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PRZEDMOWA.

Wykłady angielskie mechaniki różnią się pod pewnym względem bardzo wyraźnie od innych. Dla autora niemieckiego lub francuskiego nauka ta jest przedewszystkiem gałęzią matematyki, w której chodzi głównie o ścisłość rozumowania i ogólność twierdzeń, a konkretne zjawisko mechaniczne schodzi jakby na plan dalszy; anglik natomiast uważa mechanikę za część fizyki, a więc za naukę przyrodniczą, która ma głównie na celu opis i przewidywanie zjawisk, zachodzących w naturze. Najwybitniejszymi przedstawicielami tego kierunku przyrodniczego byli Thomson (późniejszy lord Kelvin) i Tait oraz Edward John Routh. Ale znakomite dzieło dwóch pierwszych (Treatise on Natural Philosophy), wbrew może intencyom autorów, jest dostępne tylko dla ludzi, posiadających już rozległe wykształcenie matematyczno-przyrodnicze, i wcale nie nadaje się do nauki początkowej, natomiast prace Routha odznaczają się właśnie pierwszorzędnemi zaletami dydaktycznemi i „stanowią w Anglii oraz w krajach angielskiej mowy normalny podręcznik do nauki mechaniki “1).

Dzieło Routha składa się z pięciu tomów; z tych dwa są poświęcone statyce i trzy dynamice, ale każdy z tych tomów stanowi pewną zaokrągloną całość. Pierwszy tom statyki (A treatise on analytical statics), który wychodzi obecnie w przekładzie polskim, zawiera to wszystko, co zwykle obejmują wykłady statyki; treść tomu drugiego możnaby raczej zaliczyć do fizyki i do nauki o sprężystości. |

IV —

W statyce Routha znajdujemy wszystkie zalety pióra tego znakomitego pisarza: nieporównaną prostotę, jasność, ścisłość, daleką od pedanteryi, i ogromne bogactwo treści. Książka jest może za obszerna dla tych czytelników, dla których mechanika jest tylko nauką pomocniczą, ale dzięki przejrzystości układu każdy z łatwością odróżni rzeczy zasadnicze od szczegółów drugorzędnych, które można pominąć.

Prawdziwą ozdobę książki stanowią zadania, rozrzucone obficie we wszystkich rozdziałach tak, że czytelnik po każdym ważniejszym ustępie znajduje niezwłocznie sposobność do wypróbowania swych sił i nabycia wprawy w posługiwaniu się poznaną metodą. Zadania te, po większej części zaczerpnięte z aktów egzaminacyjnych uniwersytetu w Cambridge, odznaczają się zwykle wielką pomysłowością i interesującą treścią. Mogą one same przez się wzbudzić w dużym stopniu zainteresowanie do przedmiotu. Niektóre z nich ważniejsze lub trudniejsze są rozwiązane całkowicie, w innych autor wskazuje jedynie drogę, na której szukać należy rozwiązania, w pozostałych są podane tylko odpowiedzi.

Do zrozumienia statyki Routha wystarcza znajomość elementów rachunku różniczkowego i całkowego oraz geometryi analitycznej. W kilku tylko miejscach wykład wybiega po za te granice, ale miejsca te mogą być bez szkody pominięte, gdyby zrozumienie ich nastręczało większe trudności.

TŁUMACZ
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ROZDZIAŁ L

RÓWNOLEGŁOBOK SIŁ.

	
1.    Przedmiotem nauki, zwanej mechaniką, jest działanie sił na ciała. Ciała, podlegające działaniu sił, mogą się poruszać, ale mogą także pozostawać w spoczynku. Ta część mechaniki, w której rozważany jest ruch ciał, nazywa się dynamiką, inna zaś część, rozważająca ciała w stanie spokoju, zowie się statyką.



Taki podział przedmiotu na dwie części nie przynosiłby wyraźnych korzyści, gdyby ruch ciał pod działaniem sił danych dawał się łatwo i całkowicie wyznaczać, gdyż jest rzeczą oczywistą, że statyka stanowi tylko szczególny przypadek w dynamice, mianowicie ten przypadek, w którym ruchy ciał są przyrównane do zera. Ale ten przypadek szczególny, w którym ruch jest zerem, stanowi zagadnienie bez porównania łatwiejsze od zagadnienia ogólnego. Z drugiej strony posiada on sam przez się doniosłe znaczenie nietylko ze względu na wyniki bezpośrednie, ale i dlatego, że z wyników owych można korzystać przy rozwiązywaniu zagadnienia ogólnego, dzięki twierdzeniu, które zawdzięczamy D’Alembertowi. Z tych względów uznano powszechnie za dogodne rozważać ów szczególny przypadek statyki na wstępie do ogólnego zagadnienia dynamiki.

	
2.    Ponieważ statyka jest szczególnym przypadkiem dynamiki, możnaby więc rozpocząć od wykładu podstaw nauki ogólniejszej. Rozważamy w takim razie, jak się mierzy masa ciała, oraz jaki wpływ wywierają siły na szybkość i przyśpieszenie każdej cząsteczki. Zdobywszy zasadnicze prawdy ogólne, przechodzimy do przypadku szczególnego, zakładając, że owe szybkości są równe zeru. Przy takiem prowadzeniu rzeczy wystę-Statyka, i puje wyraźnie związek pomiędzy dwoma wielkimi działami mechaniki, a wyniki ich zostają ugruntowane na wspólnej podstawie.


	
3.    Jest inny sposób wykładania statyki, który także po-\ siada właściwe sobie zalety. Rozpoczynamy od pewnych prostych aksyomatów, dotyczących działania sił na ciała, nie wprowadzając żadnych właściwości ruchu. Tym sposobem mamy do czynienia jedynie z temi pojęciami i zasadami, które są w ciągiem użyciu w statyce, pozostawiając dynamice rozważanie pojęć, stanowiących właściwość tej nauki.



Czy ten sposób postępowania jest korzystny czy nie, to zależy od wyboru owych aksyomatów zasadniczych. Przede-wszystkiem aksyomaty te powinny być proste, powtóre powinny dawać się łatwo sprawdzić zapomocą doświadczenia. Można naprzykład przyjąć za pewnik twierdzenie, zwane zazwyczaj równoległobokiem sił, albo wzorem Lagrange’a wyjść z zasady pracy. Ale żadna z tych zasad nie czyni zadość wzmiankowanym warunkom, gdyż żadna z nich nie wydaje się całkowicie oczywistą przy pierwszem poznaniu i zatem nie nakazuje bezwzględnej zgody.

Jeżeli budujemy obydwie części mechaniki na wspólnej podstawie, to podstawa ta musi być z konieczności szersza, niżby tego wymagały same zasady statyki. Musimy odrazu przyjąć wszystkie wyniki doświadczeń, potrzebne w mechanice, a nie tylko te, które są niezbędne w statyce. Z drugiej strony korzystną jest rzeczą wprowadzać zasadnicze doświadczenia w miarę tego, jak stają się potrzebne; w ten sposób możemy łatwiej pojąć niezbędność każdego z nich oraz wyróżnić wnioski, które z każdego wynikają. Przy tym trybie rozpoczynamy od pewnych elementarnych aksyomatów, które pozwalają zbadać składanie i rozkładanie sił. Następnie w miarę potrzeby wprowadzamy inne wyniki doświadczeń, i gdy wreszcie doszliśmy do ogólnego zagadnienia dynamiki, zestawiamy i utrwalamy całokształt pewników zasadniczych.

' W dziele, poświęconem statyce, jest rzeczą niezbędną rozważyć te obydwie metody. Zobaczymy więc naprzód, jaki związek zachodzi pomiędzy zasadami statyki i aksyomatami, których wymaga ogólniejsze zagadnienie dynamiki, następnie zbadamy, jak można ugruntować statykę na podwalinach, należących do niej wyłącznie.

	
4.    W mechanice rozważamy działanie sił na ciała. Wyraz siła został zdefiniowany przez Newtona w sposób nastę-pujący:



Siła jest to działanie, wywierane na ciało, celem wyprowadzenia go ze stanu spoczynku, albo ze stanu ruchu jednostajnego na linii prostej.

	
5.    Znamiona siły. Gdy siła działa na ciało, to działanie jej posiada 1) punkt przyłożenia, 2) kierunek w przestrzeni i 3) wielkość.



Mówimy, że dwie siły są równe pod względem wielkości, jeżeli się równoważą, gdy je przyłożymy do jednej cząsteczki w kierunkach odwrotnych. Ażeby mierzyć wielkości sił, obieramy jedną z nich za jednostkę; siłę, która równoważy dwie siły jednostkowe, wyrażamy przez dwie jedności i t. d.

	
6.    Proste odwołanie się do codziennego doświadczenia przekonywa, że przynajmniej niektóre ze zwykłych sił natury posiadają wyżej wskazane znamiona charakterystyczne. Gdy wywieramy na ciało siłę, ciągnąc za przymocowany doń sznur, to punkt, w którym sznur jest przymocowany, stanowi punkt przyłożenia siły, zaś kierunek sznura wskazuje kierunek siły. Istnienie trzeciego elementu siły wynika z faktu, że możemy ciągnąć za sznur z wysiłkiem większym lub mniejszym.



Nie znamy wszystkich czynników, które wywołują lub usiłują wywołać ruch ciał, ale wszystkie czynniki znane dadzą się rozłożyć na czynniki prostsze, posiadające owe trzy znamiona charakterystyczne siły. Jeżeli istnieją jakieś przyczyny ruchu, do których analiza tego rodzaju nie dałaby się zastosować, to przyczyn takich nie zaliczalibyśmy do rzędu sił, stanowiących przedmiot statyki.

	
7.    Owe trzy znamiona charakterystyczne są właściwe i innym rzeczom, i te inne rzeczy mogą nam przyjść z pomocą w rozważaniach naszych, o ile mają i inne właściwości wspólne z siłami.



Najważniejszą analogią tego rodzaju mamy w odcinku linii prostej. Niech będzie odcinek taki AB. Jeden koniec, np. A, reprezentuje punkt przyłożenia, kierunek odcinka w przestrzeni odpowiada kierunkowi siły i wreszcie długość odcinka wielkości siły.

Poza siłami można i inne rzeczy wyobrażać zapomocą odcinków linii prostej. Tak np., jak wiadomo z dynamiki, zarówno szybkość, jak i ilość ruchu cząsteczki posiadają kierunek oraz wielkość, a więc dają się w ten sam sposób wyobra -żać zapomocą odcinków. Jeden koniec A umieszcza się w danej cząsteczce, kierunek odcinka wskazuje kierunek szybkości, a długość odcinka określa szybkość pod względem wielkości. Wogóle analogia ta jest użyteczna, jeżeli wielkości rozważane podlegają tak zwanemu prawu równoległoboku.

	
8.    Aby odcinek AB wskazywał niedwuznacznie kierunek siły, niezbędna jest pewna umowa, pozwalająca odróżnić przypadek, gdy siła odciąga B od A, od przypadku, gdy siła popycha B do A. Umowa taka opiera się na zastosowaniu terminów dodatni i ujemny. Gdy określiliśmy zapomocą jakiegoś prawidła kierunki dodatnie na liniach prostych, to siły, działające w kierunkach dodatnich swych prostych działania, na • zywamy dodatniemi, a działające w kierunkach odwrotnych ujemnemi. Prawidła te są nieraz wskazane przez same warunki rozważanego zagadnienia, ale zazwyczaj są zgodne z prawidłami, przyjętemi ogólnie w rachunku różniczkowym. Tak np. kierunek promienia wodzącego, wyprowadzonego z początku współrzędnych, uważamy zwykle za dodatni, i t. d.



Niekiedy wskazujemy, w którą stronę siła jest zwrócona, zapomocą odpowiedniego porządku liter; tak np. „siła ABa jest to siła, zwrócona od A do B, zaś BA oznacza siłę, zwróconą od B do A.

	
9.    Trzecim elementem siły jest jej wielkość. Wyrażamy ją długością odcinka, który ma'reprezentować siłę. Jednostce siły odpowiada jednostka długości w dowolnie obranej skali; siła, zawierająca n jednostek, wyrazi się odcinkiem, którego długość wynosi n jednostek długości.


	
10.    Mierzenie siły. Siłę musimy mierzyć zapomocą skutków, które wywiera, a ponieważ siła może wywierać skutki rozmaite, przeto i rozmaite metody mierzenia stoją dla nas



— 5 — otworem. Jeżeli pragniemy, aby miara dwuch sił równych, działających razem, była dwa razy większa od miary jednej z nich, to musimy odpowiednio dobrać skutek, którym mamy mierzyć siły.

Można mierzyć siłę ciężarem masy, którą siła ta zdoła utrzymać w zawieszeniu. Dwie masy jednakowe, położone w pobliżu, utrzymujemy w zawieszeniu zapomocą sił jednakowych. Połączywszy te masy, przekonamy się, że podwójna siła podtrzymuje podwójną masę. Tak więc skutek jest proporcyonal-ny do wielkości przyczyny.

Możemy również mierzyć siłę ruchem, który ta wytwarza w danem ciele i w danym czasie. Jeżeli przez ruch rozumiemy tu szybkość, to można okazać, że podwójna siła wytwarza podwójną szybkość; czynimy to zapomocą doświadczeń, do których odwołujemy się zwykle, uzasadniając drugie prawo ruchu. Tutaj również skutek, na którym oparliśmy pomiary, jest pro-porcyonalny do wielkości przyczyny. Ten sposób mierzenia siły jest oparty na pewnych wynikach doświadczenia, niezbędnych w dynamice, ale niestosowanych w dalszych częściach statyki.

Jeżeli zgodzimy się mierzyć siłę ciężarem, utrzymywanym przez nią w zawieszeniu, to jednostka będzie zależna od siły ciążenia, działającej w miejscu, w którem prowadzone są doświadczenia. Z tego względu taka jednostka jest w pewnych razach niedogodna. Jeżeli mamy mierzyć siłę szybkością, udzielaną masie jednostkowej w jednostce czasu, to musimy naprzód rozważyć, jak obrać jednostki masy i czasu.

Niema potrzeby już tutaj rozstrzygać, która metoda mierzenia siły jest najlepsza. Okaże się wkrótce, że równania nasze dotyczą po większej części raczej stosunków sił niż samych sił. Stąd wynika, że tymczasem wybór jednostki nie ma znaczenia, i możemy odłożyć ten wybór do sposobniejszej pory.

Gdy więc będzie mowa o pewnej liczbie sił, działających na ciało i równych odpowiednio ciężarowi jednego, dwóch, trzech i t. d. kilogramów, i jeżeli wyznaczymy warunki równowagi, to zobaczymy, że warunki te mają moc i wtedy, gdy siły są odpowiednio równe ciężarowi jednego, dwóch, trzech i t. d. funtów, i wogóle zawsze, gdy pomiędzy siłami zachodzą te same stosunki.

	
11.    Pewien układ jednostek jest oparty na centymetrze, gramie i sekundzie, jako na zasadniczych jednostkach długo-



ści, masy i czasu. Układ ten będziemy nazywali C.G.S., gdyż to są początkowe litery nazw owych trzech jednostek. W układzie C.G.S. jednostka siły zowie się dyną. Jest to siła, która, działając w ciągu sekundy na masę gram, nadaje jej szybkość jednego centymetra na sekundę.

Znaleziono zapomocą odpowiednich doświadczeń, że ciało, dajmy na to, o masie jednostkowej, spadając w próżni w ciągu sekundy, przybiera szybkość blizko 981,2 centymetrów na sekundę. Stąd wynika, że dyna jest równa 1/981. części ciężaru jednego grama. Liczby te są jednak ścisłe jedynie w miejscu obserwacyi, gdyż siła ciążenia nie jest jednakowa we wszystkich miejscach kuli ziemskiej. Różnica pomiędzy największą i najmniejszą wartością siły ciążenia wynosi około 1/196 jej wartości przeciętnej.

Związki, zachodzące pomiędzy różnymi układami jednostek, są podane w sposób wyczerpujący w książce Everetta „Jednostki i stałe fizyczne“, a także w Tablicach Liczbowych Luptona.

	
12.    Równoległobok szybkości. Twierdzenie, o którem ma być mowa, stanowi wstęp do praw ruchu Newtona.



Jeżeli szybkość cząsteczki jest jednostajna, to mierzymy ją

długością drogi, odbytej w danym czasie; odcinek o takiej długości wyobrazi nam tę szybkość pod względem wielkości i kie

[image: ]



runku (par. 8). Dajmy na to, że cząsteczka została przeciągnięta w sposób jednostajny w danym czasie od 0 do C; w takim razie odcinek OC wyraża szybkość cząsteczki. Tę zmianę położenia można uskutecznić i w inny sposób. W tym celu posuwamy cząsteczkę od 0 do A, i jednocześnie przesuwamy równolegle odcinek OA z biegnącą po nim cząsteczką do położenia BC. Aby zaznaczyć jednostajny ruch cząsteczki od 0 do A, mówimy, że posiada ona szybkość OA, aby zaś zaznaczyć przesunięcie, którego doznaje cząsteczka dzięki jednostajnemu ruchowi odcinka, mówimy, że posiada ona szybkość OB lub AC. Z własności figur podobnych wynika, że drogą cząsteczki w przestrzeni będzie odcinek OC.

Stąd widać, że, jeżeli cząsteczka posiada jednocześnie dwie szybkości, odpowiadające pod względem wielkości i kierunków odcinkom O A i OB^ to ruch jej jest taki, jak gdyby posiadała jedną szybkość, odpowiadającą przekątni równoległoboku, zbudowanego na bokach OA i OB. Twierdzenie to nazywa się zwykle równoległobokiem szybkości.

Dajmy na to, że cząsteczka posiada jednocześnie trzy szybkości, odpowiadające odcinkom 0Ar, 0A2, OA^. Możemy zastąpić szybkości 0Ar i 0A2 przez jedną szybkość, odpowiadającą pod względem wielkości i kierunku przekątni 0B1 równoległoboku, zbudowanego na bokach 0At i 0A2. Teraz już cząsteczka posiada tylko dwie szybkości 0Bx i 0A3. Stosujemy raz jeszcze toż samo działanie. Zastępujemy owe dwie pozostałe szybkości jedną, odpowiadającą pod względem wielkości i kierunku przekątni 0B2 równoległoboku, zbudowanego na bokach 0B1 i 0As . Tym sposobem zastąpiliśmy trzy dane szybkości jednoczesne jedną.

Zupełnie tak samo można zastąpić jedną szybkością dowolną liczbę szybkości jednoczesnych.

Jeżeli jednoczesne szybkości 0Ar, OA, ... zmienią się wszystkie w tym samym stosunku, to i owa szybkość wypadkowa zmieni się w tym samym stosunku; wynika to w sposób oczywisty z własności figur podobnych.

Przypuśćmy, że szybkość wypadkowa szybkości jednoczesnych 0At, 0A2... jest równa zeru. Z poprzedniego wynika, że jeżeli wszystkie szybkości 0At, 0A2... zmienią się w jednakowym stosunku, to szybkość wypadkowa pozostanie zerem.

	
13.    Newtonowskie prawa ruchu. Są one wymienione we wstępie do dzieła „Philosophiae naturalis principia mathe-matica".



	
1.    Każde ciało pozostaje w stanie spoczynku lub ruchu jednostajnego i prostoliniowego, dopóki siła nie zmusi go do zmiany tego stanu.


	
2.    Zmiana ruchu jest proporcyonalna do siły działającej i zachodzi w kierunku linii prostej, na której działa siła.


	
3.    Każdemu działaniu odpowiada zawsze równe i odwrotne przeciwdziałanie; innemi słowy działania dwóch ciał jednego na drugie są zawsze równe i skierowane odwrotnie.



Znaczenie tych praw ujawnia się w całej pełni dopiero wtedy, gdy przechodzimy do dynamiki. Dlatego też lepiej jest zapoznawać się z doświadczeniami, które naprowadzają umysł na te prawa, i z ich następnem sprawdzaniem w związku z tą gałęzią wiedzy. Rzeczy te można znaleźć w elementarnych podręcznikach dynamiki. Jeżeli czytelnik nie zna żadnego z tych podręczników, to radzimy mu, aby tymczasem uznał prawdziwość praw Newtonowskich bez dalszych uzasadnień; nie będziemy też podawali tutaj ich całkowitej dyskusyi, ograniczając uwagi nasze do szczegółów, potrzebnych w zagadnieniach statyki.

	
14.    Pierwsze prawo głosi bezwładność materyi. Ciało nieruchome będzie pozostawało w spokoju, dopóki nie zacznie nań działać jakaś siła zewnętrzna. Na pierwszy rzut oka prawo to wydaje się tylko parafrazą definicyi siły, gdyż każdą przyczynę, która usiłuje wyprowadzić ciało ze stanu spoczynku, nazywamy siłą. Tak jednak nie jest. Pierwsze prawo stwierdza na zasadzie obserwacyi i doświadczenia bezwładność każdej cząsteczki materyi. Cząsteczka nie wykazuje sama przez się żadnej skłonności do ruchu i może być wprawiona w ruch jedynie przez jakiś czynnik z zewnątrz niej pochodzący.


	
15.    Drugie prawo ruchu głosi niezależność siły, działającej na cząsteczkę. Mówiąc, że skutek działania siły jest zawsze pro-porcyonalny do tej siły, miano wyraźnie na myśli, że każda siła musi zawsze wywołać właściwy sobie skutek zarówno pod względem kierunku jak i wielkości, tak jak gdyby sama jedna działała na cząsteczkę w spokoju.



Rozważmy twierdzenie to nieco obszerniej. Przypuśćmy, że siła zaczęła działać na daną cząsteczkę, która dotychczas pozostawała w spokoju w punkcie 0; w danym czasie siła ta wytwarza szybkość, którą wyobrazimy zapomocą odcinka OA. Przypuśćmy dalej, że inna siła, działając na tę samą cząsteczkę, pozostającą w spokoju w punkcie 0, nadałaby jej w tym samym czasie szybkość OB. Jeżeli obydwie siły działają na cząsteczkę jednocześnie, to powstaną obydwie szybkości. Istotna szybkość cząsteczki wyrazi się w takim razie przekątnią OC równoległoboku, zbudowanego na bokach OA i OB, jak widzieliśmy w paragrafie 12. Zupełnie tak samo, gdy dowolna liczba sił zacznie działać na cząsteczkę, pozostającą w spoczynku, to w myśl drugiego prawa wyznaczamy szybkość, wytworzoną przez każdą z nich, jak gdyby ona jedna działała w ciągu danego czasu. Te oddzielne szybkości sprowadzamy następnie do jednej szybkości wypadkowej w sposób, wskazany w par. 12. Ta szybkość wypadkowa jest w myśl drugiego prawa wynikiem jednoczesnego działania wszystkich sił danych.

Wyobraźmy sobie układ sił, posiadający właściwość taką: gdy wszystkie siły układu zaczną działać jednocześnie na cząsteczkę, która pozostawała w spoczynku, to wytworzona szybkość wypadkowa cząsteczki jest równa zeru. W tym razie siły są w równowadze. Niech będzie i inny układ sił, posiadający taką samą właściwość, t. j. gdy siły tego drugiego układu zaczną działać na cząsteczkę dotychczas nieruchomą, to znowu wypadkowa szybkość będzie równa zeru. Tak więc i ten drugi układ jest w równowadze. Przypuśćmy wreszcie, że obydwa te układy zaczęły działać jednocześnie; ponieważ siły są niezależne jedna od drugiej, przeto szybkość wypadkowa cząsteczki i teraz będzie równa zeru. Tym sposobem dochodzimy do następującego ważnego twierdzenia.

Jeżeli każdy z diouch danych układów sił równoważy się, działając sam jeden na cząsteczkę, to równowaga nie zostanie zachwiana i wówczas, gdy obydwa układy zaczną działać jednocześnie.

Twierdzenie to zowie się niekiedy zasadą superpozycyi sił w równowadze. Zasada ta pozwala nam nieraz ułatwić sobie zadanie, gdy pragniemy określić warunki równowagi pewnego układu sił; w myśl jej mamy prawo dołączyć do badanego układu lub usunąć pewną liczbę sił, które same przez się po-zostają w równowadze.

Dajmy na to, że siły P1, P2..., działając na pewną cząsteczkę, wytwarzają w pewnym czasie odpowiednio szybkości U,, v2.... Jeżeli te same siły, albo siły im równe, zaczną działać na inną cząsteczkę, to szybkości, wytworzone w takim samym czasie, mogą być odmienne; ale skutek każdej siły jest proporcyonalny do jej wielkości, przeto owe szybkości drugiej cząsteczki będą się miały do siebie, jak V1 do V, do V3 i t. d. Stąd widać, że jeżeli układ sił jest w równowadze, gdy działa na jedną cząsteczkę, to pozostanie w równowadze i wówczas, gdy pozwolimy mu działać na jakąkolwiek inną cząsteczkę (par. 12).

	
16.    Wypada tu jeszcze zaznaczyć, że wynikiem działania siły jest zawsze zmiana ruchu. Dana siła wywoła taką samą zmianę ruchu cząsteczki w każdym razie bez względu na to, czy cząsteczka ta jest w ruchu czy w spokoju.



Dzięki temu możemy poznać, czy jaka siła zewnętrzna działa na cząsteczkę, pozostającą w ruchu, czy też nie. Jeżeli szybkość jest stała i droga prostoliniowa, to żadna siła na cząsteczkę nie działa. Jeżeli natomiast szybkość zmienia się pod względem wielkości, albo droga nie jest prosta, to musi istnieć jakaś siła, wywołująca te zmiany.

Dajmy na to, że dwie równe siły, działając na dwie cząsteczki, wywołują w tym samym czasie jednakowe zmiany szybkości. Mówimy, że owe dwie cząsteczki posiadają równe masy. Przypuśćmy znowu, że siła, działająca na jedną z cząsteczek, jest n razy większa od siły, działającej na drugą, i że przytem zmiany szybkości, wywołane przez obydwie siły w tym samym czasie, są jednakowe; w takim razie powiemy, że masa pierwszej cząsteczki jest n razy większa od masy drugiej. Z tego wynika, że masa cząsteczki jest proporcyonalna do siły, potrzebnej do wywołania danej zmiany szybkości w danym czasie. Wiadomo, że wszystkie ciała, wyszedłszy ze stanu spoczynku i spadając w próżni pod działaniem przyciągania ziemi, posiadają w końcu pierwszej sekundy spadania jednakowe szybkości (par. 11). Stąd wnioskujemy, że masy ciał są proporcyonalne do ciężarów.

Iloczyn z masy cząsteczki przez szybkość zowie się ilością ruchu. Z tego, co było powiedziane, wynika, że, wyrażenie „zmiana ruchu“ znaczy zmiana ilości ruchu, wywołana w danym czasie.

Wyniki te posiadają doniosłe znaczenie w dynamice; nie tak jest w statyce, gdzie wszystkie cząsteczki, podlegające działaniu sił, pozostawały początkowo w spokoju i pozostają w tym stanie i nadal.

	
17.    W trzeciem prawie zawiera się zasada przenoszenia siły. Zasada ta jest wyłożona jaśniej w uwagach, któremi Newton opatrzył swe prawa ruchu. Trzecie prawo głosi, że działanie i przeciwdziałanie są równe. Przypuśćmy, że siła działa na punkt A ciała nieruchomego, którego inny punkt B jest umocowany. Z trzeciego prawa wynika, że przeciwdziałanie czyli reakcya w punkcie B musi być równa owej sile i do niej odwrotna. Wogóle, jeżeli dwie siły działają na różne punkty ciała, to równowaga zachodzi w tym razie, gdy linie działania sił leżą na jednej prostej, siły są zwrócone w strony odwrotne i są równe co do wielkości.



Możemy stąd wyciągnąć wniosek, że jeżeli siła działa na ciało, to skutek jest niezależny od tego, który z punktów linii działania został obrany za punkt przyłożenia, jeżeli tylko punkt ten jest połączony z ciałem w sposób niezmienny.

Prowadzi do tego następujące proste rozumowanie. Przypuśćmy, że siła P działa na pewien punkt A, zaś B jest jakimś innym punktem jej linii działania. Tylko co widzieliśmy, że można zrównoważyć siłę P, działającą na punkt A, równą jej siłą Q, działającą na B w kierunku odwrotnym. Ale siłę Q, działającą na B, można także zrównoważyć równą jej siłą P', działającą na B w tym samym kierunku co P (par. 15). Tak więc każda z dwóch równych sił P i P', działających odpowiednio na punkty A i B w tym samym kierunku, daje się zrównoważyć tą samą siłą Q. Stąd widać, że siła P, działająca na A, jest równoważna sile P', działającej na B.

	
18.    Aksyomaty statyczne. Jeżeli nauka statyki ma być oparta na podstawie niezależnej od pojęcia ruchu, to do tego są potrzebne pewne aksyomaty elementarne, dotyczące materyi i siły.



Przedewszystkiem musimy przyjąć, jak poprzednio, zasadę bezwładności materyi.

Dalej potrzebne są zasady niezależności sił i przenoszenia siły.

Pierwszą z tych zasad uważamy, jako wynik codziennego doświadczenia. Gdy tylko uwaga nasza zostanie zwrócona na tę sprawę, to stwierdzamy natychmiast, że ciało, pozostające w spoczynku, nie zacznie się poruszać, jeżeli nie zmusi go do tego jakaś przyczyna zewnętrzna.

Dwie pozostałe zasady wymagają pewnych prostych doświadczeń.

Każdy wie z doświadczenia codziennego, że ciało takie nie pozostanie w równowadze, jeżeli sznury, na które działają siły, nie leżą na jednej prostej, a mianowicie prostej AA'. Ciało będzie się poruszało, jeżeli tylko linie działania sił nie schodzą się dokładnie.

Na rysunku naszym punkty przyłożenia A i A' są przedzielone przestrzenią, której ciało nie wypełnia, siły zatem równoważą się, działając, jeżeli tak wolno powiedzieć, drogą okólną przez E. Ponieważ w tej części statyki nie rozważamy, w jaki sposób działanie siły przenosi się w ciele, przeto jest rzeczą niezbędną oprzeć się i w tym względzie na wynikach doświadczenia.

Przypuśćmy teraz, że dwie inne siły, z których każda jest równa Q, są przyłożone w punktach B i B\ a ich linie działania leżą na prostej BB'. Gdyby te siły same działały na ciało bez Pi P\ to zachodziła by równowaga. Doświadczenie wykaże, że równowaga zostaje zachowana i wtedy, gdy działają obydwa układy. Stąd wynika, że wprowadzając siły Q i Q‘ nie zakłócamy działania sił PiPi nie rozstrajamy równowagi.

Z tych doświadczeń daje się wyprowadzić zasada przenoszenia siły zupełnie tak samo, jak w par. 17.

	
19.    Ciała sztywne. Niech będą dwa lub więcej ciał, które działają jedne na drugie z pewnemi siłami czyli reakcya-mi i pozostają w równowadze pod działaniem pewnego układu sił zewnętrznych. W myśl zasady przenoszenia siły, każda z tych sił zewnętrznych może być przyłożona w dowolnym punkcie swej linii działania. Stąd jednak nie wynika, aby równowaga została zachowana, gdy przeniesiemy siłę z punktu jednego ciała do punktu drugiego, jeżeli jej linia działania to drugie ciało przecina.



Gdy przenosimy punkt przyłożenia siły z jednego punktu jej linii działania do drugiego, to należy uważać, że punkty te są połączone ze sobą sztywno. Jeżeli wszystkie punkty przyłożenia sił, działających na pewne ciało, są połączone ze sobą w jakiś niezmienny sposób, tó mówimy, że ciało jest sztywne. Takiemi są właśnie ciała, o których będzie przeważnie mowa w dalszym ciągu, dla tego też mówiąc o nich, będziemy je nieraz, dla uniknięcia rozwlekłości, nazywali wprost ciałami.

