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Buchdruckerei von Gustav Schade (Otto Francke) in Berlin N.

Vorwort.

Der Drehstrommotor ist in seinem Aufbau die einfachste und daher betriebsicherste rotierende elektrische Maschine, welche die moderne Technik zu liefern vermag, und er hat mit Recht eine so große Verbreitung gefunden, daß er heutzutage nahezu jedermann bekannt ist. So einfach aber der Motor in mechanischer Beziehung ist, so kompliziert sind die elektrischen Vorgänge, die sich in der Maschine abspielen; ja man kann sagen, daß, vom theoretischen Standpunkt aus betrachtet, der asynchrone Motor (Induktionsmotor) die schwierigsten Probleme bietet, mit denen sich die Elektrotechnik zu befassen hat.

Aus diesem Grunde findet man häufig sogar bei Elektroingenieuren eine geradezu verblüffende Unkenntnis selbst prinzipieller Eigentümlichkeiten dieses Motors. Es ist daher für den Verfasser einer Monographie der Drehstrommotoren eine sehr schwierige Frage, zu entscheiden, was bei den Lesern als bekannt vorausgesetzt werden darf und was nicht; denn daß ein Buch über diese Materie in der beliebten Weise mit dem berühmten Glasstab und dem Katzenfell beginnen kann, ist ausgeschlossen.

Ich hoffe, das Richtige getroffen zu haben, als ich annahm, man müsse die Kenntnis der elektrotechnischen Elementarbegriffe, die Kenntnis der Wirkungsweise von Gleichstrommaschinen und Drehstromgeneratoren voraussetzen.

In Bezug auf das eigentliche Thema des Buches habe ich mich dagegen bemüht, so zu schreiben, daß auch demjenigen, der noch nie einen Drehstrommotor gesehen hat, die Darlegungen verständlich sind. Insbesondere war ich bestrebt, den mathematischen Hilfsapparat so einfach als möglich zu gestalten, damit auch denjenigen, denen nur die elementare Mathematik zur Verfügung steht, eine ersprießliche Lektüre des Buches ermöglicht ist. Manchen meiner Herren Fachgenossen, insbesondere den Spezialisten auf diesem Gebiete werden vielleicht einige der Abhandlungen zu elementar und breit erscheinen. Ich bitte aber diese Herren um Nachsicht in Anbetracht der jüngeren Kollegen, denen die Materie fremd ist.

Trotz der einfachen Darstellungsweise, deren ich mich befleißigt habe, war ich bestrebt, eine streng wissenschaftliche Exaktheit in jeder Hinsicht einzuhalten. Wenn Näherungsmethoden, Vernachlässigungen oder Vereinfachungen zur Anwendung gekommen sind, ist dies stets ausdrücklich betont.

Was die Behandlung des Stoffes anlangt, ist, damit die Wirkungsweise des Motors möglichst klar geschildert werden konnte, anfangs ein idealer, verlustloser und streuungsfreier Motor mit räumlich und zeitlich der Sinusfunktion folgenden Feldern besprochen, und es ist dann der Einfluß der Ohmschen Widerstände, der Streuung, der Eisen- und Reibungsverluste im einzelnen gezeigt, sodaß der Leser ein genaues Bild davon bekommen kann, wie jede dieser Eigenschaften das Verhalten des Motors beeinflußt. Vollständige Klarheit über diese Verhältnisse ist nötig, damit der Ingenieur in der Lage ist, mit positiver Sicherheit anzugeben, wie ein Motor für einen bestimmten Fall konstruiert werden muß, resp. welche Ursachen das fehlerhafte Verhalten eines Motors hervorrufen.

Erst nachdem die Diagramme unter der Voraussetzung sinoidaler Felder abgeleitet und eingehend besprochen sind, wird dazu übergegangen, die wirkliche Form der Felder und die dadurch bedingten Koeffizienten einzuführen. Früher auf dies Thema einzugehen, dürfte deshalb unzweckmäßig sein, weil der Anfänger seine Aufmerksamkeit dann zu sehr zersplittern muß, während die sukzessive Einführung neuer Rücksichtnahmen keine Schwierigkeiten bieten wird.

Besonders gründlich ist die Streuung behandelt, denn naturgemäß liegt dies Gebiet allen denen ferner, die sich noch nicht eingehend mit asynchronen Motoren beschäftigt haben; bei allen anderen Maschinen spielt diese Erscheinung nur eine relativ untergeordnete Rolle.

In dem Kapitel über Fabrikation und Konstruktion konnten die einschlägigen Fragen nicht erschöpfend behandelt werden. Es war nicht beabsichtigt, eine Technologie der elektrischen Maschinen zu schreiben, und daher glaubte ich, mich mit einigen praktischen Hinweisen begnügen zu können. Ebenso konnte in Bezug auf die Konstruktion nur das Berücksichtigung finden, was den Drehstrommotor von den anderen elektrischen Maschinen unterscheidet. Konstruktionszeichnungen anzuführen, ist durch das Format eines Handbuches ausgeschlossen; übrigens gibt es verschiedene Spezialwerke, die lediglich Konstruktionszeichnungen enthalten.

Das Kapitel über die experimentelle Untersuchung der Motoren ist soviel als möglich von den vorhergehenden Kapiteln unabhängig gemacht und dem im Prüffeld herrschenden Ton angepaßt; denn erfahrungsgemäß haben viele gute und brauchbare Meßtechniker eine ausgesprochene Antipathie gegen die Lektüre trockener theoretischer Abhandlungen.

Ebenso unabhängig vom übrigen Text ist der Abschnitt über die Berechnung der Anlaßwiderstände. Es ist dies mit Rücksicht darauf geschehen, weil die Widerstände gewöhnlich nicht von den Maschinenrechnern, sondern von den Apparaten-konstrukteuren berechnet werden, und diese brauchen, unbeschadet ihrer Qualität auf ihrem Gebiet, von Maschinentheorie nichts zu wissen; jedenfalls kann ihnen nicht zu-gemutet werden, daß sie, um einen Rotoranlasser berechnen zu können, ein ganzes Buch durchstudieren.

Bei der Besprechung des asynchronen Generators ist besonders das Verhalten des Motors als Bremse hervorgehoben.

Das letzte Kapitel ist sozusagen als Anhang dem Buche beigefügt und es behandelt den innigen Zusammenhang, in welchem der Einphasenmotor zu dem Drehstrommotor steht. Um jeden Irrtum auszuschließen, soll besonders erwähnt werden, daß die für den Einphasenmotor abgeleiteten Diagramme nicht etwa zum Berechnen von Maschinen in der Praxis verwendet werden sollen, sondern es wird nur gezeigt, daß trotz der erwähnten engen Beziehungen zum Drehstrommotor leider ein exaktes Kreisdiagramm nicht existiert.

Auf die neuen Erfindungen von Heyland u. a., den kompensierten und compoundierten asynchronen Motor resp. Generator, glaubte ich hier nicht eingehen zu dürfen, ohne den einheitlichen Charakter des Buches zu stören. Die genannten Erfindungen sind so neuen Datums, daß sie noch nicht als abgeschlossen zu betrachten sind, und daher gehören sie kaum in ein Lehrbuch, das aus der Praxis für die Praxis geschrieben ist. Diesbezüglich muß daher auf die Originalartikel der Erfinder verwiesen werden.

Soviel als möglich ist das Buch mit Beispielen versehen, die erfahrungsgemäß immer instruktiv wirken. Um das Verständnis der Ableitungen zu erleichtern, ist ein und derselbe Motor unter den verschiedensten Gesichtspunkten untersucht, und es kann auf diese Weise leicht der Einfluß der einzelnen charakteristischen Größen des Motors an einem konkreten Beispiel verfolgt werden. Ich glaubte darauf verzichten zu sollen, das Buch mit der Anführung der Berechnung eines möglichst großen Motors zu schmücken, denn große Maschinen sind im allgemeinen stets Spezialausführungen, und die für einen bestimmten Fall maßgebenden Gesichtspunkte beeinflussen die Dimensionierung und Konstruktion derart, daß der Anfänger dadurch höchstens auf falsche Bahnen gelenkt wird; außerdem werden so große Maschinen gewöhnlich nicht von Anfängern gebaut, sondern von Leuten, welche schon so viel Erfahrung haben, daß sie auf Grund allgemein gültiger Gesetze bei derartigen Spezialfällen richtig zu denken verstehen. Wie verschieden aber die Anzugs- und Betriebs- resp. Überlastungsbedingungen sein können, ist ersichtlich, wenn man sich die Begriffe vor Augen hält: Ventilator, Zentrifuge, Bahn, Krahn, Fördermaschine, Wasserhaltung.

Schließlich bitte ich meine verehrlichen Leser um die besondere Liebenswürdigkeit, sie möchten mich, falls sie eine Unklarheit, eine Zweideutigkeit oder einen Irrtum finden sollten, darauf aufmerksam machen, damit bei einer eventuellen Neuauflage entsprechende Verbesserungen angebracht werden können.

Kleinzschachwitz b. Dresden, im Juni 1903.

Julius Heubach.
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Bezeichnungen.

Ist einem Symbol ein Index beigefügt, so bedeutet der Index:


	
1    == Stator, Primärsystem.


	
2    = Rotor, Sekundärsystem.



0  == Leerlauf.

'   == Maximalwert.

	
1  = Luft.



i  = Joch.

m = Magnetisierung.

e = Eisen.

w = Ohmscher Widerstand.

r = Reibung.

X = erregende Kraft.




J = Strom

E = EMK.

s = Streuung.

$ = Zahn.

v = Nute.

k = Kurzschlußanker, Spulenkopf.

	
II    = Zweiphasensystem.


	
III    = Dreiphasensystem.



a = a-phasiges System.



Grofse lateinische Buchstaben.

A = Anzahl der Nuten pro Spulenseite = Anzahl der Nuten pro Pol und Phase.

B = magnetische Induktion.

B‘ — maximale magn. Induktion des Luftfeldes.

B‘ =               -        -       -  Statorfeldes.

	
	
B' =              -        -       -  Rotorfeldes. B' =              -        -       -  Streufeldes. B.    =             -       -      im Eisen. B‘ —            -       -      in den Zähnen. B| =            -       -      im Joch.





C1 = Diagrammkonstante der Induktion. C2 —          -          des Statorstromes. C3 —          -           - Rotorstromes.

	
	
C,    =          -            -  elektrischen Effektes (Watt). C5 =         -          der Zugkraft. C6 =         -           - mechanischen Leistung (PS). C7 =         -          - Spannungen.





D   == Ankerdurchmesser.

E   = effektive EMK.

E   =        Phasen-EMK des Stators. E2   =               -        - Rotors. E, = resultierende Phasenspannung (Seite 49).

E1—2 = die vom Statorfeld im Rotor induzierte EMK.

E,_1= -   - Rotorfeld - Stator E' = V2 . E = Amplitude der EMK.

J    = effektiver Strom. J1    =     -     Phasenstrom des Stators. J, =                -       - Rotors. Jm  = Magnetisierungsstrom. J   = Leerlaufstrom.

J  = Strom bei Normalbelastung.

JR  = Ringstrom im Kurzschlußanker.

Jr  = Phasenstrom eines Zweiphasensystems. JI =      -        -   Dreiphasensystems. J,   =                -   a-phasigen Systems.. K   — Konstante.

L    = Selbstinduktionskoeffizient.

N — Anzahl der in Serie geschalteten Drähte pro Phase. Ni    =    -      -  -                -           _      .     _    des Stators.

N2   =    -      -  -               -           .      -    _     _ Rotors.

Nr = Drahtzahl pro Phase eines Zweiphasensystems. Ni =     -     -             Dreiphasensystems.

N, =           -              a-phasigen Systems.

Nk — totale Nutenzahl eines Kurzschlußankers.

N, = a • A • p = totale Nutenzahl.

N = Amperedrähte pro 1 cm Ankerumfang.

P   = Zugkraft am Rotorumfang in kg.

	
P,   = Zugkraft zur Überwindung des Reibungswiderstandes. PS  = Pferdestärke.


	
Q,   = Querschnitt des Luftfeldes.



Q   = Querschnitt des Streufeldes.

Q —     - eines Ringes des Kurzschlußankers.

	
R   = Radius des Ossannakreises. R|   = magnetischer Widerstand des Luftfeldes. R,    • =       -             -        - Streufeldes. R, =                   -       - Luftfeldes pro 1 Zahn. R,   =                   -      einer Nute. R   =                  -      des Eisens, e R,,R,= Widerstandsstufen des Anlassers.



S = Stabzahl (= Anzahl der Spulenseiten) pro Nute.

T = D—7 = Polteilung. P

U = D • 7 = Ankerumfang. UE = Übersetzungsverhältnis der EMKK. Uj =         -            - Ströme. Ux =                       - erregenden Kräfte. V = Verlust. Vj   = Vw, = Ohmscher Verlust im Stator.

	
V,   = V =     -       -    - Rotor. - W2 V.   = Eisenverlust des Stators.


	
V.   =              -  Rotors.


	
V,   = Reibungsverlust.



W   = Totaler elektrischer Effekt (aller Phasen). W1  =              -       -    des Stators. W2  =   -          -       -     - Rotors.

X   = Amperewindungen.

	
X]   =       -           des Stators. X2   —       *            - Rotors.


	
X,   =        -           für die Luft.


	
X,   =                   - das Eisen.



Xm  =                  - die Magnetisierung.

	
X,   —                   - die Zähne.


	
X.   —                   - das Joch.


	
X .m =       -           pro 1 cm Kraftlinienlänge.


	
XI  =       -          eines Zweiphasensystems.







XI =                   -  Dreipbasensystems.

X   =       -            -  a-phasigen Systems.

Z    = Kraftlinienzahl pro Pol.

Z' = maximale Kraftlinienzahl pro Pol. Zi =                  -           -   - des Stators. Z2 =                  -         ■ -           Rotors. Z,   = nützliche Kraftlinienzahl. Z   = gestreute Zi  = Kraftlinienzahl eines Zweiphasensystems. Zr =      -         -  Dreiphasensystems. Z,   =       -          -   a-phasigen Systems. Kleine lateinische Buchstaben.

a = Phasenzahl. at =     - des Stators. a2 —             - Rotors. b = achsiale Länge des Motors. c = Feldfaktor (Seite 186). Cj    =      -      des Stators.                                      • C2 —             - Rotors. Crr  =     -      eines Zweiphasensystems. c =    -      -  Dreiphasensystems. c    =     -       -   a-phasigen Systems.

	
d,    = Drahtdurchmesser der Statorwicklung.


	
d,    =        -         - Rotorwicklung.





e = EMK in einem Stabe der Käfigwicklung.

	
	
e,    = Spannungsverlust pro Phase der Statorwicklung.



	
e,    =        -        durch den Magnetisierungsstrom. h    = Höhe der Spulenköpfe (Seite 232, 300).



h   = Eisenhöhe des Joches, e i    — Stabstrom in einem Käfiganker. k    — Nutenfaktor (Seite 182). k' —       - (Seite 182). k/  =      -      eines Zweiphasensystems.

K/ =              - Dreiphasensystems.

	
k,   =      -        - a-phasigen Systems.



	
11    = Länge eines Drahtes der Statorwicklung.


	
12    =         -      -     - Rotorwicklung.



	
1    = Kraftlinienlänge im Eisen. 1.    =        -          - Joch. m   = prozentuale Abstufung des Anlassers (Seite 383). n    = Tourenzahl. n‘   =           im Synchronismus. n =     -     beim Leerlauf. n2   =     -      des Rotors relativ zum Drehfeld (Seite 188). p    = Polzahl des Motors. q    = Querschnitt einer Nute. Qi   =     -      der Statorwicklung. q2 =             - Rotorwicklung. q    =     -      eines Stabes des Käfigankers (Seite 283). r = Radius des ideellen Spulenkopfes (Seite 234, 300). rr... = Dimensionen der Nuten (Seite 243, 299). s = Schlüpfung in 0/; bei 5 % Schlüpfung ist s = 5, nicht etwa 0,05. t,    = Nutenteilung des Stators. t2    =               - Rotors. u = Konstante der Ankerbeanspruchung (Seite 290). v    = Umfangsgeschwindigkeit des Rotors. w   — Ohmscher Widerstand pro Phase. Wi =                 -        -     - des Stators. W2 =                -       -            Rotors.


	

	
WE = Scheinbarer Widerstand des Käfigankers. w. = Zusätzlicher Rotorwiderstand zur Berücksichtigung der Eisenverluste (Seite 145). x   = Unbekannte, Variable. y  = -y, y1, y2 = Wicklungsschritt.







Z, = Breite der Zahnköpfe des Stators.

Z2 —                 -       - Rotors. Grosse griechische Buchstaben.

A = magnetische Leitfähigkeit.

	
	
A.  =                  -      einer Statornute. ‘1



	
21.  =                   -        - Rotornute.
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Ag, =                  -      der Luft pro 1 Statorzahn.

	
	
1. . =      -           -                 - 1 Rotorzahn. -2





II = Polwechselzahl = 2 X Periodenzahl.

II =       -       des Statorstromes.

H2 =       -        - Rotorstromes.

E = Summationszeichen.

Kleine griechische Buchstaben.

«   = räumlicher oder zeitlicher Winkel; Winkel zur graphischen Berücksichtigung des Statorwiderstandes.

B = Stromdichte pro 1 qmm; Winkel zur graphischen Berücksichtigung des Rotorwiderstandes.

	
0 ‘   = Länge des Luftzwischenraumes in cm.


	
&   = Koeffizient des exakten Diagrammes (Seite 50).



n = Wirkungsgrad des Motors.

„, =       - der Nute, d.h. Kupferquerschnitt (Seite 300, 319).

	
7                                     Nutenquerschnitt



z = Teil des Feldfaktors c (Seite 186).

b   Ankerbreite

D    Ankerdurchmesser

	
	
21,    22 . . . . = magnetische Leitfähigkeit der einzelnen Nutenteile (Seite 244, 300). u   = Permeabilität.





	
51   = Streukoeffizient der Statornuten (Seite 118). $2 =       -          -  Rotornuten (Seite 01=       -         des Statoreisens (Seite 02 =       -          -  Rotoreisens (Seite t   = Streuungskoeffizient des Motors. 7  =         -           -  Stators.


	
12   = Streuungskoeffizient des Rotors. Tg,  =          -          der Statornutenstreuung. Tg,  =          -           -  Rotornutenstreuung. Tk,  =          -           -  Statorkopfstreuung. TE  =         -          -  Rotorkopfstreuung. T,  =          -          bei 4, = a, (Seite 225, 302). q   = Phasenverschiebungswinkel.



X   = variabler Winkel.

v   == Phasenfaktor (Seite 186).

	
	
r =      -       eines Zweiphasensystems.





PI =      -        -  Dreiphasensystems.

	
1,    =      -        -  a-phasigen Systems.



Das Zeichen 9 ist sowohl in der Bedeutung „proportional“, als „ungefähr gleich“ gebraucht.

Einleitung.

Wenn sich der Feldmagnet M im Induktorkranz K (Fig. 1) mit konstanter Winkelgeschwindigkeit dreht, so wird in der Wicklung I ein einphasiger Wechselstrom hervorgerufen, dessen Periodenzahl der sekundlichen Umdrehungszahl des Feldmagneten gleich ist. Wird nun der Induktor mit einer weiteren Wicklung II versehen, welche zu der ersteren senkrecht steht, so wird in dieser zweiten Wicklung ebenfalls ein einphasiger Wechselstrom erzeugt, welcher die gleiche Periodenzahl hat wie der erstere. Charakteristisch für die beiden Ströme ist jedoch, daß der zweite Strom gegenüber dem ersten um eine viertel Periode zeitlich verschoben ist entsprechend dem räumlichen Ab stand beider induzierter Stromkreise von 90°.
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Fassen wir einige besonders ausgezeichnete Momente ins Auge, so finden wir, daß in der Stellung Fig. 1

	
	
A: Strom I = max; Strom II = 0,





B: Strom I = Strom II,

	
C:    Strom 1 = 0; Strom II = max.



Heubach, Drehstrommotor.

Die Richtung der induzierten Ströme ist aus der Figur ersichtlich, indem Kreuze einen in die Papierebene eindringenden, Punkte einen aus der Papierebene heraustretenden Strom bezeichnen.

Führt man die Leitungen, welche je einen der genannten Stromkreise bilden, zu einem Eisenring, der analog dem obenerwähnten Induktorkranz ausgeführt und bewickelt ist, so müssen durch die im Generator erzeugten Ströme in diesem Ring Kraftlinien hervorgerufen werden, die sich zu magnetischen Feldern zusammensetzen. In Fig. 2 A, B, C sind für die drei selben Momentanwerte der Ströme die von ihnen erzeugten Felder dargestellt, wobei die letzteren lediglich durch einen Pfeil markiert sind.
[image: ]

Wie aus der Figur zu ersehen ist, rotiert das von den beiden Strömen hervorgerufene Feld synchron mit dem Feldmagneten des Generators, und infolge dieser Eigenschaft, daß also eine derartige Vorrichtung im Stande ist, ein Drehfeld zu erzeugen, hat man eine derartige Anordnung mit der Bezeichnung „Drehstromsystem“ belegt.

Je nach der Verwendung von zwei oder drei derartigen in der Phase um 90° beziehungsweise 120° verschobenen Strömen unterscheidet man zweiphasigen und dreiphasigen Drehstrom, und beide haben die Eigenschaft, in einem Wicklungssystem, das der Wicklungsanordnung des Generatorinduktors ähnlich ausgeführt ist, ein derartiges Drehfeld hervorzurufen. Die Phasenzahl des Drehstromes ließe sich natürlich beliebig erhöhen, aber in der Praxis ist nur der Zwei- und Dreiphasenstrom von Bedeutung, und daher erstreckt sich der im vorliegenden Buch behandelte Stoff nur auf diese beiden Arten von Mehrphasenströmen.

Die Feldstärke der in Fig. 2 dargestellten Anordnung läßt sich — gleiche Ströme in den Wicklungen I und II vorausgesetzt — bedeutend erhöhen, wenn man auch das Innere des Eisenkranzes mit Eisen ausfüllt; und es darf, da, wie später gezeigt wird, dieser innere Eisenkörper in Rotation versetzt werden kann, dieser Eisenzylinder nur so groß sein, daß er vom äußeren Kranz um einen kleinen Luftzwischenraum absteht.

In Bezug auf das durch die zugeführten Mehrphasenströme hervorgerufene magnetische Feld bringt die Einfügung des zweiten Eisenkörpers nur insofern eine Veränderung mit sich, als die totale Kraftlinienzahl dieses Feldes infolge der Verringerung des magnetischen Widerstandes ganz bedeutend erhöht wird; die Rotation des ursprünglichen Drehfeldes bleibt unverändert.
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Fig. 3.


Nehmen wir nun den inneren Eisenkern als feststehend an, so wissen wir, daß derselbe den Wirkungen eines rotierenden magnetischen Feldes ausgesetzt ist, und da es vorläufig gleichgültig ist, ob dasselbe von Mehrphasenströmen oder von einem rotierenden Feldmagneten hervorgerufen wird, können wir uns den feststehenden von Mehrphasenströmen erregten Eisenkranz durch einen rotierenden gewöhnlichen Feldmagnet ersetzt denken (Fig. 3).

Vergleichen wir die Figur 3 mit der Figur 1, so sehen wir, daß wir jetzt wieder eine Generatoranordnung vor uns haben, die sich von der früheren nur dadurch unterscheidet, daß das ursprüngliche Innenpolsystem (Fig. 1) nun zu einem Außenpolsystem geworden ist. Dieser Unterschied ist jedoch ein absolut unwesentlicher, er ist nur dadurch hervorgerufen, daß wir die Mehrphasenwicklung auf dem äußeren Eisenkranz untergebracht haben; wir hätten dieselbe natürlich ebensogut auf dem inneren Eisenkörper anordnen können und dadurch hätten beide Eisenzylinder ihre Rolle vertauscht. Von Wichtigkeit ist jetzt nur der Hinweis darauf, daß die Anordnung der Fig. 3 tatsächlich sofort zu einem Generator ausgebildet werden kann, wenn der innere Zylinder wieder mit einer Wicklung versehen wird.

Wenn wir dem vorläufig als feststehend angenommenen inneren Zylinder ebenfalls eine Zweiphasenwicklung geben, so ist es nun leicht festzustellen, in welcher Weise in derselben Ströme entstehen müssen. Es wird nämlich genau so, wie oben (Fig. 1) beim Generator gezeigt wurde, Fig. 3

	
A:    Strom I = max; Strom II = 0,


	
B:    Strom I = Strom II,


	
C:    Strom 1 = 0; Strom II = max.



Es ist nun aus dem Lenzschen Gesetz bekannt, daß ein induzierter Strom stets auf das ihn erzeugende Feld eine solche Wirkung ausübt, daß er die Bewegung des erregenden Feldes zu hindern bestrebt ist. Diese widerstrebende Kraft ist — wie aus der Mechanik bekannt — der Kraft gleich, welche aufgewendet werden muß, um das erregende magnetische Feld zu drehen. Auf den inneren Eisenkörper wirkt daher ein Drehmoment, welches ihn in der Drehrichtung des rotierenden Feldes zu bewegen sucht.

Bis hierher hatten wir angenommen, daß der innere Anker festgehalten und an der Drehung verhindert wird, und wir haben gesehen, daß durch das Schneiden der Kraftlinien des rotierenden Feldes Ströme induziert werden, welche in Wechselwirkung mit dem induzierenden Feld ein Drehmoment auf den inneren Eisenzylinder ausüben. Wenn wir diesen Eisenkörper nicht mehr festhalten, sondern freigeben, so wird derselbe sich in Bewegung setzen und in gleicher Richtung wie das erregende Feld rotieren; er wird unter dem Einfluß des auf ihn ausgeübten Drehmomentes vom Zustand der Ruhe aus in Bewegung versetzt und so lange beschleunigt, als in seinen Windungen Ströme induziert und das Drehmoment aufrecht erhalten wird. Da wir augenblicklich, wo es uns nur darauf ankommt, das Prinzip des Drehstrommotors zu erläutern, von Verlusten aller Art, also auch von der Lagerreibung und dem Luftwiderstand des rotierenden Körpers absehen wollen, so ist es leicht, anzugeben, wie lange der rotierende Teil beschleunigt wird, und welchen stationären Zustand er endlich erreichen muß.

Solange nämlich die Tourenzahl des inneren Ankers hinter der Tourenzahl des Feldes zurückbleibt, wird notwendigerweise ein Schneiden der Feldkraftlinien mit der Ankerwicklung eintreten und die hierdurch verursachten Ströme wirken beschleunigend auf die beweglichen Massen. Die beschleunigende Kraft wird demgemäß erst dann aufhören zu existieren, wenn die Ströme im bewegten Teil gleich Null sind, und es fragt sich nun, ob und wann dieser Fall eintreten kann.

Dieser Fall kann nun in der Tat eintreten, denn wenn der innere Anker mit gleicher Geschwindigkeit rotiert wie das erregende Feld, so tritt kein Schneiden der Kraftlinien mit den Ankerdrähten ein: die Ankerströte und die beschleunigende Kraft sind Null und das ganze System erreicht einen Grenzzustand, es befindet sich mit dem Drehfeld in Synchronismus.

Im Synchronismus kann der Anker aber nur dann rotieren, wenn derselbe keine widerstehende Kraft zu überwinden, also keine Zugkraft auszuüben hat. Sobald ein Widerstand zu überwinden ist und der Eisenzylinder Zugkraft entwickeln muß, müssen in seinen Windungen Ströme zirkulieren, die nur dadurch hervorgerufen werden können, daß seine Windungen von Kraftlinien geschnitten werden, und dies kann nur dann eintreten, wenn der Anker langsamer als das erregende Feld rotiert. Je größer der Unterschied zwischen der Tourenzahl des Feldes und der Tourenzahl des Ankers ist, um so größer ist die Anzahl der pro Zeiteinheit von den Windungen des letzteren geschnittenen Kraftlinien, um so größer auch die dadurch hervorgerufenen Ströme und die erzeugte Zugkraft.

Das Zurückbleiben des Ankers relativ zum rotierenden Feld wird Schlüpfung genannt, und dieselbe wird gewöhnlich in Prozenten der Feldgeschwindigkeit angegeben.

Infolge der Eigenschaft, daß die Tourenzahl des Ankers keine konstante ist, sondern je nach der Größe der ausgeübten Zugkraft kleiner wird, als dem synchronen Lauf entspricht, hat man Motoren, welche auf diesem Prinzip beruhen, als asynchrone Motoren bezeichnet, im Gegensatz zu den Synchronmotoren, welche auf der Umkehrbarkeit eines Generators beruhen, die daher auch bei allen Belastungen mit absolut gleicher Geschwindigkeit wie das Drehfeld laufen müssen.

Wir hatten (Fig. 3) uns ein Drehfeld dadurch entstanden gedacht, daß ein mit Gleichstrom erregtes Feldmagnetsystem in Rotation versetzt ist, aber diese Hilfsvorstellung wurde nur deshalb angewandt, um es zu erleichtern, mittels der in der Gleich-Stromtechnik vorkommenden und allgemein bekannten Verhältnisse einen zwanglosen Übergang in das Gebiet der Asynchronmotoren zu schaffen. Soweit wir im Prinzip das Verhalten der Asynchronmotoren betrachtet haben, ist es nun ohne weiteres zulässig, daß wir uns der Wirklichkeit wieder dadurch nähern, daß wir das rotierende, durch Gleichstrom erregte Feldsystem wieder durch ein von Mehrphasenströmen erzeugtes Drehfeld ersetzen.

Ein Asynchronmotor besteht demnach:

	
1.    Aus einem Feldmagnetsystem, das mit einer Wicklung versehen ist, welche an eine Stromquelle angeschlossen und von Mehrphasenstrom durchflossen wird und dadurch ein Drehfeld hervorruft.


	
2.    Aus einem Anker, welcher ebenfalls mit einer mehrphasigen Wicklung versehen ist, die jedoch an keine Stromquelle angeschlossen ist.



Das Feld stellt den primären, der Anker den sekundären Teil des Motors dar, und die Berechtigung dieser Bezeichnungsweise wird besonders dann klar, wenn man bei erregtem Feld den stillstehenden Anker untersucht. Im Anker wird in diesem Fall Drehstrom von der Periodizität des Erregerstromes erzeugt, der Motor wirkt dann einfach wie ein Transformator, dessen Primär-spulen auf dem Feld, dessen Sekundärspulen auf dem Anker angeordnet sind.

Es ist im Prinzip gleichgültig, ob man den äußeren, feststehenden, oder den inneren, rotierenden Eisenzylinder zum pri-mären Teil des Motors macht. Als die ersten Drehstrommotoren (1890 und 1891) gebaut wurden, hielt man es für vorteilhaft, den rotierenden Teil an die äußere Stromquelle anzuschließen, trotzdem dadurch das Anbringen von Schleifringen zur Stromzuführung unbedingt erforderlich wurde. Man glaubte den Hysteresisverlust des Motors dadurch reduzieren zu können, daß man nur die kleinere Eisenmasse des inneren Zylinders der raschen Ummagnetisierung aussetzte, und man maß diesem Vorteil so viel Bedeutung bei, daß man die mit dieser Anordnung verknüpften Nachteile dadurch aufgewogen betrachtete. Bei allen modernen Motoren ist aber das primäre System der äußere, feststehende Eisenring, und die hauptsächlichsten Gründe, die dieser Anordnung zum Sieg verhalfen, sind folgende:

Da der sekundäre Teil des Motors an keine Stromquelle angeschlossen wird, sind Schleifringe dann nicht erforderlich, wenn der rotierende Anker zum Sekundärsystem gewählt und seine Wicklung in sich kurz geschlossen wird (Kurzschlußanker). Es stellt ein auf diese Weise gebauter Motor die einfachste und betriebsicherste Maschine vor, welche nach dem derzeitigen Stand der Elektrotechnik hergestellt werden kann. Der weitere Vorteil, daß die Primärwicklung sich auf dem stillstehenden Teil des Motors befindet, kommt hauptsächlich dann zur Geltung, wenn die Klemmenspannung des Motors eine sehr hohe ist. Endlich nimmt selbst bei niederer Klemmenspannung die primäre Wicklung mehr Raum ein als die sekundäre, da die primäre Wicklung mehr Amperewindungen zu führen hat, und deshalb ist es günstig, die Primärwicklung auf dem äußeren, größeren Eisenzylinder zu placieren.

Es dürfte demnach gerechtfertigt sein, daß im nachstehenden die Bezeichnungen Stator und Rotor stets in dem Sinne gebraucht werden, daß unter Stator der primäre, unter Rotor der sekundäre Teil des Motors verstanden ist.

Wir können nunmehr auf Grund unserer einfachen bis jetzt gemachten Betrachtungen schon folgende Sätze aufstellen:

	
1.    Die von einem Mehrphasengenerator erzeugten Ströme rufen in einem dem Generatorinduktor ähnlich gewickelten Stator ein Drehfeld hervor.


	
2.    Das genannte Drehfeld wirkt auf die Wicklung des Rotors, wie das Erregerfeld eines Drehstromgenerators auf seine Induktorwicklung, und vermag in der Rotorwicklung Ströme zu erzeugen.


	
3.    Die Rotorströme rufen in Wechselwirkung mit dem vom Stator erzeugten Eeld Zugkräfte hervor, welche bestrebt sind, den Rotor im gleichen Sinne wie das Statorfeld zu drehen.


	
4.    Beim Stillstand des Rotors ist die sub 3 genannte Zugkraft vorhanden und deshalb geht der Motor unter Last an.


	
5.    Beim Synchronismus ist die sub 3 genannte Zugkraft Null, da auch die Kotorströme Null sind, weil zwischen den vom Stator erzeugten Kraftlinien und den Rotorwindungen ein Schneiden nicht mehr eintritt. Der Rotor kann daher nur dann synchron laufen, wenn er absolut keine Zugkraft zu entwickeln braucht, und dieser Zustand kann selbst bei leerlaufendem Motor nur dann eintreten, wenn im Rotor keinerlei Verluste auftreten. In praxi läuft daher niemals ein Motor synchron.


	
6.    Sobald der Rotor Zugkraft entwickeln muß, kann derselbe nicht synchron mit dem Erregerfeld laufen, sondern er muß hinter demselben Zurückbleiben: er arbeitet mit Schlüpfung. Durch dieses Zurückbleiben wird das Entstehen der Rotorströme und dadurch das Auftreten einer Zugkraft ermöglicht. Also: Zugkraft kann nur bei Schlüpfung entstehen.


	
7.    Der Rotor kann mechanische Arbeit leisten. Mechanische Leistung ist gleich dem Produkt aus Kraft mal Geschwindigkeit; die Kraft (Zugkraft) wird durch die Wechsel-Wirkung zwischen Erregerfeld und Rotorstrom hervorgerufen, die Geschwindigkeit durch das Drehen des Erregerfeldes, welches eine nur um die Schlüpfung verringerte Rotation des Rotors verursacht.



Erstes Kapitel.

Der streuungsfreie Motor mit Sinoidalfeldern.

	
1.    Feld- und Stromdiagramm des verlustlos arbeitenden Motors. —


	
2.    Berechnung der induzierten EMK. — 3. Berechnung des Magnetisierungsstromes. — 4. Beispiele über Abschnitt 2 und 3. — 5. Berechnung der Zugkraft. — 6. Berechnung der mechanischen Leistung. — 7. Darstellung der Ströme, Felder, Zugkräfte und Leistungen im Diagramm. — 8. Beispiel über Abschnitt 7. — 9. Der Einfluß des Rotorwiderstandes. — 10. Beispiel über Abschnitt 9. — 11. Der Einfluß des Statorwiderstandes.


	
1.    Feld- und Stromdiagramm des verlustlos arbeitenden Motors.





In der Einleitung haben wir gezeigt, daß durch die dem Stator zugeführten Mehrphasenströme ein Drehfeld erzeugt wird. Wir können dies Feld graphisch durch eine Gerade a d Fig. 4 darstellen, von der wir annehmen, daß sie sich im Drehsinne des rotierenden Feldes um den Punkt a dreht. Greifen wir einen einzelnen Moment heraus, beispielsweise den in Figur 4 dargestellten, in welchem das Feld ad eben den Leiter II in der Richtung von links nach rechts schneidet, so fällt das magnetische Feld ad mit der Achse der Wicklung 1 zusammen, und wir können daraus schließen, daß in diesem Moment lediglich die Spule 1 stromführend ist. Die Größe dieses Stromes können wir berechnen, denn um das Feld ad hervorzurufen, müssen wir eine ganz bestimmte Anzahl von Amperewindungen aufwenden. Die Ampere-Windungen können wir ebenfalls durch eine Gerade graphisch darstellen, und diese Gerade muß in die Richtung des Feldes fallen, das von den erregenden Amperewindungen erzeugt wird. Wir können also in Fig. 4 durch ab die in dem betrachteten Moment nötigen A-Windungen darstellen, und da die A-Windungszahl dem Produkt aus Stromstärke X Windungszahl gleich, ist, die Windungszahl aber eine für jeden Motor konstante Größe hat, können wir a b auch als die Darstellung des Statorstromes auffassen.

Dadurch daß das Feld ad in dem in Fig. 4 dargestellten Augenblick die Windungen der Spule II schneidet, muß in diesen Windungen eine EMK induziert werden, deren Richtung sich sehr leicht bestimmen läßt. In der Figur ist die Richtung der induzierten EMK durch die Zeichen © und © angedeutet, wobei das erstere einen senkrecht in die Zeichenebene eindringenden, das zweite einen senkrecht aus der Zeichnungsebene austretenden
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Pfeil markieren soll. Wir können diese EMK noch in anderer Weise zur Darstellung bringen, nämlich durch eine Gerade a e, die wir von a aus nach links ziehen.

Wir haben nun folgende Vorgänge klargelegt: Die Statorwicklung (Spule I) wird von einem Strom a b durchflossen, welcher den Motor in der Weise magnetisiert, daß hieraus ein Feld a d resultiert. Dies letztere ruft seinerseits in den Statorwindungen (Spule II) eine EMK a e hervor, welche wir als EMK der Selbstinduktion bezeichnen können, da sie durch die Induktion der Statorwicklung auf sich selbst erzeugt wird. Nach der in der Gleichstromtechnik üblichen Bezeichnungsweise müssen wir a e als elektromotorische Gegenkraft auffassen, denn sie entspricht genau

der EMK, welche in den Ankerwindungen eines leerlaufenden Gleichstrommotors durch das Magnetfeld erzeugt wird, a e ist daher im nachfolgenden stets als EMGK bezeichnet.

Eine wichtige Größe haben wir im Diagramm Fig. 4 noch nicht zur Darstellung gebracht, nämlich die Klemmenspannung des Stators. Da wir bei unseren jetzigen Untersuchungen davon absehen, daß die Statorwicklung Ohmschen Widerstand besitzt, können wir die Klemmenspannung auch als eine EMK betrachten, die auf den Motor wirkt, und wir müssen sie im Diagramm durch eine Strecke a k, welche an Größe a e gleich, der Richtung nach entgegengesetzt ist, darstellen. Die Richtigkeit dieser Konstruktion läßt sich durch folgende Überlegungen beweisen.

Der Strom a b hat lediglich die Magnetisierung des Motors, d. h. die Erzeugung des Statorfeldes ad zu bewirken; ab ist daher Magnetisierungsstrom und zu dessen Hervorrufung ist kein elektrischer Effekt aufzuwenden. Die Klemmenspannung a k muß daher senkrecht zum Magnetisierungsstrom ab stehen, denn nur in diesem Falle wird der Effekt, der durch die Gleichung

W = E . J . cos q

ausgedrückt wird, Null. Der Winkel b a k muß daher ebenso wie der Winkel b a e ein rechter sein. Da wir a e als eine EMGK auffassen können, die der Klemmenspannung das Gleichgewicht hält, muß a k von gleicher Größe aber entgegengesetzter Richtung sein wie ae. Der Magnetisierungsstrom eilt daher der Klemmenspannung um 90° nach, der EMGK dagegen um 90° voraus. Daß der Magnetisierungsstrom der ihn herrvorrufenden Klemmenspannung nach eilen muß, folgt auch daraus, daß die Statorwindungen Stromkreise bilden, die mit Selbstinduktion behaftet sind.

Wir haben somit die Richtigkeit des Diagrammes Fig. 4 für den Moment, in welchem ad die Windung II schneidet, bewiesen. Bevor wir dazu übergehen, zu untersuchen, wie sich das Diagramm dann gestaltet, wenn a d eine andere relative Lage gegenüber den Windungssystemen I und II annimmt, wollen wir uns vergegenwärtigen, daß wir vorläufig alle unsere Untersuchungen unter der Annahme machen, daß elektromotorische Kräfte, Ströme und Felder nach einer Sinusfunktion variieren, a d stellt daher den Maximalwert eines sinoidal angeordneten Feldes dar und eine Windung, die im Diagramm um eineu Winkel / von a d absteht, wird daher nur von einem Feld von der Größe

a d . sin (90 — B)

geschnitten, wenn die Windung um den Winkel ß hinter der rotierenden Geraden a d absteht, dagegen wenn die Windung um den Winkel ß der Geraden a d voraussteht, von dem Feld

a d . sin (90 + B).
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In Fig. 5 sind die beiden Windungssysteme I und II dargestellt, wenn sie beide von a d um ß = 45° abstehen. Es ist daher

a d, = a di = 0,707 . a d.

Stellen wir diesen Zustand durch ein der Fig. 4 entsprechendes Diagramm dar, so erhalten wir in Fig. 6 die Gerade a d in einer solchen Lage, daß der von den beiden Windungen I und II gebildete Winkel halbiert wird. Nach der soeben gemachten Ableitung wird deshalb sowohl die Spule 1 als die Spule II von einem Feld von der Größe 0,707 ad geschnitten und diese durch a di resp. a dIr dargestellten Felder setzen sich nach dem Kräfteparallelogramm zu dem rotierenden Statorfeld a d zusammen.

Um das Feld ad zu erzeugen, muß in der Richtung von ad eine erregende Kraft von der Größe ab wirken und diese Ampere-Windungen müssen in den beiden Windungssystemen I und II ihren Sitz haben. Da wir a d bereits in zwei senkrecht zu den Spulen I und II gelegene Komponenten zerlegt haben, können wir die Größe der von jeder Spule zu leistenden erregenden Kraft angeben, denn es muß sich offenbar verhalten

a d : a d, : a dr = a b : a br: a brr

und im Diagramm brauchen wir nur ab in analoger Weise in seine Komponenten a br und a bIr aufzulösen, wie wir es mit a d gemacht haben. Das Einzeichnen der elektromotorischen Gegenkräfte in das Diagramm ist nun sehr einfach, da wir festgestellt
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haben, von welchen Feldern die Windungen geschnitten werden. Die Windung II wird von a di geschnitten und in ihr wird daher die EMGK a eI erzeugt, dagegen wird Windung I von a du geschnitten und die EMGK a er induziert. Die auf die Spulen wirkenden Klemmenspannungen müssen daher durch a kr und a kI dargestellt werden.

Die Klemmenspannungen a kr und a kr sind tatsächlich im betrachteten Moment in den Windungssystemen I und II wirksam, aber es läßt sich zeigen, daß die gleiche Wirkung von einer fiktiven Klemmenspannung ak ausgeübt würde, die nach Größe und Richtung durch die Resultante von a kr und a kn gebildet ist. Die Richtigkeit dieser Überlegung ergibt sich sofort, wenn wir die an Hand der Fig. 5 gemachten Untersuchungen wiederholen und an Stelle des Feldes ad die resultierende Klemmenspannung ak einsetzen. Auf dieselbe Weise können wir die beiden elektromotorischen Gegenkräfte a ex und a er zu der resultierenden fiktiven EMGK a e zusammensetzen.

Ein Vergleich der Fig. 4 mit Fig. 6 zeigt, daß die beiden Diagramme identisch sind, indem da.s letztere die einzelnen im Diagramm dargestellten Größen genau ebenso enthält und nur gegen das frühere um 45° verdreht ist, entsprechend der um 45° fortgeschrittenen Drehung des konstanten Drehfeldes a d. Für wieviel einzelne Stadien wir auch diese Untersuchungen vornehmen werden, stets werden wir dies Resultat erhalten; und wir können daher sagen, daß Fig. 4 das Diagramm eines leerlaufenden Mehrphasenmotors vorstellt, und daß wir mit dessen Hilfe für jeden beliebigen Moment die Größe der von jedem Windungssystem zu erzeugenden Felder, die erregenden Ampere Windungen, die Größe der Klemmenspannungen und EMGK K angeben können, indem wir das Diagramm der momentanen Lage des Drehfeldes entsprechend auf den Motor projiziert denken.

Statt das Diagramm in Übereinstimmung mit dem Drehfeld zu drehen, können wir uns auch das Diagramm und das Drehfeld stillstehend, dagegen den Stator rotierend denken, und um nun die Größe der in jedem Windungssystem herrschenden Felder, A-Win-düngen etc. zu bestimmen, brauchen wir nur den Motor auf dem feststehenden Diagramm so zu drehen, daß er in die relative Lage zum Feld ad kommt, welche wir zu untersuchen wünschen. Wir können sogar noch einen Schritt weiter gehen und uns ganz und gar von der Vorstellung emanzipieren, daß das Feld ad und der Stator in jedem Moment ihre gegenseitige Lage ändern; denn da wir kein Interesse daran haben, die Momentanwerte der Ströme und Spannungen zu kennen, sondern uns damit begnügen, deren Effektivwerte zu berechnen, brauchen wir nur nach einer Methode zu suchen, die es uns ermöglicht, aus dem Diagramm den Effektiv-wert der Spannung und des Stromes pro Windungssystem, d. h. pro Phase zu bestimmen. Diese Methode wird in den späteren Kapiteln bei Einführung der numerischen Werte der einzelnen Größen (Felder, Ströme, Spannungen bezw. EMK K) entwickelt werden.

Wir haben bisher stillschweigend angenommen, daß der Rotor des Motors stromlos ist, und dieser Zustand läßt sich praktisch dadurch herbeiführen, daß der Rotor nicht mit einer Wicklung versehen ist, oder daß seine Wicklung derartig unterbrochen ist, daß dieselbe keinen geschlossenen Stromkreis darstellt, sodaß also keine Ströme in derselben entstehen können, und es ist in diesen beiden Fällen gleichgültig, ob wir den Rotor als stillstehend, oder als rotierend annehmen. Wir können jedoch den genannten Zustand auch bei einem mit geschlossener Wicklung versehenen Rotor herbeiführen, wenn wir den Rotor als synchron mit dem Drehfeld rotierend annehmen, eine Voraussetzung, die beim leerlaufenden Motor nahezu erfüllt ist. Absolut synchron dreht sich selbst beim leerlaufenden Motor der Rotor nicht, da infolge der Lager- und Luftreibung ein ganz geringes Drehmoment hervorgerufen werden muß, und dies bedingt, daß der Rotor von Strömen, allerdings sehr kleiner Intensität, durchflossen sein muß. Wenn wir daher das Diagramm Fig. 4 als das Leerlaufdiagramm des Motors bezeichnen, so erlauben wir uns eine kleine Ungenauigkeit, indem wir die geringen Rotorströme vernachlässigen und gleich Null setzen.

Wir wollen nun dazu übergehen, zu untersuchen, wie sich das Diagramm des Motors dann gestaltet, wenn der Rotor von Strömen durchflossen wird. Damit dies eintreten kann, muß der Rotor mit einer in sich geschlossenen Wicklung versehen sein, und diese Windungen müssen von den Kraftlinien des Drehfeldes geschnitten werden. Es wäre zwar möglich, einen Rotor nur mit einem einzigen Windungssystem, also nur mit einer Einphasenwicklung auszustatten, aber dieser Fall hat wegen seiner schlechteren Wirkung keine praktische Bedeutung, und wir woller daher annehmen, daß der Rotor mit einer Mehrphasenwicklung und zwar einer zweiphasigen ausgerüstet ist. Damit die Rotorwicklung von Kraftlinien geschnitten wird, muß eine Relativbewegung zwischen dem Drehfelde und dem Rotor vorhanden sein, und dies ist stets der Fall, wenn der Rotor sich langsamer als das Drehfeld dreht, wenn der Rotor also mit Schlüpfung arbeitet. Die Geschwindigkeit, mit welcher die Rotorwindungen von den Kraftlinien des Drehfeldes geschnitten werden, ist also keine konstante, sondern eine mit der Tourenzahl des Rotors variable, und sie bewegt sich zwischen zwei Extremfällen: Bei Synchronismus ist diese Geschwindigkeit Null und sie erreicht ein Maximum beim Stillstand des Rotors.

Vom stillstehenden Motor wollen wir ausgehen, um zu untersuchen, wie ein Strom im Rotor zu stände kommt, wie dieser Strom im Diagramm dargestellt werden kann und welche Veränderungen in Bezug auf den Stator eintreten, wenn die Rotorwindungen stromführend sind. Wir wählen für unsere Betrachtungen den Motor, für welchen wir in Fig. 4 bereits das Leerlaufdiagramm dargestellt haben, und wir nehmen an, daß die Rotorwicklung identisch mit der Statorwicklung ausgeführt sei, daß sie also auch aus zwei aufeinander senkrechten Spulen 1 und 2 besteht, deren Seiten in je einer Nut untergebracht sind. Schließlich wollen wir noch annehmen, daß der Rotor sich in der in Fig. 7 gezeichneten Stellung befindet, in der die Statorspulen I und II sich in Koinzidenz mit den Rotorspulen 1 und 2 befinden.
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Fig. 7.


Wir haben bei der Entwicklung der Fig. 4 gezeigt, daß im dargestellten Moment, wenn das Drehfeld a d die Windungen der Spule II schneidet, in denselben eine EMK a e induziert wird, welche wir als elektromotorische Gegenkraft des Stators bezeichneten. Wenn wir den Rotor (Fig. 7) als stillstehend betrachten, so wird die Wicklung 2 desselben offenbar von denselben Kraftlinien a d geschnitten und zwar mit der gleichen Geschwindigkeit, mit welcher die Statorwicklung II geschnitten wird. Wenn wir annehmen, daß die Spule 2 ebensoviele induzierte Drähte enthält als die Spule II, so wissen wir, daß die in 2 induzierte EMK von der gleichen Größe sein muß, wie die in II induzierte, und ferner, daß die Richtung dieser EMK in beiden Spulen dieselbe ist, da die Spulen 1 und 2 im gleichen Sinne von den Kraftlinien geschnitten werden. Wir können daher durch a e nicht nur die in der Statorspule II induzierte EMGK der Größe, Richtung und Lage nach darstellen, sondern auch gleichzeitig die in der Rotorspule 2 induzierte EMK.

Wenn die Rotorwindungen geschlossene Stromkreise darstellen, so wird infolge der in Spule 2 induzierten EMK a e in dieser Spule ein Strom hervorgerufen werden, dessen Größe

sein muß, wenn wir mit w2 den Ohmschen Widerstand der Spule 2 bezeichnen. Den Rotorstrom können wir im Diagramm durch eine Grade a c, die in der Richtung a e liegt, darstellen, und welche Länge die Strecke a c haben muß, können wir durch folgende Überlegung feststellen.

Bei Ableitung des Leerlaufdiagrammes (Fig. 4) haben wir gezeigt, daß a b in erster Linie die Amperewindungen darstellt, welche im betrachteten Augenblick im Stator wirksam sind, und der Schluß, daß a b auch den Statorstrom Jm ausdrücken kann, resultierte erst aus der Überlegung, daß die Statoramperewin-düngen dem Statorstrom direkt proportional sind.

Den umgekehrten Weg müssen wir jetzt einschlagen; an Stelle des Stromes J, müssen wir die von ihm gebildeten Amperewindungen berechnen und diese letzteren im Maßstabe der Amperewindungen in das Diagramm eintragen. Wenn mit N1 die Drahtzahl der Spule I bezeichnet wird, so ist die Amperewindungszahl des Stators bei Leerlauf

Die Amperewindungszahl auf dem Rotor ist in dem in Fig. 7 dargestellten Zustand
[image: ]

und da der Amperewindungsmaßstab für Stator und Rotor derselbe sein muß, so erhalten wir die Länge a c, durch die wir die Rotoramperewindungen darstellen wollen, aus der Proportion

Heubach, Drehstrommotor.                                2

a c       J2 ■ N,

a b     J m • N1

und unter der Voraussetzung, daß N,=N, ist,

a c       J2

a b     Jm

Durch die in der Rotorspule 2 wirkenden Ampere Windungen, die, wie eben gezeigt wurde, im Diagramm durch ac repräsentiert sind, muß ein magnetisches Feld in der Richtung ac erzeugt werden, dessen Größe wir sehr leicht feststellen können. Der magnetische Widerstand, auf welchen die Rotoramperewindungen a c wirken, ist offenbar derselbe, in welchen die Magnetisierungs-amperewin düngen ab das Feld ad erzeugen, und es muß daher das von a c hervorgerufene Feld a p der Bedingung genügen

a p   ac ad ab

ap stellt das vom Rotor erzeugte Feld im gleichen Maßstabe dar, in welchem wir das Statorfeld bei Leerlauf a d gezeichnet haben. Die Rotorspule 1 ist im betrachteten Augenblick stromlos, da die Windungen derselben nicht von Kraftlinien geschnitten werden, denn das Feld a d hat an der Stelle, wo die Nuten 1 und I liegen, die Größe Null. Es sieht allerdings so aus, als müßte in den Windungen 1 und I eine EMK durch die Kraftlinien des Rotorfeldes a p induziert werden, und diese EMK würde natürlich auch einen Strom in diesen Spulen hervorrufen, allein diese Anschauung würde auf einem zweifachen Trugschluß basiert sein: 1. Das Feld ap kann in den Windungen l und 1 keine EMK erzeugen, wenn der Rotor stillsteht (und diese Voraussetzung haben wir gemacht), da die Windungsebene der Spulen I und 1 der Kraftlinienrichtung a p parallel ist. 2. Selbst wenn der Rotor und mit ihm das Feld a p in Rotation wäre, könnte doch durch das Rotorfeld keine EMK induziert werden, da ap ein Feld darstellt, welches nur in unserer Vorstellung existiert, in Wirklichkeit aber im Motor nicht vorhanden sein kann; ap ist ein „fiktives Feld“.

Zur Begründung dieser Bemerkung müssen wir uns nochmals vergegenwärtigen, daß wir unsere Untersuchungen unter der Voraussetzung machen, daß der Motor mit konstanter Klemmenspannung arbeitet. Die Konstanz der Klemmenspannung a k bedingt die Konstanz der EMGK a e, und da die EMGK von dem im Motor wirklich vorhandenen Feld a d induziert wird, muß im Stator unter allen Umständen, beim Stillstand bis hinauf zum synchronen Lauf, ' ein Feld von der konstanten Größe a d vorhanden sein. Nur durch ein Statorfeld von der konstanten Größe a d kann die konstante Klemmenspannung balanciert werden.

Wenn wir daher konstatiert haben, daß bei stillstehendem Rotor in letzterem ac Amperewindungen und dadurch ein Feld a p hervorgerufen wird, so können wir nunmehr den Schluß ziehen, daß demnach das wirkliche Motorfeld a d sein muß, und daß daher a d eine Resultante sein muß, von welcher a p eine Komponente darstellt. Die Auffindung der zweiten Komponente ist nicht schwer, denn mit Hilfe des Kräfteparallelogramms erhalten wir, wenn wir d i gleich und parallel a p ziehen, die Komponente a i. ai ist das Feld, welches, mit ap zusammengesetzt, als Resultante das konstante Erregerfeld a d ergibt.

Um das Feld a i hervorzurufen, müssen Amperewindungen in der Richtung a i wirken, und die Größe dieser Amperewindungen können wir mit Hilfe der Proportionen feststellen:

ai: ad : ap = as : ab : ac.

Es fragt sich nun, wie die Amperewindungen a s hervorgerufen werden können. Da im ganzen im Motor zwei Windungssysteme vorhanden sind, das eine auf dem Stator, das andere auf dem Rotor, wir von letzterem aber bereits festgestellt haben, daß es die Amperewindungen ac führt, so muß die erregende Kraft as vom Stator ausgeübt werden. Es muß daher die Spule I ab, die Spule II a SII Amperewindungen erzeugen, denn as läßt sich in die beiden Komponenten a b und a SII zerlegen, und nur auf die so dargestellte Weise kann im Stator eine erregende Kraft a s und dadurch ein fiktives Feld ai erzeugt werden. Wie man sieht, ist a SIr an Größe a c gleich, der Richtung nach entgegengesetzt, und beide erregenden Kräfte heben sich dadurch auf, sodaß als einzige erregende Kraft, welche ein Feld erzeugen kann, die Komponente ab der Statoramperewindungen übrig bleibt, ab ist 2*

aber stets von der Größe wie die Magnetisierungs-Amperewin-düngen des Stators bei Leerlauf, und infolgedessen ist auch bei allen nur denkbaren Betriebsstadien des Motors a d das einzige wirklich im Motor vorhandene Feld.

Wir haben in Figur 7 folgende 6 Größen graphisch dargestellt:

a b = Magnetisierungs-A.-W. (Magnetisierungsstrom) ,

a c = Rotor-A.-W. (Rotorstrom),

a s = Stator-A.-W. (Statorstrom),

a d = Erregerfeld,

a p = fiktives Rotorfeld,

a i = fiktives Statorfeld,

von denen die 3 letzteren mit den 3 ersteren der Richtung nach zusammenfallen. Zwischen diesen 6 Größen besteht die Eigentümlichkeit, daß von je zwei in der gleichen Richtung liegenden immer nur die eine tatsächlich existiert, während die andere nur fiktive Bedeutung hat. Wir können daher folgende Tabelle aufstellen :


	
Reale Größen
	
Fiktive Größen


	
a d
	
a b


	
a c
	
a p


	
a s
	
a i




ac und as bilden die fiktive Resultante ab, die fiktiven Felder a p und a i die reale Resultierende a d.

Die Phasenverschiebung zwischen Klemmenspannung und Statorstrom, die bei Leerlauf 90 0 betrug, wird durch den A k a s — g dargestellt, und y ist nun stets kleiner als 90°, woraus wir schließen müssen, daß der Stator Effekt konsumiert, sobald der Rotor Strom führt. Der Winkel v = A k a s wird in unserem Diagramm von dem konstanten drehenden Vektor der Klemmenspannung ak und dem ebenfalls konstanten drehenden Vektor der Statoramperewindungen as eingeschlossen; in Wirklichkeit ist jedoch die auf die Spulen I und II wirkende Klemmenspannung ebensowenig konstant, wie die in den Spulen fließenden Ströme, da beide Größen nach einer Sinusfunktion variieren. Wir müssen daher noch untersuchen, welche Phasenverschiebung zwischen den beiden auf die Spulen I und II wirkenden Klemmenspannungen Er und EI und den in den Spulen fließenden Strömen JI und JII herrscht.

Wir wählen zu dieser Untersuchung die Lage des Vektors der Statoramperewindungen a s (Fig. 8), in welcher a s Ampere-Windungen von einer Spule allein ausgeübt werden. Da die Vektoren a s, ab, a c und a i, a d, a p von konstanter Größe sind und in gegenseitig konstantem Winkelabstand voneinander stehen, können wir sie ohne weiteres der Fig. 7 entnehmen und in Fig. 8 so eintragen, daß a i in die Achse der Spule II fällt. a s Ampere-
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Windungen werden in diesem Moment von der Spule II allein ausgeübt, und in diesem Augenblick muß der Strom in dieser Spule seinen Maximalwert, den wir ebenfalls mit a s bezeichnen wollen, besitzen. In dem Moment, der in Fig. 7 dargestellt ist, wurde die Spule II vom Maximum des rotierenden Erregerfeldes geschnitten, es wurde daher in diesem Augenblick in II die maximale EMGK a e induziert, mithin mußte die auf II wirkende Klemmenspannung durch a k horizontal nach rechts aufgetragen werden. In Fig. 8 hat das Drehfeld a d gegenüber der Fig. 7 eine Drehung von 45° vollzogen, und um den gleichen Winkel muß auch das Maximum der Klemmenspannung vorwärts geschritten sein, denn der Vektor der Klemmenspannung steht stets senkrecht auf dem Felde ad. Da unserer Voraussetzuno- gemäß in den Fig. 7 und 8 die Winkel sad gleich sind, ferner ak senkrecht auf a d steht, müssen auch die Winkel

. s a k = q

in beiden Figuren gleich sein, und © stellt daher auch für jede Phase des Stators die Verschiebung zwischen Klemmenspannung und Strom dar. Den Momentanwert der auf Spule II wirkenden Klemmenspannung erhalten wir durch Projektion von a k auf a s, nämlich a KI.

Für die Spule I liegen die Verhältnisse genau ebenso, und um dies zu zeigen, brauchen wir nur a s so zu drehen, daß a s in die Richtung der Achse der Spule I fällt.

Wir können mittels der Fig. 8 noch zeigen, daß durch die Größe des konstanten Vektors der Rotoramperewindüngen resp. des Rotorstromes a c auch dessen Momentanwerte feststellbar sind, denn die Projektionen von a c, a cr und a CII auf die Achsen der Spulen 1 und II ergeben unmittelbar die Größe der momentan in den Spulen fließenden Ströme.

Wir können daher genau so, wie wir es schon für den Fall des Leerlaufs getan haben, die Vorstellung, daß die Vektoren des Diagrammes rotieren, ganz aufgeben, und es genügt daher für alle unsere Betrachtungen das feststehende Diagramm Fig. 7.

Dies Diagramm läßt sich noch vereinfachen. Da

a c = b s a p — d i

a e = a k mithin dieselben Strecken zweimal im Diagramm vorhanden sind, können wir sie einmal weglassen, und die Fig. 7 geht dadurch in das einfache Diagramm Fig. 9 über.

Das Diagramm enthält:

a d = konstantes Erregerfeld des Motors,

ai — fiktives Statorfeld bei Stillstand,

di = fiktives Rotorfeld bei Stillstand,

ab = MagnetisierungSr(Erreger-)A.-W.,

as = Stator-A.-W.,

bs = Rotor-A.-W.,

a k = Klemmenspannung,

p = Phasenverschiebungswinkel.

Unter gewissen Voraussetzungen, wenn nämlich Stator und Rotor identisch gewickelt sind, kann

a b = Magnetisierungsstrom (Leerstrom),

a s = Statorstrom,

bs = Rotorstrom

gesetzt werden, und infolgedessen wird a b s häufig Stromdreieck genannt. Wenn Stator und Rotor verschiedenartig gewickelt sind, ist die Bezeichnung Stromdreieck, streng genommen, nicht mehr zulässig, man dürfte dann nur mehr von einem Amperewindungs-
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<cos. P>

Fig. 9.


dreieck sprechen, allein es wird, um dies unbequeme Wort zu vermeiden, häufig die Bezeichnung Stromdreieck auch in diesem weiteren Sinne angewandt.

In Fig. 9 haben wir vorläufig nur für zwei Stadien das Diagramm des Motors festgelegt, nämlich für Leerlauf im Synchronismus und für Stillstand, und wir müssen noch feststellen, wie sich für die zwischenliegenden Stadien das Diagramm gestaltet. Die Beantwortung dieser Frage ist außerordentlich einfach.

Wie wir gesehen haben, werden die Rotorwindungen bei Synchronismus vom Feld ad garnicht, bei Stillstand dagegen mit einer maximalen Geschwindigkeit geschnitten. Wir haben ferner konstatiert, daß bei Stillstand in einem Rotor, der genau so wie der Stator gewickelt ist, eine EMK E, von gleicher Größe wie die Klemmenspannung induziert wird, und wir haben daraus den Rotorstrom

— W2

definiert. Die Größe der induzierten EMK E, hängt nun von der Geschwindigkeit, mit der die Rotorwindungen vom Feld a d geschnitten werden, ab, da das Feld ad von konstanter Größe ist, und infolgedessen muß auch der Rotorstrom dieser Geschwindigkeit direkt proportional sein. Die genannte Geschwindigkeit ist die Schlüpfung, und es entspricht daher der Rotorstrom b s einer Schlüpfung von 100%, der Rotorstrom 0 einer solchen von 0%. Wenn wir daher die Strecke b s in 100 Teile teilen, so stellt eine beliebige Länge b s' nicht nur die prozentuale Schlüpfung, sondern auch den Rotorstrom resp. die Rotoramperewindüngen dar, die in diesem Betriebszustand im Rotor vorhanden sind. — Es ist somit durch die Fig. 9 das Amperewindungs-, das Strom- und das Felddiagramm für alle Belastungsstadien des Motors festgelegt.

Im Interesse der Einfachheit wurden die Ableitungen lediglich an einem Zweiphasenmotor gemacht, die Resultate haben jedoch ganz allgemeine Gültigkeit, denn es ist offenbar gleichgültig, ob die Amperewindungen ab etc. und das Feld ad von einem Windungs-System von zwei oder mehreren Phasen hervorgerufen werden, und auch in Bezug auf die Ströme muß die’ Proportionalität mit den das Dreieck a b s bildenden Geraden bestehen bleiben.

	
2.    Berechnung der induzierten EMK.



Erfahrungsgemäß bietet die Anwendung einer Theorie auf praktische Fälle sehr häufig dadurch nicht unerhebliche Schwierigkeiten, daß die Einführung numerischer Werte in die allgemeinen mit Symbolen gebildeten Gleichungen nicht ganz einfach ist. Das Verständnis einer für die Praxis gebildeten Theorie wird daher sehr erleichtert, wenn die durch Gleichungen oder graphische Konstruktionen abgeleiteten Beziehungen immer durch zahlenmäßig ausgedrückte positive Beispiele erläutert werden. Obwohl wir noch weit davon entfernt sind, die komplizierten in einem Asynchronmotor wirklich auftretenden Erscheinungen klargelegt zu haben, mag es nichtsdestoweniger schon jetzt angebracht sein, auch mit numerischen Werten zu rechnen; wir müssen uns nur stets vergegenwärtigen, daß die jetzt berechneten Werte nur in ganz grober Weise den wirklichen Fällen entsprechen, und daß sie nur unter den jeweils gemachten Annahmen gültig sind.

Die einfachen Annahmen, von denen wir ausgehen wollen, sind folgende:

	
	
1.    Elektromotorische Kräfte und Ströme folgen der Sinusfunktion.


	
2.    Alle Felder sind sinoidal angeordnet und ihre Amplituden sind konstant.


	
3.    Die Wicklung je einer Phase ist in soviel Nuten untergebracht, als der Motor Pole besitzt.


	
4.    Die erregende Kraft einer Mehrphasenwicklung ist konstant und zwar ihrem Maximalwert entsprechend angenommen.


	
5.    Der magnetische Widerstand des Eisens ist Null.


	
6.    Der Widerstand der Wicklungen ist Null.





Die folgenden Ausführungen werden diese Punkte näher erläutern.

Wie im vorigen Abschnitt gezeigt wurde, muß das die Statorwindungen schneidende Drehfeld in diesen Windungen eine elektromotorische Gegenkraft erzeugen, welche die gleiche Größe hat wie die Klemmenspannung. Die induzierte elektromotorische Gegenkraft ist der Windungszahl der Statorwicklung und der Kraftlinienzahl resp. der magnetischen Induktion des Statorfeldes proportional. Die magnetische Induktion bestimmt ihrerseits wieder die Zahl der Amperewindungen, die nötig sind, um diese magnetische Induktion in einem magnetischen Widerstand, der unter unserer Annahme, daß der Eisenwiderstand Null ist, lediglich aus dein Luftweg besteht, hervorzurufen. Wie man hieraus sieht, stehen also die Größen: induzierte elektromotorische Gegenkraft, magnetische Induktion, Windungszahl, erregende Amperewindungen resp. Magnetisierungsstrom in einem sehr engen Zusammenhänge, und durch die Annahme eines dieser Werte sind alle übrigen bestimmt. Welche Größe man annehmen will, ist selbstverständlich willkürlich, in der Praxis geht man jedoch fast immer von der magnetischen Induktion aus, für deren Größe sich allmählich günstige Erfahrungswerte ergeben haben, und unter diesem Gesichtspunkte werden auch die folgenden Ableitungen gemacht.

Die von einem sinoidalen Feld, dessen maximale Induktion B‘ ist und das sich über eine Fläche vom Querschnitt Qi erstreckt, induzierte EMK ist

E = 0,707 . N . B'. Q, . n. 10“ 8 1).

Hierbei bezeichnet E den Effektivwert der EMK, N die Zahl der in Serie geschalteten Drähte, in welchen die Induktion stattfindet, II die Polwechselzahl des Stromes pro Sekunde.

Wenn wir die maximale Induktion B' zu einer bestimmten Größe annehmen, so können wir, da die induzierte elektromotorische Gegenkraft der Klemmenspannung E gleich sein muß, die Drahtzahl für eine Phase bestimmen, denn die übrigen in der Gleichung vorkommenden Größen 11 und E sind durch die Natur des zugeführten Stromes, Qi aus den Dimensionen des Motors bekannt. Wir erhalten somit:

E . 108


(1)



0,707 . B‘ . Q, . n

Die Klemmenspannung (Leitungsspannung) ist nur bei einem Zweiphasenmotor unter allen Umständen mit der Phasenspannung identisch; bei einem Dreiphasenmotor ist die letztere dann von anderer Größe, wenn die Wicklung im Stern geschaltet ist und

sie beträgt in diesem Falle nur den Y3 Teil


der Leitungsspan-



nung.

	
3.    Berechnung des Magnetisierungsstromes.



Wenn wir mit Hilfe der Gleichung (1) die Drahtzahl N1 des Stators und die maximale Induktion B' festgelegt haben, können wir hieraus den Magnetisierungsstrom berechnen. Unter der Voraussetzung, daß der Eisenwiderstand des Motors Null ist, sind lediglich zur Überwindung des Luftwiderstandes Amperewindungen aufzuwenden, und die Größe derselben ist für einen p-poligen Motor

X1 = 0,8 p 0 b;


(2)



wenn mit 0 die Größe des Luftspaltes in cm bezeichnet wird.

	
l)    Die Ableitung dieser Gleichung wird im 35. Abschnitt gegeben.



Xi ist offenbar eine Funktion der Drahtzahl N1, der Stromstärke pro Phase und der Phasenzahl des Stators. Wegen des letzteren Umstandes müssen wir die Untersuchungen für Zweiphasen- und Dreiphasenmotoren getrennt vornehmen.

Die maximale erregende Kraft herrscht in einem Zweiphasen-System dann, wenn die Ströme in beiden Phasen gleich und zwar

sin 45.J= 0,707 . J‘ sind. Die Windungszahl einer jeden Phase ist gleich der halben Drahtzahl, folglich ist im betrachteten Moment die erregende Kraft einer Spule

N 0,707 9 J‘.

Auf diejenigen Teile des Feldes, welche der Summenwirkung aus den erregenden Kräften der beiden Phasen ausgesetzt sind, wirkt die doppelte erregende Kraft

N

X = 2 (0,707 .     J')

und wenn wir den Maximalwert der Ströme J‘ durch ihren Effektivwert J ersetzen, wobei J‘=V2.J, erhalten wir

X = J N.........(3)

In einem Dreiphasensystem ist die maximale erregende Kraft dann vorhanden, wenn der Strom in einer Phase gleich seinem Maximalwert, in jeder der anderen Phasen gleich seinem halben Maximalwert ist. Die totale erregende Kraft wird dann in Bezug auf den Kraftlinienweg, welcher der additiven Wirkung der drei Windungssysteme ausgesetzt ist

x-».8+2 GJN)=sx und wenn auch hier wieder die maximale Stromstärke J' durch die effektive ersetzt wird,

x=V2.N.J........(4)

Damit wir für zwei- und dreiphasige Systeme eine gemeinsame Gleichung benutzen können, um die erregende Kraft derselben zu berechnen, soll dem Gang der Ableitungen insofern etwas vorgegriffen werden, als schon jetzt diese allgemeine Gleichung, deren Ableitung sich im 33. Abschnitt findet, mitgeteilt wird. Diese Gleichung lautet:

v NJ

X = a • — .1........(5)

worin a die Phasenzahl und v einen Koeffizienten bedeutet, der sich aus der Phasenzahl nach folgender Gleichung ermitteln läßt

	
	
*=-----1.............(6)





71 a . Sia ——

	
2 a



Eine Probe ergibt die Richtigkeit der allgemeinen Gleichung; denn wir erhalten für die erregende Kraft eines Zweiphasensystems und für die eines Dreiphasensystems also dieselben Werte, welche die Gleichungen (3) und (4) ergeben.

Den Magnetisierungsstrom eines Motors erhalten wir daher, wenn wir den aus Gleichung (5) für X erhaltenen Ausdruck in Gleichung (2) einführen.

— p.J.B;

Jm =0,8.V2 N......(7)

Mit B| ist die maximale Induktion in der Luft, mit N, die Drahtzahl des Stators pro Phase bezeichnet.

Substituiert man in Gleichung (7) den aus Gleichung (1) für N1 erhältlichen Ausdruck, so wird

sos.p.o.Q.m,

“ 1 a.1.E,.108 und da der Quotient auf der rechten Seite obiger Gleichung nur solche Faktoren enthält, die für ein und denselben Motor konstant sind, können wir allgemein sagen: Der Magnetisierungsstrom eines Mehrphasenmotors ist dem Quadrat seiner maximalen Luftinduktion proportional.

	
	
4.    Beispiele über Abschnitt 2 und 3.





Gegeben sei ein vierpoliger Motor von den Dimensionen D =2 cm, b = 10 cm, 0‘ = 0,1 cm, p =4

Es soll die Drahtzahl des Stators und der Magnetisierungsstrom berechnet werden, unter der Annahme, daß die Phasenspannung 110 Volt, die Polwechselzahl des zugeführten Drehstromes 100 pro Sekunde ist und die maximale Luftinduktion 5000 betragen soll. Also

I = 100

E, = 110 B| = 5000.

Der Querschnitt des Luftfeldes beträgt:

	
	
	
- DAb   20.7.10







Q. =-----=-------= 157 cm2.

	
	
	
	
1    p            4









Die Rechnung soll zweimal durchgeführt werden, einmal für einen Zweiphasen-, das zweite Mal für einen Dreiphasenmotor.

	
	
	
	
	
1.    Zweiphasenmotor. Die Drahtzahl einer Phase des Stators ergibt sich sofort nach Gleichung (1):


Ej.108

0,707 . B;. Q, . H.













____110.108____=200

0,707.5000.157.100

Den Magnetisierungsstrom pro Phase erhalten wir nach Gleichung (7):

t _ a /P.0.B _ 0,8.j/2.4.0,1.5000

’m 0,8 ' V a . , . N,           2.0,707.200         8 Ampere.

Der scheinbare Wattkonsum des Motors ist pro Phase 8.110 = 880 Volt-Ampere

und total natürlich

2.880 = 1760 Volt-Ampere.

	
	
	
	
	
2.    Dreiphasenmotor. Da wir die Phasenspannung wieder zu 110 Volt annehmen, wird die Drahtzahl pro Phase dieselbe wie für den Zweiphasenmotor, nämlich











N, = 200.

Dagegen wird der Magnetisierungsstrom

T — — p.o.B _ 0,8.^2.4.0,1.5000       .

’m — 08 • ‘ 2 • a.v.N, —     3.0,667.200        5,65 Ampere.

Der scheinbare Wattkonsum beträgt:

pro Phase = 110.5,65 = 621 Volt-Ampere

Total =  3. 621 = 1863 Volt-Ampere.

Wir können nun die Statorwicklung auf zwei verschiedene Weisen erhalten: in A oder in Y. Wählen wir Dreieckschaltung, so ist die Spannung zwischen zwei Leitungen der Phasenspannung gleich, der Strom in einer Leitung dagegen V3 . Jm. Es ist daher

Ei = 110

J=V3.J= 1,73.5,65 = 9,8 Ampere

und der scheinbare Wattkonsum des Motors

V 3 Ej. J, = V3.110.9,8 = 1863 Volt-Ampere.

Wählen wir dagegen Sternschaltung, so wird der Leitungs-strom Ji gleich dem Phasenstrom Jm, dagegen die Spannung zwischen zwei Leitungen

E, = V3. E, = 1,73.110 = 190

5,65

Im7

und der scheinbare Wattkonsum des Motors

V3. E . J, = V3.190.5,65 = 1863 Volt-Ampere.

	
	
5.    Berechnung der Zugkraft.





Befindet sich ein vom Strom J durchflossener Leiter von der Länge b so in einem magnetischen Feld von der Induktion B, daß die Richtung der Kraftlinien senkrecht zum Leiter steht, so wird auf den Leiter eine senkrecht zu der Kraftlinienrichtung und zum Leiter stehende Kraft ausgeübt von der Größe:

P = 10,2 . J . b . B . 10-8 .

Ist an Stelle des einen Leiters eine größere Anzahl N derselben, die vom gleichen Strom durchflossen werden, so wird

P = 10,2 . J . b . B . N . ...........(8)

[image: ]

Fig. 10.




Der Strom J braucht nicht von außen dem Leiter zugeführt zu werden, sondern er kann durch Bewegung des Leiters im Felde und das dadurch eintretende Schneiden von Kraftlinien erzeugt werden. Dieser letztere Fall tritt bei einem Asynchronmotor auf. Wird nämlich der Rotor von einem sinoidalen Feld, dessen maximale Induktion B| ist, durchsetzt, und findet eine Relativbewegung zwischen dem Feld und den Rotorwindungen statt, so wird in den letzteren ein Strom erzeugt, dessen Größe sich leicht bestimmen läßt, und dieser ruft in Wechselwirkung mit seinem erzeugenden Feld eine Tangentialkraft resp. ein Drehmoment hervor.

Die Größe dieser Kraft läßt sich folgendermaßen bestimmen. Wenn der Leiter L (Fig. 10) vom Punkt 0 aus sich nach rechts bewegt, so ist die Induktion, der er in jedem Moment ausgesetzt ist,

B = B'. sin x.

Erfolgt diese Bewegung mit konstanter Geschwindigkeit, so läßt sich durch eine ähnliche Gleichung die im Leiter induzierte EMK, oder, da der Leiterwiderstand konstant ist, die in L hervorgerufene Stromstärke darstellen. Wenn die Stromstärke beim Passieren des Scheitels der Sinuslinie den Maximalwert J‘ annimmt, so ist dieselbe im Punkt L

J=J‘. sin y.

Sind an Stelle eines Leiters N derselben im Punkt L vereinigt, so wird die Zugkraft in dieser Stellung nach Gleichung (8)

10,2 . N . b . J'B' sin? z.10-8 .

Wie man sieht, ist die Zugkraft nicht konstant, sondern sie variiert nach dem Quadrat eines Sinus; sie ändert sich daher zwischen Null und einem Maximalwert, bleibt jedoch stets positiv, wirkt also immer in demselben Sinne. Den Mittelwert der Zugkraft erhalten wir durch Integration des obigen Ausdrucks über eine Periode und Division durch 2 7


10,2 . N.b. J' B'. 10-8



2 z sin2y dy )

= 1/2 10,2 . N . b . J' B'. 10-8 .

Dieser Wert entspricht der Zugkraft pro Rotorphase. Ist der Rotor az-phasig ausgeführt, so wird der Ausdruck, wenn wir gleichzeitig den Maximalwert des Stromes J‘ durch seinen Effektivwert J ersetzen,

P = 10,2.0,707 . a, . N, . b . J, . B,’ . 10-8 . . . . (9)

	
	
6.    Berechnung der mechanischen Leistung.





Wenn uns die Tourenzahl des Rotors bekannt ist, können wir die Geschwindigkeit berechnen, bei welcher die Zugkraft ausgeübt wird, und das Produkt dieser beiden Größen liefert uns den mechanischen Effekt, welchen der Motor abgibt. Zur Ermittlung der Geschwindigkeit müssen wir aber den Radius des Hebelarmes kennen, an welchem die Zugkraft wirkt. Der Radius von Mitte der Leiter eines Rotors bis zur Rotorachse ist, wenn wir einen mit Nuten versehenen Rotor annehmen, offenbar kleiner als der halbe Durchmesser des Rotoreisens. Es sieht daher auf den ersten Blick aus, als müßte man zur Ermittlung von Zugkraft und Leistung den Abstand der Leitermitten von der Peripherie des Rotors in Rechnung ziehen. Wir können uns aber diese Mühe auf Grund der folgenden Überlegung sparen.

Wenn das gesamte vom Stator ausgehende Feld die Rotorwindungen schneidet — und diese Voraussetzung haben wir gemacht — so muß die Induktion im Rotoreisen zwischen dessen Peripherie und den Rotorwindungen den Radien ri und r (Fig. 11) umgekehrt proportional sein. Da nun die Zugkraft nach Gleichung (9)
[image: ]

der Induktion direkt — dem Radius, an welchem sie wirkend gedacht wird, also indirekt proportional —, die Geschwindigkeit aber dem Radius direkt proportional ist, so bleibt das Produkt derselben — die mechanische Leistung — vom Radius unabhängig.

Die mittlere Luftinduktion, deren Größe wir zur Bestimmung der erregenden Kraft benötigen, herrscht auf einem Zylindermantel, dessen Durchmesser D + 5 ist. Im Abstand des Radius 50 müssen wir uns daher auch die Rotorleiter befindlich denken, wenn wir unter Zugrundelegung desselben Wertes der Induktion (also B| ) Zugkraft und Leistung berechnen wollen.

Wir erhalten demnach die Geschwindigkeit v in Metern

v-001 00+”".......(10)

Heubach, Drehstrommotor.

Die Leistung des Motors in Kilogrammsekundenmetern ist v . P und die Leistung in PS

v. P

PS =75.........(11)

	
	
7.    Berechnung der Ströme, Felder, Zugkräfte und Leistungen mittels des Diagrammes.





Im 1. Abschnitt wurde das Diagramm des Mehrphasenmotors entwickelt; die absolute Länge der einzelnen im Diagramm verwendeten Strecken war beliebig angenommen, und durch das Feld-und Stromdreieck war nur die relative Größe und die gegenseitige Lage der 6 Größen: Erregerfeld, Feld der Stator- und Feld der Rotoramperewindungen, Magnetisierungsamperewindungen, Stator-und Rotoramperewindungen, festgelegt. Wenn wir derart maßstäblich zeichnen, daß wir imstande sind, sofort den wirklichen Wert jeder dieser Größen im Diagramm durch eine bestimmte Strecke darzustellen, so können wir das Diagramm viel mehr ausnützen, und wir können durch das Ziehen einer einzigen Linie mühelos Resultate erhalten, deren Ermittlung auf dem rein rechnerischen Wege mit sehr großen Umständlichkeiten verknüpft ist. Das Diagramm wird folgendermaßen gezeichnet:

Wir tragen im Diagramm (Fig. 9) die maximale Induktion des Erregerfeldes in einer beliebigen Länge ad auf, indem wir

ad=c ’ also

setzen. Mit Hilfe der Gleichung (7) berechnen wir nun Jm, den Magnetisierungsstrom, und stellen letzteren durch die beliebige Strecke a b dar. Es ist also

— J

a=0,'

mithin

C3 = =.........(13) a b

Bei einer beliebigen Belastung wird nun der Statorstrom durch a s dargestellt, und sein numerischer Wert ist

J1 — C, . a s.........(14)

Die Größe des Rotorstromes würde sich unter der Voraussetzung, daß Stator und Rotor absolut identisch sind, also gleiche Phasenzahlen,. gleiche Nutenzahlen und gleiche Drahtzahlen pro Nut besitzen, sehr einfach gestalten, indem der Rotorstrom, den wir für diesen Fall mit J2,i bezeichnen wollen, = C, . b s wäre. Nun ist aber im allgemeinen der Rotor mit einer anderen Drahtzahl ausgestattet, ja sogar die Phasenzahl kann eine andere sein als im Stator, indem man einen Dreiphasenmotor ohne weiteres mit einem Zweiphasenrotor laufen lassen kann und umgekehrt. Wir müssen daher eine allgemein gültige Gleichung aufstellen, welche die Berechnung des Rotorstromes aus der dem Diagramm entnommenen Länge b s gestattet.

Wir finden diese Beziehung auf Grund folgender Überlegung. Die vom Motor entwickelte Leistung ist bei einem verlustlos arbeitenden Motor dem Wattkonsum gleich. Der Wattkonsum und der Statorstrom wird aber in keiner Weise davon beeinflußt, ob sich bs auf einen zweiphasigen oder dreiphasigen Rotor bezieht. Würde der Rotor identisch mit dem Stator gewickelt sein, also dieselbe Phasen- und Drahtzahl besitzen, so würde die Zugkraft nach Gleichung (9)

P = 10,2.0,707 . b . B . 10-8 . a . Nj. C, . bis.

Besitzt der Rotor dagegen a2 Phasen und N, Drähte pro Phase, so wird

P = 10,2.0,707 . b . B'. 10-8 . a, . N, . C, . bs.

Da die Zugkräfte in beiden Fällen einander gleich sein müssen, folgt

J,=C.bsA:NL=C,.bs......(15) 22 • Na und

c,=c*........(16) “2 • -2

Um aus der Wattkomponente (bs) des Primärstromes (as) den Wattkonsum W1 des Motors ermitteln zu können, setzen wir

................(17)

C4 läßt sich leicht auf schon bekannte Größen zurückführen; der Wattkonsum läßt sich nämlich auch durch die Gleichung ausdrücken :

W, =a.E. J1 . cos q.

J1 ist aber nach Gleichung (14) = C2 . äs, und bs, die Watt-komponente von as, == a s . cos g. Durch Gleichsetzen der obigen beiden Gleichungen und Einführung der angegebenen Ausdrücke für J1 und bs erhalten wir

C,=a.E.C,.......(18)

Mit Hilfe des Rotorstromes, der b s proportional ist, und der maximalen Induktion im Rotor, die konstant = a d ist, können wir die Zugkraft berechnen, und dieselbe muß b s proportional sein. Diese Proportionalität folgt daraus, daß die Zugkraft dem Produkt aus B' . J,, also a d . b s, — und da der eine Faktor dieses Produktes, ad, konstant ist, dem anderen, b s, — proportional ist. Durch bs kann daher in einem neuen, sich aus der Rechnung ergebenden Maßstab die Zugkraft dargestellt werden, indem wir schreiben:

...............(19)

Substituieren wir für P den aus Gleichung (9) ersichtlichen Ausdruck, und ersetzen wir B' durch C1 . a d und J, durch C3 b~c, so erhalten wir

C, = 10,2.0,707 .a.N.b.C.C,. 10-8 . äd. . . (20)

Da wir die Widerstände der Wicklungen bis jetzt vernachlässigen, mit anderen Worten dieselben als Null annehmen, ist auch keine Schlüpfung nötig, damit im Rotor der Strom J, hervorgerufen wird; es würde nämlich eine unendlich kleine Schlüpfung genügen, um jede beliebige Stromstärke in den Rotorwindungen zu erzeugen. Die Tourenzahl ist daher für alle Belastungen konstant und entspricht dem Synchronismus mit dem Statorfeld, bs kann daher auch zur Darstellung der mechanischen Leistung des Motors benützt werden, denn b s ist der Zugkraft proportional. Da die mechanische Leistung dem Produkt aus Zugkraft und Geschwindigkeit gleich ist, die letztere aber, wie gezeigt, konstant ist, muß bs auch der Leistung proportional sein, und wir können schreiben

PS = C.bs.........(21)

Die Konstante C6 läßt sich sehr bequem infolge der einfachen Beziehung, die zwischen elektrischer und mechanischer Leistung besteht, ausdrücken. Es ist nämlich

und da C6 nichts anderes bezweckt, als elektrische Energie durch ihr mechanisches Äquivalent auszudrücken, erhalten wir

PS IC 1

W C, — 736

folglich

C = =9%.........(22)

Statt daß wir die dem Diagramm entnommenen und beispielsweise mit einem Millimetermaßstab gemessenen Längen mit den Konstanten C, C ... etc. multiplizieren, um den numerischen Wert der einzelnen Größen zu erhalten, können wir uns auch Maßstäbe konstruieren, auf welchen wir sofort den numerischen Wert der abgegriffenen Längen ablesen können. Wählen wir als Normallängeneinheit, nach welcher wir das Diagramm zeichnen, das Millimeter, so erhalten wir die Länge der Einheit


	
der
	
magnetischen Induktion
	
1

C,
	
mm,


	
der
	
Statorstromstärke
	
1

C,
	
mm,


	
der
	
Rotorstromstärke
	
1

C,
	
mm,


	
des
	
elektrischen Effektes
	
1

C
	
mm,


	
der
	
Zugkraft
	
1

C,
	
mm,


	
der
	
mechanischen Leistung
	
1

C.
	
mm.




Um die Größe cos g aus dem Diagramm abgreifen zu können, schlagen wir von a aus mit dem beliebigen Radius a r einen Kreisbogen und setzen ar der Einheit gleich. Die Projektion von ar auf die die EMK darstellende Gerade ar' stellt die Größe des cos g dar (Fig. 9).

	
	
8.    Beispiel über Abschnitt 7.





Wir können nun die Zugkraft und Leistung des Motors, für welchen wir bereits auf Seite 30 den Magnetisierungsstrom berechnet haben, in jedem beliebigen Belastungszustand bestimmen. Wir wählen als Beispiel den dreiphasigen Stator

a, = 3

N, = 200

E, = 110

B = 5000

und machen in Bezug auf den Rotor die Annahme, daß derselbe ebenfalls dreiphasig, mit 50 Drähten pro Phase ausgeführt sei. Also a2 = 3

N, = 50.

Wir zeichnen im Diagramm Fig. 12 ad = 50 mm, dann ist

Den Magnetisierungsstrom haben wir bereits zu 5,65 Ampere berechnet. Wählen wir

C2 = 0,25

so wird

— Jm 5,65 ab= c = 0,25 =226 mm.

Nach Gleichung (16) wird

Ferner nach Gleichung (18)

C, = a, . E, . C, = 3.110.0,25 = 82,5.

Die Konstante zur Ermittlung der Zugkraft finden wir nach Gleichung (20) zu

C, = 10,2.0,707 .a.N.b.C,.C,.ad.10-8

= 10,2.0,707.3.50.10.100.1.50.10-8= 0,54.

Endlich ist C6 nach Gleichung (22)

Zeichnen wir nun in unser Diagramm ein beliebiges Belastungs-Stadium, in welchem das Stromdreieck durch abs dargestellt
[image: ]

wird, so können mir sofort das Verhalten des Motors angeben. Wir messen

a s = 37,5 mm

a b = 30 mm

und erhalten bei diesem Belastungszustand: den Statorstrom

J=Cas= 0,25 • 37,4 = 9,4 Ampere.

Die Wattkomponente des Statorstromes

Jj . cos q = C, . b s = 0,25.30 = 7,5 Ampere.

Den Rotorstrom

J2 = C, • b s = 1.30 = 30 Ampere.

Den Wattverbrauch des Motors

W1=C.bs= 82,5.30 = 2475 Watt.

Die Zugkraft

P = C, . bs = 0,54.30 = 16,2 kg.

Die mechanische Leistung

PS =C.bs= 0,112.30 = 3,36 PS.

Das gleiche Resultat müssen wir natürlich auch erhalten, wenn wir die Leistung aus der Zugkraft und aus der Umfangsgeschwindigkeit des Ankers berechnen. Da der Anker 20 cm Durchmesser hat und 1500 Touren in der Minute macht, ist seine sekundliche Umfangsgeschwindigkeit in Metern
[image: ]

Die mechanische Leistung des Motors daher:

P . v 16,2.15,7 75=75--= 3,36 PS.

Tragen wir die in dieser Weise ermittelten Werte in ein rechtwinkliges Koordinatensystem ein, dessen Abszisse den Watt-konsum darstellt, so erhalten wir für den Rotorstrom, die Zugkraft und die mechanische Leistung gerade Linien, welche vom Koordinatenanfangspunkt ausgehen und bis zu beliebig hohen Werten anwachsen. Die Zugkraft und die Leistung eines streuungsfreien, verlustlos arbeitenden Motors ist daher eine unbegrenzte (Fig. 13).

	
	
9.    Der Einfluß des Rotorwiderstandes.





Das zum Schlüsse des vorigen Beispiels erhaltene Resultat wird ganz wesentlich modifiziert, sobald wir annehmen, daß die Windungen des Motors Ohmschen Widerstand besitzen. Wir wollen unsere Untersuchungen auf diesen Fall ausdehnen, wollen aber den Einfluß des Rotorwiderstandes und den des Statorwiderstandes getrennt untersuchen.

Wir nehmen daher zuerst einen Motor an, dessen Statorwicklung widerstandslos ist und dessen Rotorwicklung pro Phase einen Widerstand w2 hat.

Wenn in einem beliebigen Belastungszustand der Stator einen Strom a s führt (Fig. 9), der für sich allein ein Statorfeld a i erzeugen würde, so muß das vom Rotorstrom allein erzeugte Feld id sein, damit die Resultante aus beiden Feldern das konstante Erregerfeld ad ergibt, und der Rotorstrom ist durch bs repräsentiert. Das den Rotor durchsetzende Feld ist dem Erregerfeld a d bei allen Belastungen gleich. In Bezug auf das Strom- und Feld-diagramm ist also durch die Einführung des Rotorwiderstandes nichts geändert worden.

Um den Rotorstrom J2 hervorzurufen, muß in den Windungen des Rotors eine E.M.K. von der Größe

E2 = J2. w2

induziert werden, und damit dies stattfinden kann, müssen die in den Rotor eindringenden Kraftlinien des Erregerfeldes die Rotorwindungen schneiden, es muß also eine Relativbewegung zwischen dem Drehfeld und dem Rotor dadurch eintreten, daß der Rotor hinter dem Felde zurückbleibt, daß er schlüpft. Bezeichnen wir die Polwechselzahl, mit der das resultierende Feld die Rotorwindungen schneidet, mit II,, so läßt sich die E.M.K., die im Rotor induziert wird, leicht berechnen. Man erhält nämlich nach Gleichung (1)

E,= 0,707. N. B,’. Q, . 1.10—8 .... (23) und da uns E, aus der Beziehung E, = J,. w2 bekannt ist, können wir die Polwechselzahl im Rotor berechnen.

