F (x, y, z) = 0, der Reihe nach mit x = 0, 
y = 0, z = 0 verbindet. Ist die Gleichung F (x, y, 3) = 0 algebraisch 
vom n-ten Grade, so werden es im allgemeinen auch die Gleichungen

F(0, y, 2) - 0
F (x, 0, 2) = 0

F^> y,^) = ^ 

sein. Eine algebraische Fläche n-ter Ordnung schneidet also die Koor­
dinatenebenen im allgemeinen nach algebraischen Linien n-ter Ordnung.

§ 2. Koordinatentransformation.
225. Translation eines rechtwinkligen Koordinaten­

systems. Der Übergang von einem rechtwinkligen Koordinatensystem 
OXYZ, Fig. 103, zu einem andern 0'X' Y'Z', das mit ihm parallel
und gleich gerichtet ist, ist bestimmt, 
sobald die Koordinaten xo, y^, %, des 
neuen Ursprungs 0' in bezug auf das 
alte System gegeben sind. Zwischen 
den Koordinaten x, y, z und x', y', z 
eines Punktes M in den beiden Sy­
stemen bestehen dann die unmittelbar 
abzulesenden Gleichungen:

x = xü + x'
J =9+y‘ (1)
z = z + F,

die den Übergang vom alten System zum neuen vermitteln; die inverse 
Transformation geschieht durch die Substitution

A _ A _  A• • * 0

y ‘ = y - J 
z‘= z — 2.

(2)

226. Rotation eines rechtwink­
ligen Koordinatensystems. Die ge­
genseitige Lage zweier rechtwinkligen 
Koordinatensysteme OXYZ, OX'Y'Z', 
Fig. 104, ist bestimmt, wenn die Rich- X 
tungswinkel oder die Richtungskosinus der 
gerichteten Achsen des zweiten Systems, Fig. 104.

als welches wir das neue ansehen wollen, in bezug auf das erste, das
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ursprüngliche, gegeben sind. Es seien demnach 

a,, b., c, die Richtungskosinus von OX' 

(2, b2, € „ „ „OY,

@3, 03, C3 „ » „OZ; 
ferner

x, y, 2 die Koordinaten von M im alten,

x‘, y', z’ „ „ „ M „ neuen System.

Die Projektion des Linienzugs OQ'P'M auf die x-Achse ist die­
selbe wie die Projektion der Strecke OM auf die nämliche Achse, 
und diese ist x; man hat also die Gleichung x = a^' — a2y' + aAz', 
ähnliche Gleichungen ergeben sich durch Projektion desselben Linien­
zugs auf die y- und z-Achse; man hat also für den Übergang vom 
alten zum neuen System die Substitution:

x = ax‘+ a2y' + a.Az’ 
y = b«’ + \y' + baz’ 
z = c^x' + c2y' + cAz.

(1)

Zwischen den Koeffizienten dieser Gleichungen bestehen aber ver­
möge ihrer Bedeutung als Richtungskosinus dreier paarweise zueinander
senkrechter Geraden die folgenden

af + 8; + e - 1

aß+8}+8=1 (2) 
al +8+4=1

Beziehungen [220, (4.); (221, (3.)]:

a, a, + b, ba + QG = 0
a,a,+bb + GC, = 0 (3)

a, a, + b,b, + 6^2= 0.
Es ist eine Folge dieser Beziehungen, daß

x2 + y2 + ^2 = a‘2 + y"2 + 2’2 (4)
ist; diese Gleichung drückt die geometrisch evidente Tatsache aus, daß 
der Punkt M vom Ursprung des neuen Systems denselben Abstand 
hat wie vom Ursprung des alten (218).

Man nennt eine Transformation der Koordinaten von der Form (1), 
bei der also die Transformationsgleichungen in bezug auf beide Systeme 
vom ersten Grade sind, eine lineare Transformation, insbesondere eine 
orthogonale, wenn sie durch den Ansatz (4), oder, was das gleiche 
besagt, durch die Relationen (2), (3) gekennzeichnet ist.

Multipliziert man die Gleichungen (1) der Reihe nach mit a,, b1} cl9 
dann mit a,, b2, c2, schließlich mit a3, b.A, C3, und bildet jedesmal die 
Summe, so ergeben sich mit Rücksicht auf (2), (3) die Gleichungen: 

x‘= ax+by + C12
y'= a2x + b2y + c2z (1*)
z' ^ a3x + b.Ay + c3z ,

welche die inverse Transformation vermitteln. Da die Eigenschaft der
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Orthogonalität eine gegenseitige ist, wie die Gestalt von (4) zeigt, so 
bestehen zwischen den Koeffizienten auch die Relationen:

a? + a? + a3 = 1 
b; +0+8=1 
c{ +8+8=1

(2*)
b^ + b2c2 + b,G — 0
C a, — c, a, — C3 a, = 0 (3 *)
a, b, + a, b, + a, b, = 0.

Die Determinante der neun Koeffizienten: 

a, b, q
R = a, b2 c^

a, bo Co 
gibt zum Quadrat (116).

a? + b? + d a, a2 + ^1 ^2 + G c, aL a, +6,b+ G, C, 
R2 = a, a, + b^ b^ + c^ Cg a? + b^ + c3 a, a, + b, b^ + c^ c^ 

a, a, + b ba + c, c, a, a, + b,b, + c,c, «3 + 63 + c
1 0 0 1

0 1 0 = 1;

001 
es hängt somit der Wert von R von den speziellen Werten der 
Koeffizienten nicht ab und kann nur 1 oder — 1 sein. Dies hängt 
noch von der Orientierung der Systeme ab.

Man sagt, das System OX'Y'Z' sei mit dem andern gleich 
orientiert, wenn man durch Drehung bewirken kann, daß die gleich­
namigen und gleichgerichteten Achsen sich decken; es kann also dann 
OX'Y'Z' in eine solche Lage gebracht werden, daß

a, = 1, b, = 0, q = 0

«2=0, b, = 1, c2 = 0

a, = 0, b = 0, c= 1, 
und dann ist R = 1.

Bei ungleicher Orientierung kann man die x-Achsen gleichgerichtet 
zusammenlegen und dann durch Drehung um diese gemeinsame Achse 
auch noch die y-Achsen gleichgerichtet zur Deckung bringen; die z-Achsen 
werden dann wohl auch in eine Gerade fallen, aber ungleich gerichtet 
sein; es kann also das System OX'Y'Z’ in eine solche Lage gebracht 
werden, daß 

ai = 1, bi = 0, ct= 0

a, = 0, b, = 1, C, = 0

a, = 0, b, = 0, 6= 1, 
und dann ist R = — 1.

Bei gleicher Orientierung der Systeme ist also R = 1, bei un­
gleicher Orientierung R = — 1.
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227. Allgemeine Transformation rechtwinkliger Koor­
dinaten. Der Übergang von einem rechtwinkligen System zu einem 
andern, dessen Ursprung die Koordinaten xo, y, %, hat, und dessen 
Achsen die Richtungskosinus a^ bi} C, (i = 1, 2, 3) besitzen, läßt sich 
als eine Sukzession von Translation und Rotation darstellen; die zu­
gehörigen Substitutionsgleichungen ergeben sich daher durch Verbindung 
der Gleichungen 225, (1.) mit 226, (1.) und lauten:

x = x+ a,x‘ + a^y' + a^z'

y = 9+ b«’ + \y' + b.^' (i) 
z = % + q«‘+ %y' + cz‘.

Die inverse Substitution geht daraus durch denselben Prozeß 
hervor, der in 226 befolgt wurde, und lautet:

«‘ =q(x— To) + b^y - y^ + q (z - ^0)

y'= a^x-x^ + b^y — y^ + c(z— zo) (2) 
z‘ =4(z— «) +b3(y- y^) + c^z - zo) .

Im Anschlusse an die oben vorgeführten Transformationen recht­
winkliger Koordinaten sei das folgende bemerkt.

In allen Fällen war die Substitution bezüglich der neuen und alten 
Koordinaten linear. Die Einführung einer solchen Substitution in eine 
algebraische Funktion n-ten Grades ändert an deren Charakter 
nichts, d. h. führt wieder zu einer algebraischen Funktion des­
selben Grades. Daraus geht hervor, daß die Ordnung einer algebraischen 
Fläche unabhängig ist von dem zugrunde gelegten (Parallel-)Koor- 
dinatensystem, daß sie also eine der Fläche als solcher zukommende, 
eine rein geometrische, Eigenschaft bezeichnet.

228. Rechtwinklige und Polarkoordinaten. Der Zusammen­
hang zwischen den rechtwinkligen Koordinaten eines Punktes und den 
auf dasselbe Achsensystem bezogenen Polarkoordinaten ergibt sich 
aus Fig. 100. Aus den rechtwinkligen Dreiecken OPM und OQP 
folgt: 

x = r sin 6 cos g

y = r sin 0 sin 9 (1) 

z = r cos 0 .

Die inverse Substitution wird durch folgende Gleichungen ver­
mittelt, die sich in leicht ersichtlicher Weise aus (1) ergeben:

*=Vx2+ y? + z*

cos 9 ,, siny =/=% , 5, (2)y'J'py Va’—y”
, zCOS 0 = — ,
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die auftretenden Quadratwurzeln absolut genommen. Das mittlere 
Gleichungspaar bestimmt g eindeutig in dem Intervall (0, 2 x).

§ 3. Ebene und Gerade.

229. Die Gleichung ersten Grades. Jede Gleichung ersten 
Grades in den Koordinaten x, y, z stellt eine Ebene dar.

Die allgemeine Form einer solchen Gleichung ist

Ax + By + Cz + D = 0. (1)
Um den Satz zu erweisen, gehen wir von der Gleichung 

x = 0 (2)
aus, die sämtliche Punkte der yz-Ebene unseres Koordinatensystems 
und nur diese kennzeichnet, also eine Ebene darstellt.

Durch die allgemeine Transformation des Koordinatensystems ge­
langt diese Ebene in eine allgemeine Lage gegen das neue Koordinaten­
system, in welchem ihr, vermöge der in Kraft tretenden ersten Transfor­
mationsgleichung 227, (1.), die Gleichung

xo— a^' + a^y' + a^z' = 0
zukommt. Sowie sich aber die geometrische Bedeutung der Gleichung' 
(2) nicht ändert, wenn man sie mit einer Konstanten 0 multipliziert, 
so gilt dies auch von der letzten Gleichung, die dann lautet:

q a,x‘ + oa,y‘+ ga^z' A Qx,= 0;
schreibt man für die Zahlen

04,, ga^, 0 as,
die der Bedingung unterliegen, daß ihre Quadratsumme 92 sein muß, 
die Buchstaben . _

A, B, C

und für Qx, den Buchstaben D, und betrachtet man das neue Koor­
dinatensystem als das ursprüngliche, so gelangt man tatsächlich zu 
der Gleichung (1).

Übt man auf (2) statt der allgemeinen Transformation eine Ro­
tation aus, so geht die Ebene durch den Ursprung des neuen Ko­
ordinatensystems; da in diesem Falle xo, also auch D Null ist, so 

entspricht Az + By + cz - 0 (3)

einer Ebene, die durch den Ursprung geht.
Auf Grund der in 223 gepflogenen Betrachtungen erkennt man 

weiter, daß eine Gleichung ersten Grades, die nur eine der Koordi­
naten enthält, eine zur Ebene der beiden andern parallele Ebene dar­
stellt, also z. B. die Gleichung

Ax + D = 0 (4)
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eine zur x-Achse senkrechte Ebene; und daß weiter eine Gleichung 
ersten Grades mit zwei Koordinaten einer Ebene zugehört, die auf 
der Ebene dieser Koordinaten normal steht und zu den beiden andern 
Koordinatenebenen geneigt ist: so entspricht der Gleichung

Ax + By + D = 0

eine Ebene, die zur xy-Ebene senkrecht, zur yz- und zx-Ebene ge­
neigt ist.

Am Schlüsse von 224 ist festgestellt worden, daß eine algebra­
ische Fläche n-ter Ordnung durch eine Koordinatenebene nach einer 
algebraischen Kurve n-ter Ordnung geschnitten wird. Da nun durch 
eine Koordinatentransformation einerseits die Ordnung der Fläche 
nicht geändert wird (227), andrerseits die schneidende Ebene in eine 
allgemeine Lage zum Koordinatensystem gelangt, so ist es ein Merk­
mal der algebraischen Flächen, daß sie durch Ebenen nach algebraischen 
Kurven der gleichen Ordnung geschnitten werden.

230. Anzahl der Konstanten. Gleichung der Ebenen 
durch einen Punkt. Die allgemeine Ebenengleichung

Ax + By + Gz + D = 0 (1)

enthält vier Koeffizienten, die sich aber auf drei Konstanten reduzieren: 
es geht dies aus der im Gange ihrer Ableitung 229 gemachten Be- 
merkung hervor, daß nach erfolgter Wahl von 9 die Koeffizienten A, B, C 
einer Bedingung unterliegen, leuchtet aber auch daraus ein, daß man 
durch einen Koeffizienten dividieren und die drei entstehenden Koeffi­
zientenverhältnisse als neue Konstanten einführen kann.

Daraus folgt, daß durch drei Bedingungen eine Ebene im all­
gemeinen (ein- oder mehrdeutig) bestimmt ist. Sind ihr weniger als 
drei Bedingungen auferlegt, so bleibt eine Unbestimmtheit übrig, die 
zur Folge hat, daß man zu einem unendlichen System von Ebenen 
geführt wird, die den Bedingungen genügen.

Wird von der Ebene verlangt, sie solle durch einen gegebenen 
Punkt M.(x/y1/2) gehen, so vermindert sich die Zahl der Konstanten 
um eine, und es bleibt eine zweifache Unbestimmtheit übrig; denn die 
Forderung führt zu dem Ansätze

A x, + Byk + Czr + D - 0,
und bei seiner Subtraktion von (1) entfällt D; die entstandene Glei 
chung A(r _ x,) + B(y _ »,) + C(s -z)=0 (2)

enthält nur mehr drei Koeffizienten, also zwei Konstanten.
Die Gesamtheit der Ebenen durch einen Punkt ALX nennt man 

einen Ebenenbündel, M, seinen Träger; (2) ist also die Gleichung 
eines Ebenenbündels.

231. Gleichung der Ebene, die durch drei gegebene
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Punkte geht. [Soll die Ebene außer durch M, noch durch die 
Punkte M^x^yJ z,) und M3(x3/y3/23) gehen, so gilt es, aus dem 
Ebenenbündel (2) diejenige Ebene auszulösen, die dieser Forderung 
genügt; für sie muß notwendig

A(x, — «) + B(J, - 3) + C(z, - 2) = 0
A(x, - «,) + B(y; - y) + C(z, - 6) = 0

sein. Durch dieses Gleichungspaar sind die Verhältnisse der Koeffi­
zienten, diese selbst also bis auf einen konstanten Faktor, der x heißen 
möge, bestimmt; es ist nämlich

A _ 92—Y, 22—2_ 22 - 21 ag - x,
33 — Ji ^3-^1 83—81 83—Yi

0   , a, 2, 92 91

Es q, 33 ^1

Demnach lautet die Gleichung der verlangten Ebene:

2 (x—X, + (y-yi)
Y3—Y1 23—71 23—21 23—X1

und nach einer weiteren Umformung (107):

XC, — SC, 
+ X3 — 31

32—Y1n(z _ 21) = o, 
y^ - Ji

(3)

kürzer geschrieben

x — «, y -yx : z.

«,— ^i y^ - y^ 2, — 2, = 0,
x,— x, y, — yx 23—2,

x y 2 i
x. yx z. 1 =0. (3%)x. y^ 22
x. 93 23 1

Für die Durchführung in speziellen Fällen ist die Form (3) be­
sonders geeignet. Soll beispielsweise die durch

M,(6/ 2/—1)
M,(4/-2/ 3)
1,(/-1/-2)

gehende Ebene bestimmt werden, so bilde man die Differenzen aus 
den Koordinaten des zweiten und dritten Punktes gegenüber dem ersten: 

- 2 - 4 4

- 1 -3 -1
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und aus dieser Matrix die drei Determinanten zweiten Grades:

dann ist
16-6 2;

16(x — 6) — 6(y — 2) + 2(2 + 1) = 0
und in endgiltiger Form

8x — Zy + 2 — 41 = 0

die Gleichung der Ebene.
232. Segmentgleichung der Ebene. Eine Ebene, die durch 

den Ursprung des Koordinatensystems geht, schneidet die Koordinaten­
ebenen nach drei Geraden, die ebenfalls im Ursprung sich schneiden. 
Bei allgemeiner Lage der Ebene bilden aber diese Schnittlinien ein 
Dreiseit, das Spurendreiseit, dessen Ecken A, B, C, Fig. 105, in den 
Achsen liegen. Die Abstände des Ursprungs von diesen Eckpunkten, 
als relative Strecken aufgefaßt, nennt man die Achsensegmente der

Ebene; sie mögen mit a, b, c bezeichnet 
werden.

Die Gleichung der Ebene mit diesen 
Segmenten als Konstanten darstellen kommt 
darauf hinaus, die Gleichung der Ebene zu 
bilden, die durch die drei Punkte

A(a/0/0)

B(0/6/0)
C(0/0/c)

geht. Wendet man hierauf das eben erklärte mechanische Verfahren 
an, so gelangt man zuerst zu den Koordinatendifferenzen

— a b 0

— a 0 c, 
dann zu den Determinanten

bc ac ab

und schließlich zu der Gleichung der Ebene 

bc(x — a) + cay + ab 2 = 0, 

die nach Division durch abc die Gestalt

*+9+*-1 (1)
abc i 

annimmt.
Um die allgemeine Gleichung

Ax + By + C2 + B = 0

auf diese Form zu bringen, hat man durch — D zu dividieren; mit­
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hin drücken sich die Segmente durch die Koeffizienten wie folgt aus:

DD Dd = A‘ b = B ’ c = C (2)

Beispielsweise hat die Ebene 2x — 3y+42 + 12 = 0 die Seg­
mentgleichung

aus der man sich über die Lage der Ebene rasch orientiert.
233. Hessesche Normalgleichung. Zur Unterscheidung der 

beiden Seiten einer Ebene, die nicht durch den Ursprung geht, kann 
man ihre Lage gegen diesen benützen. Wir setzen fest, die vom 
Ursprung abgewendete Seite gelte als die positive, die ihm zugewendete 
Seite als die negative.

Darnach kann nun auch die Normale der Ebene in bestimmter 
Weise gerichtet werden. Als positive Richtung der Normalen gelte 
diejenige, die von der negativen Seite der Ebene zur positiven ver­
läuft: die positive Normale durch den Ursprung geht also von diesem 
gegen die Ebene hin.

Bei einer Ebene, die durch den Ursprung geht, muß hierüber 
eine besondere Festsetzung getroffen werden.

Man kann nun zur Beschreibung einer Ebene die Richtungswinkel 
oder Richtungskosinus ihrer positiven Normale und die absolute Länge 
des vom Ursprung zu ihr geführten Perpendikels benützen.

Sind «, ß, 7 die Richtungswinkel d 
Fig. 106, ist p die absolute Länge des 
Perpendikels ON und bezeichnen a, b, c die 
Achsensegmente, so gelten unter allen Um­
ständen die Ansätze: 

p = a cos « =b cos ß = c cos 7.

Erweitert man also in der Segment- 
gleichung

- + y + : - i 
a b c 

die Glieder der linken Seite der Reihe nac 

r positiven Normale 7,

mit cos a. cos 3. cos
so geht sie unter Beachtung der vorstehenden Relationen über in

x cos « + y cos ß + z cos y — p = 0. (1)

Diese Gleichungsform der Ebene wird als deren Hessesche Normal- 
gleichung bezeichnet.