	
20.    Bywa niekiedy dogodnie określać warunki równowagi układu, złożonego z pewnej liczby ciał, tak, jak gdyby ten cały układ stanowił jedno ciało. Jest to oczywiście możliwe, gdyż działanie i przeciwdziałanie dwóch ciał układu są równe i odwrotne. Można rozumować i inaczej. Wyobraźmy sobie, że, gdy układ znajdował się w położeniu równowagi, połączono w pewien niezmienny sposób punkty przyłożenia sił. Oczywiście wypadek taki nie zakłóci równowagi. Ponieważ układ stał się sztywnym, możemy przeto tworzyć dlań warunki równowagi, jakby dla ciała sztywnego. Warunki te będą konieczne i dostateczne do równowagi układu, o ile ten jest sztywny; będą one również konieczne do równowagi układu, jeżeli ten jest złożony z pewnej liczby ciał, ale wogóle nie są one w tym przypadku dostateczne.


	
21.    W myśl zasady przenoszenia siły w ciele sztywnem działanie siły może przenosić się z jednego punktu przyłożenia do drugiego, ale wielkość siły nie ulega przytem zmianie. O ile przeto jest ważna ta zasada oraz zasada niezależności siły, to warunki równowagi zależą od sił a nie od ciała.



Jeżeli pewien układ sił się równoważy, działając na pewne ciało, to pozostanie on w równowadze i wówczas, gdy przeniesiemy go na inne ciało, pod warunkiem jednak, że w obydwóch razach pomiędzy punktami przyłożenia istnieją połączenia niezmienne.

Z powyższego wynika, że gdy dane są siły w równowadze, to nie jest rzeczą konieczną przytaczać, na jakie ciało siły te działają. Siły na cóś muszą działać, ale co do tego cóś robimy tylko jedno założenie, a mianowicie, że przenosi ono siły w taki sposób, aby wyżej wygłoszone aksyomaty mogły być uważane. za ważne. Z tego względu mówi się nieraz, że statyka jest to nauka, badająca równowagę i działanie sił w oderwaniu od materyi, która temu działaniu podlega.

	
22.    Siła wypadkowa. Gdy dwie siły działają na cząsteczkę i nie są w równowadze, to usiłują one poruszyć tę cząsteczkę. Wnioskujemy, że można zawsze utrzymać cząsteczkę w stanie spoczynku zapomocą pewnej trzeciej siły.



Siła równa i odwrotnie skierowana do tej siły trzeciej nazywa się wypadkową dwóch pierwszych sił i jest im równoważna. Jest rzeczą oczywistą, że wypadkowa dwóch sił, działających na pewną cząsteczkę, musi działać na tę samą cząsteczkę, i że jej linia działania zajmuje położenie pośrednie pomiędzy liniami działania tamtych.

Przypuśćmy, że siły P1, P2 ... Pn działają na pewną cząsteczkę. Dwie z nich P i P, posiadają wypadkową Qv. Możemy usunąć Pi i P2 i zastąpić je przez Q1: Następnie Q1 i P3 można zastąpić przez ich wypadkowę Q, i t. d. W ten sposób ostatecznie zastąpimy wszystkie siły jedną siłą. Ta jedna siła zowie się wypadkową tamtych.

Jeżeli nie wszystkie siły układu działają na ten sam punkt, to może się zdarzyć, że układ taki nie da się zrównoważyć jedną siłą. W takim razie układ nie jest równoważny żadnej po-jedyńczej sile wypadkowej.

	
23.    Wyznaczyć wypadkową dowolnej liczby sił^ które działają na jeden punkt, i których linie działania leżą na jednej prostej.



Niech O będzie punktem przyłożenia, i załóżmy naprzód, że wszystkie siły są zwrócone w jedną stronę Ox. Ponieważ każda siła działa niezależnie od innych, przeto wypadkowa jest oczywiście równa sumie wszystkich sił poszczególnych i jest także zwrócona w stronę 0x.

Jeżeli niektóre siły są zwrócone w stronę Ox, a inne w odwrotną stronę Ox', to sumujemy każdy z tych układów sił oddzielnie. Oznaczmy te sumy przez X i X' i przypuśćmy, że pierwsza z nich jest większa. Na zasadzie par. 15 mamy prawo z każdego układu usunąć X', a zatem układ całkowity jest równoważny jednej sile X—X‘, zwróconej w tę samą stronę, co X.

Zgodnie z regułą znaków dany układ jest także równoważny jednej sile, określonej przez wielkość ujemną X' -X, i działającej w kierunku odwrotnym, to jest w kierunku X'.

Jeżeli wszystkie siły układu działają na jeden punkt i mają linie działania na jednej prostej, to koniecznym i dostatecznym warunkiem równowagi jest, aby suma algebraiczna sił była równa zeru.

	
24.    Równoległobok sił. Mamy wyznaczyć wypadkową dwóch sił, działających na jeden punkt i nachylonych jedna do drugiej pod kątem dowolnym. Przypuśćmy, że owe siły działają na punkt O i są określone pod względem wielkości i kierunków zapomocą odcinków OA i OB, wychodzących z punktu O (par. 7). Budujemy równoległobok, w którym odcinki O A i OB są bokami przyległymi, i niech OC będzie przekątnią, przechodzącą przez wierzchołek O. W takim razie owa przekątnia określa wypadkową danych sił zarówno pod względem wielkością jak i kierunku.



Podano rozmaite dowody tego doniosłego twierdzenia, a ponieważ prawo równoległoboku stanowi podstawę całej teoryi składania i rozkładania sił, nie będzie przeto bez pożytku rozważyć parę z tych dowodów, ale przy pierwszem czytaniu do-statecznem będzie poprzestać na jednym.

	
25.    Dowód Newtona równoległoboku sił. Dowód ten jest oparty na dynamicznej mierze sił. Zasadę jego wyjaśniliśmy już w par. 15; powtarzamy ją na tern miejscu ze wzglę-du na doniosłość twierdzenia, powołując się przytem na fig. 1.


	
26.    Przypuśćmy, że dwie siły działają na cząsteczkę, położoną w punkcie O, w kierunkach OA i OB, przypuśćmy dalej, że odcinki OA i OB wyrażają szybkości, które te siły, każda z osobna, nadałyby cząsteczce, działając w danym przeciągu czasu. Ponieważ każda siła działa niezależnie od drugiej, przeto wytworzy ona w każdym razie tęż samą szybkość bez względu na to, czy ta druga działa czy nie działa. Jeżeli działają obydwie, to cząsteczka będzie miała w końcu danego czasu obydwie szybkości OA i OB. Są one razem równoważne jednej szybkości OC. Lecz szybkość ta jest także miarą siły, która ją może wytworzyć w danym czasie. Stąd wynika, że dwie siły, których miarami są odcinki OA i OB, razem są równoważne jednej sile, której miarą jest odcinek OC.


	
27.    Dowód Duchayli równoległoboku sił. Dowód ten opiera się na zasadzie przenoszenia siły (par. 17). Widzieliśmy w par. 18, że można oprzeć tę zasadę na samych aksyornatach statycznych.



Zastosujemy dowód indukcyjny. Założymy, że twierdzenie jest słuszne dla dwóch sił, zawierających odpowiednio p i m jednostek siły i tworzących dowolny kąt, i że jest również słuszne dla dwóch sił, zawierających p i n jednostek i tworzących taki sam kąt. Dowiedziemy, że twierdzenie musi być słuszne i dla dwóch sił o p i m + n jednostkach, nachylonych do siebie pod tym samym kątem.

Przypuśćmy, że siły p i m działają na punkt O i są określone pod względem wielkości i kierunku zapomocą odcinków O A i OB, i że odcinek BD wyobraża w tej samej skali siłę n również co do wielkości i kierunku. W takim razie odcinek OD wyobraża siłę m + n zarówno pod względem wielkości, jak i kierunku (par. 23). Wykreślmy równoległoboki OBCA i BDFC i przeprowadźmy przekątnie OC, OF i BF.

Według założenia wypadkowa sił p i m działa na prostej OC. Na zasadzie /---------------7D par. 18 przenosimy jej / Y / \      / punkt przyłożenia do /    \ X \    / punktu C i zastępujemy /      \      ) /       ją z powrotem przez jej A           c           F          dwie składowe p i m. . .                  Pierwsza z nich będzie Fig. 3.                                                     ‘ oczywiście działała na przedłużeniu odcinka BC, a druga na prostej CF. Przenosimy następnie punkt przyłożenia siły p do B, a siły m do F.

Odcinek BC jest równy i równoległy do OA, a zatem siła p, przyłożona w B, wyraża się odcinkiem BC. Lecz siła n działa również na punkt B i wyraża się odcinkiem BD, a więc według założenia wypadkowa tych dwóch sił działa na prostej BF; przenieśmy punkt przyłożenia tej wypadkowej do punktu F.

Z poprzedniego widać, że siły p i m + n są równoważne dwom siłom, przyłożonym w punkcie F, a zatem ich wypadkowa musi przechodzić przez ten punkt F (22). Z tego samego powodu wypadkowa ta musi przechodzić przez punkt 0 gdyż siły posiadają tylko jedną wypadkową (22). Tym sposobem dochodzimy do wniosku, że wypadkowa ta działa na prostej OF, a prosta OF jest przekątnią równoległoboku, zbudowanego na odcinkach OA i OD, wyobrażających siły p i m + n.

Jest rzeczą oczywistą, że wypadkowa dwóch sił równych tworzy z temi siłami kąty równe, a zatem działa na wypadkowej równoległoboku, zbudowanego na tych siłach w sposób już opisany. Tak więc w przypadku dwóch równych sił p i p założenie, uczynione na początku, jest zgodne z prawdą, a zatem w myśl tylko co dowiedzionego twierdzenia jest ono

słuszne i dla sił p i 2p, stąd zaś wynika prawdziwość jego dla sił p i 3p i t. d. Jednem słowem założenie owo jest zgodne z prawdą dla sił p i rp^ gdzie r oznacza dowolną liczbę całkowitą.

Dowiedliśmy, że założenie było słuszne dla sił rp i p, a zatem jest ono słuszne dla sił rp i 2p i t. d. Ostatecznie dochodzimy do wniosku, że założenie jest zgodne z prawdą dla sił rp i sp, gdzie r i s oznaczają * dowolne liczby całkowite. Dowiedliśmy więc twierdzenie równoległoboku, o- ile dotyczy ono kierunku, dla sił współmiernych.

	
28.    Mamy teraz wyznaczyć kierunek wypadkowej w przypadku, gdy siły składowe są niewspółmierne. Niech odcinki OA i OB wyobrażają pod względem wielkości i kierunku dwie siły niewspółmierne p i q. Jeżeli wypadkowa działa nie na przekątni OC, to jej linią działania będzie jakaś inna prosta OG, leżąca wewnątrz kąta AOB i przecinająca albo prostą BC pomiędzy B i C, albo prostą AC pomiędzy A i C (22). Przypuśćmy, że zachodzi pierwszy z tych przypadków, t. j. że linia działania wypadkowej przecina prostą BC w punkcie G, położonym pomiędzy B i C.



Dzielimy odcinek OB na pewną liczbę równych odcin

ków, z których każdy powinien być krótszy od GC, i odmierzamy takie odcinki na OA, poczynając od O, dopóki nie dojdziemy do takiego punktu K, że AK będzie krótsze od GC. Następnie prowadzimy proste GH i KL równolegle do A C. Odcinki OB i OK są współmierne, a zatem wypadkowa sił, które im odpowiadają, działa na przekątni OL. Stąd widać, że siły p i q, przyłożone w 0, są równoważne dwóm siłom, z których jedna działa na prostej OL, druga zaś odpowiada odcinkowi KA, zatem wypadkowa ich powinna działać na punkt 0 w kierunku, zawartym pomiędzy OL i OA. Lecz OG leży nazewnątrz kąta AOL, zatem przypuszczenie, że kierunkiem
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Statyka. 2 wypadkowej jest OG, było niesłuszne. Z drugiej strony OG reprezentuje jakikolwiek kierunek odmienny od OC, bo jedynie w tym razie, gdy punkt G leży w wierzchołku C, nie możemy podzielić odcinka OB na części równe, mniejsze od CG. Tak więc wypadkowa musi działać na przekątni bez względu na to, czy siły składowe są współmierne czy niewspółmierne.

Podaliśmy tu oddzielny dowód dla sił niewspółmiernych, ale nie było to konieczne. Poprzednio dowiedliśmy to twierdzenie dla wszelkich sił, których stosunek daje się wyrazić, ułamkiem. W przypadku sił niewspółmiernych możemy zawsze znaleźć ułamek, różniący się od ich prawdziwego stosunku o wielkość mniejszą od wszelkiej z góry przepisanej różnicy. W granicy twierdzenie musi być ważne i dla sił niewspółmiernych.

	
29.    Mamy teraz okazać, że przekątnia określa wypadkową nietylko co do kierunku, ale i co do wielkości.



Przypuśćmy, że OA i OB wyobrażają dwie siły, i że 00 jest przekątnią równoległoboku 00. Odmierzamy na przedłużeniu odcinka CO odcinek OD, odpowiadający wypadkowej pod względem wielkości. W takim razie trzy siły OA, OB i OD pozostaną w równowadze, i każda z nich jest równa i odwrotna do wypadkowej dwóch pozostałych.
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Budujemy teraz na bokach OB i OD równoległobok OBED. Ponieważ siła OA jest równa i odwrotna do wypadkowej sił OB i OD, przeto odcinki OA i OE muszą leżeć na jednej prostej, i odcinek OE jest równoległy do CB. Z drugiej strony prosta OC, jako przedłużenie odcinka OD, jest równoległa do EB. Stąd wynika, że czworobok OEBC jest równoległobokiem i odcinek OC, jako równy BE, jest także równy DO.

Tak więc przekątnia OC określa wypadkową sił OA i OB nietylko pod względem kierunku, ale i pod względem wielkości.

	
30.    Przykład. Założywszy, że przekątnia określa wielkość wypadkowej, dowieść, że określa ona także kierunek wypadkowej.



Przypuśćmy, jak poprzednio, że odcinki OA, OB i OD (fig. 5) wyobrażają siły, pozostające w równowadze. W myśl założenia OA—OB i 00= OD, a mamy dowieść, że AOE i DOG są liniami prostemi. Ponieważ AB i BD są równoległobokami, przeto OA=BC oraz OD=BE. Stąd wynika, że w czworoboku EOCB długości przeciwległych boków sa równe, i czworobok ten jest równoległobokiem (gdyż odpowiednie boki trójkątów OEB i BGO są równe), a zatem odcinek OE, jako równoległy do BG, leży na jednej prostej z odcinkiem OA.

	
31.    Zestawienie historyczne. Zasady, na których w czasach ubiegłych opierano statykę, dadzą się sprowadzić do trzech.



Pierwszą była zasada dźwigni, użyta przez Archimedesa. Przyjmowano w niej za prawdy oczywiste lub też za wyniki doświadczeń codziennych 1), że prosta pozioma dźwignia, obciążona na końcach jednakowymi ciężarami i oparta w punkcie środkowym, pozostaje w równowadze, 2) że reakcya na podporę jest równa sumie owych równych ciężarów. Wychodząc z tych elementarnych założeń i mierząc siłę ciężarem, który ta zdoła utrzymać w zawieszeniu, wyprowadzano warunki równowagi prostej dźwigni pod działaniem sił nierównych. Z tego i z pewnych prostych aksyomatów dodatkowych można wyprowadzić dalsze twierdzenia statyki. Prawdziwość pierwszego z wyżej wymienionych pewników narzuca się nam niewątpliwie ze względu na symetryę urządzenia, ale Lagrange wskazał, że drugi pewnik nie jest w równej mierze oczywisty.

Zasada równoległoboku zajmuje drugie miejsce w szeregu zasad, na których opierano statykę. W r. 1586 Stevinus wygłosił twierdzenie o trójkącie sił. Do owego czasu nauka statyki opierała się na teoryi dźwigni, odtąd stał się możliwy inny punkt wyjścia. Nowa zasada przyjęła się ogólnie dzięki swej prostocie i łatwości, z jaką dawała się stosować do zagadnień mechanicznych; ostatecznie stała się ona podstawą statyki nowożytnej. Historyę jej stopniowego rozwoju można znaleźć w książce W. W. R. Balia, A Short History of Mathe-matics.

Rozmaici autorowie dowodzili, lub usiłowali dowodzić, zasadę równoległoboku niezależnie od pojęcia ruchu. Wyżej podaliśmy tego rodzaju dowód Duchayli, jeden z tych, które, jak się zdaje, doznały najlepszego przyjęcia. Prócz tego wiele zajęcia wzbudził swego czasu dowód Laplace’a. Opiera się on na podstawach podobnych do tych, na których są oparte dowody Bernoullego i D’Alemberta. Przyjmuje się tam, jako prawdę oczywistą, że gdy powiększymy dwie siły w dowolnym lecz jednakowym stosunku, to ich wypadkowa powiększy się w tym samym stosunku, nie zmieniając przytem kierunku.

Porównywając te dowody z dowodem, opartym na pojęciu ruchu, musimy uznać słuszność uwagi Lagrange’a. Powiada on, że oddzielając zasadę składania sił od zasady składania ruchów, pozbawiamy pierwszą jednej z jej głównych zalet. Traci ona prostotę oraz oczywistość i staje się jedynie wynikiem pewnych konstrukcyi geometrycznych lub analitycznych.

Trzecią z kolei była zasada szybkości przygotowanych. Znajdujemy ją już u pisarzów dawniejszych, ale Lagrange dowiódł ją, lub usiłował dowieść, w sposób elementarny i uczynił podstawą całej mechaniki. Dowód ten nie zdobył sobie uznania ogólnego; zarzucano mu, że nie posiada tej prostoty i oczywistości, które sam Lagrange podziwiał w zasadzie składania sił.

ROZDZIAŁ II.

SIŁY DZIAŁAJĄCE NA PUNKT.

Trójkąt sił.

	
32.    W rozdziale poprzedzającym doszliśmy do zasadniczego twierdzenia, zwanego równoległobokiem sił; będziemy posługiwali się niem ustawicznie. Doświadczenie uczy, że nie zawsze jest rzeczą dogodną wykreślać równoległobok, gdyż to komplikuje rysunek i czyni rozwiązanie nieprzejrzystem. Dla tego też wynaleziono różne sposoby, ułatwiające i skracające działania; rozważymy je tutaj z kolei.


	
33.    Jeżeli odcinki OA i OB wyobrażają siły P i Q, działające na punkt 0, to, jak wiemy, przekątnia 00 równoległo-boku, zbudowanego na tych odcinkach, określa wypadkową.
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Lecz jest rzeczą oczywistą, że odcinek AC, równie dobrze jak OB^ określa siłę Q zarówno co do wielkości, jak i kierunku, chociaż nieokreśla on punktu przyłożenia. Jeżeli wszakże punkt przyłożenia jest wskazany w jakiś inny sposób, to okoliczność powyższa nie ma znaczenia, i trójkąt OAC może zastąpić równoległobok OACB.

Jeżeli punkty przyłożenia są wskazywane niezależnie od sił, to niema koniecznej potrzeby wyobrażać sił zapomocą odcinków, wychodzących z 0. Tym sposobem możemy określić siły P, Q i R, działające na punkt 0 pod względem kierunku i wielkości bokami trójkąta DEF] boki te powinny tylko być równoległe do sił i proporcyonalne do nich co do długości.

Oczywistą jest rzeczą, że na trójkąt sił można przenieść bezpośrednio wszystkie twierdzenia o równoległoboku, a zatem:

Jeżeli dwie siły, działające na punkt, są wyobrażone pod względem kierunku i wielkości zapomocą boków DE i EF pewnego trójkąta, to trzeci bok DF określa ich wypadkową.

Jeżeli trzy siły, działające na punkt, są wyobrażone przez trzy boki trójkąta, obiegane w tę samą stronę, t. j. DE, EF, FD, to siły te są w równowadze.

	
34.    Niech będą dane w płaszczyźnie trzy siły; pragniemy rozpoznać, czy siły te są w równowadze. Łatwo dostrzedz, że do tego muszą być spełnione dwa warunki:



	
1.    Jeżeli siły nie są równoległe, to dwie z nich muszą się przecinać w pewnym punkcie 0, i wypadkowa ich przechodzi także przez ten punkt. Trzecia siła powinna być równa i odwrotna do tej wypadkowej, a zatem musi ona również przechodzić przez ten sam punkt. Stąd widać, że linie działania tych trzech sił muszą przechodzić przez jeden punkt, albo też muszą być równoległe.


	
2.    Jeżeli siły nie są równoległe, to można poprowadzić równolegle do nich trzy proste tak, aby utworzył się trójkąt, i wielkości sił muszą być proporcyonalne do odpowiednich boków tego trójkąta.



Przypadek, w którym siły są równoległe, rozważymy w rozdziale następnym.

	
35.    Możemy twierdzenie to uogólnić w sposób następujący. Wyobraźmy sobie, że trójkąt DEF został obrócony o 90° i zajął położenie D'E'F'. Boki jego będą wówczas nie równoległe, lecz prostopadłe do sił. Jeżeli siły działają w kierunkach DE, EF, FD, to są one wszystkie zwrócone na zewnątrz trójkąta D'E'F'-, gdyby odwrócić ich kierunki, to wszystkie dzia-•łałyby na wewnątrz. Możemy przeto wypowiedzieć twierdzenie następujące:



Jeżeli trzy siły, działające na jeden punkt, są określone pod względem wielkości przez boki trójkąta, kierunki zaś ich są prostopadłe do tych boków, przyczem wszystkie siły są zwrócone wewnątrz lub wszystkie na zewnątrz, to siły te są w równowadze.

Możemy obrócić trójkąt DEF nie o kąt prosty, lecz o jakiś kąt mniejszy. Otrzymamy wówczas inne twierdzenie. Jeżeli trzy siły, działające na jeden punkt,'są pod względem wielkości określone przez boki trójkąta, i jeżeli ich kierunki tworzą z odpowiednimi bokami, wziętymi w porządku kołowym, kąty jednakowe, to te trzy siły są w równowadze.

W pewnych razach wykreślanie trójkąta byłoby niedogodne, dla tego też nadajemy twierdzeniu jeszcze inną postać. Boki trójkąta są proporcyonalne do synusów przeciwległych kątów; związek taki musi oczywiście zachodzić i dla sił.

Trzy siły, działające na ciało w jednej płaszczyźnie, są w równowadze, jeżeli 1) ich linie działania zbiegają się w jednym punkcie, 2) wszystkie są zwrócone do tego punktu lub od niego odwrócone, i 3) każda z nich pod względem wielkości jest propor-cyonalna do synusa kąta, zawartego pomiędzy dwiema pozostałemi.


sił działa na boków nieza-
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36.    Wielobok sił. Jeżeli pewna liczba punkt O, to możemy je wyobrazić zapomocą mkniętego wieloboku DE, EF, FG-, GH i t. d., obieganych w jedną stronę. Wypadkowej sił DE i EF odpowiada odcinek DF, wypadkowej DF i FG odpowiada odcinek DG i t. d. Wypadkową wszystkich sił określa odcinek, zamykający wielobok. Oczywiście nie jest wcale rzeczą konieczną, aby wszystkie boki wieloboku leżały w jednej płaszczyźnie.



Jeżeli pewna liczba sił, działających na punkt, odpowiada bokom zamkniętego wieloboku, obieganych w jedną stronę, to siły te są w równowadze.

	
37.    Przykład 1. Siły, położone w jednej płaszczyźnie, a pod względem wielkości proporcyonalne do boków zamkniętego wieloboku, działają na środki tych boków prostopadle do nich i są wszystkie zwrócone na wewnątrz lub na zewnątrz wieloboku. Dowieść, że siły te są w równowadze.                                  .



Niech AB CD... będzie danym wielobokiem. Łączymy wierzchołek A z pozostałymi wierzchołkami C, D.... Zwróćmy teraz uwagę na trójkąt ABC. Siły, przyłożone w środkach boków AB i BC spotykają się w środku koła opisanego, a zatem ich wypadkowa jest propor-cyonalna do AC i działa prostopadle do tego boku na środek jego. Rozważając z kolei trójkąty ACD, ADE i t. d., dojdziemy łatwo do wniosku, że ostateczna wypadkowa jest równa zeru.

Prz. 2. Siły, położone w jednej płaszczyźnie, są pod względem wielkości proporcyonalne do kosynusów połów kątów wewnętrznych zamkniętego wieloboku; działają one na odpowiednie wierzchołki na dwusiecznych kątów i są zwrócone na wewnątrz. Okazać, że siły takie się równoważą.

Dajmy na to, że na każdym boku wieloboku działają dwie siły, przyłożone w wierzchołkach, równe i odwrotne; każda z nich niech będzie równa F. Dwie siły, przyłożone w wierzchołku A, posiadają

A

wypadkową 2Fcos, działającą na dwusiecznej kąta. Wszystkie takie wypadkowe muszą być oczywiście w równowadze.

	
38.    Prz. 1. Siły 4, 5 i 6 są w równowadze; wyznaczyć tangensy połów kątów, utworzonych przez te siły.



Prowadząc proste, równoległe do sił, zbudujemy trójkąt sił; kąty jego dadzą się wyznaczyć zapomocą zwykłych metod trygonometryi.

Prz. 2. Siły 6, 8 i 10 są w równowadze; wyznaczyć kąt, który tworzą dwie mniejsze. Jak należy zmienić trzecią siłę, aby kąt pomiędzy dwiema pierwszemi zmniejszył się do połowy?

Prz. 3. Okazać, że wypadkowa sił OA i OB odpowiada podwójnemu odcinkowi OM, gdzie M oznacza środek odcinka AB.

Prz. 4. Dwie stałe i równe siły działają na środek elipsy równolegle do SP i PH, gdzie S i H oznaczają ogniska, a P dowolny punkt krzywej. Okazać, że koniec odcinka, wyrażającego wypadkową, leży na pewnym okręgu.                         (Math. Tripos, 1883).

Prz. 5. Siły P i Q działają na punkt O, — a wypadkową ich jest R. Pewna prosta przecina linie działania tych sił odpowiednio w punktach L, M i N. Okazać, że


P_I_R

OL^OM ON




(Math. Tripos, 1881).



Gdy uwolnimy równanie od mianowników, to wypadnie, że pole LOM jest sumą pól LON i MON.

Prz. 6. Cząsteczka O pozostaje w równowadze pod działaniem trzech sił, z których F jest dana co do wielkości, F' co do kierunku, a P co do wielkości i kierunku. Wyznaczyć wykreślnie linię działania siły F.

Jeżeli O A wyobraża P, to prowadzimy AB równolegle do F' i zataczamy koło z O promieniem równym F.

Prz. 7. W czworościanie ABCD P jest jakimkolwiek punktem na BC, a Q jakimkolwiek punktem na AD. Okazać, że siłę, wyobrażoną co do wielkości, kierunku i położenia przez odcinek PQ, można zastąpić jednoznacznie składowemi, działającemi na AB, BD, DC, CA, i wyznaczyć stosunki tych składowych.         (St John’s Coli., 1887).

Prz. 8. Odcinki BD, CE, AF proporcyonalne do boków BC, CA, AB trójkąta ABC odmierzono na tych bokach. Okazać, że siły, odpowiadające pod względem wielkości i kierunku odcinkom AD, BE i CF, działając na punkt, są w równowadze. Odwrotnie, jeżeli siły AD, BE i CF równoważą się, działając na punkt, to odcinki BD, CE i_AF są proporcyonalne do boków.

	
39.    Równoległościan sił. Trzy siły, działające na punkt 0, odpowiadają pod względem kierunku i wielkości odcinkom OA, OB i OC, nie leżącym w jednej płaszczyźnie. Okazać, że wypadkowa odpowiada co do kierunku i wielkości przekątni równole-głościanu, w którym owe odcinki są krawędziami.



W równoległoboku, którego bokami są OA i OB, przekątnia OD odpowiada wypadkowej tych dwóch sił. Jeżeli CE oznacza przekątnię ściany przeciwległej, to, jak wiemy z geometryi, czworobok OCED jest rów-noległobokiem. Stąd wynika, że wypadkową sił OC i OD jest odcinek OE, t. j. przekąt- Fig. 8. nia równoległościanu.

[image: ]



Moglibyśmy również dowieść to twierdzenie, opierając się na paragrafie 36. Wypadkowa trzech sił, odpowiadających OA, AD i DE, odpowiada odcinkowi, zamykającemu wielobok OADE, czyli znowu odcinkowi OE.

	
40.    Trzy metody rozkładania skośnego.



	
1)    Dane są trzy kierunki nie w jednej płaszczyźnie; zastępujemy siłę R, odpowiadającą odcinkowi OE, przez siły X, Y i Z, działające w danych kierunkach. Mówimy, że siła R została rozłożona w tych kierunkach, a siły X, Y i Z nazywamy jej składowemi. Można wyznaczyć składowe pod względem wielkości, budując równoległościan, w którym przekątnią jest R, a krawędzie OA, OB i OC mają kierunki dane.


	
2)    Gdy dana jest wypadkowa OE, to można wyznaczyć każdą ze składowych w sposób następujący. Dajmy na to, że ta wypadkowa OE i jedna ze składowych, np. OC^ tworzą z płaszczyzną AOB^ zawierającą dwie inne składowe, odpowiednio kąty 7 i 8. Odległości punktów C i E od owej płaszczyzny są równe, czyli OCsin 3 = OEsin . Zatem składową Z, działającą na 00, określa równanie Zsin 3 = Rsin .


	
3)    Trzecią metodę rozkładania skośnego podamy w paragrafach 51 i 53.



Prz. 1. Jeżeli na cząsteczkę działa sześć sił, odpowiadających co do wielkości i kierunku krawędziom czworościanu, to cząsteczka ta nie może pozostać w spoczynku.              (Math. Tripos, 1859).

Prz. 2. Cztery siły, działające na punkt 0, są w równowadze, i na ich liniach działania od punktu 0 odmierzono jednakowe długości. Okazać, że każda z sił jest proporcyonalna do objętości czworościanu, zbudowanego na owych odcinkach linii działania trzech sił pozostałych.

Metoda analityczna.

	
41.    Widzieliśmy, że każdą siłę można zastąpić dwiema innemi, które nazywają się składowemi, i te składowe mogą być nachylone do siebie pod dowolnym kątem. Doświadczenie jednak wskazuje, że najużyteczniej jest rozkładać siłę na składowe prostopadłe jedna do drugiej. Jeżeli przeto jest mowa wprost o składowej siły, to rozumiemy, że druga składowa tworzy z pierwszą kąt prosty, o ile nie zaznaczono wyraźnie, że jest inaczej. Z fig. 6 widać, że w takim razie równoległo-bok przechodzi w prostokąt, i dwie składowe siły 00 są odpowiednio równe OCcos COA i OCsin COA. Temuż samemu są równe rzuty siły 00 na proste OA i OB.



Możemy wypowiedzieć to w postaci prawidła. Gdy siła R działa na punkt O w kierunku OC, to jej składowa w dowolnym kierunku 0x jest równa RcosCOx, składowa zaś w kierunku odwrotnym Ox' jest równa R cos, 00x'. Składowa siły R w kierunku prostopadłym do 0x wynosi Rsin COx.

	
42.    Dwie siły Pt i P2 działają na punkt O. Wyznaczyć położenie i wielkość wypadkowej.



Niech będą dwie dowolne osi prostokątne 0x, Oy, i niech &,, 0.2 oznaczają kąty, które siły Pi i P2 tworzą z osią x. Sumy składowych danych sił, równoległych do odpowiednich osi, albo sumy rzutów na te osi, będą

X=P cos a, + P, cos a2

	
Y= P1 sin 01 + P, sin a, .



Jeżeli takie są składowe siły R, która tworzy z osią x kąt a, to

X=Rcosa, Y— R sin a.

Dodając kwadraty składowych X i Y, otrzymamy łatwo

R2 = P^ + P,2 + 2P,P2 cos 9, gdzie 3= A1 - A,, czyli 3 jest to kąt pomiędzy kierunkami sił P1 i P2. Związek ostatni wynika także z równoległoboku sił, gdyż prawa strona jest to oczywiście kwadrat przekątni równoległoboku, którego bokami są Pr i P2.

Równie łatwo wyznaczymy kierunek wypadkowej, gdyż

Y Psino.—P,sin a, tan a = — = —-----—--4. A 1 cos &1+ P2 cos a2

	
	
43.    Prz. 1. Dwie siły P i Q tworzą kąt a i posiadają wypadkową R. Powiększamy każdą z nich o R; okazać, że nowa wypadko-(P— Q) sin a wa tworzy z R kąt, którego tan wynosi--- P+Q+R+(P+Q) coso





(St John’s Coli., 1880).