TJ _ J, . w, • 10_____ 20

11a    0,707. N. B/’. Q,......(

Die prozentuale Schlüpfung s und IJ2 sind durch die Beziehung verknüpft

1,==100.1,........(25)

Setzen wir den für Il2 aus Gleichung (24) ermittelten Wert in Gleichung (25) ein, so erhalten wir für die Schlüpfung den Ausdruck :

100.w2.10%

	
	
	
*2; 0,707. N.B’.Q, .n.   • • • • (60







Nun wissen wir aber aus Gleichung (15), daß

J=Cbs und wir erhalten, wenn wir diesen Wert in obige Gleichung für J2 einsetzen,

	
	
	
	
8 _ C.w,, 1010                       9”









bs 0,707.1.N,.B//.Q, FTP

s

Daß wir den Quotienten - als den Tangens eines konstanten b s

Winkels 3 auffassen, ist deshalb gestattet, weil der mittlere Ausdruck in Gleichung (27) nur aus solchen Gliedern besteht, die für ein und denselben Motor konstant sind.

Wir brauchen also, um aus dem Diagramm für eine beliebige Belastung die prozentuale Schlüpfung entnehmen zu können, nur von a aus Fig. 14 eine Parallele a E1 zu b s und eine weitere Gerade a h zu ziehen, welche mit der ersteren den Winkel 3 einschließt. Wenn wir vom Punkt s auf a E1 eine Senkrechte sg fällen, so ist nach Gleichung (27)

s=gg =bs.tgs.......(28) und um s direkt in Prozenten ablesen zu können, haben wir nur ab = sg‘ in 100 Teile einzuteilen.

Die Wattkomponente des Statorstromes ist bs, also genau so wie früher, als wir den Rotorwiderstand noch nicht berücksichtigt hatten, und die dem Stator zugeführten Watt nach Gleichung (17)

W,=C. bs.

Der Rotorstrom ist nach Gleichung (15)

J2 — C3 . b s.

Ebenso wird die Zugkraft nach Gleichung (19)

P=C.bs.

Die Konstanten C1, C2, C3, C,, C, sind mit den im Abschnitt 7 angegebenen identisch.

In Bezug auf die vom Motor abgegebene mechanische Leistung tritt durch die Einführung des Rotorwiderstandes eine Veränderung auf, da der Rotorwiderstand Verluste bedingt. Man kann nach
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den vorhergegangenen Ableitungen diesen Verlust in zweierlei Weise bestimmen; mechanisch, indem man den Verlust als die Abnahme der Tourenzahl infolge der Schlüpfung definiert, in welchem Falle s den prozentualen Verlust durch den Rotor bedeutet; oder elektrisch: indem man den Rotorverlust als Wattverlust im Rotor, also als E, . J, oder als J,2 w2 betrachtet. Beide Auffassungen müssen natürlich das gleiche Resultat ergeben und wir können den innigen Zusammenhang zwischen der mechanischen Größe s und der elektrischen E, . J, benützen, um auch die letztere in einfacher Weise im Diagramm darstellen zu können, und wir wählen dazu folgenden Weg:

Da die Wattkomponente des Statorstromes C, . b s ist, so können wir den dem Stator zugeführten elektrischen Effekt durch

W, =a.E,.C,.bs

darstellen, und wenn wir E, nach Gleichung (1) ausdrücken, so erhalten wir

W, =a.C.bs. 0,707 . N, . B[ Q, . I, . 10- 8.

Der Totalverlust im Rotor

V 2--- a2 • J2 • E2 kann in ähnlicher Form geschrieben werden, wenn wir J2 — C3 . bs setzen und E, ebenfalls nach Gleichung 1 ausdrücken. Es wird dann

V2=a.C.bs. 0,707 . N.B|. Q, . I, . 10-8.

Durch Division der für V2 und W1 erhaltenen Gleichungen bekommen wir, wenn wir noch

s

"= 100"

setzen,

V 2   a2 • Ca • N 2 s Wi “ a.C.N, ‘ 100 '

Ersetzen wir C3 durch den in Gleichung (16) gefundenen Ausdruck

und den Quotienten 100 durch

s

100

so erhalten wir

V2 = gg'

Zur Ermittlung des Wattkonsums des Motors haben wir die Strecke bs benützt und wir können auf der gleichen Geraden den Wattverlust des Rotors zur Darstellung bringen, wenn wir die Verbindungslinie b g' und parallel zu dieser die Linie v g ziehen, sodaß


gg’—vb

s g‘ s b

wird. Wir erhalten somit

y= v(29) b s

Da

W,=C.bs

ist, so ergibt sich

V2 = C, . ..........(30)

Die Nutzleistung des Motors ist die Differenz zwischen den konsumierten Watt minus den Verlusten

W, — V,=C,(bs — b v) = C, . v s oder, wenn wir das mechanische Äquivalent einführen,

...............(31)

	
	
10.    Beispiel über Abschnitt 9.





Wenn wir den auf Seite 38 unter Vernachlässigung des Rotorwiderstandes berechneten Motor einer abermaligen Untersuchung unterziehen, unter der Annahme, daß der Rotorwiderstand pro Phase w2 = 0,05 92 beträgt, so müssen wir in das Diagramm Fig. 12 die Gerade a h so eintragen (Fig. 15), daß nach Gleichung (27)

C3.w2.1010

ö P 0,707 • I. N.B.Q

1.0,05.10'0      _

0,707.100.50.5000.157

Um direkt die prozentuale Schlüpfung dem Diagramm entnehmen zu können, müssen wir außerdem die Strecke ab in 100 Teile teilen.

Wählen wir den gleichen Belastungszustand wie in Fig. 12, sodaß

b s =30 mm


so finden wir, daß




a s — 37,5 mm,

s=24.



daß also der Motor mit 24 % Schlüpfung arbeitet. Stator-, Rotor

[image: ]



strom, Zugkraft, konsumierte Watt sind dieselben geblieben, wie. früher, als wir den Rotorwiderstand vernachlässigten, nämlich:

J, = C, • a s = 0,25.37,5 — 9,5 Ampere,

J1 . cos q = C2 . b s = 0,25.30 = 7,5 Ampere,

J2 = Ca • b s = 1 • 30 = 30 Ampere, W,=C.bs= 82,5.30 = 2475 Watt, P=C.bs= 0,54.30 = 16,2 kg.

Dagegen tritt jetzt ein Wattverlust im Rotor auf von der Größe

V, = C, . bv= 82,5.7,2 = 595 Watt

und die mechanische Leistung des Motors beträgt nur noch

PS = C, .vs= 0,112.22,8 = 2,60 PS,

ein Resultat, das wir bestätigt finden, wenn wir die mechanische Leistung des Motors auf anderem Wege ermitteln. Die Tourenzahl des Rotors beträgt nämlich nur mehr

1500. 10400 *=1140, seine Umfangsgeschwindigkeit daher auch nur mehr

— 100 — 24  _ _

15,7 .----100--= 12 m/sek.

Bei 16,2 kg Zug entwickelt der Rotor daher

PS - 12,16,2 = 2,6 PS, 75

womit die Richtigkeit des oben gefundenen Resultates bestätigt ist.
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Wenn wir in Fig. 16 die für alle möglichen Belastungsstadien gefundenen Werte wieder in ein rechtwinkliges Koordinatensystem eintragen, so finden wir, daß durch die Einführung des Rotorwiderstandes die Leistung selbst eines streuungsfreien Motors eine sehr begrenzte ist, und auch die Zugkraft erreicht nur mehr eine endliche maximale Größe.

	
	
11.    Der Einfluß des Statorwiderstandes.





Bisher haben wir angenommen, daß die Wicklung des Stators keinen Ohmschen Widerstand besitzt, und wir konnten daher in die Gleichung (1), die wir zur Ermittlung der Statordrahtzahl resp. der maximalen Luftinduktion benützen, für Ei die Phasenspannung einsetzen. E, ist aber streng genommen eine EMK, und diese ist der Phasenspannung nur unter der Annahme gleich, daß kein Spannungsverlust im Stator auftritt. Angenommen, wir hätten unter dieser Annahme die maximale Luftinduktion B| und den Magnetisierungsstrom Jm bestimmt, so können wir das Diagramm Fig. 17 entwerfen, indem wir

— Jm a b = ——

zeichnen. Wenn die Statorwicklung nicht widerstandslos ist, sondern pro Phase einen Ohmschen Widerstand W1 besitzt, so muß hierdurch ein Spannungsverlust verursacht werden, dessen Größe wir
[image: ]

in jedem Belastungsstadium durch Multiplikation des Statorstromes mit diesem Widerstand ermitteln können. Betrachten wir den Leerlauf, so ist der Spannungsverlust im Stator

e ==Jm w,-

Im Diagramm können wir diesen Spannungsverlust durch eine in die Richtung des zugehörigen Stromvektors fallende Gerade darstellen, und wenn wir den Maßstab für Spannungen und EMK K. entsprechend wählen, können wir den Stromvektor gleichzeitig zur Darstellung des Spannungsverlustes verwenden. Wir können nämlich schreiben

em == Jm . Wi = C2. a b . Wi = C7 . a b . . . . (32) und hieraus erhalten wir die zur Ermittlung der Spannung oder EMK nötige Konstante

C, = C, . ..........(33)

Im gleichen Maßstab muß in das Diagramm natürlich auch die auf den Stator wirkende EMK E, gezeichnet werden, und es ist daher Fig. 17

Wir haben nun selbst bei Leerlauf nicht mehr eine einzige EMK Et zu betrachten, sondern gleichzeitig einen Spannungs-
[image: ]

Verlust em, und die Resultante dieser beiden

E,= C .al

stellt die Phasenspannung dar, die herrschen muß, damit das Leerlaufdiagramm a b d 1 richtig ist.

Bei Belastung, wenn der Statorstrom auf äs angewachsen ist, Fig. 18, hat auch der Statorspannungsverlust die Größe äs, die EMK Et muß die gleiche sein, wie ursprünglich angenommen, und infolgedessen verlangt die Richtigkeit des Diagrammes eine Phasenspannung von der Größe

E,= C. al.

Die Figuren 17 und 18 stellen daher das Diagramm eines Motors dar, der mit konstanter EMK E15 aber mit variabler

Heubach, Drehstrommotor.                                4

Phasenspannung Er arbeitet. Damit ist uns aber nicht gedient, denn wir wollen ein Diagramm konstruieren, das die in einem Motor dann herrschenden Zustande angibt, wenn derselbe mit konstanter Klemmenspannung betrieben wird.

Die Lösung dieser Aufgabe ist auf analytischem Wege möglich; denn wir können zur Berechnung der wirklich auf den Motor bei Leerlauf wirkenden EMK Ei die Gleichung aufstellen

ab=V(al)?— (b 1)2 oder

	
• =VR,—R,2 1).



Mit Hilfe dieser Gleichungen läßt sich die Größe E1 oder des Magnetisierungsstromes Jm berechnen. Bei jedem Belastungsfall müßte aber diese Rechnung wiederholt werden, und dieselbe würde sich ungleich langwieriger gestalten, da wir es dann mit schiefwinkligen Dreiecken zu tun hätten. Viel bequemer gelangen wir auf folgendem Wege zum Ziel.

Das Diagramm Fig. 18 würde unseren Anforderungen dann entsprechen, wenn wir alle seine Linien ganz gleichmäßig so zusammenschrumpfen lassen könnten, daß Er abnehmen würde bis auf EP Diese Verkleinerung ist viel bequemer auf rechnerischem als auf graphischem Wege zu vollziehen; wir brauchen nämlich nur alle dem Diagramm entnommenen Werte mit dem Verhältnis

’m =* F / w? + (0,707. apevi . N,2 . Q, . n.. 10-8)2 und das doppelte Vorzeichen der Wurzel bedeutet, daß die Gleichung auch für den Fall Gültigkeit hat, daß die Maschine nicht als Motor, sondern als Asynchrongenerator betrieben wird.

Ferner setzen wir m a der Einheit gleich und teilen in diesem Maßstab die Verlängerung der Geraden am ein. Endlich ziehen wir ins gleich und parallel zu äT, sodaß

— E,

m s = ——.........(36)

Ein mit ms als Radius geschlagener Kreisbogen greift auf unserem Maßstab direkt s ab.

Der Wattkonsum des Motors ist im Diagramm dargestellt durch die Projektion des Statorstromes auf die Phasenspannung, also Fig. 18 durch die Projektion von a s auf sm, also durch sw. Diese Strecke läßt sich für jedes Belastungsstadium sehr einfach finden, wenn über am ein Halbkreis geschlagen wird. Es ist dann natürlich aw immer senkrecht auf w m, daher ws die Projektion von as.

Durch die Einführung des Statorwiderstandes und die genaue Berücksichtigung des dadurch verursachten Spannungsverlustes wird das Diagramm in recht unliebsamer Weise kompliziert; dennoch können wir den Satz aufstellen:

Das unter Vernachlässigung des Statorwiderstandes berechnete und gezeichnete Diagramm hat allgemeine Gültigkeit. Soll der Statorwiderstand in Rechnung gezogen werden, so sind sämtliche, dem Diagramm entnommene Größen mit s oder einer Potenz von £ zu dividieren.

Wir können dies beweisen, indem wir gleichzeitig die Frage beantworten, wie gestaltet sich die Berechnung der einzelnen Größen des Motors unter Benützung der Konstanten C1, C,, C3 . . ?

Wenn das Diagramm Fig. 18 unter der Annahme einer konstanten EMK Ej berechnet und konstruiert ist und bei einer beliebigen Belastung infolge des Spannungsverlustes in den Stator-

E

Windungen nur mehr die EMK — auf den Stator wirkt, kann die maximale Luftinduktion nicht mehr C1 . a d, sondern nur mehr 01 id sein; denn bei gleichem N, , Q1 , II, muß nach Gleichung (1) die Luftinduktion der auf den Stator wirkenden EMK proportional sein. Es wird daher

C,‘==l.   .........(37)

8

Da der Magnetisierungsstrom der maximalen Luftinduktion proportional ist, kann der Magnetisierungsstrom nur mehr---, und der Statorstrom bei beliebiger Belastung — sein. Hierdurch wird

C,’=C........(38)

&

Auf dieselbe Weise finden wir, daß der Rotorstrom 12 und die Konstante

C,=C ........(39)

8 sein muß, und wir finden die Richtigkeit unserer Behauptung, daß das Strom- und Felddiagramm im Verhältnis von -- verkleinert werden muß, bestätigt.

Die zur Bestimmung des Wattverbrauchs eines Motors mit widerstandslosem Stator ermittelte Konstante C, hatte die Größe

C, = a, . E, . C, .

Da die EMK E1 nun s mal zu groß angenommen, C, aber in C

	
	
—2 übergegangen ist, wird





C‘=#........(40)

C,’ dient zur Berechnung der auf den Rotor bezüglichen Watt, also zur Berechnung von V2 und der in mechanische Leistung verlustlos umgewandelten elektrischen. Man erhält also

V,=C/tv=-g. tv

und das elektrische Äquivalent der mechanischen Leistung __ C __ = C,’ . vs = — . vs.

In Bezug auf den Wattkonsum des Stators darf jedoch nicht C,’ in Anwendung kommen, sondern mur C,; denn man erhält in Bezug auf den Stator

— E, C, — C, —

In die Gleichung (20) für die Zugkraftkonstante

C, = 10,2.0,707 .a.N.b.C, Cad. 10—8 muß für C3 jetzt 9 und für Cj.ad der Ausdruck 9 id eingeführt werden, und wir erhalten dann

c‘=9.........(41)

Aus Gleichung (22) folgt ohne weiteres

C‘=4.........(42)

Die Schlüpfung können wir dem ursprünglichen Diagramm ohne jede Änderung entnehmen, denn wenn wir in die Gleichung (26), welche die Schlüpfung darstellt, die durch s dividierten Werte von J2 und B,’ einführen, fällt s wieder heraus, da es im Zähler und im Nenner in der ersten Potenz auftritt.

Daß s bei den Konstanten der Zugkraft und Rotorleistung in der zweiten Potenz auftritt, folgt daraus, daß diese Größen im Diagramm eigentlich durch Flächen dargestellt werden; diese Flächen sind dann allerdings wieder durch Strecken ersetzt, aber diese Geraden sind als Repräsentanten von Flächen aufzufassen. Eine Fläche ändert sich aber natürlich im Quadrat der linearen Änderung.

Zweites Kapitel.

Streuung des Motors mit Sinoidalfeldern unter Vernachlässigung des Eisenwiderstandes.

	
12. Definition und Wirkung dieser Streuung. — 13. Feld und Stromdiagramm des Motors. — 14. Berechnung der Ströme, Felder, Zugkräfte und Leistungen mittels des Diagrammes. — 15. Einfluß des Rotorwiderstandes. — 16. Einfluß des Statorwiderstandes. — 17. Maximaler Leistungsfaktor. — 18. Beispiele. — 19. Heylands Diagramm.



	
	
— 20. Beispiel. — 21. Ossannas Kreis. — 22. Beispiel.



	
12. Definition und Wirkung dieser Streuung.



Wir haben gezeigt, daß sowohl das Strom- als das Feld-diagramm eines Mehrphasenmotors durch je ein rechtwinkliges Dreieck dargestellt werden kann, unter der Annahme, daß jedes der drei im Motor scheinbar vorhandenen Felder — Erregerfeld, Stator- und Rotorfeld — den magnetischen Kreis, der aus Statoreisen, Luft und dem Rotoreisen gebildet wird, in seiner ganzen Grüße durchsetzt. Dieser ideale Fall tritt jedoch in Wirklichkeit nie ein, indem nur ein Teil der im Stator erzeugten Kraftlinien die Luft durchdringt und in den Rotor gelangt, während ein zweiter Teil im Stator allein verläuft, ohne aus demselben auszutreten. Genau so liegen auch die Verhältnisse für den Rotor: nicht alle von den Rotoramperewindungen erzeugten Kraftlinien treten in die Luft und in den Stator über, ein Teil derselben verläuft im Rotor, ohne den Stator zu durchsetzen.

Diese Erscheinung bezeichnet man als Streuung, und unter Anwendung des Ohmschen Gesetzes auf magnetische Kreise ist es sehr leicht, sich ein Bild von diesen Vorgängen zu machen, die Größe der Streuung zu bestimmen und so die Streuung präzise zu definieren.

Wir wollen unsere diesbezüglichen Untersuchungen zuerst an dem Feldmagnetsystem einer Gleichstrommaschine anstellen und unsere hierbei gewonnenen Erfahrungen und Resultate dann auf den Mehrphasenmotor übertragen; und um die Verhältnisse so einfach als möglich zu gestalten, wollen wir vorerst annehmen, der magnetische Widerstand des Eisens sei gleich Null.

[image: ]



Wenn das Feldmagnetsystem Fig. 19 von X Ampere Windungen erregt wird, so wird in dem Luftfeld, das Magnetbohrung und Anker trennt, nach bekannten Gesetzen eine Induktion erzeugt:

B 0,8.2 . d

und die totale Kraftlinienzahl, welche aus dem Polschuh durch den Luftzwischenraum 3 in den Anker übertritt, ist


Z, = B.Q1




X.Q

1,6 J



in welcher Gleichung Q dem mittleren Querschnitt des Luftfeldes entspricht:

Q =t.b.

Die Gleichung

ist identisch mit der Gleichung, welche das Ohmsche Gesetz für elektrische Stromkreise darstellt:

Die Kraftlinienzahl Z, der magnetische Fluß, entspricht dem Strome J, die erregende Kraft X der EMK E, der Querschnitt Q dem Querschnitt q und die Länge 2 8 der Leiterlänge 1. Der Faktor 0,8 endlich vertritt den Widerstandskoeffizienten c.

Wir können daher den Ausdruck

0,8.20

als den magnetischen Widerstand bezeichnen, in welchem die erregende Kraft X den magnetischen Strom Z hervorruft.

Wir können demnach schreiben

Der durch diesen Widerstand repräsentierte magnetische Stromkreis ist jedoch nicht der einzige, auf welchen die erregende Kraft X einwirkt; sondern es existiert noch ein zweiter Weg, dessen Luftlänge 3, ist. Es wird folglich in diesem Teil des Systems eine Induktion hervorgerufen:

B _ x s 0,8 0

Der Querschnitt, welcher von dieser Induktion durchsetzt wird, ist

Q,=2 . m • b

und die totale Kraftlinienzahl, welche dadurch zustande kommt,

z,=B,.Q,=x. 0,9., •

Wie oben bezeichnen wir auch hier den Ausdruck

0,8.01 _p

Q, _ '

als magnetischen Widerstand und können nun schreiben:

—," R,

Bezeichnen wir das Verhältnis des magnetischen Widerstandes des Luftfeldes zum magnetischen Widerstand des Streufeldes

R, T"

so erhalten wir
[image: ]

und die totale Kraftlinienzahl, welche die Wicklung des Feldmagnetsystems durchsetzt, muß der Summe Za + Zs gleich sein. Demnach wird

z=Ra+r)

und

20 Q, " m 0; ’ Q, ’

Gehen wir nun wieder zu einem Drehstrommotor, wir wählen der Einfachheit halber einen zweiphasigen, über, so entspricht dem Feldmagnetsy stein Fig. 19 die in Fig. 20 dargestellte Anordnung. Die beiden in der Horizontalen liegenden Nuten enthalten die Windungen der Phase II, die in der Vertikalen die Windungen der Phase I. Wenn wir nun einen Moment betrachten, in welchem der Strom in Phase I — Null ist, so muß der Strom in Phase II ein Maximum sein, und die einzige im Motor vorhandene erregende Kraft wird von den Amperewindungen der Wicklung II ausgeübt.

Es muß daher zwischen den Zähnen, welche die mit 11 bezeichneten Nuten trennen, ein Streufeld auftreten, und die Größe des magnetischen Widerstandes desselben läßt sich berechnen, genau so wie wir es an dem Gleichstromfeldmagneten gezeigt haben. Der einzige Unterschied zwischen der Fig. 19 und der Fig. 20 besteht darin, daß in der letzteren jede Polmitte eine Nute enthält, welche zur Aufnahme der Wicklung für die Phase I bestimmt ist. Diese Nuten bilden natürlich auch einen magnetischen Widerstand, in welchem, unter Umständen ein Streufeld entstehen kann. Im betrachteten Moment, wenn also lediglich die Wicklung II stromführend ist, bedingen die Nuten I jedoch in keiner Weise eine
[image: ]

Änderung der Anordnung und Größe weder des Luftfeldes noch des Streufeldes bei II, denn je zwei bei I sich gegenüberstehende Zähne haben gleiches magnetisches Potential.

Wie bereits mehrfach erwähnt, machen wir vorläufig alle unsere Untersuchungen unter der Voraussetzung, daß alle Felder, mit denen wir zu rechnen haben, sinoidal angeordnet sind. Wir müssen daher auch annehmen, daß das Streufeld ein sinoidales ist. Die Kraftlinienzahl des Streufeldes können wir mit Hilfe des Streuungskoeffizienten bestimmen; wir erhalten z. B. für das Statorstreufeld

2,=7.Z-

Da wir aber in unseren Formeln zur Bestimmung der EMK, des Magnetisierungsstromes, der Zugkraft, immer mit dem Maximum der Induktion, nicht mit den Kraftlinienzahlen der Felder gerechnet haben, müssen wir auch das Luftfeld und die Streufelder durch ihre maximale Induktion ausdrücken.

Wir können die drei Felder durch die Figur 21 zur Darstellung bringen. Die von der Sinuslinie b eingeschlossene Fläche stellt die Kraftlinienzahl des totalen Statorfeldes, die von der Linie a eingeschlossene die Kraftlinienzahl des Streufeldes dar. Die Linienzahl des Luftfeldes ist durch die Differenz der beiden Flächen, die in der Figur schraffiert ist, repräsentiert. Auf diese Weise haben wir alle Felder auf den gleichen Querschnitt, den Luftquerschnitt Qi reduziert, und hierdurch ist es nun leicht, die Induktionen, welche den einzelnen Feldern entsprechen, zu bestimmen.
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Fig. 21.




Wenn das Luftfeld aus Z1 Kraftlinien besteht, so können wir durch Division der Kraftlinienzahl durch den Querschnitt des Feldes die mittlere Induktion in der Luft ermitteln; also


B, mittel




Zi

Qi '



Die Kraftliniendichte ist jedoch nicht konstant = Bi mittel, sondern sie variiert nach einer Sinusfunktion und das Maximum der Induktion ist es, das wir kennen wollen. Unsere Aufgabe ist daher dadurch gelöst, daß wir das Verhältnis der mittleren Ordinate einer Sinuslinie zur maximalen feststellen. Dies ist jedoch sehr leicht abzuleiten, denn wenn wir mit y" die mittlere, mit y‘ die maximale Ordinate der Sinusfunktion y = sin x bezeichnen, so erhalten wir

y y‘ sin x d x

	
• o



und daraus

y' 7

Wenden wir diese Gleichung auf das Luftfeld an, so ergibt sich

In analoger Weise erhalten wir für die maximale Induktion des Streufeldes

und für die des gesamten Statorfeldes

Die maximalen Induktionen verhalten sich daher wie die Kraftlinienzahlen, und wir können schreiben:

B‘=(1+") B .......(43)

B‘=r,.B;.........(44)

	
	
13.    Feld- und Stromdiagramm des Motors.





Im 1. Kapitel wurde gezeigt, daß sowohl das Strom- als das Felddiagramm bei einem streuungsfreien Motor durch ein rechtwinkliges Dreieck dargestellt werden kann. Stellt Fig. 22 ein solches Stromdiagramm dar, in welchem u b den Leerstrom bei Synchronismus, u s den Statorstrom bei einer beliebigen Belastung darstellt, so muß der Rotorstrom die Größe b s haben, welche, nach dem Kräfteparallelogramm mit us zusammengesetzt, den konstanten Erregerstrom u b ergibt. Das zugehörige Felddiagramm ist sehr einfach zu konstruieren, denn die von den Strömen erzeugten Felder fallen in die Richtung der erzeugenden Ströme und sind letzteren direkt proportional. Es ist also

bd=C.ub bi=C.us d i = C, . b s

Hierbei ist der Einfachheit halber angenommen, daß Stator und Rotor identisch gewickelt sind.

Das Feld b d ist das einzige im Motor tatsächlich vorhandene, denn die Felder bi und id, die vom Stator- resp. vom Rotor-Strom erzeugt würden, wenn nur einer derselben allein im Motor bestehen würde, setzen sich eben zu diesem einen Feld zusammen, und dieses muß unter allen Umständen bei jeder beliebigen Belastung konstant bleiben, da durch dieses Feld die elektromotorische Gegenkraft in den Statorwindungen induziert wird, welche der Klemmenspannung das Gleichgewicht hält.

Um zu untersuchen, wie sich die Verhältnisse bei einem mit Streuung behafteten Motor gestalten, wollen wir vorerst annehmen,
[image: ]

daß auch in diesem Falle das Stromdiagramm Fig. 22 gültig wäre. Das Felddiagramm bei Leerlauf ist dann sehr leicht zu entwerfen. Das Hauptfeld des Stators Fig. 23

b d = C1 . u b und das Streufeld des Stators nach den Entwicklungen des vorigen Abschnittes

ab=C.t.ub

und endlich das gesamte Statorfeld

a d = Cj (1 + ri) • u b.

Das Hauptfeld ad ist es, welches die Windungen des Stators schneidet und welches bei allen Belastungsstadien konstant bleiben muß, um die konstante Klemmenspannung zu balancieren, b d ist

4 derjenige Teil des gesamten Statorfeldes, welcher die Rotorwindungen schneidet, während der Teil ab als Streufeld lediglich im Stator verläuft, ohne nach dem Rotor zu gelangen.

Bei Belastung können wir aus dem Stromdiagramm drei, die einzelnen Felder darstellende Gerade ableiten. Wir erhalten in Fig. 23 das konstante Erregerfeld a d, welches sich, wie schon erwähnt, zusammensetzt aus

b d = C, . u b

a b= C1.T . u b deren Summe

a d = C] (1 + r) . u b

n m        7

a
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ist. Die vom Statorstrom u s bei Belastung hervorgerufenen Felder sind:

ki=C.us

ka=C.t us

a i = C1 (1 + 11) u s.

k i ist nun das Hauptfeld des Stators, welches in den Rotor gelangt, ak das im Stator allein verlaufende Streufeld, und a i das gesamte Statorfeld, welches vom Strom u s erzeugt würde.

Im Rotor erhalten wir ebenfalls drei Felder, nämlich:

m p = Ci. b s nm=C.t.bs

n p =C.(1+x)bs, von welchen m p das Hauptfeld des Rotors, welches die Luft durchsetzt und die Statorwindungen schneidet, n m das im Rotor verlaufende Rotorstreufeld, np das gesamte Rotorfeld, welches von den Rotoramperewindungen allein hervorgebracht würde, darstellt.

Um die in Fig. 23 gezeichneten Felder zu einem Diagramm resp. zu einem Kräfteparallelogramm zusammenzusetzen, müssen wir uns vergegenwärtigen, daß nachstehenden Bedingungen Genüge geleistet werden muß.

	
	
	
1.    Das konstante Erregerfeld muß die Resultante sein aus dem gesamten Statorfeld a i und aus dem Teil des Rotorfeldes m p, welcher die Statorwindungen schneidet.


	
2.    Das resultierende Rotorfeld, welches die Ströme im Rotor hervorruft, ist die Resultante aus dem Teil des Statorfeldes ki, welcher die Rotorwindungen schneidet und aus dem gesamten Rotorfeld m p.


	
3.    Das resultierende Rotorfeld muß auf der die Rotoramperewindungen repräsentierenden Geraden, mithin auch auf dem vom Rotorstrom allein erzeugten Feld senkrecht stehen.


	
4.    Die elektromotorische Gegenkraft, die in den Statorwindungen durch das resultierende konstante Statorfeld induziert wird, muß senkrecht auf diesem Feld stehen und der darauf ebenfalls senkrecht stehenden Klemmenspannung an Größe gleich, der Richtung nach entgegengesetzt sein.







Wie die Fig. 24 zeigt, ist schon die erste dieser Bedingungen durch die der Fig. 23 entnommenen Felder nicht zu erfüllen, da die Gerade m p die beiden in der Richtung des Magnetisierungsstromes u b resp. des Statorstromes bei Belastung us liegenden Geraden a d und a i nicht zu einem Dreieck ergänzt, und es war offenbar unsere Voraussetzung, daß das rechtwinklige Stromdiagramm der Fig. 23 auch für einen mit Streuung behafteten Motor gültig sei, eine unrichtige. Um die drei Felder a d, a i und m p zu einem Dreieck zu vereinigen und dadurch der ersten Bedingung zu genügen, müssen wir die Gerade m (Fig. 24) so lange in der Richtung des Pfeiles um den Punkt a drehen, bis der Abstand der Punkte d und i gleich der Strecke m p wird, wie dies in

Fig. 24 durch die ausgezogene Linie di geschehen ist. Das Feld-diagramm entspricht nun der Bedingung, und wir stehen nun vor der umgekehrten Aufgabe wie oben; es ist nun zu einem Felddiagramm das zugehörige Stromdiagramm zu bestimmen.

Diese Aufgabe ist aber sehr leicht zu lösen, denn wir wissen, daß die erregenden Amperewindungen in die Richtung der von ihnen erzeugten Felder fallen müssen, und infolgedessen muß das Stromdreieck dem Felddreieck adi ähnlich sein; das Stromdreieck wird daher durch u b s repräsentiert und die Größe einer der
[image: ]


Seiten des Dreiecks, z. B. ub, läßt sich aus der Beziehung feststellen, daß

Es erübrigt noch, die Größe des Rotorstreufeldes zu bestimmen, und dies läßt sich mit Hilfe der 2. und 3. der obengenannten Bedingungen erzielen. Das Rotorstreufeld liegt unbedingt in der Richtung der Geraden d i. Das gesamte Rotorfeld muß sich mit dem Teil des Statorfeldes ki, der die Rotorwindungen schneidet (Bedingung 2) zu einer Resultierenden zusammensetzen, welche auf di senkrecht steht (Bedingung 3). Wir müssen also die Gerade di so weit über d hinaus verlängern, bis eine im Endpunkt dieser Geraden n errichtete Senkrechte (Fig. 25) den Punkt k schneidet, dn stellt nun das Rotorstreufeld dar und der Rotorstreuungskoeffizient

d n

Wir können noch eine weitere Gerade k d ziehen, und diese, welche sich einesteils mit dem Statorstreufeld a k zu dem konstanten Erregerfeld a d, andernteils mit dem Rotorstreufeld n d zu dem resultierenden Rotorfeld k n zusammensetzt, stellt das gemeinsame Hauptfeld (= Luftfeld) dar, welches Stator und Rotor in gleicher Weise durchdringt. Dieses gemeinsame Feld kd muß
[image: ]

natürlich auch die Resultante aus dem Teil des Statorfeldes kl bilden, welcher die Rotorwindungen schneidet, und dem Teil des Rotorfeldes d i, welcher zu den Statorwindungen gelangt.

Durch die Berücksichtigung der Streuung ändert sich also das Stromdiagramm insofern, als es nicht mehr ein rechtwinkliges, sondern ein schiefwinkliges Dreieck bildet, und auch im Felddiagramm treten ganz wesentliche Veränderungen auf.

Durch die vorstehenden Konstruktionen haben wir für eine einzige Belastung Strom- und Felddiagramm festgelegt, und unsere nächste Aufgabe wird sein, nach einer Methode zu suchen, welche es in möglichst einfacher Weise gestattet, für jede beliebige Belastung sofort die einzelnen Größen ohne langwierige Konstruktion zu ermitteln.

Heubach, Drehstrommotor.

Zu diesem Behufe stellen wir das Diagramm Fig. 25 in etwas anderer Weise dar. Die beiden Geraden a b d, aki tragen wir in Fig. 26 unverändert auf, und zur Geraden n d i ziehen wir eine Parallele, welche die Punkte b k schneidet. Daß b k wirklich parallel zu ndi ist, folgt aus nachstehenden Gleichungen:


und daraus



a b = 71 . b d

a k = 71 . k i

ab    b d

a k     k i


aus
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Aus Fig. 25




Auf der Verlängerung der Geraden b k tragen wir nun von k k s = Streufeld des Rotors und s p = Hauptfeld des Rotors auf. An Hand der Fig. 25 haben wir schon gezeigt, daß d k das gemeinsame Luftfeld des Stators und Rotors, welches sich mit dem Rotorstreufelde zum resultierenden Rotorfeld zusammensetzt; also dk mit ks gibt als Resultante das Rotorfeld d s, welch letzteres auf k p, der Richtung des Rotorstromes, senkrecht stehen muß. Der Punkt s muß daher auf einem über b d geschlagenen Kreisbogen liegen, und da wir ein ganz beliebiges Belastungsstadium unserer Untersuchung zugrunde gelegt haben, können wir sagen, daß der Schnittpunkt s für alle möglichen Belastungsfälle auf diesem Kreisbogen liegen muß.

und 26 kennen wir die Lage der drei vom Erreger-, Stator- und Rotorstrom hervorgerufenen Felder und wir können, da diese Felder in der Richtung der sie erzeugenden Ströme liegen müssen, die 3 Winkel des Stromdreiecks bestimmen. Wenn zwei Dreiecke aber gleiche Winkel haben, so müssen sich dieselben ähnlich sein, und daraus folgt, daß das Dreieck a b k dem Stromdreieck ähnlich sein muß. Wir können noch ein weiteres ähnliches Dreieck konstuieren, wenn wir Fig. 26 us parallel zu a i ziehen. Auch das Dreieck u b s muß in irgend einem Maßstab das Stromdreieck darstellen und die Spitze s desselben muß sich auf einem Kreis bewegen, wie wir gezeigt haben.

Damit haben wir aber gleichzeitig den Nachweis erbracht, daß sich auch die Spitze k des Dreiecks a b k auf einem Kreis bewegen muß, Fig. 27.

Mit zunehmender Belastung nähern sich die beiden Punkte k und s den beiden in der Geraden u d liegenden Punkten c und d immer mehr, und in einem bestimmten Belastungszustand müssen k und s mit c und d zusammenfallen.

Auch die Punkte i und p fallen in diesem Grenzzustand in die Verlängerung von ud, und es vereinigen sich die beiden Punkte i und p in dem Endpunkt e der Geraden u e. Die Richtigkeit dieser Behauptung können wir folgendermaßen beweisen.

Das Stromdreieck a b k schrumpft bei Leerlauf im Synchronismus, in welchem Falle der Statorstrom gleich dem Magnetisierungsstrom und der Rotorstrom = 0 ist, zur Geraden a b zusammen. Bei stets zu-unehmender Belastung erreicht der Statorstrom die Größe a c, der Rotorstrom wird durch b c repräsentiert und beide zusammen ergeben wieder den Magnetisierungsstrom ab. ab stellt aber auch gleichzeitig das Statorstreufeld bei Leerlauf dar und das gesamte Statorfeld bei Leerlauf ist
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Fig. 27.




da

Im Grenzzustand hat der Statorstrom die Größe a c, dementsprechend besitzt auch das nunmehrige Statorstreufeld die Größe a c und das gesamte Statorfeld

— 1-T1 — a e —-------- • a c.

Wenn wir das uns vorläufig unbekannte Verhältnis a b -------= x b c setzen, so wird —  1 — x ac =-----a x und dieser Wert in obige Gleichung eingesetzt ergibt

ae


Das Rotorstreufeld ist nach zustand c d, und demnach der den Stator übertritt,




unserer Voraussetzung im Grenz-Teil des Rotorfeldes, welcher in



cd

72

Dies Feld d e muß sich mit dem totalen Statorfeld a e zum konstanten Erregerfeld ad zusammensetzen, was in der Tat der Fall ist.

Die Resultante aus dem Statorstreufeld und dem gemeinsamen Hauptfeld, das Stator und Rotor gemeinsam durchsetzt, muß das konstante Erregerfeld a d ergeben, mithin muß das gemeinsame Hauptfeld durch c d dargestellt werden. Das gemeinsame Hauptfeld c d ergibt mit dem Rotorstreufeld das resultierende Rotorfeld, und da dies letztere im Grenzzustand ebenfalls cd ist, muß das resultierende Rotorfeld in diesem Fall den Wert Null haben. Wir haben nun auf der Geraden u e eine Reihe von Punkten bestimmt, von welchen wir angenommen haben, daß sie in folgenden Beziehungen zu einander stehen:

a b

bd

Die Streuungskoeffizienten T und t2 haben wir als bekannt vorausgesetzt, jedoch wissen wir über die Größe des x noch nichts Bestimmtes, und unsere nächste Aufgabe wird es sein, an der Hand der obigen Gleichungen x als Funktion von T1 und T2 auszudrücken.

Wir benützen dazu die Gleichung


setzen



a b = 7 . b d , b d = (b c + c d)

und drücken sowohl bc als cd als Funktion von ab aus, indem wir

—   —    ad T2 1+T — c d = To • d e = ---------------a b x X T1

setzen.

Diese Ausdrücke in die erste Gleichung substituiert ergibt:

und hieraus erhalten wir

x = T1 + t2 — T1 .72 = T.

T bezeichnet man als den Streuungskoeffizienten des Motors.

Wir können nun, wenn uns die Streuungskoeffizienten T1 und T bekannt sind, die Gerade ne in ihre einzelnen Teile zerlegen, und da wir wissen, daß sich die Punkte k und s auf Kreisbögen, welche über b c resp. b d beschrieben sind, bewegen, können wir Feld und Stromdiagramm für alle Belastungsstadien konstruieren.

Der geometrische Ort, auf welchem sich der Punkt i und der Punkt p bei wechselnder Belastung bewegt, muß ebenfalls je ein Kreis sein, deren Durchmesser wir leicht bestimmen können. Da nämlich

a b

	
----- =T1 — T2 — 7.T2



b c

und sich der Durchmesser d e des Kreises, auf welchem sich i bewegt, zu a d ebenso verhalten muß, also

Der Punkt p muß sich auf einem Kreis vom Durchmesser b c verschieben, damit in jedem Moment die Bedingung eingehalten wird,


ks   cd sp de




72-



Um die einzelnen Strecken des Diagrammes bequem vergleichen und ihre gegenseitigen Verhältnisse ohne weiteres durch die Streuungskoeffizienten T1 und T, ausdrücken zu können, ist nachstehende Tabelle zusammengestellt, die alle Größen auf die Strecke b d reduziert enthält.

a b= 71 . b d

b c = ————-----b d = _‘_ b d

71 1 T2 — 31 • 72          T cd = (1 — 1) bd

de =1+7, . ba


(45)



T

a d = (1 + Tj) b d

	
u b = r • b d


	
t = T, + 12 + 7 • 12



Die Luftfelder des Stators und des Rotors müssen in jedem Belastungszustand den Stator- resp. den Rotoramperewindungen proportional sein, weil beide Felder in demselben konstanten magnetischen Widerstand, dem Luftzwischenraum, erzeugt werden müssen. Diese Tatsache können wir benützen, um zu prüfen, ob das Stromdreieck in allen Punkten den Anforderungen des Feld-diagrammes, dessen Richtigkeit nunmehr erwiesen. ist, entspricht. Wir wählen hierzu den Grenzzustand, in welchem das Statorluftfeld durch c e, das Rotorluftfeld durch d e dargestellt ist. Die erregenden Kräfte auf dem Stator und dem Rotor müssen sich dann verhalten wie diese Felder, und wir bekommen die Proportion

de_X, c e X,

Das Verhältnis von de zu ce können wir aber an der Hand des Felddiagrammes durch die Streuungskoeffizienten ausdrücken, und wir erhalten

X2 _ d e _      1+1,

Xj c e 1 + 71 — 72 + 71 . T2

Die Statoramperewindungen werden im Grenzfall durch u d dargestellt, und wir können daher schreiben

X,=ud

und wenn wir diesen Wert in die letzte Gleichung substituieren, erhalten wir

	
— —       1 + 71



X2 = u d • ---•

1 - Ei I T2 I 71 • T2

Der Rotorstrom wird im Grenzfall durch b d dargestellt, und da wir X1 = u d gesetzt haben, müßte X,=b d gesetzt werden können, wenn das Stromdreieck richtig ist. Mit Hilfe der Streuungskoeffizienten können wir ermitteln, daß

u d = (1 —+ Tj —+ 72 — T . 72) b d ist, und wir erhalten somit

X,=(1+r)bd.

Dies will besagen, daß wir zur Bestimmung der Rotorampere-Windungen zwar das Stromdreieck benützen können, daß wir je-
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doch die Länge der Stromdreieckseite, welche X, darstellt, mit 1 — T multiplizieren müssen, um die Rotoramperewindungen im gleichen Maßstab zu erhalten, wie die Statoramperewindungen.

Diese Multiplikation können wir auch graphisch ausführen, wenn wir über ab einen Halbkreis schlagen und den Vektor des Rotorstromes über b hinaus so weit verlängern, bis er diesen Kreis schneidet. Die Richtigkeit der Konstruktion folgt aus der Beziehung

a d = (1 + r) b d , folglich ist auch in einem beliebigen Belastungsstadium (Fig. 28)

sv=(1+x)bs.

Um die Entwicklung der Diagramme möglichst übersichtlich zu gestalten, sind in Fig. 28 für drei Fälle: Leerlauf, beliebige Belastung und Grenzfall, die 3 Felddia-gramme nebst den zugehörigen Stromdiagrammen nebeneinander gezeichnet, und es ist dieser Figur die nachstehende Tabelle beigegeben, aus welcher die Bedeutung und das Zustandekommen der einzelnen in den Diagrammen enthaltenen Längen zu ersehen ist.

Um einen Motor berechnen und sein Verhalten bei den verschiedenen Belastungen angeben zu können, haben wir es nicht nötig, alle in den vorhergehenden Diagrammen dargestellten Felder zu kennen, und wir können das Diagramm wesentlich vereinfachen, wenn wir uns darauf beschränken, nur die wirklich nötigen Felder zu bestimmen.

Tabelle zu Figur 28.

Gegeben 71 und T2.


		
Leerlauf
	
Belastung
	
Grenzwert
	
Bemerkungen




1. Felddiagramm.


	
Statorluftfeld.....

Statorstreufeld ....
	
bd a b
	
ki a k
	
c e

a c
	
= Ty . Statorluftfeld


	
Totales Statorfeld . . .
	
a d
	
a i
	
a e
	
= (1 + Tj). Statorluftfeld


	
Rotorluftfeld.....
	
—
	
sp
	
d e
	

	
Rotorstreufeld ....
	
—
	
k s
	
c d
	
= t2 . Rotorluftfeld


	
Totales Rotorfeld . . .
	
—
	
kp
	
c e
	
= (1 + 72) . Rotorluftfeld


	
Gemeinsames Hauptfeld .
	
b d
	
kd
	
c d
	

	
Result. Rotorfeld . . .
	
b d
	
sd
	
—
	

	
2.
	
Stromdiagramm.
	

	
Magnetisierungsstrom . .
	
u b
	
u b
	
ub
	
d. konst. Statorfeldes ad


	
Statorstrom.....
	
u b
	
u s
	
u d
	

	
Rotorstrom.....
	
—
	
V s
	
a d
	

	
Result. Magn. Strom . .
	
u b
	
V u
	
u a
	
d. gemeins. Hauptfeldes




Um die in den Statorwindungen induzierte elektromotorische Gegenkraft berechnen zu können, brauchen wir das gesamte Statorfeld a d, welches bei allen Belastungen konstant bleibt. Zur Berechnung der erregenden Ampere-Windungen und des Magnetisierungsstromes, der erforderlich ist, um dies Feld zu erzeugen, ist

die Kenntnis des Luftfeldes b d


ad

1+1, nötig.
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Fig. 29.





das resultierende



Damit wir die im Rotor induzierte EMK, den Rotorstrom und die Zugkraft des Rotors bestimmen können, ist schließlich noch die Kenntnis des resultierenden Rotorfeldes erforderlich. Auf die Bestimmung der übrigen Felder können wir verzichten, da das resultierende Stator-und das resultierende Rotorfeld tatsächlich die einzigen im Motor wirklich zustande kommenden Felder sind. Das Luftfeld des Stators bei Leerlauf bd ist ja eigentlich auch nichts anderes als Rotorfeld bei Leerlauf.

Fig. 29 stellt den Teil des Diagrammes aus Fig. 28 dar, welchen wir benötigen, um das Verhalten des Motors vollständig bestimmen zu können.

Das Diagramm enthält:

das konstante Erregerfeld = a d,

das Statorluftfeld bei Leerlauf =bd,

das resultierende Rotorfeld bei beliebiger Belastung = d s.

Ferner enthält es

die Magnetisierungsamperewindungen u b,

die Statoramp erewindungen bei beliebiger Belastung us und die Rotoramperewindungen bei beliebiger Belastung = (1 + 71) . b s = s v.

Mit dem Durchmesser des Diagrammkreises bd bestehen folgende Beziehungen:

ab=t.bd u b = (tj + 12 + 7 • 72) b d.

	
	
14.    Berechnung der Ströme, Felder, Zugkräfte und Leistungen mittels des Diagrammes.





Um die numerische Größe der dem Diagramm zu entnehmenden Längen in einfacher Weise bestimmen zu können, schlagen wir denselben Weg ein, den wir schon im 7. Abschnitt des 1. Kapitels gewählt haben, indem wir je eine Konstante bestimmen, mit welchen die in einem beliebigen Maßstab (z. B. in mm) gemessenen Strecken multipliziert werden müssen, um die wahre Größe der durch sie repräsentierten Ströme, Felder etc. zu ergeben.

Wir gehen bei der Berechnung eines Motors wieder von der maximalen Luftinduktion B| aus, für welche wir einen Erfahrungswert annehmen, und wir zeichnen nun im Diagramm die Gerade b d Fig. 30 in einer passenden Größe, indem wir setzen

B|=Cbd........(46)

Zur Berechnung der Drahtzahl auf dem Stator müssen wir die Induktion um das (1 + c)-fache größer annehmen, da die

Statorwindungen nicht nur vom Luftfeld, sondern auch vom Statorstreufeld geschnitten werden. Wir erhalten demnach

B‘=(1+)B|=(1+).bd=C.ad . . (47)

Wir können nunmehr die Drahtzahl für je eine Phase des Stators berechnen, wenn wir Gleichung (1) sinngemäß auf die jetzigen Verhältnisse anwenden. Wir erhalten dann


N1




E. 108




0,707 . (1 + 71) Bi . Q . 11,




• • (48)



Zur Berechnung der erregenden Kraft für d die Magnetisierung dürfen wir nur die Luftinduktion zugrunde legen, da das Statorstreufeld die Luft nicht durchdringt, sondern nur im Stator verläuft. Wir erhalten daher für den Magnetisierungsstrom nach Gleichung (7)

p.oB Jm =0,812 , N ■ ■ • (49)

Wenn wir nun eine Gleichung von der Form

J=C.ub • • • • (50)

aufstellen wollen, so können wir jetzt nicht mehr / wie früher, als wir nur den streuungsfreien Motor / betrachteten, C, beliebig annehmen; denn ub / steht zu bd und dadurch auch C, zu C, in ul einem ganz bestimmten Verhältnis. Es is Fig- 30.

u b = (T 4- 1, — T . T2) b d = t . b d . . . . (51)

Um C2 bestimmen zu können müssen wir in die Gleichung

C2

für Jm den aus Gleichung (49) ermittelten Ausdruck einführen und ub nach Gleichung (51) ausdrücken. Wir erhalten, wenn wir schließlich setzen

— B‘ nd- o

für C, den Ausdruck

Bei einer beliebigen Belastung wird der Statorstrom

J1=Cus........(53)

Der Rotorstrom wird in einem beliebigen Betriebsstadium

J,=C.bs.........(54)

und zur Bestimmung von C3 können wir alle zur Ableitung der Gleichung (16) gemachten Erwägungen auf die jetzigen Verhältnisse übertragen; nur müssen wir uns erinnern, daß die Strecke bs mit (1 — rj multipliziert werden mußte, um im gleichen Ampere-windungsmaßstab, wie er für die auf den Stator bezüglichen Strecken u b und u s gültig ist, die Amperewindungen des Rotors darzustellen. Die Multiplikation von b s mit 1 + T können wir zwar graphisch ausführen, wie im vorhergehenden Kapitel gezeigt wurde, es ist jedoch noch bequemer, dies dadurch überflüssig zu machen, daß wir diese Multiplikation in die Bestimmung der Konstanten C3 legen. Die Gleichung (16) geht dadurch in folgende über

o,=(1+)c aNL......(55)

Um den Wattkonsum des Motors im Diagramm darzustellen, müssen wir die Wattkomponente des Primärstromes dadurch bilden, daß wir von s aus auf bd eine Senkrechte st fällen, st stellt nun die Wattkomponente des Statorstromes us dar und wir können deshalb eine Gleichung bilden

...............(56)

Zur Berechnung von C, drücken wir W1 durch die Gleichung

W1 = at. Ej. Jj. cos q aus, in welchem Ausdruck a1 die Phasenzahl des Stators bedeutet. Ersetzen wir in letzter Gleichung J1 durch den in Gleichung (53) gefundenen Wert C. us, so erhalten wir

W1 ==a E.Cus. cos g •

Wenn wir in Gleichung (56)

t 8 = U S . COS q setzen, so erhalten wir einen zweiten Ausdruck für Wn nämlich

W1 = C4 . us . cos q und durch Gleichsetzen der letzten beiden für W1 gefundenen Ausdrücke kann C, ermittelt werden; es ist

C,=a.E.C,........(57)

Wir wollen nun eine Strecke suchen, welche die Zugkraft des Motors darstellt. Die Zugkraft des Rotors ist nach Gleichung (9)

P = 10,2.0,707 . a, . N . b . J2 . B,’ . 10- 8.

Alle Faktoren auf der rechten Seite der Gleichung sind für ein und denselben Motor konstant, mit Ausnahme von J2 und B,’. Die Zugkraft ist daher dem Produkt J, . B,’ proportional. J, wird im Diagramm durch bs, B,’ durch ds dargestellt und das Produkt derselben kann durch die Fläche des Dreiecks b s d repräsentiert werden, denn

— i i 3 b s . d s

I lache b s d =---o----

weil der Winkel b s d immer ein rechter ist. Wir können aber die Fläche dieses Dreiecks auch in anderer Weise ausdrücken, wenn wir b d als konstante Basis desselben betrachten und die Höhe des Dreiecks t s einführen. Wir erhalten dann

Wegen der Konstanz der Basis bd muß ts dem Produkt bs.ds, also auch der Zugkraft proportional sein, und wir können schreiben:

P=C.ts.........(58)

Zur Ermittlung der Konstanten C5 führen wir in die Zug-kraftsformel (9) für J, nach Gleichung (54) ein

J 2-- C3 • b S

und für B,’ den Ausdruck

B,’ =C.ds

und wir erhalten dann

P = 10,2.0,707. a, . N, . b . C, . C, . 10" 8. bs . ds.

Wegen der Ähnlichkeit der Dreiecke,

AbstAbds

besteht die Proportion

b s   b d t s s d

und deshalb ist

— — b d b s === t s . -----s d

Führen wir diesen Ausdruck für bs in die Zugkraftsformel ein, so erhalten wir durch Gleichsetzen der letzteren mit Gleichung (58), wenn wir außerdem

C,. bd = b;

setzen, den Ausdruck

C5 = 10,2.0,707 .N.b.B.a,.C,.10-8 . . . (59)

Da wir vorläufig den Motor als widerstandslos und überhaupt als verlustlos arbeitend angenommen haben, muß die vom Motor geleistete mechanische Arbeit der zugeführten elektrischen gleich sein, wir können daher die Strecke ts, welche den Wattkonsum darstellt, gleichzeitig zur Darstellung der mechanischen Arbeit, die der Motor abgibt, benützen, indem wir schreiben

und die Konstante C6 muß sein

- C4

V6    736


(61)



	
	
15.    Einfluß des Rotorwiderstandes.





Wie bereits im Abschnitt 9 des 1. Kapitels gezeigt wurde, wird durch die Einführung des Rotorwiderstandes das Feld- und Stromdiagramm in keiner Weise verändert. Es genügt aber nicht mehr eine unendlich kleine Schlüpfung, um in den Rotorwindungen vom Widerstande w2 den Rotorstrom hervorzurufen, sondern es muß im Rotor eine EMK induziert werden, deren Größe

Ea = J2 • W2

ist. Die induzierte EMK hat nach Gleichung (1) die Größe

E2 = 0,707 . N, . B,/ . Q, . 1, . 10—8 .

Wenn wir diese beiden Gleichungen kombinieren und außerdem für J, und B,’ die Strecken des Diagrammes einführen, indem wir

J, = C, . bs

B/‘= C.sd

setzen, und endlich an Stelle der Polwechselzahl im Rotor die Schlüpfung s einführen, wobei

so erhalten wir

s b s C, . w, . 108

— == —--3—2--. . . . (62)

100 s d 0,707. C, . N, . Qe . nx               K

Wir können den Quotienten 100 dadurch eliminieren, resp. der Einheit gleich machen, daß wir die Schlüpfung s = 100 % annehmen. Unsere Betrachtungen beziehen sich dann auf den Stillstand des Motors, der Rotorstrom wird durch b s', das Rotorfeld durch d s' repräsentiert und die beiden Strecken sind durch die Gleichung verbunden

d s' __ C3 . W2.108


(63)



W 0,707 . C, . N2. Qj . n.

Fällen wir nun in Fig. 31 die Gerade s‘ g' senkrecht auf b d, so muß wegen der Ähnlichkeit der Dreiecke

A b s‘ g' & A s‘ g' d

die Proportion bestehen

b s'   g' s'

d s'       g' d

[image: ]

Fig. 31.




Gehen wir nun auf einen beliebigen Belastungszustand über, in welchem der Rotorstrom durch b s, das Rotorfeld durch s d dargestellt wird, so muß wegen der Ähnlichkeit der Dreiecke

AbsdoAgg’d

auch folgende Proportion bestehen:

bs 4 g’g s d g’d

Die konstante Länge g‘ d können wir aber durch die ebenfalls konstante Länge g' s‘ ausdrücken, wenn wir den konstanten, von d s' und s' g’ eingeschlossenen Winkel ß einführen, und wir erhalten

g‘ d = g‘ s‘ . tg 8

und dadurch

g's' sd

Vergleichen wir diese Gleichung mit der Gleichung (62), so


finden wir, daß



C3w2.1Q3____


(64)



ö p 7 0,707 . C1.N2.Q. I

gesetzt werden kann, wenn wir

gg' = s g's' 100

setzen. Wir brauchen daher nur die Strecke g‘ s‘ in 100 gleiche Teile einzuteilen, um dieser Bedingung zu genügen, und wir können dann direkt durch g‘ g = s die prozentuale Schlüpfung des Motors bei der angenommenen Belastung ablesen.

Um die Größe des durch den Rotorwiderstand verursachten Wattverlustes graphisch und ziffernmäßig festzulegen, bringen wir den Rotorverlust in Beziehung zum Wattkonsum des Motors. Der Wattkonsum des Motors ist

W1 == a. E .J cos q.

In dieser Gleichung setzen wir E = 0,707 . N, (1 + r,) BJ. Q, . n, . 10-8

J1 . cos q = C2 . t s und erhalten dadurch

W, = 0,707 .a.N,.(1+ t^ B.Q.Cts. 10-9 .

Der Wattverlust im Rotor ist

	
V g = a, • E, • J,.



Für E, und J, führen wir die Ausdrücke ein

	
	
E, = 0,707 . N, . B2'. Q, . 1, . 10-8





J,=01+ N.bs

und bekommen, wenn wir noch

s " - 100 ’ " setzen:

	
	
	
v, = 0,707 . a, . N, . (1 + r) B,’ . Qj . c, . 180 . bs . 10-8 .







Das Verhältnis des Rotorverlustes zum Wattkonsum des Motors wird daher

Heubach, Drehstrommotor.

V2 __ s b s B,’ W, 100ts B

Infolge der Ähnlichkeit der Dreiecke

Absdgo Abts

besteht die Proportion

b s       d b

t s        d s

und wenn wir

B,’ =C.ds

B = C, .bd

setzen, erhalten wir

V,——16 --------(69)

Um den Rotorverlust graphisch darzustellen, müssen wir eine Konstruktion suchen, welche die Gerade t s im Punkt v so teilt, daß sich verhält

tv _ V, + s _ g’g t s Wi 100 g‘ s'

Da d g' g==), g S‘ können wir

g’E g’ggs

g‘ s‘ d g'

setzen. Infolge der Ähnlichkeit der Dreiecke

Adg’goAstb ist aber

g’g _ tb g’d st also

V2


t b

— • tg ß.

s t



W,


können wir
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Um t b zu eliminieren,

setzen, wodurch

wird.

Die gesuchte Konstruktion besteht daher einfach darin, daß eine Gerade b v so zu ziehen ist, daß dieselbe mit b d den Winkel ß einschließt.

Da, wie bereits erwähnt, in Bezug auf das Strom- und Feld-diagramm durch den Einfluß des Rotorwiderstandes nichts geändert wird, bleiben die im vorigen Kapitel für die Ströme und Felder abgeleiteten Konstanten C1, C2, C3, C,, C5, C6 unverändert bestehen. Die Erscheinungen: Schlüpfung, Rotorverlust, Reduktion der mechanischen Leistung, welche infolge des Rotorwiderstandes auftreten, sind auf graphischem Weg durch die Einführung des Winkels / berücksichtigt.

	
	
16. Einfluß des Statorwiderstandes.





Zur Berücksichtigung des Statorwiderstandes können wir die gleiche Methode benützen, die wir im Absatz 11 des 1. Kapitels angewendet haben. Wir nehmen die auf den Stator wirkende EMK als konstant und zwar als gleich der Klemmenspannung E1 an, bestimmen die maximale Luftinduktion B| und berechnen den Magnetisierungsstrom Jm. Im Diagramm Fig. 32 ist der Magnetisierungsstrom durch u b repräsentiert, und dieselbe Strecke benützen wir, um den Spannungsverlust e, durch den Statorwiderstand W1 darzustellen. Der Spannungsverlust bei Leerlauf hat die Größe

	
e, = Jm • w,



und unserer Annahme gemäß können wir e, der Strecke ab proportional setzen, indem wir schreiben

e == C-.u b.

Da üb mit Jm durch die Beziehung verknüpft ist

wird

C = C,.w,.........(67)
[image: ]


Auf u b errichten wir die Senkrechte u m, die die konstante EMK E1 repräsentiert und deren Länge festgelegt ist durch die Formel

Mit wachsender Belastung bewegt sich die Spitze des Stromdreiecks auf einem Kreis, und in einem beliebigen Belastungsstadium wird der Statorstrom durch u s dargestellt, u s stellt aber auch gleichzeitig den nunmehrigen Spannungsverlust im Stator dar, und da wir die auf den Stator wirkende EMK als konstant und gleich E, angenommen haben, müssen wir vom Punkt s aus eine Gerade s m ziehen, um die Klemmenspannung Er ermitteln zu können, welche nun erforderlich ist, um auf den Stator mit einer EMK E, zu wirken und gleichzeitig den Spannungsverlust us zu decken. Die gesuchte Klemmenspannung Er, welche diesen Bedingungen genügt, wird durch die Resultierende der Strecken u s und u m, nämlich m s dargestellt.

Wir wollen aber nicht untersuchen, wie sich der Motor bei einer mit der Belastung variablen Klemmenspannung Er verhält, sondern wir wollen sein Verhalten bei konstanter Klemmenspannung feststellen. Dies können wir dadurch bewerkstelligen, daß wir alle dem Diagramm zu entnehmenden Linien mit einem Koeffizienten — multiplizieren, und s muß so groß sein, daß die resultierende Klemmenspannung E, mal — gleich ist der wirklichen konstanten Klemmenspannung EP Es ist demnach

Die Konstanten C1, C2, C3 . . ., mit welchen wir die dem Diagramm entnommenen Strecken multiplizieren müssen, um die numerischen Werte der durch die einzelnen Strecken repräsentierten Größen zu ermitteln, werden nun:


C3‘
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(70)
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C,’


C6

82



Die Schlüpfung bleibt ungeändert dieselbe, wie sich mit Hilfe der Gleichung (64) beweisen läßt. In dieser Gleichung ist im Zähler C3, im Nenner C1, sonst enthält die Gleichung nur Konstante, welche vom Statorwiderstand absolut unbeeinflußt bleiben. Aus der Tabelle folgt aber, daß

C, _ C‘,

C, C\

sein muß, folglich behält tg ß seinen ursprünglichen Wert, und demzufolge ändert sich auch an der Schlüpfung nichts.

Zur Darstellung der Wattkomponente des Primärstromes muß u s auf m s senkrecht projiziert werden, und wir erhalten auf diese Weise sw. Diese Strecke ist auch bei der Berechnung des Wattkonsums des Motors zugrunde zu legen.

Der Wattkonsum wird daher

W1=*.sw= C." sw......(71)

denn, wie auf Seite 52 gezeigt wurde, ändert sich in Bezug auf den Stator C," nur in —4, nicht in -C4.

4                       & 2                           82

	
17.    Maximaler Leistungsfaktor.



Bei Vernachlässigung des Statorwiderstandes wird cos g in der Weise graphisch dargestellt, daß Fig. 32 von u aus mit einem beliebigen Radius u s' ein Kreisbogen beschrieben wird. Die Projektion u s' auf die Diagrammlinie u E, stellt direkt den Wert cos g dar, wenn u s' der Einheit gleichgesetzt wird; denn es ist

ns"   COS g u s‘      COS 0 und daher cos q = u s”.

Von großem Interesse für die Beurteilung der Güte eines Motors ist die Kenntnis des maximalen Leistungsfaktors, mit welchem der Motor zu arbeiten imstande ist. cos g wird offenbar dann ein Maximum, wenn der Winkel g seinen kleinsten Wert besitzt und dies tritt dann ein, wenn u s, der Radiusvektor des Primärstromes, Tangente an den Diagrammkreis wird. In diesem Falle ist der Winkel uso ein rechter und daher Winkel uos = g. Bei maximalem cos gp gelten infolgedessen die Beziehungen:

Es ist nun

— b d — u o = —9—Hub

und ferner

ub

bd

Daher ist der maximale Leistungsfaktor:

cos "max =1+2r.......(72)

Nicht ganz so einfach liegen die Verhältnisse, wenn der Ohmsche Widerstand der Statorwicklung berücksichtigt wird. Aus dem Sinussatz folgt, daß Fig. 34

m u . sin Q1 = m s . sin g ,

wenn mit 91 der Phasenverschiebungswinkel bei Berücksichtigung des Statorwiderstandes bezeichnet wird. Es ist nun nach Gleichung (69)

und daher wird

sin @


(73)



sin (P1 =----—

Eine einfache Beziehung zwischen dem Kosinus der beiden Winkel g und 91 besteht nicht. Es läßt sich aber mit Hilfe dieser Gleichung der Leistungsfaktor cos P1 aus dem Diagramm, welches ohne Berücksichtigung des Statorwiderstandes konstruiert ist, berechnen.

. Es soll noch festgestellt werden, welche Größe 91 besitzt, wenn cos y ein Maximum ist. Aus dem Sinussatz folgt

sin (1 + 90)  sin (90 — «)

mz         ms ferner

sin Q1 sin q

mu ms und es ist m z == m u — u o . tg q .

Daher wird

cos Q1 __ cos q . sin QP1 mu+uo.tgq mu. sin q

und hieraus erhalten wir

um tg q

Für = kann ein anderer Ausdruck gewählt werden. Es u m

ist nämlich

— E, — u m = —----. u b ’m • Wi daher

u°  Jm-W, 1+21 um E,       2 T

und es wird


(74)



tg 71 - 3w, 1427 1

	
	
E,        2 T T tg q





Diese Gleichung hat nicht allgemeine Gültigkeit, sondern sie gilt nur, wenn g ein Minimum, also cos g ein Maximum ist. Wird der Statorwiderstand vernachlässigt, so wird W1 = 0 und 41 = g.

	
18.    Beispiele.



Als Beispiel sei nochmals der Motor gewählt, den wir bereits unter der Annahme, daß er streuungsfrei sei, untersucht haben. Die mechanischen Dimensionen des Motors sind


D = 20 cm b — 10 cm

Q, = 157 cm3 0= 0,1 cm
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Die elektrischen Daten sind folgende

P=4

	
	
a, = 3



	
E, = 110



n = 100

b; = 5000


a2 — 3

N2 = 50

w, = 0,05 Ohm



Um die Streuung berücksichtigen zu können, nehmen wir an 7, = 0,12

7 = 0,08

T = T1 + T2 + T1 . t-2 = 0,21.

Die Rechnung soll zweimal durchgeführt werden, einmal unter Vernachlässigung des Statorwiderstandes, das zweite Mal unter Berücksichtigung desselben.

	
	
1 .) w, = 0.





Wir können sofort das Diagramm Fig. 33 zeichnen, wenn wir den Durchmesser des Diagrammkreises b d in einer beliebigen Größe, z. B. 100 mm, annehmen. Wir erhalten

b d = 100 mm ab=r.bd= 0,12.100 = 12 mm ub=rbd= 0,21.100 = 21 mm.

Die Drahtzahl des Stators wird per Phase nach Gleichung (48) .      E.108      _     110 •108     _

	
	
	
1    ‘ 0,707 (1 + 1) B|. Q, . II 0,707.1,12.5000.157.100







Nun können wir sofort die Konstanten C1, C, . . . bestimmen. Wir erhalten nach den Gleichungen:


	
(46)
	
Bi   5000 _

" b d    100     °


	
(52)
	
0,8.V2.p.d _ 0,8.V2.4.0,1.50

2 a, P.N.t 1   3.0,667.176.0,21


	
(55)
	
AN             176

Ca = (1 + r) C, aJN = 1J2.0,306.50 — 1,2.


	
(57)
	
C,= a.E.C,=3.110. 0,306 = 101


	
(59)
	
C5 = 10,2.0,707 . N2. b . B . a, . C, . 10“ 8

= 10,2.0,707.50.10.5000.3.1,2.10“ 8 = 0,65

C. 101


	
(61)
	
C 730   736   0137


	
(64)
	
C,.w,.108      _   1,2.0,05.10«

8P 0,707. N.Q.II. C, 0,707.50.157.100.50    ’




Im Diagramm haben wir noch die Gerade b v s‘ unter dem Winkel ß einzutragen und außerdem d s' g' durch Linien zu verbinden, welche ebenfalls den Winkel ß einschließen, g’s’ müssen wir in 100 Teile teilen, um die Schlüpfung direkt ablesen zu können.

Der Magnetisierungsstrom des Motors ist nach Gleichung (50)

J=C.ub= 0,306.21 = 6,42 Ampere.

Um das Verhalten des Motors bei Belastung zu studieren, wählen wir den Zustand, in welchem sein Leistungsfaktor ein Maximum ist, nämlich

Wir müssen demgemäß u s als Tangente an den Diagrammkreis ziehen.

Ferner sind noch die Linien ts, sd und sb zu zeichnen. Wir messen nun im Diagramm

u s = 50 mm

b s = 38 mm t s = 35,4 mm t v = 3,1 mm vs— 32,3 mm

und erhalten daraus

Statorstrom =J =C.us= 0,306.50 = 15,3 Ampere Rotorstrom = J, = C3 . b s = 1,2.38 — 45,5 Ampere

Wattkonsum = Wi =C.ts= 101.35,4 = 3580 Watt

Zugkraft =P=C.ts= 0,65.35,4 = 23 kg

Leistung = PS = C, . vs = 0,137.32,3 = 4,42 PS

Rotorverlust =V,=Ctv= 101.3,1 = 312 Watt.

Die Schlüpfung lesen wir am Schlüpfungsmaßstab bei g ab zu 8,8°. Um kleine Schlüpfungen mit größerer Genauigkeit ablesen zu können, kann man in beliebigem Abstand h' h parallel zu g‘ s‘ ziehen und man erhält dann den Schlüpfungsmaßstab im Ver g‘ d hältnis hra vergrößert; denn es ist hT ' d h‘ g g' d g'

Die Tourenzahl des Motors ist
[image: ]

Fig. 34.


und der Wirkungsgrad des Motors

w. — V, 3580 — 312 Ts 32,3    .

n == -------- === •— ---------» = — — = ---- = U 12.

W1            3580          t s 35,4

Beim Stillstand fällt die Spitze des Stromdreiecks nach s ts geht dadurch über in g' s'. Wir messen im Diagramm

u s' = 119 mm,

b s' = 98 mm,

s‘ g’ = 20 mm.

Es wird demnach beim Stillstand

Statorstrom = J, =C.us‘= 0,306.119 = 36,4 Ampere,

Rotorstrom = J2 = C3. b s' = 1,2.98 = 118 Ampere, Wattkonsum = W1 =Cs‘g‘= 101.20 = 2020 Watt, Zugkraft = P =C‘g= 0,65.20 = 13 kg.
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In Fig. 34 sind in rechtwinkligen Koordinaten alle Größen des Motors dargestellt und auf die Abszisse sind die Schlüpfungen aufgetragen.

	
	
2 .) w, = 4,28 Ohm.





Um das Verhalten des Motors bei Berücksichtigung des Widerstandes der Statorwicklung festzulegen, könnten wir das Diagramm Fig. 33 benützen. Um diese Figur nicht durch eine zu große Linienzahl unübersichtlich zu gestalten, ist die auf den Statorwiderstand bezügliche Konstruktion in einem besonderen Diagramm (Fig. 35) vorgenommen. Wir haben die Linie um in solcher Größe zu zeichnen, daß nach (Gleichung 68)

- = -------- — O2 . u b --- um        Ei                E, folglich

— E, 110      .

um = —7——— = —Tox? A 00 = 84 mm. C2 . W1        0,306.4,28

Bei Leerlauf wird

und daher der Magnetisierungsstrom

- C,.ub 0,306.21

’m = 7%) = 1,030 = 62 Ampere-

Die Linie, welche den Wattkonsum bei Leerlauf darstellt, ist Wo b und daher wird der Leerlaufsverlust des Motors

	
w, • v, = C,.wob - 101.5 = 490 Watt.



Dieser Verlust wird lediglich durch den Widerstand der Statorwicklung verursacht, und er muß daher auch in nachstehender Weise zu berechnen sein:

V, = a.J?.w, =3.6,22. 4,28 = 494 Watt.

Wir erhalten also ungefähr dasselbe Resultat wie oben; denn die geringe Abweichung von 490 gegenüber 494 rührt lediglich durch die unvermeidliche Ungenauigkeit beim Ablesen des Rechenschiebers resp. beim Ausmessen der Diagrammlinien her. Bei mittlerer Belastung (cos y = max) wird

m s    123   . 8 = __— = --- = 1,46 m u     84

und es ergeben sich folgende Werte:


Ji

J,

w,

P

v,

v.





	
C. us
	
0,306.50
	
= 10,5 Ampere,


	
&
	
1,46


	
_C. b s_
	
1,2.38
	
= 31,2 Ampere,


	
&
	
1,46


	
C4.ws_
	
101.44
	
= 3040 Watt,


	
&
	
1,46


	
C, • t s _
	
0,65.35,4
	
= 10,75 kg,


	
22
	
2,14


	
_ C, . t V __
	
101.3,1
	
= 146 Watt,


	
42
	
2,14


	
_ C, . w s
	
C, . t s
	
101 (30,2 — 16,5) = 1390 Watt.


	
f
	
ga






Natürlich muß man für V1 und V, die gleichen Resultate erhalten, wenn man schreibt

V, = a.J,2.w,=3. 10,52.4,28 = 1410 Watt,

V2= a. J,2 . w2 = 3.31,22.0,05 = 146 Watt.

Die Schlüpfung s = 8,8%

ist dieselbe geblieben, wie wir sie bei Vernachlässigung des Statorwiderstandes gefunden haben.

Bei Stillstand wird

und es ergeben sich dann folgende Werte:

	
w, - C, • w s = 101.100 = 5430 Watt,



P -9:7-0430 - 372t

	
v, - ose = 101/20 = 586 Watt,



V1 = W1 — V2 = 5430 — 586 = 4844 Watt.

Die letzte Beziehung ist deshalb zulässig, weil die Leistung des stillstehenden Motors Null ist; der ganze zugeführte elektrische Effekt wird in den Widerständen der Wicklungen vernichtet, d. h. in Wärme umgesetzt. Natürlich erhält man V1 und V2 auch durch die Gleichungen:
[image: ]

Fig. 36.


In Fig. 36 sind Zugkräfte, Ströme, Leistungen für alle Belastungsstadien als Funktion der Schlüpfung in einem rechtwinkligen Koordinatensystem dargestellt. Ein Vergleich der Fig. 34 und 36 zeigt deutlich die Abnahme der obigen Größen infolge des Statorwiderstandes.

Der maximale Leistungsfaktor des Motors läßt sich in folgender Weise berechnen. Bei Vernachlässigung des Statorwiderstandes ist cos «max = 142+= 142 “ 0,707.

Daher ist

V1 - cos3 q V1 — 0,7073     ,

• = cos q =   0,707    = '

Es ist nun nach Gleichung (74), wenn mit 9P1 der Phasenverschiebungswinkel bei Berücksichtigung des Statorwiderstandes bezeichnet wird,

’s " - -w,  1427 - —I Ei 2r * tge

6,42.4,28    1,42           7 5T

110      0,42 T

Es ist demnach

cos —      — =      ---------- = 0,877. V1+tg? q   V 1 + 0,5432

	
	
19.    Heylands Diagramm.





Das entwickelte Diagramm hat den Vorzug der absoluten Richtigkeit, es ist aber insofern etwas unbequem in seiner An-Wendung, als die exakte Berücksichtigung des Statorwiderstandes ziemlich große Komplikationen des Diagrammes mit sich bringt. Wir haben gesehen, daß sich im Gegensatz zum Statorwiderstand der Einfluß des Rotorwiderstandes in äußerst einfacher Weise diagrammatisch darstellen läßt, und auf Grund dieser Tatsache hat Heyland ein sehr elegantes und einfaches Diagramm dadurch geschaffen, daß er den Magnetisierungsstrom vernachlässigt und den Statorstrom gleich dem Rotorstrom annimint.

Im Diagramm Fig. 37 stellt ub den Magnetisierungs-, us den Stator-, b s den Rotorstrom dar. In Bezug auf den durch den Statorwiderstand hervorgerufenen Watt verlust, Spannungsverlust etc., sagt nun Heyland, kann der Statorstrom gleich dem Rotorstrom b s angenommen werden, und man kann die Komponente (u s = Resultierende aus b s und u b) ub = Magnetisierungsstrom vernachlässigen. In Bezug auf den Wattkonsum etc. wird aber selbstverständlich die wirkliche Größe des Statorstromes u s in Betracht gezogen.

Bei Leerlauf im Synchronismus, wenn der Motorstrom Null, der Statorstrom gleich dem Magnetisierungsstrom u b ist, tritt

Heubach, Drehstrommotor.                                7
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daher kein Spannungsverlust im Stator nach dem Heylandschen Diagramm auf. Diagrammkreis b d und Magnetisierungsstrom u b werden demgemäß ebenso berechnet wie bei einem verlustlos arbeitenden Motor, und es können überhaupt die Konstanten C1, .......ebenso berechnet werden, wie bei einem widerstandslosen Motor.

In einem beliebigen Belastungszustand hat der Statorstrom die Größe us, der Rotorstrom bs; in Bezug auf den Wattverlust durch den Ohmschen Widerstand der Statorwicklung ist jedoch der Statorstrom nur mit der Größe b s in Rechnung zu ziehen. Wir können daher den Statorverlust genau in der gleichen Weise berücksichtigen, wie wir dies für den Rotorverlust bereits kennen gelernt haben. Wir erhalten nämlich, wenn wir die Wattlinie st senkrecht auf bd ziehen:

Abds@Abst, daher

b d   b s b s      b t und infolgedessen b d • b t = b s2.

Da b d eine Konstante, ist demnach b t proportional b s2. Nun ist nach Gleichung (53)

J =C.us,

in unserem jetzigen Falle aber, da wir den Magnetisierungsstrom vernachlässigen, müssen wir in Bezug auf den Statorwiderstand schreiben

J|=C.bs

und demgemäß wird


bt




=1 (2)2 b d \ C, /



Tragen wir auf der Wattlinie st eine Strecke tv so auf, daß t v . C4 = V1 = J12 W1 a, ,

wobei C, durch die Gleichungen (56) und (57) definiert ist, so wird

— J,2.W,. a

—C—

und es wird, wenn wir den 4 t b v mit a bezeichnen, tg =‘= 2 w, . a, . b d......(75)

b t C4

In derselben Weise wird der Rotorwiderstand in Rechnung gezogen. Ziehen wir eine weitere Gerade b r im Diagramm und nennen wir den A v b r = /, so ist

t r,         . — = tg (« + 8) , t b

t v

also konstant. Da auch -- konstant ist, muß auch tb               ’

konstant sein. Wir erhalten wieder wie oben

und nach Gleichung (54)

J,=C3.bs, daher wird
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Es ist ferner

J,2 . W2 • a,

‘ C, daher

C 2           ___ c = —3........... w2 • a, b d .

Es wird demnach

,   . tv + vr bd.            — tg(«+B) =---th--=-c(aC‘w,+ap:Ca2w2) • (76)

Es ist nun, wie wir aus Früherem wissen, ts dem Wattkonsum, vs der Zugkraft, rs der mechanischen Leistung proportional.

Wir haben uns zur Ableitung des Diagrammes der beiden Geraden b v und b r bedient, weil uns diese Konstruktion bereits aus Abschnitt 15 bekannt war. Heyland wählte in seinem Diagramm eine etwas andere Darstellungsweise, die nun beschrieben werden soll. Vom Mittelpunkt des Diagrammkreises 0 ist eine Senkrechte 0 m so zu ziehen, daß

Von den Punkten m und h als Mittelpunkt sind mit den Radien h b beziehungsweise m b Kreisbogen von b bis d zu ziehen. Diese Kreisbogen werden von der Geraden d s in f und g geschnitten. Zieht man die Linien b f und b g, so ist in jedem beliebigen Belastungsstadium

K s b f = K « A f b g — A 8.

Es ist nun, wie sofort bewiesen werden soll, f f" = v s gg"=rs und dies setzt voraus, daß

s f' = t v f‘g‘=vr.

Der Beweis hierfür ist leicht zu erbringen. Zunächst sind die Dreiecke einander ähnlich

Abts@Astd@sff.

Bezeichnen wir den

A s b t = y , so muß auch

Afsf=y sein. Es ist nun

f's = s f . cos y und

s f = b s . tg « daher

f ‘ s = b s . cos y . tg « .

Ebenso finden wir

t v = b t . tg «

b t = b s . cos y, daher

t v = b s . cos y tg a .

Es ist also wirklich

f‘ s = t v.

In gleicherweise können wir zeigen, daß g's —tr, und demnach ist die Richtigkeit der oben aufgestellten Behauptungen bewiesen. Die beiden Konstruktionen: zwei Gerade b v und b r oder zwei von h und m aus geschlagene Kreisbogen sind daher vollständig gleichwertig, und es ist Geschmacksache, welche man lieber in Anwendung bringt. Die Heylandsche Konstruktion hat den Vorzug, daß sie deutlich die Maximalwerte g g' 9 Leistung, ff" 2 Zugkraft erkennen läßt, denn sie werden offenbar dann erreicht, wenn die Punkte g resp. f in die Verlängerung der Geraden in o fallen. Mit zunehmendem Strom erreicht daher zuerst die Leistung, dann die Zugkraft, endlich der Wattkonsum sein Maximum.

Die Schlüpfung ist U2 proportional und kann daher definiert werden als das Verhältnis

Wir ziehen eine Gerade s' p so, daß der

A d p s' = A m h b = A d f b,

so erhalten wir zwei ähnliche Dreiecke, nämlich

A dpp' • A dfb

und infolgedessen gilt die Proportion

pp' _ fb dpdf

Da Tb infolge der Konstanz des Winkels a mit Tb in einem konstanten Verhältnis steht, ist

fb&sb

und wir erhalten

_  -—  f b   -—  s b J2 pp = dp . —-- Q dp • ——- C--- Qs . d f             d f B,

äs' ist Tangente an den von m aus geschlagenen Kreis, und s' liegt in der Verlängerung der Geraden b r. p s' steht senkrecht auf der Geraden b v. Da für das Heylandsche Diagramm die Linien bv und br überflüssig sind, können sie weggelassen werden.

Der großen Einfachheit und Bequemlichkeit des Heylandschen Diagrammes stehen als Nachteile gegenüber, daß der Statorverlust und der cos g nicht streng richtig wiedergegeben werden. Einen wirklichen Nachteil bedingt dies nur dann, wenn der Statorspannungsverlust einen hohen Prozentsatz der Klemmenspannung ausmacht, also bei kleinen und schlechten Motoren. Wie das ganz exakte vorher beschriebene Diagramm erkennen läßt, wirkt ein hoher Verlust im Statorwiderstand verbessernd auf den cos g, und dies ist bei kleinen Motoren, die naturgemäß viel Streuung besitzen, von Wichtigkeit. In solchen Fällen ist daher die Verwendung des genauen Diagrammes zu empfehlen.

	
	
20.    Beispiel.





Als Beispiel zur Anwendung des Heylandschen Diagrammes soll wieder der schon mehrmals berechnete Motor dienen. Wir können dem im 18. Abschnitt angegebenen Beispiel direkt die Konstanten C1, C, . . . entnehmen, und es ist


Ci = 50

C, = 0,306

C3 = l,2




C4 = 101

C, = 0,65

C, = 0,137



Die Widerstände der Wicklungen sind

	
	
	
w, = 4,28 Ohm w8 = 0,05 Ohm.







Die Streuungskoeffizienten sind

^=0,12

T2 = 0,08

1=71 + 12+1. , == 0,21.

Es wird daher im Diagramm

b d = 100 mm

u b = r . b d = 21 mm.

Es wird nach Gleichung (75)

C,2    —      0,306 2.4,28.100.3   ,

ta= C, wd-a— ———101----= 1,2

o h = o b . tg « = 50.1,2 = 60 mm

und nach Gleichung (76) tg («+#)= ", (a, • c,2 • w, + a, • C,2 • w,)

= 109 (3 • 0,3062'4,28 + 3 - 1,22 • 0,05) = 1,41 demnach

o m — o b (tg « + B) = 50.1,41 = 70,5.

Bei Leerlauf finden wir den Magnetisierungsstrom J=Cub= 0,306.21 = 6,42 Ampere.

Das Diagramm ergibt hierbei cos q = 0 und Wattkonsum = 0; während in Wirklichkeit der Wattkonsum

J? . w, = 6,422.4,28 = 176 Watt

betragen würde.

In einem beliebigen Belastungsstadium (gewählt ist der Fall, in welchem cos g = max) messen wir aus dem Diagramm Fig. 38

Statorstrom =J =C.us= 0,306.50 = 15,3 Ampere

Rotorstrom = J2 = C3. b s = 1,2.38 = 45,5 Ampere

Wattkonsum = W, = C, . t s = 101.35,4 = 3580 Watt

Zugkraft =P=C. ff» = 0,65 .18= 11,7 kg

Leistung =PS=Cgg"= 0,137.15 = 2,06 PS

Statorverlust =V,=Csf= 101.17 = 1720 Watt

Rotorverlust = V, = C, . f g’ = 101.3,1 = 312 Watt.

Auf dem Schlüpfungsmaßstab lesen wir ab:

s = 15%

und demnach ist die Tourenzahl des Motors n—"(1-10)-15001—1)—1272.

Es ist aus der Ableitung des Diagrammes klar, daß der Wattverlust in der Statorwicklung im Diagramm unrichtig wiedergegeben ist; denn bei 15,3 Ampere beträgt der Statorverlust

	
V, = J,2 .W,.a = 15,82.428.3 = 3000 Watt,



während sich nach dem Diagramm nur 1720 Watt ergeben. Dagegen ist der Rotorverlust aus dem Diagramm richtig zu ermitteln, denn

	
V, = J,2 . w, . a, = 45,52.0,05.3 = 312 Watt



ist mit dem oben gefundenen Wert identisch.
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Bei Stillstand erhalten wir nachstehende Werte:

Statorstrom =J,=C.us‘ — 0,306.72 = 22 Ampere

Rotorstrom =J,=C. b s' = 1,2.58 = 69,7 Ampere

Wattkonsum = W, = C, . t’s’ = 101.47 = 4750 Watt

Zugkraft =P=C. f" "r = 0,65.8 = 5,20 kg.

Die aus dem Diagramm Fig. 38 gewonnenen Werte sind in Fig. 39 in ein rechtwinkliges Koordinatensystem eingetragen. Ein Vergleich der Figuren 34, 36 und 39 zeigt die großen Abweichungen,

welche die verschiedenen Diagramme ergeben. Das wirkliche Ver-halten des Motors wird nur durch das exakte Diagramm dargestellt, während das Heylandsche Diagramm und noch mehr die gänzliche Vernachlässigung des Statorwiderstandes sehr unrichtige Werte liefern. Es muß hierzu allerdings bemerkt werden, daß diese grossen Unterschiede nur dann auftreten, wenn der Spannungsverlust im Stator ein so beträchtlicher ist, wie bei dem als Beispiel gewählten Motor. Infolge des übermäßig großen Statorverlustes bekommt auch das Heylandsche Diagramm Fig. 38 ein etwas bizarres Aussehen. Es mußte aber ein so schlechter Motor als Beispiel gewählt werden, um zu zeigen, wie groß eventuell die Abweichungen eines nur näherungsweise richtigen Diagrammes sein
[image: ]

können, und um zu verhindern, daß der Leser sich ausschließlich an das bequemste Diagramm gewöhnt und dasselbe kritiklos auf alle möglichen Fälle anzuwenden sucht.

Bei Motoren mit einer Leistung von einigen PS bis zu solchen von den größten Leistungen variiert der Verlust in der Statorwicklung zwischen ca. 6—2% des Wattkonsums, und bei solchen Motoren kann das Heylandsche Diagramm unbedenklich angewendet werden; man wird stets Resultate von einer für die Praxis genügenden Genauigkeit erhalten. Dagegen muß bei kleinen, schlechten Motoren und bei theoretischen Untersuchungen, ausnahmsweise auch bei einem größeren Motor, wenn besonders strenge Garantien zu leisten sind, das exakte Diagramm, trotz seiner größeren Unbequemlichkeit, Anwendung finden.

	
21.    Ossannas Kreis.



Eine sehr interessante Tatsache wurde von Ossanna festgestellt: es bewegt sich der Punkt s der Geraden u s, welche den Statorstrom repräsentiert, auch bei genauer Berücksichtigung des Einflusses des Statorwiderstandes auf einem Kreis1).

Wir können diesen Kreis bestimmen, wenn wir das Diagramm Fig. 32 von dem Standpunkt aus konstruieren, daß nicht die auf
[image: ]

den Motor wirkende EMK (s m), sondern die Klemmenspannung (u m) konstant ist. Wir erhalten dann ein Diagramm, wie es in Fig. 40 gezeichnet ist. um ist die konstante Klemmenspannung, deren eine Komponente us, die in der Richtung des Statorstromes liegt, als Spannungsverlust im Widerstand der Statorwicklung verloren geht, sodaß nur die zweite Komponente s m durch die EMGK der Selbstinduktion der Statorwicklung balanciert werden muß. Das Luftfeld des Motors b d und der Magnetisierungsstrom ub sind bei jedem Belastungsstadium der Komponente sm proportional, und s m steht stets senkrecht auf u d. Das Diagramm u b s d entspricht daher einem Motor mit widerstandslosem Stator, auf welchen nur eine Spannung von der Größe s m wirkt und dessen Phasenverschiebungswinkel g ist. Bei Berücksichtigung des Spannungsabfalles u s muß die Klemmenspannung u m sein, und der Phasenverschiebungswinkel ist 91. Der vom Statorstrom u s und dem Magnetisierungsstrom u b eingeschlossene Winkel ist mit a bezeichnet.

Es ergibt sich nach dem Kosinussatz

uo — so = 2 uo . us . cos a — us .

Da s o = b o = dem Radius des Diagrammkreises b d ist, ist

——2  2 ——2 1 — T uo — so = ub -----,

T

denn u b = T . bd. Ferner ist

cos a = sin q.

und nach dem Sinussatz

m s . sin q = u m sin Q1 , daher wird

n m cos a = ——    • sin (1. m s

Die erste Gleichung, von der wir ausgegangen sind, läßt sich daher in die Form bringen:

welche Beziehung sich daraus ergibt, daß ub = r.bd, so erhalten wir

—9 T u b - — — 1 — 2 T .      —, u b = ----- —- - . u m . u s -------- • Sin (1 — us 1 — T m s                t

Bezeichnen wir die Koordinaten des Punktes s mit x und y (u ist Nullpunkt des Koordinatensystems), so ist u s . sin (Pi = y u s . cos ,1 = x u 82 = x?+y2

und es wird:


u b2




ub

m s




u m . ■----—— y — x 4 — y 4

T




(a)



Wenden wir den Kosinussatz nochmals auf das Dreieck u s m an, so erhalten wir

sm’= u s‘— u m2 — 2 u s . u m . cos Q1.

Es ist nun, wie schon oben erwähnt, stets das Verhältnis von s m zu u b ein konstantes, denn bei jedem Belastungszustand entspricht die Diagrammbasis u b d der auf den Motor wirkenden EMK sm = E1. Demgemäß können wir schreiben:

u b


- =K.



s m

Daher ist


ub K



s m

und es wird obige Gleichung übergehen in den Ausdruck

u b 2 = K2 [ us2 + um2 — 2 um . u s . cos qi].

Führen wir, wie früher, die Koordinaten des Punktes s ein, also


u s . cos 1=X
[image: ]




so wird

u b 2 = K2 [ x2 + y2 + u m2 — 2 u m . x ] . . . . (b)

Setzen wir die rechten Seiten der Gleichungen (a) und (b) einander gleich, so erhalten wir, wenn wir nachstehende Vereinfachungen einführen:

[image: ]



(77)

- u m2 = 0........(79)

Vergleichen wir diesen Ausdruck mit der allgemeinen Gleichung des Kreises

x2+y2 — 2 a x — 2 b y + P = 0 ,

so finden wir, daß obiger Ausdruck die Gleichung eines Kreises ist mit den Mittelpunktskoordinaten

K2 --- a = ——— • u m

a bezieht sich natürlich auf die X-, b auf die Y-Achse. Der Radius des Kreises wird

R =]a+b--s -um2.....(81)

Es ist somit bewiesen, daß sich der Punkt s bei exaktester Berücksichtigung des vom Statorwiderstand verursachten Spannungsverlustes auf einem Kreis bewegt, und es sind die Mittelpunktskoordinaten und der Radius des Kreises berechnet worden. Es mag dadurch auf den ersten Blick der Eindruck erweckt werden, daß das im 16. Abschnitt behandelte exakte Diagramm sich nun wesentlich vereinfachen ließe, indem die Schwierigkeiten, den Wattkonsum und den cos 91 zu bestimmen, beseitigt sind, aber leider liegen die Verhältnisse nicht so einfach. In Bezug auf den Stator ist durch den Ossannaschen Kreis alles ohne Frage sehr vereinfacht, dagegen sind in Bezug auf den Rotor die Verhältnisse bedeutend komplizierter geworden. Rotorstrom, Verlust in der Rotorwicklung, Zugkraft, mechanische Leistung und Schlüpfung sind sehr schwer auf analytischem oder graphischem Wege exakt zu ermitteln, denn, wie ein Blick auf Fig. 40 zeigt, stehen die Punkte b und d des primären Diagrammes u b d s in keiner einfachen Beziehung zum Ossanna-Kreis.

Der genannte Kreis mußte jedoch hier Erwähnung finden, nicht nur wegen der interessanten Tatsache, welche durch ihn festgelegt ist, sondern hauptsächlich deshalb, weil er ein äußerst wichtiges Verbindungsglied zwischen der Rechnung und der experimentellen Untersuchung eines Motors herstellt. Wird bei einem Motor durch Spannungs-, Strom- und Wattmessungen der Statorstrom seiner Größe und Lage nach experimentell bei verschiedenen Belastungen bestimmt und graphisch aufgetragen, so wird jeder, dem der Ossannasche Kreis unbekannt ist, dem Phänomen, daß der Punkt s sich vom Leerlauf aus nicht aufwärts, sondern abwärts bewegt, ziemlich ratlos gegenüberstehen, während der Ossannasche, Kreis die einfachste und eleganteste Erklärung dieser Erscheinung bietet.