Um die allgemeine Gleichung

Ax + By + Gz + I) = 0 (2) 

auf diese Form zu bringen, hat man sie mit einem derart gewählten 
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Faktor 2 zu multiplizieren, daß

^A^^B2^ ^C2= 1

sei, damit A A, AB, IC die Kosinus einer Geraden vorstellen; die 
positive Richtung dieser Geraden hängt davon ab, für welchen der 
beiden Werte von

2 = 1 - (3)aVA2+B2+C2 ‘ 7 
man sich entscheidet; hier steht aber die Wahl nicht mehr frei, weil 
XD, das die Bedeutung von — p hat, negativ sein muß; mithin ist

& = — sgn D (4) 

zu nehmen. Hiernach lautet die Gleichung der obigen Ebene (2) 
in Hessescher Normalform:

Ax^By + Cz + D _0
— sgn DVA+B*+02 ‘ ‘

Beispielsweise kommt der Ebene 2x—3y—52+6 =0 die 
Hessesche Normalgleichung 

2x — 8y — 52+6   0
— V38 

zu, aus der man unmittelbar abliest:

2 3 (5 6 cos a = — —, cos p = , , cos 7 = - , ) = 
V38 V38 V38 V38

234. Abstand eines Punktes von einer Ebene. Die Ebene 
sei durch ihre Hessesche Normalgleichung

x cos « + y cos ß + z cos 7 — p = 0, (1)

seine Koordinaten To, y0, % gegeben. Er kann,der Punkt, M., durch

Fig. 107.

wenn er nicht in der Ebene liegt, auf der 
positiven oder negativen Seite derselben 
liegen; die Bestimmung des Abstandes soll 
so geregelt werden, daß sich dieser Lagen­
unterschied im Vorzeichen ausdrückt. Dies 
wird in folgender Weise erreicht.

Projiziert man den Linienzug 0 QP M., 
Fig. 107, dessen Seiten die relativen Längen 
xo, Y0, 20 besitzen und mit n der Reihe 
nach die Winkel a, ß, 7 oder deren Supp­

lemente einschließen, je nach der Richtung der Strecken 0 Q, Q Po, Po M., 
auf n, so hat die Projektion OM unter allen Umständen die relative 
Größe

0 M = xo cos «—Y cos ß + % cos 7, 

und zwar fällt sie positiv oder negativ aus, je nachdem OM die 
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Richtung von n hat oder die entgegengesetzte. Subtrahiert man 
hiervon p, so ergibt sich der Abstand 3 des Punktes M. von der 
Ebene mit dem positiven oder negativen Vorzeichen, je nachdem M, 
auf der positiven oder negativen Seite der Ebene liegt; es ist also 
mit dieser Unterscheidung

3 = x, cos a + Y0 cos ß+z cos 7 — p. (2)

Ersetzt man also in der linken Seite der Hesseschen Normal­
gleichung einer Ebene die veränderlichen x, y, z durch die Koordinaten 
irgend eines Punktes, so ergibt der Ausdruck den Abstand dieses Punktes 
von der Ebene, und zwar mit dem positiven oder negativen Zeichen, 
je nachdem der Punkt auf der positiven oder negativen Seite der Ebene 
liegt.

Ist die Gleichung der Ebene in der allgemeinen Form

Ax + By + Cx + 1) = 0 (3) 

gegeben, so hat man sie nach dem in 233 angegebenen Verfahren in 
die Normalform überzuführen; darnach erhält man

s _ Ax0 + By0 + Cz + D (4)
—sgn DV A*+B2+0 ‘

Von der Ebene 2x — y — 7z+6=0 haben die Punkte Px (— 3/4/5), 
P2(4/—2/ —1) folgende Abstände:

“ 3V6‘

es liegt als P2 auf derselben Seite der Ebene wie der Ursprung, P 
auf der entgegengesetzten.

235. Rauminhalt eines Tetraeders. Es seien vier Punkte 
durch ihre Koordinaten gegeben:

NI,(x,/v./z,), i=1, 2, 3,4; 

man soll das Volumen des Tetraeders bestimmen, dessen Eckpunkte 
sie sind.

Wählt man das Dreieck M, M, M als Basis, bezeichnet seine ab­
solute Fläche mit 4, den Abstand des vierten Punktes M, von der 
Ebene dieses Dreiecks mit d, so kann man für den Inhalt die Formel

J-140 . (1)

ansetzen; dadurch ist J als eine relative Größe dargestellt, deren Vor­
zeichen mit dem Vorzeichen des d übereinstimmt.

Schreibt man die Gleichung der Dreiecksebene M, M,M, in der 
Form 231, (3*):
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x y z 1

x, 92 2, 1 _ 0
aa 33 2, 1

&, J4 z, 1
bezeichnet die Koeffizienten von x, y, z mit 2., 2, A, und das 
absolute Glied mit A1, so ergibt sich nach der Vorschrift von 
233, (5):

I -, J, z, 1

x, 32 2, 1

, a, Ma za 1
J _ &, Ja za 1 

-sgn^ V43.+43+4%,
Nun aber bedeuten

y2 %, 1 2, x, i "2 y2 1

2, = y^ Ea i , 2.. = 2, x, 1 , 2., = «a % 1
y^ 2, i z, x, 1 x, y^ i

die doppelten Inhalte der Projektionen des Dreiecks M,M,M, auf 
den Ebenen yz, zx, xy (181); diese Projektionen ergeben sich aber 
auch durch Multiplikation von 4 mit den Richtungskosinus der 
Normale von M,M,M,, infolgedessen ist VA3, + A3% + A2, = 24.

Setzt man dies in den Ausdruck für d und diesen sodann in die

Fällt der Punkt M, in den Ursprung, so gibt die Formel für 
J den Inhalt des Tetraeders aus M,,M,,M, und 0, nämlich

Gleichung (1) ein, so wird
X, Ji z. i

J = — son 2. • 1 x, 

a
y2

s

2, 

z.

1 

i

darin ist
x. Y, *4 1

x. y2 B,

4, = a. Ja z.

Y, 2,

$ sgn A, • 4=‘4 ,

der bei den getroffenen Festsetzungen notwendig negativ ausfällt.
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Ein neues zeichenbestimmendes Moment für J ergibt sich, wenn 
man auf der positiven Seite der Ebene M, M,M, eine positive 
Drehungsrichtung annimmt und nach dieser das Vorzeichen von 4 
bestimmt 181). Setzt man

“i 31 Fi 1
J 1 2,9,2 1 (2) 

~ 6 a, 9, 2, 1
x, 1

1) Diese Kegel gilt für die hier gewählte Orientierung des Koordinaten­
systems, bei der vom Ursprung aus betrachtet die positive x-, y- und z-Achse im 
umgekehrten Sinne der Uhrzeigerdrehung aufeinander folgen; ändert man die 
Orientierung nach der Art der Fig. 108, so kehren sich die Angaben um. (Vgl. 
0. Staude, Analyt. Geometrie etc., Leipzig 1905, p. 151).

Czuber, Höhere Mathematik. 22

so gibt die Formel den Kauminhalt des Tetraeders je nach seiner 
Anordnung gegen das Koordinatensystem positiv oder negativ; ein 
spezieller Fall wird darüber näheren Aufschluß geben. Verlegt man 
M, nach 0, M,, M3, M, in die positive x-, bzw. y- und z- Achse in 
den Abständen a, b, c vom Ursprung (a > 0, b > 0, c > 0), so gibt 
die Formel (2)

0 0 0 1
, a 0 0 1
6 0601
0001

= — ~abc,

also ein negatives Resultat: das Dreieck M,M,M, zeigt jetzt, von 0 
aus betrachtet, den entgegengesetzten Umlaufsinn des Uhrzeigers, 
während es von der positiven Seite der Ebene aus gesehen, den 
Drehungssinn des Uhrzeigers selbst aufweist.

Es gibt also die Formel (2) den Inhalt des Tetraeders positiv, 
wenn von Mi aus der Umlaufssinn von M,M, M, als 
der des Uhrzeigers erscheint, im andern Falle negativ.1)

236. Winkel zweier Ebenen. Solange die
Seiten der Ebenen nicht unterschieden, ihre Normalen /0 Y 
also nicht gerichtet sind, kann von einem bestimmten -x 
Winkel der Ebenen nicht gesprochen werden. Hat Fig. 108. 
man aber für jede Ebene die positive Seite und damit für ihre 
Normale die positive Richtung festgesetzt, dann soll unter dem Winkel 
der beiden Ebenen der (hohle) Winkel ihrer positiven Normalen ver­
standen werden.

Hält man an den Festsetzungen in 233 fest, und sind die Ebenen
in der Normalform
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x COs C, + y cosß, + 2 COS71 — Pi = 0 (1)

x cos «, + y cos ß, + z cos 72 — P2 = 0 (2) 
gegeben, so hat man für den definierten Winkel unmittelbar den 
Ansatz (221):

cos c = cos a, COs a, + cos ß, cos ß, + COs7, COS 72. (3)

Von da aus gestattet auch der allgemeine Fall, daß die Ebenen 
durch

Ax + By + C,4 + Di - 0 (4)
A,x + B,y + C,z + D, = 0, (5) 

gegeben sind, einfache Erledigung; man denke sich diese Gleichungen 
auf die Normalform zurückgeführt und hat dann

A, A, + B, B, + C, C 
cos c =-------------------- 12—1 ..... ; (6) 

sgn D, D, V(A? + Bl + C^ (Al + Bi + CD 
daraus berechnet sich

2 = (Ai — Bi+ cp (A? + ^ + CD - (A A, + Bi b, + C1 c2y 
(Al + Bl + CD (Al + Bl + CD 

und schließlich (116)

.. _ 1/(B,c,—B,C)*+(C, a-aät+ü; B, - a B,)3
• (A? — B? + C?) (A? — B? + C2) ‘ (7)

die Wurzel positiv genommen, weil c ein hohler Winkel ist.
Läßt man in der Formel (6) den Zeichenfaktor weg, so bestimmt 

sie einen der Winkel der ungerichteten Normalen; Formel (7) bestimmt 
beide als suplementäre Winkel.

Für die Ebenen
3x _ 2y _ 42 + 3 = 0

x + oy — 2 z — 4 = 0
ergibt sich beispielsweise

1 cos G = — —
V870

und c = 91056‘34",4 als Maß des Keils, dem der Ursprung nicht 
an gehört.

237. Senkrechte und parallele Ebenen. Aus den eben ab­
geleiteten Formeln lassen sich die Bedingungen ablesen, unter welchen 
zwei Ebenen

A, x + Bi y + C, z + D^ = 0 (4)
A,x + B,x + C^z + D, = 0 (5) 

aufeinander senkrecht stehen, beziehungsweise parallel sind.
Formel (6) zeigt, daß die Ebenen aufeinander senkrecht stehen, 

wenn
A,A,+B, B + C,C, = 0, (8)
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weil dann und nur dann cos co = 0 ist; und Formel (7), daß sie pa­
rallel sind, wenn

A, _ B _G
A, B, C, ‘ • 

weil dann und nur dann sin w = 0 ist.
Auf Grund dieser Merkmale erkennt man also die Ebenen 

3x — 2y + 2 z — 1 = 0

4x + 4y — 2 z + 3 = 0

als aufeinander senkrecht, die Ebenen

2x — oy — z+4 = 0
— 4x + ^y + 2z — 5 = 0 

als parallel.
238. Ebenenbüschel, bestimmt durch zwei Ebenen. Zwei 

Ebenen
E - Ax + Bry + Ctz + D, = 0 (1)

E, — A,x + B,y + C^z + D, = 0 (2)

bestimmen einen Ebenenbüschel als Gesamtheit der Ebenen, die durch 
ihre Schnittlinie gehen. Alle diese Ebenen sind in der Gleichung

E, — AE,- A,x + By + Cz + D, — 2(A,« + B^y + C2z + D,) = 0 (3) 

enthalten. In der Tat stellt diese Gleichung, weil vom ersten Grad 
in x, y, z, eine Ebene dar, und da sie durch jeden Punkt befriedigt 
wird, der (1) und (2) zugleich erfüllt, so enthält die Ebene die ge­
meinsamen Punkte der Ebenen E,, E^, geht also durch deren Schnitt­
linie. Durch Spezialisierung des Parameters 2 wird eine bestimmte 
Ebene aus dem Büschel herausgehoben; bei 2 =0 ist es die Ebene Ev 
bei A = o die Ebene E2.

Die drei Gleichungen
E,= 0, E,= 0, E, - AE,= 0

haben die Eigenart, daß sie nach Multiplikation der ersten mit — 1 
und der zweiten mit A zur Summe eine identische Gleichung haben; 
man kann diese Bemerkung dahin verallgemeinern, daß drei Ebenen 
Ev E^, E^, zu deren Gleichungen sich Multiplikatoren u,, u,, u, be­
stimmen lassen derart, daß

uE, + u, E, + u Es = 0

ist, durch eine Gerade gehen. Denn, aus dieser Identität folgt

E,=E-H E,, 
3 "3 1 3 2

somit ist E,=0 gleichbedeutend mit "i E. + ", E.-, = 0 oder E. — 2 E,=0, 
> P U3 fz8 1

22* 



340 Analytische Geometrie des Raumes. § 3. Ebene und Gerade.

wenn — = — A gesetzt wird; das heißt aber, daß E, dem Büschel 

der Ebenen E1, E, angehört.
Durch eine Bedingung ist eine Ebene des Büschels bestimmt.
Verlangt man diejenige Ebene, die durch den Punkt M.(xo/9o/2o) 

geht, so bestimmt sich A aus der Forderung

A,%, + B,3+ C,%o + D- 2(4,% + B,Jo + C,%0 + D,) = 0,
die Gleichung der betreffenden Ebene kann also in der Form

A% + B,y + Cz + D, A,x + ^y + C,z + D, A
= V )

A1%o +B1% + C1Fo + Di 4,%o+ B29o C22o+ 12 
geschrieben werden.

Soll diejenige Ebene des Büschels bestimmt werden, die zu der 
Eb ene

Ax + By + Cz + D = 0 (5) 

senkrecht steht, so hat man die Bedingung für die senkrechte Stellung 
der Ebenen (3) und (5) aufzustellen, die da lautet:

(A, - 14)4 + {B, - ^B^B + (C, - z C^ C= 0; 

bringt man sie in die Gestalt

AA+ BB. + CC. - 2(AA, + BB, + CC.} = 0, 

und eliminiert aus ihr und (3) den Parameter, so ergibt sich

A,x + By + C12 + D, A,x + ^y + c^z + Da _
A A, + BB. + CG. AA, + BB2 + CC2

als Gleichung der verlangten Ebene.
239. Teilungsverhältnis im Ebenenbüschel. Die beiden 

Grundebenen des Büschels seien in der Hesseschen Normalform gegeben:

H| = x cos a, — y cos ß. + z cos 71 — Pi = 0 (1)

H, = x cos «, + y cos 3, — z cos 72 — p2 = 0; (2) 
dann ist

H,= H—2H,=0 (3) 

die Gleichung des Büschels.
Die Grundebenen teilen den Raum in vier Winkelräume, die sich 

in zwei Paare einander gegenüber liegender Räume unterscheiden lassen, 
wofern keine der Ebenen durch den Ursprung geht: jenes Paar, dem 
der Ursprung angehört, heiße der innere, das andere der äußere Winkel­
raum. Dem inneren Winkelraum wenden beide Ebenen gleichartige, 
dem äußeren ungleichartige Seiten zu.

Ist B^ eine bestimmte Ebene des Büschels und Mix / y / z} einer 
ihrer Punkte, der nicht zugleich Hr und H2 angehört, so haben die 
Ausdrücke H±, H2 mit seinen Koordinaten geschrieben die Bedeutung 
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der relativen Abstände ö,, 0, des Punktes M von den Grundebenen 
des Büschels, somit gilt in Beziehung auf diesen Punkt die Gleichung:

ö, - 20,= 0, 
aus der

02

folgt; ist aber auch das Sinusverhältnis der Flächen winkel, in 

welche die Ebene H, den Flächenwinkel (H^H^) teilt, so daß auch

_ sin(H, H.) A H, 
sin (H. H,) - - - 

ist, Fig. 109. ' J
Durchsetzt H, den inneren Wirkel- Ha— \ J 

raum, so sind Ö1, 02 gleich bezeichnet, 2 0p 2./ 1 " 
daher positiv; durchsetzt H, den äußeren "M 
Winkelraum, so sind 31, 3, ungleich be- Ha 
zeichnet, 2 also negativ. Fis. 109.

Sind insbesondere ö,, 0, dem Betrage nach gleich, so halbiert 
die Ebene H, den betreffenden Winkelraum und ist im innern Raume 
durch 2=1, im äußeren durch l = — 1 gekennzeichnet, so daß die 
Gleichungen dieser zwei Winkelhalbierenden Ebenen symbolisch

H—H,=0 (5)

H,+H,= 0 (6) 
zu schreiben sind.

Bei der allgemeinen Darstellung der Grundebenen:

E, = Ax + B, y + Cz+ D, - 0 (7)

E, - A, « + B, y + Ca + D, = 0 (8)

hat man sich zu erinnern, daß

H _ __________ Fi _ 0 H __ ____ E2_  = 0
1 - sgn D, VA?+ B? + C ’ 2 — sgn D, VA3 + Bi + Cl

ihre Normalformen sind; infolgedessen schreibt sich die Gleichung

E,= E, — 2 E, = 0 
nunmehr so:

sgn D, ■ H, VA + B+C - 2 sgn D, ■ H, VA + B+C = 0, 

und es hat jetzt 2 die folgende Bedeutung:

2 _ sgn D, VA; + Bl + G sin (E. Ei\ (9)
sgn D, V Ä?2 + Bi + Cl sin (E2 E2) •

Die Gleichungen der Winkelhalbierenden Ebenen aber lauten in sym­
bolischer Schreibweise:
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—_______ __E = 0, (10) 
sgn Di YA^ + B1+C sgn D, V Al + Bf + C

E — +--------------K =0. (11) 
sgn D,V A7+ Bi+C SgnD2yAl + Bl + Cl

240. Ebenenbündel, bestimmt durch drei Ebenen. Drei 
Ebenen E, _ a, +B1y+C^ + D, = 0 (1)

E, = A," + ^y + C= + D, - 0 (2)
E, - A,x + ^y + Cz + D,= 0 (3) 

bestimmen einen Ebenenbündel als Gesamtheit der durch ihren gemein­
samen Punkt gehenden Ebenen. Alle diese Ebenen sind in der mit 
den unbestimmten Multiplikatoren 2, u gebildeten Gleichung

E, - 1E, -E,=0 (4) 
enthalten; denn diese Gleichung stellt bei jedem 1, u eine Ebene dar 
und wird durch dasjenige Wertsystem x, y, z befriedigt, das den 
Gleichungen (1), (2), (3) zugleich genügt.

Die vier Gleichungen

E, - 0, E, = 0, E,=0, E, — 2 E, — u E, - 0 

geben, nachdem man die erste mit —1, die zweite und dritte mit 2, 
bzw. u multipliziert hat, zur Summe eine identische Gleichung. Um­
gekehrt, besteht zwischen vier linearen Funktionen E1, E,, E3, E, 
von x, y, z eine identische Gleichung von der Form

z E, + z, E, + «, E, + x, E, =0,
so läßt sich eine der vier Gleichungen E,= 0, z. B. E,= 0, durch 
die andern in der Gestalt (4) darstellen; denn aus der Identität folgt

71 ___ *1 7 *2 71 *3 7

und die Gleichung E, = 0 ist hiernach gleichbedeutend mit

E,-AE,-uE,= 0,

wenn "2 = — 2, — = — u gesetzt worden ist.
%1 ‘ %1

Man kann also sagen: Wenn sich zu den Gleichungen JE^O^i=1,2,^,^) 
von vier Ebenen Multiplikatoren 21, %,, %3, X4 bestimmen lassen derart, 
daß * E, + *E,+ x, E,+„E,=0 

ist, so gehen die vier Ebenen durch einen Punkt.
241. Beispiele. 1. Die Halbierungsebenen der Flächenwinkel 

eines Dreikants schneiden sich in einer Geraden.
Ordnet man das Koordinatensystem so an, daß sein Ursprung im 

Innern des Dreikants liegt, und sind

H^Q, H,=0, H, = 0
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die- Hesseschen Normalgleichungen der drei Seiten, so sind

H,—H,= 0
H, - H, = 0
H, - H, = 0

die Halbierungsebenen der inneren Winkelräume, die durch die drei 
Seitenpaare bestimmt sind, und da ihre Summe eine identische Glei- 
chung ergibt, so gehen diese drei Ebenen durch eine Gerade.

2. Die Halbierungsebenen der Flächenwinkel eines Tetraeders 
schneiden sich in einem Punkte (Mittelpunkt der dem Tetraeder ein­
geschriebenen Kugel).