Należy obrać linię działania wypadkowej R za oś x.

Prz. 2. Trzy siły F działają na punkt równolegle do boków trójkąta ABC; wypadkową ich oznaczamy przez R. Okazać, że

R^~ F2(3- 2 cos A—2 cos B—2 cos C).

Prz. 3. Wypadkowa sił Pi Q jest równa R; gdy podwoimy Q, to R się podwoi, gdy odwrócimy Q, to R się również podwoi. Okazać, że P'.Q\ R=v2: V3: v2.                           (St John’s Coli.).

	
	
44.    Pewna liczba sił działa na punkt O w jakichkolwiek kierunkach; mamy wyznaczyć ich wypadkową.





Obieramy prostokątne osi Ox, Oy, Oz, i niech P, P^, Pz... oznaczają siły, a (0,311), («,32Y2) ••• ich kąty kierunkowe. Sumy składowych równoległych do osi, albo rzutów sił na osi, będą

X=Pcos M1 + P, cos &,+...= ZPcos a

Y= P cos 3,+P, cos 32+ ... = SPcosp

Z=Pcos Y1+P2 cos Y2+ ••• = SPcosy

Jeżeli takie są składowe siły R, której kąty kierunkowe niech będą (a), to

Rcosa= X, Rcosp= Y, R cos”=Z.

Wiemy z geometryi, że

cos 2a + cos 23 + cos 27=1.

zatem            R^X2+Y^ + Z\

cos a cos 3   cos ¥          1 oraz         -----=---— =---- =----—.

X    Y Z  {X^+Y2 + Z^k

Tym sposobem zarówno siła R, jak i jej kąty kierunko-. we zostały wyznaczone.

Do równowagi jest koniecznem i dostatecznem, aby R było zerem. Wynikają stąd trzy warunki

X=XPcosa=0, Y=XPcos}=0, Z—SPcos7 = 0.

	
	
45.    Jeżeli sumy rzutów (prostokątnych) sił P, P2 ... na trzy kierunki OA, OB, 00, nie leżące w jednej płaszczyźnie, są równe zeru, to siły są w równowadze.





Obierzmy oś Oz na 00, a płaszczyznę xOz poprowadźmy przez OA. Ponieważ suma rzutów na Oz jest równa zeru, przeto Z=0. Ponieważ suma rzutów na OA jest równa, zeru, przeto Xcosx0A=0; lecz kąt xOA nie jest prosty, gdyż OA i 00 nie leżą razem, zatem X=0. Mamy wreszcie YcosyOB^O, gdyż suma rzutów na OB jest równa zeru, a stąd wynika Y=0.

	
	
46.    Można wyrazić wielkość i kierunek siły R w postaci niezależnej od układu współrzędnych w sposób następujący:





Jeżeli 312 oznacza kąt pomiędzy dwiema prostemi, których kąty kierunkowe są (0.,31Y1) i (0.23212), to, jak wiadomo z geometryi, przy znanej umowie co do znaków

cos $12 = cos A, cos a2 + cos 31 cos 32 + cos Y1 cos Y2 .

Dodając kwadraty wyrażeń na X, Y, Z^ otrzymamy R2 =P^ (cos2a, + cos 28, + cos21) +...

+ 2P1P2(cos 01 cos 0.2 + cos 31 cos 32 + COs Y, COs2)+... lub           R2 P2 + P,2 +..+ 2P,P, cos 9,7+ ...

Daje to nam wielkość siły R.

Aby znaleźć kierunek siły R, wyznaczymy kąty “1, “2..., które kierunek ten tworzy z kierunkami sił P1, P2 •••• Ponieważ osie współrzędnych są całkowicie dowolne, obierzmy przeto oś x na linii działania siły P1. Wówczas 0 = ®1, 01=0, 02==$12 i 1. d., a zatem równanie

R cos a = X= EPcos a przekształci się na

Rcos@,=P + P, COS 812 + Ps COS 313+ ....

Zupełnie tak samo, obierając oś x na linii działania siły P2, otrzymamy

R cos @2 = P1 cos 312 + P, + P3 cos 323 + ...

i t. d. Tym sposobem kierunek siły R został wyznaczony.

	
	
47.    Wielościan sił. Równaniom paragrafu 44 można przypisać pewną treść geometryczną, i bywa to nieraz użyteczne. Wyobraźmy sobie zamknięty wielościan, i niech A1, A2... oznaczają pola ścian jego. Poprowadźmy do każdej ściany normalną z punktu, położonego na tej ścianie, przyczem wszystkie normalne powinny być zwrócone na zewnątrz albo wszystkie na wewnątrz wielościanu, i niech 8, , 32 ... oznaczają kąty, które te normalne tworzą z prostą, obraną przez nas za oś z. Tworzymy teraz rzuty wszystkich ścian na płaszczyznę xy. Pola tych rzutów będą A, COS 81, A2 cos 82.... Ponieważ wielościan jest zamknięty, przeto suma wszystkich rzutów dodatnich będzie równa sumie wszystkich rzutów ujemnych, i wypadnie





A, cos 31+A2 cos 32+. ..=0.

Analogiczne równania otrzymamy dla pozostałych płaszczyzn współrzędnych. Trzy te równania różnią się tylko tem od równań równowagi, że tam zamiast A1, A2 ... stoi P1, P2 .... Stąd wynika twierdzenie następujące: Jeżeli siły, działające na punkt, odpowiadają pod względem wielkości polom ścian zamkniętego wielościanu, jeżeli prócz tego są one prostopadłe do odpowiednich ścian i wszystkie zwrócone na zewnątrz lub na wewnątrz, to siły te są w równowadze.

	
	
48.    Posługując się teoryą wyznaczników, możemy nadać wynikom, do których doszliśmy w par. 46, postać dogodniejszą. Przypuśćmy, że chodzi o wyznaczenie wypadkowej trzech sił, działających na punkt. Aby otrzymać rezultat symetryczny, odwrócimy wypadkową i będziemy mówili o czterech siłach w równowadze.





Niech więc będą cztery siły P, P2, P3, P w równowadze. Zakładając R=0, otrzymamy z par. 46 cztery wiążące je równania liniowe, a rugując siły, dojdziemy do równania wyznacznikowego

1 COS 312 COS 313 COS 314 COS 321      1 COS 823 COS 324 _Q

COS 331 cos $32      1 cos 834

COS $41 COS $42 COS $43      1

Jest to związek, który zachodzi pomiędzy wzajemnemi nachyleniami czterech dowolnych prostych przestrzeni 2). Jeżeli wszystkie te kąty z wyjątkiem jednego (np. 312) są dane, to mamy równanie kwadratowe, określające dwie możliwe wartości, które może mieć COS 312. Jeżeli trzy z tych kątów np. 312, 323, 331 są proste, to wyznacznik sprowadza się do znanej postaci

COS 2 814+ COS 2 324+cos 2 8,4=1.

Jeżeli znamy kąty pomiędzy czterema kierunkami sił, to możemy wyznaczyć stosunki pomiędzy siłami z którejkolwiek trójki z czterech wspomnianych równań liniowych. Wynika stąd, że stosunki pomiędzy siłami są równe stosunkom pomiędzy minorami (podwyznacz-nikami) wyrazów któregokolwiek wiersza wyznacznika.

	
	
49.    Prz. Okazać, że kwadraty sił mają się do siebie, jak minory wyrazów głównej przekątni.





Niech Irs oznacza minor wyrazu wiersza r i kolumny s; w takim razie, jak wiadomo, 111122== 1122. Ale widzieliśmy poprzednio, że

P,: P=I, : 1,2 , stąd zaś wynika odrazu, że

P2:P,2-In:I2.

Podajemy tu rozwinięty minor naczelnego wyrazu:

I1=1—cos2323—cos? 334—cos2 8,2+2 cos 323 COS 334 COS $42 .

Wyrażenie to spotykamy w różnych wzorach trygonometryi sferycznej. Jeżeli naprzykład wyprowadzimy z punktu O równolegle do którychkolwiek trzech sił (np. P2, Pa, P) trzy odcinki każdy o długości jednostkowej, to objętość powstałego czworościanu będzie równa szóstej części pierwiastka kwadratowego odpowiedniego minora (w danym razie In).

	
	
50.    Potrzeba niekiedy odnosić siły do układu ukośnokątnego. W takim razie zastępujemy kosynusy kierunkowe każdej siły przez jej stosunki kierunkowe. Przypuśćmy, że stosunki kierunkowe sił P, P2... są (a,b,C1), (a^bzC^..., to sumy składowych sił, równoległych do osi będą





X^Pa, Y^Pb, Z=^Pc.

Jeżeli takie są składowe siły R, posiadającej stosunki kierunkowe (1, m, n), to

Kl=X, Rm^Y, Rn^Z.

Związki pomiędzy stosunkami kierunkowymi linii prostej a kątami, które ta prosta tworzy z osiami, mamy w podręcznikach geometry i przestrzeni lub trygonometryi. Związki te są bez porównania mniej proste niż w układzie prostokątnym. Z tego względu układy ukośnokątne są używane rzadko.

Centroid.

	
	
51.    Wielkość i kierunek wypadkowej dowolnej liczby sił, działających na punkt, można jeszcze wyrażać przy pomocy innej metody, która bywa nieraz wielce użyteczna zarówno w rozważaniach geometrycznych, jak i analitycznych.





Dajmy na to, że odcinki OA1, 0A, ... określają siły P1, P2 ... pod względem kierunku. Wielkości sił są określone zapomocą pewnych długości, odmierzonych na prostych 0A±^ 0A2... , a mianowicie wielkość pierwszej przez 21.OA, drugiej przez 22.0A2 i t. d. Wprowadzenie współczynników liczbowych Pi, P2 ... jest użyteczne pod tym względem, że przy tern można obrać końce A1, A, ... owych odcinków w sposób dla danego zadania szczególnie dogodny. Jest to oczywiście to samo, co wyrażać siły odcinkami w rozmaitych skalach; tak np. w danym przypadku jednostka długości na prostych 0At, 0A2... reprezentuje odpowiednio siły P1, p2...

Obieramy punkt 0 za początek układu, i niech współrzędne punktów At, A2... będą odpowiednio (x1Y1Z1), (x,y2Z2) ... Dowiedliśmy już, że składowe wypadkowej są

X = ZP cos a = Zp . O A . cos a = ^px


(1)



Y—^Pcos^           =^py

Z=^>P cos T              —^pz

Niech będzie punkt G, którego współrzędne (xyz) są określone zapomocą równań

Stąd bezpośrednio wynika, że

X=xEp, Y=y^p^ Z—zYp.

Z równań tych widać, że wypadkowa posiada kierunek OG i jest równa OGl^p.

Punkt G jest znany pod' różnemi nazwami. Zowią go środkiem ciężkości, centroidem lub punktem przeciętnym układu cząsteczek, położonych w At, A, ... i posiadających masy lub ciężary proporcyonalne do P1, p2...

Tak więc, jeżeli siły, działające na punkt O, posiadają kierunki odcinków 0Ar, 0A2..., wielkości zaś ich są równe p1.OA1, p2.0A2, to wypadkowa ich działa w kierunku OG- i jest równa Zp . OG, gdzie G oznacza centroid mas proporcyonalnych do p±, p2... i położonych w A1, A2.... Twierdzenie to bywa powszechnie przypisywane Leibnizowi.

Odwrotnie siłę R, działającą na prostej OG, można rozłożyć na trzy siły, działające na trzech danych prostych, poprowadzonych przez O; w tym celu należy uczynić punkt G centroidem mas, umieszczonych w punktach A1, A2, As, odpowiednio dobranych na owych prostych. Składowe P1, P2, P3 otrzymamy z równań

P, ___P, _ _ P, _______R ____

pr. OA~p2. OA2~p3. OAs~(p1+p2 + p3)OG, gdzie pt, p2, p3 oznaczają owe masy.

Niektóre z odcinków OAt, OA2... albo nawet i wszystkie mogły być obrane w kierunkach, odwrotnych do sił; w takim razie uważamy poprostu odpowiednie współczynniki p za ujemne.

Jeżeli pomiędzy współczynnikami p są ujemne, to może się zdarzyć, że Zp=0. W przypadku takim centroid leży w nieskończoności, i wypadkowa wyraża się w sposób niedogodny, jakkolwiek poprawny, natomiast składowe wdzłuż osi i teraz wyznaczamy z równań X—hpx, Y=^py, Z—^pz, niezawierają-cych żadnych wielkości nieskończenie wielkich.

	
	
52.    Użyteczność powyższej metody zależy od tego, czy punkt G daje się wyznaczyć łatwo, gdy znamy A1, A2-- Prawidło robocze polega na tern, że odległość punktu G od dowolnej płaszczyzny odniesie-





^pz

nia, obranej za płaszczyznę xy, wynosi —. Własności tego punktu oraz położenie jego w różnych przypadkach rozważymy w rozdziale o środku ciężkości.

	
	
53.    Prz. 1. Centroid G dwóch cząsteczek Pi i p2, umieszczonych w dwóch danych punktach Ax, A2, leży na prostej A1 A2 i dzieli odcinek ArA2 w taki sposób, że Pi .ArG=p2. A,G.





Obieramy prostą A1A2 za oś x, Ai za początek, i niech będzie AiA2 = a. W takim razie x,=0, x2=a, y^O, y2=0. Stosując prawidło robocze, znajdziemy

P1X1—P2X2 P^a


_ PiUi+p2y2 -y=-------=0.

P1+P2



0 —=---------—--

P1+P2 P1+P2’

Stąd wynika, że G leży na A1A2, a ponieważ T=A1G, przeto

Pi . A1 G=p2 (A,A, — A G) =P2. A, G.

Dzięki twierdzeniu temu można rozłożyć siłę P, działającą na prostej OGr, w dwóch kierunkach niekoniecznie prostopadłych jeden do drugiego. Składowe P i P2 wyznaczamy z równań

P _ _P _ P

pi. OAi p2.0A2 (Pi+Pz) OG ’ gdzie Pi i p2 są to odległości punktu G- od Ag i Ag; uważamy je za dodatnie, jeżeli są mierzone wewnątrz.

Prz. 2. Okazać, że centroid trzech mas pr, p2, p3, umieszczonych w wierzchołkach trójkąta, leży w punkcie, którego współrzędne powierzchniowe są proporcyonalne do P1, p2, p3. Jeżeli masy są równe, to punkt ten zowie się krótko centroidem trójkąta.

Niech a, 3 i Y oznaczają odległości punktu G od boków BG, GA, AB trójkąta AB G; odległości te uważamy za dodatnie, gdy są mierzone wewnątrz. Niech prócz tego p, q, r oznaczają odległości wierzchołków od tych samych boków. Stosunki “=p‘ ^~q, z~r zowia sie współ-rzędnemi powierzchniowemi punktu G. Łatwo okazać, że x, y, z są proporcyonalne do pól trójkątów BGG, GGA, AGB, i że x+y+z—1.

Obrawszy bok AB za oś odniesienia, otrzymamy odrazu na zasa-dzie prawidła roboczego (52), że odległość centroidu od tej osi 1=—, S gdzie s=p,+p,+p,. Podobnież q=PP, 3=221. Stąd wynika, źe a, y, z s s są proporcyonalne do px, p2, p3.

Prz. 3. Siła P, działająca na wierzchołek D czworościanu, przebija przeciwległą ścianę ABC w punkcie G, którego współrzędne powierzchniowe w odniesieniu do trójkąta ABC są (xyz). Okazać, że

1

 F. Klein w przedmowie do tłomaczenia niemieckiego Dynamiki ciał sztywnych.

2

 Inny dowód znajdujemy w Solid Geometry Salmona wyd. IV, par. 54.


P_P_P_P

x.DA y.DB z.DC DG’

gdzie Pi, P2, P3 oznaczają-składowe siły Pna krawędziach DA, DB, DC.

Prz. 4. Siły pewnego układu odpowiadają pod względem wielkości i kierunku odcinkom A|A,', A2A2,... AnAn, i G, G' oznaczają odpowiednio centroidy grup punktów Ax, A2,... An oraz Aj, Aj,... A'n. Okazać, że, jeżeli przeniesiemy wszystkie siły równolegle tak, aby działały na jeden punkt, to wypadkowa ich będzie pod względem kierunku i wielkości odpowiadała odcinkowi n. GG'. (Goli. Ex., 1889).

Dany układ sił AA' jest równoważny trzem układom AG, GG', G'A' (36), z których pierwszy i ostatni równoważą się każdy oddzielnie (51).

Prz. 5. Trzy siły, działające w jednej płaszczyźnie i przyłożone w punktach A, B, C, odpowiadają odcinkom AD, BE, CE, gdzie D, Et F

Statyka. 3

oznaczają ich punkty przecięcia z bokami trójkąta ABC. Dowieść, że siły te są równoważne trzem innym siłom, działającym na bokach AB, BO, CA i odpowiadającym odcinkom

Prz. 6. Na cząsteczkę, położoną w płaszczyźnie trójkąta, działają trzy siły, skierowane do środków boków; wielkości tych sił są wprost proporcyonalne do odległości od owych środków i odwrotnie .pro-porcyonalne do promieni odpowiednich kół zawpisanych. Wyznaczyć położenie, w którem cząsteczka będzie w równowadze.

(Math. Tripos, 1890).

Punktem szukanym jest środek koła wpisanego.

Prz. 7. Cienka pionowa płyta posiada cztery małe otworki A, B, C, D. Cztery sprężyste sznury, których długości naturalne wynoszą O A, OB, OC, OD, umocowano w punkcie 0 płyty, ich pozostałe końce przeciągnięto przez A, B, C, D i przywiązano do małego ciężkiego pierścionka P. Naprężenia sznurów są proporcyonalne do wydłużeń. Okazać, że gdy płyta obróci się w swej płaszczyźnie około punktu O, to P zakreśli na płycie koło.                (Coli. Ex., 1888).

Prz. 8. Trzy siły P, Q, R działają na trzech prostych DA, DB, DC, nie leżących w jednej płaszczyźnie, a ich wypadkowa jest równoległa do płaszczyzny ABC. Okazać, że

	
• 4—— += 0. (St John’s Coli., 1882). DA DB DC



Prz. 9. Zakładamy, że wiatr działa na żagiel z siłą proporcyo- • nalną do pewnej potęgi różnicy składowych normalnych do żagla szybkości wiatru i łódki. Zbadać, czy łódka przy odpowiedniem ustawieniu żagla może płynąć prędzej od wiatru w kierunku, tworzącym dany kąt z kierunkiem wiatru. Wyznaczyć granice tego kąta.

Prz. 10. ABCDEF jest sześciobokiem foremnym, i na A działają siły, które co do wielkości i kierunku odpowiadają odcinkom AB, 2AC, 3AD, 4AE, 5AF. Okazać, że długość odcinka, wyobrażającego wypadkową, wynosi V 351A B.                   (Math. Tripos, 1880).

Równowaga cząsteczki nieswobodnej.

	
	
54.    Ciała gładkie i chropowate. Dajmy na to, że cząsteczka, na którą działają dowolne siły, pozostaje w pewnem połączeniu z nieskończenie cienkim nieruchomym drutem i może jedynie przesuwaj się po tym drucie. Drut wywiera na cząsteczkę pewną siłę czyli reakcyę i odwrotnie. Rozłóżmy tę siłę na dwie składowe, z których jedna niech działa na normalnej do linii drutu, a druga na stycznej. Ta druga składowa nazywa się tarciem. Doświadczenie wykazuje, że zależy ona od materyałów, z których składa się drut i cząsteczka. Jeżeli składowa ta jest równa zeru, albo tak mała, że bez wyraźnego błędu można jej nie uwzględniać, to mówimy, że ciała są gładkie. Jeżeli tarcie nie daje się pominąć, to warunki równowagi są bardziej złożone; rozważymy je w innym rozdziale, a obecnie będzie jedynie mowa o ciałach gładkich.





Analogiczne uwagi dotyczą przypadku, gdy cząsteczka jest zniewolona pozostawać na pewnej powierzchni. Linię lub powierzchnię nazywamy gładką^ jeżeli działanie pomiędzy nią i cząsteczką zachodzi na normalnej do tej linii lub powierzchni.

	
	
55.    Dajmy na to, że cząsteczka jest paciorką, nawleczoną na drut, a zatem może jedynie poruszać się w kierunku stycznej, poprowadzonej do linii drutu w punkcie, który obecnie zajmuje. W tym razie koniecznym i dostatecznym warunkiem równowagi będzie, aby składowa sił w kierunku stycznej była równa zeru.





Jeżeli cząsteczka pozostaje na jednej stronie linii, to linia zapobiega ruchowi na normalnej tylko w jedną stronę. W tym razie warunkiem koniecznym równowagi będzie, aby siły zewnętrzne przyciskały cząsteczkę do linii.

Jeżeli cząsteczka pozostaje na gładkiej powierzchni, to składowa sił w kierunku każdej stycznej do powierzchni w punkcie, zajętym przez cząsteczkę, powinna być równa zeru.

Innemi słowy wypadkowa sił musi w położeniu równowagi działać normalnie do powierzchni i być tak zwrócona, aby przyciskała cząsteczkę do powierzchni.

	
	
56.    Dane są równania linii, wyznaczyć na niej położenia, w których cząsteczka pozostanie w równowadze pod działaniem sił danych.





Dajmy na to, że równania krzywej są dane we współrzędnych Kartezyusza w odniesieniu do układu prostokątnego. Niech x, y, z oznaczają współrzędne cząsteczki w położeniu równowagi, X, Y, Z składowe sił, równoległe do osi, wreszcie niech s oznacza łuk linii, mierzony od pewnego stałego punktu do punktu, zajętego przez cząsteczkę. Biorąc składową sił X, Y, Z w kierunku stycznej według par. 41, otrzymamy xdxl ydu.zdz=o.

ds ds ds

Jeżeli równania linii są dane w postaci

P(x, y, 2)= 0, P(x, y, z)=0,

to, stosując znane symbole pochodnych cząstkowych, otrzymamy

^Xdx + ^ydy + ^Zdz = 0, <^xdx + ^dy + ^Bdz = 0.

Gdy wyrugujemy stosunki dx:dy:dz, to będzie


		
X Y Z
	

	
I=
	
Pa P P.
	
= 0.


		
Y tu *=
	

	
Równanie to wraz z równaniami krzywej wogóle wystarcza do




wyznaczenia x, y, z. Może wypaść dwa lub więcej kompletów

wartości tych współrzędnych; każdemu z nich odpowiada położenie równowagi.

	
	
57.    Dane jest równanie powierzchni; wyznaczyć na niej punkt lub punkty, w których cząsteczka pozostanie w równowadze pod działaniem sił danych.





Przypuszczamy znowu, że równanie powierzchni f{x, y,z)^0 mamy we współrzędnych Kartezyusza w odniesieniu do układu prostokątnego. W myśl par. 55 kosynusy kierunkowe siły wypadkowej muszą być proporcyonalne do kosynusów kierunkowych normalnych do powierzchni, a zatem

X _Y_Z fx fy Iz

Dwa te równania łącznie z równaniem powierzchni określają

a, y, z.

	
	
58.    Ciśnienie1) na linię lub powierzchnię. Ciśnienie to jest równe sile wypadkowej, która, jak wiemy, działa normalnie. Oznaczmy je przez R; otrzymamy, R2 = X2 + Y2+ Z2, a jego . -   X  Y Z





kosynusy kierunkowe są odpowiednio równe R, R‘ R1

	
	
59.    Przypuszczaliśmy 1w rozważaniach powyższych, że X, Y, Z są danemi funkcyami współrzędnych x, y, z. W wielu wypadkach współrzędne te są pochodnemi cząstko wemi względem x, y, z pewnej funkcyi V, zwanej potencyałem sił; zatem





OV     dV     dV


(1)



—, Y=—, Z= — 0x      dy      dz

Poprzednio znaleźliśmy warunek równowagi cząsteczki, która pozo-staje na gładkiej krzywej, określonej zapomocą równań ©=0, 1=0; warunek ten jest równoważny z twierdzeniem, że w punktach równowagi znika jakobian (V, «, •).

Zakładając, że potencyał V jest równy stałej dowolnej c, otrzymamy układ powierzchni, zwanych powierzchniami jednakowego po-tencyału, albo powierzchniami ekwipotencyalnemi. Z równań (1) wynika, że X, Y, Z są proporcyonalne do kosynusów kierunkowych normalnej do powierzchni ekwipotencyalnej, a zatem siła wypadkowa w punkcie dowolnym jest skierowana według normalnej do takiej powierzchni, przechodzącej przez ten punkt. Stąd zaś wynika, że, jeżeli cząsteczka jest zniewolona do pozostawania na pewnej gładkiej krzywej lub powierzchni, to położenia równowagi przypadają w tych punktach, w których ta krzywa lub powierzchnia styka się z powierzchnią ekwipo-tencyalną.

Możliwy jest wypadek, że każdy punkt krzywej lub powierzchni jest położeniem równowagi. W tym razie siła wypadkowa jest wszędzie normalna do krzywej lub powierzchni. Krzywa taka leży na powierzchni ekwipotencyalnej, powierzchnia zaś jest sama ekwipoten-cyalną.

	
	
60.    Warunek równowagi





Xdx+ Ydy+Zdz—0

możemy interpretować w sposób inny. Gdy podstawimy X, Y, Z z (1), to ostatnie równanie przekształci się na dV=0; znaczy to, że w położeniu równowagi potencyał sił osiąga maksymum lub minimum.

	
	
61.    Prz. 1. Ciężka cząsteczka musi pozostawać na gładkim okręgu koła, położonego w płaszczyźnie pionowej. Sznur, przywiązany do cząsteczki, przechodzi przez mały pierścień, umieszczony w najwyższym punkcie okręgu, i w drugim końcu dźwiga ciężar równy ciężarowi cząsteczki. Okazać, że układ pozostaje w równowadze, gdy część sznura, zawarta pomiędzy pierścieniem a cząsteczką, tworzy z pionem kąt 60°.





Prz. 2. Końce sznura przywiązano do dwóch ciężkich pierścieni o masach m i m', a prócz tego na sznur nawleczono paciórkę o masie M. Pierścienie mogą się swobodnie przesuwać na dwóch gładkich, sztywnych i nieruchomych prętach, nachylonych do poziomu pod kątami a i 3. Okazać, że

cot«: cot B: cot a=M: M+2m': M+2m, gdzie © oznacza kąt, który każda z części sznura tworzy z pionem.

(St. John’s, 1890).

Prz. 3. Dwie małe, lekkie obrączki są nawleczone na gładki łuk koła, położonego w płaszczyźnie pionowej. Przez obrączki przechodzi sznur, do którego przywiązano trzy jednakowe ciężary, dwa na końcach i jeden pośrodku pomiędzy obrączkami. Okazać, że w stanie równowagi odległość obrączek od najwyższego punktu okręgu wynosi 30°.                                                (Math. Tripos, 1853).

Prz. 4. Gładki drut w kształcie elipsy ustawiono w taki sposób, że duża oś jest pionowa. Na drut jest nawleczona paciorka, ważąca W; utrzymują ją w równowadze dwa sznury, przerzucone przez gładkie kołki w ogniskach i dźwigające na końcach ciężary, z których wyż-

W szy jest większy od niższego o —, gdzie e oznacza mimośród elipsy, e

Okazać, że paciorka wywiera na drut ciśnienie największe lub najmniejsze, gdy jest położona na końcach dużej osi, lub gdy stosunek jej promieni wodzących jest równy stosunkowi ciężarów na końcach sznura.                                               "(Christ’s Coli., 1865).

Prz. 5. Cztery jednakowe cząsteczki, przyciągające jedna drugą z siłą proporcyonalną do odległości, mogą się poruszać po elipsie. Równowaga zachodzi oczywiście tylko wtedy, gdy cząsteczki są położone na końcach obydwóch osi. Osadzamy piątą taką samą cząsteczkę nieruchomo w punkcie, którego odległości od małej i dużej osi są odpowiednio równe p i q. Okazać, że w tym razie nastąpi równowaga, gdy odległości czterech pierwszych cząsteczek od dużej osi będą pierwiastkami równania

/ b2q \2 a2b2p2 U*-bWtsa- 363) n(a-5bey"Ż

Prz. 6. Powierzchnia jest taka, że iloczyn odległości każdego jej punktu od dwóch punktów stałych A i B jest równy sumie tych odległości, pomnożonej przez pewną stałą. Cząsteczka musi pozostawać na tej powierzchni, przyczem punkty A i B wywierają na nią siły odpychające, proporcyonalne do odwrotności kwadratów odległości. Okazać, że cząsteczka jest w równowadze we wszelkich położeniach.

Prz. 7. Ciężki gładki czworościan jest podparty w trzech punktach trzech ścian, a czwarta ściana jest pozioma; okazać, że ciśnienia w punktach oparcia są proporcyonalne do pól ścian odpowiednich.

(Math. Tripos, 1869).

* Praca.

	
	
62.    Przypuśćmy, że siła P działa na punkt A pewnego ciała w kierunku AB^ i że ten punkt przesunął się do nowego bardzo blizkiego położenia A'. Niech « oznacza kąt, który kierunek AB siły tworzy z kierunkiem przesunięcia AA' punktu
[image: ]

Fig. 9.






przyłożenia siły. Iloczyn P. AA'. cós® zowie się pracą, wykonaną przez siłę. Jeżeli zamiast © stoi kąt, który kierunek AB tworzy z kierunkiem A'A, odwrotnym do przesunięcia, to iloczyn ów nazywa się pracą, wykonaną przeciw sile P lub nad siłą P. Poprowadźmy prostopadłą A'M do AB] praca siły jest także równa iloczynowi P. AM, przyczem odcinek AM uważamy za dodatni, jeżeli jest zwrócony w stronę siły. Niech P' oznacza składową siły w kierunku przesunięcia; w takim razie praca będzie jeszcze równa P'. AA'. Wszystkie te sposoby wyrażania pracy są oczywiście równoważne, i będziemy się nimi posługiwali ustawicznie.

	
	
63.    Siły, działające na cząsteczkę, wogóle zależą od jej położenia; jeżeli zatem cząsteczka przesunie się o skończoną odległość AA', to siła P wogóle nie pozostanie bez zmiany ani pod względem kierunku ani pod względem wielkości. Z tego względu musimy założyć, że przesunięcie AA' jest dostatecznie małe, aby można było uważać siłę P za stałą zarówno co do wielkości, jak i kierunku. Posługując się językiem rachunku różniczkowego, powiemy, że przesunięcie ĄA' jest nieskończenie małą pierwszego rzędu.





Przypuśćmy, że przesunięcie punktu przyłożenia odbyło się po pewnej krzywej, prowadzącej od A do końcowego punktu C. Niech ds oznacza jeden z elementów tej krzywej, i przypuśćmy, że gdy cząsteczka doszła do tego elementu, to P' było rzutem siły na ds, wziętym w kierunku, w którym mierzymy s. W myśl definicyi powyższej fP'ds jest sumą poszczególnych prac, które wykonywa siła, gdy cząsteczka przebiega z kolei wszystkie elementy krzywej. Sumę tę nazywamy pracą całkowitą przy przesunięciu skończonem. Jeżeli mierzymy s od pewnego punktu O krzywej, to granicami całki powyższej będą oczywiście s=OA oraz s= OC.

	
	
64.    Składowa AA‘cos® przesunięcia zowie się niekiedy szybkością przygotowaną punktu przyłożenia, iloczyn zaś P. AA‘cos momentem przygotowanym lub pracą przygotowaną siły. Wszy-stkie te wyrażenia ściągają się jedynie do przesunięć nieskończenie małych. Jeżeli przesunięcie jest skończone, to całka pracy przygotowanej nazywa się pracą.