	
22.    Beispiel.



Als Beispiel sei für den im 18. und 20. Abschnitt berechneten Motor der Ossanna-Kreis zu konstruieren. Die nötigen Daten des Motors sind:

	
	
w, = 4,28 Ohm, r = 0,21 b d = 100 mm, ub = 21 mm, J= 6,42 Ampere.





Die Konstante C7, welche den Zusammenhang zwischen Rechnung und Diagramm in Bezug auf EMKK und Spannungen vermittelt, ist gegeben durch die Beziehung:

Cub = Jm. W1 ,


daher wird

C,




Jm ' W1 ub




6,42.4,28

21




== 1,31.



Es wird daher um * E, u m = —— = o— = 84 mm. C7


21

84




= 0,25



R = 1a2 + b2--K* • um?

0952

22,2 2 + 522 - -59 • 842 = 36.

Fig. 40 stellt daher den Ossannaschen Kreis dieses Motors dar.

1

 Ossanna, Z. f. E. 1899. — Siehe auch Kuhlmann, E. T. Z. 1901, Seite 341.


Drittes Kapitel.

Streuung des Motors mit Sinoidalfeldern unter Berücksichtigung des Eisenwiderstandes.

	
	
	
23.    Definition und Wirkung dieser Streuung. — 24. Feld- und Stromdiagramm. — 25. Bemerkungen über die Verwendbarkeit dieses Diagramms.





	
23.    Definition und Wirkung dieser Streuung.



Als wir die Wirkung der Streuung an einem Motor mit widerstandslosem Eisen untersuchten und annahmen, daß nur die Statorwindungen von Strom durchflossen seien, entstanden unter Einwirkung der erregenden Amperewindungen zwei magnetische Felder: Das Hauptfeld, welches den Luftzwischenraum zwischen Stator und Rotor durchsetzt und in den Rotor eindringt, und ein Streufeld, gebildet von den Kraftlinien, welche zwischen den Statorzähnen 1, 2 und 3, 4 Fig. 41 übertreten, ohne nach dem Rotor zu gelangen. Die Rotorzähne I, II resp. III, IV hatten wir zwar als von einem magnetischen Widerstand überbrückt angenommen, es konnten aber keine Kraftlinien des vom Stator ausgehenden Feldes diese Widerstände durchdringen, weil die Zähne I, II resp. III, IV durch das widerstandslose Rotoreisen kurzgeschlossen waren. Infolgedessen war keine erregende Kraft nötig, um das Rotorfeld von den Zähnen II und III durch das Eisen um die Rotorleiter herum nach den Zähnen I und IV zu treiben, die sämtlichen vier Zähne des Rotors waren daher Punkte gleichen magnetischen Potentials. Zwischen den Rotorzähnen konnte nur in dem Fall ein Streufeld zustande kommen, wenn die Rotorwindungen von Strom durchflossen angenommen wurden, sodaß

Heubach, Drehstrommotor.                                8

nun umgekehrt ein im Rotor erzeugtes Feld durch den Stator zu treiben war. Dann mußten natürlich auch die Rotorzähne I und II eine magnetische Potentialdifferenz aufweisen, welche genügte, um das Hauptfeld des Rotors durch den Luftzwischenraum nach dem Stator zu treiben, und die Potentialdifferenz zweier benachbarter Rotorzähne rief das zwischen I, II und III, IV auftretende Rotorstreufeld hervor.

Durch die Berücksichtigung des Eisenwiderstandes werden diese Verhältnisse in ganz bedeutendem Maße kompliziert. Wenn wir wieder den Stator allein von Amperewindungen erregt, die Rotorwindungen als stromlos annehmen, so werden sich dem Statorfeld, das von den Statorzähnen 2, 3 kommend nach Durch
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dringung des Luftzwischenraumes die Rotorzähne II, III erreicht, zwei Wege bieten, nämlich der im Rotoreisen, das nun mit Widerstand behaftet ist, und der des Streufeldes zwischen den Rotorzähnen II, I und III, IV. Infolge des Eisenwiderstandes bilden also die Rotorzähne nicht mehr Punkte gleichen Potentials, und hierdurch wird die Entstehung des Streufeldes zwischen den Rotorzähnen ermöglicht. Wie sich die Kraftlinienzahl des Luftfeldes auf die beiden vorhandenen Wege verteilt, ist sehr leicht zu entscheiden, denn der Eisenwiderstand und der Widerstand zwischen den Rotorzähnen sind offenbar zu einander parallel geschaltet und die Kraftlinien des Luftfeldes teilen sich daher in zwei Gruppen, die sich umgekehrt wie diese Widerstände verhalten.

Auch in Bezug auf den Stator tritt durch den Eisenwiderstand eine Veränderung auf, insofern nämlich, als die erregende Kraft des Stators ganz beträchtlich gesteigert werden muß, um die gleiche Anzahl nützlicher Kraftlinien nach dem Rotor zu treiben. Abgesehen davon, daß die nützlichen Kraftlinien im Rotor den Eisenwiderstand zu überwinden haben, wird auch die Induktion des Luftfeldes vergrößert, und endlich muß das um die Streulinienzahl des Stators vermehrte Luftfeld durch das Statoreisen getrieben werden.

Wir sehen, daß nunmehr, selbst wenn nur der Stator erregt wird, zwei Streufelder auftreten, nämlich das eine zwischen den Statorzähnen, das zweite zwischen den Rotorzähnen. Dieselbe Erscheinung tritt natürlich auf, wenn wir die Rotorwindungen als stromdurchflossen, dagegen den Stator als stromlos annehmen. Zur Unterscheidung dieser verschiedenen Stromfelder wollen wir uns der nachstehend definierten Bezeichnungen bedienen:

Die erregenden Amperewindüngen des Stators rufen zwischen den Statorzähnen ein 1. Statorstreufeld, zwischen den Rotorzähnen ein 2. Statorstreufeld hervor.

Die erregenden Amperewindungen des Rotors rufen zwischen den Rotorzähnen ein 1. Rotorstreufeld, zwischen den Statorzähnen ein 2. Rotorstreufeld hervor.

Die Berechnung der vielen im Motor vorhandenen Felder ist möglich, wenn es gelingt, die Widerstände der einzelnen magnetischen Pfade rechnerisch auszudrücken. Die Widerstände der Luftwege sind sehr einfach durch Gleichungen auszudrücken, wie schon im 12. Abschnitt gezeigt wurde, dagegen bietet die Berechnung der Eisenwiderstände mancherlei Schwierigkeiten und Umstände. Eine analog der das Ohmsche Gesetz darstellenden Formel gebildete Gleichung für den Eisenwiderstand läßt sich zwar sehr leicht aufstellen, wenn wir die Permeabilität des Eisens einführen, aber damit kann uns nicht gedient sein, da einesteils die Permeabilität des Eisens nicht konstant ist, andernteils in der Technik kein Mensch mit der Permeabilität rechnet, sondern allgemein nur die Verw endung von Magnetisierungskurven üblich ist, welche Induktion (Ordinate) als Funktion der Amperewindungen pro 1 cm Kraftlinienweg (Abszisse) darstellen.

Der Begriff der Permeabilität läßt sich durch die Verwendung der Magnetisierungskurve vermeiden, aber die Inkonstanz der Permeabilität kommt auch in der Magnetisierungskurve zum Ausdruck. In Bezug auf das Statoreisen ist diese Inkonstanz fast belanglos, da ja der Stator bei allen Belastungsstadien von nahezu 8*

der gleichen Kraftlinienzahl durchsetzt wird — die Abnahme der Kraftlinienzahl mit der Belastung rührt lediglich vom Spannungsverlust in den Statorwindungen her —, dagegen variiert das Hauptfeld des Rotors zwischen einem Maximalwert bei Leerlauf und einem Minimalwert bei Stillstand des Motors. Die genaue Berechnung des variablen Eisenwiderstandes mit Hilfe der Magnetisierungskurve ist zwar mathematisch möglich, es würden aber dadurch derartige Komplikationen entstehen und so viele Hilfsrechnungen und wegen der Inkonstanz der Streuung so viele Diagramme erforderlich sein, daß die so entwickelte Theorie nicht den geringsten Anspruch darauf erheben könnte, für die Technik anwendbar zu sein.

Wir müssen daher notgedrungen die Permeabilität als konstant, d. h. die Magnetisierungskurve als geradlinig annehmen, aber wir müssen noch entscheiden, welchem Belastungsstadium entsprechend wir diesen Wert wählen müssen, damit der Fehler, den wir begehen, ein möglichst kleiner wird.

Wenn wir erwägen, daß selbst bei Belastung des Motors die Spitze des Stromdreiecks stets auf dem unteren Teil des Diagrammkreises bleibt, so sehen wir, daß das Rotorfeld bei den in praxi vorkommenden Fällen nicht wesentlich durch die steigende Belastung vermindert wird, und wir können deshalb alle auf die Streuung bezüglichen Untersuchungen, ohne einen zu großen Fehler zu begehen, bei Leerlauf des Motors vornehmen. Ein Beweis für die Richtigkeit dieser Überlegung wird später bei Besprechung der experimentellen Untersuchungen der Motoren dadurch erbracht werden, daß gezeigt wird, daß experimentell bestimmte Streuung einen ziemlich konstanten Wert hat, wenn sie auch bei verschiedenen Spannungen, d. h. bei verschieden starken Feldern gemessen wird.

Bei Leerlauf ist die Kraftlinienzahl im Stator größer als die in der Luft, die in der Luft wiederum größer als im Rotor. Wie groß diese Unterschiede sind, können wir berechnen, wenn uns die magnetischen Widerstände bekannt sind, welche die einzelnen Felder zu durchdringen haben; aber wie wir eben zeigten, benötigen wir zur Berechnung der Eisenwiderstände bereits die Zahl der Kraftlinien, welche durch das Eisen getrieben werden soll. Um zu einem Resultat zu gelangen, müssen wir einen zweiten kleinen Fehler begehen, indem wir dieselbe Kraftlinienzahl, die bei Leerlauf in der Luft herrscht, und deren Größe wir aus der angenommenen maximalen Luftinduktion BJ berechnen können, zur Berechnung der Eisenwiderstände zugrunde legen müssen.

Wir verfahren also bei Berechnung eines Motors genau so wie bisher; wir nehmen eine maximale Luftinduktion B| an, berechnen die Kraftlinienzahl in der Luft und untersuchen nun mit Hilfe der Magnetisierungskurve, wie viele Amperewindungen nötig sind, um diese Kraftlinienzahl durch das Statoreisen und durch das Rotoreisen zu treiben. Wenn wir diese Amperewindungszahlen für das Statoreisen mit Xe,, für das Rotoreisen mit Xe, bezeichnen, so können wir nunmehr Gleichungen bilden, die die Eisen widerstände. in analoger Weise darstellen, wie wir die Luftwiderstände dargestellt haben. Wir erhalten nach Gleichung für den Widerstand des Hauptluftfeldes:
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für den Widerstand des Statoreisens

für den Widerstand des Rotoreisens

Den Widerstand der Streufelder zwischen den Stator- und den Rotorzähnen können wir in gleicher Weise darstellen, wenn wir die Amperewindungszahlen bestimmen, welche nötig sind, um durch diese Streupfade die Kraftlinienzahl Zi zu treiben. Wir erhalten dann den Widerstand des Streufeldes zwischen den Statorzähnen

und den Widerstand des Streufeldes zwischen den Rotorzähnen

82

Z, '

Um die Größe der einzelnen Felder und ihre gegenseitigen Beziehungen festzulegen, wollen wir alle im Motor vorhandenen magnetischen Widerstände auf den Widerstand des Luftfeldes zwischen Stator und Rotor reduzieren. Wir setzen

Magnet. Widerst, der Luft zwischen Stator und Rotor = R, x,      R,

des Streufeldes zw. d. Statorzähnen = R. . — = —

1 X1         51


	
-
	
- Rotorzähnen = R.
		
_ Bi


	
X
	
5a


			
Statoreisens
	
— R
	
X,,
	
_ R,


				
X|
	
01


			
Rotoreisens
	
— R
		
_ R,


					
02




Wir können uns nun den totalen magnetischen Stromkreis durch einen elektrischen ersetzt denken, können an der Hand des letzteren die Stromverteilung feststellen und dann die gewonnenen Resultate wieder auf die magnetischen Felder anwenden, indem wir die EMK als erregende Kraft, die Stromstärken als Kraftlinienzahlen betrachten.

Der elektrische Stromkreis, den wir als Ersatz des magnetischen betrachten können, ist durch Fig. 42 dargestellt, d E c stellt den Kraftlinienweg im Statoreisen, c d zwischen den Statorzähnen, c a, b d in dem Luftzwischenraum, a b zwischen den Rotorzähnen, a a' b im Rotoreisen dar.

Bezeichnen wir die Spannung zwischen den Punkten a und b mit e, die zwischen den Punkten c und d mit e', so erhalten wir, wenn wir die in den einzelnen Widerständen fließenden Ströme durch J mit einem entsprechenden Index bezeichnen:

T e

"P2 FR 2

e

JR, = Jp, + Je

oj =0+J, R =%+ (3,, + J) R,

% =*(+ (3,, + 3))

J,, =Jn,+J.

Wir können nun, um R1 und e zu eliminieren, e = Rj = 1 setzen und erhalten so:

Jpa ~ €2

J = %a

JR, = 02+52

J =*(1+*+ e»)

J, =*(1+5+ e») + (3, + e»).
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C -

Fig. 43.



Wir können jetzt die Ströme auf einer Geraden auftragen und erhalten so Fig. 43, in welcher

bd=J

Pi fb =J.

$2 fd=Jn, a f = J.

$1

ad=J,

und wenn wir die Ströme wieder durch die Felder ersetzen, stellt Fig. 43 das Felddiagramm des im Synchronismus leerlaufenden Motors dar. Es ist nämlich

a d = 5.(1 + 52 + 02) + ($2 + 02) = totales Erregerfeld

a f = 51 . (1 + 52 + 02) = 1. Statorstreufeld

f d = 52 + 02 = Luftfeld des Stators

f b = 52 = 2. Statorstreufeld

b d = 02 = Statorfeld, das die Rotorwindungen schneidet.

In gleicher Weise muß sich natürlich auch das gesamte vom Rotorstrom erzeugte Feld in ein 1. und 2. Streufeld spalten, und nur der dann verbleibende Rest gelangt so in den Stator, daß er auf die Statorwindungen einwirken kann. Da die einzelnen magnetischen Widerstände, auf welche die erregende Kraft des Rotorstromes arbeitet, die gleichen sind, die wir soeben bei Untersuchung des Statorfeldes kennen gelernt haben, und dieselben nur genau in umgekehrter Reihenfolge auftreten, können wir sofort die Größe der einzelnen Rotorfelder durch die Verhältniszahlen der Widerstände ausdrücken. Es ist nämlich

52 (1 + 51 + 01) + Gi + 01) = totales Rotorfeld

52 (1+5+ 01) = 1. Rotorstreufeld

51+91 = Luftfeld des Rotors

51 = 2. Rotorstreufeld

01 = Rotorfeld, das die Stator Windungen schneidet.

Wir können an Stelle der Kraftlinienzahlen wieder die fiktiven maximalen Induktionen setzen; diese Induktionen würden dann vorhanden sein, wenn der Querschnitt sämtlicher im Motor auftretender Felder dem Luftquerschnitt zwischen Stator und Rotor gleich wäre.

Um das Felddiagramm für beliebige Belastungsstadien und das dazu gehörige Stromdiagramm abzuleiten, wollen wir wieder den gleichen Weg einschlagen, wie wir es im vorhergehenden Kapitel unter der verhältnismäßig einfacheren Voraussetzung, daß nur ein Stator- und nur ein Rotorstreufeld existiert, gemacht haben. Wir wollen nämlich von dem Leerlaufsdiagramm der Statorfelder ausgehend ein Felddiagramm bei beliebiger Statorbelastung annehmen und dann untersuchen, wie einesteils das Diagramm der Rotorfelder, andernteils das Stromdiagramm gestaltet sein muß, um den Bedingungen zu genügen, welche wir erfüllen müssen, um die Richtigkeit des kompletten Diagrammes zu gewährleisten.

Diese zu stellenden Bedingungen sind folgende:

	
1.    Das Statorfeld ist konstant für alle möglichen Belastungsfälle, entsprechend der als konstant angenommenen Klemmenspannung. Es ist die Summe aus 3 Teilen, nämlich dem Teil, der als Streufeld in den Statorzähnen verläuft, ohne die Luft zu durchsetzen; das die Luft durchdringende Feld teilt sich nun nochmals in zwei Teile, von denen der eine in den Rotorzähnen verläuft, ohne die Rotorwindungen zu schneiden, während endlich der letzte Teil die Rotorwindungen schneidet und in diesen induzierend wirkt. Die relative Größe dieser einzelnen Teile des Statorfeldes resp. deren gegenseitiges Verhältnis wird durch die Größe der magnetischen Widerstände der einzelnen Teile des magnetischen Stromkreises bestimmt.


	
2.    Das Rotorfeld besteht ebenfalls aus 3 Teilen; der eine durchschneidet die Luft und die Statorwindungen, der zweite ver-läuft, nachdem er die Luft durchsetzt hat, in den Statorzähnen, ohne die Windungen des Stators zu erreichen, der 3. endlich tritt gar nicht in die Luft aus, sondern verläuft nur in den Rotorzähnen.


	
3.    Das konstante Statorfeld ist die Resultante aus dem gesamten Feld, das von den Statoramperewindungen dann erzeugt würde, wenn keine Rotoramperewindungen vorhanden wären, und dem Teil des Rotorfeldes, der die Statorwindungen durch dringt.


	
4.    Das Luftfeld ist die Resultante aus den Teilen des Stator-und Rotorfeldes, welche die Luft durchdringen.


	
5.    Das Rotorfeld ist die Resultante aus dem gesamten Rotorfeld, das dann entstehen würde, wenn lediglich der Rotor von dem betreffenden Strom durchflossen wäre, und dem Teil des Statorfeldes, der die Rotorwindungen durchschneidet.


	
6.    Der Rotorstrom, resp. die ihn im Stromdiagramm darstellende Gerade steht auf dem resultierenden Rotorfeld senkrecht.


	
7.    Die Richtungen der die Ströme im Stromdreieck repräsentierenden Geraden sind den Richtungen der durch sie erzeugten Felder parallel.


	
8.    Die Klemmenspannung eilt dem Magnetisierungsstrom um 900, der EMGK des Stators um 1800 voraus.



Nehmen wir nun an, in Fig. 44 sei

a d = totales Statorfeld bei Leerlauf im Synchronismus af =1. Statorstreufeld -     -     -

fb = 2. Statorstreufeld -      -      -
[image: ]

Fig. 44.


und bei einem beliebigen Belastungszustand

a d' = totales Statorfeld, das dann entstehen würde, wenn lediglich die Statoramperewindungen im Motor wirksam wären, der Rotor also stromlos wäre,

	
a f' = 1. Statorstreufeld,


	
f ‘ b' = 2. Streufeld, wie es dem jetzigen Statorstrom entspricht,



wobei natürlich die aus dem Verhältnis der magnetischen Widerstände gegebenen Proportionen

ad   ab af

ad'      ab'      af'

bestehen.

Laut Bedingung 3 muß das konstante Statorfeld a d die Resultante aus dem Belastungsstatorfeld a d' und dem Teil des Rotorfeldes sein, welcher die Statorwindungen schneidet. Die Komponente, welche, mit a d' zusammengesetzt, a d als Resultante ergibt, ist d' d, und d' d stellt daher den genannten Teil des Rotorfeldes dar. Um die noch fehlenden Teile des gesamten Rotorfeldes zu finden, verlängern wir d' d über den Punkt d hinaus so weit, bis eine im Punkte n errichtete Senkrechte den Punkt b' trifft. Wir wissen nämlich aus Bedingung 7, daß der Rotorstrom parallel n d' verlaufen muß, aus Bedingung 5, daß die eine Komponente des resultierenden Rotorfeldes der Teil des Statorfeldes b'd' ist, welcher die Rotorwindungen schneidet, und aus Bedingung 6, daß das resultierende Rotorfeld auf der Richtung des Rotorstromes, der parallel zu d' n läuft, senkrecht stehen muß. d'n muß daher das totale, nf‘ das resultierende Rotorfeld sein. Die Strecke nd stellt die Summe aus dem 1. und 2. Rotorstreufeld dar, und in welchem Verhältnis wir diese Strecke teilen müssen, um nd in die beiden Streufelder zu zerlegen, ergibt sich durch Division der folgenden beiden Gleichungen:

	
1.    Rotorstreufeld = 52 (1 + 5 + 01)


	
2.    Rotorstreufeld = 51.



Demnach ist =-*d+**e

Da ferner das

	
1.    Statorstreufeld = a f' = 5 (1 + 52 + 02)


	
2.    Statorstreufeld = f' b' = 52 ,



kann man schreiben:

und

a f'

—— = 1+52+0,. d" d

Diese beiden letzten Gleichungen zeigen sehr deutlich den innigen Zusammenhang zwischen der Stator- und der Rotorstreuung, der ja auch selbstverständlich vorhanden sein muß, da die beiden Amperewindungssysteme, die des Stators und des Rotors, auf die gleichen magnetischen Widerstände arbeiten.

Wir können nun auch leicht die Größe des Luftfeldes bestimmen, denn wir wissen nach Bestimmung 4, daß das resultierende Luftfeld die Resultante aus den Teilen des Stator- und Rotorfeldes sein muß, welche die Luft durchdringen. Diese Teile sind in Bezug auf den Stator f’d, in Bezug auf den Rotor d'd", und ihre Resultante, das wirklich im Motor vorhandene Luftfeld, demgemäß f'd".

Wir wollen nun nach einer Konstruktion suchen, welche es uns ermöglicht, für jeden beliebigen Belastungszustand in bequemer Weise alle die im Motor vorhandenen aus dem Diagramm abgreifen zu können. Wir ziehen zu diesem Zweck durch die Punkte bb' eine zu nd' parallele Gerade bs". Der Parallelismus dieser beiden Geraden folgt aus den Proportionen:

ab      ab'

ad      ad'

Von b' aus tragen wir PV, s' s, ss" gleich den Strecken n d", d" d, dd‘ auf und erhalten das resultierende Rotorfeld cTs, welch letztere Gerade gleich und parallel nf' ist. Der geometrische Ort, auf welchem sich der Punkt s bei den verschiedenen Belastungsstadien bewegt, muß offenbar ein auf b d geschlagener Kreis sein, da ja bs die Richtung des Rotorstromes, sd die Richtung des resultierenden Rotorfeldes bezeichnet und beide Größen aufeinander senkrecht stehen müssen.

Das resultierende Luftfeld ist, wie uns bereits bekannt, d”b'. Wir könnten leicht eine Konstruktion finden, welche gestattet, das Luftfeld durch eine vom Punkt d aus gezogene Gerade, nämlich db", darzustellen, wobei b" den Schnittpunkt der Linien ff' und nb' darstellt. Da aber das Luftfeld nur insofern von Bedeutung ist, als wir es zur Berechnung des Magnetisierungsstromes bei Synchronismus benötigen, können wir uns diese Komplikation des Diagrammes sparen.

Ein Blick auf die Fig. 44 und 25 resp. 26 zeigt die absolute Ähnlichkeit derselben, und wir können infolgedessen alle im vorigen Kapitel für die Streuungskoeffizienten gemachten Ableitungen auch auf den jetzigen Fall anwenden, wenn wir vorerst von der Unterteilung der Streufelder in solche 1. und 2. Klasse absehen. Wenn wir den totalen primären Streuungskoeffizienten a b mit t/ bezeichnen, so stellt derselbe (Fig. 44) das Verhältnis 64 dar. Wir können nun schreiben:

ab = af+fb=*(1+5+ e») + 5

b d = Q2

und infolgedessen ist

Wir können nun die sämtlichen im vorhergehenden Kapitel abgeleiteten Beziehungen verwerten, wenn wir einfach an Stelle der Koeffizienten T und T2 unsere jetzt erhaltenen t^ und r2 ein-setzen. In Bezug auf das Luftfeld ist hierbei eine gewisse Vorsicht nötig; das Luftfeld bei Leerlauf war bei unseren früheren

	
	
1)    Diese Gleichungen gehen für den Fall, daß der Eisenwiderstand vernachlässigt wird, also 01 = 02 = co ist, über in





T,’ — li;               t2 = §2 und es ist

51 =7;            $2 =T, wenn 71,72 die im vorhergehenden Kapitel definierten Streuungskoeffizienten darstellen.

Betrachtungen identisch mit dem Rotorfeld bei Leerlauf, während nun bei Berücksichtigung des Eisenwiderstandes diese beiden Felder verschiedene Größe haben. Die Differenz der beiden Felder ist das 2. Statorstreufeld.

	
	
24.    Feld- und Stromdiagramm.





Das Feld- und Stromdiagramm1) entwickelt sich nach dem Vorausgegangenen folgendermaßen: Gegeben seien die früher definierten Konstanten des Motors:

ei, 02, 5, % und hieraus

, , _ 5, (1+5+0)+ 52

71 —-- 92

, _  82 (1+5 + gi) + 5

Nun wird das Felddiagramm bei Leerlauf afbd (Fig. 45), wobei

a b ,

ad ist das gesamte Statorfeld und bd ist der Teil dieses Feldes, welcher die Rotorwindungen schneidet, während a b durch die totale Streuung des Stators für die Rotorwindungen verloren geht. Der Rotor selbst ist stromlos und erzeugt daher auch kein Feld beim Leerlauf im Synchronismus. Wenn wir den Motor mit immer größerer Belastung arbeiten lassen, so können wir einen Grenzzustand erreichen, bei dem die Felder des Stators und die des Rotors wieder in eine Gerade fallen und auch das Stromdreieck zu einer Linie zusammenschrumpft. In diesem Grenzzustand möge ad zugenommen haben bis ae und ab bis a c, wobei natürlich die Proportion aufrecht erhalten bleiben muß

ab       a c

ad       a e

Im Grenzzustand ist ae das gesamte Statorfeld, das dann entstehen würde, wenn kein von den Rotorwindungen erzeugtes Feld vorhanden wäre, a c ist das gesamte Statorstreufeld und ce der Teil des Statorfeldes, der die Rotorwindungen schneidet. Das resultierende Rotorfeld muß im Grenzzustand Null sein, und da dies resultierende Rotorfeld die Differenz zwischen dem gesamten Rotorfeld und dem Teil des Statorfeldes, der die Rotorwindungen schneidet, ist, so muß das gesamte Rotorfeld c e also gleich dem Statorfeld, das die Rotorwindungen schneidet, sein.

Die Strecke cd muß das totale Rotorstreufeld darstellen, weil das gesamte Statorfeld a e mit dem Teil des Rotorfeldes, welcher die Statorwindungen schneidet, nämlich de, als Resultante das konstante Erregerfeld geben muß. Wir erhalten demnach

Wenn wir das uns noch unbekannte Verhältnis von

a b

——— = x b c

setzen und alle Größen auf a b beziehen, so erhalten wir wie auf Seite 69

ab = T‘. b d.

Da nun

b d = b c + cd, ist

be = ab . x

Ebenso kann cd durch sein Verhältnis zu a b ausgedrückt werden, denn es ist

Demnach ist und hieraus ergibt sich

x =t‘+ 1,’ + 1,’ • t,’ = 1‘ oder unter Wiedereinführung der einzelnen magnetischen Widerstände

, 5, (1+8, + 02) + 52 , 52 (1+5 + 01) + 5,

02                                01

+ 5(1+%+e)+% . * (1+*+ e) + 51 02                                   01

Es erübrigt noch, die Strecken ab resp. ed in die Streufelder 1. und 2. Klasse zu unterteilen. Es ist dies sehr einfach, da wir die Verhältnisse dieser einzelnen Größen schon kennen gelernt haben. Man erhält für das 1. Statorstreufeld

ar - bd • 60+8,+e)

92 und für das 2. Statorstreufeld

fb = bd • 5 • 02

	
	
	
Ebenso wird das 1. Rotorstreufeld







— — 8, (1+5 + 01) c g = d e ——------— 91 und das 2. Rotorstreufeld

d g = d e —— • 01

Wir haben jetzt noch die Kreise einzuzeichnen, auf welchen sich die einzelnen Punkte der Diagrammlinien bei beliebigen Belastungen bewegen. Der Endpunkt d des totalen Statorfeldes wandert vom Leerlauf vom Punkt d auf einem auf d e konstruierten Halbkreis bis nach e im Grenzzustand. Das totale Statorstreufeld, welches zum gesamten Statorfeld durchwegs in einem konstanten Verhältnis stehen muß, wird auf dem Statorfeld durch einen von b nach c gezogenen Halbkreis markiert und ebenso das 1. Statorstreufeld durch den Halbkreis f h. Für den beliebigen im Diagramm gezeichneten Belastungszustand ist demnach

	
1.    Statorstreufeld = a f'


	
2.
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Totales

Totales Statorfeld = ad.

Da das von den Rotoramperewindungen erzeugte Feld bei Leerlauf 0 ist, weil der Rotor in diesem Falle stromlos ist, müssen alle auf die Rotorfelder bezüglichen Kreise vom Punkt b ausgehen. Die Durchmesser der Halbkreise sind bc, bg, bd und be und ein von b aus gezogener Radiusvektor, der den Radiusvektor des Statorfeldes auf dem Halbkreis b c im Punkte b' schneidet, wird durch diese Kreise in folgende Teile zerlegt:

	
1.    Rotorstreufeld — b' s’


	
2.        -           =  s‘ s



Totales -        = b‘s

Totales Rotorfeld = b‘s"

Das resultierende Rotorfeld ist durch d s repräsentiert und das resultierende Statorfeld ist durchweg konstant = ad.

Wir können nun noch das Stromdreieck in das Diagramm einzeichnen, ds ist das resultierende Rotorfeld, und da der Rotor ström in die Richtung b s' fallen und auf dem resultierenden Rotorfeld senkrecht stehen muß, können wir mit b s den Rotorstrom bezeichnen. Wie auf Seite 71 bewiesen ist, muß bs mit 1 + T multipliziert werden, um die Rotoramperewindungen im gleichen Maßstabe zu ergeben, in welchem die Statorampere-Windungen dargestellt sind. Wünscht man diese Multiplikation graphisch auszuführen, so muß s b verlängert werden bis zum Schnittpunkt b'" auf einem über a b beschriebenen Halbkreis. Die Richtigkeit der Konstruktion folgt aus der Beziehung:

a d . , . 51 (1 + 52 + 02) + $2

a b                                    02

Der Statorstrom muß vom Punkte s ausgehend parallel zu a b' eingetragen werden und er schneidet die Gerade e d a im Punkte u. Aus dem Parallelismus der Geraden a b‘ und u s folgt

	
ub       ab '    , ------- = ------- — X = T . b d      b c



Der Kreis, auf welchem sich die Spitze s des Stromdreiecks bewegt, ist in Fig. 45 durch stärkeres Ausziehen besonders hervorgehoben.

Der besseren Übersichtlichkeit halber sind in nachstehender Tabelle alle im Diagramm Fig. 45 enthaltenen Größen zusammengestellt. Das Diagramm ist unter der Annahme konstruiert, daß
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a h

a c
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Tabelle zu Figur 45.


	
Bezeichnung
	
Leerlauf
	
Belastung
	
Grenzwert


	
Totales Statorfeld........
	
a d
	
a d’
	
a e


	
1. Statorstreufeld........
	
a f
	
af'
	
a h


	
Statorluftfeld..........
	
fd
	
f'd'
	
h e


	
2. Statorstreufeld........
	
fb
	
f'b'
	
h c


	
Statorfeld, das Rotorwindungen schneidet
	
b d
	
b'd'
	
c e


	
Resultierendes Statorfeld......
	
a d
	
a d
	
a d


	
Totales Rotorfeld........
	
0
	
b' s"
	
c e


	
1. Rotorstreufeld.........
	
0
	
b's'
	
eg


	
Rotorluftfeld..........
	
0
	
s' s”
	
ge


	
2. Rotorstreufeld.........
	
0
	
s' s
	
gd


	
Rotorfeld, das Statorwindungen schneidet
	
0
	
s s"
	
d e


	
Resultierendes Rotorfeld......
	
bd
	
s d
	
0


	
Luftfeld des Motors........
	
fd
	
f'd'
	
hg


	
Gemeinsames Hauptfeld......
	
bd
	
b'd
	
cd


	
Statorstrom...........
	
ub
	
u s
	
u d


	
Rotorstrom...........
	
0
	
b" s
	
a d




	
	
	
25.    Bemerkungen über die Verwendbarkeit dieses Diagrammes.







Wir haben in diesem Kapitel den Nachweis erbracht, daß das Kreisdiagramm auch dann gültig ist, wenn der Eisenwiderstand berücksichtigt wird. Es ist hierzu allerdings einschränkend zu bemerken, daß ein und dasselbe Diagramm für die verschiedenen Belastungsstadien nur unter der Voraussetzung konstanter Streuungskoeffizienten, also auch konstanter Eisenwiderstände richtig ist.

So wichtig es war, prinzipiell die Gültigkeit des Kreisdiagramms auch bei Berücksichtigung des Eisenwiderstandes nachzuweisen, so können wir doch bei der Berechnung und Untersuchung von Asynchronmotoren darauf verzichten, den Eisenwiderstand zu berücksichtigen. Die ganze Rechnung wird durch die Einführung der Größen 01 und 02 ganz bedeutend kompliziert, während sie in nur sehr geringem Maße das schließliche Resultat

9*

beeinflussen. Jedenfalls sind eine ganze Reihe anderer Fehlerquellen vorhanden, welche in höherem Grade die Resultate beeinflussen: die relativ geringe Genauigkeit der Messung des Luftzwischenraumes, unsere Unkenntnis der genauen Größe der Permeabilität des zu einem bestimmten Motor verwendeten Eisens, exzentrische Lagerung des Rotors etc. Endlich ist noch zu bemerken, daß die Komplikation der Rechnung ganz erheblich zunimmt, wenn wir den Einfluß des Eisenwiderstandes bei einem Motor mit vielen Nuten pro Pol, wie sie praktisch stets angeordnet werden, rechnerisch verfolgen; und wenn auch in mathematischer Beziehung keine Unmöglichkeit vorliegt, diese Rechnungen auszuführen, so steht doch der erzielte Gewinn in keinem Verhältnis zu dem erforderlichen Mehraufwand an Arbeit.

Im nachstehenden ist daher der Einfluß des Eisenwiderstandes auf die Streuung vernachlässigt.

Viertes Kapitel.

Die Verluste durch Hysteresis, Wirbelströme und Reibung und ihre Darstellung im Diagramm.

	
	
	
26.    Verluste im Statoreisen und näherungsweise Berücksichtigung derselben im Heylanddiagramm. — 27. Exakte Berücksichtigung der Verluste im Statoreisen. — 28. Verluste im Rotoreisen. — 29. Reibungsverluste. — 30. Allgemeine Bemerkungen über den Einfluß der Verluste auf das Verhalten des Motors.


	
26.    Verluste im Statoreisen und näherungsweise Berücksichtigung derselben im Heylanddiagramm.







Durch die Ummagnetisierung des Statoreisens, welche mit II, Polwechseln per Sekunde erfolgt, wird ein Verlust durch Hysteresis und Wirbelströme verursacht. Der durch Hysteresis hervorgerufene Wattverlust ist der 1,6 Potenz, der durch Wirbelströme hervorgerufene der zweiten Potenz der Eiseninduktion proportional. Beide Verluste treten in praxi nie gesondert, sondern stets gemeinsam auf, und die Eisenverlustkurven, welche man gewöhnlich bei der Berechnung von Maschinen zu Hilfe nimmt, stellen die Summenwirkung beider Verluste als Ordinaten dar, während auf der Abszisse die zugehörigen Induktionen aufgetragen sind. Infolgedessen ergibt eine analytische Untersuchung einer derartigen Kurve für den Exponenten der Gleichung y = xn weder den Wert 1,6 noch den Wert 2, sondern n liegt zwischen diesen beiden Zahlen. Die graphische Darstellung einer Exponentialfunktion mit gebrochenem Exponenten bietet in einem Diagramm große Schwierigkeiten, und wenn man bedenkt, daß es sich hier bei der Untersuchung des Einflusses des Eisenverlustes nur um die Berücksichtigung einer Korrektionsgrüße handelt, so mag es gerechtfertigt erscheinen, an Stelle des gebrochenen Exponenten, der größer als 1,6, aber kleiner als 2 ist, durchwegs die quadratische Abhängigkeit zu setzen. Wir haben dadurch nicht nur für die Rechnung und das Diagramm große Vereinfachung erzielt, sondern den weiteren Vorteil erreicht, daß wir uns durch eine sehr einfache Hilfsvorstellung die Wirkung des Eisenverlustes ersetzt denken können. Wenn wir nämlich schreiben, der Eisenverlust Ve

v,8B,"   ........(82)

so ist die Wirkung desselben ebenso, wie wenn das Eisen verlustlos, auf dem Stator aber außer der eigentlichen Statorwicklung eine kurz geschlossene, im übrigen mit der Hauptwicklung identische Wicklung von solchem Widerstand angebracht wäre, daß die Stromwärme J2 . w in dieser Wicklung denselben Verlust hervorruft. Da nämlich die in dieser Wicklung durch das Statorfeld hervorgerufene EMK der Induktion B,’ proportional ist, so wird

B‘,2 90 =J2.w=V.

Um die Wirkung des Eisenverlustes zu studieren, wollen wir zuerst annehmen, daß in einem Motor mit Ausnahme des Eisenverlustes im Stator keinerlei andere Verluste auftreten. In Fig. 46 stellt üb den Magnetisierungsstrom dieses Motors ohne Berücksichtigung des Eisenverlustes dar, wie er dann im Stator fließt, wenn der Rotor stromlos im Synchronismus läuft. ub ist dann ganz reiner wattloser Strom und steht auf der Klemmenspannung E, senkrecht. Wenn wir nun den Eisenverlust in Berücksichtigung ziehen, so ist in erster Linie klar, daß in Bezug auf den Rotor dadurch gar keine Änderung eintritt, der Rotor läuft einfach synchron und stromlos weiter. Der Stator muß aber nun soviel Wattstrom Jw konsumieren, daß die Eisenverluste gedeckt werden, also daß

a,.J,-E,=V, also

worin a, die Phasenzahl des Stators bedeutet. Der Größe nach ist hiermit die Wattkomponente des Statorstromes festgelegt und auch ihre Richtung können wir angeben: denn da Jw Wattkomponente ist, muß Jw mit der Richtung der Klemmenspannung zusammenfallen und auf dem Magnetisierungsstrom Jm senkrecht stehen. Wir können daher in Fig. 46 bi — Jw im selben Maßstab, in welchem ulb == Jm darstellt, senkrecht auf ab einzeichnen. Im ersten Moment könnte man darüber im Zweifel sein, ob diese Komponente des Statorstromes nicht etwa in der Richtung bi zu zeichnen seien, damit der Punkt i" auf dem Diagrammkreis liegt, aber folgende Überlegung ergibt die Hinfälligkeit dieses Zweifels.
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Die Wattkomponente bi' bildet nämlich die Reaktion der im Eisen resp. in unserer Ersatzwicklung zirkulierenden Verlustströme ui, und beide Ströme b i und u i sind an Größe einander gleich, der Richtung nach entgegengesetzt, sie heben sich daher gegenseitig vollständig auf. Da u i im Statoreisen resp. in der Hilfswicklung, die aber ebenfalls im Stator liegt, fließt, hat die Hauptstatorwicklung resp. das von b i’ erzeugte Feld keine Streuung gegenüber der Hilfswicklung resp. dem von ui erzeugten Feld. Der Diagrammkreis , der seine Entstehung lediglich den Streuungskoeffizienten T1 und T verdankt, kommt also hierbei gar nicht in Betracht; denn T1 stellt die Streuung des Stators gegenüber dem Rotor dar, während der Stator sich selbst gegenüber natürlich streuungsfrei ist.

Es ist demnach die oben angegebene Einzeichnung der Wattkomponente gerechtfertigt und es ist außerdem gezeigt, daß durch die Wattkomponente bi kein Feld im Motor hervorgerufen wird, da bi durch ui in jeder Beziehung kompensiert ist. Das Felddiagramm ist daher durch die Berücksichtigung des Eisenverlustes in keiner Weise alteriert worden, sondern a d ist das konstante Statorerregerfeld geblieben.

Der gesamte Primärstrom des synchron laufenden Motors ist natürlich die Resultante aus dem Magnetisierungsstrom u b und der Wattkomponente bi’, also ui, beim Rotorstrom Null.

Die für den synchronen Lauf gemachten Betrachtungen gelten für jeden beliebigen Betriebszustand, nur ist an Stelle des Magnetisierungsstromes der Statorstrom, wie er dem Belastungszustand bei Vernachlässigung des Eisenwiderstandes entspricht, zu benützen und um die Wattkomponente zu vergrößern. Es bezeichne in Fig. 47 u b s das Stromdreieck in einem beliebigen Belastungszustand bei Vernachlässigung des Eisenverlustes. Bei Berücksichtigung desselben muß der Statorstrom u s um die Wattkom-
[image: ]

ponente s s' = bi' vergrößert werden, um den resultierenden wirklichen Statorstrom u s‘ zu ergeben. Der Rotorstrom, natürlich auch alle vom Rotorstrom abhängigen Größen: Rotorfeld, Zugkraft, Schlüpfung, Leistung bleiben unverändert; J2 ist daher proportional b s. Der geometrische Ort, auf welchem sich die Punkte s' des Primärstromes bei wechselnder Belastung bewegen, ist ein Kreis vom gleichen Durchmesser wie der Hauptdiagramm-kreis und die Mittelpunkte beider Kreise haben den Abstand mn=bi — Jw,.

Dies Diagramm besitzt nur Gültigkeit unter der Annahme, daß der Stator widerstandslos ist, also kein Spannungsverlust im Stator auftritt und infolgedessen das Statorfeld a d und der Hysteresis-Verlust im Statoreisen konstant ist.

Unter dieser vereinfachenden Annahme läßt sich das Diagramm Fig. 47 noch bequemer derart darstellen, daß man ui Fig. 48 gleich der konstanten Wattkomponente nach links senkrecht auf dem Magnetisierungsstrom anträgt. In jedem beliebigen Belastungszustand ist dann der Statorstrom is, der Rotorstrom bs, und der Punkt s bewegt sich auf dem Diagrammkreis.

Da der Eisenverlust aus den Dimensionen des Motors in Watt berechnet wird, kann man sich die Berechnung der Wattkomponente des Statorstromes sparen, wenn man die Strecke i u als Repräsentantin einer Leistung auffaßt. Unter Verwendung unserer Konstanten C1, C, . . . erhalten wir nämlich

v. =C-lu

also

Der Wattkonsum des Motors bei einer beliebigen Belastung wird dann

W, = C, .ts

wobei der Punkt t nicht auf der Diagrammbasis ud, sondern auf einer zu u d im Abstand i u Parallelen liegt.

Im Heylandschen Diagramm begnügt man sich mit der näherungsweisen Berücksichtigung des Eisenverlustes in der hier angegebenen Weise, indem man dieselben als konstant annimmt und in dieser Beziehung den vom Statorwiderstand verursachten Spannungsverlust vernachlässigt. In Bezug auf seine anderen Wirkungen wird der Statorwiderstand so berücksichtigt, wie es im vorigen Abschnitt bei Ableitung des Heylanddiagrammes angegeben wurde.

	
	
	
27.    Exakte Berücksichtigung der Verluste im Statoreisen.







Ganz bedeutend größere Schwierigkeiten bietet die Berücksichtigung des Eisenverlustes, wenn der Statorwiderstand in Rechnung gezogen wird, wie wir dies mittels des exakten Diagrammes tun können. Fig. 49 stellt ein derartiges Diagramm dar. Sehen wir vorläufig vom Eisenverlust ab, so wissen wir, daß der Statorstrom und die anderen Größen nicht ohne weiteres dem Diagramm entnommen werden können, denn alle Diagrammlinien sind nur
[image: ]

Fig. 49.


unter der Annahme konstanter EMK, nicht konstanter Klemmenspannung gültig, und sie müssen, um dieser letzteren Bedingung zu genügen, durch s oder eine Potenz von s dividiert werden, wobei

m s 8 =------ m u

Der Statorstrom ist daher bei einem beliebigen Belastungszustand

J, = C4"5

der Wattkonsum des Motors

	
	
w, c, • ws ,





8

die Statorfeldinduktion

R/Ac,.ad .

Diese 3 Größen sind es hauptsächlich, die uns augenblicklich interessieren, denn wie wir bereits aus dem vorhergehenden Kapitel wissen, hat die Berücksichtigung des Statoreisenverlustes auf alle vom Rotor abhängigen Größen keinen Einfluß.

Es wurde schon eingehend erörtert, daß es zulässig ist, die Eisenverluste dem Quadrat der Induktion proportional zu setzen, also

V. 96 B,12.

Rühren wir für B/ obigen Ausdruck ein, so erhalten wir

v,,8-O5r ........

Da der Wattkonsum des Motors

ist, verlangt die Richtigkeit des Diagrammes, daß ganz allgemein Watt — also auch die Eisenverluste — durch das Produkt einer

C

Strecke mal — dargestellt werden können. Wir suchen nach einer Strecke x, welche es uns ermöglicht, den Eisenverlust graphisch darzustellen, und diese Strecke x muß daher der Bedingung genügen

v,~c )........(6)

Durch Gleichsetzen der Gleichungen a und b erhält man

(C, .ad)2     ,

	
X.89    7--= konstant.
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Da € seinerseits m s 8 == ------ , m u

mu aber ebenfalls konstant ist, muß

x . m s = konstant = K

sein. Dieser Bedingung wird Genüge geleistet, wenn wir

x = m 1

setzen, sodaß also

ml•ms = K

ist. Diese Beziehung gilt für jede beliebige Lage der Geraden m s, also während der Punkt s den ganzen Kreis durchläuft. K nennt man daher die Potenz des Punktes2) m in Bezug auf den Kreis. Die zu ms gehörigen Strecken mT genügen daher der Wattgleichung (b) in dem Sinne, daß ist. Um an Stelle des Proportionalitätszeichens das Gleichheitszeichen setzen zu dürfen, bedarf es noch folgender Überlegung.

Wenn wir auf der Geraden m o um einen beliebigen Punkt o' einen Kreis beschreiben und demselben einen solchen Radius o' d' geben, daß

o' d'       m o'

o d      m o

so muß dieselbe Proportionalität zwischen zwei beliebigen korrespondierenden Punkten beider Kreise bestehen. Durch passende Wahl des Mittelpunktes o' des neuen Kreises haben wir es daher in der Hand, in die obige Gleichung an Stelle des m 1 eine Strecke m V einzuführen, welche Gleichheit der beiden Seiten der Gleichung gewährleistet.

Der Gang der Rechnung zur Bestimmung der Lage von o' ist zweckmäßig folgender. Für einen Belastungszustand wird der Eisenverlust zahlenmäßig aus den Dimensionen berechnet, und es wird hierzu am besten der Leerlaufszustand des Motors resp. der vollständige Synchronismus gewählt. Der Magnetisierungsstrom wird durch ub dargestellt, der Rotorstrom ist Null, s hat die Größe

und daraus ergibt sich

mu= Lei........(83)

Es ist damit der Mittelpunkt o' und gleichzeitig der Radius o' d' des Kreises festgelegt, denn d' liegt offenbar im Schnittpunkt der Geraden m d und einer in u' errichteten Senkrechten u' o' d', Der Wattkonsum des Motors wird in jedem Belastungsfalle durch die Strecke w s repräsentiert, wenn der Eisenverlust vernachlässigt wird. Es ist in diesem Ealle der Wattkonsum

w, - c, • —

und der Punkt w ist der Schnittpunkt der Geraden ms mit einem auf m u beschriebenen Halbkreis. Durch den Hysteresis-Verlust wird der Wattkonsum bei dieser Belastung um

y _c•ml

vergrößert, der totale Wattkonsum des Motors steigt daher auf

w. Ec. ws+mlEc,. wh .... (84) wobei

s h = m 1'.

Durch die Vergrößerung des ursprünglichen Statorstromes us um eine s h äquivalente Wattkomponente wird nunmehr der Statorstrom durch u h dargestellt und seine numerische Größe beträgt

Ampere. Der geometrische Ort, auf welchem sich der Punkt h bei allen möglichen Belastungsfällen bewegt, wird gefunden, wenn man zu einer größeren Anzahl von Strahlen zu m s die zugehörigen Längen der Potenzlinien m 1' graphisch addiert, sodaß

mh=ms + ml,

und die so gefundenen h-Punkte durch eine Kurve verbindet.

Der Rotorstrom und die von ihm abhängigen Größen werden durch die in Bezug auf den Stator vorgenommenen Operationen nicht beeinflußt. Zum Beispiel ist in Fig. 49 der Rotorstrom in Ampere

Eine kleine Vernachlässigung haben wir uns hierbei noch zu Schulden kommen lassen, indem wir bisher den Spannungsverlust im Stator noch nicht ganz korrekt berücksichtigt haben. £ berücksichtigt nämlich nur den Spannungsverlust, wie er durch einen Statorstrom von der Größe u s hervorgerufen wird, während nunmehr der Statorstrom die Größe uh besitzt. Wir müssen daher an Stelle des s einen modifizierten Koeffizienten s‘ einführen, wobei

. m h


(85)



4 = ------in u

Die Konstruktion sieht auf den ersten Anblick kompliziert aus, ist aber in Wirklichkeit sehr rasch ausgeführt. Um die Methode zu rekapitulieren, sei nochmals erwähnt:

Aus der Statorinduktion bei Synchronismus

b; = c, nd.mu

m b

wird der hierbei auftretende Eisenverlust in Watt berechnet und sodann der kleine Kreis mit dem Mittelpunkt o' gezeichnet, o' liegt auf der Verbindungslinie des Kreismittelpunktes o mit in. Die Abszisse m u' des Punktes o' ergibt sich aus der Beziehung

, v., mu = 7

C4

in Millimetern. Der Durchmesser des Hilfskreises ist gegeben durch die Entfernung der Punkte d', b', welche die Schnittpunkte von m d und m b mit einer in u' errichteten Senkrechten sind. Die Strecken ml' werden daun einfach auf der Verlängerung der Geraden m 1' 1 w s aufgetragen, sodaß sh = ml.

Der Teil der Kurve, welche die h-Punkte verbindet, welcher sich innerhalb des Diagrammkreises links von b d befindet, hat

augenblicklich noch kein Interesse für uns, wir benötigen ihn erst, wenn wir das Verhalten der Maschine als Asynchrongenerator untersuchen. Die Kurve ist jedoch schon an dieser Stelle vollständig in die Fig. 49 eingetragen, um ein leichteres Verständnis der Konstruktion zu ermöglichen.

	
28.    Verluste im Rotoreisen.



Während das Statoreisen fortwährend einer Ummagnetisierung mit der konstanten Polwechselzahl II, des zugeführten Wechselstromes ausgesetzt ist und unter Vernachlässigung des Statorwiderstandes sogar die Induktion B,’ im Statoreisen eine konstante ist, sind diese beiden Größen II, und B,’ in Bezug auf den Rotor variabel.

Um in erster Linie das Gesetz festzustellen, nach welchem der Eisenverlust des Rotors variiert, wollen wir wieder von der Voraussetzung ausgehen, die wir in Bezug auf den Stator gemacht haben, daß nämlich die Eisenverluste im Quadrat der Eiseninduktion variieren. Daß die Verluste der Polwechselzahl II, direkt proportional sind, ist selbstverständlich, und wir können daher schreiben

V.,N B,".I,.........(86)

Im Diagramm Fig. 50 stellt, wie bekannt, b s den Rotor-ström, d s die Rotorinduktion vor. Es ist nun

Jo = E, 7 W2 und die im Rotor induzierte EMK

Eo • B‘ . n.

Demnach ist

Setzen wir diesen Ausdruck in Gleichung (86) ein, so erhalten wir:

Wenn wir uns erinnern, daß J, . B,’ der Zugkraft proportional ist, so können wir den Satz aufstellen: „Der Eisenverlust im Rotor ist der Zugkraft proportional“. — Er ist also genau wie die Zugkraft bei Synchronismus Null, erreicht bei einer bestimmten Belastung (wenn ff" (Fig. 37) in die Verlängerung von m o fällt) ein Maximum, und ist auch beim Stillstand in ziemlicher Größe vorhanden.

Eine exakte Berücksichtigung der Einwirkung des Eisenverlustes im Rotor auf das Verhalten des Motors bietet nicht unerhebliche Schwierigkeiten. Wir können uns dies dadurch klar machen, daß wir annehmen, der Eisenverlust würde nicht im Eisen, sondern in einem Ohmschen Widerstand verursacht, und nun untersuchen, welche Eigenschaften dieser Ohmsche Widerstand we besitzen müßte. Der Effektverlust in einem Ohmschen Widerstande ist J2 w, daher können wir die Gleichung ■ (87) dem Ausdruck gleichsetzen

v&J.B/NJw,

und hieraus folgt

	
	
d. h. durch die Eisenverluste im Rotor wird genau die gleiche Wirkung hervorgebracht, wie durch einen Widerstand der Rotorwicklung, der umgekehrt proportional der Polwechselzahl II, variiert.





Da uns genau bekannt ist, in welcher Weise der Rotorwiderstand das Diagramm beeinflußt, können wir sehen, daß der Hysteresisverlust des Rotors in Bezug auf das Feld- und Stromdiagramm keine Veränderungen hervorbringt, daß aber Schlüpfung, Drehmoment beim Anzug und Wirkungsgrad des Motors hierdurch beeinflußt werden. Die genaue Berücksichtigung dieses Verlustes würde, wie erwähnt, unliebsame Komplikationen des Diagramm.es bedingen, und wir wollen uns daher mit einem Näherungsverfahren begnügen, dessen Anwendung umsomehr gestattet ist, als die Eisenverluste des Rotors im Verhältnis zu den Gesamtverlusten von verschwindender Bedeutung sind. Wir können uns damit begnügen, daß wir den Ersatzwiderstand We nicht zwischen den Grenzen II, = 0 und II, = H1 variabel, sondern als konstant annehmen. Es sieht aus, als sei die hierdurch begangene Ungenauigkeit eine un-
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Heubach, Drehstrommotor.


d
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Fig. 50.




geheuerliche, aber dies ist in Wirklichkeit nicht so schlimm, wie uns ein Blick auf das Diagramm Fig. 50 lehrt. Exakt ist der Eisenverlust durch die Strecken t s, also durch die Horizontalabstände der Kreispunkte von der Diagrammbasis, dargestellt, während unter der Annahme we = konstant die Verluste durch tv, also durch die korrespondierenden Horizontalabstände der Geraden bd und bs', dargestellt sind. Bei Synchronismus und bei Stillstand gibt die Näherungsmethode den streng richtigen Wert, und die Größe des Fehlers bei einer mittleren Belastung hängt von der Lage des Punktes s' auf dem Kreise, also vom Winkel dbs' ab.

Bezeichnen wir mit V., den Eisenverlust des Rotors bei Stillstand und kurzgeschlossenen Rotorwindungen, wenn der Statorstrom die Größe u s‘, der Rotorstrom b s' besitzt und das Eisen demgemäß einer Induktion von C, . d s‘ bei einer Polwechselzahl II, ausgesetzt ist, so erhalten wir die Größe des Ersatzwiderstandes We


J22 . a2 a2 (C3 . b s')2




Um diese Größe ist



der Ohmsche - Widerstand des Rotors zu vermehren, damit der Eisenverlust in der soeben geschilderten angenäherten Weise berücksichtigt wird. Es ist demnach in alle Rechnungen für den Rotorwiderstand einzusetzen

W2‘ = Wa + We


(89)



Der Verlust Vg des stillstehenden Rotors läßt sich experimentell nicht, oder doch nur sehr ungenau feststellen, da bei diesem Belastungszustand des Motors die Ohmschen Verluste viel größer sind als die Eisenverluste im Rotor. Ve, muß daher berechnet werden.

Besitzt ein Motor einen Phasenrotor mit Schleifringen, so laßt sich der Eisenverlust des stillstehenden Rotors bei offenen Rotorwicklungen experimentell bestimmen. Der Rotor ist dann einer Magnetisierung von II, Polwechseln mit der Induktion C, . b d unterworfen, und der so gemessene Verlust darf keinesfalls mit Ve, verwechselt werden. Der auf diese Weise gemessene Verlust herrscht beim Betrieb des Motors mit kurzgeschlossenen Rotorwicklungen niemals, denn bei den hohen Induktionen von der Größenordnung Ci. bd hat der Rotor nur wenige Prozent Schlüpfung, II, ist daher nur ein kleiner Bruchteil von II, während bei Stillstand zwar II, = II, ist, dagegen nur eine geringe Rotorinduktion von der Größe C1 . d s‘ verbanden ist.

	
29.    Reibungsverluste.



Reibungsverluste treten bei einem Motor in den Lagern, eventuell an den Schleifringen und außerdem an der gesamten Berührungsfläche des rotierenden Teiles mit dem umgebenden Medium — der Luft — auf. Man unterscheidet daher Verluste durch Lagerreibung und Luftwiderstand. Die Gesetze, nach welchen die Reibungsverluste genau berechnet werden können, sind uns nicht bekannt. Die Annahme, daß die Reibung gleich dem Produkt aus Reibungskoeffizient X Normaldruck, also unabhängig von der Geschwindigkeit sei, ist nicht einwandfrei. Übrigens würde auch die Ermittlung des Normaldruckes bei einem Motor Schwierigkeiten bieten, da dieser Druck nicht konstant, sondern selbst wieder eine Funktion der Leistung des Motors ist infolge des Riemenzuges. Der Luftwiderstand variiert mit einer höheren Potenz der Geschwindigkeit, aber seine genaue Ermittlung entzieht sich der Berechnung. In angenäherter Weise können wir annehmen, daß der gesamte Reibungswiderstand konstant ist. Er erfordert daher zu seiner Überwindung eine konstante Zugkraft Pr, welche in Bezug auf die Nutzleistung des Motors verloren geht.

Um zu zeigen, in welcher Weise die Reibungsverluste das Verhalten des Motors beeinflussen, nehmen wir vorerst der Einfachheit halber an, daß die Statorwicklung widerstandslos sei. Es stellt dann (Fig. 50) jede von der Spitze s des Stromdreiecks auf bd gefällte Senkrechte ts die Zugkraft des Motors dar, welche auf den elektrisch aktiven Teil des Rotors ausgeübt wird.

10*

Da durch die Reibung ein konstanter Betrag Pr dieser Zugkraft im Motor selbst verloren geht, erhalten wir die am äußeren Wellenstumpf wirksame Zugkraft (resp. Drehmoment), wenn wir im Abstand

P, = t?

eine zu bd parallele Gerade ziehen. Die Strecken st‘ stellen die gesuchte nutzbare Zugkraft des Motors dar.

Durch die Reibung wird ein Effektverlust Wr verursacht, welcher der Tourenzahl des Motors proportional ist. Es ist daher

W, 2 Pr . n

und Wr wird ein Maximum beim Leerlauf des Motors, und wird Null beim Stillstand.

Wenn wir im Diagramm Fig. 50 die Punkte R und s‘ durch eine Gerade verbinden, so wird durch die Horizontalabstände vr in großer Annäherung der Effektverlust Wr für jede beliebige Belastung bestimmt. Die Nutzleistung des Motors wird demgemäß durch die Größe der Horizontallinien rs repräsentiert, während sie bei Vernachlässigung des Effektverlustes Wr die Größe v s haben würde. Streng genommen, ist die Gerade R s' nur in ihren Endpunkten R und s‘ richtig, zur genauen Ermittlung der Verluste Wr müßten die Punkte R und s' nicht durch eine Gerade, sondern durch eine allerdings nur schwach gekrümmte Kurve verbunden werden. Will man diese Kurve zeichnen, so genügt es, noch einen Punkt derselben zu bestimmen, und man wählt hierzu zweckmäßig den Zustand des Motors bei 50% Schlüpfung. In diesem Falle ist die Tourenzahl -9, daher der Effektverlust

und der Abstand des Kurvenpunktes R‘ von dem auf b s' gelegenen Punkt v'

v’R’ = } bK

Die Fig. 50 stellt die Konstruktion des Diagrammes dar, wie sie in Bezug auf das exakte Motordiagramm Anwendung finden kann; nur ist dann noch die Gerade um senkrecht auf ud nach links einzuzeichnen, um den Koeffizienten s bestimmen zu können. Der Einfluß des s auf das Diagramm ist dann selbstverständlich.

Die Anwendung der Konstruktion auf das Heylandsche Diagramm ist sehr einfach, gleichgültig, ob man zur Berücksichtigung der Widerstände Kreise oder Gerade verwendet.
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a)    Bei Verwendung von Geraden bn und b s' (Fig. 51) zieht im Horizontalabstand





Pr

C5

zu b n parallele Gerade, welche bei ihrem Durchschnitt mit Diagrammkreis den Punkt R liefert. Da v v‘ die durch Reibung verloren gehende Zugkraft darstellt, so ist die nützliche Zugkraft nur mehr sv‘. R ist der eine, s' der andere Endpunkt der Kurve, welche wir zur Ermittlung der Nutzleistung zu ziehen haben, und wir können in bekannterWei.se noch R‘, dem Zu stand bei 50 % Schlüpfung entsprechend, bestimmen und so die Kurve RR’s’ festlegen, s r' ist dann die Nutzleistung des Motors.

	
	
b)    Bei Verwendung von Kreisen (Fig. 52) zieht man parallel zu bd im Abstand f‘f’l eine Parallele, wobei





f" f‘ stellt den konstanten Betrag dar, um welchen sich die Zugkraft vermindert, und die nutzbare Zugkraft des Motors ist daher nur noch

P=C.ff™

in dem gezeichneten Belastungszustand. Den Punkt R finden wir durch die Überlegung, daß bei Leerlauf die Nutzleistung des Motors Null sein muß, im Durchschnittspunkt der Geraden db' mit dem Leistungskreis des Diagrammes. In einfacher Weise bestimmen wir R‘, dem Zustand bei 50 % Schlüpfung entsprechend, und können nun die Kurve R R‘ d ziehen. Der Endpunkt der Kurve muß in d liegen, da bei Stillstand Nutzleistung und Reibungseffektverlust Null sein müssen. Die von der Kurve und dem innersten Diagrammkreis — dem Leistungskreis — abgegrenzten Horizontallinien g g" stellen die Nutzleistung dar. Der vom Stator konsumierte Effekt bleibt natürlich unverändert s t und wird durch den Reibungsverlust in keiner Weise beeinflußt.

	
30.    Allgemeine Bemerkungen über den Einfluß der Verluste auf das Verhalten des Motors.



Um den Einfluß der einzelnen in einem Motor auftretenden Verluste möglichst klar zu legen, wollen wir nochmals die Wirkungen derselben besprechen. Wir gehen von einem leerlaufenden, absolut verlustlos arbeitenden Motor aus. Der Motor läuft dann vollständig im Synchronismus, konsumiert keinen elektrischen Effekt, sondern nur seinen wattlosen Magnetisierungsstrom. Wir machen nun folgende Annahmen:

	
	
1.    Nur Statorwiderstand ist vorhanden. Der Stator konsumiert elektrischen Effekt zur Deckung der Verluste J,2 . W1. Infolge des Spannungsverlustes J1 . W1 nehmen sämtliche Feldinduktionen ab. cos g > 0. Sonstige Erscheinungen treten nicht auf, der Rotor läuft im Synchronismus stromlos weiter.


	
2.    Nur Eisenverlut im Stator ist vorhanden. Die Erscheinungen sind dieselben wie sub 1.


	
3.    Nur Rotorwiderstand ist vorhanden. Da Reibung nicht vorhanden ist, braucht der Rotor nur seine Bewegung aufrecht zu erhalten, kein Drehmoment zu entwickeln, seine Zugkraft und der Rotorstrom sind Null, er läuft synchron und der Stator konsumiert nur wattlosen Magnetisierungsstrom.


	
4.    Nur Rotoreisenverlust ist vorhanden. Eigentlich müßte man korrekter sagen, Koerzitivkraft des Rotoreisens ist vorhanden; denn da der Rotor synchron läuft, ist II, = 0, daher kann kein Verlust im Rotoreisen auftreten. Es herrscht daher derselbe Zustand wie sub 3.


	
5.    Nur Reibung ist vorhanden. Um ein Drehmoment zu erzeugen, muß der Rotor Strom führen, seine Schlüpfung bleibt trotzdem Null, da eine unendlich kleine Schlüpfung genügt, um in einer widerstandslosen Rotorwicklung jeden beliebig großen Strom zu erzeugen. Der Wattkonsum des Stators entspricht dem elektrischen Äquivalent der durch Reibung verursachten mechanischen Leistung Pr . V, 2 Pr . n'.


	
6.    Wie 5., aber auch Rotorwiderstand vorhanden. Der Rotorstrom bleibt von gleicher Größe wie sub 5., aber II, muß größer als Null sein, damit in den Rotorwindungen eine EMK — J, . w2 erzeugt werden kann. Es tritt daher Schlüpfung ein. Der Wattkonsum des Stators wächst auf Pr . n6 + J,2 w2.


	
7.    Wie 6., aber auch Eisenverlust im Rotor vorhanden. Der Eisenerlust äußert sich ähnlich wie eine Vergrößerung des Rotorwiderstandes um We, die Schlüpfung muß daher abermals zunehmen, damit wieder derselbe Strom J2 in den Rotorwindungen erzeugt wird. n7 wird daher etwas kleiner als ng, und der Wattkonsum des Stators wird Pr . n7 + J2 . (W2 + We ).


	
8.    Wie 7., aber auch Statorwiderstand vorhanden. Infolge des Spannungsverlustes J1 . W1 und der dadurch bedingten Abnahme sämtlicher Felder muß der Rotorstrom größer werden wie sub 7., damit der Rotor die konstante Zugkraft Pr entwickeln kann. Die Schlüpfung nimmt also beträchtlich zu, und die Tourenzahl ns < n-. Die Zunahme des Rotorstromes bedingt eine Vergrößerung des Kupferverlustes J,2 W2, und die Zunahme des 11, bedingt trotz der Abnahme des B,’ eine weitere Vergrößerung der Eisenverluste im Rotor von der ungefähren Größe We . J,2. Der Wattkonsum des Stators wird Pr . n8 + J,2 ( W2 + We ) + J,2 . wt.


	
9.    Wie 8., aber auch Eisenverlust im Stator vorhanden. Dies bringt die gleiche Wirkung hervor, wie sie sub 8. in Bezug auf den Statorwiderstand besprochen wurde, n, < n8, daher Pr . n9 das einzige Glied des Verlustaggregates, welches gegenüber der Annahme 8. kleiner wird. Alle übrigen Glieder wachsen, und der Wattkonsum des Stators ist Pr . n9 + J,2 (W, — We ) + J,2 Wj + V., .





Man kann die Wirkung der Verlust verursachenden Größen auch in folgender Weise charakterisieren:

Der Statorwiderstand bewirkt, daß sich der Motor ebenso verhält, wie ein widerstandsloser Motor, der mit geringerer Klemmenspannung betrieben wird. In diesem Sinne kann man sagen, durch den Statorwiderstand wird Spannung vernichtet.

Der Eisenverlust des Stators erhöht die Wattkomponente des Statorstromes, ohne daß das Anwachsen des Stromes vergrößernd auf die Felder im Motor wirkt. Der Eisenverlust des Stators wirkt daher ebenso (W, = 0), oder wenigstens ähnlich (W, > 0) wie ein parallel zum Motor geschalteter Widerstand. Er vernichtet daher Strom.

Rotoreisenverlust und Widerstand bedingen die Schlüpfung und reduzieren die Tourenzahl. Sie vernichten daher Geschwindigkeit.

Die Reibung endlich vernichtet Zugkraft resp. einen Teil des im Motor bereits transformierten Effektes.

Fünftes Kapitel.

Die wirklichen Felder des streuungsfreien Motors.

	
	
	
31.    Form der wirklichen Felder. — 32. Eigenschaften der wirklichen Felder. — 33. Erregende Kraft eines Systems von beliebiger Phasenzahl. — 34. Maximale Kraftlinienzahl der wirklichen Felder. — 35. Die von einem Drehfeld induzierte EMK. — 36. Die Zugkraft. — 37. Übersetzungsverhältnis der Erregenden Kräfte, der Ströme und der EMKK. — 38. Beispiele.





	
31.    Form der wirklichen Felder.



Bis jetzt haben wir kritiklos angenommen, daß die in einem Mehrphasenmotor vorhandenen Felder räumlich und zeitlich nach einer Sinusfunktion variieren, und unter dieser Annahme haben wir die verschiedenen Felddiagramme abgeleitet. Die Richtigkeit der Diagramme ist daher auch nur für den Fall sinoidaler Felder bewiesen, denn nur unter dieser Voraussetzung durften wir magnetische Felder resp. deren maximale Induktionen nach dem Kräfteparallelogramm zusammensetzen. In Wirklichkeit sind aber die in einem Motor hervorgerufenen Felder keineswegs von sinoidaler Form, und wir müssen daher feststellen, wie tatsächlich die Felder gestaltet sind. Bei dieser Untersuchung werden wir finden, daß die wirklichen Felder nicht ohne weiteres nach dem Kräfteparallelogramm zusammengesetzt werden dürfen, ebensowenig wie die Amperewindungen des Stromdreiecks, und es würde damit der Wert der vorher abgeleiteten Diagramme in Frage gestellt werden, denn die Diagramme basieren ausnahmslos auf dieser Voraussetzung.

Wir müssen daher nach einer Methode suchen, die es uns ermöglicht, die wirklich im Motor vorhandenen Felder durch sin-oidale zu ersetzen, und der Gedankengang, auf dem wir zu diesem Ziele gelangen, ist der folgende.

In erster Linie bestimmen wir die wirkliche Form des Erregerfeldes, nehmen dann eine maximale Induktion desselben an und untersuchen nun, welche Drahtzahl wir auf dem Stator nötig haben, damit von diesem Feld in den Statorwindungen eine EMGK von gleicher Größe wie die Klemmenspannung induziert wird. Um das Diagramm zeichnen und in demselben nach dem Kräfteparallelogramm mit dem Erregerfeld arbeiten zu können, ersetzen wir das wirkliche Erregerfeld mit der maximalen Induktion B| durch ein sinoidales, welches bei einer maximalen Induktion Bi, die gleiche EMGK in den Statorwindungen induziert. Durch die Kenntnis der wirklichen Luftinduktion B| und der Drahtzahl der Statorwicklung lassen sich die Erregeramperewindungen und der Erregerstrom berechnen. An Stelle dieser wirklichen Erregeramperewindungen müssen in das Diagramm Amperewindungen eingeführt werden, die das sinoidale bereits erwähnte Erregerfeld zu erzeugen vermögen. Genau in der gleichen Weise muß in Bezug auf den Rotor verfahren werden, dann enthält das Felddiagramm lediglich sinoidale Felder und das Stromdiagramm Amperewindungen, resp. Ströme, welche sinoidale Felder hervorrufen, die nach Belieben graphisch oder analytisch zu Resultierenden zusammengesetzt oder in Komponenten aufgelöst werden können.

Da vielfach große Unklarheit darüber herrscht, in welcher Weise die wirkliche Feldkurve eines Mehrphasenmotors zu bestimmen ist, mag es angezeigt sein, einen Fall möglichst elementar und eingehend zu erörtern. Der Stator eines Mehrphasenmotors ist bekanntlich mit mehreren Windungssystemen ausgestattet, deren Zahl der Phasenzahl des Drehstromes entspricht, und im allgemeinen führen sämtliche Spulen gleichzeitig Strom. Jede dieser Spulen ist daher der Sitz einer erregenden Kraft, deren Größe wir aus Stromstärke und Windungszahl berechnen können, und das im Stator erzeugte Drehfeld muß aus der Summenwirkung der einzelnen erregenden Kräfte resultieren. In einem einzigen Fall, nämlich bei einem Zweiphasenstator in dem Moment, in welchem der Strom einer Phase Null ist, ist im Stator nur die erregende Kraft eines Spulensystems vorhanden, und von diesem einfachsten Fall wollen wir ausgehen, um die Größe der erregenden Kräfte und die dadurch hervorgerufenen Felder auch für alle übrigen Möglichkeiten zu bestimmen.

Wenn die Spule ab (Fig. 53) X Amperewindungen enthält und wir den Eisenwiderstand des ganzen Systems unberücksichtigt lassen, so wird in dem ganzen Luftzwischenraum die gleiche magnetische Induktion hervorgerufen, deren Größe

X

1,6 d

ist, wenn wir mit 8 die Größe des Luftzwischenraumes bezeichnen. Ist Q der totale Querschnitt des Luftspaltes, also die gesamte
[image: ]

Fig. 53.


Zylindermantelfäche des Rotors, resp. die Innenfläche des vom Stator gebildeten Hohlzylinders (die beiden Größen sind einander gleich unter der Annahme, daß 8 verschwindend klein ist), so ist die totale Kraftlinienzahl pro Pol

Genau das gleiche Resultat erhalten wir natürlich, wenn die Spule c d mit der gleichen Amperewindungszahl arbeitet und Spule ab stromlos ist. Fig. 53, 2 stellt die Richtung des jetzt erzeugten Feldes dar.

Lassen wir beide Amperewindungssysteme, die der Spulen a b und c d in unveränderter Größe gleichzeitig auf den Motor wirken, so können wir die nunmehrige Anordnung des erzeugten Feldes dadurch erhalten, daß wir die beiden Bilder der Fig. 53 auf einander legen und die einzelnen Induktionen addieren. Wir sehen Fig. 54, daß die Induktionen zwischen a c, b d auf das Doppelte angewachsen sind, wohingegen sich die Induktionen zwischen a d, b c gegenseitig aufheben. Da die Induktionen auf das Zweifache angewachsen sind, der wirksame Querschnitt eines Poles aber auf die Hälfte abgenommen hat, so ist die totale Zahl der Kraftlinien pro Pol dieselbe geblieben wie oben, als wir nur eine Spule mit X Amperewindungen erregt hatten. Es ist nunmehr

Z=2B 4

Damit die Induktion auf den doppelten Betrag, auf 2 B anwachsen kann, muß auch die erregende Kraft, die auf den magnetischen Kreis wirkt, die doppelte, also 2 X sein, und daß dies in der Tat der Fall ist, können wir aus Fig. 54 ersehen. Wir können
[image: ]

nämlich, ohne an der Wirkung des Systems etwas zu ändern, annehmen, daß die beiden Windungssysteme nicht von a nach b und von c nach d gewickelt sind, sondern daß das eine von a nach c und das andere von b nach d gewickelt ist. Dadurch werden die beiden rechtwinklig auf einander stehenden Wicklungssysteme durch ein einziges mit der doppelten Amperewindungszahl ersetzt, dessen beide Spulen konachsial angeordnet sind und deren Achse parallel zu a d und c b liegt.

Wenn die bisherigen Ableitungen stichhaltig sind, müssen wir das gleiche Resultat wie oben erhalten, wenn wir jede der Spulen a c und b d einzeln als von X Amperewindungen erregt betrachten und dann feststellen, wie das Feld jeder einzelnen Spule gestaltet sein müßte, und endlich die beiden so erhaltenen Felder wieder kombinieren.

Die Spule a c mit X erregenden Amperewindungen wirkt auf einen magnetischen Kreis, dessen Luftquerschnitt auf der einen Seite

auf der anderen Seite

ist. Die magnetischen Induktionen in beiden Querschnitten müssen sich daher umgekehrt verhalten wie die Querschnitte, da die Kraft-
[image: ]

Fig. 55.


linienzahl, welche in die Spule eintritt, offenbar gleich sein muß der aus der Spule austretenden Kraftlinienzahl. Das heißt, es ist

B(a c) 3 B(e b d a) •

Wir haben daher

X = 0,8 J B . + 0,8 • B 64.)

=0,SJBq,@1+1)

und hieraus

B 13 x (a c) 4     0,8 d

Für die Spule b d Fig. 55 erhalten wir die gleichen Werte wie für die Spule a c, nur sind die einzelnen Größen entsprechend der relativen Lage der beiden Spulen in der Ebene verschoben. Legen wir die Figuren 55,' 1 und 2 aufeinander und addieren wir die einzelnen im Motor vorhandenen Induktionen, so erhalten wir

EQB

also genau den gleichen Wert, den wir vorhin erhalten haben, als wir annahmen, daß die Spulen von a nach b und von c nach d gewickelt seien. Fig. 54.

Unsere Ableitung ist daher richtig und wir können deshalb die Regel aufstellen: um die durch die Summenwirkung mehrerer Amperewindungssysteme hervorgerufenen Induktionen zu bestimmen, müssen die erregenden Kräfte, welche auf die einzelnen
[image: ]

Querschnittselemente des Feldes wirken, algebraisch addiert werden.

Das eben behandelte einfache Beispiel kann noch dazu dienen, um zu zeigen, daß die geometrische Zusammensetzung nicht sinoidaler Felder nach dem Kräfteparallelogramm unzulässig ist. Hätten wir die von den Spulen ab und cd erzeugten Felder ohne Rücksicht auf ihre spezielle Anordnung durch je eine Gerade o e und o f dargestellt und das resultierende Feld als Resultante der beiden Komponenten o e und o f, also als o g aufgefaßt, so würde Fig. 56

o g = V2 . o e — V2 . o f sein. Dieses Resultat ist immer falsch, gleichgültig, ob wir durch die Längen der 3 Geraden Kraftlinienzahlen, Induktionen oder Amperewindungen ausdrücken; denn die richtige Ableitung verlangt, daß

og=oe=of

für den Fall, daß wir durch die 3 Strecken Kraftlinienzahlen der Felder darstellen, dagegen

og=20e=2of

falls wir durch die Geraden Induktionen oder Amp erewindüngen ausdrücken.

	
32.    Eigenschaften der wirklichen Felder.



Bei einem Mehrphasenmotor ist die Wicklung einer Phase gewöhnlich nicht in nur einer Nut pro Pol untergebracht, und die Festsetzung der erregenden Kräfte, die auf die einzelnen Querschnittselemente (Zähne) wirken, wird dadurch etwas langwieriger.
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Fig. 57.


Mit Hilfe der im vorhergehenden Abschnitt aufgestellten Regel können wir jedoch in allen Fällen zum Ziel gelangen und wir können uns diese Arbeit wesentlich erleichtern, wenn wir Stator und Rotor nicht in Form eines Kreises, wie es eigentlich der Wirklichkeit entspricht, darstellen, sondern wenn wir die Kreise zu Geraden aufrollen.

Wir wählen für unsere Untersuchungen einen zweipoligen Zweiphasenmotor, dessen Spulenseiten pro Pol in 4 Nuten untergebracht sind, der demgemäß also im ganzen 16 Nuten besitzt. In Fig. 57 ist dieser Stator dargestellt und zwar in dem Moment, in welchem der Strom einer Phase Null ist, in der anderen dagegen seinen Maximalwert besitzt. Die Stromrichtung in den Nuten 1, 2, 3, 4 tritt senkrecht aus der Zeichnungsebene heraus, dagegen in den Nuten 5, 6, 7, 8 senkrecht in die Zeichnungsebene hinein; die übrigen 8 Nuten, welche die Wicklung der Phase II enthalten, sind stromlos.

Wie man sieht, sind alle zwischen der 4. und 5. resp. der 8. und 1. Nute liegenden Zähne der erregenden Kraft aller 4 Spulen ausgesetzt und in diesen Zähnen muß daher die gleiche Induktion hervorgerufen werden. Der bequemen Darstellung halber ist angenommen, daß die Kraftlinien einen großen Teil des Rotors in radialer Richtung durchsetzen, und diese radialen Strecken sind
[image: ]

Fig. 58.


gleichzeitig benutzt, um graphisch die Größe der Induktionen darzustellen. Die Längen

cl = d8 = iö = k4

sollen ausdrücken, daß im Stator von Nut 4 — 5 und 8 — 1 ein und dieselbe Induktion herrscht. Auf die Zähne, welche zwischen den Nuten 1 und 2, 3 und 4, 5 und 6, 7 und 8 liegen, wirkt nicht die ganze im Stator vorhandene erregende Kraft, sondern es wirken auf diese Zähne nur die in den Nuten 2, 3, 6 und 7 untergebrachten Amperewindungen. Da diese 4 Nuten nur die Hälfte der gesamten Amperewindungen enthalten, kann in den Zähnen zwischen den Nuten 1 und 2, 3 und 4, 5 und 6, 7 und 8 nur die halbe Induktion hervorgerufen werden, wie in den zuerst betrachteten, und wir müssen in unserer Zeichnung die radialen Längen

a2 = bl = c8 = f7

nur halb so groß zeichnen wie c 1. Die Zähne zwischen den Nuten 2 und 3, 6 und 7 sind überhaupt keiner erregenden Kraft ausgesetzt, und daher ist in ihnen die Induktion Null.


Wenn wir uns den kreisförmigen Stator zu einer Geradne aufgerollt vorstellen, so geht Fig. 57 über in Fig. 58. In letzterer Figur ist die Richtung der Kraftlinien durch Pfeile angedeutet



und dadurch ist ersichtlich, daß benachbarte Felder stets wech-selnde Polarität haben. In Fig. 58 ist außerdem angegeben, wie die Wicklung ausgeführt werden kann, und es ist eine größere Anzahl von Spulen gezeichnet, wie sie einem 4-poligen Motor entsprechen würde. Die entgegengesetzte Polarität benachbarter Pole kann graphisch noch in andererWeise dargestellt werden, nämlich dadurch, daß die nordmagnetischen Induktionen als positive, die südmagnetischen als negative Ordinaten gezeichnet werden, wie es Fig. 59 darstellt.

[image: ]

Fig. 59.




Die zweite Phase übt genau die gleiche Wirkung aus wie die jetzt untersuchte, nur ist das von dieser letzteren erzeugte Feld räumlich um 90° gegenüber dem der ersten Phase verschoben. Wenn wir uns die in Fig. 57 dargestellten Felder um 90° im Stator gedreht denken, so entspricht diese Feldanordnung also dem Augenblick, in welchem die 8 Nuten der Phase II vom maximalen Strom durchflossen sind, die Phase I dagegen keinen Strom führt. Im allgemeinen fließt aber durch beide Spulensysteme gleichzeitig Strom, und wenn wir annehmen , daß die Ströme nach einer Sinusfunktion variieren, können wir für beliebig viele Momente angeben, wie groß der Heubach, Drehstrommotor.                               11

Strom in jeder Phase ist. Da nämlich die beiden Ströme eines Zweiphasensystems nm 90° phasenverschoben sind, können wir die momentanen Ströme durch die Gleichungen ausdrücken

J — J' . cos «

JI = J‘ . sin a.

In Fig. 59 sind die erregenden Kräfte resp. die Feldinduktionen unseres Zweiphasenmotors für eine Anzahl von Momenten festgelegt und zwar für folgende Werte von a


	
«
	
Ji
	
J
	
Fig. 59


	
0
	
1,00
	
0
	
1


	
11,25
	
0,97
	
0,195
	
2


	
22,5
	
0,92
	
0,383
	
3


	
33,75
	
0,83
	
0,556
	
4


	
45
	
0,707
	
0,707
	
5




J’ ist dabei = 1 gesetzt. Die Nuten der Phase 1 sind durch Kreise, die zugehörigen Felder durch ausgezogene Linien, die Nuten der Phase II durch Punkte, die zugehörigen Felder durch punktierte Linien dargestellt.

Die Zähne 4 — 8 sind stets der totalen erregenden Kraft der Phase I ausgesetzt, haben daher unter dem ausschließlichen Einfluß der Phase I immer unter sich gleiche Induktion; auf die Zähne 3 und 9 wirkt nur die halbe erregende Kraft der Phase I, die in ihnen herrschende Induktion ist daher nur halb so groß wie in den Zähnen 4—8. Die Zähne 2 und 10 endlich werden von der Phase I überhaupt nicht magnetisiert. — Ebenso verhalten sich in Bezug auf Phase II die Zähne 6 — 14. Die Zähne 6 und 14 werden von Phase II nicht erregt, die Zähne 7 und 13 mit der halben, die Zähne 8 — 12 mit der jeweiligen totalen erregenden Kraft.

Die stark ausgezogenen Kurven der Fig. 59 stellen die erregenden Kräfte resp. die resultierenden Felder dar, wie sie durch algebraische Addition der beiden Kurven I und II erhalten werden. Die resultierende Feldkurve ändert ihren Charakter in jedem Moment, indem sie von der Form (Fig. 59, 1) allmählich nach Art eines stroboskopischen Bildes in die Form Fig. 59, 5 übergeht. Wenn wir die Variation der beiden Ströme noch weiter ver-folgen, indem wir weitere um 16 fortschreitende Momentanwerte bestimmen, so erhalten wir der Reihe nach die Spiegelbilder der resultierenden Kurven 4, 3, 2, 1 etc. Wir brauchen daher die Kurven nicht für eine ganze Periode zu konstruieren, sondern wir können uns mit den 5 gezeichneten begnügen, welche nur eine Achtelperiode umfassen.

Die erregende Kraft, welche von jeder Phase ausgeübt wird, variiert nach dem Sinusgesetz, wenn die Ströme sinoidal verlaufen, und durch diese Beziehung können wir auch feststellen, in welcher Weise die Änderung der resultierenden Feldkurve vor sich gehen muß. Da nämlich die in jedem Zahn hervorgerufene Induktion der Summenwirkung aus den erregenden Kräften der Spulen I und II proportional ist, die erregenden Kräfte aber in der Weise variieren, daß

Jr = J' . cos a

Jr = J' . sin a,

können wir die Gleichungen aufstellen, nach welchen die auf jeden Zahn wirkende erregende Kraft mit dem Winkel a variiert. Es ist nämlich, wenn mit Z1, Z, . . . die Nummern der Zähne nach Fig. 59 bezeichnet werden:

Z == J’.sin a + 0       = J‘ sin «

73 = J' . sin « + 9 cos a = J' . V 1,25 . sin (« + 27°)


Z, = J' . sin « + J' cos «

J‘

Z = —— . sin « + J' cos c 3     2

Z6 = 0 + J‘ cos a

J‘

Z7 = 19 • sin « + J' cos a

Zg = J' . sin « + J‘ cos «




= J.V2 sin (« + 45°)

=JV 1,25 . sin (« + 64°)

= J‘ . sin (« + 90°) =J.V 1,25 . sin (« + 116°) = J' . V 2. sin (a + 1350).



Die Tabelle ist berechnet nach der bekannten Beziehung3):

A . sin « + B . cos «=V A3 + B2 sin (« + arctg R) ’

Wie man aus der Tabelle sieht, ist die maximale Induktion, der ein Zahn ausgesetzt wird, nicht dieselbe, sondern die Zähne 4 und 8 werden einer 12 mal höheren Induktion unterworfen als die Zähne 2, 6, 10. Die maximale Induktion der zwischenliegenden Zähne liegt zwischen den beiden angegebenen Extremwerten. Im übrigen verläuft die zeitliche Änderung der Induktion eines jeden Zahnes nach einer Sinusfunktion, wobei jedoch zu bemerken ist, daß der Phasenabstand der Induktionen benachbarter Zähne nicht aus dem räumlichen Winkelabstand beider Zähne berechnet werden kann. Der Winkelabstaud zweier Zähne beträgt bei dem untersuchten Stator 22,5°, der Phasenabstand zwischen den Induktionen der Zähne 2 und 3 dagegen 27°, zwischen 3 und 4 nur 18° etc. Nur in Bezug auf die Zähne 2, 6, 10 ... . stimmt der räumliche Abstand von 45° mit dem Phasenverschiebungswinkel der in diesen Zähnen herrschenden Induktionen überein. Diese Zähne nehmen noch in anderer Weise eine bevorzugte Stellung ein. Fällt nämlich die Mittellinie des Feldes mit der Mittellinie eines dieser Zähne zusammen, Fig. 59, 1 und 5, so ist das Feld in Bezug auf diese Mittellinie symmetrisch, in jedem anderen Falle unsymmetrisch. Das Drehfeld rotiert daher in Bezug auf die Stellungen, in welchen es symmetrisch gestaltet ist, mit konstanter Winkelgeschwindigkeit, während es die zwischenliegenden Übergangsstellungen mit inkonstanter Winkelgeschwindigkeit durchläuft.

Würde der dem Stator zugeführte Drehstrom nicht nach einer Sinusfunktion variieren, so würde das Drehfeld nicht einmal in Bezug auf seine symmetrischen Stellungen mit konstanter Winkelgeschwindigkeit rotieren, wie sich leicht durch ein Beispiel zeigen läßt. Angenommen, die Ströme verliefen nach einer in Fig. 60 dargestellten Kurve, so würde der Moment, in welchem die Ströme I und II einander gleich sind, nicht bei einem zeitlichen Winkel a = — sondern schon bei a= -g eintreten, das Feld würde sich aber in diesem Augenblick schon um einen räumlichen 71

Winkel 4 gedreht haben (Fig. 59, 1—5), die Drehung des Feldes würde daher bis zu diesem Moment rascher erfolgen, als es einer der Periodizität des Drehstromes entsprechenden konstanten Winkelgeschwindigkeit zukommt. Umgekehrt würde dagegen die Drehgeschwindigkeit des Feldes während des restierenden Teils der Viertelperiode zu langsam sein.

Die beiden symmetrischen Stellungen des Feldes, Fig. 59, 1 und 5, sind noch in anderer Beziehung interessant. Die von der
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Fig. 60.


Feldkurve eingeschlossene Fläche, welche die totale einem Pol entströmende Kraftlinienzahl repräsentiert, ist nämlich nicht von konstanter Größe, sondern sie ändert sich von Moment zu Moment. In Fig. 59, 1 ist diese Fläche am größten, in Fig. 59, 5 dagegen am kleinsten. Aus dieser Erscheinung folgt, daß in einem synchron rotierenden Rotor Ströme induziert werden, denn die von einer Rotorspule ab, Fig. 61, eingeschlossene Kraftlinienzahl variiert. Wir können die Größenordnung dieser Variationen angeben, wenn wir dem Gang unserer Ableitung etwas vorausgreifen. Wir werden nämlich im nächsten Abschnitt Koeffizienten c und C1 kennen lernen, welche gestatten, aus der maximalen Luftinduktion B| die totale Kraftliuienzahl pro Pol zu bestimmen, und es ist

Zmax=c:B -Qi

Zmin =c.B • Qi •

Der Quotient — gibt daher ein Maß für die prozentuale Co

Schwankung der Kraftlinienzahlen eines Drehstromfeldes. Aus der Tabelle ist sofort die Überlegenheit der vielnutigen Wicklungs-anordnungen ersichtlich, und außerdem deuten die Zahlen darauf hin, daß Spulen mit gerader Nutenzahl günstiger sind als mit
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Fig. 61.


ungerader, sogar günstiger als die nächst höhere ungerade mit einer Nut mehr pro Spulenseite. Die äußerst ungünstigen Werte, die man erhält, wenn die Spulenseite in nur einer Nut untergebracht ist, zeigen, daß die Minimalzahl der Nuten für einen praktisch brauchbaren Motor mindestens zwei sein muß pro Pol und Phase.


	
Anzahl der Nuten pro Spulenseite
	
7 "max

Zmin
	
Anzahl der Nuten pro Spulenseite
	
Zmax

Zmin


	
Zweiphase
	
nwicklung
	
Dreiphase
	
nwicklung


	
1
	
1,414
	
1
	
1,155


	
2
	
1,060
	
2
	
1,007


	
3
	
1,100
	
3
	
1,021


	
4
	
1,060
	
4
	
1,005


	
5
	
1,072
	
5
	
1,008


	
6
	
1,060
	
6
	
1,004


	
OO
	
1,060
	
OO
	
1,003




Alle in diesem Abschnitt bis hierher angeführten Eigenschaften resp. Wirkungen des Drehfeldes werden im folgenden vernachlässigt. Es ist dies auch zulässig, da die hierdurch begangenen Fehler nur verschwindend klein sind und das Diagramm, überhaupt die Qualität eines Motors durch diese nebensächlichen Erscheinungen nicht beeinflußt wird. Der Aufwand an Zeit und Mühe für die Berücksichtigung dieser Nebenerscheinungen würde in gar keinem Verhältnis stehen zum daraus erzielten Gewinn an Genauigkeit.

Wir nehmen daher in Zukunft bei Berechnung des Hysteresis-Verlustes keine Rücksicht darauf, daß manche Zähne nicht ganz mit der maximalen Induktion beansprucht werden, wir berücksichtigen auch nicht, daß das Drehfeld teilweise mit inkonstanter Winkelgeschwindigkeit rotiert, seine Kraftlinienzahl ändert und in einem synchron laufenden Rotor EMKK induziert. Die Erscheinungen wurden lediglich der Vollständigkeit halber erwähnt und aus diesem Grunde mag es auch gerechtfertigt erscheinen, wenn diese Vorgänge nur an Hand eines konkreten Beispiels, für einen Zweiphasenanker mit 4 Nuten pro Spulenseite besprochen wurden, dagegen auf die Aufstellung allgemein gültiger Gleichungen verzichtet wurde. Es bietet mathematisch keine Schwierigkeiten, diese allgemeinen Gleichungen aufzustellen, sie werden aber so unübersichtlich, daß sicherlich ein schnelleres Verständnis für das Wesen dieser Vorgänge an einem Beispiel zu gewinnen ist als beim Studium langer unübersichtlicher Gleichungen.

	
33.    Erregende Kraft eines Systems von beliebiger Phasenzahl.



Aus den Figuren 59 und 61 kann man ersehen, daß die maximale Induktion eines zweiphasigen Drehfeldes nicht von konstanter, sondern von variabler Größe ist. Um zu konstatieren, ob das bei jeder beliebiger Phasenzahl der Fall ist, müssen wir eine allgemeine Gleichung aufstellen, welche die Ermittlung der erregenden Kraft eines beliebig vielphasigen Systems gestattet. Hierzu ist es vor allem nötig festzustellen, in welchem Winkelabstand die einzelnen Ströme eines a-phasigen Systems einander folgen.
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Die in praxi übliche Bezeichnungsweise ist hierin nicht ganz logisch. Unter Zweiphasenstrom versteht man zwei in demselben System arbeitende Wechselströme von 90° also 9 Phasendistanz, unter Dreiphasenstrom dagegen 3 Wechselströme mit 120° also 2 —9 Phasendistanz. Um einen allgemeinen Ausdruck aufstellen zu können, hat man sich daher zu entscheiden, ob man den Phasenabstand eines a-phasigen Systems als T oder 4" bezeichnen will; in der Literatur kommen beide Bezeichnungsweisen vor.