Der Ursprung sei wieder im Innern des Tetraeders und die Seiten­
flächen mögen, in Hessescher Normalform geschrieben, die Gleichungen

K = 0, K-0, H,= 0, K = 0 
besitzen.

Bringt man die vier Seitenflächen in irgend eine Reihefolge 
a, ß, y, d, so sind damit vier Kanten (aß), (ßy), (yö), («) bestimmt, 
die einen zusammenhängenden sich schließenden Kantenzug bilden, 
und die Halbierungsebenen längs dieser Kanten schreiben sich:

H,-H,=0
H,-H,=0 
H,- H,=0 
H,-H=0;

da die Summe dieser Gleichungen identisch verschwindet, so gehen 
die vier Ebenen durch einen Punkt. Diesem Punkt kommt aber die 
von der Wahl der Reihenfolge unabhängige Eigenschaft zu, daß er von 
allen Tetraederseiten gleichen Abstand hat; denn im Sinne der letzten 
Gleichungen ist, mit seinen Koordinaten geschrieben: H=H,= H,= Ho; 
folglich gehen durch diesen Punkt alle sechs Halbierungsebenen.

3. Die Halbierungsebenen von drei inneren Flächenwinkeln eines 
Tetraeders schneiden sich mit den Halbierungsebenen der äußeren 
Flächenwinkel an den drei übrigen Kanten in einem Punkte (Mittel­
punkte der dem Tetraeder angeschriebenen Kugeln).

Die Anordnung des Koordinatensystems geschehe wie vorhin. Die 
Halbierungsebenen der inneren Flächenwinkel zwischen den Seiten 
Ha, H^, Hy haben die Gleichungen

H,- Hy=0

Hy-Ha=0

H-H,=0;
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die Halbierungsebenen der äußeren Winkel an der Seite Hö sind dann:

H,+H,=0
H,+ H,-0 
H,+H,=0.

Kombiniert man korrespondierende Paare aus beiden Tripeln, 
also z. B.

H,—H,=0 
n,-7=o

H,+H,-0
H,+ H,=0,

so ist leicht zu erkennen, daß die betreffenden vier Ebenen durch 
einen Punkt gehen; man braucht nur jeweilen die letzte Gleichung 
mit — 1 zu multiplizieren, um eine identische Summengleichung zu 
erbalten. Nun hat aber der Schnittpunkt eine von der Wahl der 
Paare unabhängige Eigenschaft; denn im Sinne der letzten Ansätze 
ist, mit seinen Koordinaten geschrieben, He = H, = Hy = - Hs; folg­
lich gehen alle sechs Ebenen durch diesen einen Punkt.

242. Die Gerade als Schnitt zweier Ebenen. Der geome­
trischen Tatsache, daß zwei Ebenen sich nach einer Geraden schneiden, 
entspricht die Aussage, daß zwei Gleichungen ersten Grades in x, y, z:

Ax + BJ + Gz + D, - 0 I 
A,x + ^y + Cz + D,= 0 J

eine Gerade bestimmen. Jede der Gleichungen, für sich betrachtet, 
stellt eine Ebene dar, und indem sie als koexistent aufgefaßt werden, 
genügen ihnen die Koordinaten solcher und nur solcher Punkte, die 
beiden Ebenen angehören, also der Punkte einer Geraden.

243. Die Gerade, durch ihre Projektionen dargestellt. 
Leitet man aus den Gleichungen (1) durch Elimination von y eine 
neue Gleichung ab, so genügen dieser die Projektionen der Punkte 
der Geraden auf der zx-Ebene, folglich stellt sie diese Projektion selbst 
dar; ebenso liefert die Elimination von z die Gleichung der Projektion 
der Geraden auf der xy-Ebene.

Diese Gleichungen aber lauten:

(A^ - A^x - {B. C, - B, C^z - (B, D, - B2D.) = 0
- (G A, - C.A^ + (B, C, - B, C^j - (C^ - CD,) - 0; 

ist BrC2 — B,C, = 0, so nehmen sie nach Division durch diesen Koeffi­
zienten die Gestalt an:

z=mx+n | 

y = m^x + n. )
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Wenn hingegen B.C, — B,C,= 0, so ergeben beide Elimnations­
prozesse ein und dieselbe Gleichung von der Form T= n, die aber 
in verschiedenen Koordinatenebenen zu deuten ist; beidemal, sowohl in 
der zx- wie in der xy-Ebene bedeutet sie eine zur x- Achse senkrechte 
Gerade; diesmal ist die Gerade im Raume durch die genannten zwei 
Projektionen nicht bestimmt, es muß die dritte Projektion herangezogen 
werden, die sich durch Elimination von x aus (1) ergibt.

Nach dem erläuterten Vorgänge findet man beispielsweise, daß 
das Ebenenpaar

2x — 3y — 42 + 5 = 0
3z + y — 2:— 3 = 0

eine Gerade mit den Projektionen
.   11 ,   2 
" 10 " 5

y = — $ x + ‘ 
darstellt, das Ebenenpaar

3x + 2y + 4: — 2 = 0

4x + 3y + 6z + 5 = 0

aber eine Gerade, deren Projektion auf der zx- und xy-Ebene die 
Gleichung

x = 16,

auf der y-Ebene aber die Gleichung

=29—% 

besitzt.
244. Gerade durch einen Punkt. Hebt man in der Geraden, 

die durch das Ebenenpaar

4, x + B, y + G z + D, - 0 | 
A,x + B,y + Cz + D, = o J

bestimmt ist, einen Punkt M(xo/yo/2) heraus, so kann mit seiner 
Hilfe dasselbe Ebenenpaar auch durch die Gleichungen (230)

A(x—x) + B(y—9o) + G(z—%) = 0 I 2
A,(x—x) + B,(y—Jo) + C,(2 - %) = 0 I 

dargestellt werden; diese Gleichungen aber bestimmen die Verhältnisse 
von x— x, y — y^, 2—%, indem (122, 7.)

x—x _ y — yQ z— Zq___ .
B, C, — B/C, C A, — C, A, A, B, — A, B, ‘

bezeichnet man die Nenner mit p, q, r, so hat man in

p q r )
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eine weitere Darstellung der Geraden. Weil bei einer Geraden, die 
durch einen gegebenen Punkt geführt wird, nur noch die Richtung 
frei bleibt, so sind die Nenner p, qt r bestimmend für die Richtung 
der Geraden. Bei unbestimmtem p, q, r sind in (3) alle Geraden 
durch den Punkt M. enthalten, ihre Gesamtheit heißt ein Geradenbündel.

In dem Ansatz (3) sind zwei voneinander unabhängige Gleichungen 
enthalten; die drei Gleichungen, die sich daraus ablesen lassen, be 
stimmen die Projektionen der Geraden auf den drei Koordinatenebenen.

Um z. B. die Gerade

x + 3y — 2z — 7 = 0
2, — 4y — 32—2 = 0

in der Form (3) darzustellen, muß erst ein Punkt auf ihr bestimmt 
werden; nimmt man xo = 0 (oder sonst beliebig) an, so hat man zur 
Berechnung von Y, 2 die Gleichungen:

3J - 2%-7 = 0
4J + 3% +2-0,

aus denen sich y = 1, % = —2 ergibt; die Nenner sind die Deter­
minanten zweiten Grades aus der Matrix

1 3-2
2 -4 -3;

mithin lauten die Gleichungen:
x _ y — 1__ z+2

17 — 1 — 10

245. Parametrische Gleichungen der Geraden. Die drei 
Quotienten, die in den Gleichungen (3) auftreten, ändern, während der 
Punkt M(x[ylz) die Gerade durchläuft, ihren gemeinsamen Wert; 
bezeichnet man diesen mit u, so löst sich der Ansatz (3) in die 

Gleichungen auf:

x = x+ Pu
y =¥+qu (4)
2 = % + ru.

Diese Darstellung der Geraden heißt 
eine parametrische, weil die Koordinaten

F18: 110 des laufenden Punktes der Geraden als 
Funktionen des veränderlichen Parameters u gegeben erscheinen.

Eine andere parametrische Darstellung ergibt sich durch folgende 
Betrachtung. Bezeichnet man den variablen Abstand des laufenden 
Punktes M, Fig. 110, von dem festen Punkte M. mit s, dabei s als 
relative Größe auffassend, die positiv ist, wenn die Strecke M^M mit 
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der Geraden gleich gerichtet, negativ, wenn sie entgegengerichtet ist, 
so ergeben sich durch Projektion der genannten Strecke auf die 
Achsen folgende Beziehungen:

x — x = s cos « 

y~ J = s cos ß 
Z — Z^ — S COS y ;

dabei sind cos«, cos ß, cos y die Richtungskosinus der gerichteten 
Geraden.

Dies führt zu der folgenden parametrischen Darstellung der Geraden:

x=T+s COS «

y = %o + s cos ß (5)

Z = Zq + s COS y .

Aus den beiden Darstellungsweisen (4) und (5) schließt man auf

woraus sich

und weiter

pu = 8 cos C 

qu = s cos ß 

ru = s cos y,

s
E Vp* + 2* + r*

pcos C = —----------
8 V p2 — q2 — 72

COS ß = I (6)E Vp2 + Cp + 72

rcos ” =
aVp2—q2—r2

ergibt.
Hiermit sind die Richtungskosinus der durch die Gleichungen (3) 

dargestellten ungerichteten Geraden bestimmt, so lange man bezüglich 
des & keine Wahl trifft; entscheidet man sich für einen der beiden 
Werte +1 oder — 1, so ist damit eine Richtung als die positive fest­
gesetzt.

Als Beispiel diene der folgende Fall. In der Geraden

x — 2 y — 3 z + 1
4 T 5 = —3

soll jene Richtung als die positive gelten, die mit der positiven 
2-Achse einen spitzen Winkel bildet; es sind ihre Richtungskosinus 
und ihre Richtungswinkel zu bestimmen.
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Da nach dieser Festsetzung cos 7 notwendig positiv ist, hat man 
& = — 1 zu nehmen; die Richtungskosinus sind also:

3cos a =------- — , cos 5 =-----— , cos y = - - • ,
5V2 ‘ V2‘ 5V2‘

die Winkel selbst: a = 124027, B = 135°, 7 = 64053’44".
246. Anzahl der Konstanten. Gerade durch zwei Punkte. 

Die einzelnen Darstellungsformen der Geraden unterscheiden sich von­
einander durch die Zahl und Bedeutung der in ihnen auftretenden 
Konstanten. Nicht immer sind diese sämtlich unabhängig voneinander 
und nicht immer sind sie auf die kleinste Anzahl reduziert. So ent­
hält die Darstellung (242, 1.) sechs Konstanten, aber durch den in 
243 ausgeführten Eliminationsprozeß sind sie auf vier reduziert; in 
der Form (244, 3.) erscheinen auch sechs Konstanten; doch kann aus 
der Gruppe xo, Y0, %o eine willkürlich angenommen werden, und die 
Gruppe p, q, r läßt sich auf zwei Konstanten reduzieren, z. B. auf die 
Verhältnisse 1 , ‘ •

P ’ p
Die kleinste Zahl unabhänngiger Konstanten, mit deren Hilfe sich 

eine Gerade im Baume analytisch dar stellen läßt, beträgt vier.
Da zwei unabhängige Gleichungen vorhanden sind, so ist im 

allgemeinen eine Gerade durch zwei Bedingungen bestimmt.
Der einfachste Fall ist der einer Geraden durch zwei gegebene 

Punkte M.(x,/Y1/21), M, (x,/J2/22).
Der Bündel der Geraden durch M, ist in den Gleichungen

I—X, _ y — 91 _ z — 7,
P I r

bei unbestimmten p, q, r dargestellt; diejenige unter den Geraden, die 
durch M, geht, erfüllt die Bedingungen:

5 — Xi _ 32 — M1 _ 72 —71 . 
p q r ’

durch Division beider Ansätze ergeben sich die Gleichungen der Ver­
bindungsgeraden von M, und M,:

X—X _ y Y, 4 % 2i (1)
&, — E, yi — y, 51—%, 1 

und die Richtungskosinus sind (245, 219): 
xc, — xc, d y, — y^ z, — z, cos a = — - , cos 0 = - - , cos y = - - , (2) 

d=y^- «,): + (u, - y^ + (5, - =,)*

247. Schnittpunkt einer Geraden mit einer Ebene. Dem 
Wesen nach kommt diese Aufgabe auf die Lösung dreier Gleichungen 
ersten Grades in x, y, z hinaus: der Gleichung der Ebene und der 
beiden die Gerade darstellenden Gleichungen.
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Die Lösung nimmt eine übersichtliche Gestalt an, wenn man den 
Geradengleichungen die parametrische Form verliehen hat.

Sind nämlich Ebene und Gerade durch

Ax + By + Cz + D = 0

X = Xo + pu

3 = % + qu
z = Zo — ru

gegeben, so führt die Substitution von (2) in (1):

Axo + ByQ + Cz, + I) + (Ap + Bq + Cr}u = 0

(1)

(2)

(3)
auf eine Gleichung, aus der sich der zum Schnittpunkt gehörige 
Parameterwert bestimmt. Die Bestimmung ist aber nur dann möglich, 
wenn Ap — Bq — Cr + 0, und zwar ist dann

ATo + BY + Czo + D .
Ap + Bq + CA ’ (4.)

durch Einsetzung dieses Wertes in (2) ergeben sich die Koordinaten 
des Schnittpunktes.

Ist jedoch
Ap + Bq + Cr = 0, (5) 

gleichzeitig aber Ax, + By— Cz, + D=0, so kann der Gleichung (3) 
nur durch einen unendlichen Wert von u genügt werden, folglich 
ergeben sich dann auch für die Koordinaten des Schnittpunktes un­
endliche Werte. Man sagt, die Gerade habe mit der Ebene einen 
unendlich fernen Punkt gemein und bezeichnet sie als zur Ebene 
parallel.

Wenn endlich neben (5) auch

Ax0 + By+ Cz0 + D - 0 (6) 

ist, so wird (3) durch jeden Wert von u befriedigt, alle Punkte der 
Geraden gehören der Ebene an, die Gerade liegt in der Ebene.

Die Beziehung (5) allein zeigt also den Parallelismus an; (6) für 
sich besagt, daß der Punkt xQlyQlzQ der Geraden auch der Ebene 
angehört; beides zusammen hat das Ineinanderliegen zur Folge.

248. Ebene durch eine Gerade und einen Punkt. Von 
den eben erkannten Bedingungen kann Gebrauch gemacht werden zur 
Lösung der Aufgabe: Die Gleichung der Ebene aufzustellen, welche 
durch die Gerade

z— & y—y _ Z—% (1)
p q r - 

und den Punkt M,(x/y/2) geht.
Sieht man

Ax — By + Cz — D = 0 (2)



350 Analytische Geometrie des Raumes. § 3. Ebene und Gerade.

als Gleichung der gesuchten Ebene an, so erfüllen die Koeffizienten 
folgende Bedingungen:

Ap + Bq + Cr = 0

Ax, + By^ + Cz + D - 0 (3)
Axx + Byx + Czx + D = 0;

die beiden ersten betreffen das Ineinanderliegen von Gerade und Ebene, 
die letzte das Ineinanderliegen von Punkt AIX und Ebene.

Durch das Gleichungssystem (3) sind die Verhältnisse der Koeffi­
zienten A, B, C, D bestimmt, und das genügt zur Durchführung der 
Gleichung (2); schließlich kommt es darauf an, aus (2) mit Hilfe von 
(3) die Koeffizienten zu eliminieren; das Resultat dieser Elimination 
ist (121):

x y 2 1 
p q r 01 , =° (4) 
So 30 Fo 1
&, Ji z 1

und stellt die verlangte Ebene dar.
Hiernach schreibt sich die Gleichung der Ebene durch 

x— 2 _ 3(y — 4)   4(2+3)
4 — 5 — 3

M(6/- 4/3)

zunächst in folgender Gestalt:

x y 2 1
4 4 4 0 3 4 = 0; 
2 4-31 ’
6-4 3 1

durch Zeilensubtraktion wird daraus 

x—2 y — 4 2+3 0

4 # 1 0 =
-4 8-60
6-4 3 1

und nach Entwicklung der erübrigenden Determinante dritten Grades:

-16(-2) + 21 (J-4) + 4(+3)-0, 
also schließlich:

48 x — 63y — 116z — 192 = 0.
249. Winkel einer Geraden mit einer Ebene. Von dem 

Winkel einer Geraden mit einer Ebene kann in bestimmter Weise erst 
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dann gesprochen werden, wenn die Gerade gerichtet und bei der 
Ebene die positive Seite von der negativen unterschieden ist. Der 
hohle Winkel w zwischen der gerichteten Geraden und der positiven 
Normale der Ebene ist dann spitz oder stumpf, je nachdem die 
positive Richtung der Geraden von der negativen Seite der Ebene 
zur positiven oder umgekehrt verläuft-, das Komplement • dieses 
Winkels, also

9-5-0 (1)

soll als Winkel der Geraden mit der Ebene erklärt werden; • ist der 
Größe nach spitz, und sein Vorzeichen belehrt über die Anordnung 
beider Gebilde zueinander in dem angegebenen Sinne.

Der absolute Wert von • wird gemeinhin als Neigungswinkel der 
Geraden zur Ebene bezeichnet.

Es sei nun
Ax + By + Cz + D = 0 (2) 

die Gleichung der Ebene, während die Gerade durch

p q r 6 
bestimmt sein möge; gerichtet sei sie durch die Wahl eines bestimmten 
Wertes für & (246); dann sind

p q r
ep2+q+y‘ eVp*+q+r‘ eVp3+q+y

ihre Richtungskosinus, während die der positiven Normale zur Ebene 
die Ausdrücke haben:

A B C
— sgn D1A*+B2+C2‘ — sgn DVA?+B*+C2 — sgn D1A‘+B*+02

Daraus bestimmt sich
•Ap + Bq — Crsin v = COS C =--------------- ---- --------------

— £ sgn DV(A2 + B2 + C^^p2 + 42+ r2)
und (vgl. 236)

1 /{Br — Cq)2 + {Cp — Ar)2 +(Aq — Bp)2
V (A2+B*+ C2)(p*+ q*+72)

(4)

(5)

Aus (4) folgt die Bedingung für den Parallelismus zwischen Ge­
rade und Ebene (9 = 0):

Ap + Bq + Cr = 0 (6) 
in Übereinstimmung mit 247; aus (5) die Bedingung für die Perpen- 
dikularität der Geraden zur Ebene (9 = 3) :

ABC
p q r (7)
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Als Beispiel diene die folgende Aufgabe. Es ist der Winkel der 
Geraden

x y z 
— 3 — 4 — — 5 ‘ 

die so gerichtete ist, daß sie mit der positiven x-Achse einen spitzen 
Winkel bildet, mit der Ebene

2x — y — 62 + 3 = 0
zu bestimmen.

Diesen Angaben gemäß ist & = — 1 zu nehmen; da ferner sgn 3 = — 1 
ist, so hat man

• . 4sin J = — 
V82

und 9 = 26012’53"; die Gerade verläuft also, in ihrer positiven Rich­
tung verfolgt, von der negativen Seite der Ebene zur positiven.

250. Abstand eines Punktes von einer Geraden. Die Ge­
rade sei gegeben durch die Gleichungen

T—T _ y-9 _ Z-% (1)
p q r ‘ 

der Punkt M, durch seine Koordinaten 21, Y1, 21. Um seinen Abstand 
von der Geraden zu erhalten, lege man durch ihn eine zur letzteren 
senkrechte Ebene und bestimme den Schnittpunkt P beider; dann ist 
die Strecke P^ der gesuchte Abstand.