	
65.    Niekiedy bywa dogodnie wykonywać zamierzone przesunięcie nie odrazu lecz stopniowo. Tak np. możemy uskutecznić przesunięcie AA', przesuwając A naprzód do D, a następnie od D do A' (fig. 9). Dajmy na to, że AD i DA' są nieskończenie małe, a zatem siła P zachowuje przez cały czas niezmienną wielkość i kierunek. W takim razie łatwo okazać, że praca wykonana w całkowitem przesunięciu AA’ jest równa sumie prac, wykonanych w przesunięciach AD i DA’. Poprowadźmy prostopadłe DN i A’M do kierunku siły; teraz owe prace z właściwymi znakami wyrażą się tak: P.AN i P.NM. Suma ich jest oczywiście równa P. AM, t. j. pracy, wykonanej w całkowitem przesunięciu AA'.





Jeżeli przesunięcie AA' jest skończone, lecz pomimo to siła P pozostaje bez zmiany co do kierunku i wielkości, to i w tym razie praca w wypadkowem przesunięciu jest równa sumie prac w przesunięciach cząstkowych AD i DA'.

	
	
66.    Przypuśćmy teraz, że na punkt A działa pewna liczba sił. Gdy punkt ten przesuwa się do A', to każda z nich wykonywa pracę. Sumę tych prac definiujemy, jako pracę wykonaną zbiorowo przez wszystkie siły.





Jeżeli pewna liczba sił działa na punkt A, to suma prac na każdem małem przesunięciu AA' jest równa pracy, wykonanej przez wypadkową.

Praca, wykonana przez jedną z owych sił, jest w myśl definicyi równa iloczynowi z AA' przez składową tej siły w kierunku AA\ a zatem praca, wykonana przez wszystkie siły, będzie równa iloczynowi z AA! przez sumę ich składowych; według par. 44 jest to to samo, co iloczyn z AA' przez składową wypadkowej, czyli jest to praca, wykonana przez wypadkową.

	
	
67.    Dzięki twierdzeniu powyższemu możemy w inny sposób wypowiedzieć warunki równowagi sił P1, P..., działających na punkt A.





Przypadek 1. Jeżeli cząsteczka A jest swobodna, t, j. ma możność poruszać się w każdym kierunku, to do równowagi jest niezbędnem, aby wypadkowa była równa zeru. Stąd wynika, że przy przesunięciu cząsteczki w jakimkolwiek kierunku praca zbiorowa sił P1, P,... musi być równa zeru.

Odwrotnie, jeżeli praca przygotowana przy pewnem przesunięciu jest zerem, to rzut wypadkowej na kierunek przesunięcia jest także zerem. Jeżeli prace przygotowane sił P1, P2 ... przy trzech przesunięciach, nie leżących w jednej płaszczyźnie są zerami, to rzuty wypadkowej na te kierunki są również zerami, a zatem cząsteczka jest w równowadze.

	
	
68.    Przypadek 2. Dajmy na to, że cząsteczka jest zniewolona do pozostawania na pewnej linii lub powierzchni; w tym razie na cząsteczkę działa jeszcze ciśnienie R, normalne do linii lub powierzchni, i równowaga zachodzi pomiędzy siłami P1, P2... oraz R. Zatem w myśl przypadku 1 przy każdem nieskończenie małem przesunięciu praca przygotowana tych wszystkich sił jest równa zeru.





Jeżeli przesunięcie punktu A nastąpiło na stycznej do linii albo w płaszczyźnie stycznej do powierzchni, to reakcya R tworzy z przesunięciem kąt prosty, a zatem praca przygotowana tej siły jest zerem. Stąd wynika bezpośrednio, że również jest zerem praca przygotowana sił P1, P2 ... przy wszelkich przesunięciach tego rodzaju.

Przypuśćmy teraz, że cząsteczka musi pozostawać na pewnej linii, i że praca przygotowana przy przesunięciu na stycznej jest równa zeru. Stąd wynika, że rzut wypadkowej na styczną jest równy zeru, a zatem cząsteczka pozostaje w równowadze.

Przypuśćmy następnie, że cząsteczka musi pozostawać na pewnej powierzchni, i że prace przygotowane przy dwóch przesunięciach, położonych w płaszczyźnie stycznej, lecz nie na jednej prostej, są zerami; w takim razie rzuty wypadkowej na te kierunki są zerami, i cząsteczka jest w równowadze.

	
	
69.    Prz. 1. Z zasady szybkości przygotowanych wyprowadzić warunki równowagi cząsteczki, zniewolonej do pozostawania na krzywej (56).





Na cząsteczkę działają siły X, Y, Z, a rzuty przesunięcia ds na kierunki sił są dx, dy, dz. Mnożąc każdą siłę przez odpowiedni rzut, otrzymamy odrazu warunek równowagi Xdx+ Ydy+Zdz—Q.

Prz. 2. Dwa małe pierścionki o jednakowych ciężarach są nawleczone na gładki nieruchomy drut w kształcie elipsy, której duża oś jest pionowa. Pierścionki łączy sznur, przechodzący przez gładki kołek w górnem ognisku elipsy. Okazać, że pierścionki pozostaną w równowadze we wszelkich położeniach.

Niech W oznacza ciężar każdego pierścionka, T — naprężenie sznura, l jego długość, a i x‘ odcięte pierścionków, mierzone pionowo nadół od kołka, wreszcie r i r' promienie wodzące pierścieni, czyli ich odległości od kołka. Oczywiście r+r'=l. Ponieważ pierwszy pierścień jest w równowadze, przeto w myśl zasady pracy przygotowanej Wdx—Tdr=0. Wyrazowi pierwszemu nadano tu znak dodatni, bo x mierzymy w tym samym kierunku, w którym działa siła W; drugi wyraz otrzymał znak ujemny, bo T działa w kierunku odwrotnym do tego, w którym mierzymy r. W ten sam sposób dla drugiego pierścienia otrzymamy Wdx'—Tdr'=Q. Stąd wynika równanie równowagi Wdx + Wdx' = 0, gdyż dr—— dr1. Dotychczas nie uwzględniliśmy jeszcze okoliczności, że drut ma kształt elipsy. Niech 2c oznacza lotus rectum2), i e mimośród liczbowy; w takim razie r=c+ex, r'=c+ex', i dx+dx'=0, a zatem warunek równowagi będzie spełniony zawsze, jakiekolwiek położenie nadamy pierścieniom.

Prz. 3. Cząsteczkę, która może się przesuwać po elipsie, przyciąga dany punkt z siłą proporcyonalną do odległości. Dowieść, że położenia równowagi cząsteczki znajdują się na hiperboli, której asym-ptoty są równoległe do osi elipsy.                (Math. Tripos, 1865).

Prz. 4. Dwa pierścionki o jednakowych ciężarach przyciągają się nawzajem wprost proporcyonalnie do odległości. Nawleczono je na gładki drut w kształcie paraboli, której oś jest pionowa, a wierzchołek zwrócony ku górze. Okazać, że, jeżeli zachodzi równowaga w jednem położeniu synietrycznem, to zachodzi i we wszystkich.

(Coli. Ex. 1887).

Prz. 5, W parabolicznym rowku znajdują się dwie cząsteczki, pomiędzy któremi zachodzi przyciąganie lub odpychanie; łączy je nić, przechodząca przez małą obrączkę w ognisku. Okazać, że gdy cząsteczki są w spokoju, to odległość od wierzchołka do ogniska jest średnią proporcyonalną pomiędzy ich odciętemi, mierzonemi od wierzchołka.

Prz. 6. Tworzące stożkowego wzgórza o wysokości h są nachylone do poziomu pod kątem a. Na jego wierzchołek wciągnięto ciężar W drogą, przecinającą wszystkie tworzące pod kątem 3. Powierzchnia wzgórza jest nierówna, i tarcie p. razy przewyższa ciśnienie normalne.

	
u. COt a\



Okazać, że wykonana praca wynosi

(St John’s Goli. 1887).

Równoiuaga astatyczna.

	
	
70.    Przypuśćmy, że trzy siły P, Q, R, działające na je-den punkt, są w równowadze. Obróćmy je około tego punktu o dowolny kąt; jeżeli przytem wielkości sił a także kąty pomiędzy niemi zawarte pozostaną bez zmiany, to oczywiście równowaga nie dozna zakłócenia. Możemy uważać, że siła jest przyłożona w którymkolwiek punkcie jej linii działania, uważajmy więc za punkty przyłożenia sił P, Q, R punkty A, B, C odnośnych linii działania. Obróćmy znowu każdą z sił około nowego punktu przyłożenia o jeden i ten sam kąt. Oczywiście równowaga zostanie rozstrojona, jeżeli punkty A, B^ C nie są obrane w taki sposób, aby i nadal linie działania sił przechodziły przez jeden punkt (34).





Zamiast obracać siły około punktów przyłożenia możemy obrócić ciało o pewien kąt około pewnego punktu. W tym razie siły zachowają swe wielkości i kierunki bez zmiany, lecz ich punkty przyłożenia, jako należące do ciała, poruszają się wraz z niem. Jeżeli ten ruch obrotowy nie zakłóca równowagi, to równowaga nazywa się astatyczną.

	
	
71.    Przypuśćmy, że siły P i Q są przyłożone w punktach A i B, a ich linie działania przecinają się w punkcie O.





Gdy siły obracają się około A i B w płaszczyźnie AOB, to kąt pomiędzy niemi powinien pozostać bez zmiany. Stąd widać, że P . punkt 0 zatacza okręg koła, przechodzący przez A i B. Wypadkowa tych sił przechodzi przez 0 i tworzy kąty stałe z OA i OB^ a zatem przecina okręg w stałym punkcie C.

3 Wypadkowa ta jest równa i odwrotna do trzeciej siły R.

c c           Jeżeli zatem trzy siły P^ Q, R, przyłożone

Fig. 10. w punktach A, B, C, przecinają się na okręgu, opisanym na ABC, i są w równowadze, to równowaga nie zostanie zakłócona, gdy obrócimy je o dowolny kąt w płaszczyźnie ABC około punktów przyłożenia. Dowód powyższy znajdujemy w Statyce Moigno str. 228.

Synusy kątów AOG i BOC są proporcyonalne do AC i GB, a stąd wynika, że odcinki AG i GB są odwrotnie proporcyonalne do sił, przyłożonych w A i B. Jeżeli siły P i Q są równoległe, to okręg przechodzi w prostą AB, i na tejże prostej leży punkt G. Jeżeli prócz tego siły P i Q są równe i odwrotne, to siła R działa na nieskończenie odległy punkt prostej AB.

	
	
72.    Przypuśćmy, że dwie siły P1, P2 działają na dane punkty A, B; punkt, na który zawsze działa wypadkowa, jakkolwiek obrócimy siły, zowie się środkiem sił. Przypuśćmy, że na trzeci dany punkt C działa trzecia siła P3; możemy ją połączyć z wypadkową dwuch pierwszych i otrzymać nową wypadkową, działającą na inny stały punkt ciała. Będzie to środek trzech sił. Działanie to można rozciągnąć do dowolnej liczby sił. Możemy zatem otrzymać jedną siłę, działającą na stały punkt ciała, jako wypadkową dowolnej liczby sił, działających na jakiekolwiek stałe punkty w płaszczyźnie. Ta po-jedyńcza siła pozostaje wciąż wypadkową i działa wciąż na ten sam punkt, gdy siły składowe obracają się około swych punktów przyłożenia. Siła ta zowie się wypadkową astatyczną.


	
73.    Astatyczny trójkąt sil. Twierdzenie powyższe prowadzi do nowej metody stosowania trójkąta sił. Z fig. 10 widać, że kąty ABC i AOG, jako oparte na tym samym łuku, są równe. Toż samo dotyczy kątów BAG i BOG. Jeżeli przeto siły P, Q, R się równoważą to są proporcyonalne do synusów kątów trójkąta ABC, a zatem i do jego boków. Mamy więc





P:BG- = Q: CA=R-.AB.

Punkty A, B, C dzielą okręg na trzy luki AB, BC, CA. Jeżeli punkt 0 leży na AB, to siły, których linie działania przechodzą przez A i B, muszą być obydwie zwrócone do A i B lub obydwie odwrócone od A i B. W pierwszym przypadku siła trzecia będzie odwrócona od C, w drugim zaś będzie zwrócona do 0. Doszliśmy zatem do twierdzenia następującego:

Trzy siły, działające na wierzchołki trójkąta A, B, C, są w równowadze, jeżeli 1) wielkości ich są proporcyonalne do przeciwległych boków, 2) ich linie działania sphodzą się w jakimkolwiek punkcie O okręgu opisanego, 3) kierunki ich podlegają wyżej wymienionej regule. Równowaga nie zostanie zakłócona, gdy obrócimy wszystkie siły około punktów przyłożenia o kąt dowolny, lecz dla wszystkich jednakowy, nie zmieniając przytem ich wielkości. Uważamy tu, że wszystkie siły działają w płaszczyźnie trójkąta ABC.

	
	
74.    Prz. 1. Siły P, Q, R, S..., działają w jednej płaszczyźnie, są w równowadze, i ich linie działania schodzą się w punkcie 0. Za-toczmy przez punkt 0 dowolne koło; przetnie ono linie działania sił w punktach A, B, C, D.... Dowieść, że równowaga jest astatyczna, jeżeli uważamy te punkty za punkty przyłożenia sił.





Prz. 2. Na fig. 10 prowadzimy prostą CC' równolegle do AB; przetnie ona koło w punkcie C'. Okazać, że siły P, Q, R tworzą równe kąty z bokami BC’, CA, AB trójkąta BCA. Wyprowadzić następnie na zasadzie par. 35 warunki równowagi.

Prz. 3. Niech a i' 3 oznaczają kąty, które siły P i Q tworzą z wypadkową R. Okazać, że środek sił jest określony przez

AB BE AB CE=--- =--- =--,          *

COt^ COta COta + COt^ gdzie CED jest prostopadłą z C do AB (fig. 10).

Równowaga trwała i chwiejna.

	
	
75.    Dajmy na to, że ciało, podlegające działaniu pewnych sił, pozostaje w równowadze w położeniu, które nazwiemy położeniem A. Przesuńmy to ciało do jakiegoś sąsiedniego położenia B i pozostawmy je tam w spokoju. Nastąpi jedno z dwojga: albo ciało pozostanie w równowadze i w tem nowem położeniu, albo zacznie się poruszać pod działaniem sił. W przypadku pierwszym A nazywa się położeniem równowagi obojętnej. W przypadku drugim równowaga w położeniu A zowie się chwiejną lub trwałą zależnie od tego, czy w ciągu następnego ruchu odchylenia ciała od owego położenia przekraczają pewne określone granice, lub ich nie przekraczają. Rozległość tych granic zależy od różnych okoliczności. Niekiedy granice są bardzo ciasne, i odchylenia dozwolone są nieskończenie małe, w innych razach bywa dopuszczalna większa rozległość.





Określanie trwałości równowagi należy do zagadnień dy-namicznych. W myśl definicyi musimy zbadać cały ruch następny, aby wyznaczyć rozległość odchyleń ciała od położenia równowagi. Niekiedy jednak sprawa daje się rozstrzygnąć za-pomocą rozważań statycznych. Jeżeli okoliczności są tego rodzaju, że przy wszelkich odchyleniach ciała od położenia A, zawartych w określonych granicach, siły usiłują przywrócić ciału owo położenie, to możemy uważać równowagę za trwałą dla odchyleń w obrębie tych granic. Jeżeli natomiast siły usiłują jeszcze bardziej oddalić ciało od położenia A, to równowagę możemy uważać za chwiejną. Nie daje się jednak ściśle dowieść, że są to warunki dostateczne, jeżeli nie rozporządzamy pewnemi równaniami dynamicznemi. Dla tego też należałoby oznakę powyższą nazywać tymczasem dla ścisłości oznaką statycznej trwałości lub chwiejności równowagi, dla krótkości jednak nie będziemy czynili tych rozróżnień, chyba że wypa-dnie zwrócić na nie uwagę szczególną.

	
	
76.    Dwie równe siły P i Q, przyłożone do ciała w punktach A i B, są w równowadze; oczywiście działają one na prostej AB. Dajmy na to, że ciało obróciło się o pewien kąt, mniejszy od dwóch kątów prostych, przyczem siły działają wciąż na te same punkty ciała i nie zmieniają kierunku w przestrzeni. Pragniemy zbadać warunki trwałości równowagi.
[image: ]





Widać z figury, że siły usiłują przywrócić ciału położenie pierwotne, jeżeli każda z nich jest odwrócona od punktu przyłożenia drugiej, usiłują one natomiast jeszcze dalej odchylić ciało od położenia pierwotnego, jeżeli każda z nich działa w stronę punktu przyłożenia drugiej.

Jeżeli ciało obróci się o dwa kąty proste, to znowu nastąpi równowaga; równowaga ta będzie chwiejna, jeżeli poprzednio była trwała i odwrotnie.

	
	
77.    Prz. 1. Gładką okrągłą obręcz ustawiono w położeniu poziomem, a na obręcz nawleczono pierścionek, pozostający w równowadze, gdy działają nań dwie siły w kierunkach cięciw PA i PB. Okazać, że stosunek tych sił jest równy stosunkowi BC do AC, gdzie C oznacza drugi koniec średnicy, przechodzącej przez P. Okazać również, że równowaga jest chwiejna, jeżeli punkty A, B są stałe, i wielkości sił nie ulegają zmianie.                      (Math. Tripos, 1854).





Prz. 2. Trzy dane siły P, Q, B, działające na ciało w jednej płaszczyźnie i przyłożone w punktach A, B, C, są w równowadze. Gdy poruszymy ciało, to siły nie przestają działać na te same punkty w tych samych kierunkach, i wielkości ich nie ulegają zmianom. Zbadać warunki trwałości równowagi. (Zobacz także par. 221).

W położeniu równowagi linie działania sił muszą się spotykać w pewnym punkcie O. Jeżeli ten punkt leży na okręgu koła, opisa

nego na ABC, to, jak wiemy z paragrafu 71, równowaga jest obojętna.

[image: ]



Przypuśćmy teraz, że punkt 0 leży wewnątrz kołowego odcinka, na którym jest oparty kąt ACB, przyczem siły P i Q są zwrócone w strony punktów A i B, R zaś działa od C do 0. Zatoczmy koło, przechodzące przez 0, A, B; prze-tnie ono OC w punkcie C. Wobec tego, że 0 leży wewnątrz koła ABC, punkt C musi leżeć nazewnątrz. W myśl par. 71 siły P i Q są astatycznie równoważne sile równej i odwrotnej do R, lecz przyłożonej w C'. Widzimy, że cały układ jest równoważny dwóm siłom, przyłożonym w C i C, przyczem każda z nich jest odwrócona od punktu przyłożenia drugiej. Stąd wynika, że równowaga jest trwała dla wszelkich odchyleń mniejszych od dwóch kątów prostych. Jeżeli P i Q działają od A i B w stronę O, to równowaga jest chwiejna.

Jeżeli punkt O leży nazewnątrz koła ABC, lecz wewnątrz kąta ACB, to C leży wewnątrz owego koła. Warunki zostały tu odwrócone, a zatem równowaga jest chwiejna, jeżeli siły P i Q są zwrócone od O do A i B.

Jeżeli punkt O leży wewnątrz trójkąta ABC, to wszystkie trzy siły muszą być zwrócone do 0 lub wszystkie odwrócone od tego punktu. Rozumując jak poprzednio, dojdziemy, że w przypadku pierwszym równowaga jest chwiejna, w drugim trwała.

Streszczając się, otrzymamy wyniki następujące: W przypadku, gdy w stanie równowagi przynajmniej dwie siły działają od wspólnego punktu 0 do punktów przyłożenia, równowaga jest trwała, jeżeli 0 leży wewnątrz koła ABC, i chwiejna, jeżeli 0 leży nazewnątrz. W przypadku, gdy przynajmniej dwie siły działają od punktów przyłożenia do O, warunki powyższe zmieniają się na odwrotne.

Prz. 3. Cząsteczka, która musi pozostawać na danej gładkiej powierzchni, jest w równowadze w punkcie 0 pod działaniem sił, posiadających potencyał, i Oz oznacza wspólną normalną do owej powierzchni i do powierzchni ekwipotencyalnej, przechodzącej przez O. Przesuwamy cząsteczkę o mały łuk OP=ds, i niech F oznacza składową siły, działającej na cząsteczkę w kierunku stycznej do OP w punkcie P. Okazać, że F— (1---^Zds, gdzie Z oznacza ciśnienie w po-

\P P

łożeniu równowagi, a p i p‘ promienie krzywizny przecięć normalnych obydwóch powierzchni z płaszczyzną zOP.

Niech z oznacza odległość PN punktu P od “płaszczyzny xy, X’, Y', Z' składowe siły, działającej na cząsteczkę w punkcie P, wre-szcie « kąt xON. Kąt, który styczna [w P do przekroju normalnego ds

4zOP tworzy z ON, jest równy —, a zatem, odrzucając kwadraty P

wielkości małych, otrzymamy

ds

F-— X‘COS t — Y‘sin p — Z’— .

P

Można tu zamiast Z’ napisać wartość tej składowej w położeniu równowagi, a ponieważ z jest nieskończenie małą drugiego rzędu, przeto X’, Y' mają w P te same wartości, co i w N. Stąd wynika, że dwa pierwsze wyrazy posiadają jednakowe wartości dla wszystkich powierzchni, stykających się z płaszczyzną xy w punkcie 0; lecz dla powierzchni ekwipotencyalnej F=0, a zatem dwa pierwsze wyrazy =
[image: ]

Z dowiedzionego wzoru wynika, że równowaga cząsteczki w punkcie 0 danej powierzchni jest trwała dla niektórych przesunięć i chwiejna dla innych; granicę stanowi linia przecięcia danej powierzchni z powierzchnią ekwipotencyalną, przechodzącą przez 0. Jeżeli powierzchnia ekwipotencyalna przebiega całkowicie po jednej stronie powierzchni danej, to równowaga jest dla wszystkich przesunięć trwała lub dla wszystkich chwiejna.

* ROZDZIAŁ III.

SIŁY RÓWNOLEGŁE.

	
	
78.    Wyznaczyć wypadkową dwóch sił równoległych.





Niech będą dwie siły równoległe P i Q, działające na punkty A i B; punkty te są zresztą dowolnymi punktami na liniach działania. Aby otrzymać punkt przecięcia sił w odległości skończonej, przyłóżmy w punktach A i B dwie jakiekol-
[image: ]

Fig. 13.


wiek równe siły F^ działające w kierunkach odwrotnych. Wypadkowa sił P i F działa na prostej A O, wypadkowa zaś sił Q i F na prostej BO; proste te przecinają się w punkcie 0.

Tym sposobem zastąpiliśmy dwie siły dane przez dwie inne i możemy uważać, że te ostatnie działają na punkt 0. Poprowadźmy teraz prostą 00 równolegle do AP i BQ; przetnie ona AB w punkcie C. Zwróćmy uwagę na siłę, działającą na 0 wzdłuż OA. Możemy rozłożyć ją (jak w dowodzie równole-głoboku sił Duchayli) na dwie siły, jedną równą P i działającą w kierunku OC i drugą równą F^ działającą równolegle do CA. Również druga siła, działająca na 0 wzdłuż OB, jest równoważna sile Q, działającej wzdłuż OC, oraz sile F, działającej na 0 równolegle do CB.

Siły F oczywiście równoważą się, i możemy je usunąć.

Statyka. 4

Tym sposobem cały układ sprowadza się do jednej siły P+ Q, działającej na prostej OC.

Boki trójkąta OCA są odpowiednio równoległe do P, F ..       .   . OC P  .  . . OC  Q

i ich wypadkowej. Stąd wynika--= — ; również — == —,

CA  F       CB  F


a zatem




^■O BC_ AB Q ~ P~P+Q'



Wypadkowa dwóch sił równoległych P i Q jest równa P + Q, a jej linia działania dzieli każdy odcinek AB, zawarty pomiędzy liniami działania składowych, w stosunku odwrotnym tych sił.

Ten sam dowód daje się zastosować i w tym razie, gdy siły P i Q posiadają kierunki odwrotne; jedynie figura będzie nieco odmienna. Jeżeli siła Q jest większa od P, to BO tworzy mniejszy kąt z Q, niż OA z P, a zatem O leży wewnątrz kąta Q,BC. W tym przypadku wypadkowa wynosi Q- P, a jej linia działania dzieli AB zewnętrznie w stosunku odwrotnym do stosunku sił.

Warto zauważyć, że punkt C, w którym wypadkowa przecina prostą AB, jest centroidem dwóch cząsteczek, położonych w A i B; masy tych cząsteczek są proporcyonalne do sił, działających na owe punkty (53).

	
	
79.    Odwracając działanie powyższe, możemy daną siłę R, działającą na dany punkt C, zastąpić przez dwie równoległe siły P i Q, przyłożone w dwóch punktach A i B, obranych dowolnie na jakiejkolwiek prostej, przechodzącej przez C.





Oznaczmy CA przez a i CB przez b, uważając a, b za dodatnie, gdy są mierzone od C w tym samym kierunku. Znaj-dziemy

b             a

P+Q^R, P=--—P, b—a       a—b

Jeżeli A i B leżą po tej samej stronie punktu C^ to a i b są dodatnie; w tym razie składowa bliższa R jest zwrócona w tę samą stronę, co i R; druga składowa działa w kierunku odwrotnym, i uważamy ją za ujemną. Jeżeli C leży pomiędzy A i P, to jedna z odległości a, b jest ujemna. W tym razie obydwie składowe są zwrócone zgodnie z R.

	
	
80.    Wyznaczyć wypadkową jakiejkolwiek liczby sił równoległych Pv P2--, działających na punkty A,, A2..., odniesione do jakiegokolwiek układu współrzędnych.





Niech (x1Y121), (x2U2zz)--- oznaczają współrzędne Kartezyu-sza punktów A,, A2... Siły P i P2, działające na A, i A2, są równoważne jednej sile P1+P2; ostatnia działa na punkt C1 , położony na A,A, tak, że P.A,C1= P2.A2C2 (par. 78). Współrzędne punktu C1 oznaczamy przez (6,151). Odcinki A1C1 i A2C1 są w tym samym stosunku, co ich rzuty na osi x, a zatem

P(61 - x,) = P2(x, - 6,) ,

lub               (P,+P,)6,= Pa,+P,x,

Dla innych współrzędnych punktu C1 otrzymamy wzory analogiczne.

Siła P1+P2, działająca na C1, oraz trzecia siła P3, działająca na As, są znowu równoważne sile P1+P2+P,, działającej na punkt C2, którego współrzędne (§27252) wyznaczymy z

(P, +P,+P,),= (P, + P,)6, +P,X>

= Pix1 + P,x, + I 323 oraz z wzorów analogicznych na 72, 52.

Postępując dalej w ten sam sposób, zobaczymy, że wypadkowa wszystkich sił jest równa ..........., a jeżeli (§n%) oznaczają współrzędne jej punktu przyłożenia, to

(P + P2 + .)= Px, +1 2x2 + ...

(P + P2 + .) = Ply1 + P2y2 + • • •

(P + P,+ ..) : = P51 + P,E, +.

Równania te zwykle piszemy w postaci takiej:

. l^Px          ^Py , ŁPz

	
	
81.    Może się wydać, że dowód powyższy jest nieważny lub wymaga pewnych modyfikacyi, gdy niektóre z wypadkowych P+P2, P1+P2+P3,... są równe zeru, bo wówczas odpowiednie 61, 62,... są nieskończenie wielkie. Wydaje się również, że wyniki powyższe zawodzą, gdy 2 P=0. Ale każde twierdzenie, dowiedzione dla ogólnych wartości sił, musi mieć moc i w owych wypadkach granicznych, jakkolwiek ihterpretacya jego będzie niejasna, dopóki nie dojdziemy do te-oryi par.





Możemy uniknąć tej pozornej trudności, wprowadzając małą zmianę do rozumowania powyższego. Podzielmy siły na dwie grupy: do pierwszej zaliczymy wszystkie siły, zwrócone w tę samą stronę, do drugiej wszystkie siły, zwrócone przeciwnie. Przypuśćmy, że sumy sił w tych dwóch grupach są nierówne. Składamy przedewszystkiem siły tej grupy, której suma jest większa, a następnie dołączamy po jednej sile drugiej grupy. Oczywiście przy postępowaniu takiem żadna ze składowych cząstkowych nie będzie równa zeru, i żaden punkt przyłożenia nie wypadnie w nieskończoności. Jeżeli sumy sił w obydwóch grupach są równe, to środek sił równoległych jest nieskończenie odległy.

	
	
82.    Wyrażenia na współrzędne (En$) są takie same, jak wyrażenia na współrzędne centroidu, które znaleźliśmy w paragrafie 51; wyciągamy stąd prawidło następujące: .





Aby wyznaczyć wypadkową sił równoległych P1, P2, ... obieramy na ich liniach działania punkty • A 1, A,, ... i umieszczamy w tych punktach cząsteczki o masach proporcyonalnych do P1, P, ... Linia działania wypadkowej przechodzi przez centroid tych cząsteczek i idzie równolegle do sił; wypadkowa wynosi ^P.

Odwrotnie można każdą siłę zastąpić układem sił równoległych, działających na dowolne punkty A,, A2...; owe siły powinny być takie, aby centroid leżał na sile danej.

Twierdzenie powyższe jest w rzeczywistości przypadkiem granicznym twierdzenia Leibniza. Jeżeli siły działają na prostych OA1, OA2..., przechodzących przez jeden punkt, to można wyznaczyć wypadkową przy pomocy jednej z metod, które rozważaliśmy w rozdziale poprzedzającym. Założywszy, że punkt O jest bardzo odległy, możemy uważać siły, działające na OA, , OA2..., za równoległe, i odrazu otrzymamy twierdzenie, odpowiednie. Tak np. w par. 51 mieliśmy, że wypadkowa sił, proporcyonalnych do Pi . OAX, P2.OA2..., jest pro-porcyonalna do ^P.OC i działa na prostej OC, gdzie C oznacza centroid cząsteczek Pi, P2..., położonych w A, , A2... W granicy odcinki OA, , OA2... OC są wszystkie równe, a zatem wypadkowa sił równoległych, proporcyonalnych do Pi, P2... jest proporcyonalna do ZP i działa na C.

	
	
83.    Punkt (§n£), określony w równaniach paragrafu 80, posiada pewną doniosłą właściwość. Położenie jego nie zależy od kątów, które siły tworzą i osiami współrzędnych. Jeżeli uważamy punkty, na które działają dane siły równoległe za niezmienne w ciele, to i punkt przyłożenia wypadkowej zachowuje w ciele położenie niezmienne, jakkolwiek obrócimy owe siły około ich punktów przyłożenia; powinny one przytem pozostawać równ\ - q i nie zmieniać się pod względem wielkości.





Ów punkt przyłożenia wypadkowej zowie się „środkiem sił rówmległych1''.

	
	
84.    Prz. 1. Cztery siły równoległe, z których każda jest równa P, działają na wierzchołki A, B, C, D płaskiego czworoboku, w którym kąt C przewyższa 1800, a piąta siła — P równoległa do tamtych, działa na punkt przecięcia H przekątni HCA i BHD. Okazać, że, jeżeli środek wszystkich pięciu sił leży w wierzchołku C, to HC—CA.





Prz. 2. Wysokości*AD, BE, CE trójkąta ABC przecinają się w punkcie P, i sześć równych sił równoległych działa na punkty środkowe boków i odcinków PA, PB, PC. Okazać, że wypadkowa jest przyłożona w środku koła, które przechodzi przez te wszystkie punkty środkowe.                                          (Math. Tripos, 1877.)

Prz. 3. Przekątnie czworoboku AB CD przecinają się w punkcie O. Na środki boków AB, BC, CD, DA działają siły równoległe, odpowiednio proporcyonalne do pól trójkątów AOB, BOC, COD, DOA. Dowieść, że środek tych sił leży w czwartym wierzchołku G równole-głoboku, zbudowanego na bokach OE i OE, gdzie E i F oznaczają punkty środkowe przekątni AC i BD.                 (Coli. Ex. 1885.)

Obrawszy BD za oś x, znajdziemy =2(p— p'), gdzie pip1 ozna-czają odległości wierzchołków A i C od BD. Stąd wynika, że środek sił równoległych leży na EG-. W podobny sposób dojdziemy, że leży on również na EG.