71

Wir wählen den Ausdruck — und zwar aus dem Grunde, a

weil er in richtiger Weise die Ankerreaktion (die erregende Kraft)


eines Mehrphasensystems darstellt. Ein Beispiel wird das klar machen. Die drei Ströme eines Dreiphasenstromes folgen einander




bekanntlich in einem Phasenabstand dargestellt ist. Betrachten wir den Strom der Phase I sein positives Maximum hat, so sehen wir, daß die Ströme der Phasen II und III negative Werte besitzen. In Bezug auf die von den Strömen hervorgerufenen erregenden Kräfte liegen aber die Verhältnisse wesentlich anders, denn wie Fig. 63 zeigt, wirken die 3 Ströme so auf den Anker, daß sich ihre magnetisierenden Wirkungen unterstützen, und daß also die erregenden Kräfte aller Phasen mit dem gleichen Vorzeichen erscheinen. Die 3 um 120° verschobenen Ströme rufen daher die gleiche Ankerreaktion hervor wie 3 nur um 60° verschobene, wie es in Fig. 63 und in Fig. 62 durch die punktiert eingezeichnete Linie der Phase I dargestellt ist.

Bezeichnet man mit J die effek

tive Stromstärke, mit N die totale




von 120°, wie es in Fig. 62 Augenblick, in welchem der
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für den Momentan





Windungszahl jeder Phase, so erhält man




wert der erregenden Kraft dieser Phase




12

"9 N J sin «.




Zur selben Zeit der nächsten Phase




ist der Momentanwert der erregenden Kraft




X, = Y2 N J sin



der der

3 Phase


Xm=V? N J sin (




«+27)



und endlich der letzten vorhandenen, also der a ten Phase x, =V? NJ sin(«+(a- 1)7)

Die totale erregende Kraft eines a-phasigen Systems ist daher

—NJ(.     • (   7\   . I 27\

X = - — sm a — sin c ---— sm « ---I — . . V2 \            \ a/a I . . + sin (a+(a — 1)7).......(90)

Durch Summation der Reihe ergibt sich 12             • 7 • sin —— 2 a Die erregende Kraft wird ein Maximum, wenn nämlich N J 1 12 • n 2a sie wird dagegen ein Minimum, wenn 71 C = - a folglich


. (91)




(92)



71

COS 9.

X = —• • —---— = Minimum

12 • 71

sin 2 a

Es lassen sich an Hand der beiden letzten Gleichungen leicht die Regeln aufstellen:

Die erregende Kraft eines Mehrphasensystems ist ein Maximum, wenn sämtliche Phasen Strom führen und die Ströme mindestens zweier Phasen einander gleich sind.

Die erregende Kraft eines Mehrphasensystems ist ein Minimum,


wenn der Strom Wollte man



einer Phase Null die Ausdrücke


ist.



cos 2 a


sin 2a




sin 2a




in eine Tabelle



zum praktischen Gebrauch zusammenstellen, so

würde man dadurch auf Schwierigkeiten stoßen, daß beide Ausdrücke mit wachsender Phasenzahl sich dem Grenzwert unendlich nähern. Nun ist aber ein Kurzschlußanker als ein sehr viel-phasiger, ein Anker der ein sinoidales Feld erzeugt, sogar als ein co-phasiger aufzufassen. Diese Schwierigkeiten lassen sich umgehen, wenn man die rechte Seite der obigen Gleichungen mit der Phasenzahl a multipliziert und dividiert. Wir erhalten demnach


aNJ

V2




Maximum .




a sin ——

2 a




• • (94)




aNJ

V2




sos 2a

-------- = Minimum .

TU

a . sin —

2a




. . (95)




führt man ferner die Bezeichnungen ein




1                   •

3 = —----= Maximum .

7U

a sin ——

2a




. . (96)




und




cos 2a

-------= Minimum .




Vo

a sin --2a




• • (97)



so nähert sich v und vo mit wachsender Phasenzahl einem Grenz-2 wert — = 0,637 für unendlich große Phasenzahl.

Die numerischen Werte von v und vo sind für verschiedene Phasenzahlen in nachstehender Tabelle zusammengestellt. Die erregende Kraft eines beliebig vielphasigen Systems ist demnach

x =       , = Maximum......(98)

X =       vo = Minimum......(99)

1 spielt in der Theorie der Asynchronmotoren eine äußerst wichtige Rolle. Wir benötigen v, um die maximale erregende Kraft, die maximale Induktion zu berechnen, und wie wir im nachstehenden sehen werden, können wir mit Hilfe des w aus der maximalen Induktion


	
Anzahl der

Phasen a
	
•


	
1           1

2           0,707

3          0,667

4          0,652

5          0,648

6           0,642

c         0,637
	
0

0,500

0,578

0,608

0,615

0,622

0,637




die maximale Kraftlinienzahl pro Pol bestimmen. Endlich wird w zur Ermittlung der Streuung und des äquivalenten Sinoidalfeldes gebraucht. In all diesen Fällen zeigt v den Einfluß der Phasenzahl auf die genannten Größen und es bildet den wichtigsten Teil eines Ausdrucks, welchen wir mit der Bezeichnung Phasenkoeffi-zient belegen, den wir im folgenden kennen lernen werden.

	
34.    Maximale Kraftlinienzahl der wirklichen Felder.



Um die maximale Kraftlinienzahl pro Pol ans der maximalen Induktion zu ermitteln, verfahren wir am einfachsten empirisch, indem wir die Wicklung, die wir zu untersuchen haben, so aufzeichnen, wie dies in den Fig. 64 und 65 für einen Zweiphasenstator mit 3 Nuten pro Spulenseite geschehen ist. Fig. 64 stellt die Verhältnisse dar, wenn das Maximum der Induktion herrscht, wenn also die Ströme in beiden Phasen gleich groß sind und 0,707
[image: ]

ihres Maximalwertes besitzen. Die durch Kreuze bezeichneten Nuten enthalten die Drähte der einen, die durch Punkte bezeichneten die Drähte der anderen Phase. Es sind nach der früher angegebenen Methode die von jeder Phase erzeugten Induktionen durch feine Linien, die Summenwirkung beider Phasen durch eine kräftige Linie zur Darstellung gebracht. Die von der starken Linie eingeschlossene Fläche stellt die Kraftlinienzahl Z eines Poles im betrachteten Moment dar. Z läßt sich sehr einfach berechnen; man erhält nämlich, da jeder Zahn — des Luftquerschnittes Qi besitzt:

1             2        2         2        1

Z = 6 9 B+6Q 3 B+6 Qi • 3 B

daher

Zo = 0,5 . Qj . B = c0 Q . Bi

In gleicher Weise läßt sich die Kraftlinienzahl in dem Moment, in welchem die Luftinduktion und erregende Kraft ein Minimum ist, der Strom einer Phase also seinen Maximalwert besitzt, der der anderen aber Null ist, berechnen. Bi in Fig. 65 hat demgemäß nur die Größe

B = »B =0,107 B =0,707 B
[image: ]

Wir erhalten daher für Z den Ausdruck

4        90707

Z= Qi • 0,707 B| =Q,        B|

und dies gibt

Z = 0,549 Q, . B| = c . Q, . Bj.

Bei diesen Resultaten fällt sofort auf, daß die Kraftlinienzahl Z ein Maximum ist, wenn die Induktion 0,707 B| ein Minimum ist, und daß umgekehrt die Kraftlinienzahl Zo am kleinsten ist, wenn die Induktion B| ihren größten Wert besitzt. Diese Eigentümlichkeit ist nicht bei allen Mehrphasensystemen vorhanden, sondern nur bei zwei Phasen und überhaupt bei Systemen mit gerader Phasenzahl. Bei Systemen mit ungerader Phasenzahl, z. B. Drei-phasenstrom, fallen beide Maxima und beide Minima zusammen.

Zur Illustration des Gesagten wollen wir noch die Koeffizienten c und C für einen Dreiphasenstator mit 3 Nuten pro Spulenseite ableiten. Die maximale erregende Kraft wird ausgeübt, wenn der Strom in einer Phase seinen Maximalwert und die beiden anderen die Hälfte desselben besitzen. In Fig. 66 sind die von jeder Phase hervorgerufenen Induktionen wieder durch dünne Linien, die resultierenden Induktionen des Drehfeldes durch kräftige Linien dargestellt. Man erhält, da ein Zahn } des Luftquerschnittes beträgt,

1

 Heubach, E.T.Z. 1900, Seite 1089.

2

 Potenz eines Punktes in Bezug auf einen Kreis heißt das Produkt der beiden zwischen ihm und dem Kreisumfange gelegenen Abschnitte jeder durch diesen Punkt gehenden geraden Linie. — In anderer Weise läßt sich K aus der Gleichung des Kreises definieren:

x? + y2 — 2 ax — 2 by + K = 0

3

 J. B. Krantz, E. T. Z. 1901, Seite 274.


z=}QB+305B+308B+308B+39]B
[image: ]

Fig. 66.


und dies gibt

Z = 0,592 Q, B| =c.Q, BJ .

In Fig. 67 beträgt die Induktion nur

n-" w—8SE9";—QSS6B;

und man erhält daher

A                 9    9               9     0 QC6

Z= 3 Qi 0,866 B + 4 Q, 4 • 0,866 B| + Q, -90 B|

folglich

Z = 0,578 Qj . BJ .

Die Koeffizienten c und Co sind für verschiedene Nutenzahlen pro Spulenseite in nachstehender Tabelle zusammengestellt. c brauchen wir in Zukunft nicht mehr, die betreffenden Werte wurden aber in die Tabelle mit aufgenommen, um die Eigentümlichkeit zu zeigen, daß Co für jede Phasenzahl konstant ist.

Höhere Phasenzahlen als a = 3 werden in der Praxis nicht angewendet, wir brauchen auch die diesbezüglichen Koeffizienten nicht zu bestimmen; dagegen haben wir mit sinoidalen Feldern zu tun, und ein solches kann, wie schon früher erwähnt, nur von einer co-phasigen Wicklung erzeugt werden. Für ein Sinoidalfeld ergibt sich natürlich für c und Co ein und derselbe Wert, da das
[image: ]

Feld ja konstante Amplitude, also konstantes B| besitzt. Die Kraftlinienzahl eines sinoidalen Feldes mit der maximalen Induktion B| ist aber

Z = Qi . B‘ —- I sin « d « = ---• Q. . B‘

71                                  71

• 0

und daher wird

c = — = 0,637.

71

In die Tabelle ist außerdem noch ein Quotient

c

aufgenommen, welcher die bemerkenswerte Eigenschaft zeigt, daß

er für eine Nute pro Spulenseite immer den Wert 1 ergibt für alle Phasenzahlen, während er für jede Nutenzahl, die größer als 1 ist, nahezu denselben Wert ergibt, welcher bei Zweiphasen-

3                                        7

Strom 0,75 = 4 , bei Dreiphasenstrom 0,875 = g ist. Wir sind dadurch in die Möglichkeit versetzt, eine einfache Gleichung zur näherungsweisen Bestimmung des Koeffizienten c zu bilden.

Diese Gleichung lautet, wenn mit a die Phasenzahl, mit A die Nutenzahl pro Spulenseite bezeichnet wird

c=v-----—.......(100)

2a--— A©

Der Ausdruck — — wird nun für A = 1 selbst = 1, und da-A °

durch wird

(A = 1), c = 0.


	
Anzahl der

Nuten pro

Spulenseite A
	
Co
	
c
	
c

•


	
1
	
Z w e i p h a 0,5
	
senfelder

0,707
	
1,000


	
2
	
0,5
	
0,530
	
0,750


	
3
	
0,5
	
0,549
	
0,777


	
4
	
0,5
	
0,530
	
0,750


	
5
	
0,5
	
0,536
	
0,758 '


	
6
	
0,5
	
0,530
	
0,750


	
o
	
0,5
	
0,530
	
0,750


	
1
	
Dreipha

0,578
	
senfelder

0,667
	
1,000


	
2
	
0,578
	
0,583
	
0,875


	
3
	
0,578
	
0,592
	
0,888


	
4
	
0,578
	
0,583
	
0,875


	
5
	
0,578
	
0,588
	
0,882


	
6
	
0,578
	
0,583
	
0,875


	
o
	
0,578
	
0,583
	
0,875


	
1
	
Sinoidalfeld

0,637 |     0,637
	
1,000




Heubach, Drehstrommotor.

12

Wenn aber A größer als 1 ist, wird ----= 0, und deshalb

A CO

2a — 1

(A>1), c==* —2.--

Diese Näherungsgleichung liefert für alle geraden Nutenzahlen absolut genaue Werte, und die größten Abweichungen, die bei A =3 eintreten, betragen ca. 3% bei Zweiphasen-, ca. 1,5% bei Dreiphasenfeldern. Für A = 5 beträgt der Fehler nur mehr 1 %. Im folgenden ist x als Symbol für den Ausdruck

2a —1


(101)



*=      1 2 —

benützt.

	
35.    Die von einem Drehfeld induzierte EMK.



Im Abschnitt 33 wurde nachgewiesen, daß die von jedem Zahn erzeugte Luftinduktion nach einer Sinusfunktion variiert. Dies ist von großer Wichtigkeit für die Berechnung der EMK, welche von einem Drehfeld in einer Spule induziert wird. Wenn nämlich die Induktionen der einzelnen Zähne nach einer Sinusfunktion variieren, so folgt daraus, daß die von einer Spule eingeschlossene Kraftlinienzahl ebenfalls nach einer Sinusfunktion variiert. In Fig. 68 ist der Moment dargestellt, in welchem die mit Kreuzen bezeichnete Spule ihren maximalen Strom führt, und in demselben Moment ist die von der Spule eingeschlossene Kraftlinienzahl ein Maximum. Eine Viertelperiode später (Fig. 69) ist die von der Spule eingeschlossene Kraftlinienzahl = Null, denn es fällt mit der Spulenmitte die Stoßfläche zweier benachbarter Pole zusammen, und die nord- und südmagnetischen Linien heben sich gegenseitig auf. Bezeichnet man die Kraftlinienzahl im Moment, der in Fig. 68 dargestellt ist, mit

Z = Z'. sin 3,

so wird die Kraftlinienzahl im zweiten dargestellten Moment

und allgemein für jeden beliebigen Augenblick Z = Z'. sin «,

wenn mit a ein zeitlicher Winkel bezeichnet wird. Die induzierte EMK ist demgemäß darzustellen durch

E=E. cos «,

denn dieselbe ist Null im Stadium


der Fig. 68, ein Maximum Fig. 69.



(positives resp. negatives) in dem der

[image: ]

Fig. 68.




[image: ]



Zur Berechnung der effektiven, in einer Spule induzierten EMK können wir daher die bekannte Gleichung benützen

E = 1,11. Z‘ . N . n. 10-8 ,.....(102) oder, wenn wir für Z' die im vorigen Abschnitt abgeleitete Beziehung einführen,

7/=c.Q.B, ......(103)

so ergibt sich

E = 1,11 . c.N.Qj .Bj . 1.10-8 .   . . . (104)

Nun ist aber zu beachten, daß diese EMK nur dann in-doziert wird, wenn sämtliche Kraftlinien Z' von den 9 Windungen eingeschlossen werden. Dies wäre dann der Fall, wenn (Fig. 68) die sämtlichen Drähte lediglich in den Nuten 2 und 5 untergebracht sein würden, wenn also nur eine Nute pro Spulenseite vorhanden wäre.

In Wirklichkeit befindet sich in den Nuten 2 und 5 nur

2

der Drahtzahl, während — N in den Nuten 1, 3, 4, 6 etc. unter-

N gebracht sind. Die EMK, welche in 3 in den Nuten 2 und 5 liegenden Drähten induziert wird, ergibt sich ohne weiteres aus obiger Gleichung; man erhält, wenn man für c den der Tabelle Seite 177 entnommenen Wert 0,592 einsetzt:

E2,5) = 1,11 • 0,592Q • B; . n . 10—8 .

2

Um die in den restlichen — N Drähten induzierte EMK bestimmen zu können, nimmt man an, daß diese sämtlichen Drähte zu einer Spule vereinigt seien, welche von Nut 3 nach Nut 4 gewickelt ist. Diese Spule wird maximal von einer Kraftlinienzahl durchsetzt

	
2        ß' Z = 0,592 .Q.B—-.Q,. — = 0,556 q . B'



Da auch diese Kraftlinienzahl nach einer Sinusfunktion variiert, 2 haben wir als effektive EMK in der Spule 3—4 von 3 N Drähten

E(3 4) = 1,1.0,556 • 3 N . Q, . B 110-8.

Die totale in der Spule von N Drähten induzierte EMK ist gleich der Summe der einzelnen EMKK, da alle N Drähte in Serie geschaltet sind. Man erhält daher

E = E2, 5) + Es, 4) = 1,1.0,568 NQ.B.n 10" 8 .

Man nennt die Spule 2—5 oder 3—4 ein Element der aus 3 Nuten pro Pol bestehenden Spulenanordnung, und es ergibt sich somit die Regel:

Um die in einer beliebigen Spulenanordnung induzierte EMK zu bestimmen, zerlegt man die Spule in ihre einzelnen Elemente und berechnet unter Berücksichtigung der auf jedes Spulenelement entfallenden Drahtzahl die in jedem Spulenelement induzierte EMK. Die Summe der so gefundenen EMKK stellt die totale in der Spulenanordnung induzierte EMK dar.

‘Um in übersichtlicher Weise den Einfluß der Nutenzahl pro Spulenseite darzustellen, bildet man den Quotienten

E(A > 1


(105)



E(a = 1)

welcher das Verhältnis der EMK, E(A>1), die in einer vielnutigen Spule induziert wird, zur EMK E(A — 1) darstellt, welch letztere von demselben Feld in der gleichen Drahtzahl induziert wird, wenn alle Drähte in nur einer Nut pro Spulenseite untergebracht sind. Für eine Dreiphasenwicklung mit 3 Nuten pro Spulenseite wird somit

FA = 3) _ 0,568


0,960.



E(A =1) 0,592

Führt man diese Rechnung für alle möglichen Nutenzahlen und für Zwei- und Dreiphasensysteme aus, so erhält man die in nachstehender Tabelle vereinigten Werte für k1).

	
	
1)    Die vom Verfasser in der E. T. Z. 1898 mitgeteilten Koeffizienten k sind in dem dort angegebenen Sinn nicht richtig, denn bei Ableitung dieser Zahlen wurde übersehen, daß das Drehfeld mit inkonstanter Winkelgeschwindigkeit rotiert, während die 1. c. angegebene Ableitung nur bei konstanter Winkelgeschwindigkeit Berechtigung hätte. Aber auch den dort mitgeteilten Koeffizienten, die wir nun zum Unterschied von k mit k' bezeichnen wollen, kommt eine physikalische Bedeutung zu.





10-8

E = c.k,‘.N,.Q1.B, • p.n 60

ist die EMK, welche in einem Rotor dann induziert wird, wenn derselbe von außen mit n Touren pro Minute angetrieben wird, während der Stator mit Gleichstrom so erregt wird, daß die at Statorströme den willkürlich gewählten Momentanwerten eines aj-phasigen Systems entsprechen. Sie müssen also der Bedingung genügen:


J == J' . sin «, Jr == J'. sin




«+ -7)

, ai I




• . Ja, == J sin («+(a,—1)7




	
Anzahl der Nuten pro Spulenseite A
	
k
	
Anzahl der Nuten pro Spulenseite A
	
k


	
Zweiphasenwicklungen
	
Dreiphasen Wicklungen


	
1
	
1,000
	
1
	
1,000


	
2
	
0,923
	
2
	
0,966


	
3
	
0,910
	
3
	
0,960


	
4
	
0,906
	
4
	
0,957


	
5
	
0,904
	
5
	
0,956


	
6
	
0,902
	
6
	
0,955


	
OO
	
0,900
	
o
	
0,955




Wir haben noch zu ermitteln, wie groß die EMK ist, welche in einer Spule unter der Einwirkung eines räumlich sinoidalen Feldes induziert wird. Besitzt die Spule von N Drähten nur eine Nut pro Pol, so wird die totale Kraftlinienzahl des sinoidalen Feldes, welche

Z=c.Q, BJ =0,637. Qj b; ist, von der Spule eingeschlossen, und die induzierte EMK ist infolgedessen

E = 1,11.0,637 . N. Qi . BJ. n. 10" 8.

Um die EMK zu bestimmen, welche dann induziert wird, wenn pro Spulenseite mehrere Nuten vorhanden sind, brauchen wobei a beliebig gewählt werden kann, c ist identisch mit dem im 34. Abschnitt definierten c, und die Werte k' sind in nachstehender Tabelle aufgeführt.


	
A
	
c
	
k'
	
A
	
C
	
k


	
1
	
a = 2 0,707
	
1,000
	
1
	
a = 3 0,667
	
1,060


	
2
	
0,530
	
1,055
	
2
	
0,582
	
1,090


	
3
	
0,550
	
0,974
	
3
	
0,592
	
1,052


	
4
	
0,530
	
0,995
	
4
	
0,583
	
1,068


	
5
	
0,536
	
0,974
	
5
	
0,588
	
1,052


	
OO
	
0,530
	
0,934
	
o
	
0,585
	
1,025


				
1
	
a == o

0,637
	
1,11




wir nicht den mühsamen Weg einzuschlagen, den wir beschreiten mußten, um bei den vorher betrachteten Feldern zum Ziel zu gelangen, es ergibt sich auf Grund nachstehender Überlegung eine bequemere Methode.

Wenn nur eine Nut pro Pol vorhanden ist, wird die maximale EMK E‘ in dem Moment induziert, in welchem diese Nuten den Scheitel der Sinuslinie passieren (Fig. 70). Sie ist in diesem Augenblick


E' = V2 EA =1=V2 1,11.0,637 . N . Qj . B . 10“ 8.
[image: ]

Fig. 70.




Besitzt die Spule dagegen mehrere Nuten pro Spulenseite, so läßt sich der Momentanwert der EMK durch die Gleichung ausdrücken

Ea >1=V2 .1,11 . 0,637 X-Q.B. 10“ 8 sin «+ sin (« + ak) +

	
	
	
. / 2n \                     (A—1) n\| — sin I« +--— -....— sin I« H--t--1 \ a. A)                        \ a. A / J denn der Ab stand zweier Nuten ist







Durch Summation obiger Reihe erhält man


( ■ (A — 1). T)

"     2a.A /

A.sin 2.A



E(a >1=V2 • 1,11 • 0,637 N Q, B 10- 8 Der Bruch wird ein Maximum für

7 “=F2a A

und es wird dann die maximale in der Spule induzierte EMK


V2 E, >1=V2 1,11. 0,637 . N. Q, B/.10-8




sin 2 a




A sin ———



Wir erhalten daher für k den Ausdruck1)


E(A o 1)

E(a -1)




TU

sin —— 2 a




. (106)




A.sin 2aA



Vergleichen wir die mit Hilfe dieser Gleichung für Zwei- und Dreiphasenwicklungen von verschiedener Nutenzahl pro Pol gefundenen Werte mit den in der vorhergehenden Tabelle zusammen-gestellten Zahlen, welche mittels der nicht sinoidalen, wirklichen Felder berechnet wurden, so ergibt sich die äußerst angenehme Tatsache, daß die Koeffizienten k in beiden Fällen dieselben sind. Als Beispiel soll hier k für eine dreiphasige Wicklung mit 3 Nuten pro Spulenseite berechnet werden. Man erhält


die erste Harmonische des Harmonische wird




k,




sin m —— 2 a



A . sin m ——— 2a A

wie dies Bragstad in seinem „Beitrag zur Theorie und Untersuchung von mehrphasigen Asynchronmotoren“, 8. und 9. Heft der Voitschen Sammlung elektrotechnischer Vorträge, Band III, Verlag von Ferdinand Enke, Stuttgart, gezeigt hat.

Da bei den Nutenzahlen, wie sie bei Drehstrommotoren angewendet werden, A 2 2 die höheren Harmonischen nur von sehr geringem Einfluß sind, konnte davon abgesehen werden, die höheren Harmonischen in das Gebiet unserer Untersuchungen zu ziehen.


K(a =3, A = 3)




sin 2.3




3 ' sin 2.3.3




sin 30° --------- = 0,960, 3 . sin 100



also denselben vorhin auf ganz anderem Wege gefundenen Wert.

Wir sind nun in der Lage, eine allgemein gültige Gleichung aufzustellen, welche es ermöglicht, die in einem System von beliebiger Phasenzahl und Nutenzahl induzierte E.M.K. zu berechnen. Diese Gleichung lautet:

E = 1,11. c . k . N . Q, . B| . 11.10-8 . . . . (107)

Die Gleichung läßt sich noch in anderer Weise schreiben, wenn c in seine Faktoren zerlegt wird. Es ist nämlich

ferner

‘ =------—-

7l a . sm —— 2 a

und

2a


nachstehenden Ausdruck, wenn wir



Wir erhalten dann für E gleichzeitig für k einsetzen:

Aisin 27a

1              9 a   1           sin 9 -

E = 1,11---------=----8 . N.Q.B’ • 1110-8

a • sin ——— 2a----- A • sin ——— 2 a        A-        2 a A

= 1,11--20—1-------- .N.Q. B . .10-8 . (108)

Unterziehen wir die Konstanten der Gleichung einer näheren Betrachtung, so finden wir:

Der Zahlenfaktor 1,11 ist lediglich durch die Kurve des dem Motor zugeführten Stromes bedingt und er hat nur bei Sinusströmen diesen Wert. Würde der zugeführte Strom nach einer anderen Funktion als der sinoidalen verlaufen, so würde die Berücksichtigung dieses Umstandes sich darin äußern, daß dieser Zahlenfaktor einen anderen Wert bekäme. Auf die übrigen Glieder der Gleichung bliebe die veränderte Stromkurve dagegen ohne Einfluß. 1,11 heißt daher der Formfaktor, weil er lediglich von der Kurvenform des Stromes abhängt.

c besteht aus zwei Faktoren, v und x. v hängt ausschließlich von der Phasenzahl, in keiner Weise von der Nutenzahl ab. Dasselbe ist, wenigstens in Bezug auf praktische Fälle, von x zu sagen, x ist allerdings von A abhängig, allein es kann für eine bestimmte Phasenzahl nur zwei verschiedene Werte bekommen, der für A = 1 durchwegs 1 ist, für alle Fälle, in denen A > 1 ist, aber konstant ist. Da praktisch zwei- oder dreiphasige Anker mit einer Nute pro Spulenseite nie gebaut werden, ist es daher gerechtfertigt zu sagen, x hängt von A nicht ab. Demnach stellt auch c einen nur von der Phasenzahl, nicht aber von der Nutenzahl abhängigen Koeffizienten dar. c wird Feldfaktor, w Phasenfaktor genannt.

k hingegen ist nur von der Nutenzahl, nicht aber von der Phasenzahl abhängig. Wenn auch in der Gleichung für k die Phasenzahl a vertreten ist, so ist die Abhängigkeit von a nur eine scheinbare, denn es läßt sich a in der Gleichung vermeiden, wenn man ein besonderes Symbol für die Nutenzahl pro Pol (= a . A) einführt, k kann deshalb Nutenfaktor genannt werden.

	
	
36.    Die Zugkraft.





In sehr nahem Zusammenhang mit der im Rotor induzierten EMK steht die vom Rotor ausgeübte Zugkraft. Zur Ableitung eines bequemen, allgemein, also für beliebige Phasen- und Nutenzahlen gültigen Ausdrucks gehen wir von der bekannten Tatsache aus, daß 1 kg m/sek = 9,81 Watt/sek, oder daß

1 PS/sek = 736 Watt/sek.

Verwandeln wir die PS in kg m/sek resp., da wir durchwegs mit cm als Einheit des Längenmaßes zu rechnen gewohnt sind, in kg cm/sek, so erhalten wir

7500 kg cm/sek = 736 Watt/sek oder

kg cm/sek = 10,2 X Watt/sek.

Drücken wir daher P in Kilogramm, v, die sekundliche Geschwindigkeit in Centimetern, aus, so wird

P ■ v = 10,2 ■ a2 • E2 • J2.......(109)

Die linke Seite der Gleichung stellt die mechanische Leistung, die rechte Seite das elektrische Äquivalent derselben, die elektrische Leistung eines a-phasigen Rotors mit der Phasenspannung E, und dem Phasenstrom J2, dar.

Es ist nun

_ D • n • n2

und wenn wir den Luftquerschnitt aus den Dimensionen D und b des Motors ableiten, können wir für D 7 schreiben

Daher wird

Qi P • na V * bi ' 60 ’

welcher Ausdruck sich nochmals dadurch umformen läßt, daß man setzt

Die Geschwindigkeit v ist daher

Qi ■ n, = b

Führt man diesen Ausdruck für v in die Gleichung ein und substituiert man für E2 die rechte Seite der Gleichung

E2 = 1,11 (c, • B) k2 • N2 • Qj • I, ■ 10—8 , so wird die Zugkraft

P = 10,2 • 1,11 ■ (c, • B/,) • k, -a,-N, J, b. 10-8 .

C2 • B|, stellt die Kraftlinienzahl des Feldes dar, welches auf den Rotor induzierend wirkt, und es kann diese natürlich auch durch die maximale, auf den Stator bezogene Induktion aus-gedrückt werden, denn es ist ja immer bei äquivalenten Feldern

	
	
	
c, • B, = Ci • B,







Der Beweis für die Richtigkeit der obigen, für die Zugkraft aufgestellten Gleichung ergibt sich aus dem Prinzip der Erhaltung der Energie. — Man muß sich die Sache nun folgendermaßen vorstellen: Die Tourenzahl n2 stellt nicht etwa die absolute Tourenzahl des Rotors dar, sondern die relative Tourenzahl des Rotors gegenüber dem Statordrehfeld. Darum ist auch der Index 2 dem n beigefügt, und n, und U2 steht mit der Schlüpfung in dem Zusammenhang, daß

s n' — n, n} — 112

100 - n‘ 11, ’

wobei n‘ = Tourenzahl im Synchronismus. Wir können uns die Polwechselzahl des Rotors auch dadurch hervorgerufen denken, daß das Statorfeld als stillstehend und der Rotor mit n2 Touren rotierend angenommen wird. Der Rotor verhält sich dann wie der Anker eines Generators mit stillstehendem Feldmagnetsystem, und es ist dann sofort klar, daß die zur Drehung des Ankers aufgewendete mechanische Arbeit gleich sein muß der durch die Drehung erzeugten elektrischen.

	
	
37.    Übersetzungsverhältnis der erregenden Kräfte, der Ströme und der EMKK.





Die Verhältnisse liegen bei einem Motor dann am einfachsten, wenn Stator und Rotor dieselbe Phasenzahl besitzen. Dies ist aber durchaus nicht immer der Fall, denn manchmal erhält ein dreiphasiger Stator einen nur zweiphasigen Rotor und umgekehrt. Außerdem werden häufig Zwei- oder Dreiphasenstatoren mit Kurzschlußanker, also mit einem Rotor von weit höherer Phasenzahl ausgestattet. Es muß daher untersucht werden, wie die gegenseitigen Beziehungen zwischen EMKK, Kraftlinienzahlen, Induktionen, Amperewindungen dann sind, wenn Stator und Rotor verschiedene Phasenzahlen besitzen.

Wir beginnen mit den EMKK. In einer Spule von N Drähten, deren Spulenkoeffizient k der Tabelle Seite 1S2 entnommen werden kann, wird unter der Einwirkung eines zweiphasigen Feldes von der maximalen Luftinduktion B‘| eine EMK induziert von der Größe

E = l,llcn Bin (k.N)Q, 10-8 .

Dieselbe EMK würde von einem sinoidalen Feld, das den Feldkoeffizienten Cs = 0,637 besitzt, dann induziert, wenn die maximale Induktion des Sinoidalfeldes der Gleichung genügt

E = 1,11 • cs • B‘, (k • N) Q, • 110-8 .

Unter der Einwirkung eines Dreiphasenfeldes mit dem Feldkoeffizienten CII = 0,583 müßte die maximale Luftinduktion BI— der Gleichung entsprechen

E=1,1l omB, (k.N)Q,.nlO-8.

Wenn daher die in der Spule induzierte EMK E in allen drei Fällen die gleiche sein soll, muß

crT • bi = c—B‘ — c • b; ii II in im s ’s

sein. Das Produkt c . B| stellt aber die gesamte Kraftlinienzahl eines Poles dar, folglich ist auch

Za - Zin = z, ’

	
d. h. die Kraftlinienzahl jedes der drei Felder muß dieselbe sein. Dagegen verhalten sich die Induktionen der drei Felder



B! : B! : BI = c, : c— : c = 0,637 : 0,583 : 0,53.

	
III 's 8 III II ’          >          ‘



Felder, welche die gleiche Wirkung hervorbringen, d. h. welche in ein und derselben Spule die gleiche EMK induzieren, nennen wir äquivalente Felder. Es ergibt sich demnach die Regel:

Äquivalente Felder haben gleiche Kraftlinienzahl pro Pol, und die maximalen Induktionen derselben verhalten sich umgekehrt wie die Feldkoeffizienten.

Hieraus resultiert in Bezug auf die graphische Darstellung im Diagramm, daß die Anwendung des Kräfteparallelogrammes ohne weiteres auf das Felddiagramm zulässig ist, wenn durch die einzelnen Strecken des Diagrammes Kraftlinienzahlen dargestellt werden. Sollen die einzelnen Strecken dagegen Induktionen vorstellen, so muß stets in Berücksichtigung gezogen werden, daß die Induktionen den Feldkoeffizienten umgekehrt proportional sind.

Stellt z. B. Fig. 71 ein Felddiagramm dar, in welchem a c die von den Amperewindungen des dreiphasigen Stators, b c die von
[image: ]

den Amperewindungen des zweiphasigen Rotors erzeugten Kraftlinien darstellen, so wird die resultierende Kraftlinienzahl, die Stator und Rotor gemeinsam durchsetzt, a b sein. Es ist demnach

ac:bc:ab= Z : Z2 : Z

Stellt dagegen a c die maximale Induktion des Statorfeldes dar, so kann nicht die vom Rotor ausgeübte maximale Induktion aus dem Diagramm einfach in der Größe von b c abgegriffen werden, sondern es ist

a c       ^i       ci ■ Bi, b c       Z,       Co • B ।

und demnach

B| ist natürlich

Unter der obigen Annahme, daß der Stator dreiphasig, der Rotor zweiphasig ist, wird

c, __ 0,583 __.

c2 - 0,53 TT ’ '

Dadurch, daß wir die Frage gelöst haben, in welcher Beziehung die Induktionen verschiedenphasiger äquivalenter Felder zu einander stehen müssen, haben wir gleichzeitig die Abhängigkeit gefunden, in der die erregenden Kräfte verschiedenphasiger äquivalenter Systeme zu einander stehen müssen. Auf Grund der allgemein gültigen Gleichung, daß die erregenden Ampere Windungen

X = 0,8 . 0 . p . Bj

können wir die maximale erregende Kraft der maximalen Induktion proportional setzen, und wir erhalten die einfachen Beziehungen


	
Xa
		
BI -

II
	
di “n


	
Xm
	
A
	
BI =

‘III
	
Zi

Cm


	
x.
		
b; =
	
z,

•a




Der letzte Ausdruck gilt für beliebig vielphasige Anker, wie sie in Wirklichkeit durch die Kurzschlußanker gegeben sind. Da bei einem Kurzschlußanker stets nur 1 Nute pro Spulenseite vorhanden ist, wird der Ausdruck

2a — 1

immer der Einheit gleich, und deshalb wird

ca = Ja • "a = Pa ■


Die erregenden sind daher äquivalent, zahl erzeugen, also



Kräfte verschiedenphasiger Wicklungen wenn sie Felder von gleicher Kraftlinien-z, = z, = z. ist, und wenn sich ihre maximalen erregenden Amperewindungen verhalten wie

1 1 1  —

XI • XII • Xa — c • c : , • • • • (a)

II     CI1I      Ya

also umgekehrt wie die Phasenkoeffizienten.

Zu einem wesentlich anderen Resultat gelangen wir, wenn wir die Wirkung der Amperewindungen von einem anderen Gesichtspunkte aus untersuchen. Wir gehen von der Gleichung der Zugkraft aus und nehmen an, daß das Dreieck a b c, Fig. 71, das Stromdiagramm eines streuungsfreien, verlustlos arbeitenden Motors darstellt. Der vom Stator konsumierte Effekt wird durch be, die Wattkomponente des Statorstromes dargestellt, und b c stellt gleichzeitig den mechanischen vom Motor geleisteten Effekt dar. b c stellt endlich auch die Zugkraft dar, und dieselbe bleibt bei diesem Belastungszustand natürlich unverändert, wenn wir in den Motor Rotoren verschiedener Phasenzahlen einbauen, während wir den Stator ungeändert lassen. Aus der allgemeinen Gleichung der Zugkraft

P=10,2.1,11. c2. B,’. k, . a, . N, . J2. b . 10- 8 folgt, daß

(o, • B) In • 2 • Na • Jn = (6mn • Bw) • km • 3 • Nin • J -

=(B).ka.a.N, .J.

Die Richtigkeit des Felddiagramms fordert, daß die Kraftlinienzahl des Rotorfeldes bei allen 3 Rotoren dieselbe ist, daß also

Cn ■ Bn = “m • Bin =cB

und es ist infolgedessen

(2.N,:,).k,=(3.Nmn:Jm).km=(a.N,~J)k, • ()

Die in Klammern gesetzten Ausdrücke stellen die gesamten Amperedrähte des Rotors, also die doppelte Amperewindungszahl des Rotors dar. Auf den ersten Blick scheint es, als stünden die in Gleichung (a) und (b) ausgedrückten Beziehungen in einem direkten Widerspruch. Dieser Widerspruch ist jedoch nur ein scheinbarer, nur müssen wir uns darüber klar sein, daß erregende Kraft etwas ganz anderes ist als einfach X 1 , wenn auch beide Größen in Amperewindungen ausgedrückt werden. Die erregende Kraft stellt die momentane Summenwirkung der einzelnen Phasenampere-Windungen auf die Stelle bezogen dar, an welcher diese Summen-Wirkung am größten ist. Die erregende Kraft X ist daher

X = ) • J' | sin « + sin (« +—7) + . . . . sin (« + (a — 1) 7) |

und sie ist von der Phasenverschiebung -- der einzelnen Ströme a abhängig. Die Amperewindungen A-W dagegen sind

A-W — * 2 ‘ —a- 2 ’ effektiv.’

also von der Phasenverschiebung der einzelnen Ströme zu einander unabhängig.

Wenn wir einen a-phasigen Anker mit N Drähten pro Phase betrachten, so bleibt die von ihm ausgeübte erregende Kraft dieselbe, gleichgültig, ob wir die N Drähte jeder Phase in nur einer oder in mehreren Nuten pro Pol unterbringen. Ebenso wird die Amperewindungszahl A-W durch Veränderung der Nutenzahl pro Spulenseite nicht beeinflußt. Dagegen wird die vom Anker erzeugte Kraftlinienzahl Z mit der Veränderung der Nutenzahl verschieden, die Ankerreaktion wird eine andere.

Die erregende Kraft benötigen wir nur, um den Magne-- tisierungsström als Funktion der maximalen Luftinduktion — eventuell unter Berücksichtigung des Eisenwiderstandes — berechnen zu können, und nur in dieser Beziehung ist die Gleichung (a) von Bedeutung. Wir können mittels der Gleichung (a) einen sehr einfachen Ausdruck aufstellen, welcher es uns ermöglicht, sofort festzustellen, wie groß der Magnetisierungsstrom ist, wenn man den Motor statt vom Stator aus, vom Rotor aus erregt. Es ist nämlich

ebenso


13



Heubach, Drehstrommotor.


a2 • N2 • Jm, • 12




V2




0,8 . 0. p . B,’



wenn mit Jm, , Jm, der Magnetisierungsstrom bezeichnet wird, je nachdem der Stator resp. der Rotor an die äußere Stromquelle angeschlossen ist. Hieraus erhält man

a1-N1: Jm, • ‘1 Bi’


(Hl)



a, • N, • Jm, • 1a B,’

und wenn wir die Kraftlinienzahlen der Felder in beiden Fällen gleich groß wählen, so wird

c. Bi’ — C2 • B,’ ,

demnach


"m2

Jm,




C1 • 11 • at • Ni C2 • 12 • a2 • N2




(112)



Ux stellt das Übersetzungsverhältnis der Ströme in Bezug auf die von ihnen ausgeübten erregenden Kräfte, oder kürzer: das Übersetzungsverhältnis der erregenden Kräfte dar.

Von viel größerer Wichtigkeit als Ux ist das Übersetzungsverhältnis der Ströme in Bezug auf die von ihnen ausgeübte Ankerreaktion, denn wir benötigen dessen Kenntnis, um die wirkliche Größe des Rotorstroms aus dem Diagramm berechnen zu können. Es läßt sich dies am einfachsten in folgender Weise zeigen:

In einem beliebigen Belastungsstadium sei das Stromdreieck eines Motors abc Fig. 71. Dann erhalten wir den Statorstrom in Ampere, wenn wir die Länge der Strecke a c messen und mit der Konstanten C, multiplizieren, also

J1 — C2 . a c ■

Der Rotor ström ist nur dann

J, = C, . be,

wenn der Rotor genau identisch mit dem Stator gewickelt ist, wenn er also gleiche Phasen-, gleiche Draht- und Nutenzahl wie der Stator besitzt. Ist der Rotor dagegen anders als der Stator gebaut, dann wird

J2 = C3 .bc.

Die obige Gleichung (b) gibt uns den Schlüssel zur Lösung der Frage, in welchem Verhältnis die Konstanten C, und C3 zu einander stehen. Wir erhalten nämlich:

J,   C,   k,.N,.a, -

J,     C,     k,. N2. a, J

und Uj ist das Übersetzungsverhältnis der Ströme in Bezug auf die von ihnen ausgeübte Ankerreaktion, oder kurz: das Übersetzungsverhältnis der Stromstärken.

Endlich haben wir noch ein drittes Übersetzungsverhältnis anzugeben, nämlich das der EMKK. Die im Stator induzierte EMK ist.

E = 1,11. (c, . B,’ . Q) k, . N, . 1, 10- 8.

In dieser Gleichung stellt

	
c, • B,’ • Q, = Z,,



die totale Kraftlinienzahl des induzierenden Feldes dar. Werden die Windungen des stillstehenden Rotors demselben Felde von Z, Kraftlinien ausgesetzt, so wird in denselben eine EMK induziert von der Größe

E2 = 1,11. Z, . k2. N, . n, . 10- 8.

Der Quotient

stellt das gesuchte Übersetzungsverhältnis der EMKK dar.

38. Beispiele.

Da die zuletzt besprochenen Verhältnisse etwas verwickelter Natur sind, dürfte es angezeigt sein, dieselben durch einige Beispiele zu illustrieren. Gegeben sei ein streuungsfreier verlustloser Motor, dessen Stator mit einer Dreiphasenwicklung in Sternschaltung für 190 Volt bei 100 Polwechseln gewickelt werden soll. Die Daten des Stators sind folgende:


190

73




110




II, = 100




D — 20 cm b = 10 cm

J = 0,1 cm



p ==4

Nutenzahl des Stators = 36


Aj = 3

a, = 3



C1 = 0,592 k, = 0,96

Nutenzahl des Rotors = 48.

Wenn wir die maximale Luftinduktion zu ca. 5000 annehmen, so berechnet sich die Drahtzahl des Stators:

Ei . 108           _            110.108

1,11.c,.k, . Qi. B’.I, — 1,11.0,592.0,96.157. 5000.100

Pro Phase haben wir 3= 12 Nuten, die Drahtzahl pro Nut wird daher

220 go 12 — und demnach muß die Drahtzahl pro Phase werden ^ = 18-12 = 216.

Nun können wir genau die Luftinduktion berechnen, es wird nämlich

110-IO8

	
	
---__----- 040) 1     1,11 • 0,592 • 0,96 • 216 • 157 • 100





Die Magnetisierungsamperewindungen sind

	
X, = 0,8 • J. p • B{ = 0,8 • 0,1 • 4 • 5140 = 1640 A-W.



Es ist aber nach Gleichung (98) Xm auch

N-Jm-a- *1

folglich

V2 X, 1,41-1640 Jm = N,-a, » = 216.3-0,667 = 5,4 ATP:

	
	
1.    Wie groß ist die Rotorspannung bei stillstehendem Rotor, wenn derselbe 3-phasig gewickelt ist und 14 Drähte pro Nut besitzt?





Es ist demnach

a, =3                       c, = 0,583

A, — 4                    k= 0,957

48

Pro Phase stehen -o== 16 Nuten zur Verfügung und die Drahtzahl pro Phase wird demgemäß

N, = 16 • 14 = 224.

Die im stillstehenden Motor induzierte Phasenspannung ist

E = 1,11 - (c, B) • k2 • N, - Q, ■ n. - 10—8

= 1,11 • 0,592 • 5140 • 0,957 • 224 • 157 • 100 • 10-8 = 113 Volt.

Bei Stillstand ist der Rotor offenbar der gleichen Polwechselzahl unterworfen wie der Stator, daher muß in obige Gleichung 1^ und natürlich nicht II, eingesetzt werden. Die beiden Faktoren

(o,-B,)=Z,

sind in Klammern gesetzt, um ihre innige Zusammengehörigkeit anzudeuten und daran zu erinnern, daß ihr Produkt die maximale Totalzahl der Kraftlinien pro Pol darstellt.

	
	
2.    Wie groß muß die Rotorspannung sein, wenn der Rotor an die Stromquelle angeschlossen ist und der Rotor das Erreger-ield des Motors liefert, damit die Statorphasenspannung wieder 110 Volt beträgt?





Trotzdem in diesem Falle der Rotor das primäre, der Stator das sekundäre System vorstellt und also eigentlich dem Rotor der Index 1, dem Stator der Index 2 zukommen sollte, sind, um Konfusion zu vermeiden, die Indices in ihrer normalen Weise beibehalten (Stator = Index 1; Rotor = Index 2).

Die im Stator vom Rotorfeld mit der uns unbekannten maximalen Induktion B‘ induzierte EMK ist

E, = 1,11 (c, • B) k-N,Q,1,10—8

110 = 1,11 • 0,583 • BI • 0,96 • 216 • 157 ■ 100 • 10-8 daher

p _ ___________110 •108___ 5220

712      1,11 • 0,583 • 0,96 ■ 216 • 157 • 100

Im Rotor selbst wird hierbei eine EMGK von der Größe der Klemmenspannung E, induziert, nämlich

E2 = 1,11 ■ (c, • B/,) •k,-N-Qn, 10—8

= 1,11 • 0,583 • 5220 • 0,957 • 224 • 157 • 100 • 10-8 = 113 Volt, ein Resultat, das wir nach Lösung der Frage 1 bereits voraussehen konnten; denn das Statorfeld von der Induktion 5140, und das Rotorfeld von 5220 Linien pro cm2 sind äquivalent, da

BI      5220     cj     0,592

B‘,      5140      c,      0,583 '

Hätten wir die Koeffizienten C1 und c2 nicht der Tabelle Seite 177 entnommen, sondern nach der Näherungsgleichung cni = "m ‘ kni = 0,667 ‘ s = 0,583

berechnet, so würde

C1 = c2 und demgemäß auch

B;, = B, gefunden worden sein. Die durch Anwendung der Näherungs-gleichung verursachte Ungenauigkeit würde 1,5% betragen haben.

Wir wollen noch die Erregeramperewindungen und den Erreger-Strom des Rotors bei 113 .V 3 = 195 Volt Klemmenspannung und 5220 maximaler Induktion seines Feldes berechnen. Die Erregeramperewindungen sind

X, = 0,8 • 0 • p ■ B‘, = 0,8 • 0,1 • 4 • 5220 — 1665 Amperewindungen, und der Rotorstrom

T y 2. X, 1,41 • 1665

J2 = —-----= -—— - -= — 5,23 Ampere.

N2 • a2 • 12    224 • 3 • 0,667             1

	
	
3.    Wie groß wird die Rotorspannung bei stillstehendem Rotor, wenn derselbe zweiphasig gewickelt ist und 14 Drähte pro Nute besitzt?





Es ist

a, =2            c2 0.53

A2 = 6            k2 0,902.

48

Die Nutenzahl pro Phase ist —o = 24, daher die Drahtzahl einer Rotorphase

N, = 24 • 14 = 336.

Der Stator hat den Phasenkoeffizienten C1 = 0,595 und er hat bei 110 Volt eine maximale Luftinduktion von B{ = 5140. Die Rotorspannung bei Stillstand ist daher

E2 = 1,11 (c, ■ B) • k2 • N2 • Q, • n, • 10—8

= 1,11 ■ 0,595 • 5140 • 0,902 ■ 336 • 157 • 100 • 10-8 = 158 Volt.

	
	
4.    Wie groß muß die Rotorspannung sein, wenn der Rotor an eine zweiphasige Stromquelle angeschlossen ist und der Rotor das Erregerfeld des Motors liefert, damit die Statorphasenspannung wieder 110 Volt beträgt?





Aus der Gleichung

E, = 1,11 (,B).k,.N,-Q1,-10-8

110 = 1,11 • 0,53 • B‘, • 0,96 • 216 • 157 • 100 • 10-8 erhalten wir die maximale Induktion des vom Rotor zu erzeugenden Feldes

, _ '       110-108__455o

1,11 • 0,53 ■ 0,96 • 216 • 157 • 100

Durch dies Feld wird im Rotor selbst induziert

E, = 1,11 • (c, • B) • k, • N, • Q, ■ II. • 10-8

= 1,11 • 0,53 • 5750 • 0,902 • 336 • 157 • 100 • 10-8 = 158 Volt.

Wir finden also auch hier bestätigt, daß das vom Stator erzeugte Erregerfeld äquivalent ist dem vom Rotor erzeugten, wenn beide Teile ihre Rolle vertauscht haben und die Statorspannung konstant gehalten wird.

Der Rotor muß, um dies Feld zu erzeugen,

X, = 0,8 • J. p • B|, = 0,8 • 0,1 • 4 ■ 5750 = 1840

Erregeramperewindungen aufwenden, und er benötigt hierzu einen Strom

T V 2 • X, 1,41 • 1840 Ja = —------= -%—— — -- —= 5,5 Ampere.

2 a

x, =1,00.

Die in einem Stabe induzierte EMK ist

E2 = 1,11 • (c, • B/) • k2 • 1 • Q, • 11. • 10-8

= 1,11 • 0,592 ■ 5140 • 1 • 1 • 157 • 100 • 10-8 = 0,53 Volt.

	
	
6.    Wie groß muß der Strom in einem Rotorstabe des Kurz-schlußankers sein, damit in den offenen Windungen des Stators eine Phasenspannung von 110 Volt induziert wird?





Diese Frage behandelt einen akademischen Fall, der sich experimentell nicht herstellen läßt, es sei denn, daß man annimmt, der Kurzschlußring auf der einen Ankerseite würde entfernt und den Stabenden würde zwölfphasiger Strom zugeführt. Im Stator wird durch das zwölfphasige Rotorfeld eine EMK induziert von der Größe

E = 1,11 (c, • B|,) • kj • N, Q, H, • 10-8 110 = 1,11 • 0,638 • BI • 0,96 • 216 • 157 • 100 ■ 10-8

und hieraus läßt sich die maximale Feldinduktion des Kurzschlußankers ermitteln, es ist nämlich

,             110-108__4,700

12     1,11 • 0,638 • 0,96 • 216 • 157 • 100

Um diese Induktion zu erzeugen, sind Erregeramperewindungen erforderlich:

	
	
	
X, = 0,8 • J. p • B‘, = 0,8 • 0,1 • 4 • 4780 = 1530







und der Strom in einem Stabe oder in einer Phase des Kurzschlußankers ist

T V2 • X, 1,41 • 1530     „ . J = —----— == - —noo = 71 Ampere. N2 • a2 • 12     4 • 12 ■ 0,638

Daß N, = 4 einzusetzen ist, folgt aus der Überlegung, daß jede der 12 Phasen bei einer Gesamtzahl von 48 Drähten 4 Drähte besitzen muß.

Sechstes Kapitel.

Die Streuung.
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39.    Die verschiedenen Streuungsarten.





Unter dem Einfluß der erregenden Kräfte eines Motors entstehen nicht nur die magnetischen Felder, deren Vorhandensein wir wünschen, sondern es entstehen außerdem parasitäre Kraftlinien, deren Existenz dadurch ermöglicht ist, daß der Kraftlinienweg des Hauptfeldes nicht der einzige magnetische Pfad im Motor ist. So treten z. B. nicht alle im Statoreisen erzeugten Kraftlinien durch den Luftzwischenraum in den Rotor über, ein Teil derselben verläuft in den Statornuten, ohne überhaupt den Stator zu verlassen. Diese Erscheinung bezeichnet man als Nutenstreuung.

Von den Kraftlinien, welche vom Stator durch den Luftzwischenraum nach dem Rotoreisen übertreten, kehrt unter gewissen Umständen ein Teil nach abermaligem Durchlaufen des Luftfeldes wieder zum Stator zurück, ohne die Rotorwindungen zu schneiden. Auch diese Kraftlinien hat man als Streulinien bezeichnet und das Auftreten derselben die Zickzackstreuung genannt.

Endlich werden von den Statorwindungen auch noch außerhalb des eigentlichen Statoreisens, nämlich in der Luft und den lediglich aus mechanischen Gründen vorhandenen Gußeisenteilen, Kraftlinien dadurch erzeugt, weil es unmöglich ist, die Drähte der Statorwicklung unendlich dicht an das Statoreisen heranzubringen. Da diese Art der Streuung durch die auf beiden Seiten des Stators in die Luft herausstehenden Spulenköpfe hervorgerufen wird, bezeichnet man sie als Kopfstreuung.

Die Ermittlung der Größe der letztgenannten Streuung bietet für die Rechnung am meisten Schwierigkeiten, denn es bietet sich hier den Kraftlinien die Möglichkeit, äußerst komplizierte Wege einzuschlagen. Die Verhältnisse liegen hierbei ungefähr ebenso verwickelt, wie wenn wir die Entladestromstärke einer Batterie bestimmen sollten, wenn die Batterie in ein mit einem Elektrolyt gefülltes metallnes Gefäß gestellt wird, wenn außerdem die Kontinuität des Elektrolyts durch hineingeworfene Metallteile gestört ist.

Wie wir bereits aus den Diagrammen wissen, äußert sich die Streuung durch eine Verschlechterung des cos 9, Effektverlust wird durch dieselbe nicht hervorgerufen. Die in Bezug auf den Stator angestellten Betrachtungen gelten in gleicherweise natürlich auch für den Rotor.

	
	
40.    Nutenstreuung einer Zweiphasenwicklung.





Nachdem wir im vorigen Kapitel die wahre Form der magnetischen Felder festgestellt haben, sind wir nun in die Lage versetzt, die Streuung eingehend zu untersuchen. Wir wollen zuerst den einfachsten Fall ins Auge fassen, nämlich einen zweipoligen Zweiphasenmotor mit je einer Nute pro Spulenseite. Fig. 72 stellt einen solchen Motor dar in dem Augenblick, in welchem seine Statorwindungen die maximale erregende Kraft ausüben, in welchem also Phase I und Phase II den gleichen Strom (0,707 des maximalen Stromes) führen. Wir wissen aus Früherem, daß in diesem Stadium längs der Zähne 1 und 3 die maximal überhaupt auftretende Induktion herrscht, während von den Zähnen 2 und 4 keine Kraftlinien ausgehen, da auf die letzteren keine erregende Kraft einwirkt.

Schon früher haben wir von der Anwendung des Ohmschen Gesetzes auf magnetische Stromkreise Gebrauch gemacht, und wenn wir diese Analogie auch auf den vorliegenden Fall anwenden, können wir den in Fig. 72 skizzierten Motor durch Fig. 73 darstellen. Da wir vorläufig das Eisen als widerstandslos annehmen wollen, haben wir die dünn gezeichneten Linien der Fig. 73 als
[image: ]

widerstandslos zu betrachten, während die mit a b c d bezeichneten dicken Linien den Luftwiderstand pro Zahn des Motors repräsentieren. An Stelle der auf die Zähne 1 und 3 wirkenden erregenden Kräfte haben wir die beiden Elemente E gesetzt, deren EMKK sich entsprechend den erwähnten erregenden Kräften der Spulen addieren müssen; die Elemente sind also in Serie geschaltet.
[image: ]

Fig. 73.                                       Fig. 74.


Wenn wir den Motor als streuungsfrei annehmen, so setzt dies voraus, daß seine Nuten unendlich großen Widerstand haben, und die vier Widerstände ab cd sind dann die einzigen Wege, die das Entstehen eines Stromes ermöglichen. Ein Blick auf die Fig. 73 zeigt uns, daß lediglich die beiden in senkrechter Richtung liegenden Widerstände von einem Strom durchflossen sind, der unserem in Fig. 72 gezeichneten magnetischen Feld entspricht.

Nehmen wir den Widerstand der Nuten nicht mehr als unendlich groß an, so wird durch dieselben Streuung hervorgerufen werden, und in welcher Weise diese auftritt, läßt sich sehr leicht zeigen, wenn wir in Fig. 73 an den Stellen, welche den Nuten entsprechen, Widerstand einfügen, und wenn wir dann untersuchen, welcher Strom in diesen Widerständen entstehen muß. Wir erhalten so die Fig. 74, in welcher a, b, c, d den Widerstand des Luftfeldes pro Zahn, e, f, g, h den Widerstand pro Nute vorstellt.

Es ist nun sehr leicht anzugeben, in welcher Weise Ströme in diesem System zirkulieren werden. Bezeichnet man mit E die totale EMK, also die EMK der beiden in Serie geschalteten
[image: ]

Fig. 75.                                         Fig. 76.


Elemente, so wird in den Widerständen a und c ein Strom entstehen von der Größe

wenn mit Rr der Luftwiderstand pro Zahnfläche bezeichnet wird. Den Elementen wird aber noch ein weiterer Strom entnommen, welcher durch die Widerstände e, f, g, h fließt. Die Größe dieses Stromes ist, wenn R, den Widerstand einer Nute bedeutet,

E

Der Stromverlauf in dem ganzen System gestaltet sich nun so, wie es in Fig. 75 dargestellt ist. Die Leiter k und 1 werden von beiden Strömen J und i gemeinsam durchflossen, die Leiter a und c nur von dem Strom J, die Leiter e, f, g, h nur von dem i

Strom 9:

Wenden wir dies Resultat auf die magnetischen Kreise des Motors an, so entspricht der Strom J dem Hauptfeld des Motors (Fig. 76), welches Stator und Rotor gemeinsam durchsetzt, der Strom i stellt das Streufeld dar, welches lediglich im Stator ver
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läuft, ohne nach dem Rotor zu gelangen. Die Windungen des Stators werden daher von beiden Feldern geschnitten, die des Rotors dagegen nur von dem Hauptfelde.

Wie wir wissen, ist die erregende Kraft eines Motors nicht von konstanter Größe, sondern sie variiert zwischen einem Maximal-und einem Minimalwert. Bei Untersuchung des streuungsfreien

[image: ]



[image: ]



Motors haben wir schon gesehen, daß jedem dieser Extremwerte der erregenden Kraft eine ganze verschiedene Feldkurve entspricht, und wir müssen daher auch prüfen, wie sich die Streufelder in diesen verschiedenen Momenten verhalten.

Das Minimum der erregenden Kraft herrscht in einem Zweiphasenmotor dann, wenn eine Phase desselben den maximalen

Strom führt, die andere stromlos ist, und die erregende Kraft ist dann nur 0,707 der maximalen. Fig. 77 stellt den streuungsfreien Motor in diesem Stadium dar, und Fig. 78 zeigt ein elektrisches System, welches mit dem magnetischen des Motors korrespondiert.

Wenn wir den Motor als mit Streuung behaftet annehmen,
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haben wir noch die Widerstände e, f, g, h einzufügen, und wir erhalten so die Fig. 79. Der Strom, welcher aus den Elementen durch die Widerstände a, b, c, d fließt, hat die Größe

_ 0,707 • E " - 2 R. ‘

und der durch die Widerstände f und g fließende

0,707 • E

i= R, ’

Wenn wir die Ströme wieder durch die magnetischen Felder ersetzen, so gelangen wir zur Fig. 80, und wir ersehen, daß alle

vier Zähne des Stators vom Hauptfeld und dem Streufeld durchsetzt werden, während nur ersteres nach dem Rotor gelangt. W ir können die Felder noch in anderer Weise darstellen, wenn wir den Stator nicht mehr kreisförmig, sondern zu einer Geraden aufgebogen zeichnen, wie dies in Fig. 81 für den Zweiphasenmotor für beide Extremwerte seiner erregenden Kraft geschehen ist.
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Aus dieser Figur ersehen wir, daß die Form des Streufeldes in beiden Fällen genau der des Hauptfeldes entspricht, daß es sich nur in der Größe von demselben unterscheidet. Auf dieses verhältnismäßig einfache Resultat kommen wir aber nur in dem Falle, wenn jede Spulenseite nur in einer Nute pro Pol untergebracht ist. Wenn der Stator mehr Nuten pro Spulenseite enthält, werden die Verhältnisse komplizierter.

Untersuchen wir beispielsweise einen Zweiphasenmotor mit 3 Nuten pro Spulenseite, wie er in Fig. 82 unter Ersatz der erregenden Kräfte durch elektromotorische dargestellt ist, so finden wir, daß die Ströme die in Fig. 82 A dargestellte Größe besitzen. Bei Berechnung dieser Stromstärken ist sowohl der Luftwiderstand pro Zahn, als der Widerstand einer Nute = 1, ebenso die EMK eines Elementes = 1 angenommen.

Führen wir an Stelle der Ströme nunmehr wieder die Felder ein, so können wir diese durch Fig. 82 B darstellen. Durch die Totalfläche dieser Figur wird das gesamte Statorfeld repräsentiert: der unschraffierte Teil der Fläche ist das auch in den Rotor übertretende Hauptfeld, der schraffierte Teil der Fläche ist das lediglich im Stator verlaufende Streufeld. Das letztere ist in Fig. 82 C nochmals separat gezeichnet, um so klar als möglich den Verlauf der Streulinien im Stator zu demonstrieren.

Betrachten wir denselben Motor in dem Moment, in welchem eine Phase des Stators stromlos und die erregende Kraft ein Minimum ist, so geht Fig. 82 über in Fig. 83. Entsprechend der Abnahme der erregenden Kraft auf das 0,707 fache gegenüber der maximalen, darf die EMK eines Elementes nur mehr zu 0,707 Volt angenommen werden, während die Widerstände natürlich ungeändert = 1 Ohm geblieben sind. Die entstehenden Ströme werden daher der Richtung und Größe nach so angeordnet sein, wie dies in Fig. 83 A eingetragen ist, und es gestalten sich demgemäß die Felder nach der Anordnung der Fig. 83 B. Das Streufeld durchsetzt pro Pol nur je 2 Zähne, a, b, und die Streulinien verlaufen durch die Nuten nach den korrespondierenden Zähnen der benachbarten Pole. Die zwischen a und b liegenden Nuten werden überhaupt nicht von Streulinien durchsetzt.

Die vorhergehenden Figuren bedürfen noch in einer Hinsicht einer erläuternden Bemerkung. Wir haben bei unseren Betrachtungen das Ohmsche Gesetz auf magnetische Stromkreise angewendet und haben die Analogien zwischen magnetischen und elektrischen Stromkreisen benützt, um den Verlauf und die Größe der Streufelder zu ermitteln. Der mit dem elektrischen Strom korrespondierende Begriff des magnetischen Kreises ist bekanntlich die Kraftlinienzahl und dies ist auch im vorausgehenden Text durchwegs zum Ausdruck gebracht. Die Kraftlinienzahl ist in den Figuren durch die betreffenden Flächen repräsentiert, und da Heubach, Drehstrommotor.                               14

diese Flächen für das Haupt- und Streufeld über demselben Abszissenmaßstab aufgetragen sind, stellen die Ordinaten für das Streufeld die auf den Luftzwischenraum pro Statorzahn bezogene Induktion der Streuung dar. Diese Induktion des Streufeldes ist im Motor in Wirklichkeit nirgends vorhanden, denn in dein vom Streufeld durchsetzten Eisen des Statorzahnes ist die Induktion
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Fig. 83.

bedeutend größer, dem kleinen Eisenquerschnitt des Zahnes entsprechend. Die oben gewählte Darstellungsweise ist nötig, um die Koeffizienten c und k zur Berechnung der von dem Streufeld induzierten EMK in ähnlicher Weise ableiten zu können, wie wir dies in Bezug auf die Hauptfelder bereits getan haben; sie bringt außerdem den Vorteil mit sich, daß in die eigentliche Rechnung kein Feld quer schnitt eingeführt zu werden braucht, als der des Luftzwischenraums zwischen Stator und Rotor.

Die Berechnung der so definierten Induktion des Streufeldes ist nun eine sehr einfache Sache. Das Streufeld eines Zweiphasen-motors mit 3 Nuten pro Spulenseite ist in Fig. 82 in dem Moment dargestellt, in welchem die erregende Kraft des Stators ein Maximum ist.

Wir sehen, daß der magnetische Widerstand des Streufeldes zwischen den Zähnen a und b durch 6 Nuten gebildet ist, und wenn wir bedenken, daß sich von a aus dem Streufeld zwei solcher Wege nach dem andern Pol bieten, so ist der Widerstand des Streufeldes aus zwei parallel geschalteten Wegen gebildet, deren jeder aus 6 (= 2 A) in Serie geschalteten Nutenwiderständen besteht. Der magnetische Widerstand des Streufeldes beträgt daher für den Zweiphasenmotor mit 3 Nuten pro Spulenseite 3 . Ry . Da die Nuten a und b um eine volle Polteilung voneinander abstehen, also immer durch 2 A Nuten getrennt sind, läßt sich der Ausdruck sofort verallgemeinern, es ist

Magnetischer Widerstand eines Zweiphasenstreufeldes = A • R .

Hätten wir das Streufeld in dem Moment untersucht, in welchem die erregende Kraft ein Minimum ist (Fig. 83), so würden wir dasselbe Resultat erhalten haben; denn es setzt sich sowohl den von c nach d, wie den von e nach f verlaufenden Streulinien ein Widerstand von der Größe 3 Ry — A Ry entgegen, beide Widerstandsgruppen sind jedoch nicht parallel geschaltet, wie im vorher betrachteten Fall, sondern beide Gruppen bilden Teile zweier selbständiger magnetischer Stromkreise. Der Widerstand des Nutenstreufeldes ist daher konstant.

Drücken wir das Verhältnis von Br zur Luftinduktion des Hauptfeldes aus, so erhalten wir die einfache Beziehung:

	
	
	
	
B.    2 R, B = A-R,









Da sowohl der Luftwiderstand pro Zahn als der Streuwiderstand pro Nute konstant ist, muß daher, weil

2R, Pr - B* ’ a-k,

ist, Banach derselben Funktion variieren, wie B1. Wenn wir daher 14*

unter Bi die von einem Zahn erzeugte Luftinduktion verstehen, für welche wir schon früher nachgewiesen haben, daß sie nach einer Sinusfunktion variiert, so muß auch Br nach einer Sinusfunktion zeitlich variieren. Damit ist die Möglichkeit gegeben, die von dem Streufeld in den Statorwindungen induzierte EMK zu berechnen.

Um die totale Kraftlinienzahl des Streufeldes zu finden, müssen wir die Eigentümlichkeit beachten, daß die Induktion Br, wenn die erregende Kraft ein Maximum ist, sich nur über einen einzigen Zahn erstreckt (Fig. 82). Der Querschnitt des Streufeldes


ist daher in diesem Moment



Q. nur-----. Die Kraftlinienzahl wird 2 A

demgemäß


Zr = Br



Q1 — •

—— = Minimum.

2 • A

In dem Moment, in welchem die erregende Kraft ein Minimum ist, erstreckt sich die Induktion des Streufeldes dagegen über .                •                                                          2•

	
	
	
	
	
2 Zähne. Der Querschnitt des Streufeldes ist daher —---. Die 2 • A











Induktion des Streufeldes ist nur mehr 0,707 des Maximalwertes Br. Die totale Kraftlinienzahl wird daher


Ze = 0,707 Br .




Qi — .

—— = Maximum. A




Das Streufeld verhält sich wie das Hauptfeld, wie wir



also in dieser Beziehung genau so im 34. Abschnitt gesehen haben. Auch beim zweiphasigen Streufeld ist die maximale Kraftlinienzahl dann vorhanden, wenn die erregende Kraft ein Minimum ist.

Um die EMK zu ermitteln, welche von dem Streufeld in den Windungen des Stators induziert wird, gehen wir von unserer allgemeinen Gleichung der EMK aus.

E = 1,11 ■ c • k • N • B' • Q, • n 10-8

In dieser Gleichung stellt

c • B' • Q1 = Z' die maximale Kraftlinienzahl dar. Sie wird in Bezug auf das Streufeld

Qi

Z‘ =0,707 B' • —.

Es wird demnach c = 0,707 oder gleich dem uns unter dem Symbol v bekannten Faktor. Der Feldkoeffizient c bleibt für beliebige Werte von A immer derselbe, da das Streufeld stets dieselbe Feldform besitzt, gleichgültig, wie viele Nuten pro Spulenseite angeordnet sind, immer hat das Streufeld die charakteristische, in den Fig. 82 und 83 C dargestellte, Form. Für nur eine Nute pro Spulenseite wird die Form des Streufeldes mit der des Hauptfeldes identisch, und daher hat c in Bezug auf das Streufeld immer die maximale Größe, welche c des Hauptfeldes nur bei A = 1 erreicht.

Für die maximale Induktion des Streufeldes führen wir den uns schon bekannten Ausdruck ein, welcher die Beziehung zwischen der maximalen Induktion des Streufeldes und des Hauptfeldes darstellt, nämlich

Der Faktor k hat beim Streufeld stets den Wert 1, denn es werden stets von sämtlichen Windungen des Stators alle Kraftlinien des Streufeldes umschlossen. Wir erhalten daher für die vom Streufeld allein induzierte EMK den Ausdruck

/ 2 R. \ / Q. \

	
	
	
E, == 1,11.0,707 — B—N.I-10-8 . (H5)



	
41.    Nutenstreuung einer Dreiphasenwicklung.





Die Untersuchung eines Dreiphasenmotors müssen wir mit der Ermittlung der Anordnung des Streufeldes beginnen, da wir für den Dreiphasenmotor die Feldform des Streufeldes noch nicht festgestellt haben. Wir wählen einen Motor mit 3 Nuten pro Spulenseite und erhalten für den Moment, in welchem die erregende Kraft des Stators ein Maximum ist (Jr = J', JII = JIII = 0,5 J'), das Schema Fig. 84, in welches die an Stelle der Felder angenommenen Ströme der Größe und Richtung nach eingetragen sind.

Bei Berechnung dieser Ströme sind alle Widerstände, sowohl diejenigen, welche den Luftwiderstand pro Zahn, als diejenigen, welche den Streuwiderstand pro Nute vorstellen, gleich 1 gesetzt. Das totale, hieraus abgeleitete Statorfeld ist durch Fig. 84 B dargestellt,
[image: ]
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Fig. 84.


indem die nicht schraffierte Fläche der Figur das Hauptfeld, die schraffierte das Streufeld darstellt, die beide zusammen das totale Statorfeld ergeben. Das Streufeld allein ist in Fig. 84 C nochmals herausgezeichnet.

Für deu Moment, in welchem die erregende Kraft des Stators ein Minimum ist (J( == JI = 0,867 J', JIII == 0), sind Ströme und Felder durch Fig. 85 dargestellt, und es ergibt sich deren Bedeutung nach dem Vorausgegangenen ohne weiteres. Besonders mag nur darauf hingewiesen werden, daß hierbei die EMK eines Elementes nicht zu 1 Volt, sondern der Abnahme der erregenden Kraft entsprechend zu 0,867 Volt anzunehmen ist.

Der Widerstand des Streufeldes läßt sich am leichtesten in dem zuletzt betrachteten Moment erkennen. In Fig. 85 B, C sieht man, daß zwischen den Zähnen, welche Streulinien führen, also zwischen f und g 6 = 2 A Nuten liegen, und es ergibt sich daraus der Widerstand des Dreiphasenfeldes zu 2.A R. In dem Moment, der durch Fig. 84 dargestellt ist, läßt sich der Widerstand nicht so leicht erkennen, da nunmehr 3 Zähne Streulinien führen. Die vom Zahn a ausgehenden Linien verlaufen zu gleichen Teilen nach rechts und nach links, und sie durchlaufen daher zwei parallel geschaltete Widerstände, deren jeder aus 3 A Nuten besteht. Ein zweiter Teil der Streulinien verläuft von Zahn c durch 3 —A Nuten zu Zahn d, und genau dasselbe findet in Bezug auf den Zahn b statt. Den Gesamtwiderstand des Streufeldes können wir am besten aus den in Fig. 84 A eingetragenen Zahlen berechnen. Der maximale Streustrom beträgt 2 (Ampere) bei einer maximalen erregenden Kraft von 12 (Volt), der Totalwiderstand des Stromkreises ist demnach

9 =6=2AR,,

also ebenso groß, wie er oben gefunden wurde. Auch beim Dreiphasenmotor ist daher der Widerstand des Streufeldes konstant. Das Verhältnis der Induktion des Streufeldes zur Induktion des Hauptfeldes ist daher

B. R.

B, FAR,

Wenn die erregende Kraft ein Maximum ist, wird demgemäß auch B‘ ein Maximum, nämlich

R,

B‘= B’.—,

- A R,

und die totale Kraftlinienzahl des Streufeldes ist dann


und




Z‘ = B, •




2:9

a • A




= Maximum,




2=** 0,667. a
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Fig. 85.




Es ist nämlich (Fig. 84 C) die maximale Induktion auf einen Qi

Zahn a, dessen Querschnitt -—— ist, beschränkt. Die Induktion a • A. in den Zähnen b und c ist nur halb so groß wie in a, dafür ist der Querschnitt der beiden Zähne natürlich doppelt so groß wie der des Zahnes a. Dies ergibt obige Gleichung.

Mit Hilfe der maximalen Kraftlinienzahl des Streufeldes können wir die vom Streufeld in den Statorwindungen induzierte EMK berechnen, und wir haben auch hier die gleiche Erscheinung wie beim Zweiphasenstreufeld, daß die Streulinien von sämtlichen Drähten einer Phase umschlossen sind, daß also der Spulenkoeffizient k immer = 1 ist.

Für welche Nutenzahlen pro Spulenseite wir auch diese Untersuchung vornehmen mögen, immer werden wir dieselbe Form des Streufeldes, im mittleren Zahn ein Maximum und in zwei anderen Zähnen die Hälfte dieses Maximums, finden. Für A = 1 ist die Form des Streufeldes mit der Form des Hauptfeldes identisch. Die allgemeine Gleichung der EMK

E = 1,11 • c • k • N • B' • Qj • n- 10-8

wird daher für das Dreiphasenstreufeld folgende Konstante aufweisen :

c = , = 0,667 = -2 a


B, = Bi
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und es wird demnach


E = 1,11 • 0,667 •




N • n • 108 . (116)



	
	
42.    Nutenstreuung einer vielphasigen Wicklung.





Vielphasige Anker kommen in der Praxis nur in Form von Kurzschlußankern vor, und diese haben stets nur eine Nute pro Spulenseite. A ist also immer — 1. Bei unendlich großer Phasenzahl wird die erregende Kraft und das Feld des Ankers durch die reine Sinuslinie (Fig. 86) dargestellt. Aber auch dann, wenn die Phasenzahl a eine endliche Größe besitzt, werden die Momentanwerte der erregenden Kraft und der Feldinduktion nach einer Sinusfunktion der Zeit variieren.

Bezeichnet man mit X' die maximale erregende Kraft, welche auf den in Fig. 86 gezeichneten Pol wirkt, und stellt man sich vor, daß die Zähne und Nuten des vielphasigen Stators stillstehen, daß dagegen das Drehfeld sich nach links bewegt, so ist die auf den Zahn 1 wirkende erregende Kraft

	
X, = X' • sin (c--T \       2 a



wenn mit a der zeitliche und räumliche Winkel bezeichnet wird, um welchen die zwischen Zahn 1 und 2 liegende Nute vom
[image: ]

Fig. 86,


Koordinatenanfangspunkt 0 der Sinuslinie absteht. Der Zahn 2 ist einer erregenden Kraft von der Größe
[image: ]

unterworfen. In dieser Weise können wir die auf jeden Zahn wirkende erregende Kraft berechnen, und wir sehen, daß an Stelle der reinen Sinuslinie, welche sich bei unendlich großer Phasenzahl ergeben würde, eine gezackte Linie tritt. Dieser Linienzug steht jedoch mit der Sinuslinie in einem recht engen Zusammenhang, denn die Ordinate eines jeden Zahnes ist gleich der mittleren Ordinate der Sinuslinie in Bezug auf diesen Zahn.

Die Zahl der Streulinien, welche durch die zwischen den Zähnen 1 und 2 liegende Nute fließen, können wir berechnen, wenn wir den Widerstand einer Nute = R, kennen. Da nämlich auf den Zahn 1 die erregende Kraft X1, auf den Zahn 2 eine

solche von der Größe X, wirkt, stellt X, — X1 die magnetische Potentialdifferenz zwischen den beiden Zähnen dar, und es muß daher die Kraftlinien zahl, welche durch die Nute fließt

sein. Wenn wir für X1 und X, die oben gefundenen Ausdrücke einsetzen, erhalten wir
[image: ]

X' . n

-- 2 sm —— • cos a.

R, 2a


Das Glied sin %— hängt nur von der Stabzahl des Ankers ab, 2 a ist daher für ein und denselben Anker konstant. Demnach variiert die durch eine Nute fließende Zahl der Streulinien mit dem cos des Winkels a, sie wird Null, wenn a — "9, wenn sich also die Nute in der Mitte des Feldes eines Poles befindet, sie wird dagegen ein Maximum,

AR, 28n 2a

wenn cos a = 1, a also Null ist und die Nute sich an der Berührungsstelle zweier benachbarter ungleichnamiger Pole befindet. An einer beliebigen Relativstellung zum Hauptfeld ist die Streu-linienzahl der Nute

L-= Zr: cos «.

Fassen wir wieder den Moment ins Auge, welcher in Fig. 86 dargestellt ist, so finden wir die Linienzahl des Streufeldes in der Nute zwischen den Zähnen 1 und 2 zu und die Linienzahl in der links folgenden Nute

Z. = Z. • cos

Die Differenz zwischen diesen beiden Linienzahlen muß die Kraftlinienzahl des Streufelds ergeben, welche durch den Zahn 1 fließt. Diese Linienzahl können wir mit Br bezeichnen, denn sie stellt die Induktion des Streufeldes bezogen auf den Luftquer-schnitt eines Zahnes dar. Wir erhalten demnach
[image: ]

= Z‘ • 2 • sin « • sin ——

und es wird

Qi               .           n

Br • —— =Zr 2 sin «• sin 2 a .... (117)

Diese Gleichung ist insofern von Wichtigkeit, als sie uns zeigt, daß die Form des Streufeldes mit der des Hauptfeldes jederzeit identisch ist. In obiger Gleichung sind bei einem gegebenen Anker alle Glieder der rechten Seite konstant, bis auf sin a, und es ist daher die auf den Luftquerschnitt eines Zahnes bezogene Induktion dann ein Maximum; wenn sin a = 1, a = -beträgt, dann wird

Qi              ,

B’.—= Z 2 sin--  .....(118)

und in jedem beliebigen Moment ist

B, = B • sin «.

Die Induktion des Streufeldes ist daher genau wie die erregende Kraft oder die Induktion des Hauptfeldes eine einfache Sinusfunktion des Winkels a.

Wir können nun dazu übergehen, die EMK zu berechnen, welche durch die Streulinien in den Drähten des Stators induziert wird. Wir hatten gefunden, daß die maximale durch eine Nut nach dem benachbarten Pol übertretende Streulinienzahl ZG dann vorhanden ist, wenn sich die Nut an der Berührungsstelle zweier Pole befindet. Da an beiden Enden des Poles ein Übertritt von Z‘ Kraftlinien nach den benachbarten Polen eintritt, ist daher die maximale Totalzahl der Streulinien eines Poles = 2 Zr. Wir wissen, daß die Feldkurve des Streufeldes identisch mit der des Hauptfeldes ist, ferner wissen wir, daß die von einer Spule eingeschlossene Kraftlinienzahl des Hauptfeldes nach einer Sinusfunktion variiert, und daher können wir auch behaupten, daß die eingeschlossene Zahl der Kraftlinien des Streufeldes nach einer Sinusfunktion variieren muß. Wir sind daher in der Lage, aus der maximalen Kraftlinienzahl = 2 Z‘ die induzierte EMK zu berechnen. Es ist nämlich

	
E. = 1,11 .2 ZN.n. 10-8



Um diese Gleichung auf eine ähnliche Form zu bringen, wie die Gleichungen, welche wir für den Zwei- und Dreiphasenanker abgeleitet haben, nehmen wir folgende Umformungen vor. Es ist Z, nach Gleichung 118

	
	
L- = —— • 2 • sin -o--





	
	
	
•    R, 2 a







Ferner ist

Die linke Seite der Gleichung stellt den Kraftfluß dar, welcher unter der Einwirkung von X' erregenden Ampere Windungen im Luftquerschnitt eines Zahnes, dessen Widerstand Rr ist, dar. Demnach ist

9 a

und wenn wir diesen Ausdruck in die Gleichung für Zr einsetzen, erhalten wir

	
	
	
R. Q, 7 Z‘=-.B‘---.2. sin — • •    N, 1 a               a







Wir haben bereits konstatiert, daß in Bezug auf die Streufelder c immer gleich w ist. w ist für einen a-phasigen Anker Wenn wir w in obige Gleichung einführen, erhalten wir daher

ZL=y..B.Q.2. sin« —

und die induzierte EMK wird

E, = 1,11 • v - • B‘ • 4 • sin2 - • Qi • N • II. 10-8 (119)

	
	
43. Allgemeine Gleichung der Nutenstreuung.





Durch einen Vergleich der Gleichungen, welche wir für die EMK, welche durch das Streufeld induziert wird, erhalten haben, kann man sehr leicht eine allgemeine, für beliebige Phasen zahl und Nutenzahl pro Spulenseite gültige Gleichung ableiten.

Die induzierte EMK ist bei einem Zweiphasenanker

12 • R. \ / Qi \                _ Er = 1,11 • 0,707 A - • BI — N • II-10-8 , - A:R, /VA bei einem Dreiphasenanker

R \ / Q \ . 5 • b; — n • ii • 10-8, bei einem a-phasigen Anker mit A = 1

E, = 1,11   (E.B/.4. sin2 " Q, N • n • 10-8 . -        I 1      2a1

Zunächst sieht man, daß der Zahlenfaktor 0,707 beim zwei-phasigen, 0,667 beim dreiphasigen Anker nichts anderes ist als 11, und es kann daher dieser Faktor in der allgemeinen Gleichung durch

71 a • sin ——

2 a

ersetzt werden. Ferner ist der Ausdruck

4:sin2 2a = 2(a=9) = 1a =3), und es kann daher auch dieser Ausdruck in die allgemeine Gleichung aufgenommen werden. Das im Nenner stehende A der Formeln für den zwei- und dreiphasigen Anker kann ebenfalls beibehalten werden, da bei den vielphasigen Wicklungen A stets = 1 ist.

Die allgemeine Gleichung lautet daher

/ R.                    n \ Q,              a

- Er - 1.11 "(a) R,A • B ■ 4 • sin? 2a)ANn 1073 ■ ■ (120)

Die Berechnung des Nutenwiderstandes, die im 48. Abschnitt eingehend behandelt wird, ergibt ziemlich komplizierte Ausdrücke, da sich der Gesamtwiderstand aus einer Anzahl parallel geschalteter Widerstände zusammensetzt und die für parallele Widerstände gültigen Formeln für die Rechnung sehr unbequem sind. Diese Schwierigkeit läßt sich dadurch umgehen, daß man für die Widerstände Rr und R, das Reziprokum derselben, also die Leitfähigkeit einführt. Die Formeln werden dann sehr einfach, da die Gesamtleitfähigkeit mehrerer paralleler Leiter gleich der Summe der einzelnen Leitfähigkeiten ist. Es wurde bisher mit den Widerständen statt mit der Leitfähigkeit gerechnet, weil die Ableitung der Felder und Streufelder unter Anwendung des Ohmschen Gesetzes nur dann uns geläufige Formeln ergibt, wenn wir mit Widerständen rechnen. Nennen wir Ar die Leitfähigkeit des Luftfeldes eines Zahnes, Av die Leitfähigkeit einer Nute, so ist demnach

_ 1 "ER,


und



1

—ER, ‘

Die allgemeine Gleichung erhält dann die Form

	
E. = 1,11 • ap. ---" • B‘ • 4 • sin2 — • — • N n 10-8 .


(121)





	
-          ‘(a)Ar • A 2          2 a A



Die vom Hauptfeld allein induzierte EMK ist nach Gleichung (107), wenn wir außerdem

2a — 1 c = i • ————

setzen, welcher Ausdruck im 35. Abschnitt entwickelt ist,

2a — 1                       ,

E —1,11»//------=--k. B-Q-N.I-10-8 . (122)

2a--—

A°°

Die EMKK Er und E folgen beide der Sinusfunktion, und die Resultante derselben ist daher der algebraischen Summe derselben gleich. Es ist also

E + E = (1 + 1) E,

wenn wir mit Tr den Koeffizienten der Nutenstreuung bezeichnen, und es wird

E.

"=F

^C-A3 ' k 2« —1

Ersetzt man in dieser Gleichung k durch den in Formel (106)


angegebenen Ausdruck, so wird



	
	
4 • sin —--sin -——


A°

2a —1




(123)







2 a 2 a A

Nach dieser Gleichung ist die nachstehende Tabelle unter der Annahme, daß

dy = Ar

berechnet. Es ist aus den Werten des Streuungskoeffizienten Tr sehr deutlich zu sehen, daß ein und derselbe Anker (mit 6 oder 12 Nuten pro Pol) sich ganz verschieden in Bezug auf die Streuung verhält, je nachdem er als zwei-, drei- oder vielphasiger (Kurzschluß-) Anker gewickelt ist. Ein gegebener Motor hat also einen günstigeren Leistungsfaktor cos g), wenn er für Dreiphasenstrom gebaut wird, als wenn er für Zweiphasenstrom bestimmt ist, gleiche Rotorwicklung vorausgesetzt. Die Rotorwicklung beeinflußt den Leistungsfaktor in dem Sinne, daß cos q um so günstiger wird, je nachdem man einen zweiphasigen, dreiphasigen oder Kurzschlußanker verwendet.

Tabelle des Nutenstreuungskoeffizienten 7,
[image: ]
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Nuten pro Pol
	
a = 2
	
a = 3
	
A = 1


	
A
	
*
	
A
		
a
	
*


	
2
	
1
	
2,000
	
—
	
—
	
2
	
2,000


	
3
	
—
	
—
	
1
	
1,000
	
3
	
1,000


	
4
	
2
	
0,687
	
—
	
—
	
4
	
0,586


	
5
	
—
	
—
	
—
	
— ■
	
5
	
0,382


	
6
	
3
	
0,325
	
2
	
0,296
	
6
	
0,268


	
7
	
—
	
—
	
—
	
—
	
7
	
0,202


	
8
	
4
	
0,184
	
—
	
—
	
8
	
0,152


	
9
	
—
	
—
	
3
	
0,133
	
9
	
0,121


	
10
	
5
	
0,118
	
—
	
—
	
10
	
0,0972


	
11
	
—
	
—
	
—
	
—
	
11
	
0,0806


	
12
	
6
	
0,0824
	
4
	
0,0749
	
12
	
0,0687




	
44.    Zickzackstreuung.



Zickzackstreuung existiert nicht. Wenn derselben hier dennoch ein besonderer Abschnitt gewidmet wird, so geschieht es nur aus dem Grunde, um diese Behauptung zu beweisen, weil von verschiedenen Autoren dieser Streuung eine besondere Bedeutung beigemessen wird und Formeln zur Berechnung und Berücksichtigung derselben angegeben wurden.

Die Definition, was unter Zickzackstreuung zu verstehen ist, läßt sich am bequemsten an der Hand eines Beispieles geben. Wir wählen hierzu einen 3-phasigen Stator mit einer Nut pro Spulenseite und einen identischen Rotor. Um unnötige Komplikationen zu vermeiden, sehen wir natürlich von der Nutenstreuung ab, nehmen also den Widerstand einer Nut als unendlich groß an.

Betrachten wir den Motor in einem Moment, in welchem die erregende Kraft des Stators ein Maximum ist, so ist das Stator-und Rotorfeld sehr leicht zu konstruieren, wenn sich die Zähne und Nuten des Stators und Rotors genau gegenüberstehen. Fig. 87, A. In der Figur sind die erregenden Kräfte durch Elemente dargestellt, und den Kraftlinienzahlen pro Zahn entsprechen daher die in der Figur eingeschriebenen Stromstärken, welche unter der Voraussetzung berechnet sind, daß der Luftwiderstand pro Zahn Rr = 1 22, die EMK eines Elementes = 1 Volt ist.

Befindet sich dagegen der Rotor dem Stator gegenüber in einer solchen Relativstellung, daß einem Statorzahn eine Rotornute gegenübersteht und umgekehrt (Fig. 87, B), so muß der Luftwiderstand eines jeden Zahnes in zwei parallel geschaltete Widerstände, deren jeder dann natürlich die Größe 2 Rr (= 2 Ohm) besitzt, zerlegt werden. Konstruiert man abermals die Feldkurve des Stators, so findet man, daß dieselbe unverändert geblieben ist, wie in Fig. 87, A. Dagegen weist die Kurve des Rotorfeldes eine ganz wesentliche Veränderung auf, und sie ist absolut nicht mehr mit der Kurve des Statorfeldes identisch. Das äquivalente Stromdiagramm läßt dies am deutlichsten erkennen. Statt daß nämlich, wie im zuerst betrachteten Fall durch drei aufeinander folgende Zähne des Rotors die Ströme 1, 2, 1 fließen, werden jetzt nur noch 2 Rotorzähne pro Pol von einem Strom von der

Größe 1,5 durchflossen. Dagegen kehrt der von den Statorzähnen 1 und 3 austretende Strom von der Größe 0,5 in den benachbarten Statorzahn des nächsten Poles zurück, ohne daß derselbe die Rotornuten resp. die in denselben enthaltenen Rotordrähte umflossen hätte.

Die durch den zuletzt genannten Strom versinnbildlichte Erscheinung bezeichnet mau als Zickzackstreuung.

[image: ]
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Statßrfeld.

Rotorfeld
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Fig. 87.




Auf den ersten Blick sieht es in der Tat aus, als ob die maximale Kraftlinienzahl des Stators, die wir uns als die Summe der Zahnströme pro Pol berechnen können und die daher für den Stator

Z'i = x,, =4= Max. beträgt, in Bezug auf den Rotor auf

z, - x, - 3

zusammen schrumpfen würde, da

2 • 0,5 J, = 1 J,              •                    ’

15*

durch die Zickzackstreuung verloren geht. Bei näherer Betrachtung sieht man jedoch, daß die in Stellung Fig. 87, B in den Rotor übertretende Kraftlinienzahl nicht den Maximalwert der vom Stator nach dem Rotor gelangenden Kraftlinien angibt. Dieser wird vielmehr dann erreicht, wenn die erregende Kraft des Stators ein Minimum ist. Fig. 88 stellt diesen Moment dar, und es ist aus der Figur sowohl die Form und Größe der Felder als auch die Richtung und Größe der äquivalenten Ströme zu ersehen. Die Kraftlinienzahl des Statorfeldes ist

Zj = Zy, = 3,46 = Min.

und die des Rotorfeldes

Zk = == 3,46 = Max. -         12        ’
[image: ]

Fig. 88.


Das gesamte Statorfeld geht daher in diesem Moment auch nach dem Rotor, ohne daß Kraftlinien durch die Zickzackstreuung verloren gehen.

Die erhaltenen Resultate erscheinen als absolut selbstverständlich, wenn wir die Vorgänge in etwas anderer Weise darstellen. In Fig. 89 ist das Statorfeld in 3 Momenten, welche nur je 1/12 Periode der erregenden Ströme auseinander liegen, dargestellt. Wie wir bereits wissen, ist die Kraftlinienzahl eines Drehfeldes keine konstante, sondern sie variiert zwischen einem Maximal-und einem Minimalwert, die in gleichen Intervallen von 9, aufeinander folgen. Es kommt dies in der Figur dadurch zum Ausdruck, daß in den Momenten A und C die von der Feldkurve eingeschlossene Fläche die maximale Kraftlinienzahl

. Z/ = 4,

dagegen im Moment B die minimale Kraftlinienzahl

Z, = 3,46 repräsentiert.

Die maximale von einer Rotorspule eingeschlossene Kraftlinienzahl ist je nach der Stellung der Rotorspule gegenüber dem Stator eine verschiedene: sie kann gleich der maximalen Linien-
[image: ]
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Fig. 89.


zahl des Statorfeldes sein, wenn die Nuten der Rotorspule mit den Nuten einer Statorspule zusammenfallen; sie ist aber nur gleich der minimalen Linienzahl des Statorfeldes, wenn die Nuten der Rotorspule nicht den Statornuten, sondern den Statorzähnen gegenüberstehen.