Vermöge der Bedingungen (7) in 249 hat die beschriebene Ebene 
die Gleichung

p(x - «,) + q(y - y^ + r{z - z) = 0. (2)

Aus den Gleichungen (1) folgt:

x — 4, + a, — Xo _ y—9 + 3, — J _ 2—2+2—% 
p q r

^p(x — xp + q^y — yp + r(z - z^ +p^ — xo) + q^ — Jo) + r^ — z^ 
p‘+q‘+r2 ‘

und indem man diesen Ansatz mit (2) zugleich bestehen läßt, werden 
x, y, z die Koordinaten des Schnittpunktes. Mit der Abkürzung

p(x, — x)+q(y,—y)+(,—z) _p 2 
p‘ + q2 + 72 " • 

hat man also: 
x — x, = p R — (x, — xo) 
y—9 =qR-(— y^) 

z—2 =rP -^- z);
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die Quadratsumme der linken Seiten ist schon das Quadrat des Ab- 
Standes 3, so daß

ö2 = (p® +,+ r)R - ^[p^ - «,) + a(y, - yo) + r(z, - *)]R 
+ [(, - «)2 + (y, - y^ + (3, - %)2],

und mit Rücksicht auf die Bedeutung von R:

02 = (4, - «,)2 + (u, - y^2 + (6, - ^0)2 - (p2 +9+ )R; (4)
ersetzt man hierin R durch seinen Ausdruck, so wird schließlich (116)

39_ (p*+q3+r3)[(a, —x,)*+(J, — 30)3+(z, — 2)3]— {p(x, —x,)+4(J, —y,)+r(, —z) 12
P^ + ^ + r^

_ ' q(z, — ^^11^- y^} 2 + (r^ —x)—p(z, — 70)} 2 + [p^x — 30) — q(x, — x)} 2. 
p‘+9+r

Die positive Quadratwurzel hieraus ist d selbst.
Die Zwischenformel (4) ist wie folgt zu deuten: Da die Summe 

der ersten drei Glieder der rechten Seite das Quadrat von M.M, gibt, 
so bedeutet (p2+ q2+ 12) R2 das Quadrat des Abstandes des Punktes M. 
von der Ebene (2), wie auch unmittelbar aus den Ausführungen in 
234 hervorgeht.

Die rechnerische Durchführung der Formel (5) gestaltet sich ein­
fach; man schreibt die Matrix

a, - To Ji -yQ z— %o
p q r

an, bildet die Quadratsumme ihrer Determinanten zweiten Grades und 
dividiert sie durch die Quadratsumme der Elemente der zweiten Zeile. 

Soll also beispielsweise der Abstand des Ursprungs von der Ge­
raden

x + 5 y — 2 z + 3
2 — — 3 — 4

bestimmt werden, so heißt die Matrix

5-23

2 - 3 4,
ihre Determinanten sind 1, — 14, — 11, folglich ist 

., 1 - 196 - 121 318
4 4-9 + 16 29

und 4 = 3, 311 ...
251. Zwei Gerade im Raume. Zwei Gerade im Raume haben 

im allgemeinen keinen Punkt miteinander gemein; man sagt dann, sie 
kreuzen sich. Schneiden sich die Geraden in einem eigentlichen oder 
einem unendlich fernen Punkte, so bestimmen sie eine Ebene. Es 
handelt sich um die Feststellung der analytischen Bedingungen für 
diese Sonderfälle und um die Bildung der Ebenengleichung.

Czuber, Höhere Mathematik. 23
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Die Geraden seien parametrisch gegeben durch die Gleichungen:

X = X1+ Piu

J =9+ q,u 
z = 21 + ru .

(1)
X = X, + p2u 

y = y, + qzu 
z = 2, + r2u..

(2)

Sie haben dann und nur dann einen gemeinsamen Punkt, wenn 
es Parameterwerte 1,, u, gibt, die in (1), beziehungsweise (2), ein- 
gesetzt, zu demselben Wertsystem x, y, z führen, so daß also die Glei­
chungen bestehen:

x, - % + P,u, — 2,", = 0
31 - y2 + I1“1 - 92U2 = 0
2, — 2, + r,U, — r2u2 = 0.

Die Bedingung für die Koexistenz dieser Gleichungen, d. i. (121, III) 

X2 Pi p2
B = 9, - y2 9 92 = 0,

z. 22 ri r.
(3)

ist zugleich die analytische Bedingung dafür, daß die Geraden eine 
Ebene bestimmen.

Hierin ist sowohl der Fall des eigentlichen Schneidens als auch 
jener des Parallelismus enthalten; denn der letztere tritt (245) dann 
ein, wenn

Pi:P:r, = P2:92:r2, (4) 
und bei diesem Verhalten verschwindet die Determinante R ohne Rück­
sicht auf die Werte der Elemente der ersten Kolonne.

Man kann auch von folgender Erwägung ausgehen, die zugleich 
auf die Gleichung der Ebene der beiden Geraden hinführt, falls sie 
sich schneiden. Die Bedingungen dafür, daß die Ebene

Ax+ By -\- Cz -\- D = ü 

sowohl die Gerade (1) als auch die Gerade (2) enthalte, lauten (247):
Ax, + Byr + Cz{ + D = 0
Ax, + By, + Cz, + D = 0 
Ap, + Bqx + Cr, = 0
Ap, + Bq, + Cr, = 0;

der Bestand dieser Gleichungen erfordert aber, daß

X1 31 Z 1
a. 32 72 1

= 0
Pi n 0
p. (h r2 0
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sei; dies führt wieder zu der früheren Bedingungsgleichung (3), wie 
man sich überzeugt, indem man die zweite Zeile von der ersten sub­
trahiert.

Ist aber die letzte Gleichung in Kraft, so sind die Verhältnisse 
von A, B, C, D durch die Unterdeterminanten aus irgend drei Zeilen 
der links stehenden Determinante bestimmt (121, I); man kann also 
die Gleichung der Verbindungsebene auch schreiben:

x y z 1

P, 42 1, 0
252. Kürzester Abstand zweier Geraden im Baume. Auf 

jeder Transversale zweier Geraden ist eine Strecke begrenzt; die kleinste 
unter diesen Strecken wird als der kürzeste Abstand der beiden Ge­
raden bezeichnet. Schneiden sich die Geraden in einem eigentlichen 
Punkte, so ist ihr kürzester Abstand Null; sind sie parallel, so er­
scheint ihr kürzester Abstand auf jeder Transversale, die zu beiden 
senkrecht ist.

Kreuzen sich die Geraden, so existiert nur eine Transversale von 
dieser letzten Eigenschaft; sie enthält den kürzesten Abstand. Die 
beiden Geraden bestimmen nämlich in dieser Anordnung zwei parallele 
Ebenen, deren jede durch eine der Geraden geht und der andern 
parallel ist; legt man durch die Geraden zwei weitere Ebenen, die zu 
dem erwähnten Ebenenpaar senkrecht sind, so ist deren Schnittlinie 
diejenige und die einzige Transversale, die die Geraden unter rechtem 
Winkel schneidet. Der kürzeste Abstand der Geraden ist zugleich der 
Abstand der beiden parallelen Ebenen.

Die Geraden seien durch die Gleichungen

C— “1 = y— J1 = Z— F1 (1)
P, 7t g •

x &,__ y Vt__ z z, (2) 
paqgnrg - 

gegeben.
Die Stellung einer Ebene ist durch die Verhältnisse der Koeffi­

zienten A, B, C bestimmt; soll die Ebene den beiden Geraden parallel 
sein, so haben diese Koeffizienten den Bedingungen (247)

Apx + Bq^ + Crx = 0

Ap, + Bg, + Cr, = 0 

zu genügen; daraus aber folgt:

. qi n U Pi Pi 3i
(2 12 72 22 22 (2

23*
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Hiernach sind

I1
42
41
4,

1(x—x)+
T2
T1
r.

"1
r.

(x — x,) + 1
T2

(y — 31) +
22 I

Pi 
p.

Pi 
p.

(y - Y2) +

(2-2) =0 (3)

(2 — z) = 0 (4)

die Gleichungen der parallelen Ebenen, deren erste durch (1), deren 
zweite durch (2) geht.

Da es, wenn es sich nur um die Größe des kürzesten Abstandes 
handelt, auf die Entfernung dieser Ebenen ankommt, so braucht mau 
nur den Abstand des Punktes N2/Y2 / 22 von der Ebene (3) oder des 
Punktes X1/Y1/ 21 von der Ebene (4) zu bestimmen; es ist also (234)

3i G r, P, | p, q,i (x, — x,) — (2/1 — y,) — i ' (z, — z,)8 = 92" 1 . _ I P2 I2 (5)
,7/ 2i n, 2 , i G P 347 4, 2

• 42 r^ " r^ P, Tip, q.
wobei & = + 1 oder = — 1 zu nehmen ist, je nachdem der Zähler 
positiv oder negativ ausfällt. Der Zähler dieses Bruches ist die Ent­
wicklung der in 251 aufgetretenen Determinante R, deren Ver- 
schwinden als Merkmal des Schneidens erkannt wurde, sofern 
P1:41:Y = P2 : 92: T2; ist aber P1 : 41 : Y1 = P2 : 92: T2, in welchem Falle 
die Geraden parallel sind, so verschwindet auch der Nenner in (5) und 
ö erscheint in unbestimmter Form.

Soll man auch die Lage des kürzesten Abstandes ermitteln, so 
ergibt sich hierzu der folgende Weg. Schreibt man die Gleichungen 
(1), (2) in parametrischer Form:

x = X1 + Pi u 

y = 91+ lu 
z= z+ru

(i*)
T =%, + p^v 

y = y^^ 420 
z = 2, + r^v

(2*)

so drücken sich die Koordinatendifferenzen der Punkte u, v wie folgt aus:

q— x,+ pxu —p2v 

y^ - y^ + qiu - q2v
2—2 + ru — r,v;

diese Differenzen sind aber den Richtungskosinus der Verbindungs­
linie der beiden Punkte proportional (246); soll diese Verbindungs­
linie den kürzesten Abstand enthalten, so muß sie auf den beiden 
Geraden senkrecht stehen; mithin ergeben sich die Parameterwerte zu 
den Endpunkten des kürzesten Abstandes aus dem Gleichungspaar: 

Pi(x,—%,+ Pi u—P,)+9, (yt — 32 + qr u - 42 v) + n (2, — z2 + 1 u—r^ v) - 0 

P2 (x, “ x, +P, u - P2 v) + q2 (J, - y^ + Qi u — 72 v) + r2 (2, - 2, + r, u —*v)=0.
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das geordnet lautet:

(p? +1+ ")u ~ (PiP, + 4192 + 1 r2)o
+P(r,—T) + 9(1-)+n(,-2) = 0

(l\Pi + 9112 + rr)u - {p} +4+ r)v
+ p^-x^ + Q,(J1 - y^ + 1,(2, - z) = 0; 

seine negative Determinante

(P\ + 92 + r) (P +4+ r) - ^PiPi + q 12 + r,r,)8 
41 r, 2 ,”, Pi 2 . Pi 41 2

I2 72 ! "2 P2 P2 <12 
ist von Null verschieden, wenn die Geraden nicht parallel sind.

Hat man aus (6) die Werte von u, v berechnet, so gibt ihre 
Einsetzung in (1*), (2*) die gesuchten Fußpunkte.

Zur Illustration diene das folgende Beispiel. Die zwei Geraden 
seien durch je zwei ihrer Spuren, und zwar die erste durch 

A(0/1/5), B(3/5/0), 
die zweite durch

C(0/4/ 4), D(2/0/1) 
gegeben, Fig. 111; ihre Gleichungen lauten 
dann (246):

x y — 1 z — 5 
— 3 — 4 5 

x y — 4 z — 4 
—24 — 3

Die Determinanten aus der Matrix 

-3 -4 5

-2 4 3

haben die Werte
- 32 - 1 - 20

die Koordinatendifferenzen von Ä und C sind 

0 -3 1;
hiermit ist das Material zur Durchführung der Rechnung gebildet. 
Man hat nun

. 3 — 20 17 - d — — —— — = — —— — 0,45 • • ■;
— V1024 — 1+400 5 V57

des weitern lauten die Gleichungen (6) im vorliegenden Falle

50u — 57=17

5u — 29v = 9 
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und besitzen die Wurzeln 2 = - 58, v == — 535, mit deren Hilfe sich 
die Koordinaten der Fußpunkte 1) berechnen, und zwar 

in (1): 1626 = 1,13— , Si = 2,51-> 1423 =3,11—, 
in (2): 1279 = 0,75.., 1569 = 2,49-., 1095 = 2,87..

§ 4. Krumme Flächen.
253. Erzeugung von Flächen. Das wichtigste Erzeugungs­

prinzip von Flächen ist das durch Bewegung von Linien.
Eine Linie im Raume ist in allgemeiner Form (224) durch zwei 

Gleichungen zwischen den Koordinaten x, y, z dargestellt. Enthalten 
diese Gleichungen außerdem einen veränderlichen Parameter u, so ist 
durch sie nicht eine, sondern eine einfach unendliche Mannigfaltigkeit 
von Linien bestimmt; anders aufgefaßt: Geht man in dem Gleichungspaar

F(x, y,z,u) = 0) 01
G(x, y, z,u) = 0 J

von einem Werte des Parameters u aus und zu einem andern Werte 
stetig über, so vollführt die durch das Gleichungspaar dargestellte 
Linie eine stetige Bewegung und beschreibt eine Fläche.

Gleichung der Fläche ist die von den variierenden Werten des u 
unabhängige Beziehung zwischen x,y,z-, sie wird erhalten, indem man 
zwischen den Gleichungen (1) den Parameter u eliminiert, und heiße

«(,y,2) =0. (2)
Die bewegliche Linie (1) bezeichnet man als die Erzeugende der 

Fläche (2).
Enthalten die Gleichungen der Erzeugenden zwei veränderliche 

Parameter u, v, so daß sie allgemein lauten:

F(x, y, z, u, v) = o |
G(x, y, z,u, v) = 0 )

so ist durch sie, so lange nichts weiter bestimmt wird, eine zweifach 
unendliche Mannigfaltigkeit von Linien dargestellt; löst man aber 
daraus nach einem bestimmten Gesetze eine einfach unendliche Mannig­
faltigkeit aus, so führt diese wieder zu einer Fläche; das Gesetz ist 
durch eine Bedingungsgleichung zwischen den Parametern bestimmt 
und heiße

q(u, ) =0- (4)

Die Elimination von u, v zwischen den Gleichungen (3) und (4) 
führt zur Gleichung der Fläche.

Geometrisch wird die Auslösung der einfach unendlichen Mannig-

1) Aus ihnen kann 3 ebenfalls berechnet werden. 
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faltigkeit in der Regel dadurch bewerkstelligt, daß man vorschreibt, 
die Linien des Systems (3) sollen eine gegebene Linie, die man dann 
Leitlinie nennt, schneiden. Ist die Leitlinie durch das Gleichungspaar 

L,(x,y,2) =01 (5)
L2^,y,z) = 0 I 

dargestellt, so heißt dies analytisch so viel: es muß Wertsysteme x, y, 3 
geben, durch welche die vier Gleichungen

F(x, y, 3, u, v) = 0

G(x, y, 3, u, v) = 0

LAx,y,^ =0

L,(x,y,2) = 0 
gleichzeitig befriedigt werden. Eliminiert man also x,y, 3, so erhält 
man eine Gleichung zwischen u, v, und diese ist die der Leitlinie 
adäquate Bedingungsgleichung (4).

Enthalten die Gleichungen (1) drei Parameter u, v, w, so sind 
zur Aushebung einer einfach unendlichen Mannigfaltigkeit zwei Be­
dingungsgleichungen zwischen u, v, w erforderlich; man kommt zu 
ihnen auch durch die geometrische Bedingung, daß die Erzeugende 
zwei Leitlinien zu schneiden habe; denn jede Leitlinie führt zu einer 
Relation zwischen den Parametern.

Indem man diese Betrachtung verallgemeinert, kann man ihr 
Ergebnis in folgendem Satze zusammenfassen:

Enthalten die Gleichungen der Erzeugenden n veränderliche Para­
meter, so sind n— 1 Bedingungsgleichungen swischen diesen erforder­
lich, und die Elimination der Parameter aus den Bedingungsgleichungen 
und den Gleichungen der Erzeugenden liefert die Gleichung der Fläche.

Eine vorgeschriebene Leitlinie führt 3u einer Bedingungsgleichung 
zwischen den Parametern, die Bewegung einer von n Parametern ab­
hängigen Erzeugenden ist somit durch n— 1 Leitlinien im allgemeinen 
bestimmt.

Flächen, die sich durch Bewegung einer Geraden erzeugen lassen, 
nennt man lieg el flächen. Da die Gleichungen einer Geraden im Raume 
vier unabhängige Parameter enthalten (246), so bedarf eine gerade 
Erzeugende zur Regelung ihrer Bewegung dreier Leitlinien.

Ein fester Punkt, durch den die Erzeugende zu gehen hat, führt 
zu zwei Bedingungsgleichungen, ersetzt also zwei Leitlinien; die An­
zahl der Parameter muß in solchem Falle mindestens drei betragen. 
Sind nämlich

Fix, y^ g, v, v, w, • •.) = 0 |
G[x, y, 3, u, v, w, • • •) = 0 J

die Gleichungen der Erzeugenden und xo, y,, 30 die Koordinaten des 
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festen Punktes, so führt die gestellte Forderung zu zwei Bedingungs­
gleichungen zwischen den Parametern, nämlich:

F^q, 30, %o, u, V, w, • • •) = 0 (7)

G(xo, 30, %o, ", , w,) = 0. (8)
254. Kegelflächen. Wenn eine Gerade um einen in ihr liegen­

den festen Punkt eine räumliche Drehung vollführt, so heißt die von 
ihr beschriebene Fläche eine Kegelfläche. Der feste Punkt heißt ihr 
Scheitel- er zerlegt die Erzeugende in zwei Strahlen, deren jeder einen 
Mantel der Fläche beschreibt.

Sind To, Y, £ die Koordinaten des Scheitels, so schreiben sich 
die Gleichungen der Erzeugenden:

x — T _ J—3, _ £—% 
p q r ‘

wobei p, q, r zunächst völlig willkürlich sind; führt man die Verhält­
nisse 1 = u, 1= v als Parameter ein, so kann man statt dessen schreiben:

y — 3 EM z~^ 
x — x, ‘ x — x

Ist nun
qp(u, v) - 0 (2)

die Bedingungsgleichung, die die Bewegung regelt, so folgt aus ihr 
durch Elimination von u, v mittels (1) die Gleichung der Kegelfläche’.

q("-3,2-%)=0. (3)

Verlegt man insbesonderere den Ursprung des Koordinatensystems 
in den Scheitel, so nimmt die Gleichung die Gestalt an:

Das analytische Merkmal der Kegelgleichung besteht also darin, 
daß die Koordinatendifferenzen x—xo, y—Y, Z—%, bzw. die Koor­

dinaten x, u, z, nur in den Verbindungen 3—30, 2 -4, bzw. —, —- JC — SCJ  - X ‘ JC . 3 
auftreten; man bezeichnet eine Gleichung dieses Baues als in bezug 
auf die genannten Argumente homogen.

Die unmittelbare Angabe der Bedingungsgleichung (2) kann da­
durch ersetzt sein, daß eine Leitlinie gegeben ist. Durch Scheitel und 
Leitlinie ist die Kegelfläche bestimmt.

Beispiele. 1. Die Gleichung der Kegelfläche aufzustellen, deren 
Scheitel der Ursprung und deren Leitlinie ein Kreis vom Halbmesser a 
im Abstande c von der xy-Ebene ist; der Mittelpunkt des Kreises 
liegt in der z-Achse.
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Eliminiert man aus den Gleichungen

der Erzeugenden und den Gleichungen

z = c 

a2 + y = a?
der Leitlinie x, y, z, so ergibt sich die Bedingungsgleichung

und aus dieser die Gleichung der beschriebenen Kegelfläche:
1 y? _ a^z^ 

T x2 c3x3‘
in anderer Anordnung

2. Der Scheitel einer Kegelfläche befindet sich im Ursprung und 
ihre Leitlinie ist der Kreis in der Ebene x + y + z = a, der die 
Koordinatenebenen berührt; es ist ihre Gleichung abzuleiten.

Die Gleichungen der Erzeugenden lauten wie vorhin 
y z7 = U, 5==0,

jene der Leitlinie
x + y + z = a, 

x*+y*+*= 2;
die zweite drückt die Tatsache aus, daß der gedachte Kreis auf einer 
Kugel vom Radius — um den Ursprung liegt (218).

V. 2
Hieraus ergibt sich die Bedingungsgleichung 

1+u*+v 1 
(1+u+v) — 2

und in weiterer Folge die Kegelgleichung

(x + y + z)2 = 2 (x3 + y2 + ^2).

255. Zylinderflächen. Eine Gerade kann, ohne ihre Richtung 
zu ändern, in sich selbst, oder in einer Ebene, oder im Raume sich 
bewegen; die im letzten Falle von ihr beschriebene Fläche heißt eine 
Zylinderfläche (223, 2).