	
	
85.    Wyznaczyć warunki równowagi układu sił równoległych.





Oznaczmy te siły przez Pt^ ... Pn-, w myśl par. 80 posiadają one wypadkową, jeżeli nie jest spełnione równanie ZP=0. Równanie to stanowi niezbędny warunek równowagi ale niewystarczający.

Możemy wyznaczyć wypadkową n — 1 sił, nie wprowadza-jąc żadnych sił, posiadających linie działania w nieskończoności (80); wynika to stąd, że suma owych n — 1 sił jest równa —Pn, a więc różni się od zera. Do równowagi wystarczy, aby punkt przyłożenia tej wypadkowej leżał na linii działania siły Pn.

Oznaczmy współrzędne punktu przyłożenia tej wypadko-wej przez (§n%). Wyznaczyliśmy je w par. 80. Mamy więc

.        -.... — P,-1 2,-1 P+-+P,-)" oraz analogiczne wyrażenia na n i C.

Niech (c3Y) oznaczają kąty kierunkowe sił danych. Rzuty odcinka, łączącego punkt (§n£) z punktem przyłożenia siły PK, czyli z (AnJnZn), na osi współrzędnych są odpowiednio równe 6-Xn, -Yn, Z-zn, a zatem

6 En 1 Un C zn cos a cos 3 cos 1

Podstawiając wartości współrzędnych (475) i uwzględniając, że mianownik wyrażenia na § jest równy -Pn^ otrzymamy

2 Px x Py  2 P z.

cos o cos 3 cos 7

Równania te wraz z ZP=0 stanowią trzy niezbędne i wystarczające warunki równowagi.

Jeżeli równowaga ma zachodzić, jakkolwiek obrócimy siły około ich punktów przyłożenia, to punkt przyłożenia wypadkowej pierwszych n— 1 sił, wyznaczony według par. 80, powinien przypaść w danym punkcie przyłożenia siły Pn, czyli

6 En , 7 IJn, $ — Zn •

Stąd wynika

2 Pa =0, X Py=0, ^Pz = 0........(2)

Łącząc te równania z SP = 0, mamy cztery warunki niezbędne i dostateczne równowagi astatycznej układu sił równoległych.

	
	
86.    Prz. 1. Okazać, że każdy układ sił równoległych daje się zastąpić przez trzy siły równoległe, przyłożone w wierzchołkach dowolnego trójkąta ABC.





Dajmy na to, że P, jedna z sił danych, przecina płaszczyznę trójkąta w punkcie, którego współrzędne powierzchniowe są x, y, z (par. 53, prz. 2). Możemy zastąpić siłę P przez trzy siły równoległe Px, Py, Pz, działające na wierzchołki (82), a wszystkie siły dane są równoważne trzem siłom 2 Px, ^Py^ ^Pz, działającym odpowiednio na A, B, C.

Prz. 2. Przecinamy dowolną płaszczyzną linie działania czterech sił równoległych, pozostających w równowadze. Przez cztery punkty przecięcia przechodzi sześć prostych, tworzących cztery trójkąty. Dowieść, że każda siła jest proporcyonalna do pola trójkąta, którego wierzchołki leżą na liniach działania trzech sił pozostałych.

(Ap/)lied Mathematics Rankina, par. 143).

	
	
87.    Ciężkie ciało jest zawieszone w nieruchomym punkcie, nie podlegając żadnym innym ograniczeniom swobody ruchu, mamy wyznaczyć położenie równowagi.





Ciało jest w równowadze pod działaniem ciężarów wszystkich swych elementów oraz reakcyi w punkcie zawieszenia. Ciężary elementów tworzą układ sił równoległych i są równoważne całkowitemu ciężarowi ciała, działającemu pionowo na dół na środek ciężkości. Wywnioskujemy stąd łatwo, że w stanie równowagi środek ciężkości musi leżeć pionowo pod punktem zawieszenia. Jest również rzeczą oczywistą, że reakcya w punkcie zawieszenia jest równa ciężarowi ciała.

Przy stosowaniu zasady powyższej trzeba znać położenia środków ciężkości ciał, wskazujemy też je w przykładach następujących w miarę potrzeby. Jeżeli przedmiot ten jest jeszcze czytelnikowi całkowicie obcy, to radzimy mu przyjąć tymczasem podane wskazówki na wiarę, albo zajrzeć do rozdziału, poświęconego środkowi ciężkości, gdzie można znaleźć odnośne dowody.

Prz. 1. Jednorodną cienką płytę trójkątną A.BC zawieszono u nieruchomego punktu 0 na trzech sznurach, uczepionych w wierzchołkach. Okazać, że naprężenia sznurów są proporcyonalne do długości.

Poprowadźmy przez B i C proste równoległe do OC i OB, i niech D będzie ich punktem przecięcia. Prosta OM przechodzi przez środek przekątni BC, a zatem przechodzi i przez punkt D. Widzimy, źe boki trójkąta O CD są odpowiednio równoległe do naprężeń CO, BO i do ich wypadkowej, a stąd wynika, że owe naprężenia są proporcyonalne do OC, CD lub do OC, OB

Inny dowód wynika z par. 51. Środek ciężkości trójkątnego pola przypada w środku ciężkości trzech równych ciężarów, położonych w wierzchołkach, a zatem, gdy rozłożymy siłę, odpowiadającą 3.OG, w kierunkach sznurów, to składowe te będą odpowiadały odcinkom OA, OB, OC.

Prz. 2. Ciężki trójkąt ABC jest zawieszony za wierzchołek A, i przeciwległy bok tworzy z poziomem kąt a. Okazać, że 2 tan= =cot B—cot C.                                     (Math. Tripos, 1865).

Prz. 3. Dwa jednorodne ciężkie pręty A B, BC łączymy. sztywno w B i zawieszamy za koniec A. Okazać, że pręt BC zajmie położenie po-B

ziome, jeżeli sin C= V 2sin —, gdzie Bi C oznaczają kąty trójkąta AB C.

2                              (Coli. Ex., 1883).

Prz. 4. Ciężki trójkąt równoboczny zawieszono na gładkim kołku zapomocą sznura, umocowanego w dwóch wierzchołkach, przyczem jeden z boków zajął położenie pionowe. Okazać że sznur jest dwa razy dłuższy od wysokości trójkąta.                 (Math. Tripos, 1857).

Prz. 5. Jednorodny drut tworzy trzy boki kwadratu ABCD, w którym AD oznacza bok brakujący. Drut ten zawieszamy pierwotnie za wierzchołek A a następnie za B. Dowieść, że kąt pomiędzy dwoma położeniami boku BC wynosi arctanl8.

Łatwo okazać, że odległość środka ciężkości G od boku BC jest równa trzeciej części boku AB. Gdy zawiesimy drut za A, to AD zaj-mie położenie pionowe, a gdy zawiesimy za B, to pionem będzie BD. Stąd wynika, że szukany kąt jest równy ADB. (Math. Tripos, 1854).

Prz. 6. Trójkąt ABC zawieszono z kolei za wierzchołki A i B, przyczem dwa położenia każdego boku utworzyły kąt prosty; okazać, że 5c2=a2+b2.                                                  (Coli. Ex.).

Prz. 7. Na obwodzie okrągłej tarczy, ważącej n W, jest umocowana cząsteczka, ważąca W. Gdy zawiesimy tarczę za punkt A obwodu, to B zajmie położenie najniższe, a gdy zawiesimy tarczę za B, to A będzie punktem najniższym. Okazać, że kąt środkowy, oparty na AB, wynosi 2 arc sec 2(n+1).      •                      (Math. Tripos, 1883).

Prz. 8. Wysokość prostego stożka wynosi h, a promień podstawy r. Stożek ten zawieszono na sznurze, założonym na gładki kołek; jeden koniec sznura jest przymocowany do wierzchołka stożka, a drugi do punktu obwodu podstawy, przyczem oś stożka pozostaje poziomą. Dowieść, że długość sznura wynosi Vh2+4r2.

(Math. Tripos, 1865).

Jeżeli V oznacza wierzchołek, a C środek ciężkości podstawy stożka (prostego lub skośnego), to środek ciężkości bryły stożkowej leży na VC, i VG=łvo.

Prz. 9. Gładka, ciężka sztaba 2 stopy długa, wisi na sznurze 9 stóp długim. Sznur jest założony na gładki kołek; jeden jego koniec jest przywiązany do końca sztaby, a drugi do lekkiej obrączki, nasuniętej na sztabę. Sztaba tworzy z poziomem kąt 3. Dowieść, że tan $ =3 —- 3".                                   (Math. Tripos, 1852.)

Prz. 10. Jednorodna ciężka sztaba 2a długa jest w jednym ze swych punktów osadzona na poziomej osi, około której może się swobodnie obracać. Do końców sztaby są przywiązane końce sznura o długości l, a na sznur jest nawleczona paciorka, ważąca tyleż co i sztaba. Okazać, że sztaba może zachować położenie pochyłe tylko w takim razie, gdy odległość środka od osi jest mniejsza niż a2/l.

(Math. Tripos, 1882.)

Prz. 11. Dwie jednakowe sztaby AB i BC, każda o długości 2a, są połączone w B zapomocą swobodnego przegubu, końce zaś A i C łączy sznur nierozciągalny o długości l. Cały ten układ zawieszamy

za koniec A. Dowieść, że kąt prostej AB z pionem będzie największy, , 4a


gdy l=



(St John’s Coli., 1883.)

Gdy Z się zmienia, to środek ciężkości G układu obiega koło o średnicy BE, gdzie E oznacza środek sztaby AB. Stąd wynika, że kąt GrAB jest największy, gdy AG- styka się z owem kołem.

Prz. 12. W wierzchołkach A, B, C lekkiej i sztywnej ramy trójkątnej są osadzone trzy ciężary WA, Ws, Wc, i cały ten układ wisi u punktu O na trzech sznurach O A, OB, OC. Oznaczywszy naprężenia


Tb



sznurów odpowiednio przez TA, TB, Tc, okazać, że


OA.Wa ob.w£



— C

00 w' a następnie wyznaczyć TA, TB, Tc.


(St John’s Coli., 1886.)



Prz. 13. Ciężką trójkątną płytę zawieszono u nieruchomego punktu na trzech sprężystych sznurach, umocowanych w wierzchołkach. Naturalne długości sznurów (t. j. długości sznurów nierozciągniętych) są równe, ale współczynniki sprężystości są niejednakowe. Przyjmujemy, że naprężenie sznura jest równe współczynnikowi sprężystości, pomnożonemu przez stosunek wydłużenia do długości naturalnej. Okazać, że sznury będą miały długości jednakowe, gdy umieścimy w stoso-wnem miejscu płyty ciężar, który nie powinien przekraczać pewnego minimum. Okazać również, że miejscem geometrycznem położeń ciężaru na płycie przy różnych jego wielkościach jest linia prosta.

(Coli. Ex., 1887.)

Prz. 14. Tarcza okrągła i jednorodna o promieniu a i wadze w wisi na trzech pionowych sznurach, umocowanych w trzech punktach obwodu w jednakowych odstępach. Kładziemy na tarczę ciężar W gdziekolwiek wewnątrz współśrodkowego koła o promieniu ma; okazać, że sznury się nie zerwą, jeżeli tylko mogą znieść naprężenie (Trin. Coli. 1886.)


}(2mW+W+w).



Prz. 15. Prosty stożek kołowy spoczywa eliptyczną podstawą na gładkim poziomym stole. Do wierzchołka i drugiego końca najdłuższej tworzącej są przyczepione końce sznura, który przechodzi przez gładki blok, umieszczony nad stożkiem, przyczem wszystkie części sznura z wyjątkiem leżących na bloku przebiegają pionowo. Skutkiem wilgoci lub z jakiejś innej przyczyny sznur stopniowo się kurczy, usiłując podnieść stożek. Dowieść, że koniec najkrótszej tworzącej pozostanie w zetknięciu ze stołem, jeżeli średnica bloka jest mniejsza od potrójnej dużej półosi podstawy eliptycznej. (Math. Tripos, 1878.)

	
88.    Ustawiamy ciężkie ciało na gładkiej płaszczyźnie poziomej, lub na chropowatej płaszczyźnie pochyłej. Przypuśćmy, że podstawą jest jakikolwiek wielobok. Pragniemy zbadać, czy ciało przewróci się przez jeden z boków podstawy, czy też pozostanie w równowadze.



Ciężary cząsteczek ciała tworzą układ sił równoległych, którego wypadkową pod względem wielkości i położenia możemy wyznaczyć przy pomocy twierdzenia z paragrafu 80, jeżeli znamy ciężary cząsteczek. Działa ona pionowo na dół i przechodzi przez punkt ciała, zwany jego środkiem ciężkości. Gdy istnieje równowaga, to wypadkową muszą równoważyć ciśnienia płaszczyzny na ciało. Ciśnienia te zachodzą na całem polu podstawy i muszą posiadać wypadkową, działającą na pewien punkt, położony wewnątrz tego pola. Stąd wynika, że równowaga jest niemożliwa, jeżeli pion, przechodzący przez środek ciężkości ciała, nie przecina płaszczyzny oparcia wewnątrz wie-loboku podstawy.

Prz. 1. Odległość pomiędzy piętami =2b, a długość każdej stopy =a. Gdy ciało człowieka się przechyla, to pion, przechodzący przez środek ciężkości, musi wciąż przecinać pole, zawarte pomiędzy stopami, a zatem stopy powinny tworzyć kąt taki, aby pole to było jaknaj-większe. Okazać, (1) że można opisać na stopach koło, którego środek leży na prostej, łączącej wielkie palce, (2) że średnica tego koła wynosi b + Vb2+2a2.

Prz. 2. Ciężki stożek prosty, którego wysokość =h, a kąt wierzchołkowy =2a, ustawiono podstawą na zupełnie chropowatej płaszczyźnie pochyłej 3). Okazać, że stożek się przewróci, jeżeli płaszczyzna jest nachylona do poziomu pod kątem większym od 3, a tan^=4tana.

Prz. 3. Półkulistą czaszę, ważącą W, obciążają ciężary w i w1, przymocowane do brzegu; czasza stoi na gładkiej płaszczyźnie poziomej, i jej promień główny tworzy z pionem kat 3. Okazać, że

W tan $=2 (w- w‘)2+4ww‘cos2,ł,

gdzie 23 oznacza kąt pomiędzy promieniami, przechodzącymi przez w i w’; należy uważać przytem, że środek ciężkości czaszy leży w punkcie środkowym promienia głównego.             (King’s Coli., 1889.)

Prz. 4. Dwie jednakowe cząsteczki ciężkie przymocowano do końców latus rectum lekkiego drutu parabolicznego, a drut ustawiono wierzchołkiem na wierzchołku takiej samej paraboli, której oś jest pionowa, a wierzchołek zwrócony ku górze. Okazać, że drut można potoczyć na dowolny kąt po owej paraboli, i pomimo to równowaga nie zostanie zakłócona, jeżeli poślizg pomiędzy krzywemi jest wyłączony.                         (Watson’s Problem, Math. Tripos, 1860.)

Teorya par.

	
89.    W pewnym przypadku szczególnym twierdzenie, wyłożone w par. 80, prowadzi do wniosku, zasługującego na bliższą uwagę. Przypuśćmy, że siły równoległe P i Q są równe i działają w kierunkach odwrotnych. W myśl owego twierdzenia wypadkowa jest równa zeru, a jej punkt przyłożenia jest nieskończenie odległy.



Dwie siły równe i równoległe, działające na punkty A i B, nie mogą się równoważyć, jeżeli owe punkty przyłożenia nie leżą na jednej prostej wraz z siłami. Z drugiej strony, jak tylko co widzieliśmy, siły takie nie są równoważne sile poje-dyńczej w odległości skończonej. Umożliwiają one nową metodę badania układów sił. Upraszczamy układ sił, działających na ciało, sprowadzając go do tak małej liczby sił, jak tylko można. Niekiedy układ daje się sprowadzić do jednej siły, w innych razach (jak np. w przypadku, rozważanym obecnie) punkt przyłożenia jest nieskończenie odległy, i taka re-dukcya do jednej wypadkowej staje się niedogodną. Wprowadzając parę sił równych, jako nowy twór elementarny, zyskujemy prostą metodę wyrażania takiej siły nieskończenie odległej. Mamy więc teraz dwie wielkości elementarne, a mianowicie siłę i parę, i możemy sprowadzić dany układ sił do jednego z tych składników, albo do obydwóch. Przy pomocy tych dwóch elementów analiza danego układu sił daje się przeprowadzić w sposób kompletniejszy niż przy pomocy jednego.

Skoro para sił ma być nowym elementem w analizie, to wypada rozważyć jej właściwości oddzielnie od właściwości wszelkich innych układów sił. Nowy aksyomat jest tu zbyteczny, gdyż para rozkłada się na dwie siły, a zatem twierdzenia, dotyczące par, wynikają z ogólnych twierdzeń o siłach.

Teoryę par zawdzięczamy Poinsotowi. W książce Elemeats de. Siatiąue, wydanej w r. 1803, rożważa on składanie sił równoległych i stąd wyprowadza nową teoryę par, opierając na niej ogólne prawa równowagi.

	
90.    Definicye. Układ dwóch sił równych, równoległych i działających w strony odwrotne nazywamy parą.



Prostopadła odległość od jednej z sił pary do drugiej zowie się ramieniem pary. Wypada zaznaczyć, że ramię posiada długość, lecz nie posiada określonego położenia w przestrzeni. Z jakiegokolwiek punktu A, położonego na linii działania jednej z sił, możemy poprowadzić prostopadłą AB do drugiej siły. W takim razie AB będzie ramieniem. Jeżeli w jakimś przypadku dogodnie jest przyjmować, że siły pary działają na A i B, a przytem AB jest prostopadłe do sił, to możemy uważać, że odcinek AB określa ramię zarówno pod względem wielkości jak i położenia.

Iloczyn z wielkości jednej z sił pary przez długość ramienia nazywa się momentem pary.

	
91.    Skutek działania pary nie ulegnie zmianie, gdy przeniesiemy ją równolegle do innego położenia w jej własnej płaszczyźnie lub w płaszczyźnie równoległej, przyczem ramię pozostaje ró-


wnoległem do położenia pierwotnego.

Niech P i Q oznaczają siły
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danej pary, a AB ramię. Przypuśćmy, że AB' jest równe i równoległe do AB’, mamy dowieść, że para da-je się przesunąć w taki sposób, aby te same siły działały na A' i B'.

Przyłóżmy w punktach A i B' po dwie siły równe i odwrotne, z których każda ma być równa sile P i równoległa do niej. Na figurze oznaczono te siły przez P', P", Q', Q". Skoro odcinek AB jest równy i równoległy do AB', to czworobok AAB'B jest równoległobokiem; jego przekątnie AB' i AB przecinają się w pewnym punkcie O, stanowiącym środek każdej z nich. Wypadkowa sił P i Q" jest równa 2P i działa na punkt O, również wypadkowa P" i Q wynosi 2P i działa na O, lecz w kierunku odwrotnym. Dwie te wypadkowe się równoważą; gdy je usuniemy, to układ sprowadzi się do pary sił, działających na A i B'.

	
92.    Skutek działania pary nie ulegnie zmianie, gdy obrócimy ją w jej płaszczyźnie o dowolny kąt około środka któregokolwiek ramienia.



Obróćmy ramię AB około środka 0 do położenia A'B'. W każdym z tych punktów A’, B' przyłóżmy, jak poprzednio, po dwie siły równe i odwrotne P', P", Q‘, Q", z których każda ma być równa sile P. Równe siły P i P", przyłożone
[image: ]

w A i A’, posiadają wypadkową, która działa na dwusiecznej CE kąta ACA’. Siły Q i Q" mają taką samą wypadkową, działającą na dwusiecznej CE kąta BCB'. Dwie te wypadkowe równoważą się, i możemy je usunąć. Pozostaną równe si-ły P\ Q', przyłożone w A!, B'. Tworzą one parę taką samą jak para dana, obrócona około punktu C o kąt ACA'.

	
93.    Skutek nie ulegnie zmianie, gdy zastąpimy parę daną przez inną o takim samym momencie i działającą w tej samej płaszczyźnie, przyczem ramiona powinny leżeć na jednej prostej i posiadać środki w tym samym punkcie.



Niech P, Q oznaczają siły i AB ramię pary danej; Pj Q' mają oznaczać siły i A'B' ramię pary nowej. Przyłóżmy w pun-
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Fig. 17.


ktach A', B' po dwie siły równe i odwrotne, z których każda niech będzie równa P'. W myśl założenia, zawartego w twierdzeniu, P.AB=P'.A'B\ jeżeli zatem G oznacza wspólny środek odcinków AB i A'B\ to P. AC^ P'. A'G.

Siły P i P" posiadają wypadkową P — P", która według par. 78 działa na punkt G. Również siły Q i Q‘ posiadają taką samą wypadkową, działającą na C w kierunku odwrotnym. Usuwając te dwie wypadkowe, znajdziemy, że para dana jest równoważna parze sił + P\ działających na A' i B'.

	
94.    Z paragrafów 91 i 92 wynika, że parę można przenieść z danego położenia do jakiegokolwiek innego w płaszczyźnie równoległej, przyczem skutek działania nie ulegnie zmianie. Istotnie według 92 możemy parę daną tak obrócić około środka ramienia, aby siły stały się równoległemi do sił w położeniu nowem, następnie zaś według 91 możemy przesunąć parę równolegle do położenia nowego.



Z 93 wynika, że można także zmieniać wielkości sił i ramię; nie wywoła to żadnej zmiany w skutkach działania, jeżeli tylko nie zmieni się moment.

Zestawiając wywody powyższe, widzimy, że para jest całkowicie określona, gdy znamy U jakąkolwiek płaszczyznę, równoległą do płaszczyzny pary, 2) kierunek obrotu pary w jej płaszczyźnie i 3) moment pary.

	
95.    Wyznaczyć wypadkową pewnej liczby par, działających w płaszczyznach równoległych.



Niech P1, P^- - oznaczają siły, i a±1 a2... ramiona par; dajmy na to, że wszystkie pary usiłują wywołać obrót w tym samym kierunku.

Według par. 94 możemy przenieść wszystkie pary do jednej płaszczyzny i obrócić je tak, aby wszystkie ramiona znalazły się na jednej prostej; zmieńmy następnie siły i ramiona par w taki sposób, aby wszystkie otrzymały jedno i to samo ramię AB. Długość tego wspólnego ramienia oznaczmy przez b. Siły par działają teraz na końce odcinka AB^ a wielkości ich

	
	
□    • j Pa,   P 9 a2    —                   x są odpowiednio —p ,   6 ... Wszystko to razem tworzy jedną parę, której ramię jest równe b, a każda z sił wynosi P1a1 + P2a2 +.....       .,      . i • i • •





---B----. Para ta jest równoważna każdej innej parze, położonej w tej samej płaszczyźnie, obracającej w tym samym kierunku i posiadającej moment P1ai + P2a2 +... Moment ten stanowi oczywiście sumę momentów par danych.

Jeżeli niektóre z par danych usiłują wywołać obrót w kierunku innym niż pozostałe, to możemy uwzględnić tę okoliczność, uważając siły tych par za ujemne. Otrzymamy taki sam wynik, jak poprzednio.

Z powyższego wynika twierdzenie następujące. Wypadko-wą doiuolnej liczby par, których płaszczyzny są równoległe, jest para o momencie równym samie algebraicznej momentów par poszczególnych, działająca w płaszczyźnie równoległej do płaszczyzny par danych.

	
96.    Miara pary. Korzystając z powyższego twierdzenia, możemy okazać, że właściwą miarę pary, uważanej za prosty element, stanowi jej moment. W tym celu obierzmy za jednostkę taką parę, którą tworzą siły jednostkowe, i której ramię wynosi jednostkę długości. Moment takiej pary jest równy jedności. Z twierdzenia powyższego wynika, że para, posiadająca moment n razy większy, jest równoważna takim n parom jednostkowym, a zatem będzie rzeczą właściwą wyrażać ją symbolem n.


	
97.    Oś pary. Para usiłuje wywołać ruch obrotowy w jednym lub w drugim kierunku. Jeden z tych kierunków nazywamy zwykle dodatnim, drugi ujemnym. Obiór kierunku dodatniego nie zawsze bywa jednakowy, podobnie jak i obiór kierunków dodatnich na osiach współrzędnych. W trygono-metryi uważamy za kierunek dodatni obrotu kierunek odwrotny do ruchu wskazówki zegara; ten sam wybór uczyniono w większej części dzieł o przecięciach stożkowych. W geome-tryi trójwymiarowej zwykle kierunek odwrotny obiera się za dodatni. Gdy jednak już uczyniono stosowny wybór, to kierunek obrotu danej pary wskazuje się zazwyczaj w sposób następujący:



Z jakiegokolwiek punktu C, obranego w płaszczyźnie pary, prowadzimy prostopadle do tej płaszczyzny po jednej stronie prostą CD. Stronę ową obiera się w sposób taki: obserwator stojący na płaszczyźnie w punkcie C i oparty plecami o CD powinien widzieć, że para obraca w kierunku, obranym za dodatni.

Aby określić kierunek obrotu pary dostateczną jest rzeczą wskazać w przestrzeni kierunek ■ CD, odróżniając go od DC. Czynimy to przy pomocy umowy, używanej zazwyczaj w geo-metryi trójwymiarowej. Prowadzimy z początku układu współrzędnych odcinek równoległy do CD; położenie jego określają kąty, które tworzy z dodatnimi kierunkami osi.

Prosta CD wskazuje jednocześnie położenie płaszczyzny pary i kierunek obrotu. Zapomocą odcinka tej prostej możemy zupełnie tak samo wyrazić wielkość momentu pary, jak w par. 7 wyraziliśmy zapomocą odcinka wielkość siły.

Widzimy przeto, że para daje się pod wszelkimi względami określić odcinkiem, poprowadzonym od pewnego stałego punktu w kierunku prostopadłym do płaszczyzny pary. Odcinek taki zowie się osią pary.

	
98.    Wyznaczyć wypadkową dwóch par, których płaszczyzny są nachylone jedna do drugiej.



Przenosimy obydwie pary w ich płaszczyznach w taki
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sposób, aby ramiona przystały do siebie, i niech AB będzie wspólnem ramieniem; naturalnie leży ono na prostej przecięcia płaszczyzn par. Przy przekształcaniu ramion wypadnie zapewne zmienić i wielkości sił, ale momenty par powinny pozostać bez zmiany. Oznaczmy siły już po przekształceniu przez P i Q.

Na punkt A działają dwie siły P i Q; są one równoważne wypadkowej R^ którą można wyznaczyć zapomocą równoległo-boku. Na punkt B działają dwie inne siły równe i odwrotne do tamtych; wypadkowa ich jest równa, równoległa i odwrotna do R. Tak więc dwie pary są równoważne jednej parze, złożonej z sił R i posiadającej ramię AB. Długość tego ramienia oznaczmy przez b.

Z jakiegokolwiek punktu 0^ który możemy obrać na AB, prowadzimy proste Cp i Cq w kierunkach osi par danych i odmierzamy na nich długości, proporcyonalne do momentów, czyli do Pb i Qb. Osi te są prostopadłe do płaszczyzn par, a ich długości są proporcyonalne do P i Q. Składamy następnie te dwie osi według prawa równoległoboku; łatwo zrozumieć, że otrzymamy oś, prostopadłą do płaszczyzny sił —R i proporcyonalną do R pod względem wielkości. Mianowicie równoległobok Cpqr jest podobny do równoległoboku, utworzonego przez P, Q, a boki jednego są odpowiednio prostopadłe do boków drugiego.

Wynika stąd następująca konstrukcya wypadkowej dwóch par. Z dowolnego punktu C prowadzimy odcinki, wyobrażające osi par co do wielkości i kierunku. Wypadkowa tych osi, zbudowana według prawa równoległoboku, odpowiada co do wielkości i kierunku osi pary wypadkowej.

Składanie par odbywa się według tego samego prawidła, które podaliśmy poprzednio dla sił. Z tego wynika, że możemy stosować do par wszystkie twierdzenia, dotyczące składania sił i wynikające z prawa równoległoboku. Prawidło robocze jest takie: określając pary zapomocą osi, możemy je składać i rozkładać jak siły, działające na punkt.

	
99.    Prz. 1. Układ par odpowiada co do wielkości i położenia polom ścian wielościanu, a wszystkie osi są zwrócone na zewnątrz lub na wewnątrz; okazać, że układ jest w równowadze (par. 47).



Móbius.

Prz. 2. Mamy dane w przestrzeni cztery proste; dowieść, że można znaleźć cztery równoważące się pary, których osi mają kierunki tych prostych. Wyznaczyć momenty i rozważyć wypadek, w którym trzy z danych prostych są równoległe do jednej płaszczyzny (par. 40 i 48).

Prz. 3. Trzy pary odpowiadają pod względem wielkości i położenia polom ścian OBG, OGA, OA B czworościanu O ABC; osi dwóch pierwszych są zwrócone na wewnątrz, a trzeciej na zewnątrz. Okazać, że para wypadkowa działa w płaszczyźnie ODE, przechodzącej przez środki krawędzi BC, GA, i odpowiada pod względem wielkości poczwórnemu polu trójkąta ODE.

Zastępujemy każdą z par taką, której jedna siła przechodzi przez O, a druga działa na boku trójkąta ABC. Siły, odpowiadające BG, CA i BA, posiadają oczywiście wypadkową iDE.

	
100.    Siłę P, działającą na punkt A, można przenieść równolegle do innego punktu B, wprowadzając parę o momencie Pp, gdzie p oznacza odległość punktu B od linii działania AF siły P. Para ta usiłuje obrócić ciało w kierunku AFB.
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Fig. 19.






Przykładamy w B dwie siły równe i odwrotne Pj P", z których każda jest równa P. Jedną z nich, a mianowicie Pj możemy uważać za siłę P, przeniesioną równolegle do B; dwie pozostałe tworzą parę o momencie Pp.

	
101.    Dotychczasowe twierdzenia o siłach i parach rozpadają się na trzy klasy, które można streścić w sposób nastę-pujący:



	
1.    Siły mogą się łączyć według prawa równoległoboku.


	
2.    Pary mogą się łączyć według prawa równoległoboku.


	
3.    Siła jest równoważna sile równoległej oraz parze.



W rozdziałach następnych będziemy poznawali nowe prawdy, stosując ustawicznie te trzy klasy twierdzeń. Stąd wynika, że te prawdy dotyczą i innych wektorów, dla których są ważne owe trzy klasy twierdzeń. Tak więc w dynamice znajdujemy, że związki elementarne pomiędzy szybkościami linio-wemi i kątowemi podlegają tym trzem grupom twierdzeń, a zatem stosujemy do nich bez dalszych dowodów wszelkie następne twierdzenia, dowiedzione dla par i sił.

	
102.    Początkowy ruch ciała. Gdy para sił zacznie działać na ciało, które dotychczas było w spoczynku, to oczywiście równowaga zostanie zachwiana. W dynamice znajdujemy dowód, że zacznie ono obracać się około pewnej osi. Położenie tej osi nie może zależeć od położenia pary w jej płaszczyźnie działania; widać to stąd, że parę można przenosić w tej płaszczyźnie, nie zmieniając skutku. Z rozważań dynamicznych wynika, że początkowa oś obrotu (1) przechodzi przez środek ciężkości ciała, (2) wogóle nie jest prostopadła do płaszczyzny pary, jakkolwiek bywa i tak w pewnych razach.



Można okazać przy pomocy prostego doświadczenia, że oś obrotu jest niezależna od położenia pary w jej płaszczyźnie działania. W tym celu kładziemy do naczynia z wodą okrągłą tarczę drewnianą; będzie ona pływała na powierzchni wody blizko górnego otworu naczynia. Do tarczy w punktach A i B przyczepiamy dwie cienkie nici, które przerzucamy następnie przez dwie małe rolki C i D, osadzone na brzegu naczynia; wreszcie w końcach nici zawieszamy jednakowe ciężary. Ustawiamy tarczę w taki sposób, aby nici AC i BD były równoległe. W takim razie naprężenia nici tworzą parę, i pod jej działaniem tarcza zacznie się obracać. Obrót rozpocznie się zawsze około środka ciężkości tarczy, jakkolwiek są położone punkty A i B. Możli-wem jest, że obrót nie będzie odbywał się w dalszym ciągu około tej samej osi, gdyż w miarę ruchu tarczy nici przestają być równoległe-mi. Z tej a także i z innych przyczyn ruch obrotowy dozna pewnych zmian.