Wird daher der Stator mit konstanter Klemmenspannung erregt, so ist die an den Schleifringen des stillstehenden Rotors gemessene Spannung verschieden, je nach der Relativstellung der Rotorspulen gegenüber den Statorspulen. Diese Verschiedenheit ist bei kleinen Nutenzahlen eine große, sie ist aber bei den großen

Nutenzahlen, mit welchen die Motoren im allgemeinen gebaut werden, nur sehr klein. In der auf Seite 167 angegebenen Tabelle ist der Quotient Amax für verschiedene Wicklungsanordnungen

Lmin

ausgeführt, und diese Zahlen geben zugleich das Verhältnis der maximalen Rotorspannungen zu den minimalen.

Alle Gleichungen, die wir zur Berechnung der Motoren abgeleitet haben, sind lediglich unter Benutzung der Maximalwerte (erregende Kraft, Kraftlinienzahlen, w, c) entwickelt, wir berücksichtigen daher auch nur die maximale im Rotor induzierte EMK,
[image: ]

und wir müssen, wenn die Richtigkeit der Rechnung experimentell kontrolliert werden soll, den Rotor in die Stellung bringen, bei welcher seine Schleifringspannung den größten Wert erreicht.

Dies würde in dem Fig. 89, A entsprechenden Fall dann eintreten, wenn sich die Seiten der Rotorspule in den Punkten e und f befinden, und es ist dann die in dieser Spule induzierte EMK in Phase mit der EMGK, welche durch das Statorfeld in der Statorspule a b induziert wird. Befindet sich dagegen die Rotorspule in der Stellung c d, so ist die nun in derselben in-duzierte EMK um -9 - gegenüber der genannten EMGK phasen

verzögert.

Wir haben eingehend gezeigt, daß die in Fig. 87, B gegebene Konstruktion überflüssig ist, daß es aber sehr fehlerhaft wäre, anzunehmen, durch die Zickzackstreuung würde das maximale Rotorfeld in der Weise verkleinert, wie es diese Konstruktion ergibt. Ganz interessant ist jedoch die Erscheinung, daß Stator-und Rotorfeld ihre Form vertauschen, wie aus den Fig. 87 B und 88 B ersichtlich ist, und ferner, daß oben genannte Konstruktion nur dann das Eintreten dieser Streuung zeigt, wenn die Nutenzahl pro Spulenseite ungerade ist. Fig. 90 zeigt einen dreiphasigen Motor mit 2 Nuten pro Spulenseite. Die Kraftlinienzahl im Stator und Rotor ist dieselbe, nämlich

jedoch hat das Rotorfeld eine andere Feldkurve wie das Statorfeld, wodurch bewirkt wird, daß die im Rotor induzierte EMK in der gezeichneten Stellung kleiner ist, als dann, wenn den Statorzähnen die Rotorzähne statt der Nuten gegenüberstehen.

1

 k stellt den Spulenkoeffizient in Bezug auf die Grundschwingung,

Feldes dar. Für eine beliebige höhere m-te

2

 Siehe Heubach, E.T.Z. 1901, Seite 515.


	
45.    Kopfstreuung.



Es ist nicht möglich, die Wicklungen eines Motors so dicht an das Stator- resp. Rotoreisen heranzubringen, daß alle von einer Spule erzeugten Kraftlinien im Eisen verlaufen, es werden vielmehr stets die außerhalb der Nuten liegenden Spulenseiten einen gewissen Abstand h von den Ankerblechen haben. Die Windungs-fläche der Spule wird daher nur zum Teil vom aktiven Motoreisen ausgefüllt, oder mit anderen Worten, der Querschnitt des nützlichen Feldes (der Luftquerschnitt eines Poles) ist geringer als die Windungsfläche einer Spule. Da nun die gesamte Windungsfläche einer Statorspule von Kraftlinien durchsetzt wird, während nur die den Luftquerschnitt Qi erfüllenden Linien in den Rotor gelangen, muß das gesamte Statorfeld, welches auf die Statorwindungen induzierend wirkt, größer sein als das nach dem Rotor gelangende Feld. Es tritt also Streuung ein. Dasselbe gilt in gleicher Weise für das Verhalten einer Rotorspule gegenüber einer Statorspule.

Um die Größe der in den Spulenköpfen auftretenden Streuung berechnen zu können, gehen wir von der Gleichung

L = 4 • 10-9 ( log nat — + 0,25

aus, welche den Selbstinduktionskoeffizienten in Henry pro 1 cm Länge zweier paralleler Leitungen angibt, welche im Abstand 1 voneinander stehen und kreisförmigen Drahtquerschnitt vom Durchmesser 2 r haben.

Die in Fig. 91 dargestellte Spule wird von je zwei parallelen Leitern begrenzt, und es wird demnach der Selbstinduktionskoeffizient der beiden in der Richtung T liegenden Leiter


4 • 10-9 • T ( log nat h + 0,25
[image: ]

Fig. 91.




und jener der beiden in der Richtung h liegenden Leiter = 4-10 9 h ( log nat ——- 0,25

Der Selbstinduktionskoeffizient der Spule muß daher sein


L = 4-10~9




[T(logn“t‘




+ 0,25 ) + h ( logn ——- 0,25



Wir können den Selbstinduktionskoeffizienten auch durch eine andere Beziehung ausdrücken; es ist nämlich, wenn Z die Kraft-

N

linienzahl der Spule, 9 ihre Windungszahl und J den in den Windungen fließenden Strom in Ampere bezeichnet,

z • A. 10—8

L =----———--- Henry.

Unter der magnetischen Leitfähigkeit verstehen wir das Verhältnis der Kraftlinienzahl zu der erregenden Kraft, und demnach ist die magnetische Leitfähigkeit der Spule

[image: ]



Da die Spule nur aus einer Windung bestehend angenommen


wurde, wird N = 2, und es ist



4k = L • 108 = 0,4T (log nat h 1 b + 0,25) + h (log nat — + 0,25

=0,92 T( log 1*0+0,1)+h ( log, T + 0,11

Bei Motoren besteht eine derartige Spule nicht nur aus einer Windung von zylindrischem Draht vom Durchmesser 2 r, sondern aus einem Drahtbündel, das sich innerhalb des Eisens auf mehrere Nuten verteilt, und es ändern sich demnach in obigem Ausdruck für /k die Größen T, h und r. Eine Änderung von T und h beeinflußt die Leitfähigkeit nur in sehr geringem Maße, und es ist daher zulässig, T und h, ihrem Mittelwert entsprechend, einzusetzen. Dagegen ist obige Gleichung sehr empfindlich in Bezug auf Änderungen der an und für sich relativ kleinen Größe r. Die Aufstellung einer exakten Gleichung, welche die Berechnung des nun für r einzusetzenden Wertes gestattet, ist unmöglich; in an-

N genäherter Weise gelingt dies dadurch, daß man an Stelle der -9

zu einer Spulenseite gehörenden Drähte vom Durchmesser d einen zylindrischen Leiter vom Querschnitt

Nk

d2——7

annimmt, und daraus berechnet sich

Nk 2 • 7

Für d ist der Durchmesser des blanken Drahtes einzusetzen; die Umspinnung ist in genügender Weise dadurch berücksichtigt, d2, daß d2 statt des Kupferquerschnittes 4 - eingesetzt ist.

Die Anzahl der Spulen pro Phase kann bei Anwendung der in Fig. 125 b dargestellten Wicklung bei einem Zweiphasenmotor p betragen, bei der im allgemeinen immer zur Verwendung kommenden Wicklung (Fig. 125 a) ist aber die Anzahl der Spulen pro Phase nur -9, und es wird dann die Anzahl der Drähte pro Spule

■ x,—X,:2. " p

Die Windungszahl einer Spule, z. B. des Stators, ist dem-N gemäß p, und die maximale, von einer Spule ausgeübte erregende Kraft, wenn die Drähte von dem effektiven Strom J durchflossen werden,

= Ji N, ./2.

P

Unter dem Einfluß dieser erregenden Kraft wird die Windungs

fläche der Spule von der Kraftlinienzahl


Zk, =V2




J1 • Nj • A^

P



durchsetzt, und daher wird in dieser einen Spule eine EMK induziert von der Größe


1,11-k-




2-N,




• Zk, • I, • 108 •



Der Koeffizient k kann in Bezug auf die Kopfstreuung immer = 1 gesetzt werden. Die in den sämtlichen Drähten einer Phase durch die Kopfstreuung induzierte EMK ist, da -9 Spulen vorhanden sind,

1                                                             /

Ek = 1,11 .V2 . 1. N,2 • nx •    • 10—8 .

	
-                      p                   1



Um in ähnlicher Weise, wie wir dies für die Nutenstreuung getan haben, den Streuungskoeffizienten Tk der Kopfstreuung zu berechnen, ersetzen wir in der Gleichung

Ej = 1,11 • cj • k, • Q, • b; • N, • n • 10-8 , welche die in der Statorwicklung durch das Hauptfeld induzierte EMK darstellt, B| durch den Ausdruck

	
	
X,         a, • 1, • N, • J, b;=---— = 0,8d'-p   0,8 0p:V2





Der Streuungskoeffizient der Kopfstreuung ist also

0,8-2-<f-^k ki C] • k, • a, • 41 • Qj

1,47      &[T (1 h + b


+ 0,11



c-k,-ay"*1 QL (08 r


(124)



/Nk         J N,           / N, r = 0,1 d. 1/ -—■ = 0,1 • d, 1/-----—0,056 d,]/---

V 2-n           V p • 7            V p di = Drahtdurchmesser, unisoliert in mm, alle übrigen Dimensionen in cm.

Die Gleichung (124) kann auf wissenschaftliche Exaktheit keinen Anspruch machen, es kommt ihr nur die Bedeutung einer empirischen Formel zu. Sie ist aber für Wicklung mit langen Spulen (Spulenzahl = 2) recht brauchbar. Wird die Spulenzahl — p gewählt, so wird der Zahlenfaktor 1,472 um die Hälfte N kleiner, also 0,735, ferner ändert sich r, da Nk nur mehr — ist.

Die geringste Kopfstreuung hat ein Käfiganker, denn bei einem solchen Anker wird 9 ungefähr r. Tk wird wegen des Gliedes

—+ b niemals Null, wie es auch in Wirklichkeit der Fall sein r                                7 wird, da durch inaktive Eisenteile stets eine Streuung von un
[image: ]

berechenbarer Größe verursacht wird, und diese soll näherungsweise durch dies Glied berücksichtigt werden.

Bei Motoren für Hochspannung wird die Kopfstreuung immer einen ziemlich hohen Betrag erreichen, denn die Isolierrohre der Nuten müssen, um ein Überschlagen zu verhindern, weit aus den Nuten herausgeführt werden, und infolgedessen wird h groß. Da man bestrebt ist, die Spulenköpfe stets so klein als möglich zu machen, d. h. die Windungen möglichst nahe am Eisen vorbeizuführen, bewegt sich h nur innerhalb sehr kleiner Grenzen. Bei der Dimensionierung eines Motors hat man es in der Hand, nach Belieben den Durchmesser groß und die Ankerbreite klein zu wählen, oder umgekehrt. Geht man von dem Gesichtspunkte aus, die Streuung möglichst klein zu machen, so verlangt ein kleiner Koeffizient der Nutenstreuung unbedingt großes D, während sich in Bezug auf die Kopfstreuung h dann um so unangenehmer bemerkbar macht, gegenüber der kleinen Ankerbreite.

Einige Umstände, welche die Kopfstreuung beeinflussen, sind in Gleichung (124) nicht berücksichtigt. Werden nämlich (Fig. 92) die Spulenköpfe des Stators und Rotors einander sehr nahe gebracht, so wird ein Teil der Statorstreulinien auch die Rotorwindungen durchsetzen. Diese Kraftlinien verlieren ihren Charakter als Streulinien und wirken nützlich. Noch auffälliger wird dies, wenn Stator und Rotor mit Stabwicklung (Fig. 93) ausgestattet sind. Die Ermittlung dieser nützlichen Streulinien ist unmöglich; übrigens ist diese nützliche Anzahl der Linien so
[image: ]

Fig. 93.


gering, daß ihre Vernachlässigung kaum eine Trübung des Resultats zur Folge haben dürfte. Immerhin kann man aus dieser Betrachtung ersehen, daß es gut ist, die Spulenköpfe des Stators und Rotors so dicht als möglich aneinander zu bringen.

	
	
46.    Gleichung der Streuungskoeffizienten 11, T2, T.





Das Luftfeld (= Hauptfeld) eines Motors induziert in den Windungen, die es erzeugen, eine EMK von der Größe

E = 1,11 • c • k • N • Bp Qj • n • 10-8.

In denselben Windungen wird durch die Streulinien, welche in den Nuten verlaufen, eine weitere mit E in Phase befindliche EMK induziert von der Größe

	
E, = r, E.



Von den Kraftlinien, welche in den Spulenköpfen verlaufen, wird eine dritte mit den vorigen in Phase befindliche EMK induziert, welche

E =*:E.

ist. Die gesamte, beispielsweise im Stator induzierte EMK E, ist gleich der Summe dieser drei EMKK, also

	
	
E, = E + E + E, = (1+*+ 1) E = (1 + r,) E.





Folglich ist der totale Streuungskoeffizient des Stators gleich der Summe seiner einzelnen Streuungskoeffizienten:

‘=*+ *, •

Die gesamte im Stator induzierte EMK läßt sich daher in die Form bringen:

Ej = 1,11 • c, • k, • (1 + r,) • B • N, ■ Q, • 1, • 10-8 . (125)

An den Schleifringen des offenen stillstehenden Rotors wird dann nur eine EMK gemessen werden von der Größe

Eg-2) = 1,11 - c,k-BN Q-I, 10—8.

Durch den Index (1-—2) soll ausgedrückt werden, daß der Stator (1) auf den Rotor (2) induzierend wirkt. Wenn der Rotor auch Streuung besitzt, so äußert sich dies in obiger Gleichung nicht, denn da wir bei Berechnung der Streuung durchweg den Eisenwiderstand vernachlässigen, tritt, wie im Abschnitt 13 gezeigt ist, die Rotorstreuung nur dann auf, wenn der Rotor der Sitz von erregenden Kräften ist. Ist z. B. der Stator stromlos, und wird der Rotor, dessen Streuungskoeffizient

	
	
	
1,    = t, + TL,







ist, erregt, so ist die in den Rotorwindungen induzierte EMK

E, = 1,11 • c • k (1 + r) B • N, • Q, • I, • 10—8

und an den offenen Statorklemmen wird die EMK gemessen

E2-1) = 1,11 . c, . k, . B, . N, . Qj. ii, . 10-8.

Der totale Streuungskoeffizient des Motors ist nach Gleichung (45)

T = T1 + T2 + T1 • T2

und die allgemeine Gleichung des Statorstreuungskoeffizienten
[image: ]

	
	
	
	
47.    Magnetische Leitfähigkeit des Luftzwischenraumes.









Damit an Hand der eben entwickelten Gleichungen die Streuungskoeffizienten berechnet werden können, haben wir noch Ausdrücke abzuleiten, welche die Ermittlung der magnetischen Leitfähigkeit des Luftfeldes pro Zahn und der Leitfähigkeiten der Nuten aus den Dimensionen des Motors ermöglichen.

Der Luftzwischenraum eines Motors ist einesteils durch den Zylindermantel des Rotors, andernteils durch die Hohlzylinderfläche des Stators begrenzt. Bei manchen Ausführungsformen, wenn nämlich Stator und Rotor mit geschlossenen Nuten versehen sind, kommen die soeben genannten Flächen in Bezug auf das Luftfeld ganz zur Wirkung. Im allgemeinen sind aber die Motoren mit offenen Nuten ausgestattet, und es geht dadurch ein gewisser Teil dieser Flächen verloren.

Die totale Nutenzahl des Stators ist

a: A,* Pi

und daher die Statorzahnteilung t,

D n

Der Rotordurchmesser ist D — 2 3, daher die Rotorzahnteilung t.

t  (D—20)1

	
	
a, * A, * P





Der genaue Verlauf der Kraftlinien zwischen den Zähnen des Stators und Rotors läßt sich rechnerisch nicht ermitteln; mit genügender Genauigkeit können wir aber annehmen, daß das Luftfeld des Motors einerseits von der gesamten Oberfläche der Statorzähne, andererseits von der gesamten Oberfläche der Rotorzähne gebildet wird.

Die totale Oberfläche der Statorzähne beträgt pro Pol

D n b Zj P t, und die der Rotorzähne

(D — 2 0) • n • b z, p            t ’ wenn mit Z1, Z, die Zahnbreiten des Stators resp. Rotors bezeichnet werden.

Der mittlere Querschnitt des Luftfeldes pro Pol, Q1, muß natürlich dem arithmetischen Mittel aus diesen beiden Ausdrücken gleich sein, und wir erhalten demnach

Q,=3,(D $+0-29) 2)027)

Ist der Stator oder Rotor eines Motors mit geschlossenen Nuten ausgeführt, so wird -" resp. -7 der Einheit gleich.

Zur Ermittlung der Streuungskoeffizienten müssen wir die magnetische Leitfähigkeit des Luftfeldes für je einen Stator- und Rotorzahn kennen. Der Luftquerschnitt eines Statorzahnes ist

Q,

	
a, ' A,



denn a1 . A, = Zahl der Statorzähne pro Pol. Die magnetische Leitfähigkeit des zu einem Statorzahn gehörigen Luftfeldes ist daher

In gleicherweise erhält man für die Leitfähigkeit des magnetischen Pfades, welcher von den einem Rotorzahne entströmenden Kraftlinien durchflossen wird,

_ 91


(129)



52      0,8 • d • a, • A,

Wenn man die Länge des Luftzwischenraumes 3 vernachlässigt, was mit Rücksicht auf die Kleinheit des 3 gegenüber D zulässig ist, so geht die Gleichung des Luftquerschnittes (127) über in die Form

Q="y"(*+3)......039,

Es ist nun

P also gleich der Polteilung, und die Nutenteilung

	
	
1    a, • A,





Daher ist

Diese Ausdrücke sind deshalb bequemer wie die oben in den Gleichungen (128) und (129) angegebenen, weil bei ihrer Anwen

dung der Quotient ——, der zur Berechnung des Streuungskoeffi-zienten T, benötigt wird, aus der Nutenzeichnung gefunden werden kann, ohne daß die Breite b des Motors bekannt zu sein braucht.


16



Heubach, Drehstrommotor.

	
	
48.    Magnetische Leitfähigkeit der Nuten.





Die Berechnung der Leitfähigkeit der Nuten ist nicht mit mathematischer Genauigkeit möglich, denn wir können nicht genau die Wege angeben, welche von den durch die Nuten fließenden Kraftlinien eingeschlagen werden. Wir müssen uns daher mit einer Näherungsmethode begnügen, indem wir die Nuten in einzelne Teile zerlegen und dann annehmen, daß zwischen diesen einzelnen Teilen die Kraftlinien nach einfachen, der Rechnung zugänglichen Gesetzen übertreten. Die auf diese Weise mit den einfachsten Mitteln gewonnenen Formeln geben für die Praxis genügend genaue Resultate.

Die erreichte Genauigkeit ist sogar in manchen Fällen größer als die, welche bei der praktischen Ausführung der Motoren in rein mechanischer Beziehung erreicht werden kann. Werden z. B. zehn Motoren nach ein und denselben Wicklungsangaben und nach denselben Zeichnungen in der Werkstätte angefertigt, so werden sich dieselben bei der Untersuchung im Probierraum in elektrischer Beziehung nicht identisch verhalten, und besonders in Bezug auf die Streuung werden sich zwischen den einzelnen Motoren Abweichungen zeigen. Die nachstehend abgeleiteten Formeln werden im allgemeinen — es soll nicht gesagt werden, in allen Fällen — Werte ergeben, welche von den gemessenen mittleren Resultaten nicht mehr abweichen, als der beste resp. der schlechteste der so gut als möglich identisch gebauten Motoren. Daß scheinbar geringfügige mechanische Ungenauigkeiten einen sehr großen Einfluß auf die Streuung und dadurch auf die Güte des Motors haben, erklärt sich leicht aus der Kleinheit der hier in Betracht kommenden Dimensionen und es spricht sich dies auch mit großer Deutlichkeit in den Formeln aus.

Wir beginnen die Berechnung der Leitfähigkeit der Nuten mit dem einfachsten Fall, nämlich mit einer offenen Nute, wie sie in Fig. 94 a dargestellt ist. Die Nute ist bis zu einer Höhe rt mit Drähten gefüllt, welche auf den benachbarten Zahn ihre erregende Kraft in der Weise äußern, wie dies in Fig. 94 b durch Elemente angedeutet ist. Die maximale erregende Kraft ist daher nur auf den mit r2 bezeichneten unteren Teil des Zahnes wirksam und sie nimmt nach oben hin kontinuierlich ab, bis sie an der Zahnwurzel den Wert Null erreicht.

Die Leitfähigkeit des unteren Teiles r, der Nute ist sehr leicht zu berechnen; es ist nämlich, wenn mit b die achsiale Länge der Nute bezeichnet wird, der Querschnitt dieses magnetischen W eges

r2-b

und die Länge desselben r3 mithin seine Leitfähigkeit

1,25

r2 • b
[image: ]


Die Leitfähigkeit des oberen Teiles r der Nute dürfte nur dann in derselben Weise berechnet werden, wenn die erregende Kraft längs des Teiles rj konstant wäre; dies ist aber nicht der Fall, denn sie sinkt auf der Strecke rj von ihrem Maximalwert bis auf Null herunter. Um zu vermeiden, daß wir in unsere Gleichungen die erregenden Kräfte einführen müssen, schlagen wir folgenden Weg ein. Angenommen, der Kraftlinienfluß, der aus 16*

dem Teil r2 des Zahnes durch die Nute fließt, sei durch das Rechteck a (Fig. 94 c) dargestellt, so muß durch das Dreieck c der Kraftfluß dargestellt werden, der aus dem oberen Teil r1 des Zahnes durch die Nute fließt. Die Induktion in der Nute nimmt von ihrem Maximalwert längs der Strecke r1 bis auf Null ab. Das punktiert eingezeichnete Rechteck von der doppelten Größe des Dreiecks c würde die gestreute Kraftlinienzahl darstellen, wenn die totale erregende Kraft auch an der Zahnwurzel vorhanden wäre. In Wirklichkeit ist aber der Kraftlinienfluß nur halb so groß, und wir können dies dadurch in Berücksichtigung ziehen, daß wir den Widerstand des oberen Teiles der Nute doppelt so groß, die Leitfähigkeit also nur halb so groß annehmen, als sie tatsächlich ist, jedoch uns gleichzeitig die totale erregende Kraft auf den ganzen Zahn und die ganze Nute wirkend denken. Wir erhalten demnach

1=1,25 *b.. 2-r3

Nun ist zu bemerken, daß die Streulinien in einem so kompliziert gestalteten Raum, wie ihn das Innere einer Nute darstellt, natürlich nicht nur die einfachen Bahnen einschlagen, welche wir annehmen müssen, um die Probleme der mathematischen Behandlung zugänglich zu machen, sondern der Querschnitt der einzelnen Streupfade in der Nute ist erheblich größer. Die nach theoretischen Gesichtspunkten gefundene Leitfähigkeit der Nute muß daher durch empirischen Zusatz korrigiert werden, und dieser läßt sich am einfachsten an der Leitfähigkeit der parallelen Nutenwände ausführen. Durch eine große Anzahl von Nachrechnungen experimentell untersuchter Motoren hat Verfasser gefunden, daß für die Leitfähigkeit zwischen diesen Flächen richtiger

	
	
	
2,    = 1,25 b • n .......(133) r3







gesetzt, also der Faktor 2 im Nenner unterdrückt wird.

Dies gilt für die parallelen Flächen innerhalb der Nute. Grenzen diese Flächen aber an den Luftzwischenraum, so werden sich die von r3 nach dem gegenüberliegenden Zahn strömenden Kraftlinien auch über den Luftzwischenraum 8 ausbreiten, und wir können dies dadurch berücksichtigen, daß wir zur Dimension r2 noch o hinzufügen und den Querschnitt dieses Streufeldes zu

(r, + 0) • b annehmen. Die Leitfähigkeit zweier paralleler Flächen am Zahnkopf wird daher

12 ==1.25 b 1.......(134) r3

•

Die Leitfähigkeit zwischen den Flächen r4, Fig. 94 d, ist nach einer bekannten Gleichung, deren Ableitung hier wohl überflüssig ist

13 = 1,25 • —- • log nat 1+ —r,) j

oder, wenn wir an Stelle der natürlichen die Briggschen Logarithmen einführen,

	
	
	
	
2,    = 1,25 -2,3 log (1+ ",") .... (135)









Konvergieren die streuenden Flächen unter einem Winkel a, Fig. 94 e, so geht diese Gleichung über in die Form

	
	
	
	
2,    = 1,25 • 2,3 — • log ( 1 + “:r) , • • • (136) «           \ Ts /









in welcher Gleichung natürlich a in Bogenmaß ausgedrückt werden muß. Dieser Ausdruck erreicht als Grenzwert für a — 0

1 = 1,25 b _T4 rs und stellt dann die Leitfähigkeit zwischen parallelen Flächen r4 . b im Abstand r5 dar.

Wenn die Nute nach unten durch Kreisbogen abgerundet ist, Fig. 94 f, so läßt sich auch auf diesen Fall die für Ä4 gefundene Gleichung anwenden. Die Sehne r4 ist zwar kürzer als der zugehörige Bogen, aber dies wird angenähert dadurch kompensiert, daß die beiden Sehnen geringeren mittleren Abstand haben als die beiden Kreisbögen.

Hat die Nute die Form der Fig. 94 g und h, sodaß sie durch ein möglichst dünnes Eisenhäutchen geschlossen wäre, so würde r, == 0 und die Leitfähigkeit der Nute würde nach der Gleichung für X, eine unendlich große sein. Dies wiederspricht aber absolut der praktischen Erfahrung, denn gerade die Nutenformen g und h geben in Bezug auf die Streuung sehr gute Resultate. Dieser scheinbare Widerspruch läßt sich aber sehr leicht aufklären. Die bisher behandelten Gleichungen sind nämlich lediglich unter Berücksichtigung des Widerstandes des Diamagnetikums abgeleitet, während stillschweigende Voraussetzung ist, daß das Para-magnetikum, das Eisen, widerstandslos ist. Die Gleichung basiert daher auf der Anschauung, daß das dünne, widerstandslose Eisenhäutchen die beiden benachbarten Zähne direkt kurz schließt und dadurch natürlich einen unendlich großen Streufluß entstehen läßt.

Die Verbindungsbrücke der beiden Zähne besitzt aber einen sogar ziemlich bedeutenden Widerstand, denn dort ist das Eisen bis nahe an die Sättigungsgrenze beansprucht und die Permeabilität ist daher nur mehr eine geringe. Die Folge davon ist, daß zwei unendlich nahe gelegene Punkte der beiden Zähne an der Berührungsgrenze nicht mehr die ganze magnetische Potential-differenz gegeneinander besitzen, da das Potentialgefälle längs des Verbindungssteges sukzessive verbraucht wird. Es ist dies in Bezug auf die Streuung sehr günstig, denn sie wird dadurch zwischen den eben untersuchten Flächen viel geringer, als die Xa-Gleichung erwarten ließe, und wir können als mittleren Abstand der streuenden Flächen ihre mittlere Entfernung, also 9 annehmen. Die Leitfähigkeit dieses Teils der eisengeschlossenen Nute wird daher

15 = 1,25 b •      .......(137) r3

Es erweckt den Eindruck, als müßte durch den Verbindungs-steg eine Nute von der Form g mehr streuen, als eine solche von der Form h, gleiche Stegdicke bei beiden vorausgesetzt; denn bei der letzteren besitzt der Verbindungssteg auf eine viel größere Länge einen sehr geringen Querschnitt, und sein Widerstand müßte daher ein größerer sein. Diese Anschauung ist gewiß richtig, aber sie berechtigt nicht, die Form h für besser zu halten als die Form g. Bei der Nute g ist nämlich der Zahnquerschnitt für das Hauptfeld so reichlich, daß die Induktion des Hauptfeldes über einem Zahnkopf die gleiche sein kann. Bei der Nute h dagegen läuft der Zahn gegen den Steg mit so geringem Querschnitt aus, daß an diesen Stellen sich der Eisenwiderstand auch für das Hauptfeld bemerkbar macht. Die Induktion im Hauptluftfeld ist daher über der Mitte des Zahnkopfes größer als über den Stegen; deshalb muß die erregende Kraft größer sein, was seinerseits wieder eine Vermehrung der gestreuten Linien zur Folge hat.

Man müßte eigentlich, um korrekt zu verfahren, bei der Nute h den Luftquerschnitt eines Zahnes nicht t. b gleichsetzen, sondern z" . b, und z" würde eine ideelle Zahnbreite kleiner als die Teilung bedeuten. Würde dann auch berücksichtigt, daß in der Tat der Widerstand des Steges der h-Nute etwas größer ist, A, so würde sich doch ein konstantes Verhältnis —— und damit 4 gleiche Streuung der beiden Nutenformen g und h ergeben.

Auf einen Vorzug der Nutenform g gegenüber h mag hier noch aufmerksam gemacht werden. Es ist selbstverständlich, daß man bei beiden Formen darnach trachtet, die Stege so dünn als nur irgend möglich zu machen, und dadurch kommt es vor, daß beim Drehen der Statoren und Rotoren die Stege vollständig durchbrochen werden. Geschieht dies bei der Nute h, so verursacht ein verhältnismäßig dünner Drehspan schon ein ganz bedeutendes Loch, da die Drehfläche quasi als Tangente mit dem Nutenhalbkreis in Berührung kommt. Die kleinste üngenauigkeit der radialen Nutenabstände oder die geringste Exzentrizität der Drehfläche bedingt bedeutende Unterschiede in der Größe der durchbrechenden Löcher, und der fertig gedrehte Anker bekommt dadurch ein zerfetztes, unschönes Aussehen. Brechen dagegen bei Nuten von der Form g Stege durch, so zeigt sich nur ein schmaler Spalt, dessen Ränder nie einen zerrissenen Eindruck machen. Es wird daher durch das Ab drehen der Stege der Luftquerschnitt des Hauptfeldes bei den Nuten h viel mehr verkleinert als bei den Nuten g, und bei letzteren wirkt deshalb ungenaue mechanische Bearbeitung in dieser Beziehung weniger schädlich. Wird jedoch umgekehrt beim Ausdrehen zu wenig Fleisch von den Stegen weggenommen, sodaß der Querschnitt der letzteren zu groß wird, so äußert sich dies bei den Nuten h weniger schädlich, da hier die Länge des dünnen Steges eine größere ist.

Ist eine Nute durch einen Eisensteg von der Länge r3 und von konstantem Querschnitt b . r6 geschlossen, so ist die Leitungs-fähigkeit des Steges

wenn L die gesamte Länge der Stege, welche von den Streulinien durchflossen werden, Br die Induktion in den Stegen und X' die maximale auf den Stator wirkende erregende Kraft, endlich X(em) die auf 1 cm Steglänge wirkende erregende Kraft bezeichnet.

Es ist nun

X‘=0,8.0.p.B,

die bekannte Gleichung zur Berechnung der Magnetisierungs-amperewindungen. Aus den auf Seite 223 entwickelten Ausdrücken für den Streuwiderstand der Nuten ergibt sich, daß der Nutenwiderstand pro Pol

	
4    • sin 2 _ • A



2 a

mal so groß ist, als der Widerstand einer Nute. Sinngemäß auf den vorliegenden Fall angewendet, ergibt sich die Totallänge sämtlicher Stege, welche Streuung veranlassen:

L = 4 • sin2 -7 • A • p ■ r3.


Es wird demnach die auf Kraft in Amperewindungen




1 cm Steglänge wirkende erregende



0,8. J.B’ X_=---‘------- cm            7


(140)



	
4    • sin2 — • A • r3



2a 3

Mit Hilfe der Magnetisierungskurve Fig. 102 kann nun die Induktion Br in den Nutenstegen gefunden werden, welche dieser erregenden Kraft entspricht, und hieraus läßt sich A berechnen, denn es ist

Man erhält bei modernen Motoren die Permeabilität von ungefähr 100. Es will dies sagen, daß die Leitungsfähigkeit des Eisensteges ungefähr 100 mal so groß ist, als die einer Luftstrecke von gleichem Querschnitt und von gleicher Länge. Man sieht hieraus deutlich, von welch ungeheurem Einfluß eine ungenaue mechanische Ausführung der Nutenstege ist.

Nachdem wir die Leitungsfähigkeit eines Nutensteges von kontinuierlichem Querschnitt berechnen können, ist es möglich, die Leitungsfähigkeit auch dann zu. bestimmen, wenn der Stegquerschnitt diskontinuierlich ist. Die Leitfähigkeit des Steges Fig. 95 a ist nach früherem (Gleichung 138)

26 = 1,25 • b • u -6 • r3

Wenn wir die Leitungsfähigkeit des Steges graphisch darstellen, so erhalten wir die Fig. 95 b, eine zur Abszisse parallele Gerade von der Länge des Steges. Dieselbe Gerade können wir auch als die graphische Darstellung des Widerstandes

1

W6 — ——

auffassen. Besitzt der Steg einen Querschnitt, wie er in Fig. 95 c gezeichnet ist, so wird der Widerstand W6 nur an der schwächsten Stelle seines Querschnittes erreicht, und er nimmt kontinuierlich ab, bis er beim Übergang des Steges in den Zahn Null wird. Der Gesamtwiderstand des Steges c wird daher durch die Fläche des Dreiecks versinnbildlicht, und das Dreieck besitzt natürlich nur die halbe Fläche des dem Steg A entstprechenden Rechteckes. Die Leitfähigkeit des Steges c ist daher doppelt so groß wie beim Zahn A, also

1 =2-2........(142)

Mittels der Gleichung (136) konnten wir die Leitfähigkeit des Streufeldes zwischen den zwei sich berührenden Flächen r8 nicht


bestimmen, da die Gleichung immer l = co ergibt, wenn r, == 0




gesetzt wird. Die Gründe hierfür sind schon angegeben worden.




Da wir nun den
[image: ]

Fig. 95.




magnetischen Widerstand des Stegeisens berücksichtigt haben, muß eine für dieses X entwickelte Gleichung endliche Werte liefern.

Untersuchen wir die Streuung des Steges der Nute Fig. 95 a unter der Annahme, daß diese Streulinien in halbkreisförmigen Bahnen durch die Nute verlaufen, so finden wir, daß nur die äußersten Punkte des Steges der totalen magnetischen Potentialdifferenz zweier benachbarter Zähne ausgesetzt sind. Bezeichnet man diese maximale Potentialdifferenz durch die erregende Kraft X', welche sie hervorruft, so kann zwischen zwei beliebigen korrespondierenden Punkten die erregende Kraft gefunden werden durch die Gleichung

x-x(1-),

wenn mit x die Abszisse des untersuchten Punktes bezeichnet wird; das Potentialgefalle längs des Steges verläuft nach einer Geraden, da der Widerstand des Steges pro Längeneinheit ein konstanter ist. Die Weglänge, welche die von diesen Punkten gestreuten Linien zurücklegen müssen, ist:
[image: ]

Die Induktion längs dieses Kraftlinienweges ist daher

[image: ]



Die totale Streulinienzahl ist demnach


Z=B-2 b




1,25 • b



und da

-* wird

2, = 125 • b • -......(143)

Nicht ganz so einfach liegen die Verhältnisse, wenn wir die Nute Fig. 95c untersuchen, weil hier der Stegwiderstand diskontinuierlich ist, indem die aufeinander folgenden Stegquerschnitte und daher auch ihre Widerstände nach einer geradlinigen Funktion variieren. Das Potentialgefälle verläuft daher nicht mehr geradlinig, sondern nach einer Parabel, Fig. 95 d, wovon man sich leicht überzeugen kann, wenn man die Potentiale der Punkte eines Drahtes bestimmt, dessen Querschnitt kontinuierlich mit der Länge abnimmt, wenn derselbe von einem konstanten Strom durchflossen wird.

Auf zwei korrespondierende Punkte wirkt demgemäß eine erregende Kraft von

X = X’ (r,2 — x2)

Amperewindungen. Ein die beiden Punkte verbindender Kreisbogen hat die Länge

1= «(r — x).

Die Induktion auf diesem Kraftlinienpfade wird

_ X _ X’(r,3 — x3) 0,8-1      0,8 • a (r8 — x)

und die Kraftlinienzahl

d Z = 1,25 • b — (r, + x) d x.

Daher wird die Gesamtzahl dieser Streulinien

X =rs

Z = 1,25 • b X’(r, + x) d x = 1,25 • b — (r8 + CJ                       « \     2

X = 0

und die Leitfähigkeit dieses Streufeldes

1,=1,25 21, (1+72).....(144)

Es bedarf wohl kaum eines besonderen Hinweises, daß die Längen r1, r,, . . . in Centimetern und der Winkel a in Bogenmaß ausgedrückt werden müssen.

Als wir die vom Nutensteg geleiteten Kraftlinienzahlen bestimmten, haben wir insofern eine kleine Ungenauigkeit begangen, als wir nicht die Linienzahl der zuletzt besprochenen Streuung berücksichtigt haben. Dieser Fehler wird aber bei der Nute Fig. 95 c dadurch annähernd kompensiert, daß wir zur Berechnung der Permeabilität annehmen, die Stegedicke sei längs der ganzen Nutenbreite nur so groß, als sie in Wirklichkeit nur an der schwächsten Stelle ist. Die Nute mit konstanter Stegdicke wird aber in der Praxis niemand ausführen, wir bedurften ihrer nur, um in übersichtlicher Weise die Leitfähigkeiten der gebräuchlichen Nuten ableiten zu können.

Die Streuung der geschlossenen Nute mit halbkreisförmiger Begrenzung Fig. 94 h wird ebenso berechnet, wie die Nute Fig. 94 g oder Fig. 95 c, wobei der Winkel

“=2 und “72 zu setzen ist.

Wir haben nun die Leitfähigkeiten der einzelnen in den Nuten vorhandenen Streuwege kennen gelernt, und es müssen die Leitfähigkeiten ihrer einzelnen Teile addiert werden, um die Leitfähigkeit der Nute zu finden. Man gelangt dadurch zu den Formeln, die auf Seite 298 für eine Anzahl der gebräuchlichsten Nutenformen angegeben sind. Die einzelnen Glieder der Formeln lassen deutlich erkennen, wieviel der totalen Leitfähigkeit auf jeden der Nutenteile entfällt, und man erhält dadurch Fingerzeige, in welcher Weise eventuell die Nutenform verbessert werden kann.

49. Beispiele.

Es ist der Streuungskoeffizient eines Motors von nebenstehenden Dimensionen zu bestimmen.

D = 28,7 cm b = 17 cm T = 22,5 cm J = 0,1 cm B| = 5000

Stator:                     Rotor: a1 ==   3                            a, ———

	
h, =16                h, = 16
[image: ]



Die Nuten sind durch Fig. 96 dargestellt, und es ist die Rotornute an Größe und Form soviel als möglich der Statornute gleich gewählt, mit dem einzigen Unterschied, daß die Statornute geschlossen, die Rotornute dagegen geschlitzt ist. Das Beispiel wirkt so am instruktivsten, da sich in bequemer Weise die Vor-und Nachteile des geschlossenen Steges erörtern lassen. Die gestellte Aufgabe zerfällt in mehrere Teile.

	
	
1.    Berechnung der Leitfähigkeit einer Statornute Ay,.





Die Leitfähigkeit zwischen den beiden parallelen Flächen der Statornute ist (Gleichung 133)

1 = 1,25 b . Ei

= 1,25 b • 2.

Die Leitfähigkeit zwischen den beiden konvergierenden Flächen, 71 die den Winkel -9 einschließen (Gleichung 144),


2,-1,231 * (1+2)

^.l^L^

= 1,25 b • 0,6.

Um die Leitfähigkeit des Stegeisens berechnen zu können, müssen wir vor allem die Permeabilität des Stegeisens ermitteln. Die erregende Kaft pro 1 cm Stegeisen ist bei einer Luftinduktion von 5000 Linien (Gleichung 140)


X

cm



0,8 • d • b;

4' sina 9”. ‘ A, ' r.

0,8 • 0,1 • 5000

= —5.1,0—=80

Aus der Magnetisierungskurve Fig. 102 entnehmen wir, daß einer erregenden Kraft von 80 Amperewindungen pro 1 cm eine Eiseninduktion von 17000 entspricht. Es ist daher (Gleichung 141)

0,8 ' Br 0,8 • 17000


170.



4= X = 80 cm

Die Leitfähigkeit 27 eines Steges von diskontinuierlichem Querschnitt ist nach Gleichung (142) doppelt so groß als die Leitfähigkeit x6 eines Steges von konstantem Querschnitt. Also

26 kann nach Gleichung (138) berechnet werden, und es wird daher

27 == 2 • 26 = 1,25 b • u • — 6.....

F3

= 1,25 b • 170 • 2 • 2

= 1,25 b • 6,4.

Die totale Leitfähigkeit der Nute ist der Summe der Leitfähigkeiten ihrer einzelnen Teile gleich, daher

Ay, =A — A9 — A7

= 1,25 • b • (2 + 0,6 + 6,4) = 1,25 • b . 9,2.

	
	
2.    Berechnung der Leitfähigkeit des Luftfeldes eines Stator zahn es Ar, .





An, ergibt sich sofort aus der Gleichung (131): =1,2 *2(*+**3

-125:1032(1,5+1,7 1%) = 1,25 • b • 14,6.

	
	
3.    Berechnung des Streuungskoeffizienten t^ der Statornuten.





Es ist nach Gleichung (123)


	
4,
	
A        .        71
	
2", -
	
1


	
4
	
■ sin         ' sin

2 21        2 21 A1


	
A,°°


	
^5
		
A,
	
2%,
	
— 1




= 0,63 •

2 • 0,105

5—

- = 0,0304.

Da sowohl Ay als Ar die Faktoren 1,25 . b enthält, kann man dieselben beim praktischen Rechnen, wenn man mit dem Gebrauch der Formeln genügend bekannt ist, einfach weglassen.

	
	
4.    Berechnung der Leitfähigkeit der Spulenköpfe des Stators.





Nach den Ausführungen des 45. Abschnittes ist

Ak = 0,92 I T (log 5 + 0,11) + h (log — + 0,11

Die Größe des T, h, b ist uns bekannt, dagegen muß r erst berechnet werden. Der in Gleichung (124) angegebene Ausdruck für r setzt die Kenntnis der Drahtzahl und des Drahtquerschnittes voraus, die uns aber bei dem vorliegenden Motor unbekannt ist. Wir wollen daher zur Bestimmung des r einen anderen Weg einschlagen. Der Nutenquerschnitt wird nur teilweise vom Kupfer der Wicklung ausgefüllt, ein großer Teil des Nutenquerschnitts geht in dieser Beziehung durch die Draht- und die Nutenisolation verloren. Je nach der Größe und der Spannung der Motoren beträgt die Ausnützung der Nute nur 1/4—3/4 des Nutenquerschnitts. Nehmen wir für den vorliegenden Motor den Mittelwert 1/2, so wird der Kupferquerschnitt eines Spulenkopfes

5 • - • 2,25 = 5,625 qcm

da der Querschnitt einer Nute 2,25 qcm beträgt. Es wird daher

[image: ]

1,34 cm.




Nuu wird


Ak = 0,92



22,5(log“33 + 0,11) + 16 (log 237 + 0,11

= 0,92 [33,3 + 21,4] = 50,2.

	
	
5.    Berechnung des Luftquerschnittes Q. Es ist nach Gleichung (130)





22,5-17 (,     1,7 \ =‘2 1+1,88)

= 362 qcm.

	
	
6.    Berechnung des Streukoeffizienten Tk, der Statorkopfstreuung.





Nach Gleichung (124) erhalten wir

_ 1,6.0 Ak

Fi C, • k, • a, • i Qi ________ 1,6'0,1_________ 50,2 _ 0 0196 0,588 • 0,956 • 3 ■ 0,667    362

	
	
7.    Berechnung des Statorstreuungskoeffizienten T1.





T1 ist gleich der Summe der Streuungskoeffizienten der Nutenstreuung und der Kopfstreuung, also

" = * + ‘, = 0,0304 + 0,0196 = 0,05.

	
	
8.    Berechnung der Leitfähigkeit einer Rotornute Ay,. In bekannter Weise findet man





2, = 1,25 b •

= 1,25 b • 2.

Die Leitfähigkeit zwischen den konvergierenden Flächen r, ergibt sich bei einer offenen Nute nach Gleichung (136) zu 1=1,25-6.28. log (1+)

= 1,25 • b ’ n ’ 106 1 +   0,18   )

= 1,25 • b - 1,95.

Sie ist also größer als die an der korrespondierenden Stelle der Statornute vorhandene Leitfähigkeit und zwar im Verhältnis 24 des Rotors   1,95

29 des Rotors       0,6 trotzdem die Länge r4 beim Stator 7 mm, die beim Rotor nur Heubach, Drehstrommotor.                               17

	
	
	
5,6 mm beträgt und außerdem die beiden Flächen beim Stator zusammenstoßen, während sie beim Rotor durch einen Abstand von 1,8 mm getrennt sind. Es rührt dies daher, daß wir bei der offenen Nute annehmen, daß der ganze Zahnkopf gleiches magnetisches Potential besitzt, während wir bei der geschlossenen Nute das Potentialgefälle längs des Steges in Berücksichtigung gezogen haben.







Die Leitfähigkeit zwischen den Spitzen gegenüberstehender Zahnköpfe beträgt nach Gleichung (134)

	
	
2, = 1,25 • b • ■ r, +0





, — . 0,1 + 0,1 =125:9100,18"

= 1,25 • b • 1,1.

Es wird daher die gesamte Leitfähigkeit einer Rotornute

Av, = A1—A4 — 12 = 1,25 • b (2 + 1,95 + 1,1) = 1,25 • b • 5,05.

	
9.    Berechnung der Leitfähigkeit des Luftfeldes eines Rotorzahnes.



Diese Leitfähigkeit wird ebenso berechnet wie die eines Statorzahnes, nur müssen gegenüber der sub 2. angegebenen Gleichung die Indices 1 und 2 vertauscht werden. Man erhält daher

4 - 1,25 • b • 2, (" + * Y)

-126-6.2, 71,7+15 488)

== 1,25 . b • 17,9.

	
10.    Berechnung des Streuungskoeffizienten Tr, der . Rotornuten.



Man erhält nach Gleichung (123):

A ■ sin2 ------ • sin------------ ' 2 2 — -----— _ Ar, .      2 a, 2 a,: A, . _A2°

52 A, A, 232 — 1 -2 5,05 2,0131 8 00912

= 17,9 '    4    ‘ . 7 —

	
11.    Berechnung des Streukoeffizienten Tg, der Rotorkopfstreuung.



Die Größen Q, T, h, b sind für den Rotor natürlich genau die gleichen wie für den Stator. Auch für r können wir denselben Wert einsetzen wie beim Stator, wenn wir annehmen, daß der Kupferquerschnitt des Drahtbündels eines Spulenkopfes beim Rotor eben so groß ist, wie beim Stator. Der Stator besitzt pro Spulenseite 5, der Rotor 4 Nuten vom gleichen Querschnitt. Die Ausnützung des Stotornutenquerschnitts haben wir zu 1/2 angenommen, und wenn wir r unverändert beibehalten, setzt dies voraus, daß der Rotornutenquerschnitt zu

— • 0,5 == 0,625 4 ausgenützt wird. Diese Annahme ist zulässig, denn infolge der geringeren Rotorspannung, deren Wahl dem Konstrukteur anheim steht, läßt sich die Rotornute günstiger als die Statornute ausnützen. Unter diesen Voraussetzungen ist

r =0,0196.

	
12.    Berechnung des Streuungskoeffizienten des Rotors T,.



Dieser Koeffizient wird sofort erhalten aus der Summe

12 = r, + Tk^ = 0,0213 + 0,0196 = 0,051.

	
13.    Berechnung des Streuungskoeffizienten des Motors t.



Der totale Streuungskoeffizient des Motors wird gefunden aus der bekannten Gleichung

T = 71 + 72 + ^ • Ta = 0,05 + 0,051 + 0,05 • 0,051 = 1,104.

	
14.    Berechnung des maximalen Leistungsfaktors des Motors,



Wenn der Ohmsche Widerstand des Stators vernachlässigt wird, kann der maximale Leistungsfaktor nach Gleichung (72) berechnet werden. Man erhält

1

cos 9max — 1 + 2 r
[image: ]

	
15.    Bemerkungen.



Die Leitfähigkeit der untersuchten Rotornute beträgt

A, = 1,25 • b • 5,05,

die der Statornute dagegen

a,, = 1,25 • b • 9,2,

und die bedeutende Größe der letzteren ist nur durch die große Leitfähigkeit des Eisensteges bedingt. Würde die Stegdicke nur 0,1 mm betragen statt 0,2 mm, so würde

27 = 1,25 • b • 3,2

nur mehr die Hälfte so groß sein. Es würde dann

4, = 1,25 • b • 5,8.

Eine Stegdicke von 0,2 mm ist daher schon als reichlich zu bezeichnen, und eine Fabrik muß bemüht sein, in dieser Beziehung so exakt als nur möglich zu arbeiten. Fehler in der mechanischen Ausführung können die Qualität des Motors ganz wesentlich beeinflussen, unter Umständen heben sich allerdings auch die Einflüsse, welche durch Bearbeitungsfehler hervorgerufen werden, gegenseitig auf. Um dies zu zeigen, soll die Streuung des berechneten Motors untersucht werden, wenn der Luftzwischenraum o verschiedenen Variationen unterworfen wird.

	
16.    Statorbohrung um 0,4 mm zu klein, Rotordurchmesser um 0,4 mm zu groß, d = 0,6 mm.



Die Größe der Amperewindungszahl reduziert sich im gleichen Verhältnis, wie 8 abgenommen hat. Es wird daher

X—=0,6:80 =48. cm 7

Unter der Einwirkung dieser erregenden Kraft bekommt das Eisen eine Induktion von 16 300. Demnach wird

_ 0,8-16300 "—  48

Daher wird

	
2,    = 1,25 • b • u • —16 r3



= 1,25 • b • 272 • 2 : 904 = 1,25 • b • 21,8.

Da 21 und 29 ungeändert geblieben sind, wird

A, = 1,25 • b • 24,4. ‘1             1                     1

Ferner wird 4 =1,25*h2 (+**)

	
	
- 1,25 ' b ' 2 • 0,06 ( 1,5 + 1,7 1) = 1,25 • b • 23,8.





Daher

24,4 2-0,105   8 A A-AO T6 =23,8 *5 H7—00508.

Für die Kopfstreuung erhält man

%,, = 1,, = 0,6 • 0,0196 = 0,0118, und der Streuungskoeffizient des Stators ist demnach

	
7,    = 0,0508 + 0,0118 = 0,0626.



In Bezug auf die Leitfähigkeit einer Rotornute ändert sich nur das Glied

	
2,    = 1,25 • b • r,+0 rs


	
-125 b 0,12+0,06 —      0      0,18





= 1,25 • b • 1 und es ist

A = 1,25 • b • 4,95.

Die Leitfähigkeit der Luftfeldes über einem Rotorzahn 1(413) •

-12s-1- (17418’57

= 1,25 • b • 30.

Daher wird

und

72 = 0,0124 + 0,0118 = 0,0242.

Der Streuungskoeffizient des Motors wird demnach r = 0,0626 + 0,0242 + 0,0626 • 0,0242 = 0,088 und

cos q -—_ 0,85. ‘max 1 — 2r

In diesem Falle bedingt eine Abweichung im Luftspalt um 40% nur eine Veränderung des Streuungskoeffizienten von 15% und des Leistungsfaktors von 2,5 %.

	
17.    Statorbohrung um 0,4 mm zu klein, Rotordurchmesser um 0,4 mm zu klein; 5=1 mm.



Da o unverändert wie beim ursprünglichen Motor geblieben ist, bleibt auch y unverändert

u=170 und es wird

27 = 1,25 • b • u ■ -6 T3

= 1,25 • b . 170.2:2,04

= 1,25 • b ■ 13,7 und

	
	
A, = 1,25 • b • 16,3. ‘1           7                     2





Pie Leitfähigkeit über einem Statorzahn ist wie im ersten Beispiel

	
	
A. = 1,25 • b • 14,6.





-1                              7

Es wird daher

Ebenso bleibt

*, - ", = 0,0196

wie im ersten Beispiel. Daher wird

T, = 0,054 + 0,0196 = 0,0736.

	
In Bezug auf 4y, ändert sich nur das Glied 2, = 1,25 • b • r,+0 To



-125 b 0,08+0,1 ’ 5 b 0,18 und es wird

A = 1,25-b-4,95.

Daß dieser Wert mit dem im zweiten Beispiel gefundenen identisch ist, ist Zufall. Dagegen ist, wie im ersten Beispiel,

	
4,    =1,25 • b • 17,9 und es wird


	
4,95   2-0,131   8   0 *=17,9 ---4-- 7 =00209.





Der Streukoeffizient des Rotors ist r = 0,0209 + 0,0196 = 0,0405

und der des Motors

r = 0,0736 + 0,0405 + 0,0736 • 0,0405 = 0,117.

Demnach wird Cos ma =1+27=0,81.

Trotzdem in diesem Beispiel der Querschnitt des Statorsteges doppelt so groß wie im ersten Beispiel angenommen wurde (0,4 gegen 0,2 mm), ändert sich der Streuungskoeffizient des Motors nur um 10 % und der Leistungsfaktor nur um 2,5 %/. Die starke Zunahme des T ist durch eine Abnahme des T2 ziemlich ausgeglichen.

	
	
	
18.    Statorbohrung und Rotordurchmesser unverändert, Radius der Nutenteilkreise verändert.







Diese Überschrift ist so zu verstehen:, Es seien die Bleche in Bezug auf den Durchmesser der Statorbohrung und in Bezug auf den Rotordurchmesser genau richtig bearbeitet und daher auch 3 genau richtig. Dagegen sei beim Stanzen der Bleche eine Ungenauigkeit insofern begangen, als die Entfernung des Drehpunktes der Bleche von dem Schnitt nicht richtig eingestellt sei. Um die im vorhergehenden gewonnenen Zahlen möglichst hier wieder benützen zu können, wollen wir annehmen, der Teilkreisradius der Statorbleche sei um 0,2 mm zu groß, der des Rotors um 0,2 mm zu klein gemacht worden.

Alle auf T1 bezüglichen Werte können dann dem 3. Beispiel (Absatz 17) entnommen werden, und es ist demnach

7 = 0,0736.

In Bezug auf den Rotor wird

	
2,    = 1,25 • b • r,+0 r



-125 b 0,12 + 0,1

T ’         0,18

= 1,25 • b • 1,22 und

4,, = 1,25 •(,+ 1 + 2) = 1,25 • b (2 + 1,95 + 1,22) = 1,25 • b • 5,17.

Ax, ist, wie im ersten Beispiel,

	
	
A. = 1,25 • b • 17,9 und es wird





, _ 5,17   2-0,131    8 _ y T 17,9      4      7 — ’

Wir erhalten

	
	
	
7,    = r, + t. = 0,0218 + 0,0196 = 0,0414, demnach







r = 0,0736 + 0,0414 + 0,0736 • 0,0414 = 0,118 COs a— 142+=0,81.

Die wichtigsten in den vier Beispielen erhaltenen Zahlen sind in nachstehender Tabelle zusammengestellt.


		
1. Beispiel
	
2. Beispiel
	
3. Beispiel
	
4. Beispiel


	
Di
	
28,8
	
28,76
	
28,76
	
28,8


	
D,
	
28,6
	
28,64
	
28,56
	
28,6


	
0
	
0,1
	
0,06
	
0,1
	
0,1


	
r •
	
0,2
	
0,4
	
0,4
	
0,4


	
ra
	
0,1
	
0,12
	
0,08
	
0,12


	
u
	
170
	
272
	
170
	
170


	
A
	
9,2
	
24,4
	
16,3
	
16,3


	
4
	
14,6
	
23,8
	
14,6
	
14,6


	
Tz
	
0,0304
	
0,0508
	
0,054
	
0,054


	
*, = T^
	
0,0196
	
0,0118
	
0,0196
	
0,0196


	
7
	
0,050
	
0,0626
	
0,0736
	
0,0736


	
4y,
	
5,05
	
4,95
	
4,95
	
5,17


	
4x2
	
17,9
	
30,0
	
17,9
	
17,9


		
0,0213
	
0,0124
	
0,0209
	
0,0218


	
72
	
0,051
	
0,0242
	
0,0405
	
0,0414


	
T
	
0,104
	
0,088
	
0,117
	
0,118


	
cos “max
	
0,83
	
0,85
	
0,81
	
0,81




19. Schlußfolgerungen.

Die Beispiele zeigen sehr deutlich, wieviel weniger lieh eine offene Nute gegenüber einer geschlossenen in Bezug auf ungenaue mechanische Bearbeitung ist. Es drängt sich daher die Frage auf, warum trotzdem so viele Motoren mit geschlossenen Nuten gebaut werden?


empfind-



Es unterliegt keinem Zweifel, daß sich ein Drehstrommotor ebensogut, d. h. mit demselben Leistungsfaktor mit offenen oder

geschlossenen Nuten bauen läßt; jedoch wird der Motor schlossenen Nuten im ungefähren Verhältnis der 2 .— breite


mit ge-kleiner




Außer-schöner



°                        Lahnteilung und daher billiger (gleiche Luftinduktion vorausgesetzt), dem zieht ein Motor mit geschlossenen Nuten insofern an, als nicht so leicht Ankerstellungen auftreten, in welchen die Zugkraft geringer ist, als in anderen Stellungen. Man kann sich diese Erscheinung in folgender Weise erklären:

Gegeben sei ein Motor mit gleicher Nutenzahl im Stator und Rotor, und die Zahnbreite betrage nur die Hälfte der Teilung.

Der magnetische Widerstand des Motors ist ein Minimum, wenn sich Stator- und Rotorzähne gegenüberstehen, dagegen ein Maximum, wenn sich Zähne und Nuten gegenüberstehen. Der stromlose Rotor wird stets eine solche Stellung einzunehmen streben, daß sich die Zähne gegenüberstehen, und er wird mit einer gewissen Zähigkeit diese Stellung auch dann zu behaupten suchen, wenn der Rotor von Strom durchflossen wird und infolgedessen eine tangentiale Zugkraft auftritt. Bei dem betrachteten Motor würde die festhaltende Kraft jedenfalls so bedeutend sein, daß wahrscheinlich der Motor garnicht angehen-, sondern in der Stellung, in welcher sich die Zähne gegenüberstehen, stehen bleiben würde.

Diese Erscheinung tritt bei allen Motoren, nur natürlich in ganz geringem Maße, auf, und zwar bei Motoren mit offenen Nuten etwas mehr als bei solchen mit geschlossenen. Außerdem sucht man dies „Kleben“ des Motors beim Anzug dadurch möglichst gering zu machen, daß man die Nutenzahlen des Stators und Rotors so wählt, daß beide Zahlen möglichst wenig gemeinsame Teile haben. Unverhältnismäßig mehr als beim Drehstrommotor macht sich dies bei den Einphasenmotoren bemerkbar.

Eine weitere Eigenschaft der geschlossenen Nute ist die, daß die Streuung durch den Nutensteg mit wachsender Luftinduktion oder mit wachsendem o geringer wird infolge der Abnahme der Permeabilität des Stegeisens. Es zeigt sich dies deutlich an den durchgerechneten Beispielen.

Siebentes Kapitel.

Der Kurzschlufsanker.

	
	
	
50.    Definition des Kurzschlußankers. — 51. Widerstand der Käfigwicklung. — 52. Günstigste Dimensionierung der Käfigwicklung. —


	
53.    Allgemeine Gleichungen der Kurzschlußanker.





	
50.    Definition des Kurzschlußankers.





Rotoren, deren zwei- oder dreiphasige Wicklung an Schleifringen angeschlossen ist, sodaß die Möglichkeit gegeben ist, den Rotor auf einen äußeren Stromkreis arbeiten zu lassen, bezeichnet man als gewickelte Anker, Phasenanker oder Schleifringanker. Im Gegensatz zu diesen nennt man Rotoren, welche eine in sich kurz geschlossene Wicklung haben, die von außen inkeinerWeise umgeschaltet oder sonstwie verändert werden kann, Kurzschlußanker. In der Mitte zwischen diesen beiden stehen die Rotoren, welche keine Schleifringe besitzen, wohl aber mit einer Kontaktvorrichtung ausgestattet sind, welche es ermöglicht, daß die Rotorwindungen entweder gegeneinander so geschaltet werden können, daß die in den Rotordrähten induzierten EMKK sich teilweise aufheben, oder daß die Rotorwicklung in mehreren Gruppen kurz geschlossen wird. Die zuerst erwähnten Rotoren nennt man Anker mit Gegenschaltung, die zuletzt genannten Stufenanker. Diese Anordnungen werden lediglich angewendet, um die Anzugsbedingungen des Motors günstiger zu gestalten, wie im Abschnitt 69 ausführlich angegeben ist. In Bezug auf ihr übriges Verhalten haben diese Anker vollständig die Eigenschaften gewöhnlicher Phasenanker, brauchen also hier nicht weiter besprochen zu werden.

Dagegen ist es wohl gerechtfertigt, den Kurzschlußankern ein besonderes Kapitel zu widmen, denn sie nehmen den Phasenankern gegenüber eine gewisse Ausnahmestellung ein. Obwohl die im Kapitel 5 und 6 abgeleiteten allgemeinen Gleichungen den Kurzschlußanker in sich einschließen, muß doch auf verschiedene Eigentümlichkeiten desselben besonders hingewiesen werden. So ist z. B. eine gewisse Vorsicht bei Bestimmung von N2, der Anzahl der in Serie geschalteten Rotorstäbe, notwendig. Ein Hauptunterschied zwischen dem Zwei- oder Dreiphasenrotor und dem Kurzschlußanker besteht auch darin, daß eine Vermehrung der Nuten im ersteren Fall eine Vergrößerung von A2, der Nutenzahl pro Spulenseite bedeutet, die Phasenzahl aber natürlich ungeändert bleibt; im letzteren Fall dagegen ist eine Vermehrung der Nutenzahl gleichbedeutend mit einer Vergrößerung der Phasenzahl, und dies ist für manche Erscheinungen von ganz anderem Einfluß.

Kurzschlußanker lassen sich in verschiedener Weise ausführen. Werden die in den Nuten liegenden Stäbe auf beiden Stirnseiten des Ankers durch je einen leitenden Ring verbunden, so nennt man einen solchen Rotor Käfiganker, Trillerkäfig oder Eichhörnchenkäfig. Man kann aber auch nach Art einer Schleifenwicklung je zwei um ca. die Poldistanz T auseinander stehende Stäbe durch Gitterköpfe zu einzelnen kurz geschlossenen Windungen vereinigen, oder man kann, vorausgesetzt, daß die Nutenzahl des Rotors ein gerades Vielfaches der Polzahl ist, sämtliche um T abstehende Stäbe in Serienschaltung zu einem Stromkreis (zu einer Phase) vereinigen. Derartige Rotoren wollen wir im nachstehenden mit Schleifen- resp. Serienkurzschlußanker bezeichnen. Der Vollständigkeit halber sei auch noch erwähnt, daß man die Käfigwicklung mit der Schleifenwicklung derart kombinieren kann, daß man einen kurzschließenden Ring nur auf einer Seite des Ankers anbringt, auf der anderen Stirnseite aber die Stabenden durch Gitterköpfe zu Windungen vereinigt. Diese Wicklung ist fast ebenso billig wie die reine Käfigwicklung, bietet aber den Vorteil, daß schlechte Lötstellen nicht in so schädlicher Weise das Feld verzerren können, wie bei reiner Käfigwicklung. Da bei einem Käfiganker die Leiterwiderstände naturgemäß äußerst klein, die Ströme aber sehr groß sind, kann durch den Übergangswiderstand schlechter Lötstellen leicht ein ganz anderer Stromverlauf verursacht werden, als der ideale im nächsten Abschnitt besprochene. Die dadurch verursachten Wirkungen sind sehr kompliziert: es wird der gesamte Stromverlauf ein wesentlich anderer, infolgedessen wird auch der fiktive Ersatzwiderstand der Käfigwicklung geändert, es ist möglich, daß durch einen Leiter, der momentan keinen oder nur geringen Strom führen sollte, ein sehr großer Strom fließt und dadurch eine ganz andere Ankerreaktion — eine schädliche Feldverzerrung — hervorruft. Bei guter Arbeit sind indes so schlechte Lötstellen im allgemeinen nicht zu befürchten, und wenn ausnahmsweise einmal eine solche ausgeführt sein sollte, stellt sich dies eventuell im Probierranm bei einer gründlichen Belastungsprobe heraus. Diese kombinierte Kurzschlußwicklung hat daher verhältnismäßig wenig Anwendung gefunden.

	
	
51.    Widerstand der Käfigwicklung.





Mit Hilfe der allgemeinen Gleichung (107) der induzierten EMK können wir die effektive in einem Stabe der Käfigwicklung induzierte EMK E, berechnen, wenn wir in dieser Gleichung N=1 setzen. Im 37. Abschnitt lernten wir Methoden kennen, welche es uns ermöglichen, die wirklichen im Motor vorhandenen Felder durch äquivalente sinoidale zu ersetzen, und daher können wir die nachstehenden Betrachtungen unter der Voraussetzung machen, daß das Rotorfeld ein sinoidales sei.

Die maximale in einem Rotorstabe induzierte EMK ist

	
E‘ = V2 • E.



Stellt Fig. 97 das sinoidale Feld dar, in welchem sich der Käfiganker von beliebiger Stabzahl befindet, so können wir die Momentan werte der in jedem seiner Stäbe induzierten EMKK berechnen. In dem Stabe S ist die induzierte EMK in der gezeichneten Stellung e = E' • sin y.

in den rechts davon liegenden der Reihe nach

E' • sin (x + a) E' . sin (z + 2 «) u. s. w.

Wir können auf diese Weise um den ganzen Umfang eines Ankers von beliebiger Polzahl und Stabzahl die in den Stäben induzierten EMKK berechnen. Den Ausgangspunkt S, der zweckmäßig durch den Winkelabstand X dieses Punktes von einem Polanfang A bezeichnet wird, können wir dabei beliebig wählen. Wenn wir die Länge eines Polbogens

ABLA
[image: ]


annehmen, so wird der Ankerumfang eines p-poligen Motors durch das Produkt p . 7 dargestellt, und es wird daher wenn mit Nk die Zahl der Stäbe am Ankerumfang bezeichnet wird.

Die Stromstärke.in den einzelnen Stäben läßt sich berechnen, wenn wir die Verbindungsringe als widerstandslos annehmen. Es ist dann nämlich zwischen zwei benachbarten Stabenden keine Potentialdifferenz nötig, um einen Strom durch das dazwischenliegende Ringstück zu treiben, und es besitzen daher alle Punkte je eines Ringes gleiches Potential. Aber auch die beiden Ringe haben dasselbe Potential, wie sich durch folgende Überlegung zeigen läßt.

Wir wissen zwar vorläufig noch nicht, nach welchem Gesetz die Ströme in den Stäben fließen, aber es läßt sich beweisen, daß bei einer Relativbewegung zwischen Anker und Feld eine Umkehrung der Stromrichtung in jedem Stabe stattfinden muß. Angenommen, das Feld stünde fest und der Anker würde gedreht, so muß es mit dem Feld stillstehende Stellen geben, bei deren Passieren in den Stäben Ströme mit positiven, andere Stellen, bei denen Ströme mit negativen Vorzeichen fließen, falls in dem System überhaupt Ströme entstehen können. Diese letzte Bemerkung ist nötig, denn es sind Systeme denkbar, in welchen kein Strom entstehen kann, trotzdem EMKK induziert werden, z. B. bei einem Kurzschlußanker mit 3 Stäben in einem 6 poligen Felde. Sämtliche EMKK besitzen in diesem Falle gleiches Vorzeichen, und die beiden Ringe haben dann natürlich eine Potentialdifferenz gegeneinander.

Wenn daher überhaupt Ströme in dem System entstehen können, muß es solche mit positivem und solche mit negativem Vorzeichen geben, und deren algebraische Summe muß Null sein. Wenn daher ein Stab in einer gewissen Stellung des Ankers Strom führt, so muß dieser Strom während einer Umdrehung mindestens einmal seine Richtung gewechselt haben. Dieser Richtungswechsel bedingt, daß jeder Stab stromlos werden kann, und dies ist natürlich nur möglich, wenn keine Potentialdifferenz zwischen beiden Ringen besteht. Wir haben somit bewiesen, daß alle Teile widerstandsloser Ringe Punkte gleichen Potentials sind.

Diese Forderung kann nur dann erfüllt werden, wenn die ganze in einem Stabe induzierte EMK dazu aufgebraucht wird, um einen Strom durch den Stab zu treiben. Wird daher mit e diese EMK, mit i der Strom in dem Stabe, mit w der Widerstand eines Stabes bezeichnet, so muß die gesamte EMK e durch den im Stab auftretenden Spannungsverlust i . w verbraucht werden. Es wird daher der Momentanwert des Stabstromes

. e i =-- W

sein. Die EMK ist in einer beliebigen Stellung des Stabes S (Fig. 97 b)

e — E' • sin X.

Daher wird

E'

Die maximale Stromstärke herrscht, wenn sin 2 = 1 ist und wir deshalb

setzen, und wir gelangen schließlich zu dem Ausdruck

i = J' • sin X,

aus welchem wir ersehen, daß der Strom in einem Stabe genau nach dem gleichen Gesetz variiert, wie die in dem Stabe induzierte EMK.

Wir können nun in die Fig. 97 b die Ströme in den Stäben der Richtung und Größe nach ein zeichnen, dagegen können wir noch nicht angeben, wie sich diese Ströme in den Ringen verteilen, wenigstens nicht, wenn sich der Anker in einer beliebigen Stellung befindet. In einer einzigen besonders ausgezeichneten Stellung können wir von dem Strom eines einzigen Stabes angeben, in welcher Weise sein Verlauf im Ring sein muß. Führt nämlich der Stab S, Fig. 97 c, seinen maximalen Strom J', so muß sich J' im Ring in zwei gleiche Teile zerlegen, und es muß also sowohl nach rechts wie nach links -2 abfließen.

Dieser Schluß ist deshalb gerechtfertigt, weil in dieser Lage des Stabes S die rechte und die linke Ankerhälfte absolut symmetrisch sind, in Bezug auf Stabzahlen, EMKK und Ströme. Hat der Anker (von beliebiger Polzahl) eine gerade Anzahl von Stäben, so liegt dem Stab S diametral ein Stab gegenüber, bei ungerader Stabzahl fällt der Diameter genau zwischen zwei Stäbe.

Dieses Resultat ist aber sehr wertvoll, weil es uns gestattet, aus der Größe des maximalen Stabstromes den Strom in einem

Heubach, Drehstrommotor.                               18

Ringsegment in jeder beliebigen Ankerstellung zu ermitteln, wenn wir das Gesetz kennen, nach welchem der Ringstrom variiert. Um dieses Gesetz zu finden, beschreiten wir denselben Weg, der uns zur Ermittlung der Gleichungen geführt hat, mittels deren wir die Stabströme berechnen können; wir nehmen also an, daß die Stäbe widerstandslos, die Ringe aber mit Widerstand behaftet sind.
[image: ]

Durch dieselben Überlegungen, die wir in Bezug auf widerstandslose Ringe machten, gelangen wir unter der Annahme, daß die Stäbe widerstandslos sind, zu dem Resultat, daß alle Stäbe gleiches Potential haben müssen. Da die Stäbe einesteils widerstandslos, andernteils der Sitz der EMKK sind, müssen wir uns die EMKK in den Knotenpunkten, d. h. in den Verbindungsstellen der Stäbe mit den Ringen wirksam denken. Über die Größe der Potentiale an den Knotenpunkten werden wir uns am klarsten, wenn wir annehmen, daß sämtliche Stäbe das Potential Null besitzen. Wird in einem Stab die EMK e induziert, so hat der eine

e

Knotenpunkt des Stabes das Potential + -9, der andere Knoten-

e

punkt das Potential — -9. In diesem Sinne sind die Potentiale in den Knotenpunkten nur von der halben Größe der in den Stäben induzierten EMKK aufzufassen. Diese Vorstellung ist zwar korrekt, sie verursacht aber manche Unbequemlichkeiten für die Rechnung. Wir können diese Unannehmlichkeiten dadurch umgehen, daß wir den einen Ring widerstandslos, den anderen aber mit doppeltem Widerstand annehmen. Bezeichnen wir daher den wirklichen Widerstand eines Ringstückes zwischen zwei Stäben mit R, so müssen wir für die kommenden Ableitungen diesen Widerstand

(2 R)

annehmen. Das Potential in den Knotenpunkten ist dann den in den zugehörigen Stäben induzierten EMKK gleich.

Befindet sich die Mitte des Ringsegmentes R, Fig. 98 b, im Abstand X von einem Polanfang A, so ist die EMK im Knotenpunkt S1

	
• =F sin (x + £)



und im Knotenpunkt S2

	
	
e, = F • sin(z--§) •





Damit alle Stäbe gleiches Potential haben können, muß die Potentialdifferenz e, — e, gleich sein dem Produkt aus dem Widerstand (2 R) und der Stromstärke iR, welche durch diesen Widerstand fließt.

Daher wird

E‘[.( « \ • ( c \ 1 iR = (2x) sin x 2)—sin 2—2)

Wenn wir e, und e, für alle möglichen Werte von X graphisch darstellen, so gelangen wir zur Fig. 98 c, und die schraffierte Fläche stellt die Differenz e, — e2 dar. Da

sin x+2) — sin z—%) =2 ' sin 2 • cos z ist, kann die letzte Gleichung auch in der Form geschrieben werden:

2E c ‘x =2 n 2 O8 %*

Die einzigen Variablen in dieser Gleichung sind iR und X; iR wird ein Maximum, wenn cos X seinen Maximalwert — 1 erreicht, also X = 0 ist. Bezeichnen wir die maximale Stromstärke im Ring mit JR, so erhalten wir demnach

v _ 2E‘    • «

	
*A    (2%) 2



und für einen beliebigen Momentanwert

iR = JA • cos x

Wir kennen nunmehr das Gesetz, nach welchem der Stabstrom i in einem Kurzschlußanker mit widerstandslosen Ringen variiert, und ebenso das Gesetz, nach welchem der Ringstrom iR in einem Kurzschlußanker mit widerstandslosen Stäben variiert. Es ist nämlich

i = J' • sin x | ip = JR-cos z J

Ob diese Gesetze auch dann gelten, wenn sowohl die Stäbe als die Ringe Widerstand besitzen, wissen wir noch nicht, denn es wäre möglich, daß der rein sinoidale Charakter der Stab- und Ringströme in diesem Falle alteriert würde. Wir wollen jedoch vorläufig annehmen, daß obige beiden Gleichungen auch dann Gültigkeit haben, wenn Stäbe und Ringe mit Widerstand behaftet sind, und wir werden später an der Hand des Schlußresultates beweisen, daß diese Annahme zulässig ist.

Fig. 99 b stellt einen Kurzschlußanker dar, in welchem sich ein beliebiger Stab S genau unter einer Polmitte befindet, er führt daher seinen Maximalstrom J', und wir wissen nach Früherem, daß sich dieser Strom in den Ringen in zwei gleiche Teile zerlegt. Es ist daher in dieser Stellung des Ankers

J‘

R2 *

iR läßt sich noch in anderer Weise ausdrücken, nämlich durch die Gleichung

i = JA • cos x.
[image: ]

und da in der gezeichneten Stellung

7      c

X = 2     2~ ’

wird

iR =VR sin 2 •

Durch Gleichsetzen der rechten Seiten der letzten und viertletzten Gleichung erhalten wir schließlich

J'

	
	
2 • sin 2





Die maximale Stromstärke J' in einem Stabe können wir mittels der am Anfang dieses Abschnittes angegebenen Beziehung für einen Anker mit widerstandslosen Ringen berechnen; besitzen die Ringe Widerstand, so gilt diese einfache Beziehung nicht mehr. Um die jetzt gültige Gleichung aufzustellen, wählen wir folgenden Weg.

Befindet sich der Anker in einer solchen Stellung, Fig. 99 c, daß die Mitte eines Ringsegmentes R unter einem Polanfang steht, so führt dieses Segment den maximalen Ringstrom JR, und der Strom in dem Stabe S ist

i = J • Sin —o •

Die im Stabe S induzierte EMK, deren Größe

e = L • sin —o

ist, wird verbraucht, um den Strom i durch den Stab, und den Strom JR zweimal durch ein halbes Ringsegment zu treiben. Ist der Widerstand eines Ringsegmentes = R, und der eines Stabes = w, so muß demnach

e = i • w — JR • R oder

. ex                                ,    —

E • sin —o — W • J - sin -=— JRR

sein. Ersetzen wir JR durch den in der fünftletzten Gleichung angegebenen Ausdruck, dessen Zähler und Nenner wir außerdem mit sin -y multiplizieren, so erhalten wir sin o E' • sin — = w ■ J ‘ ■ sin -—+ R • J ‘---------- 2         2      09«

2 sin" 9

und wenn wir endlich die Maximalwerte des Stromes und der EMK durch deren Effektivwerte ersetzen, wird


E, == J2 w —




o • 9 C 2 • sin2-9



demnach

J2

w ----

2 • sin2%


Sind die Gleichung



Ringe widerstandslos, also R = 0, so wird obige

*2 =w Der Quotient R ----

2 • sin? ~ -—-=1+


R

2 w • sin2



W gibt an, um wieviel sich' scheinbar der Widerstand eines Stabes erhöht, wenn die Ringe Widerstand besitzen. Ein Kurzschlußanker mit den Stabwiderständen W und den Ringsegmentwiderständen R verhält sich daher so, wie ein Kurzschlußanker mit widerstandslosen Ringen und den Stabwiderständen

w --- o • 9 C

2 • sm- 9

Dadurch haben wir auch den Beweis erbracht, den wir vorher schuldig geblieben sind, nämlich, daß auch dann die Ströme in den Stäben und in den Ringsegmenten genau nach einer Sinus-resp. Kosinusfunktion variieren, wenn sowohl Stäbe als Ringe mit Widerstand behaftet sind.

Wir können in den letzten Gleichungen den Winkel - durch die Phasenzahl aus drücken.

Die Phasenzahl eines Ankers mit NK Stäben ist

und deshalb wird

Es wird dadurch der mehrfach vorkommende Ausdruck

2 • sin- — = 2 • sin” ——-- 2            2 a

Trägt man in ein rechtwinkliges Koordinatensystem auf der x-Achse die Phasenzahl a, auf der y-Achse die Werte der Funktion

1 )     9   • 2   7 2 • sin- ——

2 a

auf, so wird man durch den parabelähnlichen Charakter dieser Kurve unbedingt darauf gebracht, zu untersuchen, ob sich y nicht als eine einfache Funktion von a darstellen läßt. Man erhält unschwer, daß mit großer Annäherung,

y = 0,2 (1 + a?).

Würden wir statt des Sinus einfach den Bogen einführen, so erhielten wir

9

y = — • a? = 0,203 • a2,

aber diese Gleichung liefert wesentlich ungenauere Näherungswerte wie die vorhergehende.

Wir erhalten demnach folgende Gleichungen: Die Phasenzahl
[image: ]

Der scheinbare Widerstand eines Stabes des Kurzschlußankers

R         R —

“*=“+    97  P“+ 0,2(1 + »») • ' (146)

2 • sin2 ——

2 a

Wie gering die Abweichungen der Näherungsformel gegenüber der exakten sind, zeigt nachstehende Tabelle für verschiedene Phasenzahlen. Man kann sich daher für die Praxis für alle Fälle der äußerst bequemen Näherungsformel bedienen.
[image: ]

Fig. 100.



	
a
	
1
	
0,2 (1 + a2)
	
Abweichung des Näherungswertes in °


	
2 • sin2 n

2 • a


	
1,5
	
0,667
	
0,65
	
— 2,3


	
2
	
1,000
	
1,000
	
0


	
2,5
	
1,448
	
1,45
	
+ 0,1


	
3
	
2,000
	
2,000
	
0


	
4
	
3,416
	
3,40
	
-0,6


	
15
	
45,8
	
45,2
	
— 1,3


	
30
	
183
	
180,2
	
— 1,5


	
45
	
410
	
406
	
— 0,9


	
90
	
1632
	
1620
	
— 0,8




Die Stromverteilung in einem Kurzschlußanker läßt sich sehr übersichtlich graphisch darstellen. Fig. 100 zeigt einen 13-phasi-gen Kurzschlußanker, in welchen die Anordnung der Stab- und Ringströme eingezeichnet ist. Der maximale Ringstrom ist

J = 79 =4,183.

	
2 • sm -—


	
52.    Günstigste Dimensionierung der Käfigwicklung.





Für die Praxis ist die Frage von Bedeutung: Wie müssen die Stäbe und Ringe einer Käfigwicklung dimensioniert werden, damit bei möglichst geringem Kupferaufwand ein möglichst günstiger Effekt erzielt wird. — Diese Frage läßt sich am leichtesten lösen, wenn man ein gewisses Kupferquantum als gegeben annimmt und nun untersucht, wie dasselbe auf Stäbe und Ringe zu verteilen ist, damit der scheinbare Widerstand WK eines Stabes ein Minimum wird.

Der wirkliche Stabwiderstand ist

wenn mit b die Stablänge (Ankerbreite), mit q dessen Querschnitt und mit c die Leitfähigkeit des Kupfers bezeichnet wird. Bezeichnen wir ferner mit Q den Querschnitt eines Ringes, mit L den mittleren Umfang (ungefähr = Ankerumfang) desselben und führen wir die Beziehung ein

so erhalten wir den Widerstand eines Ringsektors

R --L CNk y 9

Da Nk Stäbe auf dem Anker vorhanden sind, wird das Volumen sämtlicher Stäbe

= q • b • Nk ,

das der beiden Ringe

= 2 • q ■ y • L,

mithin das als konstant angenommene totale Kupfervolumen

V=q.b.N+2.q.y.L.

Hieraus läßt sich q ermitteln, es ist nämlich

V

I-b.Nk+2yL°

Führt man in die Gleichung

R WL == w —-- 2 ■ sin- ——

2 a

die für w und R in Gleichung (a) und (b) angegebenen Ausdrücke ein, indem man gleichzeitig für q die rechte Seite der vorletzten Gleichung setzt, so erhält man

b2 • N, + 2 • b • y • L b • L • N, + 2 • y • L2 Wk =       C.Y       1        —-----— •

2 • V • N. • y • sin2 —

Bildet man den Differentialquotienten der beiden Variablen Wk und y, und setzt man denselben gleich Null, so wird

daher

y=(0)—1—

\ q /   .97

4 • sin2 ——

Wenn demnach

----------- 010,1 (1 + a?) . • • (147) 2:sin 2a gemacht wird, ist der scheinbare Widerstand Wk der kleinste, der sich mit dem verwendeten Kupferquantum erzielen läßt. Der unter dem Wurzelzeichen stehende Ausdruck gibt einen Näherungswert, wie im vorhergehenden Kapitel gezeigt wurde.

Nachdem wir festgestellt haben, in welchem Verhältnis die Querschnitte q und Q stehen müssen, wenn das Material am günstigsten ausgenützt werden soll, können wir das gewonnene Resultat in eine etwas bequemere Form bringen; denn beim praktischen Rechnen bestimmen wir niemals das für den Rotor disponible Kupferquantum, sondern wir berechnen, welchen Widerstand Wk der Käfiganker haben muß, damit der Motor den in Bezug auf Anzugsmoment, Anlaufstrom oder Wirkungsgrad (Schlüpfung) gestellten Anforderungen entspricht.

Wenn wir in die Gleichung (146) die unter (a) und (b) angegebenen Ausdrücke einführen, erhalten wir

[image: ]



L

—    • 7

Nk" sin 2a

und es wird der Stabquerschnitt, wenn Wk bekannt ist und wir die mittlere Länge eines Kurzschlußringes

L=Dn

setzen, gefunden

_1 64 Da 101/64 2-D:n-V0,1(1+a2)) (148) CWx N.sin"_ C:“x Nk '

Der Ringquerschnitt wird

Q =-----I----- 9 q • 10,1 (1 + a?) .   ... (149)

2:sin 2a

	
	
53.    Allgemeine Gleichungen der Kurzschlußanker.





Wie bereits erwähnt, lassen sich die Kurzschlußanker in verschiedener Weise ausführen, mit Käfig-, Serien- und Schleifenwicklung. Um allgemein gültige Gleichungen zum praktischen Gebrauch aufstellen zu können, müssen wir die Eigentümlichkeiten dieser 3 Ausführungsformen etwas näher betrachten und miteinander vergleichen.

	
	
1.    Die Käfigwicklung.


Die Zahl der in Wicklung immer







Serie geschalteten Drähte ist bei dieser und da der Nutenfaktor k bei allen Kurzschlußankern ebenfalls


N2 = l



k=1 ist, wird die in einem Stabe induzierte EMK nach der Gleichung berechnet

E, = 1,11 • c • B,’ • Q, • I, • 10-8 .

Diese EMK ruft einen Stabstrom von der Größe

hervor, wobei WK den scheinbaren Stabwiderstaud vorstellt, wie er nach den Ableitungen im 51. Abschnitt ermittelt werden kann. Um die vom Käfiganker entwickelte Zugkraft berechnen zu können, müssen wir uns der Ableitung der allgemeinen Zugkraftsgleichung (110) erinnern. Diese Gleichung lautet:

P = 10,2 • 1,11 • c • B,’ • k, • a, • N, ■ J, • b • 10 8 .

Würden wir einfach für a, die Phasenzahl des Käfigankers einführen und N, = 1 setzen, so würden wir ein unrichtiges Resultat erhalten. Wir müssen uns vergegenwärtigen, daß

10,2-1,11 - c-B,’. k, J,b. 10-8

die von einem Stabe ausgeübte Zugkraft darstellt, wenn derselbe vom Strom J, durchflossen wird. Bei einem gewickelten Phasenanker sind a . N, solcher Stäbe vorhanden, bei einem Käfiganker dagegen Nk Stäbe, und daher ist in die Zugkraftsgleichung (110) für a, . N,

Nk = a*P einzuführen. Die Zugkraft des Käfigankers ist daher

P = 10,2 • 1,11 • c • B,’ • N, • J, • b • 10-8 . . . (150)

Das Übersetzungsverhältnis der Ströme (Gleichung 113) wird demgemäß

J, C3 k,-a-N,               ,..

J m.N) ......(11

	
	
2.    Die Serienkurzschlußwicklung.





Die in die Nuten eingelegten Stäbe lassen sich nur dann zweckmäßig in Serie schalten, wenn die totale Nutenzahl des Rotors, für welche wir die Bezeichnung Nk beibehalten wollen, ein geradzahliges Vielfaches der Polzahl p ist. Die zu je einem Serienstromkreis vereinigten Stäbe haben dann den Abstand der Polteilung T, es sind immer p solcher Stäbe in Serie geschaltet. Es wird daher

No = p und k, der Spulenfaktor, bleibt 1. Der Widerstand W, ist natürlich der Summe von p Stabwiderständen gleich, und es ist der Strom im Rotor


J,=%. W2

Die Phasenzahl des Ankers ist, wie beim Käfiganker,

_ N, 0 p

Um Zugkraft und Übersetzungsverhältnis der Ströme bestimmen zu können, müssen wir zuerst berücksichtigen, daß die Wicklung in verschiedenerWeise ausgeführt werden kann. Legen wir in jede Nute nur einen Stab, so ist die Anzahl der Stromkreise a,, also gleich der Phasenzahl. Diese Anordnung wird zwar angewendet, es sind aber hierbei die Verbindungen an den Kopfseiten der Stäbe ziemlich schwierig auszuführen; denn man muß entweder kompliziert gekröpfte Verbindungsstücke anbringen, oder gabelförmige, nach Evolventen gekrümmte Blechstücke. Weitaus häufiger verwendet man aber Gitterköpfe, ganz in derselben Weise wie bei den meisten Gleichstromankern, und diese Konstruktion verlangt, daß die Stabköpfe in zwei Ebenen liegen, was sich am bequemsten erreichen läßt, wenn pro Nute zwei Stäbe angeordnet werden. Die Zahl der in Serie geschalteten Drähte bleibt auch in diesem Falle N, = p, dagegen wird die Anzahl der Stromkreise nunmehr doppelt so groß wie die Phasenzahl.

In den Gleichungen läßt sich die verschiedene Möglichkeit der Wicklungsanordnung am einfachsten dadurch berücksichtigen, daß man die Anzahl der Stäbe pro Nute = S einführt, wobei S im allgemeinen nur zwischen 1 und 2 variiert.

Die Zugkraftsgleichung wird dann

P = 10,2 • 1,11 • c • B2'• Nk • S • J.j • b • 10”8 . . (152)

und das Übersetzungsverhältnis der Ströme

J,_ C,_k,N,-a,              9

J, — C, — S • Nk......(105

	
	
3.    Die Schleifenkurzschlußwicklung.





Da je zwei Stäbe zu einer Schleife vereinigt werden, wird die Drahtzahl

N,=2.

Die Nutenzahl Nk muß gerade sein, damit Schleifenwicklung möglich ist, wenn nur ein Stab pro Nute (also S = 1) vorhanden ist. Wird dagegen S = 2 gewählt, so läßt sich Schleifenwicklung bei jeder beliebigen Nutenzahl ausführen. Ist Nk ein gerades Vielfaches von p, so kann der Wicklungsschnitt so groß gewählt werden, daß die beiden zusammen verbundenen Stäbe um die Polteilung T auseinanderstehen, und in diesem Falle ist der Spulenfaktor k — 1. Ist aber Nk kein Vielfaches der Polzahl, so ist der Schnitt von T verschieden, und k ist kleiner als 1. Die günstigste Materialausnützung findet statt, wenn der Schnitt nur so wenig als möglich kleiner als T gewählt wird, und man kann dann k = 1 beibehalten, denn die Abweichung von der Einheit ist bei den üblichen Nutenzahlen nur verschwindend klein.

Als Widerstand des Rotors ist die Summe zweier Stabwiderstände aufzufassen, und die Anzahl der Rotorstromkreise wird

Nk-S

2

Die Gleichungen der Zugkraft und des Übersetzungsverhältnisses sind identisch mit denen des Serienkurzschlußankers.

	
	
4.    Allgemeine Gleichungen der Kurzschlußanker.





Wir erhalten demnach folgende Beziehungen:


	
N, =1

n2 = p
	
bei Käfigwicklung,

bei Serienkurzschlußwicklung,
	
■     . . (154)


	
N2 = 2
	
bei Schleifenkurzschlußwicklung,
	



und die im Rotor induzierte EMK ist

E, = 1,11 • c-N- B/ • Q,n, 10-8 .... (155)

Der Widerstand des Rotors ist, wenn mit w der Widerstand eines Stabes, mit R der eines Ringsektors bezeichnet wird:

Wa = w +--bei Käfigwicklung,

	
2 • sin? 2a                                      (156)



W2 = p . w               bei Serienkurzschlußwicklung,

	
	
W2 = 2 • w               bei Schleifenkurzschlußwicklung.





Die Phasenzahl ist a= k,........(157)

P wobei Nk = Nutenzahl des Rotors. Die Zugkraft wird, wenn S = Stabzahl pro Nute

P = 10,2 • 1,11 • c, • B,’ • N, • S • J3 • b • 10-8 . . (158) und das Übersetzungsverhältnis der Ströme

— _ J2 _ C3 _k,-N1.J1


(159)



J J C, Nk • S - •

Achtes Kapitel.

Zusammenstellung der Formeln für den praktischen Gebrauch.
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54.    Ableitung einer Dimensionierungsformel.



Die Berechnung eines Motors für eine gegebene Leistung beginnt damit, daß die Dimensionen desselben schätzungsweise angenommen werden müssen. Im Verlauf der Rechnung stellt sich dann heraus, ob die ursprünglich angenommenen Dimensionen beibehalten werden können, oder ob und in welcher Weise dieselben mit Rücksicht auf Erwärmung, Wirkungsgrad etc. geändert werden müssen. Um eine Gleichung abzuleiten, welche die oberflächliche Dimensionierung ermöglicht, schlagen wir folgenden Weg ein.

Die allgemeine Gleichung der Zugkraft lautet

P = 10,2 • 1,11 • Cj • k, • B‘, • a2 • N2 • J2 • b • 10-8 und sie ist wirksam am Ankerumfang bei einer Geschwindigkeit von

D • A • n

Centimetern pro Sekunde. Die Multiplikation beider Gleichungen ergibt die mechanische Leistung des Motors in kgcm/sek. oder in
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PS nach Division durch 7500. Multiplizieren wir endlich beide Seiten der Gleichung mit 736, so erhalten wir

- pe 10,2 • 1,11 • 736 .10-8

736 • PS =---------------------C2 • k3 • B 2 • a2 • Ng • J2 • b • D • n • n DU • (000 und die linke Seite der Gleichung stellt die Nutzleistung des Motors in elektrischen Einheiten, in Watt dar.

Das Produkt a, . N, . J, stellt die totale Anzahl der Ampere-Stäbe auf dem Rotor dar, und durch Division mit dem Anker-umfang Da erhalten wir die Anzahl der Amperestäbe pro 1 cm Ankerumfang, eine äußerst praktische Zahl, welche ein deutliches Bild von der Beanspruchung des Rotors gibt. Arnold hat angegeben, daß die Amperestäbe pro 1 cm Ankerumfang bei Gleich-Strommaschinen durch eine Gleichung von der Form

Nu - u • V D

als Funktion des Ankerdurchmessers dargestellt werden können, und diese Beziehung ist auch bei Drehstrommotoren zulässig, wenn u von entsprechender Größe gewählt wird1). Wir erhalten demnach

3

/—■            2 a2 • N2 • J2 = D • 7 • u • V D = u • 7 • D .

Der Koeffizient c2 schwankt bei Zweiphasenankern am meisten, nämlich je nach der Nutenzahl pro Spulenseite zwischen 0,707 und 0,530. In die Dimensionsformel werden wir einen Mittelwert für c, einsetzen, und zwar den, der einer sinoidalen Feldanordnung entspricht, nämlich

c2 = 0,637.