Die Gleichungen
ax + by + cz = u

a'x — b'y + c z = v
(1)

stellen bei variablem u, v jede für sich ein System paralleler Ebenen,
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zusammen ein zweifach unendliches System von parallelen Geraden 
im Raume dar; aus diesem wird durch die Bedingungsgleichung

q(u, •) - 0 (2)
ein einfach unendliches System ausgelöst, dessen Ort die Zylinderfläche 
ist; ihre Gleichung lautet demnach:

(p^ax + by-{-c^, a'x + b'y + c'2) = 0. (3)
Die Gleichung einer Zylinderfläche ist also analytisch dadurch 

gekennzeichnet, daß ihre linke Seite (bei Reduktion auf Null) eine 
Funktion von zwei linearen Ausdrücken in x, y, z ist.

Fehlen in diesen Ausdrücken die Glieder mit einer der Koordi- 
dinaten, z. B. mit z, so ist die Zylinderfläche der betreffenden Achse 
parallel; so stellt eine Gleichung von der Form

cp(ax — by, a x + b'y) = 0

eine zur xy- Ebene normale Zylinderfläche dar.1)

1) Durch eine Koordinatentransformation (x‘ — ax — by, y' = a‘ x — b' y) 
kann der Gleichung die Gestalt F(x, y) = 0 gegeben werden (223, 2).

Die Bedingungsgleichung (2) kann indirekt dadurch gegeben sein, 
daß die Erzeugende an eine Leitlinie gebunden wird. Durch Leitlinie 
und eine Richtung ist somit eine Zylinderfläche bestimmt.

Beispiele. 1. Es ist die Gleichung jener Zylinderfläche aufzu­
stellen, deren Leitlinie ein mit dem Radius r in der xy-Ebene aus 
dem Ursprung beschriebener Kreis ist, und deren Erzeugende mit der 
x-, y-Achse Winkel von 60° bzw. 45° und mit der z-Achse einen 
spitzen Winkel bilden.

Man kann die Erzeugende durch die Gleichungen
x — u y — v z

p T q r
darstellen, wenn man den Nennern die durch die Daten vorgezeich­
neten Verhältnisse gibt, nämlich p : g:r= 1 : V2 : 1 (220), also durch 
die Gleichungen 

x — z = u

y - =V2 = v;
die Leitlinie ist durch

z = 0

a? + y? = 72 
bestimmt. Die Elimination von x, y, z führt zu der Bedingungs- 
gleichung

u’+i = 19,

somit lautet die Zylindergleichung:

(x — z)3 + {y — zY2)' = 73.
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2. Durch die Ellipse
z =0

b3a? + a2y~ = a3b?

sind Zylinderflächen zu legen, die von der yz-, bzw. zx- Ebene nach 
Kreisen geschnitten werden.

Aus den vorstehenden Gleichungen der Leitlinie und den Glei­
chungen der Erzeugenden:

x = u — az

y = v + ßz

ergibt sich folgende Bedingungsgleichung zwischen den Parametern:

b3u? + a3v2 = a2b2.

Mithin lautet die allgemeine Gleichung einer durch die obige 
Ellipse gelegten Zylinderfläche:

b2(x — az}2 + a2(y — ßz)2 = a2b2.

Ihre Schnittlinie mit der yz-Ebene:

a2y2— 2a2ßyz + (L3«2+ a3ß?)22= a2b2

ist dann ein Kreis, wenn (188)
ß =0

b3a2+a’ß? = a‘,
und die Schnittlinie mit der zx-Ebene:

b2,3- 2b2axz + (b2«3+ a3ß?)2*= a2b2
dann, wenn

a = 0

b2a2+ a‘ß*= b2-

im ersten Falle ist c=, im zweiten ß = _------

Es bilden also die beiden Paare von Zylinderflächen

(bx ± az)2 + a2y2 = a2b2

b2x2 + (ay + bz)2 = a2b2

die Lösung der Aufgabe.
256. Konoide. Die Bewegungen der Geraden, durch welche 

die Kegel- und Zylinderflächen erzeugt werden, sind dadurch gekenn­
zeichnet, daß jede zwei Lagen der Geraden einen festen Punkt mit­
einander gemein haben: bei der Erzeugung einer Kegelfläche liegt 
dieser Punkt im Endlichen und die Bewegung ist eine drehende^ bei 
der Erzeugung einer Zylinderfläche liegt er im Unendlichen und die 
Bewegung ist eine fortschreitende. Bei der drehenden Bewegung be­
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schreiben die einzelnen Punkte der Geraden ähnliche, bei der fort­
schreitenden Bewegung kongruente Bahnen.

Eine Bewegung der Geraden, bei der zwei beliebige Lagen keinen 
gemeinsamen Punkt besitzen, wird eine schraubende Bewegung ge­
nannt; eine solche Bewegung kann als Zusammensetzung der drehenden 
mit der fortschreitenden Bewegung aufgefaßt werden. Sind nämlich 
g1} g^ zwei beliebige Lagen der Geraden, so kann man 91 in g2 da­
durch überführen, daß man mit 91 zuerst längs einer gemeinsamen 
Transversale von 91 und 92 eine fortschreitende Bewegung ausführt, 
wodurch 91 in die Lage gi kommen möge, in der es mit g2 einen 
Punkt gemein hat; und daß man sodann g[ in der Ebene (g[, g^ durch 
Drehung um den letztgenannten Punkt in g2 überführt.

Zur Regelung einer schraubenden Bewegung bedarf es im all­
gemeinen dreier Leitlinien. Ist eine dieser Leitlinien eine Gerade im 
Endlichen, eine zweite eine Gerade im Unendlichen, so heißt die be­
schriebene Fläche ein Konoid. Anders ausgedrückt: Ein Konoid ent­
steht, wenn eine Gerade längs einer geraden und irgendeiner zweiten 
Leitlinie sich bewegt und einer festen Ebene, der Bichtebene, parallel 
bleibt.

Wenn die gerade Leitlinie auf der Richtebene senkrecht steht, so 
heißt das Konoid ein gerades, sonst ein schiefes.

Bei einem geraden Konoid wird die einfachste Anordnung gegen 
das Koordinatensystem darin bestehen, daß man die gerade Leitlinie 
in eine der Koordinatenachsen legt; die dazu senkrechte Koordinaten­
ebene kann danach als Richtebene aufgefaßt werden.

Fällt die gerade Leitlinie in die x-Achse, so schreiben sich die 
Gleichungen der Erzeugenden:

x = u |
z = vy\I

hat sich mit Hilfe der zweiten Leitlinie die Bedingungsgleichung

q(u, •) - 0 (2)

zwischen den Parametern ergeben, so liefert die Elimination von u, v 
zwischen (1) und (2) die Gleichung des Konoids:

s(x, 5)-0, (3) 

nach x aufgelöst:

Hat die y-, bzw. die z- Achse als gerade Leitlinie gedient, so 
kommt als Gleichung des Konoids eine Gleichung von der Form

zustande. y=/(£), bzw. ^-/(D (4)
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(1)

(1*) 

daß die 
und die

Immer ist also bei dieser Anordnung des Koordinatensystems die 
eine Koordinate eine homogene Funktion der beiden anderen (254).

Beispiele. 1. Die Gleichung eines geraden Konoids zu bilden, 
dessen gerade Leitlinie die x- Achse, dessen zweite Leitlinie ebenfalls 
eine Gerade ist, die die y-Achse im Abstande b vom Ursprung recht­
winklig schneidet.

Eliminiert man aus den Gleichungen der Erzeugenden

x=u, 2 = vy
und den Gleichungen der zweiten Leitlinie

y = b, x = mz

x, y, z, so kommt man zu der Bedingungsgleichung 

u = mbv,

und aus dieser ergibt sich die Gleichung des Konoids:

i z x = mb — 
y

Da man dieser Gleichung auch die Gestalt

y = mb—

geben kann, so wird dasselbe Konoid auch dadurch erzeugt, 
y-Achse als gerade Leitlinie, die zx-Ebene als Richtebene 
Gerade

x = b, y = mz 

als zweite Leitlinie verwendet wird.
Es enthält also die durch eine der Gleichungen (1), (1*) oder 

durch die adäquate Gleichung
xy = mbz (1**) 

dargestellte Fläche zwei Scharen von Geraden, die eine parallel der 
yz-, die andere parallel der zx-Ebene. Man nennt sie ein hyper­
bolisches Paraboloid, weil sie durch Ebenen nach Hyperbeln und 
Parabeln geschnitten wird.

Verbindet man nämlich die Gleichung (1**) mit der allgemeinen 
Gleichung der Ebene

Ax + By + Cz + I) = 0 (2) 
und eliminiert eine der Variablen x, y, z. B. y, so ergibt sich (mit 
mbB = B'} die Gleichung

Ax2 + Cxz + I)x + B' z = 0 (3) 

als Gleichung der Projektion des Schnittes von (1**) mit (2) auf der 
zx-Ebene. Diese Gleichung entspricht aber dem zweiten Hauptfall 
(202) bei Linien zweiter Ordnung und stellt daher eine (eigentliche 
oder degenerierte) Hyperbel oder eine Parabel dar.
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2. Ein gerades Konoid habe die z- Achse zur geraden Leitlinie, 
und die Erzeugende bewege sich so, daß die fortschreitende und die 
drehende Bewegung gleichförmig und beständig in demselben Sinne 
erfolgen.

Die durch diese regelmäßige Schraubenbewegung erzeugte Fläche 
wird gerades Schraubenkonoid, gerade Schraubenfläche oder Wendel­
fläche genannt.

Schreibt man die Gleichungen der Erzeugenden

y — x tgu

so drückt sich das Bewegungsgesetz in dem Ansätze 

(1)

(2)

aus, wenn angenommen wird, daß die x-Achse eine Lage der Er­
zeugenden bildet. Bei positivem b steigt die Erzeugende bei positiver 
Drehung und sinkt bei negativer Drehung.

Aus (1) und (2) folgt durch Elimination von u, v die Gleichung 
der geraden Schraubenfläche

z = b Arctg % • (3)

Entsprechend der unendlichen Vieldeutigkeit der Funktion Arctg 
(43) macht die Fläche unendlich viele Windungen um die z- Achse, 
die als ihre Achse bezeichnet werden soll.

Die Schnittlinie der geraden Schraubenfläche mit einem um ihre 
Achse gelegten Kreiszylinder wird Schraubenlinie genannt.

Ist a, der Radius des Zylinders, so lautet seine Gleichung 

x3+y‘= a*; (4) 
in Verbindung mit (1) und (2) führt sie zu der folgenden parame­
trischen Darstellung der Schraubenlinie:

x = a COS M 
y = a sin u 
z —bu 

wobei der Drehungswinkel u als Parameter verwendet ist.
3. Die Gleichung 

2xy
2— x?—Hy?

(5)

(1)

stellt, da ihre rechte Seite auch in der Form
2 —

/ 12 geschrieben werden 

kann, ein gerades Konoid dar, dessen gerade Leitlinie die z-Achse ist 
(s. Gl. (4), 256).
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Um sich von der Gestalt dieser Fläche eine Vorstellung zu bilden, 
führe man in der xy-Ebene statt der rechtwinkligen Polarkoordinaten 
ein, indem man setzt:

x = r cos g, y = r sin g ;
dadurch ergibt sich für z der Ausdruck

z = sin 2 q , (2) 
der unmittelbar erkennen läßt, daß die Fläche zwischen den Ebenen 
2 = — 1 und z = 1 enthalten ist.

Schneidet man die Fläche ferner mit dem um die z- Achse ge­
legten Kreiszylinder

a2 + y2 - 1,

so entsteht eine Kurve, die sich auf die yz-, bzw. zx- Ebene in die 
Linie vierter Ordnung

Fig. 112.

4y— 4y2+ 2= 0
424 — 42? + 23= 0

projiziert. Auf dem längs der Mantellinie x = — 1, y = 0 auf­
geschnittenen und abgewickelten Zylinder stellt sich diese Kurve ver­
möge der Gleichung (2) in zwei Zügen der Sinuslinie dar, Fig. 112.' 
Mit dieser Kurve als Leitlinie ist es möglich, sich von dem Verlauf 
der Fläche eine Vorstellung zu bilden.

257. Rotationsflächen. Eine Rotationsfläche entsteht durch 
Umdrehung einer Linie um eine mit ihr fest verbundene fixe Achse, 
die Rotationsachse. Jeder Punkt der erzeugenden Linie beschreibt 
einen Kreis, dessen Ebene auf der Rotationsachse senkrecht steht, und 
dessen Mittelpunkt in dieser Achse selbst liegt; wegen dieser An­
ordnung heißen die Kreise Parallelkreise. Es kann demnach dieselbe 
Fläche auch durch die Bewegung eines (im allgemeinen) variablen 
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Kreises erzeugt werden, dessen Mittelpunkt eine feste Gerade durch­
läuft und dessen Ebene auf dieser Geraden senkrecht bleibt; zur 
Regelung der Größe dieses Kreises kann eine Leitlinie dienen. Gerade 
diese Auffassung eignet sich zur analytischen Darstellung.

Jede von der Rotationsachse ausgehende Halbebene schneidet die 
Rotationsfläche nach einer Linie, die man als einen Meridian be­
zeichnet; es ist in der Entstehungsweise der Fläche begründet, daß alle 
Meridiane kongruent sind, so daß die Fläche auch durch Umdrehung 
eines Meridians erzeugt werden kann.

Ordnet man das Koordinatensystem derart an, daß die Rotations­
achse mit der ^-Achse zusammenfällt, so läßt sich der erzeugende 
variable Kreis durch die Gleichungen

2? + 92 + 22 = 12L (i
Z = V )

nämlich als Schnitt einer variablen Kugel um den Ursprung und einer 
beweglichen zur z- Achse senkrechten Ebene darstellen.

Ist q(u,t)=0 (2) 
die unmittelbar gegebene oder mittels der Leitlinie abzuleitende Be­
dingungsgleichung zwischen den veränderlichen Parametern, so ergibt 
sich durch Elimination von u, v zwischen (1) und (2) die Gleichung 
der Rotationsfläche zunächst in der Form

v(Vx+ y+ 23, s) = 0, 
und bei Auflösung nach z erhält man eine Gleichung von der Struktur

z = ((*+ y). (3)

Es kann also (3) als die allgemeine Gleichung der Rotationsflächen 
angesehen werden, die die z-Achse zur Rotationsachse haben.

Ist insbesondere ein Meridian, beispielsweise der in der zx-Ebene 
liegende, als Leitlinie gegeben, deren Gleichungen also

y=0, F(x, s) =0 (4) 
sein mögen, so führt die Elimination von x, y, z aus (1) und (4) auf 
die Bedingungsgleichung

F(Vu—v,v) = 0, (2*) 

aus der sich wiederum durch Elimination von u, v die Gleichung der 
Rotationsfläche ergibt:

F(Vx‘+y,z) = 0. (3*)
Dieses Ergebnis läßt sich zu einer einfachen Regel formulieren, 

die so lautet: Um die Gleichung der durch Umdrehung der Linie y = 0, 
F{x, z) = 0 um die z-Achse erzeugten Rotationsfläche zu erhalten, hat 
man in der letztgeschriehenen Gleichung x durch Va2+y2 zu ersetzen.
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Es ist nicht schwer, diese Regel auf die andern Koordinatenebenen 
und Koordinatenachsen, falls sie als Meridianebenen und Rotations­
achsen verwendet werden, zu übertragen.

Beispiele. 1. Als Rotationsachse diene die z-Achse, als Erzeugende 
die die x-Achse senkrecht schneidende Gerade

x = a, y = mz. («)

Aus diesen und den Gleichungen (1) ergibt sich dann die Bedingungs­
gleichung

a2+(1 + m2)v2 = u2,

aus der wiederum durch Elimination von u, v die Gleichung

x2 + y? - m2z2 = a2 (ß) 

der beschriebenen Fläche resultiert.
Da die Gleichung (ß) unverändert bleibt, wenn man m durch 

— m ersetzt, so enthält die Fläche zwei Scharen von Geraden, nämlich 
alle Lagen, in welche die Gerade («), und auch alle Lagen, in welche 
die Gerade

x = a, y = — mz («‘) 

während der Rotation gelangt.
Aus (ß) ergibt sich mit y = 0 die Gleichung

«3 - ms*= a2

der in der zx-Ebene befindlichen Meridiane, die somit die beiden Aste 
einer Hyperbel bilden, deren reelle Achse 2a in der x- Achse liegt, 
so daß die Fläche auch durch Umdrehung dieser Hyperbel um ihre 
imaginäre Achse beschrieben wird.

2. Durch Rotation der Parabel

22 = 2p x

um die z-Achse entsteht die Fläche vierter Ordnung

24 = 4p?(x2 + y2).

3. Durch Rotation des Kreises

(x - ay+z2=r2 (+0)

um die z- Achse entsteht die als Torus benannte Fläche vierter Ord­
nung, deren Gleichung nach der obigen Regel

(V22 + y2 — a)2 + z2 = r2 

und in rationaler Form

(x2 + y2 + 22 + a2 — r2)2 = 4a3(a2 + y2) 
lautet.

258. Affinität. Denkt man sich den Raum auf ein rechtwink-
Czuber, Höhere Mathematik. 24
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liges Koordinatensystem bezogen und ordnet jedem Punkte AL(xly[z) 
einen Punkt M‘(x‘ /y' f z') nach dem Gesetze

x‘=kx, y' = y, z' = z (1) 

zu, so sagt man, der Raum sei affin transformiert worden; Fig. 113. 
Man hat sich den Raum zweimal zu denken, einmal als Ort der Punkte M, 
ein zweitesmal als Ort der Punkte M‘; in diesem Sinne spricht man 
von zwei affinen Bäumen.

Bei der angegebenen Transformation bleiben die Punkte der 
yz-Ebene in Ruhe, weil mit x = 0 auch x‘= 0 wird, sie heißt die

Affinitätsebene. Außerhalb dieser Ebene liegende 
Punkte erleiden eine Verschiebung parallel der 
x-Achse, die die Affinitätsrichtung bezeichnet; das 
Maß dieser Verschiebung hängt außer von der 
Entfernung des betreffenden Punktes von der Af­
finitätsebene auch von der Konstanten k ab, die 
man das Affinitätsverhältnis nennt; stellt man sich 

vor, M rücke ins Unendliche, so gilt dasselbe von Al', und hält man 
an der Vorstellung (179) fest, eine Gerade enthalte nur einen unend­
lich fernen Punkt, so kann man sagen, daß auch die unendlich fernen 
Punkte des Raumes bei einer affinen Transformation in Ruhe bleiben. 

Je nachdem k < 1 oder > 1, findet eine Verkürzung oder Ver­
längerung der Strecken PM statt; bei k = 1 bliebe alles unverändert 
(identische Transformation).

Die affinen Transformationen bezüglich der zx- und der xy- Ebene 
sind durch die Substitutionsgleichungen

x‘=x, y‘=ky, %‘ = 2, (2) 
, . , x' = x, , z' = kz (3) 

gekennzeichnet.
Man kann jede Ebene zur Affinitätsebene und jede ihr nicht an- 

gehörende Richtung zur Affinitätsrichtung wählen.
Denkt man sich auf alle Punkte eines geometrischen Gebildes 

eine affine Transformation ausgeübt, so entsteht ein neues Gebilde, 
das zu dem ursprünglichen affin heißt; insbesondere entsteht aus einer 
Fläche wieder eine Fläche und aus einer Linie wieder eine Linie.

Bezüglich des Zusammenhangs affiner Gebilde sind insbesondere 
die folgenden Tatsachen hervorzuheben.

Aus einer Ebene entsteht durch affine Transformation wieder eine 
Ebene, die sich mit der ursprünglichen in der Affinitätsebene schneidet.

Die Gleichung - _
5 A x — By + Cz — 1) = 0

verwandelt sich nämlich durch die Substitution (1) in

Ax‘+ By' + Cz' + J) = 0,
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und da mit x = 0 auch x‘= 0 ist, so haben beide Ebenen dieselbe 
y2-Spur: Bn + C6 + D = 0; ist eine der Ebenen der Affinitätsebene 
parallel, so ist es auch die andere.

Infolge dieses Sachverhaltes ist auch das affine Gebilde einer Ge­
raden wieder eine Gerade, die sich mit der ursprünglichen in der 
Affinitätsebene (im Endlichen oder Unendlichen) schneidet.