	
103.    Prz. 1. Siły P, 2P, 4P, 2P działają na bokach kwadratu, obieganych w koło. Wyznaczyć wypadkową pod względem wielkości i położenia.                                                (St John’s, 1880).



Prz. 2. Trójkątna płyta ABC może się obracać w swej płaszczyźnie około pewnego nieruchomego punktu. Na płytę wzdłuż boków BC, CA, BA działają siły proporcyonalne do tych boków. Dowieść, że aby płyta pozostała w spokoju, to ów punkt nieruchomy musi leżeć na prostej, przechodzącej przez środki boków BC i CA.

(Math. Tripos, 1874).

Prz. 3. Boki trójkąta, obiegane w koło, wyobrażają siły pod względem wielkości, kierunku i położenia. Okazać, że siły te są równoważne parze, której moment odpowiada podwójnemu polu trójkąta.

Okazać prócz tego, że równoważą się trzy pary, których osi odpowiadają bokom trójkąta, obieganym w koło.

Prz. 4. Na ciało działa sześć sił; trzy pierwsze odpowiadają całkowicie bokom trójkąta ABC, obieganym w koło, trzy zaś pozostałe bokom trójkąta, który otrzymamy, łącząc środki boków trójkąta ABC. Trzy pierwsze siły są przedstawione w skali cztery razy większej niż trzy pozostałe, i siły równoległe są zwrócone jednakowo. Dowieść, że ciało pozostaje w równowadze.                        (Math. Tripos).

Prz. 5. Cztery siły u. AB, ^.BC, ^.CD, 2.DA działają na bokach AB, BC, CD, DA czworoboku skośnego ABCD. Okazać, że (1) siły te nie mogą się równoważyć, (2) jeżeli a==3=Y=8, to siły tworzą parę, działającą w płaszczyźnie równoległej do przekątni AC, BD, (3) jeżeli a=38, to układ sprowadza się do jednej wypadkowej, której linia działania przecina przekątnie. Wyznaczyć także ową parę i siłę wypadkową pod względem wielkości.                   (Coli. Ex., 1892).

Siły, działające na wierzchołek B, posiadają wypadkową, której linia działania BE przecina przekątnię AC w punkcie E; również linia działania wypadkowej sił, działających na D, przecina AC w F. Skoro płaszczyzny ABC i ADC nie przystają do siebie, przeto te dwie wypadkowe cząstkowe działają nie na jednej prostej i nie mogą się równoważyć.

Jeżeli siły mają być równoważne parze, to ich suma rzutów na prostopadłą z B do płaszczyzny ADC powinna być równa zeru, to zaś wymaga, aby prosta BE była równoległa do AC, zatem a = 3; podobnież 3= i y=S. Wypadkowe cząstkowe, przyłożone w B i D są ±c.AC i działają równolegle do AC i CA; zatem płaszczyzna pary jest równoległa do AC, a również i do BD. Moment pary jest 40 razy większy od pola równoległoboku, którego wierzchołki leżą w środkach boków czworoboku.

Jeżeli dane siły mają posiadać wypadkową, to punkty E i F na AC muszą leżeć razem; lecz E jest centroidem mas —a i 3, położonych w A i C, F zaś jest centroidem § i — Y, położonych w tych samych punktach, a zatem a=33 (par. 51). W tym razie wypadkowe cząstkowe przecinają się w E na AC i wynoszą (o.—R)EB, (Y— o)ED. Wypadkowa ogólna przechodzi przez E i przez punkt H na drugiej przekątni BD; wynosi ona (a— 3+r— 3) . EH.

Jeżeli czworobok jest płaski, to cztery siły sprowadzają się do jednej wypadkowej, o ile a, 3, Y, 8 nie są równe. Równowaga zachodzi, gdy wypadkowe cząstkowe są równe i odwrotne, czyli gdy

a7=33, a . AO+3 . OC=0, 3. BO+y. OD=0, gdzie O jest punktem przecięcia przekątni.

Prz. 6. Siły odpowiadają pod względem wielkości, położeń i kierunków bokom skośnego wieloboku, obieganym w koło; okazać, że są one równoważne parze sił.

Okazać dalej, że moment rzutu pary wypadkowej na dowolną płaszczyznę odpowiada podwójnemu polu rzutu wieloboku na tę płaszczyznę.

Prz. 7. AC i BD oznaczają dwa wichrowate odcinki o stałej długości. Okazać, że skutek działania sił, odpowiadających pod wszelkimi względami odcinkom AB, BC, CD, DA, się nie zmienia, jeżeli AC, BD pozostają równoległymi do stałej płaszczyzny, i kąt pomiędzy rzutami ich na tę płaszczyznę pozostaje bez zmiany.           (Coli. Ex., 1881).

Prz. 8. Na pewnej prostej odmierzamy w tę samą stronę dwie jednakowe długości Aa, Bb i na innej prostej tak samo odmierzamy dwie jednakowe długości Cc, Dd. Okazać, że siły, odpowiadające pod wszelkimi względami odcinkom AC, ca, CB, bc, BD, db, DA, ad, są w równowadze.                                          (Trin. Coli.).

Prz. 9. Siły, proporcyonalne do boków aY,a2... zamkniętego wieloboku, są przyłożone w punktach, które dzielą boki, obiegane m, m2                  .                     ,

w koło, w stosunkach — , —..., i każda siła tworzy z odpowie-dnim bokiem w tę samą stronę kąt 3. Okazać, że równowaga zachodzi, jeżeli e(I—-a2 )=4A cot 9, gdzie A oznacza pole wieloboku.

= m+n /

(Math. Tripos. 1869).

Rozkładamy każdą siłę w kierunku odpowiedniego boku i prostopadle do niego, następnie zaś przenosimy każdą składową prostopadłą do środka odpowiedniego boku, wprowadzając odpowiednią parę (100). Pary zrównoważą składowe, działające na bokach (prz. 3), a pozostałe składowe równoważą się same (par. 37).

ROZDZIAŁ IV.

SIŁY W DWÓCH WYMIARACH.

	
104.    Sprowadzić dowolną liczbę sił, działających na ciało w jednej płaszczyźnie, do jednej siły i jednej pary.



Przypuśćmy, że na ciało działają siły Pr, P2---, przyłożone w punktach A,, A,..., i niech O będzie punktem, dowolnie obranym w płaszczyźnie sił. Mamy zredukować wszystkie te siły do jednej, przyłożonej w O, i do pary.

Obierzmy punkt O za początek układu współrzędnych i oznaczmy współrzędne punktów A1, A,..., przez (xryj), (x,y2)..., a kąty, które kierunki sił tworzą z dodatnią stroną osi x, przez 01, 02...
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Fig. 20.




Zgodnie z paragrafem 100 przenosimy każdą siłę P równolegle tak, aby jej punkt przyłożenia znalazł się O, i jednocześnie wprowadzamy do układu parę o momencie Pp, gdzie p oznacza odległość punktu O od linii działania siły P. Tym sposobem możemy wszystkie siły przenieść do O, dołączając do układu odpowiednie pary.

Zgodnie z par. 44 łączymy wszystkie siły, działające obecnie na punkt O; powstanie jedna siła wypadkowa. Dodając następnie wszystkie pary z uwzględnieniem znaków, otrzymamy jedną parę, której moment wynosi ^Pp.

Powyższą metodę łączenia sił podał Poinsot (Elements de Sta-tique, 1803).

	
105.    Wypada zaznaczyć, że rozważania powyższe dotyczą nie-tylko sił, działających w płaszczyźnie. Gdy odniesiemy dany układ do trzech prostokątnych osi Ox, Oy, Oz, posiadających dowolny początek O, to możemy przenieść siły P , P2... do tego początku, wprowadzając odpowiednie pary. Siły, działające na O, łączą się w jedną wypadkową, którą oznaczmy przez R. Pary dadzą się także połączyć za-pomocą równoległoboku par w jedną parę, którą oznaczmy przez Gr. Zatem siły Pi, P2... dadzą się zawsze sprowadzić do jednej siły R, działającej na punkt obrany dowolnie, i do odpowiedniej pary G.


	
106.    Pragnąc wyznaczyć wielkość siły wypadkowej i jej linię działania, posługujemy się prawidłami, podanemi w par. 44. Składowe wypadkowej równoległe do osi będą



X=XPcoso, Y= ZPsin a.

Oznaczmy wypadkową przez R^ a kąt, który jej linia działania tworzy z osią x, przez 3. W takim razie

R2 = (LP cos 0)2 + CLP sin a)2, tan 3 = E(P sino) .

2 (P cos a)

	
107.    Aby otrzymać moment pary wypadkowej, trzeba wyznaczyć wartość Pp. Biorąc sumę rzutów współrzędnych (x, y) punktu A na ON (fig. 20), znajdziemy



p= a cos N0x - y sin N0x = x sin a — y cos a .

Niech G oznacza parę wypadkową; będziemy uważali ją za dodatnią, gdy usiłuje obrócić ciało od dodatniego końca Ox do dodatniego końca Oy. W takim razie

G — LPp = L(xP sin a — yP cos a) = L(xP^-yPx), gdzie Px i Py oznaczają składowe siły P w kierunkach osi.

	
108.    Dowolny punkt O, do którego przenosimy siły, na-zwiemy środkiem redukcyi. Nie jest rzeczą konieczną obierać w tym punkcie początek układu, jakkolwiek zwykle wybór taki bywa dogodny.



Obierzmy za środek redukcyi punkt O', posiadający współrzędne (§n). Możemy otrzymać siłę wypadkową i parę wypadkową dla tego nowego środka redukcyi z wzorów, wyprowadzonych dla środka redukcyi O-, w tym celu należy tylko zastąpić x i y przez x— § i y— 7.

Wyrażenia na siłę wypadkową w par. 106 nie zawierają ani x, ani y. Stąd wynika, że siła wypadkowa jest jednakowa co do wielkości i kierunku dla wszystkich środków redukcyi.

Wyrażenie na parę wypadkową będzie

G' = ZP{(x - 6) sin a - (J—) cos aj

= G-^Y+^X.

Widzimy, że wielkość pary jest wogóle różna dla różnych środków redukcyi.

	
109.    Znaleźć tuarunki równowagi ciała sztywnego.



Obierzmy dowolnie środek redukcyi O i sprowadźmy dany układ sił do siły R i do pary G. Według par. 89 wypadkowa pary G jest równa zeru i działa na linii nieskończenie odległej; stąd wynika, że skończona siła R nie może równoważyć skończonej pary G. Gdyby wypadek taki był możliwy, to zachodziłaby równowaga dwóch sił, jakkolwiek nie są one równe i odwrotne. Jest więc niezbędnem do równowagi układu, aby siła R i para G znikały każda z osóbna.

	
110.    Ponieważ w stanie równowagi R—0, przeto, jak w par. 44, otrzymamy



ZPcosa=0, ZPsin a= 0.

Równania te są konieczne i wystarczające, aby zniknęła siła R; możemy wynik powyższy wyrazić w sposób dogodniejszy:

Jeżeli wypadkowa R ma być zerem, to jest niezbędnem i wy-starczającem, aby sumy rzutów wszystkich sił na dwie proste nie-równoległe były zerami.

Widać odrazu, że warunki te są konieczne, bo każdą prostą można obrać za oś x. Aby dowieść, że są one wystarczające, obierzmy jedną z owych prostych za oś x^ nazwijmy drugą Ox' i oznaczmy kąt xOx' przez 3. Przyrównywając do zera rzuty sił na te proste, znajdziemy

IP cosa = 0, EPcos (a— 3)=0, czyli           X=0, X’ = Xcos 3 + Ysin }= 0.

Jeżeli 3 nie jest zerem lub wielokrotnością T, to z równań tych wynika, że X=0 i Y=0, a zatem R = 0.

Nazywamy zwykle równaniami rzutów dwa równania równowagi, które otrzymujemy, biorąc rzuty na dwa różne kierunki.

	
111.    Prócz tego do równowagi jest koniecznem, aby G=0, lub aby ZPp=0. Iloczyn Pp zowiemy momentem siły P względem punktu O. Jeżeli para G ma być zerem, to jest niezbędnem i wystarczającem, aby suma momentów wszystkich sił (wziętych z odpowiednimi znakamij względem dowolnego punktu była równa zeru. Równanie równowagi, które stąd otrzymujemy, nazywa się krótko równaniem momentów.


	
112.    Widzieliśmy, że dla sił, działających w płaszczyźnie, warunki równowagi są zawarte w trzech równaniach, a mianowicie w dwóch równaniach rzutów i w jednem równaniu momentów. Stanie się to jaśniejszem, gdy rozważymy różne możliwe ruchy ciała. Daje się dowieść, że można uskutecznić każde przesunięcie ciała, kombinując ruchy następujące: Prze-dewszystkiem przesuwamy ciało bez obrotu o długość h równo-legie do osi x. Powtóre przesuwamy ciało także bez obrotu o długość k równolegle do osi y. Tym sposobem możemy przenieść dowolny punkt ciała 0 do innego punktu Oj którego współrzędne w odniesieniu do 0 są równe jakimkolwiek danym wielkościom h i k. Potrzecie obracamy ciało około owego punktu o kąt dany. Dwa równania ruchu wyrażają fakt, że siły, pchające ciało w kierunku każdej osi, są równe zeru. Równanie momentów wyraża fakt, że siły nie posiadają dążności do obracania ciała około początku współrzędnych.


	
113.    Momenty sił będą w ciągłem użyciu, należy więc dobrze zrozumieć znaczenie tego wyrazu. Przypuśćmy, że siła P działa na punkt A wzdłuż prostej AB^ i niech 0 będzie punktem względem którego pragniemy wziąć moment. W tym celu mnożymy siłę P przez odległość p punktu 0 od linii działania siły, czyli od AB. Iloczyn zdefiniowaliśmy już jako moment.



Obecnie mówimy o siłach w jednej płaszczyźnie; w tejże płaszczyźnie leżą naturalnie prosta AB i punkt 0. Gdy będzie mowa o siłach w przestrzeni, to to, co zdefiniowaliśmy jako moment siły względem punktu, będziemy nazywali momentem siły względem prostej, poprowadzonej przez 0 prostopadle do płaszczyzny OAB.

Gdy na ciało działa kilka sił, i pragniemy wyznaczyć sumę ich momentów, to należy zwrócić szczególną uwagę na znaki tych momentów. Tak samo, jak w trygonometryi elementarnej, obieramy jeden z dwóch możliwach kierunków obrotu około punktu 0 za kierunek zasadniczy. Kierunek ten nazywamy dodatnim. Już w par. 107 obraliśmy kierunek odwrotny do kierunku ruchu wskazówki zegara. Moment siły uważamy za dodatni lub ujemny stosownie do tego, czy usiłuje ona obrócić ciało około O w kierunku dodatnim, czy ujemnym.

	
114.    Otrzymaliśmy równania równowagi w postaci X=0, Y=0, G=0, lecz można im nadawać i inne postaci. Tak np. równowaga zachodzi, gdy sumy momentów względom dwóch różnych punktów, np. O i C, są zerami, i prócz tego suma rzutów na dowolny kierunek, nieprostopadły do OC, jest także zerem. Aby to okazać, obierzmy O za początek układu, poprowadźmy oś x w kierunku, na który brano rzuty, i oznaczmy współrzędne punktu C przez (§n). Dane warunki wyrażają się tak:



G=0, G‘=G-ĘY+1X=0, X=0.

Stąd wynika G =0, X=0, Y=0, jeżeli § nie jest zerem.

W ten sam sposób można dowieść, że równowaga zachodzi, gdy są równe zeru sumy momentów względem trzech punktów O, C, C, nie leżących na linii prostej.

	
115.    Wypada jeszcze zaznaczyć, że nie otrzymamy więcej od trzech niezależnych równań równowagi, gdy będziemy brali rzuty na różne inne kierunki i momenty względem różnych innych punktów. Równania, które w ten sposób powstaną, będą tylko następstwem pewnych trzech równań równowagi. Tak więc, jeżeli X, Y, G są zerami, to z paragrafów 108 i 110 wynika, że G' i X' są także zerami.


	
116.    Twierdzenie Varignona. Przypuśćmy, że pewien układ sił został przekształcony zgodnie z prawami statyki na inny układ równoważny; w takim razie, (1) sumy rzutów sił obydwóch układów na każdy kierunek są równe, i (2) sumy momentów sił obydwóch układów względem każdego punktu są równe.



Twierdzenie to wynika bezpośrednio z par. 110. Oznaczmy siły owych dwóch układów przez P, P2— i Pj, P‘2..., i przypuśćmy, że mamy wziąć momenty względem punktu O oraz rzuty na kierunek Ox. Potrzeba dowieść, że (1) ZPcos =zP‘cosa’, i (2) G-—G-'. Układy są równoważne, a zatem gdy odwrócimy wszystkie siły jednego z nich, i obydwa układy po tej zmianie będą działały na ciało jednocześnie, to nastąpi równowaga. Biorąc rzuty na 0x i momenty względem 0, według paragrafów 110 i 111 otrzymamy

Z(Pcos a— P' cos a.‘)=0, G- Gr'^0.

Równania te zawierają dowód, o który chodziło.

	
117.    Przytaczamy jeszcze elementarny dowód powyższego twierdzenia, oparty na zasadach początkowych.



Według prawideł statyki możemy przekształcić jeden układ sił na inny zapomocą trzech działań następujących: (1) przenoszenia punktu przyłożenia siły na jej linii działania, (2) dodawania lub usuwania sił równych i odwrotnych, jak w par. 78, (3) składania i rozkładania sił według prawa równoległoboku.

Jest rzeczą zupełnie oczywistą, że pierwsze dwa działania nie zmieniają ani sumy rzutów na żaden kierunek, ani sumy momentów sił względem żadnego punktu; potrzeba jeszcze udowodnić, że to samo dotyczy działania ostatniego.

Przypuśćmy, że siły P i Q, działające na punkt C, odpowiadają pod względem wielkości i kierunku odcinkom CA i CB, a ich wypadkowa R odcinkowi CD. (1) Oczywiście suma rzutów odcinków CA i AD na dowolną prostą, np. Cx jest równa rzutowi przekątni CD (par. 65), innemi słowy suma rzutów sił P i Q na Cx jest równa rzutowi wypadkowej R. (2) Niech O będzie punktem, względem którego mamy wziąć momenty. Poprowadźmy OL, OM, ON prostopadle do sił. Mamy dowieść, że
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P.0L + Q.ÓM=R.0N.....(1) Gdyby punkt O leżał po drugiej stronie prostej CA, np. pomiędzy CD i CA, to znak wyrazu P.OL zmieniłby się na odwrotny. Zmiana ta wynika z zasady ciągłości, bo odległość punktu O od prostej CA zmienia znak, gdy O przechodzi przez tę prostą; niema zatem potrzeby rozważać przypadków takich osobno.

Gdy podzielimy równanie (1) przez CO, to przekształci się ono na

Psin ACO+ Q sin BCO=R sin DCO............(2)

Równanie to wyraża jedynie, że suma rzutów sił P, Q na kierunek prostopadły do CO jest równa rzutowi siły R na ten sam kierunek. Dowiedliśmy to już poprzednio, gdyż mamy prawo poprowadzić prostą Cx właśnie w tym kierunku.

	
118.    Widzieliśmy, że każdy układ sił P1, P^- - daje się sprowadzić do jednej siły R, przyłożonej w dowolnym środku redukcyi, i do pary G. Okażemy obecnie, że można go w dalszym ciągu zredukować do jednej siły albo do jednej pary.



Siła R jest zerem, jeżeli

X=LPcoso=0, Y=XPsino=0.

W przypadku takim dany układ sił sprowadza się do jednej pary. Oczywiście otrzymamy zawsze parę jednakową pod wszelkimi względami, jakkolwiek obierzemy środek redukcyi.

Przypuśćmy, że R nie jest zerem. Gdy obierzemy stosownie środek redukcyi, to para zniknie, i cały układ sprowadzi się do jednej siły R. Niech Ox, Oy będą osiami współrzędnych, i niech 0' będzie takim środkiem redukcyi, przy którym para G' jest zerem. Oznaczając przez (§n) współrzędne punktu O\ otrzymamy według par. 108

1

 Wyraz ciśnienie (pressure) posiada u Routha znaczenie inne niż w fizyce, a mianowicie oznacza siłę lub reakcyę, którą jedno ciało wywiera na drugie.                            Przyp. tłumacza.

2

 Latus rectura jest to cięciwa stożkowej, przechodząca przez ognisko i prostopadła do osi.                        Przyp. tłómacza.

3

 Na powierzchni zupełnie chropowatej poślizg jest wyłączony.

Przyp. tłom.


G‘=G-ĘY+1X=0 . ..........(1).

Równaniu temu odpowiada linia prosta; gdy na niej leży środek redukcyi, to zawsze para wypadkowa jest zerem. Ta linia prosta jest równoległa do siły wypadkowej R, gdyż- obydwie

Y tworzą z Ox kąty, których tangensy wynoszą y Lecz R działa na nowy środek redukcyi O', a zatem owa prosta jest linią działania siły R.

	
119.    Streszczamy wywody poprzedzające: Dany jest układ sił, którego siłą wypadkową i parą wypadkową są odpowiednio R i G.



	
	
(1)    Układ sprowadza się do jednej pary, jeżeli R=0. Układ sprowadza się do jednej siły, jeżeli R nie jest zerem.


	
(2)    Jeżeli R nie jest zerem, to owa siła, do której sprowadza się układ, jest pod względem wielkości równa R, a jej linia działania odpowiada równaniu





G-kY+^X=0.

Stronę, w którą działa R, wskazują znaki składowych X i Y.

	
	
(3)    Siła R musi być zawsze jednakowa co do wielkości i położenia, jakkolwiek obierzemy układ współrzędnych. Wnioskujemy stąd, że owa linia działania nie zależy od układu współrzędnych, czyli że jest niezmienna w przestrzeni.



	
120. Prz. 1. Okazać, że dany układ sił daje się sprowadzić do dwóch sił, działających na dane punkty A i B, przyczem pierwsza tworzy z AB kąt dany (różny od zera).



Prz. 2. Dowieść, że układ sił w płaszczyźnie można sprowadzić do trzech sił, działających na bokach trójkąta, obranego dowolnie w tejże płaszczyźnie. Wskazać prócz tego, jak się te trzy siły wyznacza.

	
(1 ) Redukcya taka jest możliwa. Niech P będzie jedną z sił układu, i przypuśćmy, że przecina ona bok AB trójkąta ABC w punkcie M. Przeniósłszy do M punkt przyłożenia siły P, rozkładamy ją na dwie składowe w kierunkach AB i CM. Ostatnią przenosimy do C i znowu rozkładamy na dwie składowe w kierunkach CA i CB. Postępując w ten sam sposób z każda inną siłą, sprowadzimy cały układ do trzech sił Fx, F2, F, działających odpowiednio na BC, CA, AB.


	
(2 ) Wyznaczamy siły Fi, F2, Fs. Oznaczmy odpowiednio przez G1, G2, G^ sumy momentów sił danego układu względem wierzchołków A, B, C, a przez Pi, p2, p3 odległości tych wierzchołków od przeciwległych boków. W takim razie otrzymamy



Fip,=G,, Fap,=G2, F3p3 = G3.

Prz. 3. Dwa układy, zawierające po trzy siły (P, Q, P) i (P‘, Q', R'), działają na bokach trójkąta ABC, obieganych w kółko. Dowieść, że wypadkowe ich są równoległe, jeżeli

{QR'~Q'R} s\nA+{RP'-R'P^ixi Bp(PQ'-P'Q)sin C=0.

(Math. Tripos, 1869.)

Prz. 4. Cztery siły w równowadze działają na stycznych do elipsy, przyczem siły, posiadające przyległe punkty zetknięcia, są na elipsie zwrócone odwrotnie. Dowieść, że moment każdej siły względem środka jest proporcyonalny do pola trójkąta, którego wierzchołki leżą w punktach zetknięcia sił pozostałych.

Prz. 5. Sztywny wielobok A1A2... przesunięto do nowego położenia A^A^..., i G, G' oznaczają odpowiednio położenia centroidów mas 01 , 0.2..., osadzonych w wierzchołkach. Okazać, że siły, określone co do wielkości i kierunku przez 0. A^/, 0.2. A2A2..., są równoważne sile la.GG' wraz z parą sin 3 . Z(a. GA2), gdzie 9 oznacza kąt, który bok wieloboku A^... tworzy z odpowiednim bokiem A^A^...

Rozwiązywanie zagadnień.

	
121.    Wypada teraz wyjaśnić, w jaki sposób przy pomocy dotychczasowych twierdzeń dają się wyznaczać położenia równowagi ciał sztywnych w płaszczyźnie. Można to uczynić jedynie na przykładach, a zatem po pewnych uwagach ogólnych, o rozwiązywaniu zagadnień statycznych, przytoczymy szereg przykładów, podzielonych na rozmaite kategorye. Chodziło o to, aby rozczłonkować trudności, napotykane w tych zastosowaniach, i dać możność czytelnikowi przezwyciężać je stopniowo. Tu i owdzie dodane są uwagi, które mają ułatwić stosowanie zasad ogólnych do rozmaitych zagadnień.


	
122.    Jeżeli na ciało działają trzy siły, albo jeżeli układ daje się łatwo sprowadzić do trzech sił, to możemy wyznaczyć położenie równowagi, posługując się zasadą, że trzy równoważące się siły przechodzą przez jeden punkt, albo są równoległe. Dowiedliśmy to w par. 34.



Metoda ta posiada dwie zalety: (1) oznaka zbiegania się trzech prostych w jednym punkcie daje się nieraz dogodnie wyrazić w postaci pewnego warunku geometrycznego, (2) nie wprowadzamy tu wielkości sił, jeżeli więc te są nieznane, to dalsze rugowanie jest zbyteczne. Jeżeli wszakże pragniemy wyznaczyć i te wielkości, to możemy uczynić to potem, korzystając z twierdzenia, że każda z nich jest proporcyonalna do sy-nusa kąta pomiędzy dwiema pozostałemi. Metoda taka zowie się zwykle geometryczną.

	
123.    Jeżeli układ zawiera więcej od trzech sił, lub jeżeli przekładamy metodę analityczną nawet w przypadku trzech sił, to posługujemy się wynikami paragrafu 109. Aby wyrazić warunki równowagi, przyrównywamy do zera sumy rzutów sił na dwa stosowne kierunki i sumę momentów sił względem stosownego punktu. Utworzywszy w ten sposób trzy równania, rugujemy z nich siły nieznane i ostatecznie otrzymamy jedno równanie, określające algebraicznie położenie równowagi.



Skoro mamy rugować siły nieznane, to będzie dogodnie brać rzuty na kierunek prostopadły do jednej z nich i brać momenty względem punktu, położonego na linii działania tejże. W takim razie siła ta wystąpi jedynie w równaniu . trze-ciem, które możemy całkowicie pominąć. Stąd widać, że stosowny dobór kierunków, na które bierzemy rzuty, oraz punktów, względem których bierzemy momenty, może nam oszczędzić pracę rugowania.

	
124.    Gdy mamy kilka ciał, tworzących układ, to musi-my uwzględnić działania jednych na drugie; w tym celu wprowadzamy siły, zwane reakcyami, w punktach zetknięcia. Możemy dalej uważać, że każde ciało istnieje osobno (lub że pozostałe ciała zostały usunięte), i że działają na nie obok sił danych jeszcze owe reakcye. Tworzymy następnie równania dla każdego ciała z osobna i wreszcie rugujemy owe reakcye, jeżeli są nieznane. Równania pozostałe określą położenia równowagi ciał.



Możemy niekiedy uniknąć tych rugowań, wyrażając warunki równowagi dla dwóch ciał razem; zresztą w dalszym ciągu poznamy sposób tworzenia równań dla ciał poszczególnych bez wprowadzania reakcyi wzajemnych.

	
125.    Ciężki pręt AB, cienki i jednorodny, spoczywa częściowo wewnątrz, a częściowo na zewnątrz pułkulistej czaszy gładkiej i nieruchomej. Wyznaczyć położenie równowagi.



Niech G oznacza punkt środkowy pręta; w takim razie w G jest przyłożona siła ciążenia W, czyli ciężar pręta. Powinno to być zrozumiałe z teoryi sił równoległych; dowód ścisły podamy w rozdziale o środku ciężkości.

Gdy stykają się dwie gładkie powierzchnie, to ciśnienie pomiędzy niemi działa na normalnej do wspólnej płaszczyzny stycznej w punkcie zetknięcia (par. 54). Pręt możemy uważać za bardzo cienki cylinder z zaokrąglonymi końcami. Wspólna płaszczyzna styczna do pręta i kuli w punkcie A jest naturalnie płaszczyzną styczną do kuli, i ciśnienie w tym punkcie działa na normalnej AO do kuli. Dojdziemy
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do tego samego wniosku, uważając, że pręt dotyka kuli tylko jedną krańcową cząsteczką; w takim razie wprost wy-wynika z par. 54, że ciśnienie pomiędzy tą cząsteczką krańcową i kulą działa normalnie do kuli.

Zwróćmy teraz uwagę na punkt C, w którym pręt styka się z brzegiem czaszy. Wspólna płaszczyzna styczna do pręta i do linii brzegu przechodzi przez pręt i styczną do tej linii w punkcie C. Reakcya musi być prostopadła do tych obydwóch prostych, a zatem działa na prostej CI, prostopadłej do pręta w płaszczyźnie pionowej, przezeń przechodzącej.

Nie będzie bez pożytku ująć uwagi powyższe w prawidło robocze. Płaszczyzna styczna do powierzchni w pewnym punkcie zawiera wszystkie proste, styczne w tym punkcie. Stąd wynika, że reakcya pomiędzy dwoma stykającemi się ciałami gładkiemi musi być normalna do każdej linii, położonej na powierzchni jednego z nich i przechodzącej przez punkt zetknięcia, a przeto kierunek reakcyi wyznaczamy tak: obieramy dwie linie, położone na danych ciałach i przechodzące przez punkt zetknięcia; szukany kierunek jest normalny do obydwóch. Tak np. zarówno pręt, jak i linia brzegu przechodzą przez punki C, a zatem reakcya w tym punkcie musi być normalna do obydwóch.

Niech a oznacza promień czaszy i 21 długość pręta. Położenie pręta określa kąt ACO=^~, który pręt tworzy z poziomem. Znajdziemy z łatwością, że GAO=^, i CA=2a cos 3.

Pręt ma pozostawać w równowadze pod działaniem trzech sił R, R1 i W, możemy więc z korzyścią uciec się do metody geometrycznej. Potrzeba tu wyrazić warunek, aby trzy siły spotykały się w pewnym punkcie I. Zakładamy w tym celu, że rzuty odcinków AGr i Al na kierunek poziomy są równe. Kąt ICA jest prosty, a zatem punkt I leży na przedłużeniu okręgu, i przeto AI=2a. Równość rzutów wy

razi się tak: Z cos ^=2a cos 23,


skąd




cos 9—4 + 8u




1/1+02

V 2 64a2



Jeżeli przypiszemy pierwiastkowi znak minus, to cos 3 będzie ujemny, i kąt 3 większy od prostego. Przypadek taki wyłączają względy geometryczne, a zatem położenie równowagi określa wartość cos 3, którą otrzymamy, kładąc przed pierwiastkiem znak plus.

Są tu i inne ograniczenia natury geometrycznej. Jeżeli 21 nie jest dłuższe od 2a cos 3, to pręt nie dosięgnie brzegu i wpadnie do czaszy, jeżeli zaś l nie jest mniejsze od 2a cos 3, to punkt G-, na który działa siła ciążenia, znajdzie się Zabrzegiem, i pręt wypadnie z czaszy.

Warunki te są spełnione, jeżeli l zawiera się pomiędzy “V3 i 2a Jeżeli połowa długości pręta jest mniejsza od 2a, to cos 3 nie może przewyższać jedności, co daje się łatwo okazać.