Der Koeffizient k2 variiert ebenfalls, er beträgt 0,9 bei einem vielnutigen Zweiphasenrotor, 1 bei einem Kurzschlußanker. Wir können ihn aber für den jetzigen Zweck als konstant annehmen, denn in praxi verlangt man auch von einem Motor, daß er dieselbe Leistung abgibt, gleichgültig, ob er mit Phasenanker oder mit Kurzschlußanker geliefert wird. Wir setzen also

k, = 1.

Führen wir diese Ausdrücke in unsere obige Gleichung ein, so erhalten wir


5

• u • B‘, • n • b . D 2




736 • PS =



10,2 • 1,11 • 736 • 0,637 • 72 60 ■ 7500 • 10%

n • B‘2

8,6 • 10%

Der Koeffizient u variiert zwischen 16 und 24; B’,, das übrigens nicht viel von B|, der maximalen Luftinduktion verschieden ist, variiert bei den gebräuchlichen Motoren zwischen 4000 und 5000. Das Produkt u . B‘, ist aber trotz der bedeutenden Variationen seiner Faktoren ziemlich konstant, wie sich auch leicht einsehen läßt. Je größer nämlich n und damit die Anzahl der Amperestäbe pro 1 cm Ankerumfang gewählt wird, um so größer müssen die Nuten werden, um das Kupfer unterzubringen, desto kleiner werden aber die Zahnquerschnitte, und folglich muß B‘, entsprechend kleiner genommen werden, um eine übermäßig große Zahninduktion zu verhindern. Vom physikalischen Standpunkt aus läßt sich nicht entscheiden, welcher der beiden Faktoren, n oder B‘, zweckmäßig groß gewählt wird, denn es läßt sich auf die eine oder andere Weise ein guter Motor bauen. Vom kommerziellen Standpunkt aus empfiehlt es sich dagegen, B‘, möglichst groß zu wählen, denn vom Eisen ganz abgesehen, muß selbstverständlich darnach getrachtet werden, möglichst wenig Kupfer zu verwenden, das nicht nur einen sehr hohen Materialwert repräsentiert, sondern auch noch den Aufwand an hohen Wickellöhnen verursacht. In unsere Gleichung wollen wir das Produkt

u • B‘, = 80000

einführen. Wir können nun die Gleichung aufstellen

, = 8,6 10° . 736:Ps - 7900000 p-S.Ps (160) u • B           5                        n n • D 2

Auf diese Weise können wir die Ankerbreite b berechnen, wenn uns der Durchmesser D bekannt ist.

Für die Wahl des Durchmessers D sind verschiedene Gesichtspunkte maßgebend. Bei sehr rasch laufenden Motoren wird D mit Rücksicht auf die Wirkung der Zentrifugalkraft zu berechnen sein, und man wird so eine höchst zulässige Zahl für den Ankerdurchmesser finden. Umgekehrt wird man bei sehr langsam laufenden Motoren mit D möglichst hoch gehen, um wenigstens eine solche Umfangsgeschwindigkeit zu bekommen, daß dieselbe noch genügt, um eine Luftbewegung zur Ventilation des Motors hervorzurufen. Von großer Bedeutung für die Größe des Anker-durchinessers ist auch die Erwägung, daß die Polteilung T ein gewisses Maß nicht unterschreiten darf. Die Güte des Leistungsfaktors resp. die Größe der Streuungskoeffizienten 11, T2 hängt in hervorragender Weise von der Anzahl der Nuten pro Pol ab. Ist daher ein guter Leistungsfaktor vorgeschrieben, so ist damit auch eine Mindestzahl von Nuten pro Pol festgelegt, und um diese Nuten unterzubringen, darf T und damit D eine gewisse Größe nicht unterschreiten. Damit ein Motor überhaupt brauchbar ist, muß er mindestens 6 Nuten pro Pol haben, und T darf nicht unter 6 cm sinken, sonst werden die Nuten so schmal, daß nahezu die ganze Breite der Nuten von der Isolation ausgefüllt und der nützliche Querschnitt verschwindend klein wird.

Viel seltner wird man gezwungen sein, die Ankerbreite zuerst zu wählen und dann den erforderlichen Ankerdurchmesser zu suchen. Es sind jedoch solche Fälle denkbar, z. B. wenn die Raumverhältnisse nur eine ganz bestimmte Achshöhe des Motors zulassen. Die Gleichung (160) erhält dann die Form

	
	
—   7/8,6 • 108   736 • PS 27/736 • PS )  . D= 1---1— == 40  ---r—■   (161)





| u • B 2 n ■ b               | n • b

Häufig will man nicht die Dimensionierung mit der Wahl des Ankerdurchmessers oder der Breite beginnen, sondern man nimmt lieber das Verhältnis des Durchmessers zur Breite an, ein Fall,

1) Der Faktor 736 ist unter dem Wurzelzeichen behalten, damit der zu radizierende Ausdruck bei Motoren normaler Leistung größer als 1 ist und dadurch das Logarithmieren erleichtert wird. der immer dann gegeben ist, wenn eine schon vorhandene Type für andere Leistungen vergrößert oder verkleinert werden soll. Auch hierfür läßt sich Gleichung (160) umformen. Setzen wir

1=.........(162)

so wird

	
	
—    1/ 8.6.108    736 • PS , ’/ 736-PS ) ...





D=--Dr—  --—— == 14---,—  (103)

i u • B 2 n • Z               V n • Z

Die hier angegebenen Dimensionierungsformeln liefern sehr brauchbare Werte für Motoren, die von Strom mit 100 Polwechseln pro Sekunde gespeist werden. Es wird selten nötig sein, die mit der Dimensionsgleichung erhaltenen Zahlen für D und b wesentlich abzuändern; doch ist dies möglich, wenn anormale Anforderungen in Bezug auf Übertemperatur und Wirkungsgrad gestellt werden. Dann muß eben so lange gerechnet und geändert werden, bis die Resultate den gestellten Anforderungen genügen.

	
55.    0 und Nutenzahl.



Nachdem D und b mit Hilfe der Dimensionierungsformeln bestimmt sind, ist dadurch auch gleichzeitig die Größe des Luftzwischenraumes 8 festgelegt; denn da 0 so klein, als mechanische Rücksichten dies zulassen, gemacht werden soll, ist 8 eine Funktion der beiden anderen Größen. Einen ungefähren Anhalt für die Größe des 8 gibt die Kappsche Gleichung

0 (cm) = 0,02 + 1000 D.....(164)

In dieser Gleichung ist auf die Ankerbreite nicht Rücksicht genommen, es muß aber bei im Verhältnis zum Durchmesser sehr breiten Ankern 3 etwas größer genommen werden. Der Rechner muß in dieser Beziehung wissen, welche Genauigkeit der Arbeit

1) Der Faktor 736 ist unter dem Wurzelzeichen behalten, damit der zu radizierende Ausdruck bei Motoren normaler Leistung größer als 1 ist und dadurch das Logarithmieren erleichtert wird.

er von der Fabrik erwarten darf, und er muß sich bemühen, die Betriebsingenieure oder Meister davon zu überzeugen, daß die Qualität der asynchronen Motoren in ungeheuerem Maße von der exakten Arbeit abhängt. Über 2 mm geht man mit 8 selbst bei Motoren von 3 — 4 m Ankerdurchmesser nicht gerne, denn diese großen Motoren, die hauptsächlich für Wasserhaltungen und Förderanlagen gebraucht werden, haben gewöhnlich sehr geringe Tourenzahl, daher große Polzahl und kleines T; da sie außerdem gewöhnlich hohe Klemmenspannung haben und deshalb die Nutenzahl pro Pol nur eine relativ kleine sein kann, ist es nicht möglich, 8 größer zu machen, wenn noch ein einigermaßen anständiger Leistungsfaktor erreicht werden soll, cos 9max = 0,8). Bei schnell laufenden großen Motoren kann T und demgemäß auch 0 größer gewählt werden, was auch mit Rücksicht auf das bei höheren Tourenzahlen leicht auftretende Schlagen des Rotors erwünscht ist.

Die Größe der Polteilung, der gewünschte Leistungsfaktor und die Höhe der Klemmenspannung sind maßgebend für die Wahl der Nutenzahl pro Pol des Stators. Je höher die Klemmenspannung ist, desto mehr geht an Querschnitt der Nute für die Isolation verloren. Man muß daher mit Steigerung der Spannung entweder die Nutenzahl reduzieren und einen schlechteren cos qp zulassen, oder man muß die Leistung des betreffenden Modelles reduzieren. Wie schon mehrfach erwähnt, ist die minimal zulässige Nutenzahl pro Pol 6, wenn irgend möglich, wird sie aber zweckmäßig höher genommen. Nach oben ist dieser Zahl keine Grenze gesteckt, man wird aber kaum in die Lage kommen, mehr als 18 Nuten pro Pol anzuwenden, entsprechend A — 6 bei einem Dreiphasenanker, und es würde hierbei T schon ca. 40 cm betragen, was bei 111 = 100 einer Umfangsgeschwindigkeit von 40 m entsprechen würde. Von großem praktischen Vorteil ist es, wenn man die Nutenzahl pro Pol, wenigstens bei den normalen Modellen, so wählt, daß sie ein Vielfaches von 2 und 3 ist (sie also 6 oder 12 macht), damit die Statoren sowohl zwei- als dreiphasig gewickelt werden können.

Die Nutenzahl des Rotors kann bei einem Kurzschlußanker beliebig gewählt werden. Soll ein Rotor mit Schleifringen und Phasenwicklung verwendet werden, so kommt die Rücksichtnahme auf die Spannung, die wir beim Stator in Betracht ziehen mußten, in Fortfall, denn wir können die Rotorspannung beliebig annehmen.

Wenn möglich, ist die Anwendung einer Stabwicklung zu empfehlen mit 2 Stäben pro Nut, die Anker werden dann in der Fabrikation billig, bekommen ein schönes, sauberes Ansehen, sind sehr gut ventiliert, haben weniger Kopfstreuung und gestatten ein sehr gutes Ausnützen des Nutenquerschnittes. Ein weiterer Vorteil ist darin, daß die Nutenquerschnitte auch dann gut passen, wenn eine Kurzschlußwicklung angewendet werden soll. Bei Drahtwicklung sind nämlich wegen der ungünstigen Ausnützung des Nutenquerschnittes viel größere Nuten erforderlich als bei einem Kurzschlußanker, und wenn daher ein für Drahtwicklung gestanzter Rotor, wie es in der Praxis häufig vorkommt, plötzlich mit Kurzschlußwicklung versehen werden soll, so muß sehr viel Isolationsmaterial in die Nuten gepackt werden, was die Herstellung der Wicklung verteuert, außerdem höchstens Nachteile, sicher keinen Vorteil hervorruft. Bei großen Rotoren wird die Spannung selbst bei Stabwicklung in Serienschaltung unbequem hoch, sodaß sie wegen der besseren Isolation den Motor, insbesondere auch den Anlasser verteuern würde. In diesem Falle muß man durch Parallelschaltung der Rotorwicklung die Rotorspannung innerhalb einer angemessenen Größe halten; man geht selbst bei Motoren bis zu 1000 PS nicht gern über 500 Volt. Umgekehrt ist bei kleinen Motoren die Verwendung der Stabwicklung dadurch begrenzt, daß die Rotorspannung zu klein, resp. der Rotorstrom so groß wird, daß Schleifringe, Bürsten, Leitungen zum Anlasser und der letztere selbst verteuert werden, abgesehen davon, daß dann Übergangs widerstände und Spannungsverlust in den Anlasserleitungen den Wirkungsgrad empfindlich beeinträchtigen könnten. In solchen Fällen ist man natürlich gezwungen, Drahtwicklung zu nehmen. Man kann aber bei kleinen Motoren ganz ruhig bis zu ca. 50 Volt heruntergehen, nur ist es dann angezeigt, dem Installateur anzugeben, wie stark die Zuleitungen zum Anlasser gemacht werden müssen. Bei Rotoren mit Phasenwicklung ist die Sternschaltung der Dreieckschaltung vorzuziehen, sonst kann es vorkommen, daß die Motoren von selbst (bei offenem Rotorstromkreis) anlaufen, wenn sie infolge mangelhafter Fabrikation unsymmetrisch gebaut sind.

Die Nutenzahl des Rotors kann größer oder kleiner sein als die des Stators. Um ein gegebenes t zu erreichen, ist es in Bezug auf die Materialausnützung günstig, die Nutenzahl im Rotor höher zu wählen. Man vermeide, daß beide Nutenzahlen viele oder einen zu großen gemeinsamen Teiler haben. Der größte gemeinsame Teiler soll höchstens 3 . p sein, sonst tritt leicht „Kleben“ beim Anzug auf. Gleiche Nutenzahl ist natürlich unzulässig.

Die Frage, ob ein Rotor besser zwei- oder dreiphasig gewickelt werden soll, ist in Bezug auf die Güte und die Materialausnützung des Motors im letzteren Sinne zu beantworten. Dagegen kann der Preis des Anlassers die Anwendung eines zweiphasigen Rotors günstiger erscheinen lassen, wie im 79. Abschnitt angegeben ist.

	
56.    71, T2, T, Qi, Bi, Jm •



Die Phasenzahl a, und die Klemmenspannung E1 des Motors sind gegeben, die Dimensionen D und b, ferner 8 und die Nutenzahlen festgelegt. Um die Drahtzahl der Statorwicklung N1 bei der beabsichtigten Luftinduktion B| genau bestimmen zu können, benötigten wir eigentlich schon die Kenntnis des 11, denn die Induktion in Bezug auf den Stator ist (1 + T) . B|. 1 + T weicht jedoch nur um wenige Prozente von der Einheit ab, daher können wir zur Bestimmung der Drahtzahl N1 ganz ruhig die uns noch unbekannte Statorstreuung vernachlässigen. Die mittels der Gleichung

N _E10


. . (165)



	
1   1,11 • C, -k,. Q,: B:I ’



berechnete Zahl muß ja ohnedies auf einen möglichen Wert, der ein Vielfaches von a, . A, (der Nutenzahl pro Phase) sein muß, gebracht werden, damit alle Statornuten gleichmäßig bewickelt werden, und dies bedingt ja auch schon eine kleine Abweichung von dem ursprünglich beabsichtigten B|. Die Vernachlässigung des Faktors (1 — T1) ließe sich dadurch etwas kompensieren, daß man das berechnete N1 nach unten auf den nächstmöglichen Wert abrundet. Man kann aber auch einfach die nächstliegende mögliche Zahl wählen, gleichgültig, ob sie nach oben oder unten liegt. Nun ist uns die Drahtzahl pro Phase der Statorwicklung, ferner aus den Dimensionen des Motors die mittlere Windungs-länge 11, die natürlich- unter Berücksichtigung der Spulenköpfe gefunden wird, bekannt, und da wir den Statorstrom J, bei Normalleistung unter Berücksichtigung des verlangten cos g annähernd berechnen und den zulässigen Spannungsverlust im Stator aus dem Wirkungsgrad schätzen können, läßt sich mit großer Annäherung der Querschnitt q1 des Statordrahtes ermitteln. Nun müssen wir uns entscheiden, in welcher Form wir das Statorkupfer verwenden wollen. Kleine Querschnitte bis q = 20 werden gewöhnlich als Runddraht gewickelt; 5 mm-Draht dürfte aber schon als die oberste Grenze zu bezeichnen sein, welche sich noch als Massivdraht wickeln läßt. Für stärkere Querschnitte muß man Kabel nehmen, das man der besseren Raumausnützung halber nach einem Profilquerschnitt walzen lassen kann. Auch bei Ver-Wendung der stärkeren Massivdrähte kann es vorteilhaft sein, Profildraht zu verwenden, doch gehören geübte Wickler dazu, um den Draht so in die Nuten einzubringen, daß er stets flach, nie über Eck liegt, denn sonst würde das Gegenteil der beabsichtigten Wirkung erzielt.

Die Bestimmung des Querschnittes eines Profildrahtes oder Kabels geht Hand in Hand mit der Festlegung des Nuten quer-Schnittes. Die ungefähre Nutenbreite läßt sich berechnen aus dem Zahnquerschnitt, der erforderlich ist, um übermäßig hohe Induktionen und die dadurch bedingten Verluste, und Erwärmung zu verhüten. Es ist Sache der Übung, der Erfahrung und der Geduld, den günstigsten Nutenquerschnitt zu finden; selbst der erfahrene Konstrukteur und Rechner sieht sich häufig veranlaßt, nicht den zuerst angenommenen Querschnitt beizubehalten, sondern wiederholt zu untersuchen, ob sich nicht ein günstigerer finden läßt; gerade er weiß am besten, daß das Wohl und Wehe eines Motors hauptsächlich von der gut dimensionierten Nute abhängt. Alle anderen Fehler lassen sich verhältnismäßig leichter belieben, aber ein in den Nuten verrechneter Motor ist unrettbar Schrott. — Um diese Bemerkung zu begründen, sei angeführt, daß ein Motor, der mit falscher Drahtzahl gewickelt ist, für eine andere Spannung verwendbar bleibt, oder sich umwickeln läßt; wird ein Motor zu heiß, so läßt er sich für geringere Leistung verwenden; hat aber ein Motor ein ungenügendes cos Pmax also verrechnete Nuten, dann ist aus demselben selbst durch Umwickeln nichts zu machen. Dieselben Mißerfolge können durch fehlerhafte mechanische Herstellung der Nuten hervorgerufen werden. Insbesondere hängt die Entscheidung, ob offene oder geschlossene Nuten verwendet werden sollen, lediglich davon ab, wie sich der Rechner auf die Werkstatt verlassen kann. Bei richtiger Dimensionierung und exakter Ausführung ist die geschlossene Nute die beste, denn sie ermöglicht die denkbar günstigste Ausnützung der Motordimensionen, ist also am billigsten.

Ist die Nutenform und Dimension festgelegt, so kann die magnetische Leitfähigkeit derselben berechnet werden. In Fig. 101 sind die gebräuchlichsten Nutenquerschnitte dargestellt, und ihre Leitungsfähigkeit ergibt sich nach den Ausführungen des 48. Abschnittes für die Nutenform
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wobei

0,8 • B

cm

Br = Induktion im Stegeisen wird der Magnetisierungskurve Fig. 102 entnommen, nachdem Xem berechnet ist.

Der Querschnitt des Luftfeldes Q] ergibt sich nach der Gleichung (127) resp. nach der Näherungsformel (130) zu

1) Diese Näherungsgleichung resultiert aus der in Gleichung (146) enthaltenen Beziehung

----1,---= 0,2 (1 + a2).

2:sin22a
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Fig. 101.
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Fig. 102.




Q= p(D 4+(-20)2)202(4+3) (167)

und es wird demnach die Leitfähigkeit des Luftzwischenraumes über einem Stator- resp. einem Rotorzahn nach Gleichung (128) und (129)

, 4 I

5 0,8: 0-a, • A|


(168)



Q,

45 = 0,8.d.a,.A,

Der Koeffizient der Nutenstreuung kann daher berechnet werden, da uns alle Glieder der rechten Seiten der Gleichungen (122) und (123) bekannt sind. Es ist

,     4 • sin2 — 4        2 21 11

* — Ar, ' k, ' A,2 C1

2^--1


(169)



4v,          10                A°

= A. ‘ kj • V (1 + a,2) ’   29, — 1
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Tr, wird erhalten, wenn statt der Indices 1 die Indices 2 gesetzt werden. Die Koeffizienten c, k, v, re sind in die Tabelle Seite 302 aufgenommen.

Der Koeffizient der Kopfstreuung ist nach Gleichung (124)

k C1 • kj • a, • ‘1 • Qj

1,47


ci • k, • a, • 41




Ak = 0,92




log




log T + 0,11




(170)



= 0,0565 • d, 17 - 0,632 •


A-qn



h + b ist die mittlere achsiale Länge der Spulen, d = Durchmesser des blanken, runden Stator- resp. Rotordrahtes in Millimetern, q = Querschnitt einer Nute,

Kupferquerschnitt in einer Nute

" Totalquerschnitt einer Nute

Nur der Drahtdurchmesser d ist in Millimetern einzusetzen, alle übrigen Dimensionen in Centimetern.

Der totale Streuungskoeffizient des Stators, Rotors und Motors wird

[image: ]



(171)

T = T1 + 72 — TX • T2

Nachdem T1 bekannt ist, kann die Luftinduktion B| genau


berechnet werden, es wird



__________E:108__________


(172)



1     1,11 • (1 + 7) • C1 • k, • Ni • Q, • nx •

Um diese Induktion in der Luft hervorzurufen, ist ein Aufwand von

X,= 0,8 0 ..........(173)

Amperewindüngen erforderlich. Die maximale Induktion in den Zähnen wird

B=Ba+1)0,......(174)

wenn mit Qz der mittlere Querschnitt aller Zähne eines Poles bezeichnet wird. Die Induktion im Eisenrückschluß ist


B! =




c,B Q(1 + T)




2-Q.




(175)



wenn Qi den einfachen Jochquerschnitt bezeichnet. Da die Kraftlinienwege in den einzelnen Eisenquerschnitten der Zeichnung entnommen werden können, ist es leicht, mit Hilfe der Magnetisierungskurve die Amperewindungszahl zu berechnen, welche für

die Magnetisierung des Eisens aufgewendet werden muß. Bezeichnet man mit Xe die totale für das Eisen (also für p-Pole) erforderliche Amperewindungszahl, so wird die gesamte erregende Kraft des Motors

X = X, + X........(175)

m 1 e                               -    7

und nach Gleichung (98) wird der Magnetisierungsstrom


(176)



j = -..... .... m ai ■ 41 ‘ N

57. Koeffiziententabelle.


Die Gleichungen, mittels werden können, sind folgende:




	
a
	
A
	
C
	
*
	
»         *


	
2
	
1
	
0,707
	
1,000
	
0,707
	
2,000


	
2
	
2
	
0,530
	
0,923
	
0,707
	
0,687


	
2
	
3
	
0,549
	
0,910
	
0,707
	
0,325


	
2
	
* 4
	
0,530
	
0,906
	
0,707
	
0,184


	
2
	
5
	
0,536
	
0,904
	
0,707
	
0,118


	
2
	
6
	
0,530
	
0,902
	
0,707
	
0,0824


	
2
	
o
	
0,530
	
0,900
	
0,707
	
0


	
3
	
1
	
0,667
	
1,000
	
0,667
	
1,000


	
3
	
2
	
0,583
	
0,966
	
0,667
	
0,296


	
3
	
3
	
0,592
	
0,960
	
0,667
	
0,133


	
3
	
4
	
0,583
	
0,957
	
0,667
	
0,0749


	
3
	
5
	
0,588
	
0,956
	
0,667
	
0,0420


	
3
	
6
	
0,583
	
0,955
	
0,667
	
0,0290


	
3
	
o
	
0,583
	
0,955
	
0 667
	
0


	
2
	
1
	
0,707
	
1,000
	
0,707
	
2,000


	
3
	
1
	
0,667
	
1,000
	
0,667
	
1,000


	
4
	
1
	
0,652
	
1,000
	
0,652
	
0,586


	
5
	
1
	
0,648
	
1,000
	
0,648
	
0,382


	
6
	
1
	
0,642
	
1,000
	
0,642
	
0,268


	
o
	
1
	
0,637
	
1,000
	
0,637
	
0




deren die Koeffizienten berechnet

. 7T

k = an 2a so V1+(a:A).

A.sinon A-V1+a‘

	
2    a • A



Für c läßt sich eine exakte Gleichung nicht angeben, resp. sie würde äußerst unhandlich werden. Dagegen gibt es eine sehr bequeme Näherungsgleichung

28— 1 c 9 •--1... (179) 2a--— A°

Für T‘ erhalten wir

,   4 • w .7   10'0

7 - — c • k • A2 ' Sm 2a — c • k • A2 (1 + a2)


		
• (180)


	
10
	
A°


	
A V( + (a • A)2) (1 + a2)
	
2“ —1
	



	
58.    Die Konstanten C1, C2 etc.



Wir können nun das Diagramm zeichnen. Den Durchmesser bd des Diagrammkreises nehmen wir in willkürlicher Größe und erhalten die Konstante

C, = -........(181)

b d

u b, die Strecke, welche den Magnetisierungsstrom repräsentiert, wird

ub=r.bd=(,+1,+y.bd • • • (182)

Da uns der Magnetisierungsstrom durch Anwendung der Gleichung (176) bekannt ist, wird

C, = -’m.......(183)

u b

Den Rotorstrom können wir in einem beliebigen Belastungs-Stadium laut Fig. 28 entweder durch v s oder durch b s darstellen. Im Interesse der einfacheren Zeichnung des Diagrammes wählen wir b s, da wir uns dann die Berechnung und Zeichnung des Kreises ab sparen können. Wenn J, = C3 . b s sein soll, kann daher C3 nicht aus dem einfachen Übersetzungsverhältnisse der Ströme berechnet werden, sondern es ist noch der Faktor (1 — T1) zu berücksichtigen. Es wird daher


C3 = (1 + t0 • C2 •




kt - a, - Ni k, • a, • N,




— (1 + 7) • C2 •




k, • a, • N1

S -Nk




(184)



Die erste Gleichung gilt allgemein, der zweite Ausdruck ist für Kurzschlußanker bequemer, wie bei Ableitung der Gleichung (153) gezeigt ist. Die Konstante C,, welche die Ermittlung des Effektverbrauches, der Nutzleistung und der Verluste in jedem Belastungszustand ermöglicht, ist uns schon durch die Gleichung (57) bekannt. Es ist nämlich


(185)



C4 = C2 • a1 • Fi

Die Konstante C5, deren wir zur Berechnung der Zugkraft benötigen, läßt sich am einfachsten in der Form darstellen

o,=c, 10,2—0, 10,2,.....(186)

wenn T = Polteilung, II, = Polwechselzahl, v' daher die Umfangsgeschwindigkeit des synchron laufenden Motors ist. Die Ableitung dieser Beziehung ist sehr einfach. Im Falle eines verlustlos arbeitenden Motors wird Zugkraft und Wattkonsum durch ein und dieselbe Strecke x im Diagramm dargestellt. Es muß daher

W = C, ■ x

P=C,x sein. Hieraus folgt, daß

	
	
c, = c, ■ -P-





und dies führt zur Gleichung (186). Diese Beziehung bleibt selbstverständlich auch dann bestehen, wenn Verluste im Motor auftreten, denn die Berücksichtigung der Verluste erfolgt auf graphischem Weg im Diagramm dadurch, daß die Zugkraftslinie nunmehr kleiner wird als die Wattlinie.

Die Konstante

C

CFts .......(187)

wie in Gleichung (61) angegeben ist. Bei exakter Berücksichtigung des Statorwiderstandes ist endlich noch eine Konstante

C, = C, . ..........(188)

erforderlich, wie bei Entwicklung der Gleichung (67) gezeigt ist.

	
59.    Das Heylandsche Diagramm.



Der Einfluß der Ohmschen Widerstände der Stator- und Rotorwicklung wird im Heyland-Diagramm durch das Ziehen der Geraden b v und b r oder durch die beiden von h und m aus beschriebenen Hilfskreise Fig. 37 berücksichtigt. Die Winkel a und 3 sind für beide Konstruktionen dieselben. Man erhält nach den beiden Gleichungen (75) und (76)

,       C32          —

tg C = —T— • 21 • W1 • b d

tg (« + s) = -d (a, • w, • C% + a, • w, • C3)


(189)



C2 ___

= tg « H--c, a, • w2 • b d

Sollen auch die Eisenverluste zum Ausdruck gebracht werden, so muß im Diagramm die Lage des Punktes i bestimmt werden (Fig. 48), und es ist nach den Ausführungen des 26. Abschnittes


(190)



ui C

Ve, läßt sich aus den Dimensionen des Motors und der Eiseninduktion mit Hilfe der Eisenverlustkurve Fig. 103 berechnen.


20



Heubach, Drehstrommotor.

Der Eisenverlust im Rotor ist nur von untergeordneter Bedeutung, und es genügt seine Berücksichtigung nach der im 28. Abschnitt angegebenen Näherungsmethode. Zur Berechnung der Rotoreisenverluste V’ bei stillstehendem Rotor muß die Induktion B‘, eingesetzt werden zu


B‘2 == C1s‘ v‘
[image: ]

Fig. 103.




und es wird dann der Ersatzwiderstand, den wir an Stelle der Eisenverluste eingeführt haben,

Ve,


(191)



a, • (C3 • b s')2

Der Rotorwiderstand W2 ist daher aufzufassen als die Summe aus dem Ohmschen Widerstand w und diesem W., also

W2 = w + ..........(192)

und das so berechnete w2 ist in die Gleichung (189) einzusetzen.

Zu der Verlustkurve Fig. 103 mag bemerkt werden, daß sie im Verhältnis zu den anderseitig mitgeteilten Eisenverlustkurven ziemlich hohe Verluste ergibt, wie sie aber der Wirklichkeit entsprechen. Die Kurve ist auf Grund von Versuchsdaten, die an ausgeführten Motoren gewonnen sind, entworfen, und sie nimmt daher Rücksicht auf solche Verluste, deren Ursache und Ermittelung sich der Rechnung entzieht3). -

Der Reibungswiderstand läßt sich aus den Lagerdimensionen angenähert berechnen, und man kann auf diese Weise die Zugkraft Pr, welche am Ankerumfang wirken muß, um den Reibungswiderstand zu überwinden, ermitteln. Zweckmäßig macht man einen kleinen Zuschlag für den Luftwiderstand. Die Strecke b R, um welche sich die Verlustlinien im Diagramm nach rechts ver


schieben, ist




b.R- C; -




Vr

C,




(193)



Die letzte Beziehung wird man im allgemeinen anwenden, denn man pflegt die Reibungsverluste zu einem gewissen Prozentsatz der Maschinenleistung zu schätzen, wie dies im 29. Abschnitt angegeben ist.

	
60.    Das exakte Diagramm.



Bei diesem Diagramm wird genau wie beim Heylandschen u b d als Diagrammbasis aufgetragen. Zur Ermittlung des Koeffizienten s ist von u nach links senkrecht auf u d eine Gerade

um = —........(194)

C7 aufzutragen. C7 ist nach Gleichung (188) zu berechnen. In jedem Belastungszustand erhalten wir

und es sind die Strecken im Diagramm, welche

Induktion

Statorstrom

Rotorstrom             &

Statorwattkonsum Statoreisenverlust

darstellen, im Verhältnis _1 zu verkleinern, also mit & zu divi-dieren, dagegen mit 82 zu dividieren die Strecken, welche

•

Zugkraft

Nutzleistung 82

Rotorverluste

darstellen, wie dies im 16. Abschnitt besprochen ist. Da der Spannungsverlust im Stator durch diese Konstruktion berücksichtigt ist, haben wir in den Diagrammkreis nur eine Verlustlinie b s' Fig. 33 für die Berücksichtigung des W, einzuzeichnen, wobei die Lage dieser Linie durch die Beziehung festgelegt ist

(2        —

tg 8 = — — . a, • W2 • b d.....(196)

Soll der Eisenverlust berücksichtigt werden, so geschieht dies in Bezug auf den Rotor genau wie beim Heylanddiagramm durch eine Vergrößerung des Ohmschen Rotorwiderstandes um We nach den Gleichungen (191) und (192). In Bezug auf den Stator wird die in Figur 49 dargestellte Konstruktion angewendet, und es wird der Eisenverlust Ve, aus der Statorinduktion bei Synchronismus

B‘, = (1 + 7) .C,.ba. -mu .... (197) m b

berechnet. Dann wird die Abszisse des Mittelpunktes des kleinen I lilfskreises

und es kann die Kurve, auf der sich der Punkt li des Statorstromes u h bewegt, gezeichnet werden. An Stelle des Koeffizienten £ ist nun s' zu verwenden, wobei

(199)

Zur Berücksichtigung der Reibung erhalten wir den Punkt R

.  • mb mit genügender Genauigkeit, wenn wir £=——setzen, und es

wird dann

[image: ]



Neuntes Kapitel.

Beispiel zu Kapitel 8.

Berechnung eines Motors.

	
	
61.    Dimensionierung des Motors. — 62. Berechnung der Streuungskoeffizienten. — 63. Berechnung des Magnetisierungsstromes. — 64. Unterlagen zur Berücksichtigung der Verluste. — 65. Diagramm des Motors.



	
61.    Dimensionierung des Motors.



Um die praktische Anwendung der im 8. Kapitel zusammengestellten Formeln zu illustrieren, soll ein Motor mit möglichster Genauigkeit berechnet werden. Damit das Diagramm deutlich wirkt, müssen wir als Beispiel einen Motor von nicht zu hohem Wirkungsgrad wählen, denn sonst fallen die Strecken, welche die Verluste darstellen, so klein aus, daß sie in einer Zeichnung von dem Formate einer Buchseite nicht mehr mit der hier wünschenswerten Klarheit gezeichnet werden können. Damit das Beispiel einem wirklich praktischen Fall entspricht, müssen wir daher einen Motor mit kleiner Leistung wählen, und um die Aufgabe etwas zu erschweren, wollen wir einen 6 poligen Motor mit Schleifringen und relativ hoher Klemmenspannung berechnen. Die Daten des Motors seien

Leistung      = 1,5 PS,

Tourenzahl    = 1000 pro Minute,

Spannung    = 220 Volt,

Phasenzahl    = 3,

Polwechselzahl = 100.

Um die Aufgabe nicht zu sehr zu komplizieren, sollen bestimmte Vorschriften über cos c und Wirkungsgrad nicht gemacht werden, sondern wir wollen uns damit begnügen, den mittels der Dimensionsformel dimensionierten Motor möglichst gut zu berechnen.

Da uns die Wahl des Ankerdurchmessers und der Ankerbreite vollständig frei steht, wollen wir bei der Dimensionierung von A, dem Verhältnis der Ankerbreite zum Ankerdurchmesser, ausgehen, und wir wollen X so wählen, daß die Polflächen quadratisch werden. Wir erhalten

D • n

= = = 0,523

und aus der Dimensionsgleichung (163)


3 5 ______________

D-147/736 PS

/ nX




37 1,5 • 736 / 1000-0,523




3,5

V 2,11 = 17,3 cm.



daher wird

b = 17.3 • 0,523 = 9 cm.

Es wird daher der Umfang U

U = 54,3 cm

54 3

T = — = 9,05 cm b

v = 9,05 m,

denn die Umfangsgeschwindigkeit in Metern einer Maschine von 100 Pol wechseln ist gleich der Polteilung in Centimetern.

Die Nutenzahlen wollen wir so hoch als möglich wählen, um einen guten Leistungsfaktor zu bekommen, und wir können beim Stator bis auf 9 Nuten pro Pol gehen, wir erhalten dann eine Nutentei lung

tj = 1 cm, und dies dürfte im allgemeinen als die geringst zulässige Nutenteilung betrachtet werden.

Den Rotor wollen wir ebenfalls 3-phasig wickeln, und wir können bei diesem Rotor die Nutenzahl sicher nicht größer als im Stator wählen, denn die Rotornuten konvergieren gegen einander, und dadurch werden die Verhältnisse in Bezug auf die Rotorzähne viel ungünstiger als im Stator, dessen Nuten divergieren. Da wir im Stator die Nutenzahl pro Spulenseite

	
A, = 3



schon festgelegt haben, sind wir gezwungen

A,=2

zu machen, und wir kommen dadurch auf die geringste Nutenzahl, welche überhaupt zugelassen werden kann, denn A = 1 gibt so schlechte Resultate, daß dies praktisch nicht in Verwendung kommen kann.

Die Länge des Luftzwischenraumes wird nach der Kappschen Gleichung (164)

	
	
•=0,02 + -150 = 0,02 + 138 = 0,037 - 0,035 em.





Da bei einer Dimension von nur 0,35 mm anzunehmen ist, daß häufig große prozentuelle Abweichungen bei der Fabrikation auftreten, wollen wir, um dies zu berücksichtigen, die unempfindlichere offene Nutenform wählen, und wir können damit noch einen weiteren Vorteil verbinden. Ein so kleiner Motor erhält eine sehr hohe Drahtzahl, das Wickeln ist sehr mühselig, und die Wickellöhne sind daher unverhältnismäßig hoch. Das Einziehen der Drähte in geschlossene Nuten erfordert viel mehr Zeit als das Einbringen durch offene Nuten, deren Schlitze so groß sind, daß die Drähte durch diese eingelegt werden können. Damit das Wickeln auf diese Weise bei dem Motor auch dann, wenn er nur für 110 Volt ausgeführt wird, nach dieser Methode vorgenommen werden kann, muß die Schlitzbreite ca. 3 mm betragen. Um die übrigen Nutendimensionen festzulegen, müssen wir folgenden Weg einschlagen.

Halten wir an der Schlitzbreite von ca. 3 mm fest, so wird der Luftquerschnitt pro Pol

+ ___

QaT.b. ’  = 9,05 • 9:0,7 2 57 qcm.

Die Drahtzahl pro Phase können wir approximativ bestimmen, wenn wir uns über die Größe der Luftinduktion schlüssig werden. Wählen wir

BJ 2 5500,

so wird nach Gleichung (165)

O----———---—

	
	
	
1    — 1,11 • q • k, • Q B • II







127 • 108


9 640,



1,11.0,592 . 0,96.57 .5500 .100

wobei die Phasenspannung


220

73




= 127,



denn wir wählen unbedingt Sternschaltung, um die Drahtzahl möglichst klein zu bekommen. Die Stromstärke in einer Phase wird, wenn wir Wirkungsgrad und Leistungsfaktor auf 0,8 schätzen

T         736.1,5      _ ...

9= 3 • 127 • 0,8 • 0,8 A 45 Amp.

Wenn wir eine Drahtbeanspruchung pro 1 qmm von 81 9 3,5 Amp.

zulassen, erhalten wir einen Drahtquerschnitt von qi 9 1,32 qmm,

und dies ergibt einen Drahtdurchmesser von dj = 1,3 mm,

und der Durchmesser inkl. Isolation wird d‘, = 1,7 mm.

Die totale Drahtzahl einer Phase beträgt ca. 640, und da 18 Nuten pro Phase vorhanden sind, müssen in einer Nute

Drähte placiert werden; wenn wir uns aber überlegen, daß wir in der Gleichung zur Ermittlung der Drahtzahl erstens den Faktor 1 + T vernachlässigt, zweitens den Luft querschnitt zu gering angenommen haben, indem 0,7 nur in Bezug auf den Stator so klein wird, in Bezug auf den Rotor aber ungefähr

t. — 0,3      1,5 — 0,3

—--2— = ‘?— = 0,8

ta                1,5

wird, dürfen wir die Drahtzahl nach unten auf einen möglichen und bequemen Wert abrunden. Die Frage, in welcher Weise die Drähte angeordnet werden müssen, beantwortet sich von selbst. 4 Drähte würden, abgesehen von der Nutenisolation, schon 4 . 1,7 = 6,8 mm Nutenbreite beanspruchen, und die Zahninduktion würde dadurch unzulässig hoch werden. Dagegen ergibt sich aus einer überschlägigen Schätzung, daß 3 Drähte nebeneinander einen ge-nügend starken Zahn stehen lassen. Wir werden daher 3.12 oder, wenn wir aus obigen Erwägungen nach unten abrunden,

3 x 11 = 33 Drähte pro Nut

erhalten, und das Drahtbündel beansprucht einen Querschnitt von 5,1 X 18,7 qmm. Damit ist man aber in der Praxis noch nicht in der Lage, den Nutenquerschnitt endgültig zu bestimmen, denn man muß verlangen, daß ein im Eisen fertiger Motor sich für jede der üblichen Spannungen wickeln läßt. Man muß daher auch untersuchen, wie der Wicklungsraum sich gestaltet, wenn der Motor für 110 resp. für 500 Volt gebaut werden soll. Auf niedrigere Spannungen als die der Rechnung zu Grunde gelegte braucht man im allgemeinen weniger Rücksicht zu nehmen, da einesteils der Nutenquerschnitt bei dickeren Drähten vorteilhafter ausgenützt wird, die Nute bei niedrigeren Spannungen also gewöhnlich reichlicher ist, und man sich andernteils immer mit Parallelschaltung der Wicklung helfen kann, wenn die niedere zu der höheren Spannung in einem einfachen Verhältnis steht. Mit Rücksicht auf die schwierige Herstellung der Wicklung muß der Wicklungsraum reichlicher genommen werden, denn die Drähte lassen sich natürlich nicht mit mathematischer Exaktheit aneinander legen. Auf Grund dieser Erwägungen wählen wir die in Fig. 104 dargestellte Nutenform.

In Bezug auf den Rotor sind ganz andere Gesichtspunkte maßgebend. Die Wahl der Rotorspannung, daher die Drahtzahl N,, ist beliebig, und somit können wir die Nute nur mit Rücksicht auf ein und dieselbe Wicklung dimensionieren, und wir können die Rotorspannung so wählen, daß einesteils die Herstellung der Isolation keine Schwierigkeiten bietet, andernteils der Rotorstrom nicht solche Größe erreicht, daß die Konstruktion der Schleifringe und des Bürstenapparates Schwierigkeiten bereitet und die Maschine unnütz verteuert. Wir können sehr leicht berechnen, wieviel Kupferquerschnitt in einer Rotornute untergebracht werden muß. Bezeichnet nämlich Jn die Rotorstromstärke bei Normalbelastung, E, die Rotorspannung bei Stillstand, so muß

T 736 ■ PS

E, . J = —---—

sein, wenn wir von den im Rotor auftretenden Verlusten absehen, und diese Beziehung resultiert aus der Tatsache, daß der Rotor als der sekundäre Teil eines Transformators, dessen Primärsystem der Stator ist, aufgefaßt werden kann. Soll der Motor bei Normalleistung um s% schlüpfen, so wird die Rotorspannung

der Rotorstrom aber nach obiger Gleichung

_ 736 • PS nF.....a" E,

Der Widerstand einer Rotorphase ist, wenn mit 12 die mittlere Länge eines Drahtes, mit N, die Drahtzahl pro Phase und mit Q2 der Querschnitt eines Drahtes bezeichnet wird,

N, 1, _ a, • E2, s "2     50 • q2 736 • PS ‘ 100

und hieraus ergibt sich

100 • 736 • PS • 1, • N, _ 100 • 736 • PS • 1, ( N, 12 92 =      50 • a, • s • E2,      ~    50 • a, • s • N, (E,)

und der letzte Ausdruck ist durch Einführung der Beziehung

E, • N • E,

gewonnen. Endlich können wir noch schreiben

42 • N, _ 100 • 736 • PS • 1, ( N, 12 p • Ä2 50 • a^ • A2 • p • S \ E, )

und es stellt die linke Seite dieser Gleichung den Kupferquerschnitt dar, der in einer Rotornute untergebracht werden muß. Wir erhalten für unseren Motor


594 \2

127 )




= 61 qmni



100 • 736 • 1,5 • 0,22

50 • 3 • 2 -6-5

Kupfer pro Nut, wenn wir die Länge eines Rotordrahtes zu 0,22 m und die Schlüpfung auf 5 % schätzen. Unter Berücksichtigung des Wirkungsgrades des Motors 7, den wir auf 0,8 geschätzt haben, ist der so berechnete Querschnitt im Verhältnis 1 - zu ver-n

größern, und wir erhalten demnach einen Kupferquerschnitt von


61 n




61

- 22 —P 9 76 qmm.



Wenn wir in die Rotorzeichnung die Nuten einskizzieren, so sehen wir, daß die Nutenbreite nicht wesentlich größer als im Stator gemacht werden darf, da sonst wegen der Konvergenz der Rotornuten die Zahnquerschnitte zu schwach ausfallen. Wir werden nach einigem Probieren es als vorteilhaft erkennen, wenn wir in der Nut 2 Drähte nebeneinander und 6 übereinander, also 12 Drähte von ca. 3 mm blankem Durchmesser anordnen. Die Drahtzahl des Rotors

N2 = 144

und die Rotorspannung

N;E,=394 127=31 Volt,


der Rotorstrom bei




Normalleistung




736 • PS



736 • 1,5     . ,

o 2 12 Amp.

0 • Oh

und die Schleifringspannung am Rotor, wenn wir die Wicklung im Stern schalten,

V 3 • 31 = 54 Volt.

Die Wahl der Drahtzahl N, ergibt für die Isolation sehr günstige Verhältnisse, ebenso für den Schleifringapparat und gibt eine einfache billige Wicklung bei günstiger Nutenform. In Fig. 104 ist der Nutenquerschnitt dargestellt, wie wir ihn endgültig wählen wollen. Die Schlitzbreite mußte mit Rücksicht auf den Drahtdurchmesser, der isoliert ca. 3,5 mm beträgt, auf mindestens 3,5 mm erhöht werden.

Der erfahrene Maschinenrechner wird die Nutendimensionen mit großer Sicherheit gleich beim ersten Entwurf richtig feststellen können, dagegen wird der Anfänger erst nach wiederholtem Probieren und oftmaliger Abänderung zu einer Nutenform gelangen, welche bei den Untersuchungen des nächsten Abschnittes die gewünschten Resultate liefert.

[image: ]

Fig. 104.




62. Berechnung der Streuungskoeffizienten.

Wir haben nunmehr schon folgende Verhältnisse des Motors festgelegt:


		
Stator           Rotor


	
Nutenzahl total        =

Phasenzahl a          =

Polzahl p             =

Nuten pro Spulenseite A = Nutenteilung t         =

Schlitzbreite            =

Zahnbreite z           =
	
54           36

3            3

6            6

3            2

1 cm       1,5 cm

0,3 -         0,35  -

0,7 -          1,15  -




Wir können jetzt den Luftquerschnitt nach genau ermitteln; es ist


Gleichung (167)



	
— D • 7 • b I Z, z, \



9=2 (7+s)

17,3 • n • 9 ( 0,7       1,15 \ =—12— (d + 1,5) = 59,5 dem und es wird nach Gleichung (168) die Leitfähigkeit des Luftfeldes eines Statorzahnes

Q,                   59,5

	
	
4 = 0,8 • 0 . a, . A, = 0,8. 0,035 -3-3 = 238





und eines Rotorzahnes

59,5

4 ~ 0,8.0,035 .3.2 “ 356.

Die Leitfähigkeit einer Statornute wird nach (Nutenform b)


Gleichung (166)



1,25 • b n + ntÖ + -2,3. . log (1 + “:r)]

L D rs «           \ r5 /] . 2,3    0,05 + 0,035    2,3 = 1,25 • 9 -* + —)91--1--" • log 1 — 0,75            0,3              71 2 n   0,32 \


1,25 • 9




log 1 +



0,85 T0,35 T n

2

7    0,354 )

2 ' 0,35 )

= 11,25 (2,83 + 0,243 + 1,46 • 0,414) = 11,25 ■ 3,678 = 41,3.

Demgemäß wird nach Gleichung (169)

Tr = — • G = -o- • 0,133 = 0,0251

und

4-1 2

T. = - • 0,296 = 0,0344, 52       355

und die Werte für T’r können wir ohne weiteres der Koeffiziententabelle Seite 302 entnehmen.

Zur Berechnung der Kopfstreuung müssen wir die Höhe der Spulenköpfe kennen, und dieselbe ist leicht auf ca. 4 cm für den Stator und Rotor zu schätzen; demnach wird

h = 8 cm.

Zur Berechnung von r sind in Gleichung (170) zwei verschiedene Näherungswerte angegeben, von denen der erste

r = 0,0565 d,—1

‘ P

die Kenntnis des Drahtdurchmessers voraussetzt, während die zweite Formel

r = 0,632 V A • q • ,

im allgemeinen leichter Anwendung finden kann, da sie nur die Kenntnis des „Wirkungsgrades“ der Nute, d. h. das Verhältnis

Kupferquerschnitt in der Nute

Nutenquerschnitt            "y

verlangt, diese Zahl aber jedem Rechner zur Verfügung steht. Bei unserem kleinen Motor können wir den Nutenquerschnitt im Stator nur mit ca. 25 % ausnützen, dagegen ist es in Bezug auf den Rotor mit ca. 33 % möglich, da wir hier die Drahtzahl günstig wählen konnten. Wir erhalten daher für den Stator

r = 0,632 VA,-Q,-7,= 0,632 V 3 • 1,73 • 0,25 = 0,72 cm und für den Rotor

r = 0,632 V 2 • 2,02 • 0,33 = 0,73 cm, also nahezu denselben Wert wie beim Stator, und es wird daher die Kopfstreuung für Stator und Rotor die gleiche, und da die Leitfähigkeit der Spulenköpfe

4 = 0,92 T • (log -"- + 0,11) + h (log " + 0,11) = 0,92 [9,05 (log 8,129 + 0,11 ) + 8 (log 8,95-) + 0,11) |

= 0,92 [13,4 + 9,68] = 21,2

ist, wird der Streuungskoeffizient

__      1,6 • 0 Ak

kaka C] • k, • a, • *1 Q,

1,6 • 0,035__21,2 -0 0176 0,592 • 0,96 • 3 • 0,66759,5 Y

Es wird demgemäß der Streuungskoeffizient des Stators 0,0251 + 0,0176 = 0,0427, -1

■des Rotors

*=— * 0,0344 + 0,0176 = 0,0520, des Motors

t = T, + T2 + T, • = 0,0969.

	
63.    Berechnung des Magnetisierungsstromes.



Es kann nun nach Gleichung (172) die genaue Luftinduktion berechnet werden, es ist nämlich

_________________Ei • 108

	
	
1     1,11 • (1 + 7) - c,*k,*N,"Q* 11,





127 • 108


= 5430.




1,11 • 1,043 • 0,592 • 0,96 • 594 • 59,5 • 100



Die Drahtzahl N, = 594 haben wir schon im 61. Abschnitt festgelegt, als wir die Drahtzahl pro Statornute zu 33 annahmen. 33 . A, . p ergibt obige Zahl von 594, Zur Berechnung der Induktion in den Statorzähnen müssen wir die mittlere Zahnbreite bestimmen, und wir erhalten, da die Nutenteilung in der Mitte t           n (D — Nutenhöhe) .           .

des Zahnsteges-----------1--ist, die mittlere Zahndicke

°         Nutenzahl

7 • (17,3 + 2,6)   —   _

------—--0,75 = 0,4 cm.

54

Der mittlere Zahnquerschnitt ist daher 0,4 . b . 0,9; denn die Ankerbreite wird nur zum 0,9. Teil von Eisen erfüllt, während ca. 10 Proz. durch die Isolation der Bleche verloren gehen. Die Induktion in den Statorzähnen wird demgemäß

	
R, - B; ’ a+ F) ’ „9,    0,4 ■ b • 0,9


	
- 5430 ■ 1,043 ■        ■ 0,4:9:0,9 - 11500.





Die totale Kraftlinienzahl pro Pol ist im Stator

(1 + r) • c, • B • Q,

und die Eisenhöhe des Rückschlusses he, im Stator ergibt sich, wenn wir hier eine Induktion von 6500 zulassen wollen,

(1 + 1) • ci • Bi ' 91 he, =    2 • 0,9 • b • B

’               €1

1,043 • 0,592 • 5430 • 59,5


= 1,9 cm.



In Bezug auf den Rotor ergibt sich die mittlere Zahninduktion,


da die mittlere Zahn dicke 0,45 ist



Q


1

0,45 • b • 0,9



B' = B--— z2 1 a2 • A2


= 5430




59,5

3 • 2




1

0,45 -9-0,9




= 12000,



und wenn wir im Rückschluß des Rotoreisens eine Induktion von Bg = 8000 zulassen, wird die Eisenhöhe

H eubach, Drehstrommotor.                                —-

C1 ■ Bi ■ Q1

2 • 0,9 • b • B' €2

0,592 • 5430 • 59,5 2 • 0,9 • 9 • 8000


9 1,5 cm.



Fig. 105 zeigt den Querschnitt durch das aktive Eisen des Motors.

Es kann nun ermittelt werden, wie groß die erregende Kraft sein muß, um die gewünschte Luftinduktion B| = 5430 hervorzurufen. Die Kraftlinienweglängen pro Pol sind


im Statoreisen = 5 cm

in den Statorzähnen == 2,6

im Rotoreisen — 4

in den Rotorzähnen = 2,7

in der Luft         = 0,035 -
[image: ]

-. 105.




Da uns die Induktionen, welche an diesen Stellen herrschen, bekannt sind, können wir aus der Magnetisierungskurve ersehen, wie viele Amperewindungen wir pro 1 cm Kraftlinienlänge aufwenden müssen. Die totale erregende Kraft ist natürlich p mal so groß als die pro Pol. Wir erhalten daher folgende Werte, die der besseren Übersichtlichkeit halber in eine Tabelle zusammengestellt sind.


	
Kraftlinien- , , ,

Induk-

länge

— ,      tionen

pro Pol
	
Ampere-

. ,             Amperewindungen

Windungen

total

pro 1 cm


	
Statoreisen        5       6500

Statorzähne      2,6      11500

Rotoreisen        4       8000

Rotorzähne      2,7      12000

Luft           0,035     5430
	
1,3    6.5. 1,3          = 39

3,4     6 • 2,4 • 3,4          = 53

1,7    6-4-1,7        =41

3,8     6 • 2,7 • 3,8          = 62

—     6 • 0,035 • 0,8 • 5430 = 915

x = 1110

m




Der Magnetisierungsstrom

wird daher nach Gleichung (176)


XmV2 a, ■ 11 ’ N,



1110 • 12

3 • 0,667 • 594 = 1,32 Amp.

	
64.    Unterlagen zur Berücksichtigung der Verluste.



Die Widerstände der Wicklungen sind sehr leicht zu berechnen. Wir erhalten eine mittlere Länge eines Statordrahtes von 0,25 m, und da der Drahtdurchmesser 1,3 mm, der Querschnitt daher 1,33 qmm beträgt, wird


W1 —




0,25 • 594

50 • 1,33




== 2,2 Ohm.



Für den Rotor haben wir 3 mm Draht gewählt, und da die


mittlere Drahtlänge nur 0,22 m beträgt, wird




W2 —




0,22 • 144

50 • 7,07




= 0,09 Ohm.



Um die Verluste durch Hysteresis ermitteln zu können, müssen wir die Eisenvolumina der einzelnen unter verschiedener Induktion arbeitenden Motorteile berechnen. Wir erhalten unter Zuhilfenahme der Fig. 105 das Volumen des Statorrückschlusses

1,9 • 9 • 0,9 • ( 20,8.7 22,0 ) . n = 1180 ccm = 1,18 cdm.

Das Volumen der Statorzähne berechnen wir aus dem Volumen des Eisenringes von der Höhe der Statornuten und subtrahieren hiervon das Volumen sämtlicher Nuten. Wir erhalten für den Ring

9 0 QQ ( 17,3 + 22,5 \     ...

2,9 • 9 • 0,9 • -----9------In = 1310 ccm,

und da der totale Querschnitt einer Nute ca. 2 qem beträgt, wird das Volumen sämtlicher Nuten

2 • 54 • 9 • 0,9 = 880 ccm,

mithin das Zahnvolumen

1310—880 = 430 ccm = 0,43 cdm.

Im Rückenschluß ist eine Induktion von 6500, in den Zähnen von 11500, und aus der Verlustkurve, Fig. 103, können wir ersehen, daß pro Kubikdecimeter bei diesen Induktionen 27 resp. 65 Watt verloren gehen. Der Eisenverlust ist daher

im Statorrückschluß = 1,18 • 27 — 32 Watt in den Statorzähnen = 0,43 • 65 = 28

im Statoreisen =             60 -

und konstant, wenn der Spannungsverlust in der Statorwicklung vernachlässigt wird.

In Bezug auf den Rotor wird das Volumen des Rückschlusses

1,5 • 9 • 0,9 ( 11,83 6,8 n = 354 ccm = 0,35 cdm,

das Volumen des Ringes von der Nutenhöhe

2,7 • 9 • 0,9 (172 511.) 71 = 1030 ccm.

Das totale Volumen der ausgestanzten Nutenabfälle ist

36 • 2,4 • 9 • 0,9 = 700 ccm,

da der Querschitt einer Nute 2,4 qcm beträgt. Das Zahnvolumen ist daher

1030—700 = 330 ccm = 0,33 cdm.

Der Eisenverlust im Rotor wird näherungsweise durch eine Widerstandsvergrößerung der Rotorwicklung berücksichtigt, wie im nächsten Abschnitt angegeben ist.

Da wir die rein mechanisch tätigen Teile des Motors nicht berechnen wollen, können wir den Reibungsverlust nicht aus dem Zapfendurchmesser, dem Durchmesser der Schleifringe und dem Bürstendruck etc. ermitteln, sondern wir schätzen denselben inkl. Luftwiderstand auf 4 % der Leistung, und es wird daher

V, = 0,04 • 1,5 • 736 = 44 Watt.

	
65.    Diagramm des Motors.



Da uns die Größen

r, = 0,043 r = 0,097 BJ = 5430

N, = 594

N, = 144

Jm = 1,32

bekannt sind, können wir die Konstanten C, C ... sofort berechnen, sobald wir uns entschlossen haben, wie groß wir den Durchmesser b d des Diagrammkreises machen wollen. Nehmen wir bd = 100 mm, so wird


	
bd
	
— 100 mm,


	
u b
	
= T • b d = 9,7 mm,


	
c.
	
_ B 5430 4543

bd 100  ”


	
c.
	
- ‘-1?-0,180,


	
c.
	
a+scsb:B:k 1.018-0,136-6828:3:524 0,38,




C, == C2 a E = 0,136 • 3 • 127 = 51,8,

c, = c 192 = 51,8 ■ 303 = 0,585,

C. _ 51,8 C6 = 736 — 736 =00105,

CI 2                 ____ () 1 26 2 tg « = —? . a, . w, . b d = —0 • 3 • 2,2 • 100 = 0,236, 04                    oi,o

[image: ]

Fig. 106.

Fall 3, im zweiten Fall 5




	
• b d = 0,236 + —Y • 3 • 0,09 • 100 51,8 = 0,411.



Fig. 106 stellt das Heylanddia-gramm des Motors dar, und in demselben ist nach obigem alles berücksichtigt bis auf den Eisenverlust im Rotor. Um auch diesen zu berücksichtigen, haben wir folgendes vorzunehmen: Wenn wir We, den zusätzlichen Rotorwiderstand, so bestimmen wollen, daß das Diagramm für alle Betriebsstadien von Stillstand bis Synchronismus möglichst richtig wird, so haben wir den Eisenverlust bei stillstehendem Rotor zu ermitteln. Die auf den Rotor induzierte Luftinduktion ist bei Stillstand

B,= C, .77 = 54,3-16 = 830.

Dies ergibt eine Rotorinduktion von 1200 im Rückschluß und 1800 in den Zähnen. Aus der Verlustkurve entnehmen wir, daß im ersten Watt pro Kubikdecimeter Rotoreisen wir den Eisenverlust im stillstehenden Rotor bei kurz geschlossener Rotorwicklung


verloren gehen, und unter Berücksichtigung der Volumina erhalten



	
	
V,, = (0,35 • 3 + 0,33 • 5) = 2,65 Watt.





Der zusätzliche Widerstand würde daher nach Gleichung (191) betragen

	
	
V’                 2 65



	
w. =---22- = Q - 0 17 = 0,0003 e a2 (C3 • b s')2       3 • (0,58 • 92,5)2 und es würde w, = 0,09 + 0,0003 = 0,0903.



Damit das Diagramm bei normaler Leistung möglichst richtig ist, müssen wir we nach den Eisenverlusten berechnen, welche bei normaler Leistung im Rotor auftreten. Die auf den Rotor reduzierte Luftinduktion ist in diesem Betriebszustand

B = C, • ds • — = 54,3 • 97 • - =4970. ts              46

Die Induktion in den Rotorzähnen wird 11 800, in dem Rück-schlußeisen 7 900, also nahezu so hoch wie im Synchronismus. Die Polwechselzahl II, ist aber nur 100 . II,, also ca. 5 pro Sekunde. Es beträgt daher der Eisenverlust im Rotor

	
-100 • (0,35 • 37 + 0,33 • 68) = 1,8 Watt,



und es wird der zusätzliche Rotorwiderstand

und daher der korrigierte Rotorwiderstand

w2 = 0,09 + 0,0027 = 0,0927 Ohm.

Wir können nun das Diagramm verifizieren, wenn wir tg (a — ß) unter Einsetzung des so gewonnenen Wertes von w2 nochmals berechnen. Wir erhalten

tg (« + 8) = 0,236 + -058" • 3 • 0,0927 • 100 = 0,417.

Der Einfluß des Rotoreisenverlustes ist daher so verschwindend klein, daß er kaum berücksichtigt werden kann.

Fig. 107 stellt die charakteristischen Größen des Motors als Funktion des Wattkonsums dar. Der Abszissenmaßstab der Fig. 107 ist gegenüber dem Ordinatenmaßstab verdoppelt, um die Kurven etwas in die Länge zu ziehen und dadurch deutlicher zu gestalten. Um die numerische Größe von Ji und J2, P, PS und
[image: ]

Watt zu finden, hat man nur die in Millimetern gemessenen Ordi-naten der Fig. 107 mit den entsprechenden Konstanten C2, C3 . . . zu multiplizieren.

Auf die Ausführung des exakten Diagramms für diesen Motor muß leider verzichtet werden, da die Länge der Strecke u m bei dem gegebenen Statorwiderstand im Verhältnis zum Diagrammkreis schon so groß wird, daß in dem Format dieses Buches die Figur nicht mehr deutlich wird.

Zehntes Kapitel.

Einfluss der Veränderung seiner Konstanten auf das Verhalten des Motors.

	
	
66.    Änderung der Klemmenspannung, der Luftinduktion und der Statordrahtzahl. — 67. Änderung des Luftzwischenraumes. — 68. Änderung der Polwechselzahl; Anlassen mit dem Generator. — 69. Änderung des Rotorwiderstandes; Anlaß widerstand im Rotor. — 70. Änderung des Statorwiderstandes; Anlaß widerstand im Stator. — 71. Änderung der Streuung; Anlassen mittels Drosselspulen,



	
66.    Änderung von En B|, N,.



Solange wir an der Nutenzahl und Nutengröße eines gegebenen Modelles nichts ändern, kann ein und dasselbe Diagramm ubd zur Untersuchung des Verhaltens des Motors verwendet werden; denn die Streuungskoeffizienten bleiben unter obiger Voraussetzung konstant, und damit auch das Verhältnis

ub bd "

Von der Luftinduktion B| hängt die Konstante C1 ab, denn es ist

Die Drahtzahl des Stators ist nach Gleichung (172)

E, N 2-B,

also umgekehrt proportional der Luftinduktion, die nötige erregende Kraft resp. der Magnetisierungsstrom nach den Gleichungen (173) und (176)

[image: ]



Daher wird die Konstante C, proportional

C2 = — 9 B2 9 ........(195)

u b

Da sämtliche übrigen Konstanten C3, C4 . . . nach den Gleichungen (184 u. f.) der Konstanten C, direkt proportional sind, können wir den Satz aufstellen: Die Leistung eines gegebenen Modelles ist dem Quadrat der Luftinduktion proportional.

Wir finden also die schon früher geäußerte Bemerkung bestätigt, daß es vorteilhaft ist, die Luftinduktion hoch zu wählen. Man erreicht aber .in praxi bald den mit Rücksicht auf die Erwärmung höchst zulässigen Wert der Induktion und Leistung, denn eine einfache Überlegung ergibt, daß die nötigen Ampere-drähte in den Nuten nicht mehr placiert werden können.

Die Frage, wie sich der Motor verhält, wenn die Drahtzahl N1 des Stators geändert wird (bei unveränderter Klemmenspannung E), können wir sofort beantworten, denn wenn wir in die Gleichung (195) für BJ die Beziehung

[image: ]



einführen, so erhalten wir c, • N NC.......(196)

und


Lassen wir endlich einen Klemmenspannungen Ei laufen, aber stets proportional EP Es




fertigen Motor bei verschiedenen so ist natürlich N1 konstant, B| wird daher



Der Magnetisierungsstrom variiert ebenso wie B|, also auch wie E1, und demgemäß sind die Konstanten

C,N C, NC, R  .......(197)

dagegen die übrigen Konstanten, wie aus Gleichung (185) hervorgeht,

CRC RCRE,2......(198)

Die Zugkraft und Leistung eines Motors ist daher dem Quadrat der Klemmenspannung, der Magnetisierungsstrom der Klemmenspannung proportional..

Die Variation des E1 bietet das einfachste Mittel, die mit Rücksicht auf die zulässige Erwärmung höchstmögliche Leistung eines gegebenen Modelles experimentell festzustellen. Die Normal-leistung eines wohldimensionierten Motors entspricht seinem Belastungszustand bei cos 9max. Hat man ermittelt, bei welcher Klemmenspannung bei Belastung mit günstigstem Leistungsfaktor die beabsichtigte Erwärmung eintritt, so läßt sich die größte zulässige Induktion des Motors berechnen.

Es mag besonders darauf hingewiesen werden, daß sämtliche Linien des Diagrammes, welche sich auf die Ohmschen Widerstände des Motors stützen, also auch der Schlüpfungsmaßstab ihre Gültigkeit behalten, wenn der Motor mit variabler Spannung und daher variabler Induktion arbeitet. Nur die auf die Eisenverluste bezüglichen Konstruktionen im Diagramm sind nicht mehr genau richtig und daher eventuell abzuändern.

Von der Tatsache, daß eine Veränderung der Drahtzahl Ni die Leistung erheblich beeinflußt, kann man unter Umständen Gebrauch machen, um einen zu knapp berechneten Motor auf Leistung zu bringen, indem man einfach einige Statordrähte abwickelt. Voraussetzung für die Zulässigkeit dieses Hilfsmittels ist, daß der Motor vor seiner Änderung seine zulässige Über-temperatur nicht erreicht; die Erwärmung nimmt ungefähr im gleichen Maße zu, wie die Leistung erhöht wird.

	
67.    Änderung des Luftzwischenraumes.



Eine Veränderung des Luftzwischenraumes wird in erster Linie eine Änderung der Streuungskoeffizienten 11, T2 und T in dem Sinne bewirken, daß sich diese mit zunehmendem o ebenfalls vergrößern und dadurch den Motor verschlechtern. In Bezug auf die Streuung gilt daher einzig die Regel: 0 so klein als möglich machen. Zu demselben Resultat gelangen wir auch von nachstehendem Gesichtspunkte aus.

Wird 8 verändert, während alles übrige am Motor ungeändert bleibt, ist die Luftinduktion Bi, infolgedessen auch

C1 = konstant,

denn von einem Einfluß auf die Streuungskoeffizienten wollen wir bei unseren jetzigen Betrachtungen absehen. Dagegen ändert sich die erregende Kraft, welche zur Hervorbringung der Luftinduktion B[ aufgewendet werden muß, denn es ist

	
	
X, = o,8 • 0 • p • b;.





Infolgedessen ändert sich der Magnetisierungsstrom proportional mit 8

JNo

und daher ist auch die Konstante

CNs.........(199)

Es ändern sich daher, wie im vorigen Abschnitt gezeigt wurde, auch alle übrigen Konstanten C3, C4 . . . proportional mit 3, und daher gilt der Satz:

Die Leistung etc. eines gegebenen Modells ist o proportional.

Man könnte glauben, daß es mit Rücksicht auf diese Tatsache vorteilhaft sein müßte, 8 groß zu machen. Es ist dies aber ein Trugschluß, denn die auf diese Weise erzielte Leistungserhöhung ist lediglich durch vermehrten Kupferaufwand erzielt, während sie sich viel billiger durch Erhöhung der Induktion erzielen ließe. Da C, und C3 dem 8 direkt proportional sind, nehmen die Stator-und Rotoramperedrähte proportional der erhöhten Leistung zu. Der Kupferaufwand nimmt daher, wenn die Kupferverluste unverändert bleiben sollen, mit 82 zu. Um dies Kupfer unterbringen zu können, müssen die Nuten vergrößert werden, Zahninduktion und Eisenverluste nehmen dadurch zu. Wenn die Zunahme dieser Verluste zulässig ist, so erreicht man die Erhöhung der Leistung aber viel zweckmäßiger und billiger bei unverändertem 8 durch Erhöhung der Induktion, also Reduktion der Drahtzahl N1, wodurch Kupfer gespart wird. Durch Vergrößerung des 8 die Leistung erhöhen zu wollen, ist daher das Unrationellste, was man tun kann.

Nur in einem Falle könnte man davon Gebrauch machen, um einen verrechneten Motor auf Leistung zu bringen, wenn die Reduktion der Statordrahtzahl N1 wegen zu hoher Temperatur des Statoreisens nicht zulässig ist, wenn dagegen das Statorkupfer noch höher beansprucht werden kann. Dieser Fall setzt voraus, daß der Motor ursprünglich schlecht und teuer berechnet war; er hätte höhere. Induktion B|, geringere Drahtzahl und kleinere Nuten, also stärkere Zähne haben müssen.

	
68.    Änderung der Polwechselzahl; Anlassen mit dem Generator.



Nach Gleichung (165) ist

108 E,

"1 — 1,11 - c:k, - N • Q, * B|

Wird daher bei einem Motor die Klemmenspannung E1 konstant gehalten, aber die Polwechselzahl des zugeführten Stromes geändert, so ist

BI 90-- 1 n.

und demnach wird die Konstante

C, 2-1 ........(200)

Der Magnetisierungsstrom ist B| direkt, also II, indirekt proportional und daher sind alle die Konstanten

C,R C,R C, 9 C 9 -.....(201)

ebenfalls II, indirekt proportional. Nur die Konstante C5, welche zur Ermittlung der Zugkraft dient, wird n 2 proportional, wie sich aus Gleichung (186) ergibt.

C,8—........(202)

Die Leistung eines gegebenen Motors ist daher bei konstanter Klemmenspannung der Polwechselzahl 11^ umgekehrt, die Zugkraft dem Quadrat der Polwechselzahl umgekehrt proportional. Selbstverständlich ist dagegen die Tourenzahl n direkt proportional II.

Bei einer bestehenden Kraftübertragungsanlage läßt sich daher die Leistung der Motoren nicht dadurch erhöhen, daß man die Generatoren schneller laufen läßt und die ursprüngliche Spannung beibehält, sondern es würde durch diese Maßnahme die Leistung und Zugkraft verringert, nur die Tourenzahl der Motoren erhöht.

Etwas ganz anderes ist es, wenn die Erregung des Generators konstant gehalten wird und eine Erhöhung der Tourenzahl mit einer Erhöhung der Klemmenspannung Ex Hand in Hand geht. Es bleibt in diesem Falle der Quotient

Ei B

in der Gleichung, mit welcher wir diesen Abschnitt eingeleitet haben, konstant, und dies bedingt, daß die Konstanten C1, C2, C3 und C5 von II unabhängig sind. Dagegen sind C4 und C6 laut den Gleichungen (185) und (187) proportional II,

C 2 C6 9 n., da Ej • II,.

Wird daher ein Motor von einem mit variabler Tourenzahl aber konstanter Erregung arbeitenden Generator gespeist, so ist Induktion, Stator- und Rotorstrom und Zugkraft von II, unabhängig, Tourenzahl und Leistung aber II, direkt proportional.

Die Leistungen der Motoren und Generatoren einer bestehenden Anlage lassen sich demnach erhöhen, wenn die Generatorerregung konstant gehalten und die Spannung der Tourenzahl entsprechend gesteigert wird.

Von hervorragender Bedeutung sind die zuletzt festgelegten Beziehungen, weil sie die Möglichkeit zeigen, einen Motor in folgender Weise in Gang zu setzen: Der stillstehende Generator wird erregt, der Stator eingeschaltet, der Rotor kurz geschlossen.

Wird nun der Generator angelassen, so setzt sich gleichzeitig der Motor in Bewegung und beschleunigt seine Tourenzahl in gleicher Weise wie der Generator. Hat der Motor hierbei eine von der Geschwindigkeit unabhängige Zugkraft P zu überwinden, so geht er mit einem Stator- und Rotorstrom an, wie sie dieser Zugkraft bei voller Tourenzahl entsprechen, und seine prozentuale Schlüpfung bleibt während der ganzen Anlaufperiode konstant; lJ' = 100 • I • Ein leerlaufender Motor kann auf diese Weise mit einem Statorstrom von der Größe seines Leerstromes hochgebracht werden, wenn die Tourensteigerung so langsam erfolgt, daß die zur Beschleunigung nötige Kraft klein bleibt. — Die Anzugskraft ist so groß, wie die maximale Zugkraft bei voller Tourenzahl und sie erfordert denselben Statorstrom, wie er bei voller Tourenzahl zur Ausübung des maximalen Drehmomentes benötigt wird. Der Anzug erfolgt so präzis, daß selbst bei ganz großen vielpoligen Motoren die Drehrichtung konstatiert werden kann, wenn der Generator von Hand mit der Klinke bewegt wird.

Wenn es die Betriebsverhältnisse gestatten, ist bei großen Motoren diese Anlaufsmethode allen anderen vorzuziehen, denn sie bietet folgenden Vorteile: Fortfallen der teueren Anlaß widerstände und der in ihnen auftretenden Verluste; die Möglichkeit, selbst die größten Motoren mit Kurzschlußanker zu bauen; stoßfreies Anlassen und dadurch Schonung der gesamten Anlage.

	
69.    Änderung des Rotorwiderstandes; Anlaß widerstand im Rotor.



Da der Rotorwiderstand die Schlüpfung bedingt und dadurch Verluste hervorruft, fordern die Rücksichten auf den Wirkungsgrad, daß der Rotorwiderstand so klein als möglich gemacht wird. Der Rotorwiderstand bedingt aber auch eine andere Eigenschaft des Motors, die von nicht geringerer Bedeutung ist, nämlich die Anzugskraft. Damit diese groß resp. ein Maximum ist, muß w2 einen ganz bestimmten und zwar einen ziemlich großen Wert haben. Der Widerspruch dieser beiden Forderungen hat zur Konstruktion der Phasenanker geführt, welche gestatten, daß mittels der Schleifringe Widerstand in den Rotorstromkreis eingeschaltet wird, damit eine hohe Anzugskraft erreicht wird. Nachdem der Motor in Rotation ist, wird der Vorschaltwiderstand sukzessive verkleinert und endlich ganz ausgeschaltet, die Ankerwicklung also kurzgeschlossen. In Bezug auf die Phasenwicklung des Rotors kann man sich daher an die Regel halten, deren Widerstand so klein als möglich zu machen. Um den Vorschaltwiderstand berechnen zu können, benützen wir das Heylanddiagramm, Fig. 108, in welchem die Winkel a undlaut den Gleichungen (189)

C,2        —

tg «   = —— -awihd

tg (« + 8) = " (a, • w, • C2 + a, • w, ■ C32)
[image: ]


eingetragen sind. Würde der Motor mit kurzgeschlossenem Rotor angelassen, so würde der Statorstrom C, . u s' Ampere betragen und die Anzugskraft würde nur C5 . v' s' kg sein.

Stellt u b s das Stromdreieck in einem beliebigen Belastungszustand dar, so ist

P = Cs • v s

J1 - C, us

J, = C, . bs

Wir können diesen beliebig gewählten Zustand beim Anzug des Motors dadurch herbeiführen, daß wir in den Rotor einen Anlaßwiderstand von der Größe R2 einschalten, sodaß

tg («+8) = tg (d b s) = -— (a, ■ w, • C2 + a, (w, + R,) • C32)

und hieraus erhalten wir

Die Wahl des Belastungsstadiums, welche wir der Ermittlung des R, zugrunde legen, hängt von verschiedenen Gesichtspunkten ab. In der Fig. 108 entspricht das Stromdreieck dem günstigsten Leistungsfaktor, also der Normalleistung des Motors, und der auf dieser Grundlage berechnete Anlasser bewirkt, daß der Motor mit seinem normalen Strom und normaler Zugkraft anzieht. Bei mittelgroßen Motoren, die an einem ausgedehnten Kraftnetz hängen und von großen Generatoren gespeist werden, ist dies unter Umständen zulässig. Beim Anschluß an städtische Zentralen, überhaupt an Lichtnetze, ist häufig ein so großer Stromstoß nicht zulässig. Dann muß der Punkt s einem kleineren Belastungszustand entsprechend gewählt, also näher gegen b hin gezeichnet werden. Dies ist ganz besonders nötig bei sehr großen Motoren, denn es ist klar, daß ein z. B. 1000 PS Motor nicht mit seinem Normal-Strom plötzlich eingeschaltet werden darf. Man wird in einem solchen Fall, besonders wenn der Generator nur von ungefähr gleicher Größe wie der Motor ist, nur mit ca. 1/4 der Normalleistung einschalten. In solchen Fällen berechnet man den Anlasser bequem nach folgender Methode. Da der stillstehende Motor als ein Transformator mit der Sekundärspannung E, betrachtet werden kann, muß, abgesehen von Verlusten, Heubach, Drehstrommotor.                               22

a, • E2J, == a E, • J1 • cos q oder

E 2

	
a, •     = 736 • PS



sein, und hieraus erhält man

1

 Es sei bemerkt, daß N=u.VD eine rein empirische Gleichung ist; wenn man aus derselben die Imt Dimension der Stromstärke be

2

stimmen wollte, würde man einen ganz falschen Wert erhalten.

3

 Die Messungen sind an Motoren gemacht, die geschlossene oder nur wenig geöffnete Nuten hatten. Siehe Hissink und Görges, E.T.Z. 1901, Seite 227.


1,-4%%            (209) wobei vorausgesetzt ist, daß Rotor und Widerstand in gleicher Weise geschaltet sind, also beide Stern- oder Dreieckschaltung haben. Durch passende Wahl der für PS einzusetzenden Zahl haben wir es in der Hand, den Stromstoß beim Einschalten auf die gewünschte Größe zu reduzieren.

Bei kleinen Motoren kann man unter Umständen einen höheren Anlaufstrom zulassen, als der Normalleistung entspricht. Der Widerstand R2, welcher der maximalen Anzugskraft, die der Motor ausüben kann, entspricht, wird erhalten, wenn wir Fig. 108 die Horizontale o f' ziehen,

ff' = o h — o h'

machen und d f s" ziehen. Der Punkt f ist dann nahezu identisch mit dem Punkt, welcher auf dem Heylandschen 1. Hilfskreis (Fig. 37) liegt und dem Maximum der Zugkraft entspricht. In unserem vorliegenden Fall (mit Geraden als Verlustlinien) ist die maximale Zugkraft C5 . v" s" und das Stromdreieck ubs”. Nach der Näherungsgleichung erhalten wir

C

R2=    — —tg (d b ........(207)

03 • a2 • b d

Wie schon erwähnt, darf bei Kurzschlußankern w2 nicht unter ausschließlicher Rücksichtnahme auf den Wirkungsgrad zu klein gewählt werden, sondern es sind die Anzugsbedingungen entsprechend zu berücksichtigen. Ist vorgeschrieben, eine bestimmte, eventuell die größtmögliche Anzugskraft zu erzielen, so verfährt man, wie oben gezeigt, nur ist w2 — R, nunmehr als Widerstand des Kurzschlußankers Wk aufzufassen.

.Gewöhnlich ist aber für die Wahl des Widerstandes des Kurzschlußankers nicht die Anzugskraft maßgebend, sondern die


zulässige Anlaufstromstärke des Motors. Die Elektrizitätswerke pflegen in den Bedingungen zum Anschluß von Motoren gewöhnlich die Leistung anzugeben, bis zu welcher Kurzschlußanker zu




gelassen werden, und gewöhnlich wird noch weiter vorgeschrieben,




daß die zulässige Anlaufstromstärke nur das Zwei- bis Dreifache des Normalbelastungsstromes betragen darf. Dann verfährt man zur Bestimmung des WK folgendermaßen.

Ist Ja die zulässige Anzugsstromstärke in Ampere, so zeichnet •




man in das Diagramm Fig. 109 u s' von der Größe ein



[image: ]

(208)





und man erhält




(tg (d b s') — tg «),




(209)




oder näherungsweise




c4-p

C,2 • Nk • bd




tg (d b s').....(210)




Nk ist die Zahl sämtlicher Nuten des Kurzschlußankers und w2 ist im Sinne der Gleichungen (156) aufzufassen.

Stufenanker oder Rotoren mit Gegen-



[image: ]

Fig. 109.





Schaltung verhalten sich wie ein Phasenanker,




der auf einen Anlaß




widerstand von nur einer Stufe arbeitet.




Der Widerstand der



Wicklung in der Anlaßschaltung kann nach den Gleichungen (204) bis (206) berechnet werden, während der Widerstand in der Betriebsschaltung wegen des guten Wirkungsgrades sehr klein gewählt werden darf. Damit der durch Anwendung dieser Ankerkonstruktionen beabsichtigte Zweck erreicht wird, muß vorausgesetzt werden, daß der Rotor in Anlaufschaltung anzieht und einigermaßen auf Touren kommt, bevor in die Betriebsstellung umgeschaltet wird.

	
	
70.    Änderung des Statorwiderstandes; Anlaß widerstand im Stator.





Rücksichten auf den Wirkungsgrad, die maximal erreichbare Zugkraft und Leistung verlangen, daß der Statorwiderstand möglichst klein gemacht wird. Vergrößerung des Statorwider-Standes verschlechtert den Motor in jeder Beziehung, nur der Leistungsfaktor wird erhöht, wie dies besonders deutlich mittels des Ossannakreises (21. Abschnitt) gezeigt werden kann. Diese günstige Wirkung wird aber durch ein zu schweres Opfer erkauft, denn sie resultiert nur daraus, daß die Wattkomponente des Statorstromes infolge der erhöhten Verluste J,2 . W1 vergrößert wird. Nur bei kleinen Motoren von schlechtem Wirkungsgrad kann man dies insofern ausnützen, als man trachtet, einen möglichst großen Teil der zulässigen Verluste auf die Statorwicklung zu werfen, wodurch es gelingen kann, cos g zu verbessern und somit selbst den Verlusten eine günstige Seite abzugewinnen.

Wir haben gesehen, daß das Anlassen von Motoren mit Kurzschlußankern wegen des erforderlichen hohen Anlaufsstromes Schwierigkeiten bietet, und es liegt nahe, eine Reduktion des Anlaufsstromes durch Vorschaltwiderstände, die in den Statorstromkreis eingeschaltet werden, herbeizuführen. Es läßt sich ohne weiteres entscheiden, daß diese Methode keine günstigen Resultate liefern kann, denn ein Vorschaltwiderstand wirkt genau wie eine Reduktion der Klemmenspannung, und diese ruft bei einer linearen Abnahme des Statorstromes eine quadratische Abnahme der Zugkraft hervor, wie im 1. Abschnitt dieses Kapitels gezeigt ist. Will man z. B. den Anlaufstrom auf 1/3 seiner Größe reduzieren, so nimmt die Anlaufszugkraft auf 1/9 ab, und diese kann eventuell nicht mehr genügen, um den unbelasteten Motor zum Anlaufen zu bringen, während der Stromkonsum vielleicht seiner Volllast entspricht.

Die Größe des Vorschaltwiderstandes RH der nötig ist, um den Anlaufstrom Ja auf das — fache seiner ursprünglichen Größe zu reduzieren, ist mit Hilfe des exakten Diagrammes sehr leicht zu ermitteln. Stellt Fig. 110 das Diagramm eines Kurzschlußmotors dar, wobei nach Gleichung (169)

C32    NE —

tg ß = —7---— • W2 • b d , ~4      P

so ist der Anlaufstrom

J, = c,us,

wenn der Statorwiderstand vernachlässigt wird. Er wird aber

T __ -    us
[image: ]

wenn wir den Widerstand des Statorstromkreises in exakte Berücksichtigung ziehen. Es ist aber

u m

8 = - : ms' in diesem Betriebsstadium, und wenn s gegeben ist, haben wir nur die Lage des Punktes m so zu bestimmen, daß das Verhältnis der Strecken ms' und um obiger Forderung genügt. Der Punkt m wird am einfachsten und schnellsten durch Probieren gefunden. Es ist nun nach Gleichung (194)

E, ==Cum

und nach Gleichung (188)

C,=C,(w,+R,) daher wird

R, = _P -wp          (211) u m€2

Durch den Vorschaltwiderstand Ri wird die Anlaufstromstärke im Verhältnis 1, die Anlaufzugkraft im Verhältnis 4 reduziert.

	
	
71.    Änderung von 11, 12; Anlassen mittels Drosselspulen.





Daß ein Motor um so besser ist, je kleiner seine Streuungskoeffizienten sind, wurde schon so oft in den vorhergehenden Kapiteln besprochen und bewiesen, daß diese Frage hier nicht nochmals erörtert werden muß.

Es liegt nahe, die in den beiden vorhergehenden Abschnitten besprochenen Anlaßwiderstände durch Drosselspulen zu ersetzen und die Effektverluste beim Anlassen dadurch zu reduzieren. Die Untersuchung, welche Wirkung dadurch verursacht wird, gestaltet sich am einfachsten, wenn wir bedenken, daß eine in den Stator-resp. Rotorstromkreis eingeschaltete Drosselspule einfach die Streuungskoeffizienten T1 und T, vergrößert. Schon bei Besprechung der Kopfstreuung haben wir Streulinien kennen gelernt, welche sozusagen außerhalb des eigentlich aktiven Motors verlaufen; wir gehen jetzt noch einen Schritt weiter, indem wir annehmen, daß die in einer vorgeschalteten Drosselspule auftretenden Kraftlinien ebenfalls als Streulinien zu betrachten sind. Unter dem Streufeld z. B. des Stators verstehen wir alle Kraftlinien, welche auf den Statorstromkreis, nicht aber auf den Rotorstromkreis induzierend wirken. Es wirkt daher die Selbstinduktion einer langen Fernleitung ebenso wie eine Vergrößerung des T1.

Es würde nicht die geringsten Schwierigkeiten bieten, das Übersetzungsverhältnis der Drosselspule in Bezug auf den Motor zu ermitteln und dadurch die Veränderung der Koeffizienten T1 und T, aus der Windungszahl der Drosselspulen und ihren Eisendimensionen zu berechnen, aber da das Anlassen mittels Drosselspulen ungünstig und praktisch bedeutungslos ist, möge es gestattet sein, die Ableitung allgemeiner Gleichungen zu unterlassen. Es wird genügen, ein einfaches Beispiel anzuführen, aus welchem die Wirkung der Drosselspulen als Anlasser zu ersehen ist.

Fig. 111 A stellt das Diagramm eines Motors mit T1 == T, = 0,1 dar. Die Konstanten C1, C, . . . seien bekannt, daher ist sein Anlaufstrom

Ja = us‘C2 und seine Anzugskraft

P = v’s’.Cs.
[image: ]

Fig. 111.


Wir wollen nun untersuchen, wie der Motor sich beim Anlauf verhält, wenn wir in den Rotor Drosselspulen mit dem gleichen Selbstinduktionskoeffizienten einschalten, wie der eigene Selbst-

induktionskoeffizient des Rotors ist. Wir können dies praktisch sehr einfach ausführen, indem wir die Schleifringe unseres Motors mit den Schieifrigen eines zweiten, identischen, verbinden, dessen Statorstromkreis natürlich offen sein muß. Es ist leicht einzusehen, daß der Streuungskoeffizient des Rotors nunmehr

r, = 0,55

geworden ist. Das Diagramm des Motors wird nunmehr durch Fig. 111 B dargestellt.

a b — T, • b d

ist ungeändert geblieben, dagegen ist

u b == t • b d = 0,7 ■ b d

geworden, gegenüber 0,21 in Fig. 111 A. Da sich in Bezug auf die Luftinduktion nichts geändert hat, ist C, ebenfalls ungeändert geblieben, dagegen ist unser nunmehriges

C,‘==-07 C =0,3 C2,

denn der Magnetisierungsstrom in Ampere ist ungeändert geblieben, während sich die Strecke ub in obigem Verhältnis geändert hat. Alle übrigen Konstanten C,’, C3' . . . sind daher auch im selben Verhältnis verkleinert. Nehmen wir an, die Konstanten des Motors C1, C, . . . seien sämtlich der Einheit gleich, so ist der Anlaufstrom des Motors ohne Anlasser (b d = 100 mm)

J, =us‘= 113,


seine Anzugskraft



P = v’s’ = 12.

Durch die Drosselspulen im Rotor wird der Anlaufstrom

Ja = 0,3 • u"s" = 0,3 • 160 = 48,

die Anzugskraft

P' = 0,3 ■ 7'7' = 0,3 • 12 = 3,6.

.48

Eine Reduktion des Anlaufstromes auf 113 — 0,425 seines ur-

3 6 sprünglichen Wertes hat eine Reduktion der Zugkraft auf - = 0,3 zur Folge, ein Resultat, das gegenüber der Wirkung eines Vorschaltwiderstandes im Rotor als sehr ungünstig zu bezeichnen ist. Würden wir durch einen Rotoranlasser den Anlaufstrom auf 48 reduzieren, so würde die Zugkraft

P = vs = 32

betragen.

Noch ungünstiger wirkt eine Anlaßdrosselspule im Stator-Stromkreis. Um dies zu zeigen, nehmen wir an, daß der Rotor kurz geschlossen ist, und dem Stator die Statorwindüngen des zweiten identisch gebauten Motors vorgeschaltet sind. Es ist nun T1 = 0,55, während T, = 0,1 geblieben ist. Um das jetzige .Diagramm, Fig. 111 C, des Motors mit den vorhergehenden bequem vergleichen zu können, nehmen wir Ct unverändert an, und dies bedingt, daß in allen 3 Diagrammen das gesamte Statorfeld durch die konstante Strecke ad dargestellt wird. Da

ad=(1+r) bi d, wird

^d = 110 = 71 1,55 a b'" - 39 u'"b"' = 50.

Der Magnetisierungsstrom hat die Größe

und die Konstante C2

21 • bi d 21 • 71

C. = . ---------—......— = 0,3,

u'" b'" b d 50 • 100 also genau so groß wie beim Diagramm Fig. 111 B. Der Anlaufstrom wird daher j;" = 0,3 • u‘" • s"' = 0,3 • 117 = 35,1 und die Anzugskraft

P‘ = 0,3 • v'" • s"' = 0,3 • 9 = 2,7.

Wir erhalten somit auch in diesem Falle ein äußerst ungünstiges Resultat, und es ist erklärlich, warum Induktionsanlasser nirgends praktische Verwendung gefunden haben.

Elftes Kapitel.

Beispiel zu Kapitel 10.

	
	
72.    Einfluß der Erhöhung der Klemmenspannung. — 73. Vergrößerung des Luftzwischenraumes. — 74. Berechnung des Rotoranlassers.





	
	
	
— 75. Berechnung eines Statoranlassers.



	
72. Einfluß der Erhöhung der Klemmenspannung.





Als Beispiel für den 66. Abschnitt soll das Verhalten des im neunten Kapitel berechneten Motors untersucht werden, wenn derselbe statt mit 220 Volt mit einer Klemmenspannung von 300 Volt betrieben wird. Es entspricht dies einer Erhöhung der Phasenspannung von 127 auf

	
E, = 173 Volt,



und es muß die Kraftlinienzahl resp. die Luftinduktion im Verhältnis von

zunehmen, damit die EMGK des Motors der Klemmenspannung wieder das Gleichgewicht hält. Die Konstante C1 wird daher 1,36 mal so groß als beim Betrieb mit 220 Volt, wenn wir dasselbe Diagramm Fig. 106 mit dem Kreisdurchmesser von 100 mm beibehalten. Die erregende Kraft für die Überwindung des Luftwiderstandes steigt ebenfalls genau um das 1,36 fache, dagegen nimmt die zur Überwindung des Eisenwiderstandes nötige erregende Kraft in stärkerem Maße zu, da bei den im Eisen, besonders in den Zähnen, herrschenden Induktionen die Permeabilität rasch abnimmt. Wir begehen aber nur einen kleinen Fehler, wenn wir die erregende Kraft einfach proportional der Spannungserhöhung wachsend annehmen, denn gegenüber den für die Luft erforderlichen Amperewindungen sind die für das Eisen erforderlichen nicht allzu bedeutend. Wenn wir uns diese Vereinfachung gestatten, ist aber die Aufgabe sofort gelöst, denn wir brauchen nur die im 65. Abschnitt gefundenen Konstanten C1, C, . . . mit 1,32 resp. mit 1,322 zu multiplizieren, um sofort die jetzt unter Beibehaltung des Diagrammes Fig. 106 gültigen zu erhalten. Es wird demnach:

	
	
	
	
C,       =54,3-1,36 = 74


	
C,       =0,136-1,36 = 0,185


	
C,       =0,58-1,36 = 0,79


	
C,       =51,8 • 1 363 = 96


	
C,       = 0,585-1,362 = 1,08


	
C,       =0,0705 -1,36 2 = 0,13









tg «      = 0,236 tg (« + 8) = 0,417.

Die Werte tg a und tg (a — /) sind unverändert geblieben, was sich sofort aus Gleichung (189) ergibt, denn diese Gleichung

Co2 C2 enthält die Quotienten — und —, und da C, und C3 sich direkt proportional 1,36 erhöht haben, diese Größen aber im Quadrat vorkommen, hingegen das in der ersten Potenz vorkommende C, sich 1,362 fach erhöht hat, bleibt der Quotient ungeändert.

Da die Eisenverluste Ve, im Stator ungefähr dem Quadrat der Induktion proportional sind, bleibt auch die Strecke ui ungeändert. Dagegen wird

__ Vr 44 b " - c - 96 - 046 gegenüber 0,85 beim Betrieb des Motors mit 220 Volt, denn die Reibungsverluste sind natürlich von Spannung und Induktion unabhängig. Der Wirkungsgrad des Motors wird daher bei günstigstem Leistungsfaktor beim Betrieb mit erhöhter Spannung besser, da die Reibungsverluste einen geringeren Prozentsatz der Leistung betragen, während die übrigen Verluste höchstens proportional der Leistung zugenommen haben..

Sehen wir von der kleinen Korrektur bezüglich der Strecke bß ab, so können wir Fig. 106 und 107 ohne weiteres benützen, um das Verhalten des Motors festzulegen. Wir sehen, daß bei günstigstem Leistungsfaktor der Motor nun

2,78 PS

statt 1,5 bei gleicher Schlüpfung und annähernd gleichem Wirkungsgrad von 81 % leistet. Die totalen Verluste betrugen bei 220 Volt Klemmenspannung 260 Watt und sie steigen bei 300 Volt auf 480 Watt. Infolgedessen nimmt die Erwärmung des Motors im Verhältnis von also nahezu auf das Doppelte zu, und aus diesem Grund ist eine Leistungserhöhung auf diese Weise für Dauerbetrieb unmöglich. Dagegen kann für kurzzeitigen Betrieb (Krane, Aufzüge etc.) eventuell die Leistung so hoch zugelassen werden, da der Motor bei derartigen Betriebsarten niemals seine stationäre Endtemperatur erreicht. Motoren für stoßweisen oder kurzzeitigen Betrieb müssen daher aus kommerziellen Gründen mit sehr hohen Induktionen gebaut werden.