Weil ferner die der affinen Transformation entsprechende Sub­
stitution linear ist, eine algebraische Gleichung aber bei einer linearen 
Substitution ihren Grad nicht ändert, so ist die zu einer Fläche n-ter 
Ordnung affine Fläche wieder von der n-ten Ordnung. Ebenso bleibt 
bei der affinen Transformation einer algebraischen Linie deren Ordnung 
erhalten.

259. Die Flächen zweiter Ordnung. Jede Fläche, deren 
Gleichung in den Koordinaten x, y, z vom zweiten Grade ist, wird 
eine Fläche zweiter Ordnung (auch zweiten Grades) genannt.

I. Aus der Kugel
x2+y‘+z‘= a2 (1)

entstehen, wenn man auf sie affine Transformation bezüglich der xy- 
Ebene mit l = -

a anwendet, die Rotationsellipsoide

a2+9‘2_1
a? T c2 1 (2)

die unterschieden werden in verlängerte oder oblonge (wenn c > a) 
und in abgeplattete oder Sphäroide (wenn c < a).

Wird auf ein Rotationsellipsoid nochmals affine Transformation 
in bezug auf eine andere Koordinatenebene, z. B. in bezug auf die zx- 
Ebene, mit dem Verhältnis k‘ = " angewendet, so entsteht das all­

gemeine oder dreiachsige Ellipsoid

f + f +$-1. (3)

Die Rotationsellipsoide werden unmittelbar erzeugt durch Um- 
— . x 2 z 2drehung der Ellipse + ., = 1 um die z-Achse (257).

22 z^II. Durch Umdrehung der Hyperbel 4% — 2 =1 um die z-, also 

die imaginäre Achse entsteht das einmantelige oder einschalige 
Rotationshyperboloid

x2 +y‘_2_ 1
a2 c2 (4)

Diese Gleichung geht durch die Substitution " = m in die Gleichung (B) 

in 257 über, von der erkannt wurde, daß sie einer Fläche mit zwei 
Scharen von Geraden angehört.

24*
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Wendet man auf (4) affine Transformation bezüglich der zx- Ebene 
mit dem Verhältnis k = an, so entsteht das allgemeine einschalige 

Hyperboloid
■ (5)a’T b c2 1 •

da bei der affinen Transformation Gerade wieder zu Geraden werden, 
so enthält auch diese Fläche zwei Scharen von Geraden.

22 g2III. Durch Umdrehung der Hyperbel 22 — 2, = 1 um die x-, 

also um die reelle Achse entsteht das zweimantelige oder zweischalige 
Rotationshyperboloid

*-±* - 1. (6)

Wird auf dieses affine Transformation bezüglich der zx- Ebene 
mit dem Verhältnis k = 2 ausgeübt, so entsteht das allgemeine zwei- 

schalige Hyperboloid 
a? _y =1 (7)

IV. Durch Umdrehung der Parabel 2pz = x2 um die z- Achse, 
die zugleich Achse der Parabel ist, erhält man das Rotationsparaboloid

2p z = x- + y2. (8)

Seine affine Transformation bezüglich der zx-Ebene mit dem 
Verhältnis k = " führt auf das elliptische Paraboloid, dessen Gleichung 

sich, wenn man “ = c setzt, schreibt: 7 P 7 
*-$+[ (9)

V. Unter den Konoiden befindet sich auch eine Fläche zweiter 
Ordnung, für welche dort (256, 1.) die Gleichung

mbz = xy

gefunden und die als Träger zweier Scharen von Geraden erkannt 
wurde, deren eine der yz-, die andere der zx-Ebene parallel ist; mit 
Rücksicht auf die Art ihrer ebenen Schnitte erhielt die Fläche den 
Namen hyperbolisches Paraboloid.

Dreht man das Koordinatensystem um die z-Achse um den 
Winkel von 45°, so lautet die zugehörige Substitution (169): 
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die Gleichung unserer Fläche verwandelt sich dadurch, wenn man 
mb = p setzt und den Akzent unterdrückt, in

2pz = x-y" (10)

Man nennt die durch diese Gleichung dargestellte Fläche das gleich­
seitige hyperbolische Paraboloid — seine Richtebenen sind x — y = 0 
und x — y = ^ und stehen aufeinander senkrecht; und diejenige Fläche, 
die aus dieser durch affine Transformation bezüglich der zx- Ebene 
mit dem Verhältnis k = ° entsteht, und deren Gleichung sich mit der

das allgemeine hyperbolische Paraboloid; auch dieses enthält zwei 
Scharen von Geraden, ist in zweifacher Weise ein schiefes Konoid 
mit den Richtebenen bx — ay = 0 und bx + ay = 0. Figur 114 
bringt einen durch Schnitte parallel zu den Koordinatenebenen be­
grenzten Teil dieser Fläche zur Anschauung; auch ein der Fläche an­
gehörendes Geradenpaar ist darin verzeichnet.

VI. Durch Umdrehung der Geraden z = C x um die z-Achse ent­

steht der Potations- oder Kreiskegel, dessen Gleichung lautet:

- 2 (12)
(vgl. 254, 1.). “ C

Übt man auf ihn affine Transformation bezüglich der zx-Ebene 
mit dem Verhältnis k = " aus, so ergibt sich der allgemeine Kegel
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zweiter Ordnung
x2 y‘  z^
a2 b^~ c^' (13)

VII Die Zylinder zweiter Ordnung mit zur z- Achse paral­
lelen Seitenlinien sind in den Gleichungen der Linien zweiter Ord­
nung, bezogen auf die xy-Ebene, enthalten, also in den Gleichungen:

x2+y= a3

a2 T b2 
x* _ y^ 
a‘ 62 

(14)
= 1

y2 = 2p x.

VIII. Die Gleichungen (1) bis (14) beziehen sich jeweilen auf 
ein spezielles Koordinatensystem, das den Symmetrieverhältnissen der 
betreffenden Fläche angepaßt ist und darum zu einer besonders ein­
fachen -Gleichungsform führt. Sowie man das Koordinatensystem 
ändert, kompliziert sich die Gleichung, ohne jedoch ihren Grad zu 
ändern. Wie auch das (rechtwinklige oder Parallel-)Koordinatensystem 
angeordnet werden möge, immer ist die Flächengleichung in der 
allgemeinen Gleichung zweiten Grades zwischen x, y, z, nämlich in:

Ax‘+ A‘y‘+ A"2+ 2Byz + 2 B‘*2 + 2B"xy
+ 2Cx + 2C'y + 2C"z + F = 0 ( 0 

enthalten. Diese Gleichung ist demnach die allgemeine Gleichung der 
Flächen zweiter Ordnung. Da sie zehn Koeffizienten, also neun Kon­
stanten enthält, so ist eine Fläche zweiter Ordnung im allgemeinen 
durch neun Bedingungen, insbesondere durch neun ihrer Punkte, 
bestimmt.

Auch der Komplex zweier Ebenen, dargestellt durch

(ax — by + cz — d}(a'x + b'y + c' z + d'} = 0, (16) 

ist in (15) enthalten, weil die Ausführung der Multiplikation zu einem 
Ausdruck zweiten Grades führt; der Komplex zweier Ebenen bildet 
also eine Degenerationsform der Flächen zweiter Ordnung (vgl. hierzu 
203).

260. Tangentialebenen. Auf der Fläche

/(x, y, •) =0 (i)
liege der Punkt M(x / y / z). In seiner Nachbarschaft werde ein zweiter 
Punkt M'(x + h / y + k / z + C) angenommen, so daß auch

f(x + h, y + k, z +1) = 0 (2)
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ist. Die Verbindungsgerade beider Punkte, dargestellt durch (246)
—xn—yt—z ,
1 k l ‘ 0

heißt eine Sekante der Fläche.
Aus den Gleichungen (1) und (2) folgt, daß auch 

f(x + h, y + k, z + l) — f(x, y, z) = 0, 
daher auch

f(x + h, y + k, z + 0 -f^c, y + 1, z + 0
+/(x, y + k, z + 0 —f^, y, z +1)
+/(x, y, z + l) -f(x, y, z) = 0 

ist; für die drei Differenzen, aus denen sich die linke Seite zusammen­
setzt, kann nach dem Mittelwertsatze (73) der Reihe nach 

h/k(x + @h, y + k, z +1) 
kfy(x, y + 6t k, z + l)
IfAx, y, z + 6,1) 

geschrieben werden, wobei 6, 01, 0, positive echte Brüche bedeuten; es 
ist also auch

f(x + Oh, y + k, z + Z) + f(x, y + 0,1, z + 0 ‘ + 
Z (4) 

+/(x, 3, 2 + 621) n = 0.
Nähert man den Punkt M‘ dem festgehaltenen Punkte M längs 

der Fläche unbegrenzt derart, daß 1 gegen die Grenze t konvergiert, 

so wird auch 1 im allgemeinen einer Grenze u und die Sekante einer 

Grenzlage sich nähern, die durch

8—x _n— y —z ,
i t u 

dargestellt ist und als eine Tangente der Fläche im Punkte M be­
zeichnet wird.

Zwischen dem beliebig festzusetzenden t und dem u besteht aber, 
sofern die partiellen Ableitungen fx, fy,f'z stetige Funktionen ihrer 
Argumente sind, vermöge (4) die Beziehung:

/+/t+/:u=0. (6)
Ohne Rücksicht auf die spezielle Wahl von t herrscht also 

zwischen §, n, §, d. i. zwischen den Koordinaten der Punkte aller 
Tangenten in M die aus (5) und (6) resultierende Gleichung

G-x)/+(-W+(-£)/=0, (7) 
die eine durch M gehende Ebene darstellt.
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Das Ergebnis der Betrachtung geht also dahin, daß alle Tan­
genten in einem Flächenpunkte im allgemeinen — ein besonderes 
Verhalten der Ableitungen /X, fy, fz ausgeschlossen — in einer Ebene 
liegen, die man als die Tangenten- oder Tangentialebene der Fläche im 
Punkte M bezeichnet; (7) ist ihre Gleichung.

I. Ist der Punkt M gegeben, so erfordert die Bestimmung der 
Tangentialebene lediglich die Ausführung der Gleichung (7).

Beispiel. Ist M ein Punkt des dreiachsigen Ellipsoids 

f^, y,2)-8+7+8-1-0,

so ergibt sich die Gleichung der Tangentialebene daselbst zunächst in 
der Form:

0-x)2+(»-»"+(-2)%-0,

und bei weiterer Ausführung lautet sie einfacher:

xg _ yn _ zg _ 1 a” 62 T c2
II. Sollen an die Fläche durch einen Punkt P(x^/yül 20) Tangential­

ebenen gelegt werden, so haben deren unbekannte Berührungspunkte 
x/y/z außer der Gleichung der Fläche

Ax,y,z) = o 
noch der Gleichung

(xo - x)/ + (J - yVy + (% - z)/: = 0 

zu genügen. Ihre Gesamtheit, durch dieses Gleichungspaar bestimmt, 
ist eine auf der Fläche liegende Kurve, die Peruhrungskurve des Kegels, 
der der Fläche aus dem Punkte P umschrieben ist, indem seine Be- 
rübrungsebenen zugleich Tangentialebenen der Fläche sind.

Beispiel. Bei dem Ellipsoid des vorigen Beispiels lautet das 
Gleichungspaar zur Bestimmung der Berührungskurve:

x3y32_

a2 " 62 T c2 1‘

xx _ y^y _2z _ 1. 
a2 62 T c

die zweite Gleichung bestimmt bei variablem x, y, z eine (stets reelle) 
Ebene, deren Schnitt mit dem Ellipsoid die Berührungskurve bildet. 
Man nennt die Ebene die Polarebene des Punktes P in bezug auf das 
Ellipsoid, P ihren Pol. Ein analoger Sachverhalt ergibt sich für jede 
Fläche zweiter Ordnung, wie man an der allgemeinen Gleichung (15), 
259, erweisen kann.

III. Sind an die Fläche Tangentialebenen zu legen, die einer ge­
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gebenen Geraden = = — parallel sind, so müssen deren noch ° P I r 1 
unbekannte Berührungspunkte x/y/z außer

f(x, y, z) = 0 
auch noch die Gleichung

pf + Qfv + rf = 0 

erfüllen, welche die Forderung ausdrückt, daß die Ebene (7) der ge­
gebenen Geraden parallel sei (249). Die Gesamtheit der Berührungs­
punkte, durch das vorstehende Gleichungspaar bestimmt, erfüllt eine 
auf der Fläche liegende Kurve, die Berührungskurve des der Fläche 
parallel zu der Geraden umschriebenen Zylinders.

Beispiel. Bei dem Ellipsoid der vorigen Beispiele heißt das 
Gleichungspaar

a2 1 62 1 c- ’
pxqy_ rz _ 0. 

62" c2 ‘

die zweite Gleichung gehört bei variablem x, y, z einer durch den 
Ursprung gehenden Ebene an, die die verlangte Berührungskurve aus­
schneidet.
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259; -- der Ebene 333.
Homothetische Ellipsen und Hyperbeln 

310; — Parabeln 311.
Hornersches Divisionsverfahren 199.
Hyperbel 245, 297, 315.
Hyperbelfunktionen 114—117.
Hyperbolische Amplitude 117.
Hyperbolisches Paraboloid 365.
Hyperboloide 371—372.

Identität von Lagrange 186.
Imaginäre Zahlen 21—22.
Implizite Funktionen 63.
Infinitesimale Größen verschiedener Ord­

nungen 84.
Inkommensurable Zahlen 16.
Intervall, abgeschlossenes und nichtabge­

schlossenes 57.
Inverse Funktionen 67.
Inversionen 159.
Irrationale Zahlen 15—16.

Kardinalzahl 3.
Kegelflächen 360—361.
Kegelschnitte 313.
Koeffizienten einer algebraischen Glei­

chung 196.
Kolonnen einer Determinante 161.
Kommutatives Gesetz der Addition 5; 

— der Multiplikation 6.
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Komplexe Zahlen 21 — 22; höhere — 22; 
ihre trigonometrische Form 24; geo­
metrisches Rechnen mit ihnen 29.

Konchoide 249.
Konjugierte Durchmesser 306.
Konjugiert komplexe Zahlen 23.
Konoide 363—367.
Konstanz des Differentials der unabhän­

gigen Variablen 133.
Konvergenz einer Reihe 32; — einer 

Zahlenfolge 31; — eines unendlichen 
Produkts 48—50.

Konvergenzkriterien für Reihen mit po­
sitiven Gliedern 38—43; — für Reihen 
mit positiven und negativen Gliedern 
43—46; — für alternierende Reihen 
46; — für unendliche Produkte 50—53.

Koordinaten 240, 318.
Koordinatensystem, positiv und negativ 

orientiertes 242; räumliches — 318.
Koordinatentransformation 252—256; 325 

—329.
Koordinatenwinkel 242.
Kreis 244, 275; — durch drei Punkte 

277; — und Gerade 278.
Kreisbüschel 288; konjugierte — 291.
Kreispunkte, unendlich ferne imaginäre 

279.
Kürzester Abstand zweier Geraden im 

Raume 355.

Leitlinie 359.
Leitstrahl 242.
Lemniskate 249.
Linien zweiter - Ordnung 292; degene­

rierte — 299.
Logarithmieren 20.
Logarithmus 21; natürlicher — 110; ge­

meiner — 110.

Matrix 161.
Maxima-Minima expliziter Funktionen 

einer Variablen 146; gewöhnliche Fälle 
147; außergewöhnliche Fälle 157.

Mehrfache Wurzeln 201.
Menge 1—2.
Meridiane 368.
Merkwürdige Dreieckspunkte 273—274; 

— Tetraederpunkte 343—344.
Methode der unbestimmten Koeffizienten 

201.
Mittelwertsatz der Differentialrechnung 

123; erweiterter — 125.
Mittelpunkt bei den Linien 2. Ordnung 303.

Modul der Addition 9; — der Multipli­
kation 6; — einer komplexen Zahl 24;
— der Logarithmen 110.

Moivresche Binomialformel 25.
Multiplikation 6.

Näherungsverfahren zur Wurzelausrech­
nung 221. s. Newtonsches Näherungs­
verfahren, Regula falsi.

Natürliche Logarithmen 80.
Natürliche Potenz 80.
Nenner 10.
Newtonsches Näherungsverfahren 222.
Newtonsche Regel zur Bestimmung der

Wurzelgrenzen einer algebraischen
Gleichung 212.

Norm einer komplexen Zahl 23.
Null 8; — als Divisor 12.
Nulldeterminanten 175; ihr Rang 176.
Nullstellen einer Gleichung 197.

Ordinalzahl 4.
Ordinate 241.
Orthogonale Transformation 326—327.
Orthogonalkreis zu drei Kreisen 287.
Parabel 245, 298, 315.
Paraboloid, elliptisches 372, hyperboli­

sches 373.
Parallelkoordinaten 241.
Parallelkreise 368.
Parametrische Darstellung der Geraden 

in der Ebene 260, 263; — im Raume
346.

Partialprodukt 50.
Partialsumme 33.
Permutationen, gerade, ungerade 159; 

zyklische — 160.
Pol, Polare in bezug auf den Kreis 

291; — in bezug auf Kegelschnitte 
317.

Polarkoordinaten in der Ebene 242; — 
im Raume 322, 328.

Polargleichung des Kreises 276.
Potenz 7; — eines Punktes in bezug auf 

einen Kreis 284.
Potenzachse, s. Radikalachse.
Potenzieren 7.
Potenzzentrum, s. Radikalzentrum.
Präzisionsmathematik 20.
Prinzip der Permanenz 8.
Produkt 6.
Produkt zweier Determinanten 182.
Produkte, unendliche 48.
Punktkoordinaten 240.
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Qualität einer Menge 2.
Qualitätszeichen 8.
Quantität einer Menge 2.
Quantitätszeichen 8.
Quotient 10.

Radikalachse zweier Kreise 285; — eines 
Kreisbüschels 289.

Radikalzentrum dreier Kreise 286.
Radizieren 13; — komplexer Zahlen 25.
Rändern einer Determinante 174.
Rang einer Nulldeterminante 176.
Rationale Funktionen 65—66; — Zahlen 

12.
Regelflächen 359.
Regula t'alsi 222.
Reihe, geometrische 36; harmonische—37.
Reihen 31—32; ihre Konvergenz und Di­

vergenz 32; — mit positiven Gliedern 
38; — mit positiven und negativen 
Gliedern 43; alternierende — 46; un­
bedingt und bedingt konvergente — 
45-—46.

Resolvente, quadratische, einer kubi­
schen Gleichung 227; kubische — einer 
biquadratischen Gleichung 235.

Rest 12; — einer Reihe 33; — eines 
unendlichen Produkts 50.

Resultante eines Systems linearer Glei­
chungen 193; — zweier algebraischer 
Gleichungen 205.

Richtebene eines Konoids 364.
Richtungskosinus der Geraden im Raume 

321.
Richtungswinkel der Geraden 257; — im 

Raume 320.
Richtungszahlen 29.
Rosette 250.
Rotation eines Koordinatensystems 253, 

325.
Rotationsflächen 367.

Satz von Rolle 122; — von Lagrange 123; 
von Bezout über Permutationen 159; 
— von Bezout über Gleichungspaare 
208; — von Descartes über Gleichungs­
wurzeln 213.

Sätze von Jacobi über Determinanten 182. 
Scheitelgleichung der Parabel 310; — 

der Kegelschnitte 314.
Schnitt 14, 16.
Schnittpunkt zweier Geraden in der Ebene 

267; — einer Geraden mit einer Ebene 
318.

Schraubenfläche, gerade 366.
Schraubenlinie 366.
Segmentgleichung der Geraden 257; — 

der Ebene 332.
Stetigkeit der Funktionen 85; gleich­

mäßige — 88; — von Funktionen 
zweier und mehrerer Variablen 91.

Stetigkeit des Systems der reellen Zah­
len 20.

Strecke, gerichtete 29, 240.
Strophoide 246.
Subtraktion 7.
Summe 5.
Symmetrische Funktionen 203.
Tangentenprobleme, allgemein 280; — 

für den Kreis 281—284; — für die 
Linien zweiter Ordnung 315—317.

Tangentialebenen 374.
Teilungsverhältnis in der Geraden 262; 

— im Geradenbüschel 272; — im Ebe­
nenbüschel 340.