Dla porównania rozwiążemy jeszcze lo samo zadanie metodą analityczną. Mamy wziąć rzuty na pewne kierunki i momenty względem pewnego punktu. Aby nie wprowadzać do równań reakcyi R', we-źmiemy rzuty na AG i momenty względem G. Równanie rzutów będzie

R cos 9= W sin 8

Odległość punktu C od AO wynosi a sin CO I, a GG=2a cos 0—l, zatem równanie momentów będzie Ra sin 20= W(2a cos 3—Z) cos 3.

Rugując R, otrzymamy do wyznaczenia cos 3- takie samo równanie, jak poprzednio.

Należy zwrócić uwagę, że wartość cos 3, określona w równaniach równowagi, zależy jedynie od długości a i l, jest zaś niezależna od ciężaru pręta. Wszystkie jednorodne pręty tej samej długości zajmą w tej samej czaszy bez względu na ciężary jedno i toż samo położenie równowagi. Można to było przewidzieć z teoryi wymiarów. Oczywiście cos 3 nie może być równy żadnej wielokrotności ciężaru, lecz jedynie stosunkowi dwóch ciężarów. W naszem zagadnieniu występuje tylko jeden ciężar W; nie istnieje żadna inna siła, któraby mogła utworzyć z nim stosunek, a zatem i ciężar W nie może występować w wyniku ostatecznym.

Prz. 2. Okazać, że w przykładzie poprzedzającym można odrazu otrzymać równanie, określające cos 3 i nie zawierające sił nieznanych, biorąc momenty względem punktu I, w którym przecinają się reak-cye R i R'. Okazać prócz tego, że równowaga jest trwała.

Przesuńmy nieco pręt, powiększając kąt 3, czyli nachylenie pręta do poziomu. Koniec A zejdzie na dół, pręt wysunie się cokolwiek z czaszy, i punkt I znajdzie się po lewej stronie pionu, przechodzącego przez nowe położenie punktu G. Pozostawmy teraz pręt samemu sobie; biorąc momenty względem I, przekonamy się, że ciężar pręta, działający na punkt G, usiłuje zwrócić pręt do położenia równowagi. Gdy przesuniemy pręt tak, aby 9 się zmniejszyło, to rozważania analogiczne doprowadzą do takiego samego wniosku. Widzimy więc, że równowaga jest trwała.

Prz. 3. Pręt AB jest wsparty w punkcie C o brzeg nieruchomego kielicha, a w końcu A o ścianę wewnętrzną. Kielich ma kształt prostego stożka o osi pionowej. Okazać, że w położeniu równowagi l sin2(3+3) cos 3=2a sin23, gdzie 3 oznacza nachylenie pręta do poziomu, a promień otworu kielicha, 3 spełnienie połowy kąta wierzchołkowego, wreszcie 2l długość pręta.

Prz. 4. Otwarte wiadro cylindryczne, którego promień jest równy a, ciężar zaś nW, stoi na poziomej podłodze. Ciężki pręt o dłu
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gości 2l i wadze W spoczywa na brzegu wiadra, opierając się końcem o wewnętrzną ścianę pionową. Okazać, że (1) nachylenie pręta do poziomu 3 czyni w położeniu równowagi zadość równaniu l cos8 3=2a, (2) pręt wy-padnie z wiadra, jeżeli nachylenie będzie mniejsze od tej wartości, (3) wiadro się przewróci, jeżeli l cos 8> (n+2)a. Czy równowaga jest trwała czy chwiejna?

Pręt wypadnie z wiadra, jeżeli G leży po prawej stronie pionu, przechodzącego przez punkt I na figurze. Wiadro się przewróci, jeżeli moment ciężaru pręta względem D jest większy od momentu ciężaru wiadra.

Prz. 5. Okazać, że największa długość pręta, pozostającego w równowadze w położeniu wyżej opisanem (fig. 23), czyni zadość równaniu 212= a2(n+2)3.

Prz. 6. Ciężki pręt AB o długości 21 spoczywa na nieruchomym kołku C, a koniec jego A opiera się o gładką krzywą, położoną w tej samej płaszczyźnie pionowej; gdy biegun leży w C, a kąt 9 mierzymy od pionu, to równanie biegunowe tej krzywej jest r=f(8). Okazać, że wartość kąta 8, przy której zachodzi równowaga, czyni zadość równa

niu (r—Z) tan 9= dr.

Okazać dalej (całkując równanie powyższe), że, jeżeli równowaga ma zachodzić we wszystkich położeniach, to krzywa posiada postać (r— Z) cos J= a, że środek pręta leży przytem zawsze na pewnej prostej poziomej, i wreszcie, że krzywa jest konchoidą Nikomedesa.

Gdybyśmy zastosowali do tego zagadnienia zasadę pracy przygotowanej, to doszlibyśmy naprzód do wniosku, że gdy pręt wyrusza ze stanu równowagi, to środek jego zaczyna poruszać się poziomo. Z tego faktu geometrycznego należałoby następnie wyciągnąć wnioski powyższe.

	
126.    Prz. 1. Ciężki pręt jednorodny PQ znajduje się wewnątrz gładkiego naczynia, utworzonego przez obrót elipsy około dużej osi, ustawionej pionowo. Okazać, że w stanie równowagi pręt posiada położenie poziome albo przechodzi przez ognisko.



Reakcye w P i Q działają na normalnych do naczynia. W położeniu równowagi normalne te muszą przecinać się w punkcie I, leżącym pionowo nad środkiem G- pręta.

Następująca własność geometryczna stożkowych stanowi uogólnienie własności, podanej przez Salmona (Co-nics,rozd.XI). Przytaczamy jej dowód w przy-pisku na końcu książki. Obierzmy osi elipsy tworzącej CA, CB za osi współrzędnych, i niech (x g) oznaczają współrzędne środka G jakiejkolwiek cięciwy PQ, (4) współrzędne punktu I, w którym przecinają się normalne w P i Q, wreszcie p, p', q odpowiednio odległości ognisk i środka elipsy od cięciwy. W takim razie
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-0 b2_ PP'

y a2 q2

Uważamy tu, że p i pf mają znaki jednakowe, jeżeli obydwa ogniska leżą po tej samej stronie cięciwy.

W zadaniu naszem równowaga zachodzi, jeżeli ^=y, a zatem p (lub p') musi być zerem, albo y~0. W przypadku pierwszym pręt przechodzi przez ognisko, w drugim posiada położenie poziome.

Prz. 2. Okazać, że równowaga jest trwała, jeżeli pręt przechodzi przez ognisko niższe.

W tym celu należy okazać, że po przesunięciu pręta moment siły ciążenia względem I usiłuje przywrócić położenie równowagi.

Prz. 3. Naczynie ma kształt bryły, powstałej skutkiem obrotu elipsy około małej osi, ustawionej pionowo; okazać, że pręt może być w równowadze tylko w położeniu poziomem.

W położeniu równowagi E==x. Ogniska osi małej są urojone, nie możemy więc otrzymać wzoru na § bezpośrednio z wzoru na , zmieniając a na b. Przypuśćmy, że cięciwa przecina osi w punktach L i M. Z trójkątów podobnych wypadu ie

n-0b2__   CL2-a^ + b\ ^-xa2 _ CM2-b2 + a2

y a?          CL2 ‘ x 62          CM2

Prawa strona nie może być zerem, a zatem 6=x tylko pod warunkiem, że x=o.

Prz. 4. Ciężki jednorodny pręt PQ znajduje się wewnątrz gładkiego naczynia w kształcie bryły, powstałej skutkiem obrotu elipsy około dużej osi. Oś obrotu tworzy z pionem kąt a, a pręt w stanie równowagi przecina osi CA, CB elipsy tworzącej w Li M. Dowieść, że CM2+c2   ,  . CL2— c2

--• b‘sin 0—-------a2 cos a, gdzie C2==(2—b2.

CM            CL        8

Prz. 5. Dwa gładkie druty wykrępowano według jednakowych katenoid (łańcuchowych) i ustawiono w taki sposób, że katenoidy mają wspólną oś i wspólną kierownicę pionową. Na druty nawleczono dwie obrączki, osadzone na końcach ciężkiej jednorodnej sztaby. Okazać, że sztaba może być w równowadze tylko w położeniu poziomem.

Prz. 6. Pręt jednorodny jest zaopatrzony na końcach w gładkie obrączki; jedną z nich nawleczono na prosty drut pionowy, a drugą na drut, wykrępowany według paraboli. Oś tej paraboli leży na pierwszym drucie, a latus rectum jest równy podwójnej długości pręta. Okazać, że w stanie równowagi pręt tworzy z pionem kąt 60°

(Math. Tripos, 1869).

Prz. 7. Dwa równe jednorodne pręty AC, CB są połączone luźno w C, i zaopatrzone na końcach A, B w obrączki Obrączki nawleczono na gładki drut paraboliczny, którego oś jest pionowa, a wierzchołek zwrócony ku górze. Okazać, że w położeniu równowagi odległość G od' AB wynosi ćwierć latus rectum paraboli. (Math. Tripos, 1871.)

Prz. 8. Dwie ciężkie jednorodne sztaby AB i BC, ważące odpowiednio P i Q, połączono w B zapomocą gładkiego przegubu, na końcach A i C osadzano gładkie obrączki, które mogą się przesuwać na nieruchomych prętach, a każdy pręt tworzy z poziomem kąt a. Okazać, że Pcot ©=Q cot 3=(P+Q) tan a, gdzie « i 3 oznaczają kąty nachylenia sztab do poziomu.                               (Triu. Coli., 1882).

Bierzemy rzuty sił, działających na obydwie sztaby razem, na kierunki poziomy i pionowy oraz momenty sił, działających na każdą z osobna, względem punktu B.

	
127.    Prz. 1. Diuie gładkie sztaby OM i ON, prostopadłe jedna do drugiej, są ustawione nieruchomo w płaszczyźnie pionowej. Na nich wspiera się jednorodna tarcza eliptyczna, położona w tej samej płaszczyźnie. Okazać, że albo osi elipsy są równoległe do sztab, albo oś duża tworzy z OM taki kąt 3, że


a2 tan2 a — b2





tan28=-----. a2—b2 tan2 a gdzie a oznacza kąt sztaby OM z pionem.

Oznaczmy ‘środek elipsy przez C, punkty zetknięcia przez P, Q, a punkt przecięcia normalnych w P i Q przez I. W położeniu równo-
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dowiedziemy w rozdziale




wagi musi zachodzić jedno z dwojga, albo M I i O leżą razem, albo prosta CI jest pionowa.

W przypadku pierwszym styczne OM i ON są równoległe do osi.

Dajmy na to, że zachodzi przypadek drugi, i niech D oznacza środek cięciwy PQ. Prosta OD przechodzi przez 0, a ponieważ styczne tworzą kąt prosty, przeto OPIQ jest prostokątem, i OD przechodzi przez I. Stąd wynika, że OCI jest prostą pionową.

Obydwa wnioski powyższe dadzą się także łatwo wyciągnąć z zasady, którą o pracy przygotowanej. Z nauki o stożkowych wiemy, że gdy elipsa się porusza w swej płaszczyźnie, pozostając wciąż w zetknięciu ze sztabami, to C zatacza łuk koła, którego środek leży w 0, a promień wynosi V a2+b2. Gdy środek C leży pionowo nad O, to położenie jego jest najwyższe; gdy osi są równoległe do sztab, to środek C leży w jednym z końców zataczanego luku i położenie jego jest najniższe. Z zasady pracy przygotowanej wynika bezpośrednio, że w pierwszem z tych położeń mamy równowagę chwiejną, a w dwóch innych trwałą.

Potrzeba jeszcze wyznaczyć 8 w przypadku, gdy CI jest pionem. Prostopadła z C do OM tworzy z dużą osią kąt spełniający 3, zatem

a?sin2$+b?cos2}=OC?sin?=(a2+b2)sin2o .

Stąd można wyznaczyć od razu tan29.

Prz. 2. W płaszczyźnie pionowej tarcza eliptyczna wspiera się na dwóch sztabach OM i ON, tworzących kąt dowolny. Okazać, że y q2_X2

tan 3=-------, gdzie 3 oznacza kąt, który duża oś tworzy z pio-X b2— Y

nem, a (XY) współrzędne punktu 0 w odniesieniu do osi elipsy, jako do osi współrzędnych.

Wypada tu zastosować twierdzenie, które wynika z dwóch innych, podanych przez Salmona (Conics, 180). Dajmy na to, że P i Q są punktami zetknięcia stycznych do stożkowej, poprowadzonych z punktu (lY). Normalne w P i Q przecinają się w punkcie I, którego współrzędne (xy) są dane przez

2                 62 — Y 2 ii “= (a2—b2)------, —— — (a2—ń2)


a?—X2




a2 Y2+b2X2



X’ cPY^b^N2 Y

Otrzymamy stąd żądany wynik, zakładając, że CI jest pionem.

	
128.    Prz. 1. Do punktu, położonego na obwodzie podstawy stożka, przywiązano sznur o długości równej średnicy podstawy. Drugi koniec sznura jest umocowany w punkcie gładkiej pionowej ściany, z którą styka się także obwód podstawy stożka. Okazać, że w położeniu równowagi tan a tan 0=1/12, gdzie 20. oznacza kąt wierzchołkowy stożka, a 3 nachylenie sznura do pionu. (Środek ciężkości stożka leży na osi w odległości ćwierci wysokości od podstawy.)



Prz. 2. Płytę kwadratową ustawiono w płaszczyźnie prostopadłej do pionowej gładkiej ściany, przywiązawszy jeden z wierzchołków do ściany sznurem, którego długość jest równa bokowi kwadratu. Okazać, że odległości trzech pozostałych wierzchołków od ściany mają się do siebie, jak 1:3:4.                             (Math. Tripos, 1853.)

Biorąc rzuty na kierunek pionowy oraz momenty względem wierzchołka, opartego o ścianę, otrzymamy dwa równania, z których można wyznaczyć nachylenia boków do ściany i naprężenie sznura.

Prz. 3. Sztaba jednorodna AB posiada długość a. Do końca A jest przymocowany koniec sznura APBC, który przechodzi także przez gładki pierścień, osadzony w końcu B. Drugi koniec sznura jest przywiązany do kołka O, a część A PB przechodzi przez gładki kołek P, położony na jednym poziomie z C w odległości 2b od tegoż (b<a). Wyznaczyć kąty, które części sznura PB i BC tworzą z pionem, gdy część AP ma kierunek pionowy, i dowieść, że przytem sznur musi

5b —   ,---_ posiadać jedną z dwóch długości 3V3± Vd‘- b"

(King’s Coli., 1889.)

Prz. 4. Końce dwóch lekkich, sprężystych sznurów są umocowane w nieruchomym punkcie, położonym na prostej poziomej, łączącej dwa gładkie kołki; wolne końce sznurów nierozciągniętych właśnie sięgają do kołków. Sznury te przeciągnięto przez kołki i do ich końców przywiązano końce ciężkiej jednorodnej sztaby. Okazać, że nachylenie sztaby do poziomu jest niezależne od jej długości, a miano-

.         “1—12 wicie wynosi arctan----. la


gdzie "1 i "2 oznaczają odpowiednio wy



dłużenia, którym podlegają sznury, gdy jeden dźwiga całą sztabę; a jest tu odległością pomiędzy kołkami. Okazać prócz tego, że sznury i sztaba są nachylone do poziomu pod kątami, których tangensy tworzą postęp arytmetyczny. Należy uważać, że naprężenie każdego sznura jest proporcyonalne do stosunku pomiędzy wydłużeniem a długością normalną.                                          (Math. Tripos, 1887.)

	
129.    Prz. 1. Kula spoczywa na sznurze, którego końce są umocowane w dwóch punktach nieruchomych. Okazać, że gdy rozetniemy kulę płaszczyzną pionową, to równowaga nie zostanie zakłócona, jeżeli tylko łuk zetknięcia kuli ze sznurem jest nie mniejszy od Barcian 48/55.



(Math. Tripos, 1840.)

Należy przyjąć, że środek ciężkości bryły półkulistej leży na promieniu środkowym w odległości 3/8 promienia kuli od środka.

Będziemy rozważali równowagę półkuli ABD wraz ze stykającą

się z nią częścią sznura AD, możemy więc pominąć reakcye, które te ciała wywierają jedno na drugie. Na takie ciało złożone działają siły następujące: (1) w punktach A i D naprężenia sznura, każde równe T, (2) ciężar półkuli W w jej środku ciężkości G-, (3) reakcya R półkuli drugiej. Reakcya R jest wypadkową wszystkich ciśnień poziomych, zachodzących pomiędzy elementami podstaw, i musi działać na pewien punkt pola zetknięcia. Podstawy się rozejdą, jeżeli wypadkowa sił pozostałych nie przecina również pola zetknięcia. Jeżeli łuk aD jest możliwie najmniejszy, to półkule zaczną się rozchodzić w B, gdyż ciśnienia pomiędzy niemi ograniczą się je
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dynie do najniższego punktu A.



Na półkulę ABD działają w tym razie trzy siły, T w D, T—R w A i W w G. Muszą one przecinać się w punkcie I. Zatem CGr= CA tan l/2ACD, a stąd tan ll2ACD=^ls i tan ACD=i8/55.

Prz. 2. Dwie jednakowe gładkie półkule spoczywają ha dwóch kołkach, osadzonych na jednym poziomie. Półkule są złożone w taki sposób, że wyglądają jak jedna kula, przyczem dzieląca je płaszczyzna jest pionowa. Okazać, że najmniejsza odległość pomiędzy kołkami, przy której półkule jeszcze się nie rozchodzą, ma się tak do średnicy, jak 3 do V73.                                                (Christ’s Coll.)

Prz. 3. Tarczę eliptyczną o mimośrodzie e rozcięto na dwie części według małej osi i umieszczono w zgięciu sznura, umocowanego w dwóch punktach nieruchomych. Duża oś tarczy jest pozioma, a części sznura, nieś tykające się z tarczą, pionowe. Okazać, że koniecznym warunkiem równowagi jest, aby


(6re)2 < (97—4) (31+4).




(Coli. Ex„ 1890.)



Na każdą połowę tarczy działają dwa jednakowe naprężenia na stycznych w wierzchołkach A i B. Ich wypadkowa tworzy z każdą osią kąt 45°. Przypuśćmy, że przecina ona pion, przechodzący przez środek ciężkości G-, w punkcie H; przez ten sam punkt H musi przechodzić i reakcya między połowami tarczy. Stąd wynika, że wzniesienie pionowe punktu H nad B musi być mniejsze od osi małej, czyli a—CGr<2b, gdzie Coznacza środek elipsy. Przyjmując, że CG—~, otrzymamy rezultat żądany.

Prz. 4. Cylinder kołowy stoi na gładkiej płaszczyźnie pochyłej. Do najwyższego punktu cylindra jest przymocowany sznur, który przechodzi przez blok, urządzony na szczycie płaszczyzny, i następnie zwisa pionowo, dźwigając ciężar. Część sznura pomiędzy cylindrem i blokiem idzie poziomo. Znaleźć warunki równowagi.

(Math. Tripos, 1843).

Okazać prócz tego, że stosunek wysokości cylindra do średnicy podstawy powinien być mniejszy od kotangensa nachylenia płaszczyzny do poziomu.

Prz. 5. Sztaba jednorodna o długości a wisi na dwóch sznurach o długościach l i V. Końce sznurów są przywiązane do końców sztaby i do dwóch punktów nieruchomych, położonych na jednym poziomie

w odległości c, a linie sznurów tworzą kąt prosty. Okazać, że stosu


al+cl' al' + cl




nek ich naprężeń wynosi




(Math. Tripos, 1874).



Prz. 6. Prosta przecięcia gładkiej pionowej ściany AB i płaszczyzny BC jest pozioma. W rozwartym kącie ABC znajduje się gładka kula, ważąca W, pozostając w zetknięciu ze ścianą i płaszczyzną dzięki ciśnieniu jednorodnej sztaby o długości Z, osadzonej na zawiasie w A i opartej o kulę. Okazać, że ciężar sztaby musi być większy od

Whcos a cos —

__2

0 a — 0 a — 0

2/ sin — sin ---cos2---

2        2           2

gdzie a i 3 oznaczają odpowiednio kąty ostre, które płaszczyzna i sztaba tworzą ze ścianą, a h=AB.                    (Tath. Tripos, 1890).

Prz. 7. Pewną liczbę gładkich jednakowych cylindrów związano sznurem, tworząc pęk, którego przekrój poprzeczny jest trójkątem równobocznym. Jeden bok trójkąta zawiera n cylindrów, i cały pęk waży W. Dowieść, że gdy pęk spoczywa na płaszczyźnie poziomej, w 1 to naprężenie sznura nie może być mniejsze od--- 1-|—)   lub 4V3 n/

W /  1

--— 1--) stosownie do tego, czy n jest liczbą parzystą, czy niepa-4 V3 \ n /

rzystą. Naprężenia powyższe występują odpowiednio wtedy, gdy cylindry, położone w jednej jakiejkolwiek warstwie poziomej po nad najniższą, nie wywierają jeden na drugi żadnych reakcyi.

(Math. Tripos, 1886).

Prz. 8. n równych gładkich kul, każda o promieniu r i wadze W, włożono do próżnego pionowego cylindra, ustawionego na płaszczyźnie poziomej. Cylinder jest otwarty z obydwóch końców, a jego promień a jest mniejszy od 2r. Dowieść, że aby cylinder się nie przewrócił, to ciężar jego powinien conajmniej wynosić W, wyznaczone z równania

aW'=(n—1)(a— r) W lub a W'=n(a-r) W, stosownie do tego, czy n jest liczbą nieparzystą, czy parzystą.

(Math. Tripos, 1884).

Prz. 9. Ciężką obręcz połączono z inną większą obręczą współ-środkową zapomocą n sprężystych sznurów, przeprowadzonych według wspólnych promieni w równych odstępach. Tę drugą obręcz połączono w podobny sposób z trzecią zapomocą 2n sznurów, trzecią połączono z czwartą zapomocą 3n i t. d. Wagi wszystkich obręczy są jednakowe, a sznury w tern położeniu pierwotnem nie mają naprężeń. Okazać, że jeżeli podniesiemy obręcz największą i będziemy ją trzymali poziomo, to wszystkie inne ustawią się na powierzchni prostego stożka.                                                        (Pet. Coli., 1862).

Prz. 10. Dwie kule o gęstościach p, a i promieniach a, b leżą w paraboloidzie obrotu o osi pionowej. Punkt zetknięcia kul znajduje się w ognisku. Okazać, że p3al0=g3b10.

(Curtis’ problem. Educational Times, 5460).

	
130.    Równowaga czterech odpychających się cząsteczek. Prz. 1. Cztery cząsteczki swobodne, położone w wierzchołkach czworoboku, pozostają w równowadze pod działaniem wzajemnych przy-ciągań i odpychać, a mianowicie na bokach AB, BC, GD, DA działają siły przyciągające, a na przekątniach AG, BD odpychające. Siły te są proporcyonalne do boków lub przekątni, na których działają. Dowieść, że ów czworobok jest równoległobokiem.



W danym razie siły, działające na cząsteczkę A, odpowiadają odcinkom AB, AD i AG. Twierdzenie wynika bezpośrednio z równo-ległoboku sił.

Prz. 2. Czworobok, utworzony przez takie cztery cząsteczki, może być wpisany w koło. Okazać, że siła przyciągająca na którymkolwiek boku jest proporcyonalna do boku przeciwległego, a siła odpychająca na przekątni jest proporcyonalna do drugiej przekątni.

Prz. 3. Czworobok jest jakikolwiek, i cząsteczki w wierzchołkach są w równowadze; dowieść, że

f(AB)_ f(BC)_  _ f{BD) _ __f\AC)

AB.OGOD BG.OD.OA " AG. OB. OD BD-OA-OG' gdzie O oznacza punkt przecięcia przekątni BD, AC, a f{AB) siłę, działającą na prostej AB.

Rozważamy równowagę cząsteczki A.

f(AG) sin DAB pole DAB AD . A O _ BD AO f(AB) “ sin DA0 “ pole DAO • AD. AB ~7)0’Ad '’

dalsze związki żądane wynikają ze względów na symetryę.

Prz. 4. Czworobok posiada postać dowolną. Okazać, że (1) momenty sił, działających na bokach, względem 0 są równe, i (2)

AB f(AB) + B Gf(B C) + GDf( GD) + DA f(DA)=A Gf{A G) + BD f(BD).

Reakcye w przegubach.

	
131.    Wyobraźmy sobie, że dwie belki lub sztaby są złączone gładkim przegubem czyli zawiasą, albo bardzo krótkim sznurem; w takim razie reakcye, które jedna z nich wywiera na drugą, są równoważne jednej sile, przyłożonej w punkcie złączenia. Kierunek tej siły bywa często widoczny od razu, w innych przypadkach wypada wyznaczać ją zarówno co do wielkości jak i kierunku z równań równowagi.



W dwóch przypadkach kierunek tej reakcyi wypadkowej jest widoczny. Po pieriusze wtedy, gdy ciała oraz siły zewnętrzne są symetryczne względem pewnej prostej, przechodzącej przez złączenie. W tym razie obydwie reakcye, które belki wywierają na siebie wzajemnie, muszą być także położone symetry-trycznie. Lecz reakcye te są równe i odwrotne, a zatem muszą być prostopadłe do osi symetryi.

Powtóre kierunek reakcyi jest widoczny wtedy, gdy ciało jest osadzone w dwóch przegubach A, B^ i nie działają nań żadne siły prócz reakcyi w A, B. Skoro ciało pozostaje w równowadze pod działaniem dwóch sił, to siły te muszą być równe i działać na prostej AB w strony odwrotne.

Prz. 1. Dwie równe lekkie sztaby AA', BB' są połączone przegubem we wspólnym środku C i ustawione w płaszczyźnie pionowej na gładkim poziomym stole. Ich górne końce A, B łączy lekki sznur ADB, na który nawleczono ciężki pierścień D. Okazać, że w położeniu równowagi prosta pozioma, przechodząca przez pierścień D, dzieli na pół odcinki A C i BC.                                (Coli. Ex.).
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Reakcye w C są poziome, gdyż układ jest symetryczny względem pionu przez C. Reakcya w A' jest pionowa, bo gdy koniec sztaby spoczywa na powierzchni, to reakcya musi być normalna do powierzchni (125). Naprężenie sznura działa na prostej AD. Trzy te siły utrzymują w równowadze sztabę AA', a zatem muszą się spotykać w jakimś punkcie I. Z podobieństwa trójkątów znajdziemy, że DC jest równe połowie 1A', a stąd bezpośrednio wynika twierdzenie, o które chodzi.

Prz. 2. W przykładzie poprzedzającym ciężar każdej sztaby jest n razy większy od ciężaru pierścienia; dowieść, że w położeniu równowagi prosta pozioma, poprowadzona przez pierścień, przecina CA w punkcie P tak, że CP—(2n+pPA.

Prz. 3. Dwie równe, ciężkie sztaby CA, CB są połączone zawiasą w C, a ich końce A, B spoczywają na gładkim poziomym stole. Środki sztab E i F wiąźe sztaba trzecia, złączona z niemi zapomocą gładkich zawias. Wyznaczyć reakcye w złączeniach w dwóch przypadkach: (1) gdy sztaba EF nic nie waży, (2) gdy ciężar jej wynosi W.

Reakcya R w C jest pozioma, jak tego wymaga symetrya ukła-

du. Jeżeli nie uwzględniamy ciężaru sztaby prawidła paragrafu niniejszego musimy uważać, że reakcye w E i F działają na prostej EF. Oznaczmy je przez X. Reakcya R' w A jest pionowa, a ciężar W sztaby CA działa pionowo w E. Biorąc rzuty na kierunki pionowy i poziomy oraz momenty względem E, znajdziemy z łatwością, że R a także — X są równe Wtan a gdzie a oznacza połowę kąta A CB.


EF, to w myśl drugiego
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Fig. 28.




Jeżeli dach na domu nie jest spiczasty, to kąt ACB pomiędzy krokwiami nie wiele się różni od dwóch prostych, a zatem a jest duże, i reakcye w C, E są znacznie większe od ciężaru belki. Wobec tego złączenia krokwi powinny być szczególnie mocne.

Jeżeli ciężar W' sztaby EF nie jest znikomy, to reakcye w E i F nie będą poziome. Oznaczmy składowe poziomą i pionową reakcyi, działającej w E na EF, odpowiednio przez X i Y, uważając, że pierwsza działa w prawo, a druga na dół. Uderzać musi, że kierunki te są odwrotne do tych, których należałoby oczekiwać. Obrano je tak, aby nie gmatwać rysunku; otrzymamy je w ostatecznym wyniku jako wielkości ujemne. Reakcye na sztabę AC w punkcie E są naturalnie odwrotne do tamtych. Warunki równowagi będą następujące:

Rzuty pion. (szt. EF) Rzuty pion, (cały układ) Mom. wzgl. E (szt. AC)


2Y+ W‘=0.

2R'= W‘+2 W.

Ra cos a.=R'asin a.

X+R=0.

lub CB. Równania powyższe



Rzuty poz. (szt. AC)

W tem 2a oznacza długość sztaby AC określają X, Y, R i R'.

Prz. 4. Sztaby AB, BC o jednakowych ciężarach, lecz nie jednakowych długościach, połączono przegubem w punkcie B, pozostałe zaś końce osadzono na zawiasach w nieruchomych punktach A i C, położonych na tym samym pionie. Okazać, że linia działania reakcyi w przegubie B przechodzi przez środek odcinka AC.

Prz. 5. Dwa jednorodne pręty AB, AC są połączone luźno w A. Punkt A może się przesuwać na gładkim drucie poziomym, a punkty B i C na dwóch gładkich drutach pionowych w płaszczyźnie ABC. Dowieść, że gdy pręty tworzą kąt prosty, to a V l+l‘=lv l' +1' \/T, gdzie l i 1' oznaczają długości prętów, a zaś odległość pomiędzy drutami pionowemi                                             (Coli. Ex., 1890).

	
132.    Prz. 1. Cztery pręty łączą się przegubami w końcach A, B, C, D, tworząc równoległobok, a pomiędzy przeciwległymi wierzchołkami równoległoboku zaciągnięto wyprężone sznury. Okazać, że naprężenia sznurów są proporcyonalne do długości.



Dodajmy do figury cztery cząsteczki, każdą w jednym wierzchołku, i zamiast łączyć boki bezpośrednio połączmy je z cząsteczkami; do tych samych cząsteczek przywiążemy sznury. Przy takiem urządzeniu na każdy pręt działają tylko dwie siły na końcach, a zatem zgodnie z prawidłem drugiem par. 131 ich linie działania leżą na pręcie. Dalej postępujemy tak, jak w par. 130, prz. 1. Siły, działające na cząsteczkę A, są równoległe do boków trójkąta ABC, a zatem ich wielkości są proporcyonalne do tych boków. Stąd wynika, że każdy bok figury jest miarą siły, która na nim działa.

Inne rozwiązanie. Pozostawmy pręty w połączeniu bezpośre-dniem, ale sznury przymocujmy do końców prętów AB i CD. Na pręt AD działają teraz jedynie reakcye w przegubach, a więc ich linią działania jest AD (131). Również reakcye w B i C działają na prostej BC. Widzimy, że na pręt CD działają naprężenia T, T' wzdłuż przekątni DB, CA, oraz reakcye wzdłuż AD i BC. Biorąc rzuty na kierunek prostopadły do BC, otrzymamy Tsin OBC=T' sin OCB, gdzie O oznacza punkt przecięcia przekątni. Stąd T.0C=T'.OB, t. j. naprężenia są w tym samym stosunku, co odpowiednie przekątnie.

Wypada zaznaczyć, że w dwóch rozwiązaniach powyższych otrzymujemy nie jednakowe reakcye wzajemne prętów. W rozwiązaniu pierwszem rozważamy osobno równowagę pręta CD i cząsteczek C, D. W rozwiązaniu drugiem uważamy to wszystko za jedno ciało, i warunki równowagi takiego ciała złożonego wystarczają do wyznaczenia stosunku naprężeń sznurów. Rozważmy reakcye w wierzchołku D. W rozwiązaniu pierwszem działały tu dwie reakcye, a mianowicie reakcye pomiędzy cząsteczką, umieszczoną w D, a prętami AD i CD. Dowiedliśmy, że działają one wzdłuż tych prętów. Oznaczmy je odpowiednio przez R, i R2. W rozwiązaniu drugiem wprowadzamy jedynie reakcyę Ri, gdyż R2 jest niepotrzebne.