	
	
	
73. Vergrößerung des Luftzwischenraumes.







Eine Vergrößerung des Luftzwischenraumes hat im allgemeinen eine Vergrößerung der Streuungskoeffizienten zur Folge, unbedingt ist dies aber nicht der Fall, wie die im Abschnitt 49 gegebenen Beispiele erkennen lassen. Die Koeffizienten der Kopfstreuung Tk müssen unbedingt größer werden, wenn 3 zunimmt, dagegen ist eine Zunahme der Koeffizienten der Nutenstreuung dann nicht unbedingt veranlaßt, wenn ein hoher Prozentsatz der Streulinien (also bei Nuten von geringer Höhe) zwischen den Zahnspitzen übertritt. Ist gar die Nute durch einen Eisensteg geschlossen, so kann die Erhöhung des 8 eine Reduktion des Stegquerschnittes und sogar eine Abnahme des Streuungskoeffizienten hervorbringen. Bei dem als Beispiel gewählten Motor wird aber die Streuung durch Vergrößerung von o ganz erheblich erhöht, und wir wollen daher den Einfluß einer Änderung von 8 zweimal untersuchen,

	
	
1.    unter der Annahme, daß die Streuung nicht verändert würde, 2. unter Berücksichtigung der tatsächlich auftretenden Verhältnisse.


	
1.    T1 und T2 ungeändert, 0 von 0,035 erhöht auf 0,05 cm.





Diese Annahme entspricht dem im 67. Abschnitt geschilderten Fall. Die Luftinduktion, ebenso die Eiseninduktionen sind unverändert, nur erfordert die Erzeugung der Luftinduktion nunmehr eine größere Anzahl von Ampere Windungen, nämlich

	
	
	
X, = 3298-915—1310.







Die Zahl 915 ist der Tabelle auf Seite 323 entnommen, und ebendaselbst ersehen wir, daß die für das Eisen erforderliche erregende Kraft

39 + 53 + 41 + 62 = 195

Amp erewindüngen beträgt. Die totale erregende Kraft ist daher 1310 + 195 = 1505 Amperewindungen und der Magnetisierungsstrom

T 1505 • V2 _ ’m = 3:0,667:594 = 1,79 Ampere,

und er hat zugenommen im Verhältnis

Die Konstante C bleibt ungeändert und die übrigen bekommen nachstehende Werte:

	
	
	
C,        = 54,3







C2        = 0,136 • 1,36 = 0,185

Ca        = 0,58 • 1,36 = 0,79

C,        = 51,8 • 1,36 = 70

C5       = 0,585 • 1,36 = 79,3

C6        = 0,705 ■ 1,36 = 0,955 tg «      = 0,236 • 1,36 = 0,32 tg («+ ) = 0,417 • 1,36 = 0,565

ui = 60 — 0,86

44

Fig. 112 stellt das Diagramm des Motors im gleichen Betriebszustand dar, wie Fig. 106 das Diagramm des ursprünglichen Motors. Wir entnehmen der Fig. 112

t s = 26 mm

r s = 20,5 mm

und berechnen daraus die Nutzleistung des Motors zu

rs.C= 20,5 • 0,955 = 1,96 PS

und den Wattkonsum

ts . C, = 26 • 70 = 1820 Watt, und wir berechnen hieraus den Wirkungsgrad zu

Die Leistung des Motors ist 1 96 daher im Verhältnis von — - = 1,3 1,5 gestiegen, dagegen hat der Wirkungsgrad von 81 auf 79% abgenommen und die Schlüpfung ist von 5,25 auf 7,6 % gewachsen.


d
[image: ]
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Fig. 112.




	
	
2.    T1 und T, infolge der Erhöhung des 8 vergrößert.





Noch mehr zeigt sich der ungünstige Einfluß einer Vergrößerung des 3, wenn wir die Veränderung der Streuungskoeffizienten, welche dadurch verursacht wird, berücksichtigen. Da bei dem vorliegenden Motor die Streuung zwischen den Spitzen der Zähne äußerst gering ist, werden sich die Streuungskoeffizienten nahezu im Verhältnis der Vergrößerung des 3, also auf das


0,05 0,035




= 1,49 fache



erhöhen, und es wird also

T, = 0,0427 • 1,46 = 0,061

T2 = 0,052 • 1,46 = 0,074 r =0,14.

Die Luftinduktion wird

1 042

BI = 5430 ■ — = 5350, 1            1,061

denn die Kraftlinienzahl (1 + T1) . B ist unabhängig von 8 konstant. Für die Luft sind erregende Amperewin düngen nötig:

	
X, = 6 • 0,05 • 0,8 • 5350 = 1282



und da für das Eisen eine erregende Kraft von 195 Amperewin-düngen erforderlich ist, wird

	
X, = 1282 + 195 = 1477



und der Magnetisierungsstrom wird

14-77 • 1/9

	
	
*= 3:0,561 594 =1/75Amp:





Wählen wir wieder den Durchmesser des Diagraminkreises zu 100 mm, so wird


	
bd u b
	
= 100,

= 0,14 • 100 = 14,


	
c.
	
5350

- 100 =53,5,

1.75


	
c.
	
=14=0125,

_  0,96 -3-594


	
c.
	
=1,06.0,125 0,966:3:144 =0543,


	
c.
	
= 0,125 - 3 • 127 = 47,5, 10,2


	
c.
	
47,5 ■ 905 0585,


	
c.
	
433 oosas,

60


	
u i
	
— — = 1,26, 47,5




44 bR - — = 0,925,

	
	
• — — 47,5





o 1052

tg c = MP • 3 • 2,2 • 100 = 0,218,

47,5

0 5422

tg («+8) = 0,218 + 475— • 3 • 0,09 • 100 = 0,385.

Das jetzige Diagramm des Motors zeigt Fig. 113, und es wird sich am lehrreichsten verwenden lassen, wenn wir in dasselbe den Betriebszustand einzeichnen, welcher einer Nutzleistung von 1,5 PS entspricht. Da wir die Konstante C6 = 0,645 kennen, haben wir nur die Horizontallinie ts zu suchen, bei welcher die Teilstrecke rs die Größe besitzt

Die Strecke t s wird dann t s = 29 mm, daher der Wattkonsum des Motors

29 .C, =29 47,5 = 1380 Watt.

Der Wirkungsgrad ist

„- 813—sos» und der Leistungsfaktor
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Fig. 113.




cos q = 0,79,

gegenüber 0,86 beim ursprünglichen Motor. Hieraus ist zu ersehen, von welch unangenehmen Folgen eine unexakte mechanische Ausführung begleitet sein kann. Eine Abweichung im 8 von 0,5 bis 0,35, also von nur 0,15 mm, genügt im vorliegenden Fall, um den Motor von einem sehr guten in einen nur mittelmäßigen zu verwandeln.

Heubach, Drehstrommotor.
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74.    Berechnung des Rotoranlassers.



Um nicht einer besonderen Figur zu bedürfen, sondern das Diagramm Fig. 106 ohne weiteres benützen zu können, wollen wir den Rotoranlasser für die Bedingung berechnen, daß der Motor mit seinem Vollbelastungsstrom unter Entwicklung seines normalen Drehmomentes anziehen soll. Der Widerstand des sterngeschalteten Anlassers wird nach Gleichung (204)


C2, • a, • b d




• (tg(dbs) — tga) — W2



	
	
- o,s85ls”100 • (0,78 - 0,236) - 0,09=18 Ohm.





Den Winkel dbs messen wir mit Hilfe eines Transporteurs zu 750 und tg 750 = 3,75.

Bedienen wir uns der Näherungsgleichung (205), so erhalten wir

R, =-----4 — • tg (d b s)

C2, a - b d


51,8

0,582.3. 100




3,73 = 1,93,



also einen nur wenig abweichenden Wert. Selbst die Näherungsgleichung (206), bei der nicht einmal die Kenntnis des Diagrammes vorausgesetzt ist, gibt noch einen brauchbaren Wert, nämlich

• _ a2 • E22 _ 3.302

Ba 736 • PS 736 • 1,5 = 2,46 Ohm:

Je größer der Motor ist, oder exakter ausgedrückt, je höher der Wirkungsgrad und der Leistungsfaktor eines Motors ist, um so mehr stimmen die mittels der Näherungsgleichungen erhaltenen Resultate mit dem richtigen Wert überein.

	
75.    Berechnung eines Statoranlassers.



Um für unseren Motor einen Anlasser im Stator berechnen zu können, wollen wir annehmen, daß der Rotor in einen Kurzschlußanker durch Zusammenlöten seiner drei Wicklungsenden verwandelt würde, und wir wollen annehmen, daß der Anlasser so zu dimensionieren sei, daß der Anlaufstrom nur 4 Amp. betragen soll. Wir zeichnen in Fig. 114 den Diagrammkreis bd = 100 mm, tragen den Winkel d b s' = / so auf, daß tg 8 = 0,175 ist, und haben nun das Stromdreieck u s' b des stillstehenden
[image: ]
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Fig. 114.


Motors bei widerstandslosem Stator. Wir messen im Diagramm u s’ = 107,5 mm und erhalten einen Anlaufstrom von

J'i = 107,5 • 0,136 = 14,6 Amp.

Um diesen auf die gewünschten 4 Amp. herunterzubringen, muß s die Größe haben

14,6 ,

Wir suchen nun einen Punkt m, der der Bedingung genügt, 23*


ms’

m u




= 3,65 =




117

32



und finden unschwer

ms' = 117, m u — 32.

Nun wird nach Gleichung (211)

R, = —!1---w, = ■--—--2,2 = 27 Ohm. u m • C,            32 • 0,136

Der Gesamtwiderstand einer Statorphase plus Vorschaltwider-127 stand beträgt 29,2 Ohm, und daher würden nur o = 4,35 Amp. vom Ohmschen Widerstand des Statorstromkreises durchgelassen, und die Selbstinduktion etc. hat lediglich die Reduktion um 0,35 Amp. zur Folge. Die Anzugskraft des Motors ist sehr gering, sie beträgt nämlich nur

t’s’ • C, 17 • 0,585 o=8,669—=07*6

Da wir den Reibungsverlust des auf voller Tourenzahl befindlichen Motors auf 44 Watt angenommen haben, entspricht dies 4,5 kg m/sek., und da der Motor 9 m Umfangsgeschwindigkeit be-4 5 sitzt, wird durch die Reibung —9 = 0,5 kg Zugkraft vernichtet. Beim Stillstand ist allerdings der Luftwiderstand Null, dagegen ist die ruhende Reibung viel größer als die des laufenden Motors, und daher wird der Motor mit diesem Anlasser bei 4 Amp. Statorstrom kaum leer anlaufen, nur wenn er von Hand etwas angetrieben wird, wird er hoch kommen. Man sieht aus diesem Beispiel deutlich, wie ungünstig ein Statoranlasser wirkt.

Zwölftes Kapitel.

Konstruktion der Motoren.

	
76.    Bemerkungen über die Fabrikation. — 77. Bemerkungen über die Konstruktion. — 78. Die Wicklung. — 79. Die Anlaßwiderstände.



	
76.    Bemerkungen über die Fabrikation.



Bei der Konstruktion der Drehstrommotoren sind im allge-gemeinen dieselben Gesichtspunkte maßgebend, wie bei der Konstruktion der übrigen elektrischen Maschinen; nur einige spezifische Eigentümlichkeiten der Asynchronmaschinen bedingen in Bezug auf Konstruktion und Fabrikation besondere Rücksichten. Diese Eigentümlichkeiten sind: der kleine Luftzwischenraum und die hohe Nutenzahl.

Der geringe Luftzwischenraum verlangt in erster Linie äußerst exakte mechanische- Bearbeitung, daher intelligente Leitung des Betriebes, geschickte Arbeiter und gute Werkzeugmaschinen. Insbesondere sind die Drehbänke daraufhin zu kontrollieren, ob die Spindeln in ihren Lagern keine Luft haben, damit es möglich ist, auf der Bank einen wirklichen Rotationskörper zu erzeugen; daß der Support parallel zu den Spitzen läuft, damit nicht die Statorbohrung oder der Rotor konisch werden, wodurch ein achsialer Zug im Motor auftritt; ob die Antriebszahnräder richtig eingreifen und die Stähle gut geschliffen sind, damit die Drehfläche glatt und sauber wird und nicht ein Umbiegen eines Bleches gegen das andere stattfindet, sodaß die Blechisolation überbrückt und eine kontinuierlich eisengeschlossene Bearbeitungsfläche der Bleche hervorgebracht wird, was natürlich große Verluste des Motors im Gefolge haben würde. Wegen des letzteren Umstandes ist es überhaupt günstiger, die letzte Bearbeitung der Bleche nicht mittels eines Drehstahles, sondern mittels einer rotierenden Scheibe (Schmirgel, Karborundum etc.) vorzunehmen. Auf die gleiche Weise müssen die Lagerzapfen bearbeitet werden, falls sie gehärtet sind. Gehärtete Zapfen haben den Vorteil, Abnützung und Lagerreibung zu reduzieren, sie bringen aber als Nachteil mit sich, daß die Welle leicht durch einen starken Stoß bricht, während eine nicht gehärtete sich nur verbiegen würde und eventuell wieder ausgerichtet werden könnte. Wenn das Härten richtig ausgeführt wird, darf die Härte nur höchstens 1—2 mm unter die Oberfläche gehen, der ganze Kern der Welle muß weich bleiben. Zu den Lagerschalen, besonders zu den kleinen, ungeteilten, ist hartes Material, Bronze, harter Rotguß u. dergL, zu verwenden, Weißmetall und Ähnliches ist mit Rücksicht auf die zu rasche Abnützung zu vermeiden. Die Lagerschalen müssen leicht, aber mit wenig Luft (0,05—0,1 mm) auf die Zapfen und ganz dicht in ihre gußeiserne Fassung, das Lagerschild, passen. Ebenso müssen die Drehflächen des Lagerschildes, der Statorbohrung und des Statorgehäuses genau konzentrisch und dicht passend sein, wenn die Montage eines Motors glatt von statten gehen soll. Man braucht nur zu bedenken, daß ein gekapselter Motor mit 10 PS oder noch höherer Leistung mit vollständig geschlossenen Lagerschilden ausgeführt werden muß, daß der Luftzwischenraum allerhöchstens 1 mm beträgt, und daß man von außen nicht sehen kann, wo sich eventuell der Rotor klemmt, wenn sich derselbe nicht oder doch nur schwer drehen läßt, ob in den Lagern oder ob der Rotor im Stator schleift.

Die allergrößte Sorgfalt ist auf die Auswahl der Bleche zu verwenden; es sollen nur Bleche Verwendung finden, deren magnetische Eigenschaften im Laboratorium der elektrotechnischen Fabrik untersucht sind. Gewöhnlich schreibt eine elektrotechnische Fabrik zwar ihren Eisenlieferanten vor, daß das gelieferte Blech gewissen Bedingungen genügen muß, aber häufig sind die Hütten- und Walzwerke selbst beim besten Willen nicht in der Lage, genau kontrollieren zu können, ob das Blech den gestellten Anforderungen entspricht; wenigstens muß die elektrotechnische Fabrik ihrerseits eine Gegenprobe machen. Gewiß lassen selbst die exaktesten Messungen nur in beschränkter Weise einen Schluß auf die Qualität der Bleche zu; denn es ist einesteils nicht möglich, alle Bleche zu untersuchen, andernteils hat selbst eine einzelne Blechtafel keine so homogene Struktur, daß ihre einzelnen Stücke ein gleiches magnetisches Verhalten zeigen. Man muß sich also in praxi mit einer gewissen Wahrscheinlichkeit begnügen; aber wie aus der Methode der kleinsten Quadrate bekannt ist, setzt die Wahrscheinlichkeitsrechnung voraus, daß die einzelnen Resultate vom Mittelwert wenig abweichen. Ins Praktische übersetzt, darf man also eine Waggonladung Bleche als gut bezeichnen, wenn 20 (oder besser mehr) verschiedenen Tafeln entnommene Proben ohne große Abweichungen ungefähr das gewünschte Resultat ergeben. Jedenfalls lassen die Abweichungen der einzelnen Proben mehr einen Schluß auf die Qualität zu als der Mittelwert aus sehr verschiedenen Einzelwerten der Proben: Blech, das große Verschiedenheit zeigt, ist unbedingt minderwertig, denn es zeigt, daß die Fabrikation nicht einwandsfrei ist.

Über das „Altern“ der Bleche wissen wir noch so wenig1), daß die Rücksichtnahme auf diese unbequeme Eigenschaft des Eisens nicht diskutabel ist. Das Altern kommt eventuell bei Transformatoren mehr in Betracht, da bei diesen Apparaten die Eisenverluste einen noch bedeutenderen Prozentsatz der Gesamtverluste ausmachen. Bei Motoren findet außerdem die eventuelle Prüfung, ob die gegebene Garantie erreicht ist, so kurz nach der Inbetriebsetzung statt, daß diese Frage für die Fabrik nur von untergeordneter Bedeutung ist.

Bekanntlich hat das Eisen eine weitere unangenehme Eigenschaft, es verschlechtert seine magnetischen Qualitäten beim Stanzen. Die genaue Ursache dieser Erscheinung ist unbekannt; sie wird aber jedenfalls durch die Aufhebung oder Veränderung der „Spannung“ des Bleches und molekularer Umlagerung hervorgebracht. Nach dem Stanzen läßt sich das Blech wieder durch sachgemäßes Ausglühen verbessern. Ob aber eine elektrotechnische Fabrik selbst imstande ist, dies Ausglühen vorzunehmen, kann nicht leicht entschieden werden, denn hierbei spielt besonders die lange Dauer und der allmähliche Abkühlungsprozeß eine große Rolle. Um die Frage entscheiden zu können, ob man dieses Nachglühen selbst besorgen kann oder nicht, ist die experimentelle Untersuchung einer größeren Anzahl von Motoren möglichst derselben Type erforderlich, von denen die eine Hälfte aus selbstgeglühten Blechen gebaut ist, während die Bleche der übrigen vom Eisenlieferanten einem Nachglühprozeß unterworfen wurden.

Die idealste Methode, die Bleche zu stanzen, besteht in der Verwendung eines, einzigen Schnittes für ein komplettes Stator, resp. Rotorblech. Da ein derartiger Schnitt aber selbst für einen Motor geringer Leistung ein kleines Vermögen kostet, ist die Anwendung dieser Methode eine sehr beschränkte und sie setzt voraus, daß eine vorzügliche Type vorhanden ist, an der in absehbarer Zeit nichts verbessert werden kann, und die in so vielen Exemplaren abgesetzt wird, daß sich die Einrichtung zu einer Massenfabrikation lohnt.

Im allgemeinen werden die Nuten einzeln gestanzt, indem das Blech um einen der Nutenteilung entsprechenden Winkel nach jedem Schnitt gedreht wird, wobei eine Blechlage des Motors entweder nur aus einem Stück oder aus einzelnen Segmenten bestehen kann. Für die Ausführung dieser Arbeit gibt es eine große Anzahl von Werkzeugmaschinen der verschiedensten Konstruktionen, und bei deren Anschaffung dürfte außer der möglichst raschen Hub zahl des Stanz Werkzeuges auch noch der Umstand maßgebend sein, welche Kosten die Variation der Nutenzahl verursacht. Das Prinzip dieser Stanzmaschinen bringt es mit sich, daß die zentrale Einspannung der Bleche viel leichter vorzunehmen ist, als eine peripherische, und deshalb stanzt man meistens auch die Statornuten in ein volles Blech, das nur behufs des Einspannens ein zentrales nach Maß gestanztes Loch besitzt. Gewöhnlich ist die Nutenteilung der auf solchen Maschinen gestanzten Bleche nicht so genau, daß die Nuten zweier aufeinandergelegter Bleche in allen möglichen Stellungen zu Koinzidenz zu bringen sind. Wenn dieser Teilungsfehler von einer Inexaktheit des Teilmechanismus herrührt, so sind die Teilungsfehler konstant und ihre schädliche Wirkung läßt sich beseitigen, wenn bei jedem Blech ein und dieselbe Nute bezeichnet wird, sodaß es möglich ist, alle mit gleichen Teilungsfehlern behafteten Nuten aufeinander zu legen.

Da die genaue Einhaltung des Nutenabstandes vom Kreismittelpunkt von äußerster Wichtigkeit ist, empfiehlt es sich, die Einstellung der Stanzmaschinen und des Werkzeugs mittels einer Schablone vorzunehmen, welche mit demselben Schnitt gestanzt ist. Nur auf diese Weise wird es möglich sein, jederzeit wieder genau die gleichen Stator- und Rotorbleche herstellen zu können.

Die Form des Schnittes zur Herstellung geschlossener Nuten ist selbstverständlich, dagegen lassen sich offene Nuten auf verschiedene Weise erzeugen. Jede geschlossene Nute läßt sich durch Auf hobeln oder Fräsen eines in achsialer Richtung liegenden Schlitzes öffnen, aber dies Verfahren ist im allgemeinen nicht zu empfehlen, denn es werden dadurch leicht die Nuten deformiert, und außerdem tritt leicht ein Überbrücken der Blechisolation und
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Erhöhung der Eisenverluste ein. Man kann aber diese Methode unter Umständen nutzbringend verwerten, um einen Motor zu verbessern, nämlich dann, wenn die Stege der geschlossenen Nuten bei der Fabrikation zu dick ausgefallen sind, sodaß übermäßig große Streuung zu befürchten ist. Das Aufschlitzen kann eventuell die Streuung ganz wesentlich reduzieren.

Die Schlitze lassen sich gleichzeitig mit der Nute stanzen, wenn die Schnitte einen entsprechenden Ansatz bekommen. Fig. 115. Ist dieser Ansatz etwas groß, so erlischt dadurch die Möglichkeit, den inneren Ausfall des Bleches zum Rotor zu verwenden, da die Peripherie dieser Ausfallscheibe angestanzt ist. Es läßt sich dies vermeiden, wenn der Ansatz sehr klein gemacht wird, Fig. 115B, aber es kann dann leicht vorkommen, daß nach dem Ausschneiden der Bleche die Nuten nicht ganz geöffnet, sondern durch einen dünnen Steg geschlossen sind. Die Nuten müssen dann mit einem hochkant gestellten Flacheisen aufgerissen werden. Es macht sich dann ein Nacharbeiten der Schlitze mit der Feile erforderlich und es tritt fast immer eine Überbrückung der Bleche und ein erhöhter Eisenverlust ein.

Es ist unbedingt erforderlich, die Bleche so sauber zu stanzen, daß ein Nacharbeiten der Nuten am zusammengebauten Eisenkörper nicht erforderlich ist. Insbesondere ist das Ausrichten und Glätten der Nuten mittels Durchschlagens eines Fa^onstückes — gleichgültig, ob es glatt oder gezahnt ist — zu vermeiden, ebenso ein Ausfeilen der Nuten. Durch diese Arbeiten können die Eisenverluste auf den doppelten bis dreifachen Betrag anschwellen.

Große Motoren müssen aus einzelnen Blechsegmenten zusammengesetzt werden, und es empfiehlt sich, die Dimension der Segmente mit Rücksicht auf die bedeutenden Kosten des Schnittes nicht zu groß zu wählen.

Bei großen Motoren (8 ca. 2 mm) ist bei sehr exakter Ausführung der Blechbearbeitung ein Ausbohren nicht erforderlich, was mit Rücksicht auf die Eisenverluste sehr günstig ist. Muß ein Ausbohren stattfinden, so ist sehr darauf zu achten, daß das Statorgehäuse nicht verspannt und dadurch die Bohrung nach dem Abspannen unrund wird. Wegen des Durchhanges, überhaupt wegen der leichten Deformierbarkeit des Statorgehäuses ist bei ganz großen, Motoren mit einem Durchmesser von mehreren Metern das Ausbohren am besten stehend vorzunehmen und hierbei das Gehäuse nur an den Füßen festzuspannen.

Große Sorgfalt ist auf das Ausbalancieren der Rotoren zu verwenden, und es ist unbedingt nötig, die Rotoren und die Riemenscheiben für sich allein auszubalancieren. Kleine Anker legt man zu diesem Zweck auf horizontale Lineale, bei großen Ankern hat sich nachstehende Methode des Verfassers bestens bewährt.

Der Rotor wird mittels einer Glocke genau zentrisch über eine Säule horizontal gehängt, sodaß er sich auf der Kugel (Fig. 116) universell bewegen kann. Mit Libellen wird die Horizontalstellung kontrolliert und mit Hilfsgewichten korrigiert. Die Spindel gestattet, den Schwerpunkt des beweglichen Systems dem Drehpunkt beliebig nahe zu bringen und die Empfindlichkeit beliebig zu regulieren.

In Bezug auf die Herstellung der Wicklungen ist zu bemerken, daß insbesondere bei Statorwicklungen für hohe Spannung jede einzelne Spule in zweifacher Hinsicht geprüft werden muß,

bevor die Spulen geschaltet und dadurch zu den einzelnen Phasenwicklungen vereinigt werden. Die eine Prüfung bezieht sich auf die Untersuchung, ob die Isolation der Spulen gegen Eisen gut ist, und es werden zu diesem Zweck die einzelnen Spulen einerseits, das Eisen andererseits an Hochspannung gelegt. Eine zweite Prüfung beantwortet die Frage, ob nicht die einzelnen Windungen einer Spule Schluß gegeneinander haben. Ein passend geformter, hufeisenförmiger Elektromagnet aus lamelliertem Eisen wird so in den Stator gelegt, daß seine Kraftlinien die zu untersuchende Spule durchsetzen müssen. Die Spule des von Wechselstrom er-
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Fig. 116.


regten Magneten stellt die primäre, die zu untersuchende Spule die sekundäre Wicklung eines Transformators dar, und aus dem Geräusch der erregten Anordnung, eventuell auch durch Strommessung sieht man sofort, ob die Spule gut ist, oder nicht. Unter Umständen können aus der Erwärmung die fehlerhaften Drähte gefunden werden.

In Bezug auf die Wicklung der Kurzschlußanker ist es von Wichtigkeit, daß die Lötstellen mit größter Sorgfalt ausgeführt werden, mit Rücksicht auf die sehr großen in den einzelnen Stäben auftretenden Stromstärken. Manchmal begnügt man sich mit dem einfachen Löten nicht, sondern man bringt außerdem eine Vernietung oder Verschraubung an. Bei entsprechender Konstruktion lassen sich mitunter mehrere Lötstellen auf einmal durch Eintauchen in flüssiges Lötzinn herstellen, man muß sich aber genau überzeugen, ob das Zinn wirklich in die einzelnen Fugen eingedrungen ist und nicht etwa nur die Oberfläche gelötet hat. Unbedingt müssen die Stäbe vorher gut verzinnt werden.

Eine der wichtigsten Aufgaben des Betriebes ist es, Unterlagen für die Kalkulation neu zu entwerfender Maschinen zu schaffen. Es ist im allgemeinen kein großes Kunststick, eine gute Maschine zu bauen, dagegen ist es sehr schwierig, eine gute und billige Maschine zu entwerfen. Gerade das letztere muß aber von einer Firma erstrebt werden, wenn sie will, daß ihre Fabrikate konkurrenzfähig bleiben.

Um eine Maschine — abgesehen von ihren sonstigen Qualitäten — auch billig entwerfen zu können, genügt es für den Rechner und Konstrukteur nicht, ungefähr die Höhe der Rohmaterialienpreise zu kennen, nein, er muß wissen, wie hoch sich die Materialpreise inklusive Magazinierung stellen, wie groß die Abfälle durch Verschnitt sind, welchen Wert derartige Abfälle besitzen, welche Lieferzeiten die verschiedenen Rohmaterialien beanspruchen etc. Ferner muß ihm die Höhe der Regieunkosten, d. h. die Höhe der Zuschläge, die auf Material und Löhne gemacht werden müssen, bekannt sein, wie überhaupt das Prinzip, welches der von der Firma gehandhabten Kalkulationsmethode zugrunde liegt.

Es würde uns von unserem eigentlichen Thema zu weit entfernen, sollte in eingehender Weise besprochen werden, wie viele einzelne Momente auf den Entwurf einer Maschine bestimmend oder doch modifizierend einwirken. Nur das mag noch angedeutet werden, wie oben erwähnte Daten vom Rechner und Konstrukteur praktisch verwertet werden können.

Auf Grund von Selbstkosten an Löhnen und Material (unter eventueller Gutschrift des Schrottwertes des Abfalles) berechnet man sich Tabellen, welche die gesamten Selbstkosten der fertigen Maschine in Bezug auf ihre einzelnen wichtigsten Teile darstellt. Für den Rechner kommt bei einem Drehstrommotor hauptsächlich Blech und Kupfer in Frage, und die Tabelle braucht daher nur die vier Größen zu enthalten: Preis pro 1 kg Statoreisen, Rotoreisen, Statorkupfer, Rotorkupfer. Man wird finden, daß diese Einheitspreise mit steigender Maschinengröße abnehmen, bei sehr kleinen Maschinen aber, insbesondere was Kupfer anbelangt, stark zu-nehmen. Man kann nun in zweifacher Weise verfahren:

	
	
1.    Mathematische Methode. Die Materialeinheitspreise müssen durch eine empirische Gleichung als Funktion der Leistung oder des Ankerdurchmessers ausgedrückt werden. Ferner muß die Dimensionierungsgleichung so umgeformt werden, daß der Durchmesser oder die Leistung als Funktion der Volumina erscheint. Die Kombination beider Gleichungen ermöglicht D, resp. X so zu bestimmen, daß die Selbstkosten ein Minimum werden. Wem dieser Weg zu umständlich erscheint, kann wählen die:


	
2.    Empirische Methode. Es werden die Volumina und Selbstkosten des nach der Dimensionierungsformel berechneten Motors ermittelt. Nun wird D vergrößert und b verkleinert, sodaß die Motordimensionen abermals der Dimensionierungsgleichung genügen. Je nachdem die nun berechneten Selbstkosten größer oder kleiner sind als beim ursprünglich angenommenen Motor, sieht man, ob D verkleinert oder vergrößert werden muß, um den Motor billiger zu machen.





In ähnlicher Weise kann man in Bezug auf das elektrisch inaktive Material: Lagerschilde, Statorgehäuse, Rotorankerstern verfahren. Es wird sich zeigen, daß mit wochsendem D die Kosten des aktiven Materials abnehmen, hingegen die des inaktiven Materials zunehmen. Der definitive Entwurf muß ein Kompromiß dieser beiden Rücksichten sein; der Entwurf ist der beste, bei welchem die Summe beider Selbstkosten ein Minimum ist.

Die kurzen Andeutungen mögen genügen, um einen Begriff davon zu geben, wie unendlich schwer es ist, den „möglichst“ billigen Motor zu entwerfen, und wie viel oft gerechnet und geändert werden muß, bis der Motor allen mit Recht gestellten Anforderungen genügt. Man könnte überhaupt an der Lösung dieser Aufgabe verzweifeln, wenn uns nicht der alte Satz „natura non saltat“ trösten würde und die Erkenntnis, daß eine stetige Funktion sich in der Nähe ihres Maximums oder Minimums nur sehr allmählich ändert. Wir können und müssen uns daher in praxi damit begnügen, wenigstens in die Nähe dieses Minimums gelangt zu sein.

	
77.    Bemerkungen über die Konstruktion.



Im Vergleich zu den Schwierigkeiten, welche die Berechnung und Fabrikation der Drehstrommotoren bietet, stellt diese Maschinenart dem Konstrukteur weniger schwierige Aufgaben; er kann daher sein ganzes Augenmerk ausschließlich darauf richten, so zu konstruieren, daß die Fabrikation erleichtert wird. Die wichtigsten diesbezüglichen Gesichtspunkte sind ein derartiger Aufbau, daß die konzentrische Anordnung des Stators und Rotors
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Fig. 117.


gewährleistet wird, und die Schaffung von genügendem Raum zur Ausführung und Unterbringung der Spulenköpfe besonders der Statorwicklung. Die Statorwicklung ist an und für sich nicht leicht auszuführen, und diese Arbeit wird unnütz erschwert und verteuert, wenn am unrichtigen Ort Platz gespart wird.

Kleine Statorgehäuse werden mit Vorliebe nach der Anordnung Fig. 117a ausgeführt; sie werden leicht und vermitteln eine gute Wärmeabgabe von den Statorblechen nach außen, welche durch das Anbringen eines Ventilationsschlitzes noch erhöht werden kann. Eine Vergrößerung der Eisenverluste durch das auf dem ganzen Statorumfang aufliegende Gehäuse ist nicht zu befürchten. Bei größeren Durchmessern gibt man dem Gehäuse einen Querschnitt von günstigerem Biegungsmoment, Fig. 117b, doch sind dann geeignete Durchbrechungen vorzusehen, um eine Stagnation der Luft in den Hohlräumen zu verhindern. Die Ventilationsschlitze wirken am günstigsten, wenn sie im Stator und Rotor genau gegenüberstehen, Fig. 117 c, doch ist diese Anordnung nur zulässig, wenn das durch die Sirenenwirkung der

Distanzbleche verursachte Geräusch nicht störend wird. Soll aber der Motor möglichst geräuschlos arbeiten, so müssen die Venti-tilationsschlitze gegenseitig versetzt werden, Fig. 117 d, was aber eine Reduktion der Ventilationswirkung zur Folge hat. Zur Erhöhung der Ventilation bringt man auch an den Ankerplatten des Rotors vorstehende Rippen oder Schaufeln an.
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Bei kleinen Motoren können die Stator- und Rotorbleche ohne jede Befestigung in das Gehäuse oder auf die Welle resp. den Ankerstern geschoben werden, die Pressung der Endplatten genügt vollständig, um eine Drehung der Bleche zu verhindern. Bei größeren Motoren wird ein Flach- oder Rundkeil eingelegt, oder
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die zum Pressen verwendeten Schrauben sind durch die Bleche geführt. Die Schrauben können unisoliert bleiben, wenn sie an der Rückseite der Bleche liegen, Fig. 118 a, und es ist außerdem vorteilhaft, diese Löcher zu schlitzen, um zu verhindern, daß in den Bolzen Verluste auftreten, Fig. 118 b. Mitten durch das Blech geführte Bolzen, Fig. 118 c, müssen wenigstens an ihren Enden nebst Beilegscheiben und Muttern isoliert werden. Bei der Verwendung von Bolzen erlischt die Möglichkeit, die Nuten nicht ganz achsial, sondern etwas nach einer Schraubenlinie anzuordnen, was man sonst mit Rücksicht auf den schönen Anlauf (Kleben wird dadurch vermieden) gerne tut.

Die Endbleche macht man häufig etwas stärker (2 mm) als die übrigen Bleche (0,5 mm), um ein Auseinanderspreitzen der Zähne zu vermeiden; man legt auch häufig noch eine Scheibe aus
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Fig. 120.


Isoliermaterial bei, um eine gute Isolation der Nuten an den Ecken zu erzielen. Bei großen Motoren mit langen Zähnen müssen die Deckplatten 3—5 mm, eventuell noch stärker genommen werden, und man kürzt dann diese Finger, Fig. 119,
[image: ]

etwas ab, um zu große Eisenverluste zu vermeiden. Die Verwendung von Endplatten aus Messingguß, die eventuell gleichzeitig als Preßplatten dienen, findet sich mit Rücksicht auf ihren hohen Materialpreis nur noch sehr selten.

Die Preßteller werden nur bei größeren Motoren mit Schraubenbolzen zusammengezogen, bei kleinen Motoren werden dieselben entweder nach Fig. 120 b verschraubt, oder durch Ausgießen mit einem leichtflüssigen Metall, Fig. 120 c, oder von einem Springring, Fig. 120 a, gehalten. Ebenso sucht man teuere Verschraubungen beim Rotor nach Möglichkeit zu vermeiden, man hält bei kleineren Motoren die Ankerplatten sehr häufig nur durch Schrumpfringe.
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Bedeutend schwieriger als diese kleinen Motoren sind große mit mehrteiligen Statorgehäusen zu konstruieren. Eine Deformation des Stators sucht man auf verschiedene Weise zu verhindern.
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Fig. 123.


Manche Konstrukteure geben dem Kastenguß des Stators eine so beträchtliche radiale Höhe, daß der Querschnitt ein sehr großes Biegungsmoment besitzt, Fig. 121; andere bringen zum gleichen Zweck Seitenschilder an, Fig. 122; noch andere verspannen das

Heubach, Drehstrommotor.                               24

Gehäuse durch ein System von Stangen, welche lediglich auf Zug beansprucht werden.

Die Anordnung Fig. 121 erfordert etwas mehr an Material, gestattet aber eine sehr bequeme Montage und Demontage, da das Oberteil ohne weiteres abgehoben werden kann. Die Seitenschilde, Fig. 122, bilden gleichzeitig einen Schutz für die Wicklung und geben der Maschine ein sehr elegantes Aussehen, es erfordert aber die Herstellung der großen Drehflächen viel Zeit. Die letzte Anordnung, Fig. 123, dürfte zwar die billigste sein, sie ist aber
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Fig. 124.


nicht so leicht zu montieren und macht es unmöglich, daß der Stator mit achsialer Verschiebungsvorrichtung ausgestattet wird, welche ein Ausfahren des Stators ermöglicht und die Wicklungen zugänglich macht.

Bei großen Motoren, insbesondere bei direkt gekuppelten, ist es sehr zu empfehlen, das Statorgehäuse zentrierbar auf seiner Fundamentplatte oder den Fundamentschwellen zu befestigen, damit ein genaues Einstellen des Luftzwischenraumes möglich ist. Man stellt zu diesem Zweck die Statorfüße auf Schrauben und ordnet auch noch horizontal wirkende Druckschrauben an, Fig. 124. Noch solider ist es, diese Verstellbarkeit durch Keile zu bewirken. Wenn für den Fall etwaiger Reparaturen die Statorwicklungen zu-

gänglich bleiben sollen, so wählt man bei enger Maschinengrube eine Anordnung, welche es ermöglicht, den Stator so weit zu senken, daß derselbe auf dem Rotor aufliegt, und man dreht nun Stator und Rotor zusammen so lange, bis die gewünschte Stelle sich oben befindet. Es ist dann erforderlich, entweder die Stator-füße abnehmbar, oder die Fundamentschwellen ausfahrbar anzuordnen.

Die schwierigste Aufgabe für den Konstrukteur ist der Entwurf eines großen, für ein Bergwerk bestimmten Motors, denn in diesem Falle sind die zulässigen Maximal dimensionen der einzelnen Maschinenteile durch den Schachtquerschnitt und das Profil der Querschläge, das zulässige Maximalgewicht durch die Größe der Fördermaschine bestimmt und es muß dann häufig Stator und Rotor vielteilig ausgeführt werden. Die Vereinigung der einzelnen Teile erfolgt durch Schrauben und Schrumpfringe und es dürfen hierbei Prisonstifte nicht gespart werden. Wenn die Maschinenkammer nicht frei von Wettern ist, dürfen Schrumpfringe nicht angewandt werden, und es ist in solchen Fällen auch das Ausführen von Lötstellen nicht möglich; die Verbindungen der Wicklung an den Stoßstellen müssen dann auch durch Schrauben bewirkt werden. 1) Um sich vor unangenehmen Überraschungen zu schützen, muß sich der Konstrukteur sehr eingehend über derartige Fragen informieren.

Bei der Konstruktion gekapselter Motoren ist hauptsächlich zu berücksichtigen, daß der Stator seine Wärme so leicht als möglich an die Gehäuseoberfläche ableiten kann, und es ist darauf zu achten, daß nicht Räume vorhanden sind, in welchen sich stagnierende Luft halten kann. Der Rotor erhält zweckmäßig eine Ventilationseinrichtung (Rippen oder Luftschlitz), damit die ganze im Gehäuse eingeschlossene Luft in lebhafter Bewegung ist, sich gleichmäßig erwärmt und dadurch die gesamte Oberfläche des Gehäuses an der Wärmeabführung beteiligt. Wenn es angängig ist, kann dem Motor Kühlluft durch ein in der Nähe der Achse mündendes Rohr zugeführt werden, während das ableitende Rohr sich in der Nähe der Peripherie befindet. Das abführende Rohr wird zweckmäßig tangential in der Drehrichtung, eventuell radial

1) Natürlich ist auch der Anlasser (ebenso Schalter und Sicherungen) schlagwettersicher anzuordnen. geführt und es soll nicht unmittelbar am Gehäuse scharfe Krümmungen besitzen. —

In Bezug auf die Welle ist zu bemerken, daß der geringe Luftzwischenraum eine kräftige Achse und reichlich dimensionierte Lagerzapfen verlangt. Bei kleinen Motoren darf man aber mit der Zapfendicke nicht zu weit gehen, da sich sonst die Reibungsverluste, die der Zapfendicke direkt proportional sind, unangenehm bemerkbar machen. Es fällt dies besonders bei kleinen Motoren mit Kurzschlußankern auf. Wenn ein Kurzschlußanker als ganz glatter Rotationskörper gebaut ist, so ist seine Luftreibung praktisch Null, und Messungen an solchen Motoren zeigen, daß die Lagerreibung unter Umständen einen ganz erheblichen Prozentsatz der Leistung beträgt. Aus diesem Grunde ist man mit den Zapfendurchmessern teilweise so weit heruntergegangen, daß die Achsstümpfe sich sehr leicht verbiegen. Bei derart schwachen Wellen darf die Riemenscheibe nicht mit einem Keil befestigt werden, da beim Einschlagen und noch viel mehr beim Herausnehmen derselben zu leicht die Welle verbogen wird. Die Scheibe muß dann auf der Welle festgeklemmt werden. Die angegebenen Erwägungen haben dazu geführt, daß man in neuerer Zeit häufig Motoren mit Kugellagern ausrüstet.

	
78.    Die Wicklung.



Die einfachste und gebräuchlichste Wicklung, welche bei Mehrphasenmotoren Anwendung findet, ist die mit langen Spulen, wie eine solche in Fig. 125 a für einen Zweiphasenmotor dargestellt ist. Die Totalzahl der Nuten Nt ist bei dieser Wicklung

Nt = a-A-p .......(212)

Bei einer Zweiphasenmaschine läßt sich die Wicklung auch nach dem Schema Fig. 125 b ausführen, wodurch die mittlere Windungslänge kürzer wird, dagegen die Verbindung der einzelnen Spulen wegen der vielen Überkreuzungen unbequemer wird. Dreiphasige Wicklungen lassen sich nach dem Schema Fig. 125 b überhaupt nicht ausführen.

Ist die Polzahl kein Vielfaches von 4, also

wobei x eine beliebige ganze Zahl bedeutet, so läßt sich die Wicklung nicht so symmetrisch ausführen, wie es Fig. 126 für einen 4-poligen Stator gezeichnet ist, sondern zwei Spulen müssen abgekröpft werden, wie in Fig. 127 für einen 10-poligen Anker dar-
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Fig. 125.


gestellt ist. Eine gleichmäßige Form aller Spulenköpfe läßt sieh erzielen, wenn man dieselben insgesamt abkröpft, wie in Fig. 128 für denselben 10-poligen Anker gezeigt ist.

Ordnet man die Spulenköpfe in 3 verschiedenen. Ebenen an (Fig. 129), so kann man erreichen, daß der Stator geteilt werden
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Fig. 126.


kann, ohne daß Spulen zu durchschneiden sind. Es lassen sich auf diese Weise die einzelnen Teile des Stators oder Rotors eines großen Motors in der Fabrik fertig wickeln, und es sind bei der Montage nur die Spulenverbindungen an den Stößen auszuführen.
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Fig. 128.


Wenn A, die Nutenzahl pro Spulenseite, eine ganze Zahl ist, so sind die Amperedrähte jeder Phase gleichmäßig auf jeden einzelnen Pol verteilt. A kann aber auch eine gebrochene Zahl sein, wenn nur die totale Nutenzahl einer Phase geradzahlig ist. Es muß daher die Totalnutenzahl nur der Gleichung genügen

Nt = 2-a-x,.......(213)

wobei x jede beliebige ganze Zahl sein kann. Es wird dann

kann also die Werte annehmen A = 1; 1,5; 2; 2,5 . . . A = 0,5 gibt praktisch unverwendbare Wicklungen. Man erhält auf diese Weise z. B. für 4-polige Motoren folgende möglichen Nutenzahlen.
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Die Amperedrähte jeder einzelnen Phase sind ungleichmäßig auf die einzelnen Pole verteilt, die Polpaare sind aber gleichmäßig erregt; im übrigen sind die Phasen absolut symmetrisch und gleichwertig, auch bei gebrochenem A. Die praktische Ausführung der Wicklung ist sehr einfach, indem man pro Phase immer abwechslungsweise eine Spule mit A + 0,5 und A — 0,5 Nuten pro Spulenseite wickelt. Fig. 130 zeigt eine Dreiphasenwicklung mit A = 2,5.

Es ließe sich unschwer eine Gleichung aufstellen, welche ermöglicht, den Wicklungsschnitt der betrachteten Wicklungen zu

berechnen. Die Wicklungen sind aber so einfach und zeigen sich dem Auge so übersichtlich, daß die Handhabung einer Wicklungs-
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formel sicherlich mehr Schwierigkeiten und Umstände verursacht, als die Ausführung nach einfacher Überlegung. Diese Wicklungen stellen eine Modifikation der Serienspiralwicklung dar.
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Eine Bemerkung möge noch Platz finden. dem Schema Fig. 125 ausgeführten Zweiphasenwicklung oder bei einer nach Fig. 129 ausgeführten Dreiphasenwicklung erhält ein und dieselbe Phase alle großen, die anderen alle kleineren Spulenköpfe, und infolgedessen bekommen wegen der Verschiedenheit der Kopfstreuung die einzelnen Phasen verschieden große Streuungskoeffizienten. Die Folge davon ist ungleiche Belastung der einzelnen Phasen, was sich besonders leicht bei Zweiphasenmotoren nachweisen läßt. Man kann diese schädlichen Wirkungen vermeiden, wenn man die Reihenfolge der Spulenköpfe umkehrt, also beispielsweise bei einem Zweiphasenmotor nicht immer die Spulenköpfe groß—klein—groß—klein anordnet, sondern an geeigneten Stellen groß—klein—klein—groß.


Bei einer nach



Da sich jedem Gleichstromanker Mehrphasenstrom entnehmen läßt, muß sich auch ein Mehrphasenmotor mit einer geschlossenen Gleichstromankerwicklung versehen lassen. Diese Wicklungsart ist aber ungebräuchlich, weil sie keinerlei Vorteile bietet. Unter Umständen ist ihre Anwendung sogar unmöglich, z. B. bei zwei-phasigem verketteten Linienstrom; denn es ist klar, daß sich die zwei Phasen, die in einer geschlossenen Wicklung geführt werden, nicht verketten lassen. Bei Dreiphasenstrom ergibt eine geschlossene Wicklung natürlich immer Dreieckschaltung. Ein großer Nachteil aller geschlossenen Wicklungen ist, daß sich eventuelle Wicklungsfehler nur äußerst schwer lokalisieren lassen, während bei allen offenen Wicklungen wenigstens sofort zu konstatieren ist, welche Phase fehlerhaft ist. Die einzelnen Phasen können bei Verwendung einer Gleichstromwicklung getrennt werden, wenn man die Wicklung mehrfach (a-fach) geschlossen macht, aber auch diese Wicklungen sind ungebräuchlich oder werden wenigstens nur selten verwendet, da die Isolation der Phasen gegeneinander Schwierigkeiten macht.

Die Anwendung derartiger Wicklungen beschränkt sich aus den angedeuteten Gründen auf Rotoren mit Stabwicklung und auf Statoren für geringe Klemmenspannung, die sich ebenfalls mit Stabwicklung ausführen lassen, und man bedient sich bei derartigen Wicklungen mit Vorteil der Arnoldschen Wicklungsformeln. Wir wollen nur die reine Serienwicklung betrachten, die am häufigsten Anwendung findet. Die Wicklungsschnitte Y1 und y2 sind nach Arnold


Y1—Y2



s ±2 1) - p


. . (215)



2

s == Anzahl der Spulenseiten resp. Stabzahl, und s=N,S,........(216)

wenn mit S die Anzahl der Stäbe resp. Spulenseiten pro Nute bezeichnet wird. S ist gewöhnlich = 2, selten — 1. Es muß

2 und - 31,7 teilerfremd, . . . (217) gleichzeitig

yi und y2 ungerade.......(218) sein. Die Stabzahl ist

8 = P (,+3>)±2......(219)

und s muß ein Vielfaches der Phasenzahl a sein, damit die Wicklung symmetrisch wird. Man erhält daher für einen 4-poligen Dreiphasenauker folgende möglichen Nutenzahlen, vorausgesetzt, daß pro Nute zwei Stäbe untergebracht werden:

p = 4, a = 3, S = 2
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1) Bei Arnold, Ankerwicklungen und Ankerkonstruktionen, lautet diese


Gleichung



Xi + Y2 =

da Arnold mit p die Anzahl der Polpaare bezeichnet, während hier mit p die Polzahl bezeichnet ist.

Es ist

s _ 2 y=y=p—......(220) und

N, A=--—......  . (221) a • p

Die Koeffiziententabelle Seite 302 enthält nur für geradzahlige Nutenzahlen pro Spulenseite c und k. Für ungeradzahlige A
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können die Koeffizienten entweder aus der Tabelle interpoliert oder mittels der Gleichungen der Koeffizienten berechnet werden, denn diese Gleichungen gelten auch für gebrochene A.

Die praktische Ausführung der Wicklung gestaltet sich sehr einfach: Vom 1. Stabe beginnend wird um Y1 und y2 weiterschreitend nach Anschluß von

Nt-S

a

Stäben das Ende der ersten Phase erreicht. Um den Wicklungsschritt abstehend findet man den 1. Stab der Phase 2 u. s. f. Fig. 131 zeigt die Wicklung der ersten Phase eines dreiphasigen vierpoligen Stators mit Nt = 15, s = 30, yt = y2 = 7, A = 1,25. Die einzelnen Phasen können in beliebiger Weise zu einem Stern oder einem Dreieck vereinigt werden.

Stab- oder Schablonenschleifenwicklung findet zweckmäßig nur in den Fällen Anwendung, in welchen auch die Verwendung langer Spulen angängig wäre. In diesen Fällen läßt sich auch eine Serienstabwicklung nach Fig. 132 ausführen, wenn nur 1 Stab pro Nute enthalten ist. Die Wicklung zeigt die Eigentümlichkeit, daß der Schritt beim jedesmaligen Passieren des Wicklungs
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anfanges um eine Nute größer ist, als auf dem übrigen Teil des Ankers. Die Wicklung versagt, wenn S = 2, oder bedingt wenigstens unschöne Unsymmetrien beim Übergang von den oberen Stäben zu den unteren in der Anfangsspule.

Bei Käfigankern ist es vorteilhaft, die Ringe so auszubilden, daß dieselben bequem abgedreht werden können. Man hat es auf diese Weise in der Hand, die Anzugskraft eines fertigen Motors innerhalb weiter Grenzen auf billige Weise durch Abdrehen zu steigern, und es ist eine sehr hohe Stromdichte in den

Ringen mit Rücksicht auf ihre vorzügliche Berührung mit der Luft zulässig. Bei kleinen Ankern können die Ankerplatten aus Messing oder Kupfer gegossen und so gleichzeitig als Kurzschlußringe verwendet werden. Fig. 133. Es ist zwar nicht nötig, die Stäbe des Kurzschlußankers zu isolieren, es ist aber empfehlenswert, dies zu tun, da dieselben sonst leicht, besonders beim Anlaufen in Vibration geraten und durch das Anschlägen an die Nutenwände ein sehr unangenehmes Geräusch verursachen.
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Fig. 133.


Die Anwendung von Kurzschlußankern mit Stabwicklung (c. S. 269) ist vorteilhaft bei Motoren, welche unter sehr schweren Anzugsbedingungen zu arbeiten haben (z. B. Zentrifugenmotoren), welche daher einen relativ hohen Rotorwiderstand besitzen und große Rotorverluste während längerer Zeit aushalten müssen. Die Gitterköpfe bewirken eine vorzügliche Kühlung der Rotorwicklung überhaupt, insbesondere der Lötstellen.

	
79.    Die Anlaßwiderstände.



Aus den Abhandlungen des 10. Kapitels geht deutlich hervor, daß es nur zwei günstige Methoden zum Anlassen eines Motors gibt: die Variation der Polwechselzahl II,, d. h. Anlassen mit dem Generator, und die Variation des w2, d. h. Anwendung eines regulierbaren Widerstandes im Rotorstromkreis. Es ist klar, daß von der ersten Möglichkeit nur unter ganz besonderen Umständen Gebrauch gemacht werden kann, während die zweite Methode in allen Fällen Anwendung linden kann. Sie ist daher für die Praxis von größter Bedeutung und die nachfolgenden Betrachtungen beschränken sich ausschließlich auf diese Methode.

Die Verwendung dieser Anlasser setzt natürlich voraus, daß

der Motor einen Phasenrotor mit Schleifringen besitzt. Dreiphasige Rotoren müssen drei Schleifringe besitzen, gleichgültig, ob die Rotorwicklung im Stern oder Dreieck geschaltet ist. Der Anlasser muß demgemäß 3 Serien von Widerständen besitzen, die stets im Stern geschaltet werden, weil diese Schaltung eine viel einfachere und billigere Konstruktion ermöglicht. Fig. 134 stellt das Schema eines derartigen Widerstandes dar, und man sieht, daß die 3 Kontaktbürsten unter sich verbunden sein können und so in einfachster Weise den neutralen Punkt des Systemes bilden.
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Zweiphasige Rotoren werden wohl niemals mit 4 Schleifringen, sondern unter Verwendung der verketteten Zweiphasenschaltung ebenfalls nur mit 3 Schleifringen, von denen der eine eventuell stärker dimensioniert sein muß, weil er den V2- fachen Strom der beiden anderen führt, ausgestattet. Die Schaltung muß dann nach dem Schema Fig. 135 ausgeführt werden.

Bezeichnet w2 den Widerstand einer Rotorphase, R den Widerstand pro Phase des Anlassers, K die Anzahl der Widerstandsvariationen (Anzahl der Kontakte pro Phase minus 1), so lassen sich die Widerstände der einzelnen Stufen in einfacher Weise berechnen, wenn man von folgendem Satz ausgeht:

Ein Regulierwiderstand ist dann zweckmäßig abgestuft, wenn von Kontakt zu Kontakt dieselbe prozentuelle Widerstandsänderung herbeigeführt wird. Man erhält die prozentuelle Ände

rung ni


m K/l R i 1) 100 TTw, ......




(222)



Bezeichnet man die einzelnen Stufenwiderstände vom Kurzschluß
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kontakt aus gezählt mit R1, R,, R3 . . ., so erhält man die Stufen in folgender Weise:

m h= 100 ‘W2

R,=-T00 (w,++R,)

R,= T00(w,++R,) etc.

Über die zulässige Minimalzahl der Kontakte läßt sich eine allgemein gültige Regel nicht aufstellen; denn dieselbe ist ganz verschieden je nach der Bauart des Anlassers. Bei einem Kontroller kann die Kontaktzahl eine relativ sehr niedrige sein, da die guten Funkenlöschvorrichtungen dieser Apparate eine sehr hohe Potentialdifferenz zwischen zwei aufeinander folgenden Kontakten zulassen. Die Kontaktzahl muß erhöht werden, wenn nur Hilfskontakte als Funkenzieher verwendet werden, und bei einem ganz einfachen Anlasser muß sie noch höher genommen werden.

	
1)    Dies Resultat ergibt sich aus der bekannten Zinseszinsgleichung. Die Aufgabe läßt sich so auffassen: zu m Prozent wächst das Kapital W2 auf die Höhe (W2 + R) in K Jahren an.



Selbstverständlich ist auch von Einfluß hierauf die Stromstärke des Rotorstromkreises, also die Leistung des Motors, kurz, es sind dieselben Gesichtspunkte maßgebend, wie beim Anlasser einer Gleichstrommaschine.

Bei Erwähnung dieser verschiedenen Anlasserkonstruktionen kann die Frage ihre Erledigung finden, ob es besser ist, zwei-oder dreiphasige Rotoren zu bauen. Der beim Anlassen in den Widerständen zu vernichtende Effekt ist in beiden Fällen nahezu derselbe, die Widerstandsdrähte müssen daher beim zwei- oder dreiphasigen Anlasser gleiche Kapazität haben. Dagegen verhalten sich, gleichviele Regulierstufen vorausgesetzt, die Kontaktzahlen wie 2 (K + 1) zu 3 (K + 1). Bei Kontrollern für Mehrphasenmotoren ergibt sich häufig eine so große Baulänge der

2 Kontaktwalze, daß die Reduktion der Kontaktzahl auf — ausschlaggebend für die Verwendung zweiphasiger Rotoren sein kann. Bei gewöhnlichen Anlassern dagegen wird eine dreiphasige Rotorwicklung vorzuziehen sein, da eine gegebene Motortype mit einem dreiphasigen Rotor sich günstiger in Bezug auf Streuung, also cos 9, und auf Schlüpfung, also den Wirkungsgrad, verhält. Bei gegebener Kontaktzahl läßt sich die Regulierung des Anlassers verfeinern, wenn die Relativstellung der Kontaktbürsten zu ihren Kontakten so gemacht wird, daß beim Weiterdrehen der Kurbel die Bürsten nicht gleichzeitig die nächsten Kontakte berühren, sondern daß dies für die einzelnen Phasen in Aufeinanderfolge geschieht. Fig. 136 zeigt dies Prinzip für einen dreiphasigen Anlasser.

Die Anlasser lassen sich so bauen, daß der Rotorstromkreis vollkommen unterbrochen, also ausgeschaltet werden kann, es läßt sich dies aber auch verhindern, wenn die Bürsten durch einen Anschlag verhindert werden, ihren letzten Kontakt zu verlassen. Bei einem Motor für hohe Klemmenspannung wird man vielleicht die erste Anordnung bevorzugen, wenn der Motor sehr häufig angelassen und abgestellt wird, um den Verschleiß des Hoch-Spannungsschalters zu reduzieren. Im allgemeinen bietet aber die zweite Anordnung mehr Vorteile, denn erstens vermeidet sie einen Unterbrechungsfunken am Anlasser und zweitens verhindert sie, daß der Motor nur am Anlasser ausgeschaltet wird, während der Stator erregt bleibt. Wenn der Stator stundenlang erregt ist, während der Motor stillsteht, kann natürlich sehr leicht ein Verbrennen der Statorwicklung eintreten, da jede Kühlung durch Ventilation fehlt. Diese Eventualität läßt sich übrigens auch dadurch beseitigen, daß Anlasser und Hauptschalter zwangsläufig gekuppelt werden.

Daß die Widerstandsdrähte relativ sehr hoch belastet werden können, wenn der Anlasser nur zum Anlassen verwendet wird, daß sie dagegen nur gering beansprucht werden dürfen, wenn der Anlasser gleichzeitig zum Regulieren der Tourenzahl Verwendung finden soll und dauernd belastet wird, ist selbstverständlich. Sehr kräftig muß der Kurzschlußkontakt und die an ihm angeschlossene Leitung dimensioniert werden, damit nicht dauernd durch den Anlasser der Widerstand des Rotors vermehrt wird. Diese Rücksicht fällt weg, wenn der Motor mit Kurzschlußvorrichtung versehen ist.

Um Material zu sparen, werden die Widerstandsdrähte mitunter in 01 eingebaut, welches eventuell wiederum durch ein von Wasser durchflossenes Schlangenrohr gekühlt werden kann.

Flüssigkeitsanlasser erhalten je nach der Phasenzahl 2 oder 3 bewegliche Platten und sind stets mit einer metallischen Kurzschlußkontaktvorrichtung versehen. Wegen der durch ihre Inkonstanz bedingten Unzuverlässigkeit finden sie nur beschränkte Verwendung und können niemals dauernd zur Tourenregulierung eingeschaltet bleiben.

Im nachstehenden soll eine Methode angegeben werden, welche dem in der Praxis stehenden Ingenieur sehr gute Dienste leisten kann, weil sie es ermöglicht, in sehr angenäherter Weise Anlaß- oder Regulierwiderstände zu berechnen, wenn das Kreisdiagramm des Motors nicht bekannt ist. Die einzigen Daten, deren Kenntnis nötig ist, sind die Leistung des Motors und die Spannung an den Schleifringen des stillstehenden Rotors, natürlich auch die Phasenzahl des Rotors.

Exakt gültig ist die Methode nur bei einem streuungsfreien Motor mit widerstandslosem Stator, und sie basiert auf der Tatsache, daß der stillstehende Motor als Transformator aufgefaßt werden kann.

Soll der Motor mit normaler Zugkraft angehen, so müssen beim Anlassen 736 . PS Watt vernichtet werden. Bezeichnen wir

Heubach, Drehstrommotor.                                25

mit a, die Phasenzahl des Rotors und des Anlassers, mit En die Phasenspannung im Anlasser, also an den Widerständen pro Phase, wobei ER = Schleifringspannung bei einem zweiphasigen, Schleifringspannung , .                                 . = ------——--bei einem dreiphasigen Rotor, so wird der

Aulaufstrom pro Phase

736 ■ PS


(223)



	
	
a, • E. ’ - n





und demnach der zum Anlasser mit normaler Zugkraft erforderliche Anlaßwiderstand pro Phase

a, • E 2 - n


(224)



736 • PS

Die Zugkraft ist unabhängig von der Tourenzahl lediglich dem Strom J, proportional; soll daher die Zugkraft x Prozent der normalen betragen, so wird der Strom pro Phase im Anlasser

Die Schleifringspannung des Rotors, mithin auch die Phasenspannung im Anlasser ist der Polwechselzahl II, direkt proportional, sie wird daher, wenn die Tourenzahl nur y Prozent der synchronen beträgt,

[image: ]



Der Widerstand pro Phase des Anlassers beträgt daher, um X

eine Zugkraft von -100 der normalen


bei einer Tourenzahl von



100 der normalen herbeizuführen:


R =1100—

X




En

J,......




(225)



Diese Gleichung gestattet auch mit einer für die Praxis in den meisten Fällen genügenden Genauigkeit die Abhängigkeit der Tourenzahl bei variabler Belastung, aber konstanter Stellung des

Anlassers als Funktion der Zugkraft darzustellen. Man erhält

J, y =100 — x. —n . R •               E n und wenn man n' y* 100 =n

setzt, wobei n' = Tourenzahl bei Synchronismus, so erhält man
[image: ]

die Gleichung einer geraden Linie.

Dreizehntes Kapitel.

Experimentelle Untersuchung der Motoren.

	
	
80.    Prüfung der Wicklung. — 81. Ermittlung der Streuungskoeffizienten durch Spannungsmessung. — 82. Ermittlung des Diagrammkreises durch Strommessung. — 83. Ermittlung der Verluste. — 84. Ermittlung des Wirkungsgrades.





*   80. Prüfung der Wicklung.

Bei einem fertiggestellten Motor muß in erster Linie geprüft werden, ob die Wicklungen fehlerfrei ausgeführt und richtig geschaltet sind. Die hauptsächlichsten Fehler, die in dieser Beziehung vorkommen können, sind: falsche Drahtzahl, Schluß einzelner Windungen gegeneinander, ungenügende Isolation respektive Schluß gegen das Eisen, falsche Schaltung der einzelnen Phasen.

Da es selbst bei sorgfältigster Arbeit vorkommen kann, daß die Isolation einer Wicklung durchschlagen wird, empfiehlt es sich, nicht mit der Durchschlagprobe zu beginnen, sondern erst die anderen Untersuchungen vorzunehmen, denn im Falle die Wicklung noch einen weiteren Fehler aufweisen sollte, können wenigstens durch eine Reparatur alle Übelstände beseitigt werden.

Man beginne also damit, den Motor anlaufen zu lassen. Schon hierbei können sich manche Schwierigkeiten zeigen, indem es vorkommen kann, daß der Motor überhaupt nicht anlaufen will. Es kann dies eintreten, wenn mehrere Statorwindungen Schluß mit einander haben, wenn der Rotor im Stator schleift, wenn die Wicklung eines Schleifringankers total verschaltet ist, oder wenn ein Kurzschlußanker relativ zum Stator ungünstige Nutenzahl besitzt2).

Wenn nicht vollständig indiskutable Fehler vorliegen, wird es stets gelingen, den Motor durch Anlassen mittels des Generators, wie es im 68. Abschnitt beschrieben ist, hochzubringen, und dies Verfahren ist bei allen Motoren für hohe Spannung sehr zu empfehlen, da man bei dieser Methode Gelegenheit hat, die Wicklungen zu untersuchen, bevor die Spannung so gesteigert wird, daß ein Durchschlagen zu befürchten ist. Ebenso ist es sehr angenehm, wenn man bei sehr rasch laufenden Motoren nicht sofort mit der hohen Tourenzahl beginnen muß, sondern dieselbe allmählich steigern kann. Sollte man auch auf diese Weise den Motor nicht hochbringen, so kann man, wenigstens bei Schleifringankern, noch einen Versuch machen, indem man Stator und Rotor ihre Rolle vertauschen läßt.

Ist der leerlaufende Motor auf Touren, so unterbricht man der Reihe nach immer je eine Zuleitung, sodaß der Motor als Einphasenmotor läuft. Nur wenn alle Phasen vollständig symmetrisch gewickelt und Schluß frei sind, wird der Motor mit jeder Phasenwicklung bei gleichem Stromverbrauch (gleiche Spannung vorausgesetzt) arbeiten, und es ist so leicht, festzustellen, ob eventuell eine Phasenwicklung weniger Drähte als die andere enthält. Ebenso kann man konstatieren, ob und in welcher Phasenwicklung kurzgeschlossene Windungen vorhanden sind. Sollte man diese Eehlerstelle nicht sofort lokalisieren können, so gelingt dies noch leichter, wenn nicht nur Strom und Spannung der arbeitenden Phase, sondern gleichzeitig die in den ausgeschalteten Phasen induzierte EMKK gemessen werden; es wird kaum nötig sein, auch noch Wattmetermessungen vorzunehmen. Endlich läßt sich am leerlaufenden Motor noch feststellen, ob die Wicklungen eines Dreiphasenmotors richtig geschaltet sind. Ist nämlich bei der Wicklung einer Phase Anfang und Ende miteinander vertauscht, so würde der Motor für einen Dreiphasenstrom, dessen einzelne Ströme 60° Phasendistanz haben, statt 120°, geschaltet sein. Sollte dieser Fehler bei einem Stator vorliegen, so läuft der Motor schwer an, macht ein ganz charakteristisches Geräusch, und er wirft in einer Phase Energie in das Netz zurück, während er in den übrigen entsprechend mehr konsumiert.

Noch einfacher läßt sich der zuletzt erwähnte Fehler bei einem Motor mit gewickeltem Rotor finden. Wir wollen annehmen, der Stator sei richtig, der Rotor aber in dieser Weise verschaltet, so werden wir an den Schleifringen des stillstehenden Rotors statt der unter sich gleichen Spannungen 1—2, 2—3, 3—1, Fig. 137, ungleiche Spannungen messen von der Größe 1—2', 2'—3, 3—1, und die beiden ersten sind nur V 3 -Teil der letzteren. In dieser Schaltung würde der Motor nur geringe Zugkraft bei großer Schlüpfung ausüben, da der Rotors ein äußerst ungünstiges, stark pulsierendes Feld erzeugen würde.

Ist der Rotor im Dreieck geschaltet und hierbei eine Phasen-wicklung verkehrt angeschlossen, so kann im stillstehenden Rotor ein Strom entstehen, selbst wenn die Schleifringe außen nicht verbunden sind. Der Motor wird daher bei ausgeschaltetem Rotoranlasser angehen, allerdings nur mit geringer Zugkraft, da auch in diesem Falle ein stark pulsierendes Rotorfeld auftritt.

Auch bei Anwendung von mehrfachen Parallelwicklungen auf dem. Rotor kann ein Angehen des Rotors bei offenem äußeren Rotorstromkreis auftreten, aber die entwickelte Zugkraft ist nur sehr gering, denn der Rotorstrom kann in diesem Falle nur infolge von kleinen Unsymmetrien der Wicklung zustande kommen.
[image: ]

Ist erwiesen, daß derart grobe Fehler am Motor nicht vorhanden sind, so kann der Magnetisierungsstrom gemessen und durch Vergleich mit der Rechnung untersucht werden, ob die Windungszahlen und der Luftzwischenraum richtig ausgeführt sind. Zur Kontrolle dient schließlich die Messung der Ohmschen Widerstände der Wicklungen.

	
	
81.    Ermittlung der Streuungskoeffizienten durch Spannungs-messungen.





Diese Methode ist nur anwendbar bei Motoren mit gewickelten Rotoren, ist aber bei diesen sehr bequem und einfach durchzuführen. Die Messung wird folgendermaßen ausgeführt:

Bei stillstehendem Rotor wird der Stator mit einer Spannung von der ungefähren Größe seiner normalen Betriebsspannung erregt, und es wird diese Statorklemmenspannung Er,, der Magnetisierungsstrom Jj, der Wattkonsum W1, endlich die im Rotor induzierte EMK E, mit größter Genauigkeit gemessen.

Die Klemmenspannung Er, ist die Resultante aus zwei Komponenten, dem Spannungsverlust J1 . Wi und der dem Stator aufgedrückten EMK EP Da sich cos g aus dem Verhältnis

C0Sy1= . E1 ......(227) a1 ’ Mr ’ 11

berechnen läßt, können wir die EMK E1 ermitteln, denn es ist

Ej = V E,, 2 + (Jj • Wj)2 — 2 • E, • J, • w, • cos $1 ,   . (228) wie sich ohne weiteres aus dem exakten Diagramm bei Leerlauf ergibt. Nach den Ausführungen des sechsten Kapitels erhalten wir

__ Ei k, • Na __1 "E, k, - N, "


(229)



worin k die in der Tabelle Seite 302 angegebenen Koeffizienten bedeutet. Der Wattkonsum W1 ist ziemlich beträchtlich, selbst bei großen Motoren mit hohem Wirkungsgrad, da das Rotoreisen seiner maximalen Induktion bei der hohen Periodenzahl U^ ausgesetzt ist. Die Eisenverluste sind daher bei dem stillstehenden Motor wesentlich größer als bei irgend einem anderen Betriebszustand. Er, ist daher immer um ein oder mehrere Prozente größer als E1, und es würde sich daher ein total falscher Wert für T1 ergeben, wenn wir einfach die gemessene Statorklemmenspannung Er, statt E, in die Gleichung (229) einsetzen würden. Es kann daher bei der Ermittlung des Streuungskoeffizienten nach dieser Methode auf die Strom- und Wattmessung nicht verzichtet werden. Nimmt man die gleichen Messungen bei verschiedenen Klemmenspannungen Er, vor, so kann auf diese Weise untersucht werden, ob der Streuungskoeffizient T, konstant ist, oder ob er von der Eisensättigung abhängt.

Genau so wird verfahren, um T2 zu ermitteln, nur wird dann der Rotor an die Stromquelle angeschlossen, und der Rotorstrom J,, die konsumierten Watt W2, die Schleifringspannung Er, und die im Stator induzierte EMK E1 gemessen. Es ergibt sich

w,


(230)

(231)

(232)



Cos P2 = a,.E. J‘........... - r2

	
E, = VE,, 2+(J, w,)2 — 2 • E,, • J, • W2 ■ COS 473 .



	
E, k^N.


	
12    E, k.N2 ..........





Selbstverständlich, ist unter Er,, E, . . . die Phasenspannung zu verstehen, und es ist daher die Voltmeterablesung eventuell auf Phasenspannung durch Division mit V 3 zu reduzieren, wenn Sternschaltung angewendet ist und das Voltmeter nicht am neutralen Punkt angeschlossen wird. Ebenso bezeichnet J1, J, den Strom pro Phase, und es ist daher bei Dreieckschaltung die Amperemeterablesung durch V3 zu dividieren. W1, W2 ist der Wattkonsum in sämtlichen a1 resp. a, Phasen.

Da die in den Gleichungen (229) und (232) enthaltenen Quotienten nur um wenige Prozente verschieden sind, müssen die Messungen mit größter Sorgfalt ausgeführt werden, und es empfiehlt sich, wenn E1 und E, nicht sehr verschieden sind, die Stator- und Rotorspannung mit demselben Voltmesser zu messen. Werden verschiedene Voltmesser benützt, so müssen dieselben bis auf Bruchteile eines Prozentes richtig zeigen. Ferner überzeuge man sich, ob die im sekundären Teil (Rotor bei Bestimmung von 11, Stator bei Bestimmung von T2) induzierte EMK von der Relativstellung zwischen Stator und Rotor unabhängig ist. Sollte sie variabel sein, was übrigens nur in ganz verschwindendem Maße eintreten kann, so sind die Messungen bei der Rotorstellung vorzunehmen, in welcher bei konstanter Klemmenspannung an der primären Wicklung in der sekundären die maximale EMK induziert wird.

Endlich ist zu bemerken, daß der stromliefernde Generator symmetrischen Mehrphasenstrom liefern muß, daß er also symmetrisch gebaut sein muß und während der Messungen nicht in seinen Phasen ungleichmäßig belastet sein darf. Er darf auch keine zu ungünstige EMK-Kurve haben, sondern dieselbe soll von der Sinuslinie nicht zu sehr abweichen. Der Generator muß daher mindestens zwei Nuten pro Spulenseite haben, Generatoren mit Einlochwicklung sind für diese Untersuchungen nicht geeignet. Wenn bei sterngeschalteten Dreiphasenwicklungen die neutralen Punkte zugänglich sind, ist es vorteilhaft, direkt die Phasenspannungen zu messen, also das Voltmeter am neutralen Punkt anzuschließen. Selbstredend wird die Genauigkeit des Resultates erhöht, wenn sämtliche Phasenspannungen gemessen werden.

Der totale Streuungskoeffizient des Motors ergibt sich aus der bekannten Beziehung


7 = T1 — T2 — T1 • T2.




(233)



T läßt sich noch in anderer Weise direkt durch Messung ermitteln. Es wird der Stator mit einer Klemmenspannung Er, erregt und hieraus unter Benützung der Gleichungen (227) und (228) die EMK Et berechnet und die im Rotor induzierte EMK E(1—2) gemessen. Erregen wir nun den Rotor mit einer solchen Klemmenspannung Er,, daß die im Stator induzierte EMK E(2—1) der bei der vorigen Messung dem Stator aufgedrückten EMK E1 gleich ist, so ist

E, = E2-1)

Der Beweis für die Richtigkeit ist sehr leicht zu erbringen. Nach Gleichung (229) ist

	
	
	
E, k, • N2 1 " Ea-z







und wenn aus der Rotorklemmenspannung Er, mittels der Gleichungen (230) und (231) E, berechnet ist, ergibt sich nach Gleichung (232)

E k, • N, "Eg-ykatNg—s '

Haben wir die Klemmenspannungen so gewählt, daß unserer Voraussetzung entsprechend E, = E 2—1) , so ergibt sich

1 + , = (1 + r) (1 + 1) = — 2 1, "(1-2)

also das in Gleichung (234) enthaltene Resultat.

	
	
	
	
82.    Ermittlung des Diagrammkreises durch Strommessungen.









Es bedarf wohl kaum der Erwähnung, daß es möglich ist, den Diagrammkreis resp. das vollständige Diagramm u b d zu zeichnen, wenn eine größere Anzahl von Messungen der Statorspannung, des Statorstromes und des Statorwattkonsumes bei verschiedenen Belastungsstadien ausgeführt werden. Bei Leerlauf erhält man auf diese Weise den Leerstrom i s, Fig. 48, und da

Watt sich aus dem Verhältnis ——-------= cos c der Leistungsfaktor

V oltampere

bei jeder Belastung berechnen läßt, ist es sehr einfach, eine beliebige Anzahl von Punkten s, also den geometrischen Ort, auf welchem sich die Spitze des Stromdreieckes bewegt, festzulegen, und dieser geometrische Ort ist eben der Diagrammkreis.

Die nachstehend aufgeführte Methode ermöglicht es, aus nur zwei Messungen den Diagrammkreis zu finden, und sie beruht auf .nachstehender Überlegung. Fig. 138 stellt das exakte Diagramm des Motors dar, und in dasselbe sind zwei Betriebsstadien eingezeichnet:
[image: ]

Stillstand, wobei der Statorstrom u s‘, die Klemmspannung m s' und der Phasenverschiebungswinkel g = A u s‘ m ist, und

Synchronismus, wobei Statorstrom u b, Klemmspannung mb und das Dreieck m u b rechtwinklig ist.

Wenn wir mit ms' resp. mb in einem beliebigen Maßstab (z. B. 1 Volt = 1 mm) die Klemmenspannungen darstellen, so repräsentieren die Strecken us‘ und üb im gleichen Maßstab die Spannungsverluste durch Ohmschen Widerstand, also J . W1 resp. Jm . wP Die Strecken des Diagrammes stellen daher nur Spannungen, Volt, dar, wir brauchen deshalb die Koeffizienten C1, C, . . . . nicht für diese Untersuchung.

Durch einfache Messungen können wir die Länge der Strecken m s', s'u, mb, ub und ihre gegenseitige Lage festlegen, und damit ist das Diagramm ubd bestimmt, denn es gibt nur einen Kreis, welcher die Punkte b und s' enthält und dessen Mittelpunkt auf den Geraden ud liegt.

Es sind zwei Messungen auszuführen:

	
	
I.    Messung.





Bei einer beliebigen Klemmenspannung E1, die zweckmäßig nicht allzusehr kleiner ist als die normale Betriebsspannung, wird bei feststehendem, kurzgeschlossenem Rotor gemessen: E1 die Statorklemmenspannung resp. Phasenspannung, J1 der hierbei benötigte Statorstrom pro Phase, W1 der totale Wattkonsum des Stators. Hieraus läßt sich der Leistungsfaktor berechnen, denn es ist

W cos q = —--E1 T..............(235)

Auch J2, der Rotorstrom pro Phase, muß gemessen werden, wenn nicht nur t, sondern auch T1 ermittelt werden soll. Es ist für die Bestimmung des T nicht erforderlich, daß der Rotor kurz geschlossen ist, sondern es kann auch der Rotoranlasser vorgeschaltet werden. Dagegen ist es für die genaue Bestimmung des 11 wünschenswert, daß der Rotor kurzgeschlossen ist, und die Genauigkeit der Methode kann noch dadurch gesteigert werden, daß der Rotor entgegengesetzt seiner Drehrichtung angetrieben wird, wodurch sich der Punkt s' dem Punkt d noch mehr nähert, wie im folgenden Kapitel gezeigt ist.

	
	
II.    Messung.





Durch diese Messung soll der wirkliche Magnetisierungsstrom im vollkommenen Synchronismus bestimmt werden, Wattmeterablesungen sind nicht erforderlich. Man treibt zu diesem Zweck den leerlaufenden Motor durch einen Hilfsmotor, der nur sehr geringe Leistung zu haben braucht, so an, daß derselbe garnicht mehr schlüpft, was sich sehr leicht durch ein in den Rotor eingeschaltetes Amperemeter konstatieren läßt, oder man macht die Ablesungen in dem Zustand, in welchem der Statorstrom ein Minimum ist. Wenn der Hilfsmotor in Aktion gesetzt wird, nimmt nämlich der Leerstrom erst etwas ab, beschleunigt aber der Hilfsmotor den Rotor zu sehr, so erfolgt eine rasch wachsende Zunahme des Statorstromes. Der minimale Statorstrom muß für diese Untersuchung bestimmt werden. Zu messen sind nur zwei zusammengehörige Werte der Klemmenspannung resp. Phasenspannung Em und des Magnetisierungsstromes Jm. Em braucht nicht gerade so groß zu sein, wie E, bei der I. Messung, es ist aber auch bei dieser Messung gut, wenn es nicht allzu sehr von der normalen Klemmenspannung abweicht.

Im nachstehenden werden folgende Bezeichnungen gebraucht: Mittelpunktskoordinate des Kreises in Richtung der x-Achse:

a = m u

Mittelpunktskoordinate des Kreises in Richtung der y-Achse:

T       bd , — b — —o Hub

m s‘ = E,

u s‘ — Jj • Wi

m b = Em

u b = Jm ■ W1 ■ h

Koordinaten des Punktes s' sind x und y.

Koordinaten des Punktes b sind a und h.

Die Aufgabe läßt sich graphisch oder analytisch lösen.

	
1.    Graphische Lösung.



Durch die I. Messung sind gefunden E1, J1, cos g. Man zeichnet, Fig. 138, die Strecken

ms‘=E,

u s' - J1 • Wi

so, daß dieselben den Winkel

A m s‘ u = q einschließen, und verbindet die Punkte m und u durch eine Gerade. Die II. Messung ergibt die Werte Em und Jm. Wir berechnen

und tragen den

in die Figur ein. Endlich verbinden wir b und s‘ durch eine Linie, welche eine Sehne des gesuchten Kreises ist, errichten die Mittelsenkrechte n o und finden so den Mittelpunkt des Kreises o und den Durchmesser desselben

und endlich

	
2.    Analytische Lösung.



Nicht ganz so bequem ist T auf analytischem Wege zu bestimmen. Aus der ersten Messung haben wir die Werte E„ J1, cos g und finden hieraus die Mittelpunktskoordinate des Diagrammkreises in der Dichtung der x-Achse.

a = VE,2 + (J, w,)2—2 E, • J, • w, ■ cos «p. . . . (236) Ferner können wir die Beziehungen aufstellen

x2 + y2 = E,2    ........(237)

(x — a)2+y‘= us"=(J,:w,)2 . . (238)

Aus Gleichung (237) folgt

y2 = Ej2 — x2

und wenn wir diesen Ausdruck für y2 in Gleichung (238) substituieren, erhalten wir und wir können nun, nachdem x ermittelt ist, y berechnen, denn es ist nach Gleichung (237)

y = VE,2 — x2 .......(240)

Die II. Messung liefert uns die Werte Em und Jm, und wir erhalten daraus

sin x = sin A u m b.....(241)

Es ist nun


u b=h=tgx




AAEmmWi

VE?—(m-W,)




(242)



Es sind uns jetzt die Koordinaten x und y beim Stillstand und die Mittelpunktskoordinate a bekannt, mithin enthält die allgemeine Gleichung des Kreises

(x — a)2+(y — b)2 == r2 ......(243)

nur mehr zwei Unbekannte, b und r, von denen wir aber r sehr leicht eliminieren können. Bei Synchronismus ist nämlich die x-Koordinate des Punktes s (=b) des Stromdreieckes = a, die y-Koordinate wird u b = h, und es geht daher die Gleichung des Kreises über in die Form


(h — b)2 = r2........




(244)



Setzen wir die linken Seiten der Gleichungen (243) und (244) einander gleich, so erhalten wir

(x — a)2 + y2 — h2 2(y — h)


(245)



und es kann nun T berechnet werden, (246)

Für den praktischen Gebrauch lassen sich die gewonnenen Ausdrücke etwas vereinfachen. Der in Gleichung (245) enthaltene Ausdruck

(x — a)2 + y2 = (J, • wj)2

wie sich aus Gleichung (238) ergibt. Sodann kann man y unter Umgehung der Berechnung von x durch Anwendung des Sinussatzes


sin q

sin As’mu




a

Ji • W, ’



woraus sich ergibt


y = Ej • sin A s' m u



Ei • Ji • W1 1,------—

—-— --—  — cos2 ® a ausdrücken. Man erhält daher die nachstehend zusammengestellten Formeln, mittels deren sich aus den Versuchsdaten T berechnen läßt:

a = VE,2 + (J, • W,)2 — 2 E, • J1 • W, • cos q

Ej • Ji • Wj ------, y =-----------• V1 — cos" P

, a • Em • Jm • w,

h = — -------------- —


(247)



VEm‘—(Um*w,)2

(J,-w,)2 - h2

2(—h)

h

‘= 2 (b — h)

	
3.    Näherungsmethode.



Die nachstehend beschriebene Methode kann auf Genauigkeit keinen besonderen Anspruch machen, aber man ist leider öfters genötigt, sie anzuwenden. Die Methode hat den Vorzug, eine Wattmetermessung überflüssig zu machen, und es wird dies dadurch erreicht, daß bei der ersten Messung angenommen wird, das Dreieck m u s' sei rechtwinklig und der

A m u s' = 90°.

Häufig ist ein Wattmeter, mit welchem die I. Messung vorgenommen werden könnte, nicht zur Hand, oder es zeigen die zur Verfügung stehenden so falsch, daß man es vorzieht, einen Fehler von wenigstens schätzungsweise feststellbarer Größe zu machen, als sich auf Gnade oder Ungnade einem Instrument von undefinierbaren Charaktereigenschaften anzuvertrauen. Die I. Messung beschränkt sich in diesem Falle auf die Ermittlung der Werte E, und J1, und wir erhalten, Fig. 138,

In gleicher Weise liefert die II. Messung Jm und Em, und daraus

Es ist nun u d = u m • tg w u b = u m • tg X

und

, _ ub = tgz L 1 ______


(248)



u d — u b tg » — tg z J, 1/ Em” — (Jm • w,)2 Jm / E,2 - (J, • w,)2

	
4.    Ermittlung des T.



Zur Vervollständigung des Diagrammes fehlt uns noch die Kenntnis des primären Streuungskoeffizienten T1. Da die absolut genaue Kenntnis desselben nicht von großer Bedeutung ist, können wir uns mit einem Näherungs- d---_ verfahren begnügen, welches darauf begründet         /

Hilfsmotor antreiben. Je schneller die Rotation in dieser Richtung erfolgt, umsomehr nähert sich der Punkt s' dem Punkt d, mit welchem er bei unendlich großer Tourenzahl (Schlüpfung = co) zusammenfällt, wie im nächsten Kapitel gezeigt wird.

Durch die Messung braucht nur J1, der Statorstrom bei Stillstand, und der Rotorstrom J2, der hierbei auftritt, bestimmt zu werden, und es ist hierbei die Klemmenspannung des Stators nicht zu weit unter der normalen Betriebsspannung zu wählen. Es ist nun nach den Ausführungen des zweiten Kapitels

us‘Qud=(1—).bd = a . N. . J,

. (249) a s' 2 a d = (1 + T1) • b d = a2 • N2 • J2 J

wenn mit a1 und a2 die Phasenzahl, mit N1, N, die Drahtzahl des
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Heubach, Drehstrommotor.

Stators und Rotors bezeichnet wird. Hieraus folgt

	
	
*,=(1+,) "2, - 1. . . . (250)





Hieraus ist zu ersehen, daß sich T1 nur bei einem Motor mit gewickeltem Rotor experimentell bestimmen läßt, daß man sich dagegen bei einem Motor mit Kurzschlußanker mit der Ermittlung des T begnügen muß. In solchen Fällen hilft man sich mit vollständig befriedigender Genauigkeit damit, daß man in der Gleichung

T = T — 12 + T • T2 die Streuungskoeffizienten des Stators und Rotors gleichsetzt, also annimmt, daß

	
7, =T und man erhält dann



	
	
	
7,    = r, = Vr+1 _ 1 9 ........(251)







Bei Motoren mit Schleifringankern läßt sich dagegen die Genauigkeit wesentlich steigern, wenn man dieselben Messungen, die im vorhergehenden geschildert wurden, nochmals in der Weise wiederholt, daß nun der Rotor an die Stromquelle angeschlossen, der Stator dagegen an Stelle des Rotors kurzgeschlossen wird. Man wird bei derartigen Untersuchungen finden, daß T denselben Wert ergibt, gleichgültig, ob der Stator oder der Rotor als primärer Teil des Motors behandelt ist, wie es auch die Theorie verlangt. Man wird aber daraus, daß T1 und T, von einander abweichende Werte besitzen, wertvolle Schlüsse daraus ziehen können, welche Nutenform und welche Spulenköpfe, die des Stators oder Rotors besser angeordnet sind, und man kann sich auf diese Weise sehr gute Unterlagen dafür verschaffen, wie eventuell der Motor verbessert werden kann.

1

 Inzwischen ist ein vorzüglicher Artikel über dies Thema von Dr. Stern in der E.T.Z. 1903, Heft 22 erschienen, auf welche Arbeit hiermit ausdrücklich aufmerksam gemacht wird.

2

 Bei dieser Gelegenheit sei es gestattet, ein sehr merkwürdiges Phänomen zu erwähnen. Bei einer Serie von Motoren waren die Rotoren von dem Gesichtspunkte aus konstruiert, daß alle Käfigwicklungen mit demselben Profilkupfer und demselben Nutenschnitt ausgeführt werden sollten. Es konnte demgemäß die Nutenzahl des Rotors nicht willkürlich gewählt werden, sondern sie ergab sich als Funktion des Rotorwiderstandes resp. der zulässigen Stromdichte in den Rotorstäben. Alle Motoren liefen gut mit Ausnahme eines einzigen, der vierpolig, im Stator 48, im Rotor 43 Nuten hatte. Dieser Motor kam nicht hoch, brummte sehr stark und wurde so heftig in Vibrationen versetzt, daß er auf dem Fundament entlang rutschte, wenn er nicht angeschraubt war. Er lief tadellos an, nachdem er mit einem Rotor von 41 Nuten versehen war. Wenn der Motor mit seinem ersten Rotor künstlich hochgebracht wurde, arbeitete er sehr gut, nur war er nicht zum Anlaufen zu bringen.

Dieselbe Erscheinung zeigte ein vierpoliger Einphasenmotor, der im Stator 46, im Käfiganker 41 Nuten hatte. Dieser Motor lief vorzüglich an, nachdem er mit einem Rotor von 39 Nuten versehen war. Der günstige Anlauf wurde nicht etwa dadurch erzielt, daß der Rotorwiderstand durch die Reduktion der Nutenzahl etwas vergrößert wurde, denn es wurde, um diese Möglichkeit zu untersuchen, derselbe Stator mit einem Rotor von 43 Nuten versehen, und auch hierbei lief er vorzüglich an.

Das einzig Charakteristische an den Zahlen 48 und 43, resp. 46 und 41 ist ihre Differenz von 5, wenigstens konnte bisher etwas anderes nicht gefunden werden. Es scheint daher, daß das Auftreten irgendwelcher sekundärer schädlicher Erscheinungen in diesem Falle besonders begünstigt wird, und man wird jedenfalls gut tun, um 5 verschiedene Nutenzahlen zu vermeiden. Es wäre sehr zu wünschen, daß von anderer Seite diesbezügliche Erfahrungen ebenfalls veröffentlicht würden; nur auf diese Weise dürfte es möglich sein, genügend Unterlagen zu schaffen, um die Ursache dieser Erscheinung zu finden. — In allen übrigen Fällen hat es sich vorzüglich bewährt, für die Nutenzahlen des Stators und Rotors relative Primzahlen zu wählen.


	
	
	
83.    Ermittlung der Verluste.







Der von einem leerlaufenden Motor konsumierte elektrische Effekt wird ausschließlich zur Deckung der Leerlaufsverluste verbraucht. Diese Verluste setzen sich zusammen aus: dem Joule-sehen Verlust im Stator Vw, dem Statoreisenverlust Ve,, dem

Eisenverlust im Rotor Ve,, dem Jouleschen Verlust in der Rotor-Wicklung Vw, und dem Reibungsverlust Vr. Es ist daher der Wattkonsum bei Leerlauf

	
	
w, - v., + v„, + \ +V.+V, . • (252)





Die Größe dieser Einzelverluste läßt sich in verschiedener Weise bestimmen. Im nachstehenden sind die zwei bequemsten Methoden angegeben.

	
I.    Methode.



Der Stator wird mit konstanter Polwechselzahl II,, aber variabler Spannung E, erregt, sodaß der kurzgeschlossene Rotor leer und
[image: ]

nahezu im Synchronismus läuft. Gemessen wird der Wattkonsum des Stators und die Klemmen- resp. Phasenspannung des Stators, und die Wattmeterablesungen werden graphisch als Funktion der Spannung aufgetragen. Fig. 140 A. Bei dieser Untersuchung gehe man mit der Spannung soweit als möglich herunter, verbinde die gefundenen Punkte durch eine Kurve und verlängere dieselbe bis zu ihrem Schnittpunkt mit der y-Achse. Die Strecke oy stellt dann den Reibungsverlust Vr des Motors dar. Breslauer hat darauf aufmerksam gemacht, daß sich die Unsicherheit der Verlängerung der Kurve bedeutend reduzieren und damit die Genauigkeit der Bestimmung des Reibungsverlustes steigern läßt, wenn auf der x-Achse die Quadrate der Spannung aufgetragen werden, denn der nach Gefühl zu zeichnende Teil der Kurve wird hierdurch wesentlich verkürzt, Fig. 140 B.

Wird außer dem Effekt W1 und der Spannung Ek gleichzeitig der Statorstrom J1 gemessen, so läßt sich der Joulesche Verlust in der Statorwicklung Vw, ermitteln. Beim Leerlauf des Motors mit seiner Normalspannung stellt in Fig. 140 a e den gesamten Leerlaufsverlust, ab den ReibungsVerlust, de den Joule-sehen Statorverlust dar.

Ist auch der Rotorstrom J2 gemessen und daraus Vw, = b c bekannt, so stellt c d die gesamten Eisenverluste des Motors dar. Der Rotoreisenverlust ist nahezu Null, da der Rotor fast synchron läuft, deshalb ist cd=Ve, der Eisenverlust im Stator. Wegen der äußerst geringen Polwechselzahl des Rotorstromes muß J, mit einem Hitzdrahtamperemeter gemessen werden; alle übrigen Amperemeter folgen zu rasch den Momentanwerten des Stromes und machen dadurch eine exakte Ablesung unmöglich.