Tetraedervolumen 335—337.
Torus 369.
Transformation zum Mittelpunkt 305; — 

zu den Achsen 308.
Translation eines Koordinatensystems 

252, 325.
Transposition von Elementen in einer 

Permutation 159.
Transzendente Funktionen 65; — Zahlen 

239.
Trennung der Wurzeln 221.

Unbedingt konvergente Reihen 45—46.
Unbestimmte Formen 135; - 135—139;

— 139—142; 0 • 0 142—143; 0—0 CO
143—144; 0°, 00°, 1- 145—146.

Unendlichkeitsstelle 91.
Unendlichkleines, Unendlichgroßes 82; 

eigentliches und uneigentliches Un­
endlich 82—83.

Unstetigkeit 89.
Unterdeterminanten 167; adjungierte — 

167—170.
Ursprung 241.

Variable 55; stetige und unstetige— 57. 
Vielfaches 6.
Vorzeichen desDitterentialquotientenl20.
Winkel zweier Geraden in der Ebene 

269; — im Raume 321; — zweier Ebe­
nen 337; — einer Geraden mit einer 
Ebene 350.
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Wurzel 13;—eines Gleichungssystemsl88; 
— einer algebraischen Gleichung 197. 

Wurzelfaktor 198.
Wurzeln, mehrfache 201: komplexe — 

202; von numerischen Gleichungen: 
ganzzahlige — 215; gebrochene — 216; 
irrationale — 218.

Zahlbegriff 1.
Zahl e als Grenzwert 77.
Zahlen, natürliche 1; positive und nega­

tive — 8; relative — 9; ganze und 
gebrochene — 10; rationale — 12; 
irrationale — 15; reelle — 19; ima­
ginäre und komplexe — 21.

Zahlenebene 28.
Zahlenfolgen 15, 31; divergente und kon­

vergente — 31; monotone — 32.
Zahlkörper 13, 19.
Zahlwörter 3.
Zahlzeichen 3; besondere, allgemeine — 4.
Zeichenwechsel, Zeichenfolge 213.
Zeilen in einer Determinante 161.
Zentrallinie zweier Kreise 286.
Zissoide 247.
Zyklische Permutationen 160.
Zyklometrische Funktionen 68—71.
Zylinderflächen 361—363.

Namenregister.
(Die Zahlen beziehen sich auf die Seiten.)

Abel N. H. 238.
Arbogast L. F. A. 95. 
Argand J. R. 28.

Bernoulli Jak. 37.
Bernoulli Joh. 37, 56, 137.
Bernoulli Nik. 33.
Bezout E. 159, 208.
Bolzano B. 33.

Cantor G. 19.
Cardano H. 226, 228, 234.
Cauchy A. 23, 33, 43, 45, 

126, 163.
Cayley A. 163.
Cesaro E. 100, 124, 135.
Clairaut A. C. 56.
Cramer G. 163, 193.

Dedekind R. 14, 20.
De Moivre, s. Moivre.
Descartes R. 22, 56, 201, 

213, 242.
Dirichlet P. G. Lejeune- 

45, 58.

Euler L. 22, 24, 25. 40, 56, 
79, 234, 236.

Fermat P. 56, 242.
Ferrari L. 234.
Ferro, Scipione del 226.
Forti 117.

Gauß C. F. 22, 28,163,197.
Grandi G. 36.
Gregory J. 33.

Hankel H. 8.
Hesse O. 259.
Horner W. G. 199.
Hudde J. 227.
Huygens Ch. 227.

JacobiC.G.J. 96,163,182.

Kronecker L. 163.

Lacroix S. F. 102.
Lagrange J. 95, 123, 186.
Lambert J. H. 114, 117.

Leibniz G. W. 46,56,95,98,
101 — 102,130—133,165, 
193.

Moivre, A. de 25.

Newton J. 98, 212, 222.

Pascal E. 99.
Plücker J. 270.

Riccati V. 114.
Riemann B. 45.
Rolle 122.
Ruffini P. 238.

Sarrus 164.
Staude O. 337.
Sylvester J. 207.

Tartaglia N. 226.

Vieta F. 36, 49.

Wallis J. 54.
Wessel K. 28.
Wright E. 117.



Verlag von B. G. Teubner in Leipzig und Berlin.

Emanuel Czuber:

Wahrscheinlichkeitsrechnung
u. ihre Anwendung auf Fehlerausgleichung, Statistik u. Lebensversicherung.

2. sorgfältig durchgesehene und erweiterte Auflage. In 2 Bänden.
I. Band.: Wahrscheinlichkeitstheorie, Fehlerausgleichung, Kollektivmaßlehre.

Mit 18 Figuren im Text. [X u. 410 S.] gr. 8. 1908. In Leinwand geb. n. J 12.—
[II. Band unter der Presse.]

Gelegentlich der zweiten Auflage ist das Buch in zwei Bände geteilt worden, 
von denen zunächst der erste vorliegt.

Bei der Bearbeitung dieser Neuauflage sind mancherlei förderlich erscheinende 
Neuerungen im einzelnen getroffen worden, so die Darstellung der Wahrscheinlich­
keitssätze in Form von Funktionalgleichungen, die Heranziehung des Begriffs der 
relativen Wahrscheinlichkeit, der Mengenlehre. Des weiteren war der Verfasser dar­
auf bedacht, die Grundfragen, welche die philosophische Seite des Gegenstandes 
betreffen, tiefer zu fassen. Ein Kapitel über die Kollektivmaßlehre, die, von 
G. Tb. Fechner begründet, durch die neueren Arbeiten von G. F. Lippsund H. Bruns 
wesentlich gefördert wurde, durfte nicht mehr fehlen; die theoretischen Grundlagen 
dieses jüngsten Zweiges wurden so knapp als möglich dargestellt, hingegen auf die 
praktische Anwendung durch Vorführung mehrerer, darunter auch größerer Beispiele­
vorzubereiten gesucht.

Vorlesungen 
über Differential- und Integral-Rechnung

In 2 Bänden. 2. sorgfältig durchgesehene Auflage, gr. 8. 1906.

I. Band. Mit 115 Figuren im Text. [XIII u. 560 S.] In Leinwand geb. n. JL 12.— 
II. Band. Mit 87 Figuren im Text. [IX u. 532 S.] In Leinwand geb. n. M. 12.—

Bei der Abfassung dieses Werkes hat sich der Verfasser als Ziel gesteckt, eine 
Darstellung der theoretischen Grundlagen der Infinitesimalrechnung in organischer 
Verbindung mit deren Anwendungen, insbesondere der geometrischen, von solchem 
Umfange zu geben, als es einerseits für das Studium jener angewandten Disziplinen, 
in denen die Mathematik den Grund zu legen hat, erforderlich ist, und als es 
andererseits die Vorbereitung für das Eintreten in Spezialgebiete der Analysis 
voraussetzt. Er hatte in erster Linie die Bedürfnisse der Technischen Hochschulen 
im Auge, wo eine so geartete Behandlung des Gegenstandes allein am Platze ist, 
glaubt aber, daß auch Studierende der Mathematik in engerem Sinne von dem Buche 
mit Nutzen werden Gebrauch machen können; denn die reichliche Bedachtnahme auf 
die Anwendung der theoretischen Sätze soll nicht bloß dazu dienen, das Interesse an 
dem Gegenstände, das ja hier vorausgesetzt werden muß, wach zu erhalten, sie ist 
vielmehr geeignet, das Verständnis der Theorie zu fördern und zu vertiefen. — Bei 
der Auswahl und Behandlung der Beispiele wurde der Grundsatz festgehalten, daß 
es sich darum handelt, die theoretischen Sätze an denselben zu mannigfacher durch­
sichtiger Anwendung zu bringen, durch sie aber auch zur Vermehrung des Wissens­
stoffes beizutragen. Zahlreiche Textfiguren unterstützen den Vortrag.

„Was ferner beide Bände vorteilhaft vor anderen ähnlichen Büchern auszeichnet, daß ist die 
vorzügliche Auswahl und die klare Behandlung der zahlreichen zum Teil völlig neuen Beispiele, welche 
namentlich die geometrischen Anwendungen der Methoden erläutern; und nach dieser Richtung kann nach 
Ansicht des Referenten gerade den Technikern niemals zu viel geboten werden. Für sie ist auch 
namentlich das Kapitel über Massenanziehung und Potential im 4. Abschnitte des II. Bandes von be­
sonderem Werte, sowie die Anwendungen der Differentialgleichungen, deren Theorie man in gedrängtem 
Rahmen wohl kaum irgendwo besser dargestellt finden dürfte.“

(A. v. Braunmühl in den Blättern für das bayrische Gymnasialschulwesen. )



Verlag von B. G. Teubner in Leipzig und Berlin.

Emanuel Czuber:

Geometrische Wahrscheinlichkeiten u. Mittelwerte.
Mit 115 Textfiguren. [VII u. 244 S.] gr. 8. 1884. Geh. n. J 6.80.

Das vorliegende Buch ist der erste Versuch einer systematischen 
Darstellung der geometrischen Wahrscheinlichkeiten und der damit eng 
zusammenhängenden geometrischen Mittelwerte. Der erste Teil, „Geo- 
metrische Wahrscheinlichkeiten“, zerfällt in drei Abschnitte, 
welche der Reihe nach willkürlich angenommene Punkte (in Linien, in 
Flächen, im Raume), willkürlich gezogene Geraden (in der Ebene, im 
Raume) und willkürlich gelegte Ebenen zum Gegenstände haben. Im 
zweiten Teile, „Geometrische Mittelwerte“ betitelt, ist von einer 
weiteren Gliederung des Stoffes Abstand genommen worden; die Probleme 
sind hier nach den zu ihrer Lösung verwendeten Methoden geordnet.

Theorie der Beobachtungsfehler.
Mit 7 Textfiguren. [XIV u. 418 S.] gr. 8. 1891. Geh. n. Ji. 8.—

Eine zusammenfassende Darstellung der wissenschaftlichen Grund­
lagen der Fehlertheorie und der auf sie gegründeten Ausgleichungs­
rechnung, wie sie dieses Buch zu geben versucht, soll einem doppelten 
Zwecke dienen: den Mathematiker in dieses durch Metaphysik und Analyse 
gleich interessante Gebiet der Wahrscheinlichkeitsrechnung einführen und 
demjenigen, den praktische Probleme mit der Ausgleichungsrechnung, 
diesem unerläßlich gewordenen Bindeglied zwischen Beobachtungen einer­
seits und den aus ihnen gefolgerten Resultaten andererseits, zusammen­
führen, ein möglichst umfassendes Bild ihrer Entwicklung nach der 
theoretischen Seite bieten. Die technische Ausführung der Rechnungen 
bei Lösung spezieller Aufgaben aus verschiedenen Gebieten der An­
wendung fällt hiernach nicht in den Rahmen des Buches.

Die Entwickelung der Wahrscheinlichkeitstheorie 
und ihre Anwendungen.

A. u. d. T.: Jahresbericht der Deutschen Mathematiker-Vereinigung. VII,
[VIII u. 279 S.] gr. 8. 1899. Geh. n. Ji. 8.—.

Die Schrift stellt sich die Aufgabe, den Entwickelungsgang der 
Wahrscheinlichkeitstheorie bis zu ihrem heutigen Stande in knappen 
Zügen zu zeichnen und auf die Anwendungsgebiete so weit einzugehen, 
als es sich dabei um theoretische Fragen handelt. Der philosophischen 
Seite des Gegenstandes wird mehr Aufmerksamkeit zugewendet, als dies 
sonst in mathematischen Schriften zu geschehen pflegt. Es erwies sich 
als zweckmäßig, nicht den historischen Gang, sondern die sachliche 
Gliederung zur Grundlage der Anordnung zu wählen. So werden denn 
der Reihe nach die Grundlagen der Wahrscheinlichkeitstheorie; ihre An­
wendung auf die Ergebnisse wiederholter Versuche; die Wahrscheinlich­
keit der Ursachen beobachteter Ereignisse und das Schließen auf zukünftige 
Ereignisse; die Beurteilung vom Zufall abhängiger Vor- und Nachteile; 
die Anwendungen der Wahrscheinlichkeitstheorie aufZeugenaussagen und 
Entscheidungen von Gerichtshöfen, auf die Resultate von Messungen, 
endlich auf die Statistik behandelt.



-----========-=--=--===-=-============-=========?
WISSENSCHAFT UND HYPOTHESE.

Sammlung von Einzeldarstellungen 
aus dem Gesamtgebiet der Wissenschaften mit besonderer 

Berücksichtigung ihrer Grundlagen und Methoden, 
ihrer Endziele und Anwendungen.

Die Sammlung will die in den verschiedenen Wissensgebieten durch rastlose Arbeit ge­
wonnenen Erkenntnisse von umfassenden Gesichtspunkten aus im Zusammenhang mitein­
ander betrachten. Die Wissenschaften werden in dem Bewußtsein ihres festen Besitzes, in 
ihren Voraussetzungen dargestellt, ihr pulsierendes Leben, ihr Haben, Können und Wollen 
aufgedeckt. Andererseits aber wird in erster Linie auch auf die durch die Schranken der 
Sinneswahrnehmung und der Erfahrung überhaupt bedingten Hypothesen hingewiesen.

I. Band: Wissenschaft und Hypothese. Von H. Poincarü, membre de 
l’Academie, in Paris. Deutsch von L. und F. Lindemann in München. 2. Aufl. 1906. 
Geb. J 4.80.

II. Band: Der Wert der Wissenschaft. Von H. Poincarü, membre de l’Academie, 
in Paris. Mit Genehmigung des Verfassers ins Deutsche übertragen von E.Weber in 
Straßburg. Mit Anmerkungen und Zusätzen von H. Weber in Straßburg. Mit 
einem Bildnis des Verfassers. 1906. Geb. M 3.60.

III. Band: Mythenbildung und Erkenntnis. Eine Abhandlung über die Grund­
lagen der Philosophie. Von G. F. Lipps in Leipzig. 1907. Geb. M 5.—

IV. Band: Die nichteuklidische Geometrie. Histor.-kritische Darstellung ihrer Ent­
wicklung. Von R. Bonola in Pavia. Deutsch von H. Liebmann in Leipzig. 1908. 
Geb. M 5.—

V. Band: Ebbe und Flut sowie verwandte Erscheinungen im Sonnensystem. 
Von G. H. Darwin in Cambridge. Deutsch von A. Pockels in Braunschweig. 
Mit einem Einführungswort von G.v. Neumayer in Hamburg. Mit 43 Illustrationen. 
1902. Geb. M 6.80.

VI. Band: Das Prinzip der Erhaltung der Energie. Von M. Planck in Berlin.
2. Auflage. 8. 1908. Geb. JC 6.—

Unter der
Grundlagen der Geometrie. Von D. Hilbert- 

Göttingen. 3. Auflage.
Wissenschaft und Religion. Von E.Bou- 

troux, membre de l’Institut, Paris.

Presse:
Das Wissen unserer Zeit in Mathematik 

und Naturwissenschaft. Von E. Picard, 
membre de l'Institut, Paris. Deutsch von L. und 
F. Lindemann -München.

In Vorbereitung befinden sich (genaue Fassung der Titel bleibt vorbehalten):-

Anthropologie und Rassenkunde. Von E. 
v. Baelz-Stuttgart.

Prinzipien der vergleichenden Anatomie. 
Von H. B r a u s - Heidelberg.

Die Erde als Wohnsitz des Menschen. 
Von K. Dove-Jena.

Probleme d.Wissenschaft. VonF.Enriques- 
Bologna. Deutsch von K. Greiling - Göttingen.

Das Gesellschafts - und Staatenleben im 
Tierreich. Von K. Escherich-Tharandt.

Erdbeben und Gebirgsbau. Von Fr. Frech- 
Breslau.

Die pflanzengeographischen Wandlungen 
der deutschen Landschaft. Von H. Haus- 
rath - Karlsruhe.

Reizerscheinungen der Pflanzen. Von 
L. Jost- Bonn-Poppelsdorf.

Blumen und Insekten. Von O. Kirchner- 
Hohenheim.

Geschichte der Psychologie. Von O.Klemm- 
Leipzig.

Die Materie im Kolloidzustand. Von V. K o h 1- 
schütter- Straßburg i. E.

Leipzig, Poststrasse 3.

Die Vorfahren und die Vererbung. VonF.Le 
Dantec-Paris. Dtsch. v.H. Kniep-Freiburg i.B. 

Die wichtigsten Probleme der Mineralogie 
und Petrographie. Von G. Linck-Jena. 

Die Erkenntnisgrundlagen der Mathematik 
und der mathematischen Naturwissen­
schaften. Von P. N a t o r p - Marburg.

Die Grammatik exakter Wissenschaft. Von 
K. Pearson-London. Deutsch von L. und 
F. Lindemann-München.

Die botanischen Beweismittel für die Ab­
stammungslehre. Von H. Potonie-Berlin. 

Physiologie der Einzelligen. Von S. v. Pro- 
w a z e k - Hamburg.

Mensch und Mikroorganismen unter besonde­
rer Berücksichtigung des Immunitätsproblems. 
Von H. Sachs-Frankfurt a. M.

Die Methoden der geographischen For­
schung. Von O. Schlüter-Köln.

Grundfragen der Astronomie, der Mechanik 
und Physik der Himmelskörper. Von H. 
v. Seeliger-München.

Meteorologische Zeit- und Streitfragen. 
Von R. Süriug-Berlin.

B. G. Teubner.



Verlag von B. G. Teubner in Leipzig und Berlin.

Ahrens, Dr. W., in Magdeburg, mathematische Unterhaltungen-und Spiele. 
[X u. 428 S.] gr. 8. 1901. In Original-Leinwandband mit Zeichnung von 
P. Bürck in Darmstadt. Geb. n. Jl 10.—

Scherz und Ernst in der Mathematik. Geflügelte und ungeflügelte 
Worte. [X u. 522 S.| gr. 8. 1904. In Leinw. geb. n. JL. 8.—

Bolyai de Bolya, Wolfgang, tentamen iuventutem studiosam in elementa 
matheseos purae elementaris ac sublimioris methodo intuitiva evi- 
dentiaque huic propria introducendi, cum appendice triplici. Editio 
secunda.

Tomus I: Conspectus arithmeticae generalis. Mandate Academiae Scientarum Hungaricae 
suis adnotationibus adiectis ediderunt Iulius König et MauritiusRethy, Academiae 
Scientarium Hungaricae sodales. Mit dem Bildnis des Verfassers und 11 lithographischen 
Tafeln. [XII u. 679 S.] 4. 1899. In Halbkalbleder geb. n. M. 40.—

— II: Elementa geometriae et apendices. Mandato Academiae Scientarium Hungaricae 
suis adnotationibus adiectis ediderunt Jo sephus Kürschäk, Mauritius Rethy, Bela 
Tötössy de Zepethnek, Academiae Scientarium Hungaricae sodales. 4. 1904. Pars I. 
Textus. [LXIII u. 437 S.] Pars II. Figurae. [LXXV u. VII lithographische Tafeln.] 
In Halbkalbleder geb. n. M. 40.—

Borel, Dr. E., Professor an der Sorbonne zu Paris, Elemente der Mathematik. 
In 2 Bänden. I. Band: Arithmetik und Algebra. Vom Verfasser genehmigte 
deutsche Ausgabe, besorgt von Dr. P. Stäckel, Professor an der Technischen 
Hochschule zu Hannover, gr. 8. 1908. In Leinwand geb. [Unter der Presse.]

Engel, Dr. Friedrich, Professor an der Universität Greifswald, der Geschmack 
in der neueren Mathematik. Antrittsvorlesung gehalten am 24. Oktober 
1890 in der Aula der Universität Leipzig. [22 S.] gr. 8. 1890. Geh. n. AL 1.—

Fricke, Dr. Robert, Professor an der Technischen Hochschule zu Braunschweig, 
kurzgefaßte Vorlesungen über verschiedene Gebiete der höheren 
Mathematik mit Berücksichtigung der Anwendungen. Analytisch­
funktionentheoretischer Teil. Mit 102 Figuren im Text. [IX u. 520 S.] 
gr. 8. 1900. In Leinwand geb. n. JC 14.—

[Der II. (Schluß-) Teil über Algebra und Geometrie ist in Vorbereitung.]

Geißler, Dr. Kurt, in Luzern, die Grundsätze und das Wesen des Unend­
lichen in der Mathematik und Philosophie. [VIII u. 417 S.] gr. 8. 
1902. Geh. n. J 14 —, geb. n. JL 16.—

Jahnke, Dr. E., Professor an der Kgl. Bergakademie zu Berlin, und F. Emde, In­
genieur in Berlin, Funktionentafeln mit Formeln und Kurven. A. u. d.T : 
Mathematisch-physikalische Schriften für Ingenieure und Studierende, heraus­
gegeben von E. Jahnke. 8. Kart, und in Leinwand geb. [Unter der Presse.]

Schwering, Prof. Dr. K., Direktor des Gymnasiums an der Apostelkirche zu Köln a. Rh., 
Handbuch der Elementarmathematik für Lehrer. Mit 193 Figuren im 
Text. [VIII u. 408 S.] gr 8. 1907. In Leinwand geb. n. J 8.—

Tannery, Jules, Membre de l’Institut de France, Subdirektor der mathematisch­
naturwissenschaftlichen Abteilung an der Ecole Normale superieure zu Paris, 
Elemente der Mathematik. Mit einem geschichtlichen Anhang von 
P. Tannery. Mathematisch-philosophische Klasse, Zeugnis für Physik, Chemie 
und Naturwissenschaft. Autorisierte deutsche Ausgabe von Dr. P. Klaess in 
Luxemburg. Mit einem Einführungswort von Felix Klein, [ca. 200 S.] gr. 8. 
1908. In Leinwand geb. [Unter der Presse.]

Voß, Dr. A. v., Professor der Mathematik in München, über das Wesen der 
Mathematik. Rede, gehalten am 11. März 1908 in der öffentlichen Sitzung 
der Kgl. Bayrischen Akademie der Wissenschaften. Erweitert und mit An­
merkungen versehen. [98 S.] 8. 1908. Geh. [Unter der Presse.]



Verlag von B, G. TEUBNER in LEIPZIG und BERLIN.

Encyklopädie der Mathematischen Wissenschaften
mit Einschluß ihrer Anwendungen.

Herausgegeben im Auftrage der 
Akademien der Wissenschaften zu Göttingen, Leipzig, München und Wien, 

sowie unter Mitwirkung zahlreicher Fachgenossen.
In 7 Bänden zu je 6—8 Heften, gr. 8. Geheftet und in Halbfranz geb.

Bisher erschienen:
I. Arithmetik und Algebra, 2 Teile, red. von I 

W. Frz. Meyer.
I. Teil. [XXXVIII u. 554 S.] 1898 — 1904. I 

Geh. M. 17.—, in Halbfrz. geb. J.20.—
II. Teil. [X u. S. 555—1197] 1900—1901. Geh.

J 19.—, in Halbfranz geb. M. 22.—
II. Analysis, 2 Teile, red. von H. Burkhardt und

W. Wirtinger.
I. Teil. Heft: 1. [160 S.] 1899. M. 4.80; 

2/3. [240 S.] 1900. M. 7.50; 4. [160 S.] 
1900. ^4.80; 5. [199 S.] 1904.6.—;
6. [57 S.] 1906. M. 1.60.

II. Teil Heft: 1. [175 S.] 1901. M. 5.20.
III. Geometrie, 3 Teile, red. von W. Frz. Meyer.

I. Teil. Heft: 1. [220 8.] 1907. M. 6.40.
2. [168 S.] 1907. J. 5.—

H. Teil. Heft: 1. [160 8.] 1903. M. 4.80; 
2. [96 8.] 1901. J. 2.80; 3. [199 8.] 
1906. M. 5.60.

III. Teil. Heft: 1. [183 S.] 1902. M. 5.40; 
2/3. [256 S.] 1903. M. 6.80.

IV. Mechanik, 4 Teilbände, red. von F. Klein und 
C. H. Müller.
I. Teilband (IV, 1, 1) [XVI u. 691 8.] 1901— 

1908. Geh. M. 20.40, in Halbfranz 
geb. ^24.—

II. Teilband (IV, 1, 2) Heft: 1. [152 S.] 1904. 
JL 4.40

III. Teilband (IV, 2, 1) [XI u. 493 8.] 1901— 
1908. Geh. M. 17.60, in Halbfranz 
geb. J. 20.60.

IV. Teilband (HI, 2, 2) Heft: 1. [124 8.] 1907. 
M. 3.60. 2. [186 8.] 1907. ^/. 5.20.

V. Physik, 3 Teile, red. von A. Sommerfeld.
I. Teil. Heft: 1. [160 8.] 1903. M. 4.80; 

2. [159 8.] 1905. Jl. 4.80; 3. [172 8.] 
1906.^5 20; 4. [121 8.] 1907. ^3.60. 

II. Teil. Heft: 1. [280 8.] 1904. J 8.—; 
2. [104 8.] 1907. M. 3.—

VI. 1: Geodäsie und Geophysik, 2 Teilbände, red. von 
Ph. Furtwängler und E. Wiechert. 

Heft: 1. [116 8.] 1906. M. 3.40.
2. [127 8.] 1907. JL 3.60.

VI. 2: Astronomie, red. von K. Schwarzschild. 
Heft: 1. [193 S.] 1905. M. 5.80.
2. [139 8.] 1908. M. 4.—
In Vorbereitung:

VII. Geschichte, Philosophie, Didaktik. [In Vor- 
bereitung.]

Encyclopedie des Sciences mathematiques 
pures et appliquees.

Publiee sous les auspices des Academies des Sciences 
de Göttingue, de Leipzig, de Munich et de Vienne 

avec la collaboration de nombreux savants,

Edition frangaise, 
redigee et publiee d’apres l’edition allemande sous la direction de 

Jules Molk, professeur a l’universite de Nancy.
En sept tomes. gr. 8. Geheftet.

Paru: Tomei: VOl. I, fasc. I. [160 pag.] 1904. J(4.— fasc. II. [167 pag.] 
1907. AC 4.20. fasc. III. [158 S.] 1908. JC 5.— Tome I: VOl. II, 
faSC. I. [237 pag.] 1907. AC 6.80. Tome I: VOl. III, fasc. I. [96 pag.J 
1906. A 2.40. fasc. II. [96 pag.] 1908. AL 2.40. Tome I: VOl. IV, 
fasc. I. [160 pag.] 1906. AL 4.—

Durch die günstige Aufnahme veranlaßt, welche die deutsche Ausgabe dieses 
monumentalen Werkes in Fachkreisen gefunden hat, und auf vielfache Anregungen 
hat sich die Verlagsbuchhandlung entschlossen, die Encyklopädie der Mathematischen 
Wissenschaften in Gemeinschaft mit der Firma Gauthier-Villars in Paris auch in 
französischer Sprache erscheinen zu lassen. Das Werk wird, wie schon die erste 
Lieferung zeigt, seitens der deutschen Bearbeiter viele Änderungen und Zusätze 
erfahren, und auch die französischen Mitarbeiter, sämtlich Autoritäten auf ihren 
Gebieten, haben eine gründliche Umarbeitung vorgenommen. Zum ersten Male dürfte 
somit wohl hier der Fall eingetreten sein, daß sich bei einem so großen Werke die ersten 
deutschen und französischen Fachgelehrten zu gemeinsamer Arbeit verbunden haben.
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Repertorium der höheren Mathematik (Definitionen, Formeln, Theoreme, 
Literaturnachweise) von Ernst Pascal, ord. Professor an der Universität Pavia. 
Autorisierte deutsche Ausgabe von weil. A. Schepp in Wiesbaden. 2. neubearb. 
Auflage. In 2 Teilen. Analysis und Geometrie. I. Teil: Die Analysis. Heraus­
gegeben von P. Epstein, [ca. 700 S.] gr. 8. 1909. In Lnwd. geb. ca. n. JL 12.— [Erscheint 
im Januar 1909.] II. Teil: Die Geometrie. Herausgegeben von H. E. Timerding, 
[ca. 800 S.] gr. 8. 1909. In Lnwd. geb. ca. n. JL 14.— (Erscheint Ostern 1909.]

Der Zweck des Buches ist, auf einem möglichst kleinen Raum die wichtigsten Theorien der 
neueren Mathematik zu vereinigen, von jeder Theorie nur so viel zu bringen, daß der Leser imstande ist, 
sieh in ihr zu orientieren, und auf die Bücher zu verweisen, in welchen er Ausführlicheres finden kann.

Für den Studierenden der Mathematik soll es ein „Vademekum“ sein, in dem er, kurz zusammen­
gefaßt, alle mathematischen Begriffe und Resultate findet, die er während seiner Studien sich angeeignet 
hat oder noch aneignen will.

Die Anordnung der verschiedenen Teile ist bei jeder Theorie fast immer dieselbe: zuerst werden 
die Definitionen und Grundbegriffe der Theorie gegeben, alsdann die Theoreme und Formeln (ohne 
Beweis) aufgestellt, welche die Verbindung zwischen den durch die vorhergehenden Definitionen einge­
führten Dingen oder Größen bilden, und schließlich ein kurzer Hinweis auf die Literatur über die 
betreffende Theorie gebracht.

Vocabulaire Mathematique, fran^ais-allemand et allemand-fran^ais. Mathe­
matisches Vokabularium, französisch-deutsch und deutsch-französisch. Enthaltend die 
Kunstausdrücke aus der reinen und angewandten Mathematik. Von Professor Dr. 
Felix Müller. [XV u. 316 S.] Lex.-8. 1900/1901. In Leinw. geb. n. JL. 20.— Wurde in 
2 Lieferungen ausgegeben: I. Lieferung. [IX u. 132 S.] 1900. Geh. n. JC 8.— 
II. Lieferung. [S. IX—XV u. 133—316.] 1901. Geh. n. JL 11.—

Das Vokabularium enthält in alphabetischer Folge mehr als 12000 Kunstausdrücke aus der reinen 
und angewandten Mathematik in französischer und deutscher Sprache und soll in erster Linie eine 
Ergänzung der gebräuchlichen Wörterbücher für die beiden genannten Sprachen sein. In dem zweiten deutsch­
französischen, Teil sind, ebenso wie im ersten, die zu einem und demselben Hauptworte gehörigen zu­
sammengesetzten Kunstausdrücke unter diesem Hauptworte vereinigt. So sind unter dem Artikel „Kurve“ 
449 Kunstausdrücke zusammengestellt, in denen dieses Wort vorkommt. Jedem Adjektivum sind die­
jenigen Hauptwörter in Klammern beigefügt, die mit ihm zu einem Kunstausdruck verbunden werden. 
Da das Vokabularium zugleich als Vorarbeit zu einem Mathematischen Wörterbuche dienen soll, so sind 
auch zahlreiche Nominalbenennungen aufgenommen, deren Anführung aus rein sprachlichem Interesse 
überflüssig erscheinen dürfte. Z. B. Gaußsche Abbildung (einer Fläche auf eine Kugel) (Gauß 1827) 
[inf. Geom.] repr6sentation de Gauss; Clairauts Satz (über die geodätischen Linien auf Umdrehungs- 
fiächen) (Clairaut 1733) [inf. Geom.] thöorämo de Clairaut. Aus den beigefügten Zusätzen ist zu ersehen, 
daß das Vokabularium mehr bietet, als der Titel erwarten läßt.

Vorlesungen über Geschichte der Mathematik, von Moritz Cantor. 
In 4 Bänden I. Band. Von den ältesten Zeiten bis zum Jahre 1200 n. Chr.
3. Auflage. Mit 114 Figuren im Text und 1 lithogr. Tafel. [VI u. 941 S.] gr. 8. 
1907. Geh. n. JL 24.—, in Halbfranz geb. n. M. 26.— II. Band. Vom Jahre 1200 
bis zum Jahre 1668. .2. verb. und verm. Auflage. Mit 190 Figuren im Text. 
[XII u. 943 S.] gr. 8. 1900. Geh. n. JL 26.—, in Halbfranz geb. n. JL 28.— III. Band. 
Vom Jahre 1668 bis zum Jahre 1758. 2. verb. und verm. Auflage. In 3 Ab­
teilungen. Mit 146 Figuren im Text. [X u. 923 S.] gr. 8. 1901. Geh. n. JL 25.—, 
in Halbfranz geb. n. JL 27.— IV. Band. Vom Jahre 1759 bis zum Jahre 1799. 
Herausgegeben unter Mitwirkung der Herren V. Bobynin, A. v. Braunmühl, F. Cajori, 
S. Günther, V. Kommerell, G. Loria, E. Netto, G. Vivanti und C. R. Wallner von M. Cantor. 
Mit 100 Figuren im Text. [VI u. 1113 S.] gr. 8. 1908. Geh. n.-JL. 32.—, in Halb­
franz geb. n. JL 35.—

„Einen hervorragenden Platz unter den neueren Veröffentlichungen über die Geschichte der 
Mathematik nimmt die zusammenfassende Darstellung ein, die uns Moritz Cantor geschenkt hat.

Mit rastlosem Fleiß, mit nie ermüdender Geduld, mit der unverdrossenen Liebe des Sammlers, 
der auch das scheinbar Geringe nicht vernachlässigt, hat Moritz Cantor dies kolossale Material gesammelt, 
kritisch gesichtet, durch eigene Forschungen ergänzt, nach einheitlichen Grundsätzen und einheitlichem 
Plan zu einem Ganzen verschmolzen, und indem er in seltener Unparteilichkeit bei strittigen Fragen, 
deren die Geschichte der Mathematik so viele hat, auch die abweichenden Ansichten zu Wort kommen 
ließ, hat er ein Werk geschaffen, das die reichste Quelle der Belehrung, der Anregung für einen jeden ist, 
der sich über einen geschichtlichen Fragepunkt Rat holen, der an der Geschichte der Mathematik mit­
arbeiten will....“ (Aus den Göttingischen gelehrten Anzeigen.) 

Mathematische Unterhaltungen und Spiele. Von Dr. W. Ahrens in 
Magdeburg. [X u. 428 S.] gr. 8. 1901. In Leinwand geb. n. JL 10.—
Scherz und Ernst in der Mathematik. Geflügelte und ungeflügelte' Worte. 
Von Dr. W. Ahrens in Magdeburg. [X u. 522 S.] gr. 8. 1904. In Leinw. geb. n. ^ 8.—

„Der Verfasser der „Mathematischen Unterhaltungen“ hat uns mit einem neuen, überaus 
fesselnden und originellen Werke überrascht, welches man als einen mathematischen „Büchmann“ 
bezeichnen könnte, wenn es nicht neben aphoristischen Bemerkungen auch längere Briefe und Aus­
einandersetzungen brächte. Beginnt man zu lesen, so möchte man das Buch nicht aus der Hand legen, 
bis man zum Ende gelangt ist, und dann werden viele wieder von vorn beginnen. Jedem wird es Neues 
bringen, möge er noch so belesen sein . . . gerade das vorliegende Buch gibt einen tiefen Einblick 
in das Ringen der Geister, und manchem wird durch manche kurze, treffende Bemerkung ein 
Licht über ganze Gebiete der Wissenschaft aufgehen. . . . Ein alphabetisches Sach- und 
Namenregister erleichtert die Orientierung.“ (Prof. Dr. Holzmüller.)
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Encyklopädie
der Elementar-Mathematik.

Ein Handbuch für Lehrer und Studierende von

Dr. Heinrich Weber und Dr. Joseph Wellstein,
Professoren an der Universität Straßburg i. E.

In drei Bänden, gr. 8. In Leinw. geb.
I. Elementare Algebra und Analysis. Bearbeitet von H. Weber. 2. Auflage. Mit 
38 Textfiguren. [XVIII u. 539 S.] 1906. n. J 9.60.
II. Elemente der Geometrie. Bearbeitet von H. Weber, J. Wellstein und W. Jacobs- 
thal. 2. Auflage. Mit 251 Textfiguren. [XII u. 596 S.] 1907. n. JL 12.— 
III. Angewandte Elementar-Mathematik. Bearbeitet von H. Weber, J. Wellstein 
und R. H. Weber (Rostock). Mit 358 Textfiguren. [XIII u. 666 S.] 1907. n. J( 14.—

Das Werk verfolgt das Ziel, den künftigen Lehrer auf einen wissen­
schaftlichen Standpunkt zu stellen, von dem aus er imstande ist, das, was er 
später zu lehren hat, tiefer zu erkennen und zu erfassen und damit den Wert 
dieser Lehren für die allgemeine Geistesbildung zu erhöhen. — Das Ziel dieser 
Arbeit ist nicht in der Vergrößerung des Umfanges der Elementar-Mathematik 
zu ersehen oder in der Einkleidung höherer Probleme in ein elementares 
Gewand, sondern in einer strengen Begründung und leicht faßlichen Darlegung 
der Elemente. Das Werk ist nicht sowohl für den Schüler selbst als für den 
Lehrer und Studierenden bestimmt, die neben jenen fundamentalen Betrach­
tungen auch eine für den praktischen Gebrauch nützliche, wohlgeordnete Zu­
sammenstellung der wichtigsten Algorithmen und Probleme darin finden werden.

„... Zwei Momente müssen hervorgehoben werden, die dem Buche das Gepräge verleihen. 
Das eine liegt darin, daß die grundlegenden Fragen der Geometrie eine eingehende Behandlung 
erfahren, in einem Umfange, wie er in zusammenfassenden Werken sonst nicht anzutreffen ist.... 
Das zweite Moment ist in dem Umstande zu erblicken, daß die Verfasser es nicht darauf angelegt 
haben, eine pragmatische Vorführung des üblichen Vorrats an geometrischen Sätzen, Konstruk­
tionen und Rechnungen zu geben, sondvrn daß es ihnen mehr darum zu tun war, an aus­
gewähltem Material die wissenschaftlichen Methoden der Geometrie zur Geltung zu bringen und 
überall auf die Grundfragen einzugehen. Ist so die theoretische Seite, namentlich in einigen 
Abschnitten, stark zum Ausdruck gekommen, so ist doch auch auf die praktischen Bedürfnisse 
Rücksicht genommen, die freilich erst mit dem dritten Bande ihre endgültige Befriedigung finden 
sollen; doch ist dafür an verschiedenen Stellen, so in der Trigonometrie und in der analytischen 
Geometrie schon vorgearbeitet worden.........So darf der Inhalt des zweiten Bandes der „En­
cyklopädie der Elementar-Mathematik“ als ein sehr reichhaltiger bezeichnet werden, der über die 
Grenzen dessen, was an der Schule geboten werden kann, erheblich hinausführt, der aber auch — 
und das ist noch wichtiger und offenkundig der Hauptzweck des Werkes — eine Vertiefung des 
geometrischen Wissens vermittelt. Jüngere Lehrer der Mathematik werden das Buch gewiß oft 
und mit Nutzen zu Rate ziehen, namentlich wenn sie im Unterrichte zu prinzipiell wichtigen 
Fragen kommen, um sich über die leitenden Gedanken zu orientieren.“

Eines verdient noch besonders hervorgehoben zu werden: das ist die reiche Ausstattung 
mit schönen, sehr instruktiv gezeichneten Figuren. Der schwierigen Vorstellung der verschiedenen 
Formen sphärischer Dreiecke kommen die stereographischen Bilder der Euler’schen, Möbius'schen 
und Study’schen Dreiecke sehr zu statten.“ (Zeitschrift für das Realschulwesen.)

„ . . . Daß ein Hochschullehrer von der Bedeutung des Verfassers die Elementar-Mathematik 
von höhererWarte aus behandelt und mustergültig darstellt, ist selbstverständlich. Jeder Lehrer, jeder 
Studierende muß das Werk, welches nicht nur in methodischer, sondern auch in systematischer Hinsicht 
von Bedeutung und daher eine wichtige Erscheinung der elementaren mathematischen 
Literatur ist, besitzen und studieren.“ (Zeitschrift für lateinlose höhere Schulen.)

„...Die Encyklopädie will kein Schulbuch im gewöhnlichen Sinne des Wortes sein, ist 
aber zur Vorbereitung auf den Unterricht, namentlich in den oberen Klassen, den Lehrern der 
Mathematik dringend zu empfehlen, welche die bezüglichen Originalarbeiten nicht alle selbst 
studiert haben, sich aber doch orientieren wollen, wie vom Standpunkte der modernen Wissen­
schaft die Begriffsbildungen, Methoden und Entwicklungen der Elementar-Mathematik zu ge­
stalten sind.“ (C. Färber im Archiv der Mathematik und Physik.)
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