Der Ohmsche Verlust Vw2 läßt sich unter Umgehung der Strommessung bestimmen, wenn die prozentuale Schlüpfung des Rotors s, oder seine Tourenzahl bei Leerlauf n0, oder die Polwechselzahl II, des Rotorstromes bekannt ist. Wir erhalten, wenn mit n‘ die Tourenzahl bei Synchronismus bezeichnet wird,

Vw,

V,

V _ V • n‘ no — V • ____-____= V •    112


(253)



W2 r n0          r 100 — s r II, — 11, '

Wäre uns dagegen a c = Vow, + Vr = W01 — Ve, — Vow,, der verlustlos vom Stator auf den Rotor übertragene Effekt bekannt, so würden wir erhalten v„,=ac-"n"-=ac-100 =acM, . (254) von welcher Gleichung wir später bei Bestimmung des Wirkungsgrades Gebrauch machen werden.

Die in Figur 140 dargestellte Konstruktion zur Ermittlung des Reibungsverlustes liefert etwas zu geringe Werte, wie sich aus folgender Überlegung ergibt. Wenn wir den Motor mit konstanter Tourenzahl aber variabler Spannung leer laufen lassen, so
[image: ]

ist die Zugkraft, welche der Rotor zur Überwindung des Reibungswiderstandes äußern muß, konstant. Die Zugkraft ist proportional dem Produkt J, . B|, B| aber ist proportional der Statorspannung. Wird daher die Spannung immer kleiner, so muß im selben Verhältnis J2 zunehmen, um die konstante Zugkraft auszuüben. Die in Figur 140 gezeichneten Kurven vereinigen sich daher nicht im Punkt y, sondern die Ordinaten bc, welche den Ohmschen Verlust im Rotor darstellen, wachsen mit abnehmender Spannung. Würde die Tourenzahl konstant gehalten, so würde bei der Spannung Null auch ein unendlich großer Rotorstrom nicht mehr genügen, um eine Zugkraft zu erzeugen und den Reibungsverlust zu decken.

Den theoretischen Verlauf der Kurven zeigt Fig. 141 A, und man sieht daraus, daß sich bei der Spannung Null für den Watt-konsum und für die Ohmschen Verluste unendlich große Werte ergeben, also einen praktisch unmöglichen Zustand bedingen würden.

Das wirkliche Verhalten des Motors wird durch Fig. 141 B geschildert: mit abnehmender Spannung vergrößert sich die Schlüpfung, die Tourenzahl und der Effektverlust durch Reibung nimmt demgemäß ab, und der Motor bleibt stehen, bevor die Statorspannung Null geworden ist.

Hieraus ist zu ersehen, daß die in Fig. 140 angegebene Methode stets den Reibungsverlust Vr zu gering liefert, daß aber die Abweichung vom wahren Wert nur gering ist. Auf diese Ungenauigkeit wurde zuerst von Dr. Benischke hingewiesen.

	
II.    Hilfsmotormethode.



Der zu untersuchende Motor wird mit einem Hilfsmotor, dessen Wirkungsgrad bekannt sein muß, direkt gekuppelt. Riemenübertragung ist tunlichst zu vermeiden, da sich die durch den Riemen entstehenden Verluste nicht genau ermitteln lassen.

Wird der Motor auf seine normale Tourenzahl in unerregtem Zustand gebracht, so stellt die Nutzleistung des Hilfsmotors den Effektverlust durch Reibung dar.

Wird der Rotor mit der dem Synchronismus entsprechenden Tourenzahl angetrieben und dabei mit Gleichstrom so erregt, daß in den Statorwindungen eine EMK von der Größe der normalen Statorspannung induziert wird, so stellt die Nutzleistung des Hilfsmotors die Summe aus dem Reibungsverlust und dem Eisenverlust des Stators dar, und da der erstere bereits bekannt ist, kann der zweite berechnet werden. Streng genommen, müßte eine kleine Korrektur vorgenommen werden, unter Benützung der in der Anmerkung Seite 182 angegebenen Koeffizienten c und k', allein dieselbe ist so unbedeutend, daß sie ohne weiteres vernachlässigt werden kann. Die Erregung wird bei einem zweiphasigen Rotor am bequemsten nur unter Benützung einer Phasenwicklung ausgeübt. Bei einem dreiphasigen Rotor kann man die Gleich-Stromquelle entweder an nur zwei Schleifringe oder den einen Pol an zwei unter sich parallel geschaltete Schleifringe anschließen.

Wenn das Diagramm des Motors bekannt ist, läßt sich in ganz ähnlicher Weise der Eisenverlust des Rotors bei einem beliebigen Belastungszustand messen. Bezeichnen wir mit Jm den normalen effektiven Magnetisierungsstrom des Motors, so müssen wir eine Phasenwicklung eines zweiphasigen Stators mit einem Gleichstrom von der Größe V 2 . Jm erregen, um die gleiche Induktion des Luftfeldes zu erzeugen, wie sie beim Betriebe mit Mehrphasenstrom vorhanden ist. Wenn wir bei einem dreiphasigen sterngeschalteten Stator den einen Pol der Gleichstromerregerleitung mit zwei Klemmen, den anderen mit der 3. Klemme verbinden, bei einem im Dreieck geschalteten dagegen die Gleichstromleitung nur an zwei Klemmen anschließen, die 3. Klemme aber unbenutzt lassen, so muß auch jetzt der Erregungsgleichstrom V 2 . Jm sein, um die normale Luft- und Rotoreiseninduktion hervorzurufen, wenn wir unter Jm den effektiven Erregerstrom in einer Leitung verstehen. Stellt ubs (Fig. 106) das Stromdreieck in einem beliebigen Belastungszustand dar, bei welchem die Schlüpfung s 0/ beträgt, so müssen wir den Erregerstrom im Ver-g d hältnis __- reduzieren, um die jetzt herrschende Induktion im b d

Rotoreisen zu finden. Die Gleichstromerregung muß daher

Ampere betragen, und der Hilfsmotor muß den Rotor mit

s ।

100 h

Touren antreiben, damit im Rotor derselbe Eisenverlust auftritt, wie in dem betrachteten Belastungsstadium beim Betrieb mit Mehrphasenstrom. Die Nutzleistung des Hilfsmotors, verringert um den Effektverlust durch Reibung, ergibt den gesuchten Hysteresis-Verlust.

Die Wattmetermessungen sind bei den Motoren ebenso vorzunehmen wie bei Mehrphasengeneratoren, es ist daher in dieser Beziehung nichts Besonderes zu erwähnen, sondern es wird die Handhabung des Wattmeters als bekannt vorausgesetzt. Dagegen ist die Schlüpfung eine spezifisch bei Asynchronmotoren auftretende Erscheinung und es sollen diesbezüglich die wichtigsten Meßmethoden angegeben werden.

Ist die Polwechselzahl II, der Stromquelle bekannt, so ist die Tourenzahl eines p-poligen Motors im Synchronismus

n‘= 60 — P


(255)



Macht der Motor in einem beliebigen Belastungszustand n Touren, so wird die prozentuale Schlüpfung s und die Polwechselzahl II, des Rotorstromes


s = n‘ ; n • 100 n
[image: ]




(256)

Bei sehr kleinen Schlüpfungen wird die Differenz n' — n sehr klein, und ein kleiner Fehler bei der Ermittlung der Tourenzahl n kann einen ganz falschen Wert für die Schlüpfung zur Folge haben. Bei kleinen Schlüpfungen kann daher s nicht durch Messung der Tourenzahl mittels des Tourenzählers mit wünschenswerter Genauigkeit bestimmt werden. Man hilft sich dadurch, daß man in den Rotorstromkreis ein Amperemeter einschaltet und aus den Schwingungen desselben die Polwechselzahl II, ermittelt. Von der Verwendung eines Amperemeters mit Weicheisen ist hierbei abzuraten, da man besonders bei kleinen Ausschlägen nicht sicher wissen kann, ob der Eisenkern ummagnetisiert wird und die Schwingungszahl des Zeigers Polwechsel anzeigt, oder ob das Eisen konstante Polarität behält und dann die Schwingungszahl des Zeigers halbe Polwechsel angibt. Man nimmt daher am besten ein Amperemeter mit beweglicher Spule im Feld eines permanenten Magneten und zählt die einseitigen Ausschläge des Zeigers, welche der Periodenzahl = -9 des Rotorstromes entsprechen. Hat man x einseitige Ausschläge gezählt und gleichzeitig die Zeitdauer t der Messung mittels einer Stoppuhr gemessen, so ist

[image: ]



An Stelle des Amperemeters kann man ein Telephon verwenden, welches man an zwei Bürstenhalterklemmen des Rotors anschließt. Man hört dann direkt II, Geräusche pro Sekunde. Hat man also x Geräusche in t Sekunden gezählt, so wird

1,=........(258)

und s und n kann nach den Formeln 257 gefunden werden. Bei Motoren mit Kurzschlußankern muß das Telephon mit einer kleinen
[image: ]

Induktionsspule verbunden werden, welch letztere man der Stirnseite des Rotors nähert. Das Telephon reagiert mit II, Geräuschen pro Sekunde, und die Telephonströme werden dadurch hervorgerufen, daß ein mit der Polwechselzahl II, variierendes stets vorhandenes achsiales Streufeld des Rotors auf die Windungen der Meßspule induzierend wirkt 1).

Endlich soll noch angegeben werden, wie am bequemsten die Kupferverluste und die Ohmschen Widerstände zu berechnen sind.

Ist der Widerstand pro Phase w, so messen wir bei einer dreiphasigen Sternwicklung zwischen zwei Klemmen Fig. 142 den Widerstand

Wm = 2 w.

Ist der zugeführte Dreiphasenstrom in jeder Leitung JIII, so ist der gesamte Joulesche Verlust in der Wicklung

Vw — 3 • Jin • w = 1,5 • Jin • wm .

Bei einer Dreieckschaltung messen wir zwischen den Punkten 1 und 2, wenn mit w der Widerstand einer Phase bezeichnet wird,

1) Näheres siehe Rosenberg, E.T.Z. 1901, Seite 246.

2

WIII = 3 W,

denn die Wicklung besteht in Bezug auf die Punkte 1 und 2 aus zwei parallelen Widerständen von der Größe w und 2 w. Bezeichnen wir mit JIII wieder den effektiven Drehstrom in einer

	
•                         •                                                              •                                            J iiI Zuleitung, so ist der Strom pro Phase in der Wicklung ---V 3 und der gesamte Joulesche Verlust daher



W Q ( JIII 2       1

	
	
1    w -- 3: I I w -- 1,5 ‘ ‘i ’ “m ’ also dasselbe Resultat wie oben. Wir erhalten daher die einfache Regel:





Der Linienstrom JIII ruft in einer dreiphasigen Wicklung, deren Widerstand zwischen 2 Klemmen WIII beträgt, einen Joule-sehen Verlust hervor von

vw=1,5:N2n"wmn......(259)

	
84.    Ermittlung des Wirkungsgrades.



In den Normalien für elektrische Maschinen und Transformatoren, die vom Verband deutscher Elektrotechniker aufgestellt sind, ist eine größere Anzahl von Methoden zur Bestimmung des Wirkungsgrades angeführt. Mehrere dieser Methoden lassen sich indeß nur in ganz speziellen Fällen anwenden, und der Gang der Untersuchung ist dann so einfach und selbstverständlich, daß es unnötig ist, hier näher auf diese Methoden einzugehen. Es sollen nur nachstehende Methoden besprochen werden.

	
	
1.    Direkte Bremsmethode.





Bei den Versuchen ist die Spannung konstant zu halten, und es sind zu messen: die konsumierten Watt W1, die Tourenzahl n und die Belastung des Bremszaumes. Ist die ausbalancierte Bremse mit P kg im Horizontalabstand 1 (in Metern gemessen) vom Wellenmittel belastet, während der Rotor n Touren pro Minute macht, so ist der gebremste mechanische Effekt, also die Nutzleistung des Motors in

2-bn-n-P 1-n-P

PS =----75.60-----=   717   ■ • ' ■ (260)

Wird hierbei der Wattkonsum des Motors von W1 Watt gemessen, so wird der Wirkungsgrad bei dieser Belastung

Man bemerkt, daß in diesen Formeln die Polwechselzahl II, des zugeführten Stromes und die Schlüpfung nicht enthalten ist, und daraus ergibt sich die schätzenswerte Eigenschaft, daß die direkte Bremsmethode ziemlich unempfindlich ist gegen kleine Abweichungen der Polwechselzahl des Mehrphasenstromes. Wenn daher die Messung der Tourenzahl mit einem Fehler von x% behaftet ist, so wird der Wirkungsgrad nur um den gleichen Prozentsatz falsch gemessen, nicht um ein Vielfaches, wie es dann eintritt, wenn die geschlüpfte Tourenzahl n' — n zu bestimmen wäre.

Die Messung der Statorstromstärke pro Phase ist zur Berechnung des Wirkungsgrades zwar nicht erforderlich,’ man führt sie aber zweckmäßigerweise aus, damit man die Möglichkeit hat, den Leistungsfaktor zu berechnen und empirisch den geometrischen Ort der Spitze s des Stromdreiecks und damit den Diagramnikreis festzulegen, wenn eine größere Anzahl von Beobachtungen bei verschiedenen Belastungen vorgenommen worden sind.

	
	
2.    Leerlaufsmethode.





Man mißt bei verschiedenen Klemmenspannungen und konstanter Polwechselzahl des zugeführten Mehrphasenstromes bei kurzgeschlossenem leerlaufendem Rotor den vom Stator konsumierten elektrischen Effekt W1 und zeichnet ein Diagramm (Fig. 140 B), indem man auf der Abszisse die Quadrate der Spannungen und als Ordinaten zu den Spannungen die konsumierten Watt aufträgt. Die Kurve, welche durch Verbindung der erhaltenen Punkte gefunden wird, verlängert man bis zu ihrem Durchschnittspunkt y mit der y- Achse, o y stellt, im Wattmaßstab gemessen, den Reibungsverlust des Motors Vr dar.

Beim Leerlauf mit der Normalspannung ist der Wattkonsum Wo, der Statorstrom Jo, und der Rotorstrom Jo, zu messen. Ferner muß der Stator- und der Rotorwiderstand bekannt sein, damit die Ohmschen Verluste bei Leerlauf, Vw, und Vw, berechnet werden können, wobei die Schlußbemerkung des vorigen Abschnittes berücksichtigt werden kann.

Laut Gleichung (252) setzen sich die bei Leerlauf konsumierten


Watt aus den Verlusten zusammen



W=V —V + V + V + V .

01 owj ' OW2 Aer, 82 1 r

Von diesen Verlusten sind uns bekannt Vr, Vw,, Vw,, ferner wissen wir, daß beim leer und nahezu synchron laufenden Motor Ve, nahezu Null ist. Wir erhalten daher den Eisenverlust im Stator

Ve,—Wo, — Vow, — Vow, — Vr.....(262)

Bei größeren Motoren mit gutem Leistungsfaktor und gutem Wirkungsgrad wird Vw, und Vw, gegenüber Vr sehr klein sein, und der Ausdruck vereinfacht sich daher

Ve, &Wo,—Vr........(263)

Es stellt nun Wo, resp. Ve, + Vr einen nahezu konstanten Verlust des Motors dar, während Vw, — Vw, von der Belastung abhängen, Ve, dagegen immer nahezu Null ist. Wird daher bei einem beliebigen Belastungszustand der Wattkonsum W1, der Statorstrom J1, der Rotorstrom J, gemessen und daraus die Ohmschen Verluste Vw, und Vw, berechnet, so betragen die Gesamtverluste des Motors

V=Y+V,+V»,+V.,(264)

.      . nützlicher Effekt     . _ und da der Wirkungsgrad = konsumierter Effekt» so wird

1—(,Ve, Vw,—Vw,)

W

und die Nutzleistung des Motors in Pferdekräften

“1—(rVe, Yw, —Vw) Wi


(266)



736              "736 ’

Die auf diese Weise vorgenommenen Messungen sind unabhängig von der Polwechselzahl des zugeführten Stromes. Kann man aber den Rotorstrom nicht messen, weil der Motor mit Kurzschlußanker versehen ist, oder aus einem anderen Grunde, so muß der Rotorverlust durch die Schlüpfung bestimmt werden, und es ist hierzu die Kenntnis der Polwechselzahl II, resp. die Tourenzahl im Synchronismus erforderlich. .

Wird bei Leerlauf mit Normalspannung ein Wattkonsum Wo, ein Ohmscher Verlust im Stator Vow,, die Polwechselzahl des Rotorstromes II,,, resp. die prozentuale Schlüpfung So, resp. die Leerlaufstourenzahl n gemessen, so stellt, wenn Ve, der uns noch unbekannte Eisenverlust im Stator ist,

’             w _ V — V 01       ej       OW1 den Effekt dar, der nach dem Rotor übertragen wird. Im Rotor wird durch die Verluste Ve, — Vw, die übertragene Leistung auf das

n, - 100—s = n,-1, fache n' 100            ll1 reduziert. Von diesem nun restierenden mechanisch transformierten Effekt wird durch die Reibung nochmals Vr vernichtet. Bei Leerlauf müssen daher die Beziehungen bestehen:

(Wo,-V,-Yow) M—-Y=0

(W — V — V ) • 100 — % V = 0 Oi    ‘ei     Owi     100        r (W _ V — V ) • 71 — 1702 V = 0 01 ei      OWi        II,           r

und hieraus erhalten wir

n‘

V = w — V — V • -- ei       Oi      OW1      r n

Bei guten Motoren geht diese Gleichung in die Gleichung (263) über.

Die Leistung wird bei einer beliebigen Belastung, wenn W1 und s oder n oder II, gemessen wird,

PS — 1 _ (W. — V — V ) • ■——--V 1

736 L 1 Wi ‘e n‘ rJ

1 [(w. _ V — V ) • 100-----V ]


(268)



736 [ 1 Wi ‘e‘     100 r]


136-(w,-Y„,-Y.)
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und der Wirkungsgrad
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(269)

736 • PS Wx

	
	
	
•                 3. Hilfsmotormethode.







Diese Methode ist mit der vorhergehenden in Bezug auf die Rechnung nahezu identisch, nur wird der Reibungsverlust mit dem Hilfsmotor bestimmt, und er läßt sich, vorausgesetzt, daß die Eigenschaften des Hilfsmotors genügend genau bekannt sind, für jede Tourenzahl des Motors bestimmen. Ebenso wird der Eisenverlust des Stators, wie auf Seite 406 beschrieben ist, mittels des Hilfsmotors gemessen, während der Rotor von Gleichstrom erregt wird. Ist das Diagramm des Motors bekannt, so kann endlich auch der Eisenverlust des Rotors, wenigstens in dem Zustand, welcher der Normalleistung des Motors entspricht, gemessen werden, und es läßt sich dadurch die Berechnung der Leistung und des Wirkungsgrades, falls der Rotorverlust durch die Strommessung, nicht durch Schlüpfungsmessung bestimmt wird, etwas verfeinern, denn es kann nun in die Gleichungen (265) und (266) der Eisenverlust des Rotors eingeführt werden. Man erhält daher

W1—(V,+V, + Vw,+Ve, + Vw,)

W,


(270)



w, — (,+V,, + V., + V., + V.,) w,

736                       " ’ 736

Die Methode hat den Vorzug, daß bei Bestimmung des Reibungsverlustes jede Unsicherheit wegfällt, dagegen werden die Eisenverluste bei der Erregung mit Gleichstrom nicht ganz so auftreten, wie im normalen Betrieb. Am genauesten lassen sich die konstanten oder meßbaren Verluste bestimmen, wenn die Reibung nach Methode 3, die Eisenverluste etc. nach Methode 2 gemessen werden.

Vierzehntes Kapitel.

Der asynchrone Generator.
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Bisher haben wir das Verhalten der Asynchronmotoren vom Stillstand resp. Anlauf derselben bis zu ihrem synchronen Gang untersucht. Zwischen diese Grenzen fallen alle Betriebsstadien, welche unter normalen Verhältnissen auftreten, und die Schlüpfung eines Motors variiert dabei von 100% bei Stillstand bis zu 0 bei Synchronismus.

Die Zahl der möglichen Fälle, unter welchen ein derartiger Motor unter Umständen zu arbeiten hat, ist jedoch damit keineswegs erschöpft. Es ist denkbar, daß ein mittels Asynchronmotor angetriebenes Hebezeug derart überlastet wird, daß das von der Last entwickelte Drehmoment größer ist als das Anzugsdrehmoment des Motors, und infolgedessen wird nach Lösen der Bremsvorrichtung und beim Einschalten des Motors derselbe nicht imstande sein, ein Heben der Last zu bewirken, sondern er wird durch die Last entgegengesetzt der seinem Erregerfeld entsprechenden Drehrichtung bewegt und es tritt ein Senken der Last ein. Die Schlüpfung des Motors wird dadurch größer als 100%. Es ist nun von großer Bedeutung, zu wissen, wie sich bei diesem Betriebszustand der Motor verhält. Angenommen, seine Zugkraft würde bei dieser Rückwärtsbewegung steigen, so würde bei einer bestimmten Geschwindigkeit ein stationärer Zustand eintreten und der Motor ließe sich praktisch als Bremse benutzen, vorausgesetzt, daß die dem stationären Zustand entsprechende Geschwindigkeit noch innerhalb zulässiger Grenzen liegt. Tritt jedoch eine Abnahme des Drehmomentes ein, so würde die sinkende Last eine fortwährende Beschleunigung verursachen, und um Unglücksfälle zu vermeiden, ist es dann nötig, durch andere Bremsvorrichtungen das Sinken der Last zu verhindern.

Es ist noch aus einem weiteren Grunde von Interesse, das Verhalten eines Drehstrommotors bei einer Schlüpfung von mehr als 100% zu untersuchen, da die Wirkungsweise eines Einphasenmotors durch die zweier Drehstrommotoren ersetzt gedacht werden kann, von welchen der eine mit einer Schlüpfung kleiner als 100%, der andere mit einer solchen größer als 100% arbeitet, wie im fünfzehnten Kapitel gezeigt ist.

Eine weitere Möglichkeit, unter welcher ein Asynchronmotor zu arbeiten hat, ist dadurch gegeben, daß eine äußere mechanische Kraft ihn zwingt, schneller als synchron zu laufen. Bezeichnet man die Schlüpfung, welche einer Tourenzahlverminderung entspricht, als eine positive, so muß die durch eine erhöhte Tourenzahl hervorgerufene Schlüpfung als negativ oder als Voreilung bezeichnet werden. Auch dieser Fall kann praktisch eintreten, z. B. bei der Talfahrt eines elektrisch betriebenen Wagens, beim Senken einer Last, beim Parallelarbeiten eines Asynchronmotors mit einem anderen Motor auf die gleiche Transmission. Es ist auch in diesem Falle von Wichtigkeit, das Verhalten des Motors genau angeben zu können, und hn nachstehenden werden wir sehen, daß die in den vorhergegangenen Kapiteln behandelten Diagramme sich in einfachster Weise derart erweitern lassen, daß sie das Verhalten des Motors bei allen Schlüpfungen von + c bis — c charakterisieren.

Im Interesse der Klarheit und leichten Verständlichkeit der kommenden Ableitungen mag es angebracht sein, einige Worte über die angewandte Bezeichnungsweise zu sagen. Es ist unschwer einzusehen, daß unter den oben erwähnten Betriebsverhältnissen eine Maschine teils als Motor, teils als Generator arbeiten wird. Streng genommen, funktioniert die Maschine in beiden Fällen als Transformator, indem dieselbe entweder elektrische Energie in mechanische, oder mechanische in elektrische um-Heubach, Drehstrommotor.                               27 wandelt. Da nach dein Prinzip der Erhaltung der Energie zugeführte und abgegebene Energiemengen, abgesehen von Verlusten, einander gleich sind, muß bei der analytisch geometrischen Darstellung in einem rechtwinkligen Koordinatensystem die eine als positiv, die andere als negativ eingetragen werden. Welche als positiv aufgefaßt wird, ist an und für sich gleichgültig; im nachstehenden ist die zugeführte Energie als negativ, die abgegebene als positiv aufgefaßt und zwar auf Grund folgender Vorstellung.

Mechanische Leistung ist dem Produkt P X v gleich, und ein arbeitleistendes System ist dadurch definiert, daß P und v gleichgerichtet sind, also in demselben Sinne wirken, während bei einem Widerstand leistenden, also Energie aufnehmenden System die Kraft der Bewegungsrichtung entgegengesetzt sein muß. Bezeichnet man die Richtung abwärts als positiv, so ergibt sich ohne weiteres das positive Vorzeichen für eine beim Senken geleistete, das negative für eine zum Heben erforderliche zugeführte Energie. Genau das gleiche Resultat. erhält man bei der Betrachtung eines elektrischen Systems. Eine Gleichstromdynamo erzeugt eine EMK und diese ruft einen gleichgerichteten Strom J hervor und die elektrische Leistung der Maschine ist positiv

+ E.J.

Bei einer Batterie, die mittels dieses Stromes geladen wird, ist die Richtung des Stromes der Richtung der EMK entgegengesetzt, das Produkt

— E-J

hat das negative Vorzeichen und die Batterie konsumiert daher elektrischen Effekt.

Läßt man die Dynamo mit Hilfe der Batterie als Motor laufen, so bemerkt man, daß sich zwar die Stromrichtung umgekehrt hat, daß aber die Richtung der EMK dieselbe geblieben ist, nur bezeichnet man diese jetzt mit dem Ausdruck elektromotorische Gegenkraft.

Die hier besprochenen Verhältnisse sind bei Gleichstrom so einfach, daß es überflüssig erscheinen mag, hierüber ein Wort zu verlieren, jedoch wird die Sache sofort komplizierter, sobald man die gleichen Anschauungen auf ein Wechselstromsystem anwendet. Hier stehen zugeführte EMK und elektromotorische Gegenkraft (EMK der Selbstinduktion) in einem Phasenabstand von ISO0, die

Stromstärken setzen sich, im allgemeinen aus zwei Komponenten, einer Wattkomponente und einer wattlosen zusammen, von welchen die erstere mit ihrem sie erzeugenden Spannungsvektor zusammenfällt, die letztere in Quadratur steht, die resultierenden Stromstärken können ihren Spannungsvektoren voraneilen oder folgen, der Effekt ist repräsentiert durch das Produkt E x J x cos g, wobei der Winkel © im Sinne einer Vor- oder Nacheilung des Stromes auftreten kann. Da in einem Asynchronmotor der Primärstrom von der zugeführten EMK erzeugt wird, falls derselbe als Motor läuft, dagegen von der elektromotorischen Gegenkraft, wenn derselbe von einer äußeren Kraft angetrieben als Generator arbeitet, die beiden genannten elektromotorischen Kräfte jedoch in einem Phasenabstand von 180° zu einander stehen, würde es nicht möglich sein, einen stetigen Übergang von der einen Betriebsart zur anderen darzustellen, wenn man das eine Mal die zugeführte Generatorspannnng, das andere Mal die nun den Strom hervorrufende EMK des Stators in Betracht ziehen wollte.

Es sind daher die Stromvektoren J1 immer auf die EMK Eg, welche beim Arbeiten der Maschine als Motor als elektromotorische Gegenkraft auftritt, und nicht auf die Generator-EMK resp. Klemmenspannung E1 bezogen. Die Energiegleichung bekommt dadurch die Form:

W, = a, • Ej • J, • cos (180° + «)

in welche Gleichung E und J immer als positiv einzusetzen sind. Wird cos (180° — g) positiv, so wird elektrische Energie von der Maschine geleistet, ist der Kosinus dagegen negativ, so wird elektrische Energie aufgenommen. © bezeichnet in der üblichen Weise den Verschiebungswinkel, welcher zwischen der Netzspannung und dem Primärstrom gebildet wird.

Fig. 143 stellt das Heylanddiagramm eines Drehstrommotors dar1).

Bei Synchronismus fällt die Spitze e des Stromdreiecks mit dem Punkt b zusammen, und mit wachsender Schlüpfung wandert dieselbe bis zum Punkt q, der dem Stillstand des Motors und einer Schlüpfung von 100% entspricht. Vergrößert man die Schlüpfung noch weiter, indem man den Rotor entgegen seiner ursprünglichen Drehrichtung, also rückwärts dreht, so nähert sich die Spitze des Stromdreiecks e dem Punkte d noch weiter, beispielsweise bis e', und der Schlüpfungsmaßstab d q muß über q hinaus verlängert werden, damit noch ein Schneiden der Geraden d e‘ mit dem Schlüpfungsmaßstab eintritt. Die einzelnen Intervalle auf diesem Maßstab sind außerhalb des Kreises gleich groß wie innerhalb desselben, da auch in diesem Falle p s dem Quotienten Rotorstrom     b e'          ,.    1    }

—-------- == ----- proportional ist.

Rotorfeld     df

Es wurde schon früher darauf hingewiesen, daß bei Stillstand pq Tangente an den von h aus beschriebenen Kreisbogen wird. Die vom Motor abgegebene Leistung ist in diesem Falle also 0. Damit die Gerade ds bei einer Schlüpfung größer als 100% den genannten Kreisbogen schneiden kann, muß derselbe über d hinaus gezogen werden, und man erhält nun den Schnittpunkt t links von der Diagrammbasis a d. Der senkrechte Abstand des Punktes t von der verlängerten Geraden a d stellt die nunmehrige mechanische Leistung des Motors dar, in derselben ist jedoch ein Richtungswechsel gegenüber den normalen Betriebsstadien aufgetreten, die mechanische Leistung wird vom Motor nicht abgegeben, sondern muß demselben zugeführt werden. Der Motor absorbiert also nicht nur elektrische Leistung, sondern auch mechanischen Effekt; beide werden im Motor vernichtet resp. in Wärme umgesetzt, und der Wirkungsgrad des Motors wird negativ.

Arbeitet der Motor mit immer größerer Schlüpfung, wird derselbe also entgegengesetzt seiner normalen Drehrichtung in immer schnellere Rotation versetzt, so entfernt sich der Schnittpunkt s immer weiter vom Punkt q, und bei unendlich großer Schlüpfung liegt derselbe in der Unendlichkeit. Die Spitze des Stromdreiecks nähert sich infolgedessen dem Punkte d noch weiter und erreicht ihre Endstellung bei unendlich großer Schlüpfung in e" (143), wenn ihre Verbindungslinie mit d, also die Gerade de" parallel zu pq wird. In diesem Moment wird de" Tangente an den von m aus mit dem Radius b m beschriebenen Kreis, die
[image: ]

Fig. 143.


Zugkraft wird also 0. Die absorbierte elektrische Leistung hat den Wert e" e'", und die ebenfalls absorbierte mechanische hat einen Maximalwert t" t'". Da unendlich große Schlüpfung praktisch nicht erreichbar ist, könnte man korrekter sagen: bei stets wachsender Schlüpfung nähert sich die aufgewendete elektrische, ebenso die aufgewendete mechanische Energie einem Grenzwert von bestimmbarer endlicher Größe und die Zugkraft dem Grenzwert Null asymptotisch. Durch diese Ausdrucksweise ist auch der scheinbare Widerspruch umgangen, welcher dadurch geschaffen ist, daß man sich das mathematisch genommen richtige Resultat, daß unendliche Geschwindigkeit X (einer Kraft = Null) eine endlich große Energie darstellt, mechanisch resp. praktisch nicht vorstellen kann.

Um das Verhalten des Motors bei Voreilung, also negativer Schlüpfung beurteilen zu können, muß man sich vorerst Klarheit darüber verschaffen, in welcher Richtung die einzelnen Ströme im Motor fließen. Die Lösung dieser Frage wird erleichtert, wenn man zuerst einen streuungsfreien und verlustlos arbeitenden Motor untersucht und erst auf Grund der so gewonnenen Resultate die Untersuchung unter Berücksichtigung der Streuung und Verluste wiederholt. Bei einem streuungsfreien Motor wird das Strom-dreieck rechtwinklig, und wenn derselbe mit positiver Schlüpfung arbeitet, steht der Rotorstrom J2, Fig. 144, rechtwinklig im Sinne einer Nacheilung zu dem wattlosen Magnetisierungsstrom Jm, und J2 wird. durch die Wattkomponente des Primärstromes Jw balanciert. Jm und Jw nach dem Kräfteparallelogramm zusammengesetzt liefern als Resultante den Primärstrom J1. In die Richtung von Jw fällt außerdem die Klemmenspannung E, und ebenso in die Richtung J2 die elektromotorische Gegenkraft Eg. Das zugehörige Generatordiagramm ist sehr leicht zu konstruieren, die Dynamo liefert die Spannung E1? und den Strom J1 um den A © verzögert, ihre Leistung beträgt Ei . J1 . cos © und dieselbe ist positiv, wird also vom Generator abgegeben. Der Strom J, ist zur elektromotorischen Gegenkraft des Motors, die der Klemmenspannung Ej gleich ist, um (180° + ©) verzögert, und die Energie, vom Motor aus betrachtet, hat den Wert E2 . J1 cos (180° ++ g) und ist negativ, sie wird vom Motor konsumiert.

Geht man nun zu dem Fall über, daß der Motor mit negativer Schlüpfung arbeitet, so kann in erster Linie konstatiert werden, daß der Strom J3 im Rotor seine Richtung ändert. Die Rotor-Windungen sind nämlich stets dem von Jm erzeugten Feld ausgesetzt, die Kraftlinien dieses Feldes werden von den Rotor-Windungen bei negativer Schlüpfung in entgegengesetztem Sinne geschnitten als bei positiver; denn die Bezeichnung positive resp. negative Schlüpfung besagt ja eben, daß die Relativbewegung zwischen Feld und Rotor sich umkehrt. J2 eilt daher dem Erregerstrom Jm um 90° voraus, und die Wattkomponente Jw ist J2 gleich, aber entgegengesetzt gerichtet. Jw und Jm geben den resultierenden Statorstrom J1. Im Generatordiagramm zeigt der Strom J1 zur ursprünglichen Klemmenspannung E, eine Phasen-
[image: ]

Fig. 144.


Verschiebung 9, welche größer als 90° ist. Die Generatorenenergie ist daher negativ, der ursprüngliche Generator arbeitet als Synchronmotor, und E, übernimmt nun die Rolle einer elektromotorischen Gegenkraft; daß in diesem Falle E, nie die Ursache des Stromes J, sein kann, erhellt auch aus der Tatsache, daß die Phasenverschiebung zwischen Strom und erzeugender Spannung nie größer sein kann als 90° Im Motor dagegen wird nunmehr Eg Klemmenspannung und erzeugt den Strom J, in einem verzögerten Phasenabstand von (180° — p). Dieser Verzögerungswinkel, der im IV. Quadranten liegen muß, entspricht einem Vor-eilungswinkel, der kleiner als 90° ist, und es ist vielfach üblich, in derartigen Fällen den kleinen spitzen Winkel mit entgegengesetztem Vorzeichen einzuführen, als den großen stumpfen. Wie jedoch schon in der Einleitung bemerkt, ist in dem vorliegenden Artikel im Interesse der Eindeutigkeit, um jedes Mißverständnis auszuschließen, jeder Phasenverschiebungswinkel als verzögerter
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Fig. 145.


gezählt. Die Kosinuswerte der Winkel sind an und für sich identisch. Bei Berücksichtigung der Streuung verwandelt sich das rechtwinklige Stromdreieck in ein schiefwinkliges und die Spitze desselben bewegt sich bei positiver Schlüpfung bei den verschiedenen Belastungsstadien auf dem Diagrammkreis. Bei negativer Schlüpfung wandert die Spitze des Stromdreiecks auf demselben Kreis, jedoch in entgegengesetzter Richtung, vom Synchronismus aus betrachtet. Wie schon oben gezeigt, erzeugt Eg den Strom J1, der um (180° — ©) verzögert ist, wobei o>90°, und das konstante Jm vervollständigt mit J2, welch letzteres seine Richtung umgekehrt hat, das Stromdreieck Fig. 145.

Das zugehörige Felddiagramm stellt Fig. 146 dar. Das Statorerregerfeld a c ist konstant. Bei Leerlauf besteht dasselbe aus dem Primärstreufeld a b und dem gemeinsamen Hauptfeld b c, wobei

a b = T1 . b c
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und a b außerdem dem Magnetisierungsstrom proportional ist. Bei Belastung wächst das primäre Streufeld proportional dem Primär-Strom und fällt auch in die Richtung desselben, ad. d c ist das gemeinsame Hauptfeld des Stators und Rotors, welches sich mit dem primären Statorstreufeld zum konstanten Erregerfeld a c, und mit dem Rotorstreufeld, welches dem Rotorstrom und • T proportional ist, zum Rotorfeld e c zusammensetzt. Dies letztere erzeugt in Wechselwirkung mit dem Rotorstrom das Widerstandsmoment, ebenso wie es bei normalem Betrieb das Drehmoment erzeugt.

Das Diagramm läßt sich vervollständigen, wenn in demselben die Einflüsse der Widerstände im Stator und im Rotor dargestellt werden, erst dadurch können die Ohmschen Verluste und die aus diesen resultierende Schlüpfung bestimmt werden.

Da die Maschine jedoch als Generator arbeitet, äußern sich die Verluste seiner normalen Betriebsweise gegenüber umgekehrt. Bedingen sie sonst eine Verminderung der abgegebenen mechanischen Leistung gegenüber der zugeführten elektrischen, so verlangen sie jetzt eine Erhöhung der zugeführten mechanischen, um die elektrische Leistung abgeben zu können. Bei normalem Betrieb verursacht der Ohmsche Spannungsverlust eine Reduktion des Rotorfeldes von ed auf fd, Fig. 143, jetzt muß das Rotorfeld, Fig. 145, von ud = ed auf v d erhöht werden, um den Spannungsabfall in der Statorwicklung derart kompensieren zu können, daß der Stator die Klemmenspannung Eg entwickelt.

Das Heylandsche Diagramm vernachlässigt bei Bestimmung des Spannungsverlustes im Stator den Magnetisierungsstrom und setzt Stator- und Rotorstrom einander gleich. Unter der gleichen Annahme muß der Schnittpunkt v auf dem von m als Mittelpunkt mit dem Radius mb beschriebenen Kreis liegen, weil tg ubv dem Statorwiderstand proportional und

_ubv=Aobm=c ist.

Da die von u auf a d gefällte Senkrechte die vom Motor abgegebene elektrische Leistung darstellt, muß die von v aus gezogene Parallele die aufgewandte Zugkraft oder das Widerstandsmoment und die Differenz der beiden v x den Statorverlust darstellen. In analoger Weise wird durch den Rotorwiderstand die Tangente des A u b w = tg (a — /) bestimmt, und dadurch ergibt sich h als Mittelpunkt des dritten Kreises mit dem Radius hb. Die auf a d von w aus gezogene Senkrechte muß infolgedessen die gesamte, dem Motor zugeführte mechanische Leistung repräsentieren. Die Schlüpfung ist wieder dem Quotienten "osorstro proportional und aus dem Diagramm ergibt sich dieser als das Verhältnis von

bu

v d

Der Schlüpfungsmaßstab ist daher in der Richtung p' q' zu ziehen, wobei q' den Schnittpunkt einer von d aus gefällten Senk-

rechten mit dem grüßten Diagrammkreis bildet, mit welcher der Schlüpfungsmaßstab den A a einschließt. Dieser Punkt q' entspricht einer Voreilung von 100%, und um aus dem Diagramm Werte, welche noch größeren Voreilungen entsprechen, entnehmen zu können, ist der Schlüpfungsmaßstab über q' beliebig weit zu verlängern. In ähnlicher Weise, wie bei gewöhnlicher positiver Schlüpfung, wird elektrische Energie, Zugkraft und mechanische Leistung durch die Schnittpunkte einer von d aus — durch die auf dem Maßstab abgelesene Schlüpfung gezogenen — Geraden mit den von o, in, h als Mittelpunkt beschriebenen Kreisen bestimmt. Mit wachsender Voreilung nähert sich die Spitze u des Stromdreiecks längs des inneren Kreises dem Punkt d, welchen sie bei 100% Voreilung erreicht, d q’ wird dadurch Tangente an den inneren Diagrammkreis, und der elektrische Effekt wird dadurch Null. Wird die Voreilung noch weiter getrieben, so hört die Maschine auf, als Dynamo zu wirken; sie konsumiert allerdings noch mechanische Leistung und entwickelt eine Widerstandskraft, sie absorbiert jedoch gleichzeitig elektrischen Effekt, und alle zugeführte Energie tritt als Verlust auf und wird in Wärme umgesetzt.

Wenn die Voreilung den Wert co erreicht, wird (Fig. 145) d t" parallel zu p'q', die Zugkraft wird Null, und der Motor verhält sich genau ebenso, wie wenn er mit unendlicher positiver Schlüpfung arbeiten würde, denn die Gerade t" e” ist dieselbe wie t" e" in Fig. 143, welche das Diagramm für die Schlüpfung — co darstellt.

Diesen Grenzpunkt erreicht die Spitze des Stromdreiecks bei positiver Schlüpfung, ohne den Punkt d zu durchlaufen. Bei negativer Schlüpfung muß jedoch vom Stromdreieck der Punkt d getroffen werden, und es tritt dieser Moment bei 100% negativer Schlüpfung ein.

Aus dem Vorhergehenden ist ersichtlich, daß die Hauptpunkte des Diagramms a, b, d, m, h für positive und negative Schlüpfung dieselben sind, und es kann daher durch ein einziges Diagramm das Verhalten eines Drehstrommotors in jedem beliebigen Belastungsstadium bei jeder möglichen Schlüpfung von — © bis — co dargestellt werden, wenn man die Fig. 143 und 145 zu einer einzigen vereinigt. Die folgenden Figuren stellen in rechtwinkligen Koordinatensystemen die einzelnen wichtigen Größen als Funktion der Schlüpfung (Abszisse) dar. Bezüglich der Wahl des Vorzeichens wurden in der Einleitung die nötigen Bemerkungen gemacht.

	
1.    Die elektrische Leistung (Fig. 147) hat bei einer Schlüpfung + co einen endlichen Wert — y1, muß daher zugeführt werden, erreicht ihr Maximum kurz vor Synchronismus, geht dann rasch
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Fig. 147.




durch den Nullpunkt des Koordinatensystems, um bei mäßiger negativer Schlüpfung ein gleich großes Maximum, jedoch mit entgegengesetztem Vorzeichen zu erreichen und nun nach nochmaligem Schneiden der Abszisse und nochmaliger Veränderung des Vorzeichens einem dem ursprünglichen gleichen endlichen Grenzwert (— yi) bei unendlich negativer Schlüpfung zuzustreben.

	
2.    Die mechanische Leistung (Fig. 147) beginnt mit einem negativen bestimmbaren Wert — y2, schneidet bei einer positiven Schlüpfung von + 100% die Abszisse, um weiter wachsend kurz vor Synchronismus ein positives Maximum zu erreichen. Von hier



ab geht die abgegebene Leistung unter Durchgang durch den Koordinatennullpunkt rapid in ein bedeutend größeres negatives Maximum über, um auf der negativen Seite zu seiner ursprünglichen Größe asymptotisch abzunehmen. Je größer die Verluste im Motor sind, um so mehr unterscheiden sich diese beiden
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Maxima, deren Differenz gleich der Summe der Verluste in den beiden Betriebsstadien ist.

	
3.    Die Verluste durch Ohmschen Widerstand (Fig. 147) (die Hysteresis- und Foucaultschen Verluste sind nicht berücksichtigt) nähern sich vom Synchronismus, bei welchem sie Null betragen, bei positiver Schlüpfung einem endlichen Werte y3 in einem aufsteigenden Aste, bei negativer Schlüpfung erreichen sie den gleichen Endwert, nachdem sie bei etwas weniger als 100% Voreilung ein Maximum durchlaufen haben.


	
4.    Die Zugkraft (Fig. 147) hat bei unendlich großer positiver Schlüpfung den Wert Null, wächst dann bei abnehmender Schlüpfung, um kurz vor Synchronismus eine maximale Größe zu erreichen und nach Durchgang durch den Nullpunkt in ein negatives größeres Maximum überzugehen, von welchem sie bei zunehmender Voreilung sich asymptotisch dem Nullwert nähert.
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Fig. 149.

■---- Wattkomfionente fürHysteresis - 5 Wirbel-stronwerhist

•—■ Verlust durchßeibuny ifLuftwiderstancL





elcktrischeLeistung




Vidrrsta^dsmoma




Mechamscheleistunq

| Drehmoment




elektrische Energ




	
5.    cos g verläuft (Fig. 148) ähnlich der Wattkurve, die Grenzwerte erreichen den Endwert = y5.


	
6.    Die Kurve der Wattkomponente des Stromes ist der Wattkurve ähnlich (in geometrischem Sinn) und, wenn die Werte wie hier direkt aus dem Diagramm entnommen werden und lediglich eine graphische Darstellung der Vorgänge ohne Einsetzung numerischer Werte bezwecken, identisch mit der Wattkurve (Klemmenspannung = 1).


	
7.    Die Kurve des resultierenden Primärstromes und ebenso die wattlose Komponente desselben verlaufen angenähert so wie die Verlustkurven. Sie haben die Endwerte — ye resp. — y7.


	
8.    Der Magnetisierungsstrom behält durchweg seine konstante Größe yg.



Man erhält somit nachstehende besonders ausgezeichnete Belastungsstadien eines Drehstrommotors. Alle Angaben sind auf die Schlüpfung bezogen, und um anzudeuten, daß ein bestimmter Grenzwert, der . sich jedoch nicht exakt definieren läßt, erreicht wird, sind die allgemeinen Bezeichnungen einer endlichen Ordinate y,, y2, y3 • • • eingesetzt.
[image: ]

Fig. 149 stellt das Heylandsche Diagramm für alle möglichen


Belastungszustände dar, und in demselben fällt besonders auf, daß die Schlüpfungsmaßstäbe für die positiven resp. negativen Schlüpfungen verschieden sind. Diese Eigentümlichkeit ist dadurch bedingt, daß der Spannungsverlust in den Statorwindungen
[image: ]

nicht ganz exakt berücksichtigt wird, indem in dieser Beziehung der Statorstrom dem Rotorstrom gleichgesetzt wird.

Im exakten Diagramm Fig. 151 ist die Teilung des Schlüpfungsmaßstabes für alle Betriebsstadien die gleiche.

Sehr charakteristische Kurven für die mechanische Leistung, Zugkraft, cos q und Statorstrom ergeben sich, wenn als Abszisse die elektrische Leistung aufgetragen wird2). Fig. 150.

	
86.    Das exakte Diagramm für Schlüpfungen von +c bis — co.



Nach dem Vorausgegangenen ist es selbstverständlich, daß das exakte Diagramm sämtliche möglichen Betriebsstadien umfaßt, wenn der Motorhalbkreis zu einem Vollkreis ergänzt und der

[image: ]

Fig. 151.




Schlüpfungsmaßstab beiderseitig verlängert wird. Fig. 151.

Bei positiven Schlüpfungen von mehr als 100 % bewegt sich die Spitze s des Stromdreiecks auf dem Bogen s' d, und um die natürlich negative Zugkraft bestimmen zu können, muß die Verlustlinie bis v' verlängert werden. Bei unendlich großer positiver Schlüpfung fällt die Spitze s mit dem Punkt d zusammen, s wird
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______ , der Statorstrom, der Rotorstrom und die Zugkraft werden m u                 •

Der Wattkonsum ist

w, —c, “d

und der gleichzeitig konsumierte mechanische Effekt

Mit abnehmender positiver Schlüpfung bewegt sich die Spitze des Stromdreiecks über s' auf dem Kreisbogen, fällt bei Synchronismus mit b zusammen und erreicht bei geringer negativer Schlüpfung den Punkt s", welcher der eine Schnittpunkt der beiden Kreise b d und m u ist. In diesem Betriebszustand ist der Wattkonsum des Motors Null, und seine sämtlichen Verluste werden auf mechanischem Wege gedeckt.

Mit wachsender Voreilung wird der elektrische Effekt positiv, die Maschine arbeitet als Generator, und in dem in der Figur dargestellten Belastungszustand ist

J, = c,.A8

8

W1= C4 •

Es ist charakteristisch, daß s in den Betriebszuständen, in welchen die Maschine als Generator zu arbeiten im Stande ist, kleiner als 1 ist. Wenn wir von m aus mit dem Radius m u einen Kreisbogen schlagen, so schneidet derselbe den Diagrammkreis b d in zwei Punkten, und für die Belastungsstadien, in welchen s mit diesen Punkten zusammenfällt, ist s = 1. Man kann hiervon Gebrauch machen, um rasch, ohne erst s berechnen zu müssen, festzustellen, welche ungefähre Leistung die Maschine als Generator abzugeben im Stande ist. Noch zwei weitere Punkte sind diesbezüglich von Wichtigkeit, nämlich s", den wir schon kennen gelernt haben, und s"', der zweite gemeinsame Punkt der Kreise mu und b d. Wenn die Spitze des Stromdreiecks s sich im Punkte s'" befindet, so ist der Wattkonsum (ebenso wie im Punkte s") Null. Der Bogen s" s’", der in der Zeichnung stark hervorgehoben ist, umfaßt sämtliche Stadien, in welchen die Maschine als Generator zu arbeiten vermag, und die Strecken

-s w— geben die Wattleistung des Asynchrongenerators an.

8

Wird die Voreilung vergrößert, daß s auf den Kreisbogen s'" d zu liegen kommt, so konsumiert die Maschine mechanischen und elektrischen Effekt. Bei unendlich großer Voreilung fällt s mit d zusammen.

Fünfzehntes Kapitel.

Der Einphasenmotor.

	
87.    Ableitung des Einphasenmotordiagramms aus dem Diagramm des Drehstrommotors.


	
87.    Ableitung des Einphasenmotordiagramms aus dem Diagramm des Drehstrommotors.





Es ist nicht beabsichtigt, im nachstehenden eine abgeschlossene Theorie des Einphasenmotors zu entwickeln, sondern es soll nur gezeigt werden, in welch naher Verwandtschaft ein Einphasenmotor zu einem asynchronen Drehstrommotor steht.

Der einem Einphasenmotor zugeführte Wechselstrom erzeugt ein oszillierendes Feld, welches man als die Resultante zweier in entgegengesetzter Richtung rotierender konstanter Drehfelder, deren Intensität gleich der halben des maximalen Einphasenfeldes ist, auffassen kann (Fig. 152). Die Tourenzahl eines jeden dieser Drehfelder entspricht bei einem zweipoligen Felde der Perioden-zahl des erregenden Wechselstromes. Ein Einphasenmotor läßt sich auf Grund dieser Vorstellung als ein Drehstrommotor auffassen, der mit zwei Erregerwicklungen ausgestattet und deren eine für Rechts-, deren andere für Linkslauf geschaltet ist. Die Gesamtwirkung des Erregerfeldes auf den Rotor muß sich aus den Einzelwicklungen des rechts und links laufenden Drehfeldes zusammensetzen. Kapp hat den Nachweis geliefert („El. Kraftübertragung“, 2. Aufl., pag. 281), daß die im Rotor durch das rechts laufende Feld induzierten Ströme auf das links drehende weder einwirken noch von demselben beeinflußt werden, und infolgedessen kann der oben erwähnte Einphasenmotor durch zwei identisch gebaute Drehstrommotoren ersetzt gedacht werden, deren Statoren hintereinander geschaltet sind, und deren einzelne Phasenspulen so verbunden werden müssen, daß die beiden Drehstrommotoren in entgegengesetzter Drehrichtung laufen. Werden nun die Rotoren gekuppelt, so verhalten sich die beiden Drehstrommotoren wie ein Einphasenmotor. Bei Stillstand arbeiten beide Drehstrommotoren mit je 100% Schlüpfung, jeder hat an seinen Klemmen die halbe Netzspannung, Stator- und Rotorstrom sind in beiden gleich, und die Drehmomente, die unter sich gleich, aber
[image: ]

entgegengesetzt gerichtet sind, heben sich gegenseitig auf. Sobald die gekuppelten Rotoren durch eine äußere Kraft in einer beliebigen Drehrichtung in Bewegung gesetzt werden, ändert sich der beschriebene Zustand sehr wesentlich, indem der eine Motor mit geringerer, der zweite dagegen mit größerer Schlüpfung als 100% arbeitet. Der erste Motor (Motor I) bekommt dadurch ein Übergewicht über den zweiten (Motor II), da er sich nicht nur im Sinne seines Statorfeldes bewegt, sondern auch eine größere Zugkraft entwickelt. Jeder der Motoren hat nun auch einen anderen Rotorstrom, die Klemmenspannung des ersten Motors steigt auf Kosten der Klemmenspannung des zweiten, und bei beiden Motoren ist nichts gleich als der Primärstrom, weil die Annahme gemacht wurde, daß die Statorwindungen in Serie geschaltet sind. Da auch das Verhalten des Einphasenmotors als Punktion der Schlüpfung angegeben werden soll, muß entschieden werden, mit welcher Schlüpfung die Motoren I und II in jedem beliebigen Pall laufen, wenn die Schlüpfung des durch sie repräsentierten Einphasenmotors zwischen ihren extremsten Werten variiert. Es ist jedoch einfacher, den umgekehrten Weg einzuschlagen und aus der Schlüpfung der beiden Drehstrommotoren die Schlüpfung des Einphasenmotors abzuleiten. Da die algebraische Summe der Schlüpfungen der beiden Motoren I und II stets 200% ergeben muß, läßt sich leicht nachstehende Tabelle aufstellen.


	
Schlüpfung des
	
Bemerkungen


	
Motors I
	
Motors 11
	
Einphasenmotors


		
Recht
	
släufig
	

	
— o
	
+ o
	
— CO
	

	
— 100
	
+ 300
	
— 100
	

	
— 50
	
+ 250
	
— 50
	

	
0
	
+ 200
	
0
	
Synchronismus


	
+ 50
	
+ 150
	
+ 50
	

	
+ 100
	
+ 100
	
+ 100
	
Stillstand


		
Linksläufig
	

	
+ 150
	
+ 50
	
+ 50
	

	
+ 200
	
0
	
0
	
Synchronismus


	
+ 250
	
— 50
	
— 50
	

	
+ 300
	
— 100
	
— 100
	

	
+ c
	
— o
	
— o
	



Die Tabelle zeigt, wenn man sie von der Zeile aus, welche dem Stillstand der Motoren entspricht, liest, für den Einphasen-motor eine symmetrische Anordnung der einzelnen Werte, und auch die Werte der Motoreu I und II verlaufen dann symmetrisch, wenn man annimmt, daß die Motoren I und II in der einen Hälfte der Tabelle ihre Indices vertauschen.

Die Tabelle drückt daher in anderer Form die Tatsache aus, daß ein Einphasenmotor keine bestimmte Drehrichtung hat, sondern daß er sich bei Rechts- und Linkslauf gleich verhält. Hierdurch wird für die Untersuchung eines Einphasenmotors insofern eine Vereinfachung geschaffen, als diese sich nur mit den Schlüpfungen + 100 bis — co zu beschäftigen braucht, denn wenn der Motor in entgegengesetzter Richtung mit stets wachsender Geschwindigkeit gedreht wird, so erhält man wieder die Schlüpfungen + 100 bis — co.

Es läßt sich nun sehr leicht das Diagramm des synchronlaufenden Einphasenmotors entwickeln. Fig. 153 A zeigt das Dia-
[image: ]
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stellt die Diagramme der beiden in Serie geschalteten Drehstrommotoren I und II dar mit

üm den oben geschilderten Zustand, der bei synchronem Lauf des Motors I herrscht, graphisch darzustellen, müssen auf die Strecke L, die analog der Klemmenspannung konstant bleibt, zwei Drehstromdiagramme aufgetragen werden, die gleich große Strecken für die Statorstromstärke besitzen und für welche beide das Verhältnis — = T ungeändert geblieben ist. Fig. 153 C zeigt die Entwicklung dieser beiden Drehstrommotorendiagramme. Fig. 153D endlich stellt das Diagramm des Einphasenmotors bei Leerlauf dar.

Aus Fig. 153 folgt: a b e — f e 1)7   D. = f5U;

e          e

	
D. _ 1 + r



D=1+2r‘

b + e + f Leerstrom des Einphasenmotors      2 — 2 T a          Leerstrom des Mehrphasenmotors      1 — 2 T ’

b + e + f

—T2"

Ferner ergibt sich aus Fig. 153:

Statorstrom des Einphasenmotors bei Stillstand = b + e + f + De = a + D = Statorstrom des identischen Mehrphasenmotors bei Stillstand und Rotorstrom des Einphasenmotors bei Stillstand = f + De = D = Rotorstrom des Mehrphasenmotors bei Stillstand. Unterhalb der Stromdiagramme sind in Fig. 153 die zugehörigen Felddiagramme eingezeichnet, deren Bedeutung ohne weiteres klar ist.

Für die beiden Fälle: Stillstand und Synchronismus ist nun das Einphasenmotorendiagramm festgelegt, und es folgt aus der gegebenen Ableitung, daß die Belastungsdiagramme sich aus den Schnittpunkten von Senkrechten mit den punktierten Verbindungslinien Fig. 153B (Stillstand) und C (Synchronismus) ergeben müssen.

Fig. 154 A und D entspricht in Fig. 153 C und B, während Fig. 154 B und C zwei Belastungsdiagramme unter Vernachlässigung von Verlusten zeigt. Aus der Auffassung, daß der Einphasenmotor durch 2 für entgegengesetzte Drehrichtung und in Serie geschaltete Drehstrommotoren zu ersetzen ist, deren gesamte Klemmenspannung konstant ist, folgt die Konstanz der Strecken a b + b c + c d + d e = a' b' + b' c' + c' d' + d' e' u. s. w. Vergrößert sich bei Belastung durch das Anwachsen des Statorstromes c e bis c' e', so bleibt für das Diagramm des Motors I nur mehr die Strecke a' c' übrig, welche durch den Diagrammkreis

so geteilt werden muß, daß 6 , — T. Da die Stromstärke im Motor I dieselbe ist wie im Motor II, muß a‘ f' = c' e' sein. Die Rotoramperewindungen haben beim Motor II die Größe d' e' und beim Motor I die Größe b' f'. Die resultierenden Ampere Windungen durch Zusammensetzung nach dem Parallelogramm der Kräfte ergeben im Stator a' h', im Rotor b' g'. Das Rotorfeld des Motors I, welches die positive Zugkraft erzeugt, ist repräsentiert durch c' f',
[image: ]

Fig. 154.


Motor II entwickelt nach diesem Diagramm überhaupt keine Zugkraft, da dessen Rotorfeld = 0 ist, weil der Widerstand der Rotoren unberücksichtigt geblieben ist. Fig. 154 C zeigt das Diagramm bei einer anderen Belastung.

Die Richtigkeit des Diagramms wird durch Fig. 155 illustriert, welche das zu Fig. 154 B gehörige Felddiagramm darstellt. In Fig. 155 sind bei A die Felder jedes der beiden Motoren für sich angegeben, bei B sind die einzelnen Streufelder aneinander gereiht, und bei 0 sind die Streufelder von den resultierenden Strömen abgeleitet. Alle drei Verfahren ergeben dasselbe Rotorfeld des Motors I.

In Fig. 156 stellt die Strecke II das Statorfeld des Motors II, die Strecke I das Statorfeld des Motors I dar, ihre Resultante R ergibt das Statorfeld des Einphasenmotors ini Synchronismus. Wie aus der Figur zu ersehen ist, zeigt das Statorfeld des Einphasenmotors eine elliptische Anordnung, wobei jedoch zu bemerken ist, daß der Radiusvektor R mit inkonstanter Winkelgeschwindigkeit
[image: ]

Fig. 155.


rotiert. Es ist sehr leicht, die Ellipse des Statorfeldes für jeden Belastungszustand zu bestimmen. Mit zunehmender Belastung wächst das Feld II, während das Feld I um den gleichen Betrag abnehmen muß, denn die Summe beider Statorfelder, des Motors 1 und II, ist konstant, nämlich gleich dem Statorfeld des Drehstrommotors, von dem wir bei unseren Betrachtungen ausgegangen sind. Die große Halbachse der Ellipse ist daher dem Statorfeld dieses Drehstrommotors gleich und daher konstant. .

Große Halbachse = I — II = konstant.

Die kleine Halbachse ist gleich der Differenz I — II, variiert daher zwischen einem Maximalwert bei Synchronismus und dem Wert Null bei Stillstand. In letzterem Fall schrumpft die Ellipse zu einer Geraden, der großen Achse zusammen. In allen zwischenliegenden Belastungsstadien variiert die Größe der kleinen Halbachse zwischen ihren Extremwerten.

In ähnlicher Weise läßt sich zeigen, daß auch das Luftfeld und das Rotorfeld elliptischen Charakter besitzen, die Konstruktion dieser Ellipsen bietet aber größere Umständlichkeit, weil dann die Radienvektoren, deren Resultante der Radiusvektor der Ellipse
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ist, wegen ihrer Phasendistanz nicht mehr gleichzeitig die Senkrechte ab passieren. Die große Achse dieser Felder bleibt daher nicht senkrecht stehen, sondern ändert bei jeder anderen Belastung ihre Lage3).

Schon unter Vernachlässigung der Widerstände zeigt das Diagramm Fig. 154 den raschen Abfall der Zugkraft, der jedoch unter Berücksichtigung derselben noch viel rapider wird, da dann eine negative Zugkraft des Motors II zum Ausdruck kommt.

Um den Einfluß der Ohmschen Widerstände zu zeigen, ist in Fig. 157 das Diagramm einer Maschine, wenn dieselbe als Drehstrommotor gewickelt ist, dargestellt, und es soll nun bestimmt werden, wie sich die gleiche Maschine als Einphasenmotor ver
[image: ]

halten wird. Da für jeden Belastungszustand ein besonderes Diagramm zu zeichnen ist, wird hier nur für einen einzigen Fall — gewählt ist:

Schlüpfung des Einphasenmotors = — 50 %

- Drehstrommotors I = — 50 -

II = + 150 -

	
	
— eine eingehende Ableitung angegeben, und die zu der später folgenden Diagrammserie gehörigen Hilfskonstruktionen sind hier weggelassen.





Der Statorstrom des Drehstrommotors würde in Fig. 157 bei + 50% Schlüpfung = a c, bei — 150% Schlüpfung = a m sein. Werden zwei derartige Motoren in der oben geschilderten Weise geschaltet und gekuppelt, und läuft nun Motor I mit +. 50 %, Motor II mit + 150 % Schlüpfung, so kann der jetzt herrschende Zustand durch ein Diagramm dargestellt werden, das folgenden Forderungen genügt.

	
1.    Die Schlüpfungen der beiden Motoren I und II lassen sich in jedem Falle nach der Bezeichnungsweise obiger Tabelle durch die Beziehung ausdrücken



Sr + sn = + 200,

worin SI und SII die Schlüpfung der beiden Motoren unter Berücksichtigung des Vorzeichens sind.

	
2.    Auf eine Gerade von der konstanten Länge a d sind zwei Drehstrommotorendiagramme zu zeichnen (Fig. 158), in welchen



ef   gh     ab

[image: ]

Fig. 158.




fg      hi      bd ist und a d = konst.

	
3.    Die Statorströme der beiden Motoren I gleich groß sein, also


und II müssen





e k — g 1.

Aus diesen Bedingungen folgt

a c e k ad eg
[image: ]

Fig. 159.


und am _ gl ad     gi ’

durch Division der beiden Gleichungen ergibt sich

ac  gi am    eg

und um den Schnittpunkt g auf der Geraden e i zu finden, zieht man parallel zu einer Geraden m ac, Fig. 159, wobei

mc=ma+mc

der Fig. 157 ist, eine weitere Gerade ei. Die Verbindungslinie des Schnittpunktes und der Hilfslinien ein und men mit dem Punkt a schneidet die Gerade ei im Punkte g und liefert dadurch den Punkt g in Fig. 158.

Um die Punkte f und h des Diagrammes Fig. 158 zu finden, zieht man parallel zu ei (Fig. 159) die Gerade a b d der Fig. 159. Es ist ohne weiteres klar, daß sich die Linien dio, ago, bho, ebenso die Linien dgp, ae p und bfp in je einem Punkt schneiden müssen, und daß dadurch die gesuchten Punkte f und h bestimmt sind.

Der Stator-, Rotor- und Magnetisierungsstrom eines Einphasenmotors ist die Resultante der korrespondierenden Ströme der Motoren I und II, und man erhält in Fig. 158 den

Statorstrom des Einphasenmotors            = e r

Rotorstrom des Einphasenmotors             = f g

Magnetisierungsstrom des Einphasenmotors = e s

Aus Fig. 158 erhält man außerdem zugeführte Energie, Zugkraft und Leistung für jeden der beiden Drehstrommotoren nach der bekannten Methode, und die algebraische Summe je zweier zusammengehöriger Werte der Drehstrommotoren I und II ergibt den zugehörigen Wert für den Einphasenmotor.

In Fig. 160 ist eine Serie von Diagrammen dargestellt, welche den nachstehenden Schlüpfungen entsprechen:

Tabelle zu Fig. 160.


	
s

s .

9 o

8A C

2
	
Motors I
	
Schlüpfung des
	
Bemerkungen


	
Motors II
	
Einphasen-motors


	
1
	
+ 100
	
+ 100
	
+ 100
	
Stillstand


	
2
	
+ 90
	
+ 110
	
+ 90
	

	
3
	
+ 80
	
+ 120
	
+ 80
	

	
4
	
+ 70
	
+ 130
	
+ 70
	

	
5
	
+ 60
	
+ 140
	
+ 60
	

	
6
	
+ 50
	
+ 150
	
+ 50
	

	
7
	
+ 40
	
+ 160
	
+ 40
	

	
8
	
+ 30
	
+ 170
	
+ 30
	

	
9
	
+ 20
	
+ 180
	
+ 20
	

	
10
	
+ 10
	
+ 190
	
+ 10
	

	
11
	
+ o
	
+ 200
	
+ o
	
Synchronismus


	
12
	
— 10
	
+ 210
	
— 10
	

	
13
	
- 20
	
+ 220
	
- 20
	

	
14
	
— 30
	
+ 230
	
— 30
	

	
15
	
— 40
	
+ 240
	
— 40
	

	
16
	
— 50
	
+ 250
	
— 50
	

	
17
	
— 100
	
+ 300
	
— 100
	

	
18
	
— 150
	
+ 350
	
— 150
	

	
19
	
— 200  '
	
+ 400
	
-200
	

	
20
	
— o
	
+ o
	
— oo
	



Eine nähere Bezeichnung der einzelnen Diagrammlinien konnte hier weggelassen werden, da in den vorhergehenden Figuren deren Bedeutung zur Genüge klargelegt ist.

Die einzelnen Größen, welche sich diesen Diagrammen entnehmen lassen, sind nun in rechtwinkeligen Koordinaten als Funktion der Schlüpfung dargestellt.

	
1.    Die elektrische Energie (Fig. 161) des Motors I variiert fast genau so wie bei einem normalen Drehstrommotor, sie erscheint nur dadurch etwas deformiert, weil der Motor nun nicht mehr mit konstanter, sondern mit variabler Klemmenspannung arbeitet. Bei Synchronismus und bei — 100 % Schlüpfung ist dieselbe Null.



Die elektrische Energie des Motors II ist stets negativ, sie muß demselben immer zugeführt werden, da dieser Motor durch-
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Fig. 160.


wegs mit positiver Schlüpfung läuft. Sie hat die gleichen Anfangsund Endwerte wie beim Motor I und erreicht ein Minimum beim Synchronismus des letzteren. Die Kurve der elektrischen Energie des Einphasenmotors weicht insofern von der eines Mehrphasen
[image: ]

motors ab, als ihre Maxima relativ viel kleiner sind und das Schneiden der Abszisse nicht bei Null und 100 % Schlüpfung, sondern das erste Mal später, das zweite Mal früher eintritt.

	
2.    Auch in Bezug auf die mechanische Energie (Fig. 161) verhält sich der Motor I ganz ähnlich einem Drehstrommotor unter



Heubach, Drehstrommotor.                              29

normalen Bedingungen. Dem Motor II muß durchaus mechanische Energie zugeführt werden, und diese sowie die konsumierte elektrische Energie wird im Motor vernichtet. Sie wächst von Null beim Stillstand bis zu einem Maximalwert bei unendlich großer positiver Schlüpfung, zeigt jedoch ein Minimum beim Synchronismus des Motors I.
[image: ]

Die Kurve für die mechanische Energie des Einphasenmotors zeigt den gleichen Charakter wie bei einem Mehrphasenmotor, erhebt sich jedoch nicht zu so großen Maximalwerten. Das schwere Anlaufen der Motoren kommt sehr gut durch das innige Anschmiegen der Kurve an die Abszisse in der Nähe des Stillstandes zum Ausdruck.

	
3.    Die Verluste (Fig. 161) zeigen durchwegs den gleichen Verlauf: sie haben bei Synchronismus einen minimalen Wert und
[image: ]



wachsen bei steigender oder fallender Tourenzahl auf einen annähernd konstanten Betrag.

	
4.    Die Zugkraft (Drehmoment) des Einphasenmotors (Fig. 162) ist zwischen Stillstand und Synchronismus um die Zugkraft des Motors II kleiner als die des Motors I, beträgt daher bei Stillstand Null und erhebt sich sehr allmählich zu ihrem Maximalwert. Bei Voreilung ist die negative Zugkraft (Widerstandsmoment) des Einphasenmotors so groß, wie die negativen Zugkräfte der Motoren I und II zusammengenommen.


	
5.    Der Leistungsfaktor cos q (Fig. 163) verhält sich ähnlich der Wattkurve.


	
6.    Die Kurve der Wattkomponente des Primärstromes ist identisch mit der Kurve der elektrischen Energie.


	
7.    Der Statorstrom' zeigt ein ähnliches Verhalten wie bei einem Drehstrommotor, hat jedoch bei Synchronismus einen erheblich größeren Wert als der Magnetisierungsstrom.


	
8.    Der Magnetisierungsstrom ist durchwegs annähernd konstant.



Diesem Kapitel wie dem vorhergehenden ist das Diagramm ein und desselben Drehstrommotors zugrunde gelegt. Alle Diagramme sind im gleichen Maßstabe gezeichnet, und die Ordinaten der in rechtwinkligen Koordinaten dargestellten Kurven sind direkt den Diagrammen entnommen. Es lassen sich infolgedessen die für den Einphasenmotor erhaltenen Werte sehr bequem mit den vorausgegangenen für den Drehstrommotor gefundenen vergleichen, und um diesen Vergleich noch mehr zu erleichtern, sind in der nachstehenden Tabelle, welche die besonders bemerkenswerten Belastungsstadien eines Einphasenmotors anführt, diejenigen Grenzwerte, welche in gleicher Größe bei den Mehrphasenmotoren bei unendlich großer Schlüpfung erreicht werden, mit den gleichen Symbolen y]? y2, y3 . . . bezeichnet wie auf der Tabelle S. 431. Die Symbole 71, z2, Z3 . . . dagegen bedeuten, daß die gleichen Werte bei Mehrphasenmotoren beim Stillstand derselben eintreten.

Wie aus der Tabelle ersichtlich ist, verhält sich der Ein-phasenmotor bei Synchronismus wesentlich anders als der Drehstrommotor. Beim Drehstrommotor hat im Synchronismus die elektrische und mechanische Energie, die Zugkraft und der Rotorstrom den Wert Null; beim Einphasenmotor dagegen hat Zugkraft und mechanische Energie den Nullwert bei geringer positiver


Schlüpfung, die elektrische Energie bei geringer negativer, und




der Rotorstrom wird überhaupt nie Null.
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Arnold 290.

Arten der Streuung 202.

Asynchrongenerator 416.

Asynchrone Motoren 5.

Ausbalancieren 362.

Ausglühen der Bleche 360.

Bearbeitungsfehler 261, 266, 353, 357.

Berechnung der Felder 34, 74.

	
—    — Leistung 34, 74.


	
—    des Magnetisierungsstromes 26, 320.


	
—    — Streuungskoeffizienten 57, 118, | 317.


	
—    — Ströme 34, 74.


	
—    — Verluste 323.


	
—    — Zugkraft 34, 74, 186.



Breite des Ankers 291.

Bremsmethode 410.

Breslauer 404.

cos q 38, 86.

cos q max. 86.

Diagramm, Exaktes 84, 307, 433.

	
—    des leerlaufenden Motors 14, 73.


	
—    Heyland 305.


	
—    des verlustlosen, streuenden Motors 72.



Diagramm des verlustlosen, streuungsfreien Motors 23, 39.

Dimensionierung des Motors 310.

	
	
— der Käfigwicklung 282.





Drehfeld 2.

Drehfeldsynchronismus 5.

Drehmoment 31.

Drehstromsystem 2.

Dreieckschaltung 30, 313.

Drosselspulen 342.

Durchmesser des Ankers 289.

Eichhörnchenkäfig 269.

Eigenschaften der wirklichen Felder 159.

Einfluß der Verluste 41, 47, 79, 83, 138, 150.

Einphasenmotor 436.

Einphasenwicklung des Rotors 15, 390.

Eisenverlustkurve 306.

Eisenwiderstand 113, 323.

Einfluß der Verluste im Statoreisen 138.

Elektromotorische Gegenkraft 10.

EMK des Rotors 17.

EMK induzierte 24, 178.

Erregende Amperewindungen 9. Erregende Kraft 13, 168.

Erregende Kraft des Stators 19.

Erregerfeld 20.

— konstantes 65.

Experimentelle Ermittlungen des Diagrammkreises 394.

— des Streuungskoeffizienten 391, 401.

— der Verluste 403.

— des Wirkungsgrades 410.

Fabrikation 357.

Felddiagramm 9, 60, 72, 425.

Felddreieck 13, 64.

Feldfaktor 186.

Feldmann 443.

Fiktives Feld 18, 20.

Fiktive Resultante 20.

Fiktives Rotorfeld 20.

— — bei Stillstand 22.

— Statorfeld bei Stillstand 22.

Formfaktor 186.

Generator, asynchroner 416.

Generatordiagramm, exaktes 433.

	
—    Heyland 430.



Geometrischer Ort 69.

Geschwindigkeit 33.

Gleichung der erregenden Kraft 26, 172.

	
—    — induzierten EMK 26, 185.


	
—    — der Zugkraft 32, 188.



Grenzfall 71.

Hauptfeld (-Luftfeld) 65.

Henry 232.

Hilfsmotormethode 406, 414.

Heylands Diagramm 97, 430.

Hysteresis 133.

Induzierte EMK 24, 178.

Induktionen, maximale, des Streufeldes

60.

— maximale 60.

Induktionsmotor I.

Käfiganker 268.

Käfigwicklung 284.

	
—    Widerstand der 270, 280.



Kapp 293, 436.

Klemmenspannung 22, 26.

Koeffizienten 186.

	
—    & 50.



__ T 57

	
—    ", r,, t 69, 203, 213, 217, 222, 237.



— Tabelle 302.

Komponenten 13, 158.

Konstante Cf, C2, C3 37, 303. ,

Konstantes Erregerfeld des Motors 22. Konstruktion 366.

Kopfstreuung 231, 300.

Kraftlinienzahl, magnetischer Fluß 56, 60, 165, 212, 216, 219.

Kräfteparallelogramm 60, 158.

Krantz, J. B. 164.

Kuhlmann 107.

Kurzschlußanker 268, 84.

Leerlaufmethode 411.

Leitfähigkeit der Luft 239, 300.

	
—    — Nuten 242, 298.


	
—    — der Spulenköpfe 300.



Leistungsfaktor 38.

— maximaler 86.

Leistung, mechanische 32.

Leitungsspannung 26.

Lenzsches Gesetz 4.

Luftquerschnitt 241, 300.

Luftzwischenraum 293.

Magnetische Leitfähigkeit, siehe Leitfähigkeit.

Magnetischer Widerstand 56, 211, 215.

Magnetisierungskurve 299.

Magnetisierungsstrom 11, 20, 26, 302,

320.

Maximale erregende Kraft 170.

	
	
— magnetische Induktion 173.





— Kraftlinienzahl 173.

Mehrphasenströme 3.

Minimum des Rotorkupfers 284.

Nachglühen der Bleche 360.

Negative Schlüpfung 417.

Nutenfaktor 186.

Nutenform 266, 361.

Nutenleitfähigkeit 242.

Nutenquerschnitte 243, 299.

Nutenstreuung 202, 213, 217, 222, 300.

Nutenteilkreis 264, 360.

Nuten widerstand 222, 242.

Nutenzahl 293, 311, 372, 389.

Nutzleistung des Motors 45.

Ohmscher Widerstand des Kurzschlußankers 270, 280, 335.

— — — Rotors 41, 79, 323, 335.

— — — Stators 47, 83, 98, 323,

340.

Ossannas Kreis 107.

Phasenanker 268.

Phasenfaktor 186.

Phasenkoeffizient 172, 186.

Phasenspannung 26.

Phasenverschiebungswinkel 22.

Phasenzahl 28.

Polteilung 294.

Positive Schlüpfung 417.

Prüfung der Wicklung 388.

Querschnitt der Luft 241, 300.

— — Nuten 297.

Querschnittsausnützung der Nuten 301, 314, 319.

Reale, resultierende 20.

Reibung 133.

Reibungsverluste 147, 405.

Rosenberg 409.

Rotor 7.

Rotoranlasser 354.

Rotoreisen 144.

Rotorfeld 18.

— resultierendes 65.

Rotorstrom 17, 20.

Rotorwiderstand 41, 79, 323, 335.

Schaltung Y A 30, 313, 391.

Schleifenkurzschlußwicklung 287.

Schlüpfung 5.

— negative 417.

— positive 417.

— prozentuale 42.

Schlüpfungsmessungen 408.

Selbstinduktion 232.

Serienkurzschlußwicklung 286.

Spannungsverlust 48.

Spulenelement 181.

Spulenzahl 234, 372.

Stanzen 366.

Stator 7.

Statoranlasser 354.

Statorstreufeld, erstes 115.

— zweites 115.

Statorstrom 20.

Statorwiderstand 47, 83.

Sternschaltung 30, 313.

Streufeld 58.

Streuung des Motors 54, 113.

— der Nuten 202, 213, 217, 222, 300.

— — Spulenköpfe 231, 300.

Streuungsarten 202.

Streuungskoeffizienten 69, 203, 213, 217, 222, 237.

Streuung, Zickzack- 226.

Stromdiagramm 65, 126.

Stromdreieck 64.

Tangentialkraft 31.

Teilung, Nuten-, 294.

_ D._ 004

Trillerkäfig 269.

Übersetzungsverhältnis der EMKK195.

— — erregenden Kräfte 194.

— — Ströme 195.

Veränderung der Drahtzahl 330.

— — Klemmenspannung 329, 347.

— — Luftinduktion 329.

— des Luftzwischenraumes 331, 349.

— der Polwechselzahl 333.

	
—    des Rotorwiderstandes 335.


	
—    — Statorwiderstandes 340.


	
—    der Streuung 342.



Verlustmessungen 403.

Verzerrung 269.

Voreilung 417.

Wattloser Strom 11.

Wattkomponente 36.

Wattkonsum 36.

Widerstand des Eisens 113.

	
—    — Käfigankers 270, 280, 338.



— der Nuten 222.

	
—    des Rotors 41, 79, 323, 335.


	
—    — Stators 47, 83, 98, 323, 340.


	
—    magnetischer 56, 211, 215.



— — des Streufeldes 57.

Wicklung 372.

Winkelgeschwindigkeit des Feldes 164,

181.

Wirbelströme 133.

Wirkliche Felder des streuungsfreien

Motors 153.

	
	
— — Eigenschaften derselben 159.





Wirkungsgradmessungen 410.

Zickzackstreuung 226.

Zugkraft 31, 186.

Zugkraft, Mittelwert 32.

Hilfsbuch für die Elektrotechnik.

Von C. Grawink el und K. Strecker.

Unter Mitwirkung von Borchers, Eulenberg, Fink, Pirani, Seyffert, Stockmeier und H. Strecker bearbeitet und herausgegeben von

Dr. K. Strecker,

Kaiser). Ober-Telegrapheningenieur, Professor und Dozent a. d. Technischen Hochschule zu Berlin.

Sechste, vermehrte und verbesserte Auflage.

Mit 330 Figuren im Text. — In Leinwand gebunden Preis M. 12,—.

Herstellung und Instandhaltung elektrischer Licht-und Kraftanlagen.

Ein Leitfaden auch für Nichttechniker.

Herausgegeben unter Mitwirkung von O. Görling und Michalke von S. Frhr. v. Gaisberg.

In Leinwand gebunden Preis M. 2,—.

Die Beleuchtung von Eisenbahn-Personenwagen

mit besonderer Berücksichtigung der Elektrizität.

Von Dr. M. Büttner.

Mit 60 in den Text gedruckten Figuren. — In Leinwand gebunden Preis M. 5,—.

Handbuch der elektrischen Beleuchtung.

Bearbeitet von Jos. Herzog, und Cl. Feldmann, Budapest.                             Köln a. Rh.

Zweite, vermehrte Auflage.

Mit 517 Abbildungen. — In Leinwand gebunden Preis M. 16,—.

Verteilung des Lichtes und der Lampen

bei elektrischen Beleuchtungsanlagen.

Ein Leitfaden für Ingenieure und Architekten.

Von Jos. Herzog und Cl. Feldmann.

Mit 35 in den Text gedruckten Figuren. — In Leinwand gebunden Preis M. 3,—.

Die Berechnung elektrischer Leitungsnetze in Theorie und Praxis.

Bearbeitet von

Jos. Herzog und Cl. Feldmann.

Zweite, vollständig umgearbeitete und sehr vermehrte Auflage in zwei Teilen.

Erster Teil: Strom- und Spannungsverteilung in Netzen.

Mit 269 Abbildungen. — In Leinwand gebunden Preis M. 12,—.

Der zweite Teil: Die Dimensionierung der Netze wird noch im Jahre 1903 erscheinen.

Asynchrone Generatoren

für ein- und mehrphasige Wechselströme.

Ihre Theorie und Wirkungsweise.

Von Clarence Feldmann, Ingenieur und Privatdozent an der Großh. Techn. Hochschule in Darmstadt. Mit 50 Abbildungen im Text. — Preis M. 3,—.

Die Hebezeuge.

Theorie und Kritik ausgeführter Konstruktionen mit besonderer Berücksichtigung der Elektrischen Anlagen.

Ein Handbuch für Ingenieure, Techniker und Studierende.

Von Ad. Ernst,

Professor des Maschinen-Ingenieurwesens an der Kgl. Technischen Hochschule zu Stuttgart.

(Zur Zeit vergriffen; vierte Auflage in Vorbereitung.)

Die Gleichstrommaschine.

Theorie, Konstruktion, Berechnung, Untersuchung u. Arbeitsweise derselben.

Von E. Arnold,

	
o. Professor und Direktor des Elektrotechnischen Instituts an der Großherzoglichen Technischen Hochschule Fridericiana zu Karlsruhe. In zwei Bänden.



I. Band: Die Theorie der Gleichstrommaschine.

Mit 421 in den Text gedruckten Figuren. — In Leinwand gebunden Preis M. 16,—.

Der zweite Band, umfassend die Berechnung und den Bau der Gleichstrommaschine, befindet sich unter der Presse.

Die Wechselstromtechnik.

Herausgegeben von E. Arnold,

o. Professor und Direktor des Elektrotechnischen Instituts an der Großherzoglichen Technischen Hochschule Fridericiana zu Karlsruhe. In vier Bänden.

I. Band: Theorie der Wechselströme und Transformatoren von J. L. la Cour.

Mit 263 in den Text gedruckten Figuren. — In Leinwand gebunden Preis M. 12,—.


II. Band: Die Wechselstrom-Wicklungen, die Generatoren und Synchronmotoren von E. Arnold.




In Vorbereitung befinden sich:




	
III.    Band: Die Transformatoren und asynchronen Maschinen von



E. Arnold und J. L. la Cour,




	
IV.    Band: Die Wechselstromkommutatormaschinen von O. S. Bragstad und J. L. la Cour.





Dynamomaschinen für Gleich- und Wechselstrom.

Von Gisbert Kapp.

Dritte, vermehrte und verbesserte Auflage.

Mit 200 in den Text gedruckten Abbildungen. — In Leinwand geb. Preis M. 12,—.

Transformatoren für Wechselstrom- und Drehstrom.

Eine Darstellung ihrer Theorie, Konstruktion und Anwendung.

Von Gisbert Kapp.

Zweite, vermehrte und verbesserte Auflage.

Mit 165 in den Text gedruckten Figuren. — In Leinwand geb. Preis M. 8,—.

Elektromotoren für Gleichstrom.

Von Dr. G. Roessler,

Professor an der Königl. Technischen Hochschule zu Berlin.

Zweite, verbesserte Auflage.

Mit 49 in den Text gedruckten Figuren. — In Leinwand geb. Preis M. 4,—.

Elektromotoren für Wechselstrom und Drehstrom.

Von Dr. G. Roessler,

Professor an der Königl. Technischen Hochschule zu Berlin.

Mit 89 in den Text gedruckten Figuren. — In Leinwand geb. Preis M. 7,—.

Theorie der Wechselströme in analytischer und graphischer Darstellung.

Von Fr. Bedell und A. C. Creliore.

Autorisierte deutsche Übersetzung von Alfred H. Bucher er. Mit 112 Textfiguren. — In Leinwand gebunden Preis M. 7,—.

Die elektrischen Wechselströme.

Für Ingenieure und Studierende bearbeitet.

Von T. H. Blakesley.

Autorisierte Übersetzung von C. P. Feldmann. Mit 31 Textfiguren. — In Leinwand gebunden Preis M. 4,—.

Die Arbeitsweise der Wechselstrommaschinen.

Für Physiker, Maschineningenieure und Studenten der Elektrotechnik.

Von Fritz Emde.

Mit 32 in den Text gedruckten Figuren. — Preis M. 2,40; in Leinwand geb. M. 3,—.

Die Bahnmotoren für Gleichstrom.

Ihre Wirkungsweise, Bauart und Behandlung.

Ein Handbuch für Bahntechniker von

M. Müller,      und W. Mattersdorf

Oberingenieur der Westinghouse-Elektrizitäts-            Abteilungsvorstand

Aktiengesellschaft.              der Allgemeinen Elektrizitäts-Gesellschaft.

Mit 231 in den Text gedruckten Figuren und 11 lithogr. Tafeln, sowie einer Übersicht der ausgeführten Typen.

In Leinwand gebunden Preis M. 15.—.

Elektromechanische Konstruktionen.

Eine Sammlung von Konstruktionsbeispielen und Berechnungen von Maschinen und Apparaten für Starkstrom. Zusammengestellt und erläutert von Gisbert Kapp.

Zweite, verbesserte und erweiterte Auflage.

Mit 36 Tafeln und 114 Textfiguren. — In Leinwand geb. Preis M. 20,—.

Elektromechanische Konstruktions-Elemente.

Skizzen, herausgegeben von

Dr. G. Klingenberg,

Professor und Dozent an der Königl. Technischen Hochschule zu Berlin.

= Erscheint in Lieferungen zum Preise von je M. 2,40.       =

Bisher sind erschienen: Lieferung 1, 2, 3 (Apparate) und 6 (Maschinen).

Jede Lieferung enthält 10 Blatt Skizzen in Folio.

Praktische Dynamokonstruktion.

Ein Leitfaden für Studierende der Elektrotechnik.

Von Ernst Schulz, Chefelektriker der Deutschen Elektrizitätswerke zu Aachen. Zweite, verbesserte und vermehrte Auflage.

Mit 35 in den Text gedr. Figuren und einer Tafel. — In Leinwand geb. Preis M. 3,—.

Anlasser und Regler für elektrische Motoren und Generatoren.

Theorie, Konstruktion, Schaltung.

Von Rudolf Krause, Ingenieur.

Mit 97 in den Text gedruckten Figuren. — In Leinwand geb. Preis M. 4,—.

Leitfaden zur Konstruktion von Dynamomaschinen und zur Berechnung von elektrischen Leitungen.

Von Dr. Max Corsepius.

Dritte, vermehrte Auflage.

Mit 108 in den Text gedr. Figuren und 2 Tabellen. — In Leinwand geb. Preis M. 5,—.

Theoretische und praktische Untersuchungen zur Konstruktion magnetischer Maschinen.

Von Dr. Max Corsepius.

Mit 13 Textfiguren und 2 lithogr. Tafeln. — Preis M. 6,—.

Die Akkumulatoren für Elektrizität.

Von Prof. Dr. Edmund Hoppe.

Dritte, neubearbeitete Auflage.

Mit zahlr. in den Text gedr. Abbildungen. — Preis M. 8,—; in Leinwand geb. M. 9,—.

Das Elektrische Kabel.

Eine Darstellung der Grundlagen für Fabrikation, Verlegung und Betrieb.

Von Dr. C. Baur,

Ingenieur.

Mit 72 in den Text gedruckten Figuren. — In Leinwand geb. Preis M. 8,—.

Schaltungsarten und Betriebsvorschriften elektrischer Licht- und Kraftanlagen unter Verwendung von Akkumulatoren.

Zum Gebrauche für Maschinisten, Monteure und Besitzer elektrischer Anlagen, sowie für Studierende der Elektrotechnik von Alfred Kistner.

Mit 81 in den Text gedruckten Figuren. — In Leinwand geb. Preis M. 4,—.

1

 Diese Figur und mehrere folgende sind einem in der E. T. Z. 1900, Heft 4 und 5, erschienenen Artikel des Verfassers entnommen und die Bezeichnung der charakteristischen Punkte des Diagrammes weicht teilweise etwas ab von den Bezeichnungen, welche in allen übrigen Figuren beibehalten sind. Der Leser wird aber mit dem Diagramm nunmehr so vertraut sein, daß das Verständnis der Figuren und des Textes dadurch nicht erschwert wird.

2

 Siehe Heyland, Eine Methode zu experimentellen Untersuchungen an Induktionsmotoren. — 2. Heft des 2. Bandes der Voitschen Sammlung elektrotechnischer Vorträge.

Heubach, Drehstrommotor.

3

 Derartige Ellipsen hat Feldmann in seinem Buche: „Asynchrone Generatoren“, Verlag von Julius Springer, konstruiert.


Kurzes Lehrbuch der Elektrotechnik.

Von Adolf Thomälen, Elektroingenieur.

Mit 277 Abbildungen im Text. — In Leinwand geb. Preis M. 12,—.

Generatoren, Motoren und Steuerapparate für Elektrisch betriebene Hebe- und Transportmaschinen. Unter Mitwirkung von Ingenieur E. Veesenmeyer herausgegeben von Dr. F. Niethammer, Oberingenieur.

Mit 805 in den Text gedruckten Abbildungen. — In Leinwand geb. Preis M. 20,—.

Isolationsmessungen und Fehlerbestimmungen an elektrischen Starkstromleitungen.

Von F. Charles Raphael.

Autorisierte deutsche Bearbeitung von Dr. Richard Apt.

Mit 118 in den Text gedruckten Figuren. — In Leinwand geb. Preis M. 6, — .

Elektrische Kraftübertragung und Kraftverteilung.

Nach Ausführungen durch die A.E.G., Berlin.

Von C. Arldt. Oberingenieur. Dritte, vervollständigte Ausgabe.

In Leinwand gebunden Preis M. 4,—.

Analytische Berechnung elektrischer Leitungen.

Von Willy Hentze,

Ingenieur.

Mit 37 in den Text gedruckten Figuren. — In Leinwand gebunden Preis M. 3,—.

Anordnung und Bemessung elektrischer Leitungen.

Von Carl Hochenegg, Ober-Ingenieur von Siemens & Halske. Zweite, vermehrte Auflage.

Mit 42 in den Text gedruckten Figuren. — In Leinwand geb. Preis M. 6,—.

Stromverteilung für elektrische Bahnen.

Von Dr. Louis Bell.

Autorisierte deutsche Ausgabe von Dr. Gustav Rasch.

Mit 136 in den Text gedruckten Figuren. — In Leinwand geb. Preis M 8,—.

Regelung der Motoren elektrischer Bahnen.

Von Dr. Gustav Rasch,

Privatdozent an der Technischen Hochschule zu Karlsruhe.

Mit 28 in den Text gedruckten Figuren. — In Leinwand geb. Preis M. 4,—.

Erläuterungen zu den Vorschriften für die Errichtung von elektrischen Starkstromanlagen. (Sicherheits-Vorschriften des Verbandes Deutscher Elektrotechniker.) Im Auftrage des Verbandes herausgegeben von Dr. C. L. Weber, Kaiserlichem Regierungsrat. Fünfte, mit der vierten übereinstimmende Ausgabe.

Kartoniert Preis M. 3,—.

Sechste Auflage unter der Presse.

Elektrotechnische Zeitschrift.

(Centralblatt für Elektrotechnik.)

Organ des Elektrotechnischen Vereins und des Verbandes Deutscher Elektrotechniker.

Redaktion: Gisbert Kapp.

Erscheint in wöchentlichen Heften.

Preis für den Jahrgang M. 20,—. (M. 25,— portofrei für das Ausland.)

Fortschritte der Elektrotechnik.

Vierteljährliche Berichte über die

neueren Erscheinungen

auf dem Gesamtgebiete der angewandten Elektrizitätslehre mit Einschluß des elektrischen Nachrichten- und Signalwesens.

Herausgegeben

Dr. K. Strecker.


I. Jahrgang. 1887. M. 20, -.

II. Jahrgang. 1888. M. 22,—.

	
III.    Jahrgang. 1889. M. 23,—.


	
IV.    Jahrgang. 1890. M. 26, -.



V. Jahrgang. 1891. M. 26,-.

	
VI.    Jahrgang. 1892. M. 26,—.






VII. Jahrgang. 1893. M. 27,-




VIII. Jahrgang. 1894. M. 25,—.




IX. Jahrgang. 1895. M. 28,—.

X. Jahrgang. 1896. M. 30,—.




	
XI.    Jahrgang. 1897. M. 30,—.


	
XII.    Jahrgang. 1898. M. 31,—.


	
XIII.    Jahrgang. 1899. M. 31,-.


	
XIV.    Jahrgang. 1900. M. 34,—.






XV. Jahrgang. 1901. M. 28,—.

Der XVI. Jahrgang (1902) ist im Erscheinen begriffen.



Ingenieur-Kalender.

Für Maschinen- und Hütten-Ingenieure

herausgegeben von

Th. Beckert und A. Pohlhausen.

In zwei Teilen.

Mit zahlreichen Holzschnitten und einer Eisenbahnkarte.

I. Teil in Leder mit Klappe. — II. Teil (Beilage) geheftet. — Preis zusammen M. 3,—.

Brief taschen-Ausgabe mit Ledertaschen etc. Preis M. 4,—.
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