Jeżeli zagadnienie wymaga także wyznaczenia reakcyi w punkcie D, to musi być wskazane, w jaki sposób pręty są połączone jeden z drugim i ze sznurem. Tylko w takim razie można będzie rozstrzygnąć, co właściwie uważać należy za reakcyę w wierzchołku D: siłę R1, czy R2, czy też może pewną kombinacyę obydwóch.

Prz. 2. Dwanaście lekkich prętów, połączonych swobodnie w końcach, tworzy równoległościan; układ utrzymują w równowadze cztery sprężyste sznury, naciągnięte pomiędzy parami wierzchołków przeciwległych. Dowieść, że naprężenia prętów, i sznurów są proporcyonalne do długości.                               (Coli. Ex., 1890.)

Prz. 3. Cztery pręty, złączone w końcach przegubami, tworzą czworobok ABCD; przeciwległe wierzchołki tego czworoboku A, C oraz B, D łączą wyprężone sznury. Oznaczywszy przez f^AG) i f{BD) naprężenia, okazać, że

/ 1      1 \           / 1       1 \

f(AGn — +--) =      --+ —- ,

	
7 UO OCJ ‘ \BO odJ gdzie O oznacza punkt przecięcia przekątni.



Umieściwszy w wierzchołkach cząsteczki, jak w prz. 1, sprowadzimy zagadnienie do już rozwiązanego w par. 130 przykładu 3, i otrzymamy od razu żądany związek. Zagadnienie to zawdzięczamy Eulerowi, który dał równoważną odpowiedź w Acta Academiae Scientiarum Im-perialis Petropolitanae, 11T9. Z tego Euler wyprowadził twierdzenie o równoległoboku, podane w prz. 1.

Prz. 4. Przedłużenia boków przeciwległych AD, BG (lub GD, BA) przecinają się w punkcie X; dowieść, że naprężenia sznurów są odwrotnie proporcyonalne do odległości ich od X.

Stosujemy metodę drugą z prz. 1. Uważamy, że sznury są przywiązane do końców prętów AB, CD; w takim razie reakcye w D i G działają w kierunkach AD i BG. Biorąc momenty sił działających na GD względem X, otrzymamy od razu żądany wynik.

Prz. 5. Cztery pręty, złączone przegubami w końcach, tworzą czworobok ABCD. Punkty E, F na przyległych bokach AB, BC łączy jeden sznur, a punkty G, H na BC, CD inny. Porównać naprężenia sznurów. Jest to modyfikacya zagadnienia, które rozwiązał Euler w r. 1779 (Acta Academiae Petropolitanae). Na rozwiązaniu Eulera oparte jest rozwiązanie następujące:

Twierdzenie pomocnicze. Możemy zastąpić sznur EF sznurem innym, łączącym dwa jakiekolwiek inne punkty E', F' tych samych
[image: ]

prętów AB, BC; jeżeli momenty naprężeń tych obydwóch sznurów względem B będą równe, to nie zmieni się przytem żadna reakcya z wyjątkiem reakcyi w B. Aby to uzasadnić, oznaczmy literą K punkt przecięcia prostych EF i E'F'. Naprężenie T, działające w punkcie F na pręt BG, przenosimy do K i rozkładamy na dwie składowe, a mianowicie U w kierunku prostej KF' i V- w kierunku KB. Pierwszą z nich przenosimy do F'~ a drugą do B. Tak samo naprężenie T, działające na pręt AB w punkcie E, rozkładamy na U, przyłożone w E' i działające w kierunku prostej E'K, oraz V, przyłożone w B i działające w kierunku BK. Tym sposobem dwie równe siły T, T, przyłożone w E i F, zastąpiliśmy przez dwie równe siły U, U, przyłożone w E', F', czyli przez naprężenie U sznura E'F'. Jednocześnie zmieniliśmy wzajemne reakcye prętów w B przez dodanie dwóch sił V, równych i odwrotnych. Zmiana ta nie dotknęła wcale innych sił i reakcyi układu. Momenty sił T i U względem B muszą być równe, bo T jest wypadkową sił U i V.

Opierając się na twierdzeniu powyższem, możemy przenieść sznury EF, GH aż na przekątnie AC, BD. Oznaczmy naprężenia w EF, GH odpowiednio przez T, T'. W takim razie naprężenie w AC wy-niesie U—nT, gdzie n oznacza stosunek odległości prostych EF i AC od wierzchołka B. Również naprężenie w BD będzie U'—n'T', gdzie n1 jest stosunkiem odległości prostych HG i BD od C. Stosunek naprężeń w przekątniach znaleźliśmy w przykładzie 3; korzystając z tego, otrzymamy

Prz. 6. Cztery pręty, złączone w końcach przegubami, tworzą czworobok ABCD. Przeciwległe boki AB, CD a także AD, BC połączono naprężonymi sznurami EF i GH. Przedłużenia pierwszej pary przeciwległych boków przecinają się w Y, przedłużenia drugiej w X; p, p' oznaczają odległości punktów X, Y od sznurów EF, GH. Każdą z tych odległości uważamy za dodatnią, jeżeli linia odpowiedniego sznura przecina prostą XY w punkcie, położonym pomiędzy X i Y. Okazać, że naprężenia sznurów T, T’ pozostają w związku

Tpsin X T‘p‘sin Y ----—----== 0 . AB. CD AD.BC
[image: ]

Fig. 30.


Stąd wynika, że w stanie równowagi jeden ze sznurów musi przechodzić pomiędzy X i Y, a drugi na zewnątrz odcinka XY wbrew temu, co wyobraża rysunek. Jeżeli sznur GH przechodzi przez Y, to albo naprężenie sznura EF jest równe zeru, albo przedłużenie jego przechodzi przez X.

Rozkładamy reakcye w każdym z wierzchołków czworoboku na składowe w kierunkach boków przyległych, a więc reakcyę w A, na składowe P', P w kierunkach DA, AB reakcyę w B, na Q', Q w kierunkach AB, BC, reakcyę w C na R1, R i wreszcie reakcyę w D na S', S. Na figurze zaznaczono reakcye, działające na pręty AD, BC; na AB, CD działają reakcye równe tamtym i odwrotne.

Rozważamy równowagę prętów AD i BC. Biorąc momenty odpowiednio względem D i C, otrzymamy.

	
	
P. YD sin Y=T'.DHsinH, Q‘ . YCsin Y= T. CG sin G.





Rozważamy następnie równowagę pręta AB. Biorąc momenty względem X, otrzymamy

(P—Q') XM=Tp, gdzie XM oznacza prostopadłą z X do AB. Pamiętając, że stosunki synusów kątów H, G, X są równe stosunkom przeciwległych boków w trójkącie XHG, otrzymamy ze związków powyższych

DH. CY. XG-DY. CG. XH sin X XM.T’ --------------.-----.-------=Tp.

YD.YC        sinh BIG ‘

Licznik pierwszego ułamka po lewej stronie jest to ujemna suma iloczynów odcinków (ze stosownymi znakami), na które punkty G, H, Y dzielą boki trójkąta DCXA, a zatem równanie ostatnie da się sprowadzić do

[GilY] . DC . CX. XD sin X XM. T'

---------.----- .----\-Tp=o,

[DCX\.YD .YC sin Y HG ‘

gdzie [GHY] i [DUX] oznaczają pola trójkątów GRY i DCX. Pola te

*) Obierzmy trzy dowolne punkty D, E, Fna bokach trójkąta ABC,
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.   , HG. p' . DX . CX. sin X

są odpowiednie równe —2— i---2----. Dalej AB.XM wyraża podwójne pole trójkąta AXB, a zatem jest równe XA . XB. sin X. Prócz tego

YD _AD YC _ BC XA _ AB _ XB sin A sin Y‘ sin B sin Y" sin B sin X sin A Podstawiając, otrzymamy żądany związek pomiędzy T i T.

	
	
	
133.    Prz. 1. Pewna liczba prętów w jednej płaszczyźnie, złączonych w końcach przegubami, tworzy wielokąt zamknięty. Na każdy pręt działa siła, przyłożona w środku, prostopadła do pręta i propor-cyonalna do jego długości; siły te są zwrócone wszystkie na zewnątrz albo wszystkie na wewnątrz. Okazać, że w stanie równowagi (1) wielobok może być wpisany w koło, (2) reakcye w wierzchołkach działają na stycznych do koła, (3) wszystkie reakcye są równe.
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Niechaj L, M, N..... będą środkami prętów AB, BC, CD...., a aB^>, ^Cy..... liniami działania reakcyi w wierzchołkach B, C..... Ponieważ każdy pręt jest w równowadze, przeto siły, przyłożone w środkach L, M, N..... muszą przechodzić odpowiednio przez punkty a, 3, ...... Zwróćmy uwagę na pręt BC. Trójkąty BM^, CM^>, są równe, a więc reakcye, działające wzdłuż B$ i C^, równoważą siłę, działającą wzdłuż dwusiecznej MB kąta B^C. Stąd wynika, że reakcye te są równe, i że wogóle reakcye we wszystkich wierzchołkach są równe co do wielkości.

Poprowadźmy proste BO, CO prostopadle do reakcyi w wierzchołkach B i C; przetną się one w pewnym punkcie 0, położonym na prostopadłej w M do BC. Boki trójkąta OBC są prostopadłe do trzech sił, działających na pręt BC i pozostających w równowadze, a zatem CO wyraża reakcyę w C pod względem wielkości w tej samej skali, co BC siłę, przyłożoną w M.

Poprowadźmy następnie proste CO', DO' prostopadle do reakcyi w C i D; przetną się one w punkcie O', położonym na prostopadłej w N do CD Znajdziemy znowu, że odcinek CO' wyraża reakcyę w C w tej samej skali, w której CD wyraża siłę, przyłożoną w N. Z warunków zagadnienia wynika, że CO—CO', a więc punkty 0 i 0' leżą razem. Widać teraz, że można zatoczyć z punktu 0 koło, przechodzące przez wszystkie wierzchołki wieloboku i stykające się z liniami wszystkich reakcyi.

Prz. 2. Pewna liczba prętów, połączonych przegubami tworzy wielokąt niezamkiii^ty. Końce takiego układu są przytwierdzone do obrączek, nawleczonych na inny pręt nieruchomy. Podobnie, jak w przykładzie poprzedzającym, na środek każdego pręta ruchomego działa siła prostopadła do pręta i proporcyonalna do jego długości. Dowieść, że wielobok można wpisać w koło, którego środek leży na pręcie nieruchomym.

Połączmy z końcami układu prętów inny układ równy i podobny, ale położony po przeciwnej stronie pręta nieruchomego. W środku każdego z tych prętów dodatkowych przyłóżmy siłę, działającą tak samo, jak w układzie danym. W takiem urządzeniu symetrycznem pręt nieruchomy jest zbyteczny, i możemy go usunąć. Otrzymamy odrazu pożądany rezultat, powołując się na przykład poprzedzający.

Rozwiązania dwóch zagadnień ostatnich można także oprzeć na zasadach hydrostatyki. Wyobraźmy sobie naczynie utworzone z płaskich pionowych ścian, połączonych na krawędziach pionowych zawiasami. Przypuśćmy, że naczynie to nie posiada własnego dna; stoi ono na poziomym stole i zawiera płyn, który nie może wyciekać ani pomiędzy ścianami i stołem, ani na połączeniach pionowych. Ciśnienie płynu na każdą ścianę jest proporcyonalne do części pola, pogrążonej wpłynie, i działa na punkt linii środkowej. Ciśnieniom tym w zagadnieniach powyższych odpowiadały siły, przyłożone w środkach prętów. Naczynie musi przybrać taką postać, aby wysokość środka ciężkości płynu ponad stołem była jaknaj mniejsza. Wynika to z pewnej zasady ogólnej, którą poznamy w rozdziale o pracy przygotowanej. Tak więc głębokość płynu musi być jaknajmniejsza, a ponieważ objętość jego jest dana, przeto pole podstawy powinno być jaknajwiększe.

W rachunku różniczkowym można znaleźć twierdzenie, że póle wieloboku utworzonego z boków o danej długości, jest największe wtedy, gdy na wieloboku można opisać koło lub półkole, zależnie od tego, czy wielobok jest zamknięty, czy otwarty.2) Stąd wynikają od razu rozwiązania zagadnień powyższych.

Można także rozwiązać te zagadnienia przy pomocy zasady pracy przygotowanej bez wprowadzania twierdzeń hydrostatycznych.

Warto zauważyć, że obydwa twierdzenia nie tracą mocy i w tym razie, gdy wielobok posiada bardzo wiele boków bardzo krótkich. W granicy możemy je uważać za łuki elementarne sznura, podlegające działaniu sił normalnych i proporcyonalnych do długości łuków. Jeżeli wielobok składa się z prętów i sznurów i pozostaje w równowadze pod działaniem jednostajnego, normalnego ciśnienia z wewnątrz, to na bokach można opisać koło, a sznury tworzą łuki tegoż koła.

Pierwsze z tych zagadnień rozwiązał N. Fuss w Memoires de 1’Academie Imperiale des Sciences de St. Petersbourg, tom VIII, 1822. Miał on na celu wyznaczyć formę, którą przybierze wielokątne naczynie o ścianach połączonych luźno, gdy je zanurzymy w cieczy.

	
	
	
134.    Prz. Wielobok z prętów ciężkich, n jednorodnych, ciężkich prętów AgAi, ArA2.... An^An łączą się przegubami w A, A2... A,-1, końce zaś Ao i An są osadzone na zawiasach w dwóch punktach nieruchomych. Wyznaczyć warunki równowagi.







Poprowadźmy pion przez każdy z przegubów w górę i oznaczmy przez 31, 32... kąty, które pręty A,A1, A,A2... tworzą z tymi pionami, mierząc je od pionu do pręta w jednym i tym samym kierunku obrotu. Ciężary prętów oznaczymy przez Wo, W...

Metoda pierwsza. Równowaga nie doznałaby zakłócenia, gdyby-

W

smy zastąpili ciężar pręta W przez dwie siły pionowe 9, działające na jego końce. Dzięki tej okoliczności możemy uważać, że każdy pręt składa się z trzech części, a mianowicie z dwóch cząsteczek końcowych, z których każda posiada połowę ciężaru pręta, i z części środkowej nieważkiej. Rozważmy przedewszystkiem oddziaływania wzajemne tych części. W każdym złączeniu dwóch prętów mamy dwie cząsteczki, połączone przegubem. Każda cząsteczka pozostaje w równowadze, podlegając działaniu reakcyi w przegubie, działaniu siły ciążenia równej połowie wagi pręta i wreszcie działaniu nieważkiej części pręta. Stąd widać, że to ostatnie działanie jest siłą. Na średnią część pręta siła ciążenia nie działa, a zatem owe siły, czyli reakcye na końcach muszą działać wzdłuż pręta (131). Przypuśćmy więc, że na prętach A,A1, A{A2... działają reakcye T^ T2 — ; będziemy je uważali za dodatnie, gdy ciągną cząsteczki końcowe tak, jak gdyby pręty były sznurami.

Aby nie wprowadzać do równań reakcyi, działających w przegubie, będziemy rozważali równowagę cząsteczek przyległych do tego przegubu, jak gdyby tworzyły one jeden układ. Na taką cząsteczkę złożoną działają połowy ciężarów prętów przyległych oraz reakcye części nieważkich tych prętów. Dochodzimy ostatecznie do wniosku następującego: można uważać, że pręty są pozbawione ciężaru, ale łączą się przegubami z cząsteczkami ciężkiemi, położonemi w wierzchołkach; ciężar każdej cząsteczki jest równy połowie sumy ciężarów prętów przyległych.

Taki układ ciężarów, połączonych nieważkimi prętami albo sznurami i zawieszonych u dwóch punktów nieruchomych, zowie się wie-lobokiem sznurowym.

Rozważmy równowagę jednej z owych cząsteczek złożonych np. tej, która leży w złączeniu A2. Biorąc rzuty na kierunek poziomy i pionowy, otrzymamy

Tx sin 9,= T sin 82

T2 cos 92- T, cos 9, = 1/2( W + W,)

1/2 ( W + W2)

Wynika stąd łatwo---—---=T sin 01. Prawa strona tego

cot 02— cotti

równania oznacza naprężenie poziome w przegubie; naprężenia te są dla wszystkich przegubów jednakowe, a zatem będzie

1/2 (W+ W) _ ‘,(W+W) _              (2

cot 32 — cot 8,    cot 83 — cot 82
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Jeżeli Ar, As. oznaczają dwa jakiekolwiek przeguby, to każdy

—     . .    1/2 W,-1+ W+..+ W5-+1/2 Ws

z ułamków no wyższych jest równy--.

cot 3s— cot 3,-1

	
	
	
135.    Metoda druga. W metodzie tej rozważamy równowagę dwóch następujących po sobie prętów, np. A,A2, A,A,, i bierzemy momenty dla każdego z nich względem końca bardziej odległego od drugiego pręta (A3 i A). Równania momentów będą







-Xcos8a+Yasin8a+"/2 Wasin8a=01

— X, cos 8,+ Ya sin 8,- 1/2 Wasin $,=0 J gdzie X2, Y2 oznaczają składowe reakcyi w przegubie A2. Rugując Y2 otrzymamy

Xa(cot 8,—cot 81)=1/2(W+W2) ...........(4). Jest to równoważne z równaniami (2).

	
	
	
136.    Oznaczmy przez l0, l ... długości prętów, a przez h, k współrzędne poziomą i pionową punktu An w odniesieniu do A,, jako do początku. Będzie wówczas







l0 cos 30 + li cos 3, +... + ln-i cos 8,—1 = k

..........(5).

lo sin 30 + li sin 31 +... + ln^ sin Un-1 =h J

Równania (2) zawierają n—2 związków pomiędzy kątami 8,, 32... i ciężarami prętów Wo, Wi ... Dołączywszy do tego (5), będziemy mieli wystarczającą liczbę równań do wyznaczania kątów, jeżeli dane są ciężary. Gdy mamy kąty a także ciężary dwóch prętów, to można n—2 ciężary pozostałe wyznaczyć z (2).

	
	
	
137.    Można stosować każdą z tych metod i w tych razach, gdy pręty są niejednorodne, lub gdy działają na nie prócz ciężarów jeszcze i inne siły. Dwa równania momentów w metodzie drugiej będą mniej proste, ale dadzą się łatwo utworzyć. Również i w metodzie pierwszej równoległe przenoszenie sił do złączeń nie nastręczy trudności (par. 79).







Statyka. 7

	
	
	
138.    Wyznaczyć reakcye w przegubach. Jeżeli stosujemy metodę drugą, to wyznaczymy łatwo te reakcye z równań (3). Stosując metodę pierwszą, musimy przenieść z powrotem ciężary 1I2WX i 1/2W2 na końce prętów, schodzących się w A2. Oznaczmy reakcyę, działającą w przegubie A2 na pręt A2A3, przez R2. Tak więc na cząsteczkę krańcową pręta A,A3 działają trzy siły R2, 1/2 W2 i T2, a zatem będzie







R,‘= T,2+, W’- WTcos ..............(6).

Kierunek tej reakcyi wyznacza się łatwo przy pomocy równań (2). Przypuśćmy, że pręty ArA2, A,A3 są połączone krótkim nieważkim prętem lub sznurem. Taki wyobrażalny pręt pośredni musi oczywiście leżeć na linii działania reakcyi R2. Oznaczmy nachylenie jego do pionu przez “2; postępując z nim, jak z każdym innym prętem wieloboku, otrzymamy                                   •

_ ‘/2W2__                     (7) cot2— cot,   cot 82—cot @2

skąd           (W+ W) cot 2= Wacot 9,+ W, cot 82.

	
	
	
139.    Wielobok pomocniczy. Linie działania reakcyi Rr, R2... tworzą nowy wielobok, którego wierzchołki Bi, B2... leżą pionowo pod środkami ciężkości prętów ArA2, A2A3... Możemy uważać, że ciężary prętów działają na wierzchołki tego nowego wieloboku. Każdy ciężar równoważy się tu z reakcyami, działającemi na przyległych bokach wieloboku. Przypuśćmy, że wierzchołki BY, B2... połączono nieważkimi sznurami lub prętami. Tym sposobem powstał drugi wielobok sznurowy, z którym możemy postępować podobnie, jak z pierwszym; różnica polega na tern, że w wierzchołkach działają ciężary W^, W2... zamiast 1/2(W+ W2), WV2+ Wa)...


	
140.    Niech będzie jakikolwiek wielobok sznurowy BBB..., i niech Wi, W2... oznaczają ciężary, zawieszone w wierzchołkach







Jo,
[image: ]

B,, B2... Poprowadźmy z dowolnego punktu O proste Obr, Ob2, Ob3... równolegle do boków B.Bi , Bi B2, B2BS...; przetną one pewną prostą pionową, obraną dowolnie, w punktach bi, b2, bs— Cząsteczka, położona w punkcie B1, pozostaje w równowadze pod działaniem ciężaru

Wi oraz naprężeń R1, R2, działających na bokach BiBo, B1B2; z twierdzenia o trójkącie sił wynika, że boki trójkąta Ob^ są proporcyonal-ne do tych sił. Tak samo boki trójkąta Ob2b3 wyobrażają w tej samej skali ciężar W2 i naprężenia, działające na B,B1, B2B3. Wogóle odcinki Obr, Ob2... określają naprężenia tych boków wieloboku sznurowego, do których są równoległe, a każdy z odcinków, na które została podzielona owa prosta pionowa, reprezentuje sumę ciężarów; np. odcinek bab; reprezentuje sumę ciężarów w B2, Ą i Ą.

Przy pomocy tej figury można geometrycznie wyznaczyć związek pomiędzy ciężarami i naprężeniami. Jeżeli 1, 2... oznaczają nachylenia boków BB1, ByB2- do pionu, to będzie

ON(cot Pi— cot {2)==b,b2 , gdzie ON oznacza odległość punktu O od owej prostej pionowej. Odcinek ten określa naprężenie poziome X w którymkolwiek punkcie wieloboku sznurowego. Z równania powyższego otrzymamy

W,, Wa

— A -             —---

cot 1— cot 2          cot 2—-cot 73

W podobny sposób dają się utworzyć i inne związki.

Zastosowanie dyagramatu powyższego opisał Rankine w swej „Mechanice Stosowanej" ('Applied Mechanics). Figury tego rodzaju zo-wią się zwykle wielobokami sił. Tutaj była mowa jedynie o tym prostym przypadku, w którym siły są równoległe; w rozdziale o statyce graficznej powrócimy do tej metody rozwiązywania zagadnień statycznych i rozciągniemy ją do sił, działających w kierunkach dowolnych.

	
	
	
141.    Prz. 1. Łańcuch składa się z pewnej liczby jednakowych, jednorodnych i ciężkich prętów, połączonych w końcach przegubami; końce jego są umocowane w dwóch punktach nieruchomych. Okazać, że tangensy kątów pomiędzy prętami a poziomem tworzą postęp arytmetyczny; taki sam postęp tworzą tangensy kątów pomiędzy reakcya-mi w przegubach a poziomem, i różnice obydwóch postępów są równe.







(Coli. Ex., 1881.)

Prz. 2. OA i OB oznaczają promienie pionowy i poziomy pionowego koła, w którym A jest punktem najniższym okręgu. Sznur ACDB jest umocowany w punktach A, B i dzieli się w O, D na trzy części równe. Gdy w O, D przyczepiono do sznura ciężary W, W’, to znaleziono, że w stanie równowagi C i D leżą na okręgu. Okazać, że W= W tan 150.                                    (Trin. Coli., 1881.)

Prz. 3. Cztery równe jednorodne pręty AB, BO, CD, DA, złą-czone w końcach przegubami, tworzą romb, którego wierzchołki A i C łączy sznur. Romb ten zawieszono w wierzchołku A; okazać, że naprężenie sznura wynosi 2 W, a reakcya w B (lub D) 1/2 W tan 1/2BAD, gdzie W oznacza ciężar jednego pręta.

Prz. 4. Trzy równe pręty AB, BC, CD są połączone swobodnie w Bi G. Pręty AB, GD spoczywają na dwóch kołkach, położonych na tym samym poziomie, przyczem pręt BG posiada położenie poziome. Okazać, że 3tanatan^=l, gdzie a i 3 oznaczają nachylenia do poziomu pręta AB oraz reakcyi w B.             (St John’s Coli., 1881).

Prz. 5. Trzy równe jednorodne pręty są złączone swobodnie w końcach i spoczywają na dwóch gładkich kołkach, położonych na jednym poziomie. Odległość między kołkami wynosi połowę długości jednego pręta, i pręt najniższy posiada położenie poziome. Okazać, że reakcya w złączeniu górnem wynosi 5WV3, a w każdem z dolnych 18

— WV57, gdzie W oznacza ogólny ciężar prętów. (Coli. Ex., 1882).

Prz. 6. Trzy pręty, złączone w końcach przegubami, leżą na gładkim poziomym stole, i na środki boków takiego trójkąta działają siły do nich prostopadłe. Okazać, że, jeżeli zachodzi równowaga, to reakcye w przegubach są równe i działają na stycznych do koła opisanego na trójkącie.                                (Math. Tripos, 1858).

Prz. 7. AB i AC są bokami dwóch kwadratów, zrobionych z jednakowego drutu. Dwa ich wierzchołki połączono przegubem A, wierzchołki zaś B i C osadzono na zawiasach w punktach nieruchomych. Kąt BAC jest prosty, i cała figura leży w płaszczyźnie pionowej. Okazać, że reakcye w przegubie A są prostopadłe do BC bez względu ha to, jaki kąt ta prosta tworzy z poziomem.

(Math. Tripos, 1867).

Prz. 8. Trzy jednorodne sztaby, których ciężary są proporcyo-nalne do długości, wynoszących a, b, c, połączono przegubami tak, że utworzył się trójkąt. Trójkąt ten ustawiono pionowo na gładkiej płaszczyźnie poziomej na boku a, następne na b i wreszcie na c. Okazać, że gdy boki a, b, c zajmowały położenia poziome, to panowały w nich odpowiednio naprężenia proporcyonalne do

{b +c) cosec 2A, (c+a) cosec 2B, (a+b) cosec 2C.

(Math. Tripos, 1870).

Prz. 9. Trzy jednorodne sztaby AB, BG, CD o długościach 2c, 2b, 2c leżą symetrycznie na gładkim łuku parabolicznym, którego oś jest pionowa, a wierzchołek zwrócony do góry; w B i C są urządzone przeguby, i wszystkie sztaby stykają się z parabolą. Okazać, że

dlc


gdzie 4a



reakcye sztab pochyłych na parabolę wynoszą W(a2+62)b ‘ oznacza latus rectum paraboli, a W ciężar każdej z tych sztab pochyłych.                                                           (Coli. Ex., 1883).

Prz. 10. ABGD jest czworobokiem, zrobionym z czterech jednorodnych prętów jednakowej wagi, złączonych przegubami. Pręt AB jest umocowany w położeniu poziomem, i układ pozostaje w równowadze w płaszczyźnie pionowej. Okazać, że 2 tan 8=tan o— tan 3, gdzie a i 3 oznaczają kąty u wierzchołków A i B, 8 zaś nachylenie pręta

CD do poziomu. Prócz tego wyznaczyć reakcye w C i D i okazać, że / tan 3 — tan 3)\ tworzą one z poziomem odpowiednio kąty arc tan--2--—)

/tan a + tan S\                             — _ — .

i arc tan (----2— --)•                           (Math. Tripos, 1879)

Prz. 11. Cztery jednakowe pręty AB, BC, CD, DA łączą się przegubami w A, B, C, D i. leżą na poziomym gładkim stole. Pręt BC jest przymocowany do stołu, a środki prętów AD, DC łączy sznur wyprężony, gdy pręty tworzą kwadrat. Na pręt AB zaczyna działać para sił, wywołująca w sznurze naprężenie T; okazać, że moment jej wynosi 74 T.ABV2.                                 (Coli. Ex., 1888).

Prz. 12. Bok A|A2 nieważkiego czworoboku A1A2A3A4 spoczywa na płaszczyźnie poziomej, a cały czworobok pozostaje w płaszczyźnie pionowej. W wierzchołkach A4, A3 wiszą odpowiednio ciężary W, W', wierzchołki zaś Ax, A3 łączy sznur, zapobiegający opadnięciu prętów. Okazać, że naprężenie sznura T wyznacza się z równania

nTsin $2 sin ?,= Wcos 31 sin $3— W' cos $2 sin 34 , gdzie 81, $2, 33, 34 oznaczają kąty wewnętrzne czworoboku, n zaś stosunek długości boku A1A2 do długości sznura.

Prz. 13. Pięć jednakowych sztab, ciężkich i jednorodnych, tworzy pięciobok, łącząc się przegubami. Pięciobok ten jest zawieszony w jednym wierzchołku, a bok przeciwległy podtrzymuje sznur, przywiązany do środka tego boku. Sznur posiada długość taką, że pięcio-a bok jest foremny. Okazać, że naprężenie sznura wynosi 4WCOS10 , gdzie W oznacza ciężar jednej sztaby. Wyznaczyć także reakcye w wierzchołkach.

Prz. 14. Pięciobok foremny ABCDE, utworzony z pięciu jednakowych prętów ciężkich, złączonych przegubami, jest zawieszony w wierzchołku A; postać pięcioboku foremnego utrzymuje lekki pręt, łączący środki K, L boków BC i DE. Okazać, że stosunek reakcyi w K lub L do ciężaru pręta jest równy 2cotl8°.

(Math. Tripos, 1885).

Prz. 15. Dwanaście prętów stanowi krawędzie foremnego ośmio-ścianu, łącząc się w wierzchołkach swobodnie, jak ogniwa łańcucha. Pomiędzy przeciwległymi wierzchołkami ośmiościanu zaciągnięto sprężyste sznury, których naprężenia wynoszą X, Y, Z. Okazać, że ciśnienie, działające wzdłuż pręta, położonego pomiędzy końcami sznurów X+ Y_z

o naprężeniach Y i Z, jest równe---—.      (Math. Tripos, 1867).

2 V2

Prz. 16. Pewna liczba jednakowych prętów, ciężkich i jednorodnych, każdy o długości a, połączona luźno, tworzy łańcuch. Łańcuch ten wiruje ze stałą szybkością kątową o około osi pionowej, przechodzącej przez jeden z końców, który pozostaje nieruchomym. Okazać, że

(2n+3) tan ^" — (472+2) tan 3‘+(2n-1) tan 8+x(sin 8"144sin 8‘+sin 3)=0, gdzie 3, 3"’, 3"’ oznaczają nachylenia do pionu prętów n-go, (n+1)-go, (n+2)-go, licząc od końca swobodnego, i ao?=3ng.

(Math. Tripos, 1877).

Reakcye w złączeniach sztywnych.

	
	
	
142.    AB wyobraża poziomą belkę, osadzoną nieruchomo w końcu A w ścianie pionowej i obciążoną w końcu B ciężarem W. Pragniemy zbadać naprężenia, panujące w przekroju poprzecznym, przeprowadzonym przez jakikolwiek punkt G, czyli reakcye, które część belki AC wywiera na część CB. Reakcye te równoważą siły zewnętrzne, działające na CB.







Jest rzeczą oczywistą, że działanie jednej części belki na drugą, wywierane w przekroju C^ nie może się składać z jednej siły, bo siła, działająca w C, nie mogłaby być odwrotna do siły W, a więc nie mogłaby jej równo-_A___________ ważyć. Przenieśmy siłę W z B do jakie-gokolwiek punktu przekroju C w sposób, , podany w paragrafie 100; przekonamy się, —.            że działanie owo jest równoważne sile ró-wnej W oraz parze o momencie W. BC.

Jeżeli część GB belki jest ciężka, to możemy uważać, że siła ciążenia działa na środek odcinka GB. Dajmy na to, że ciężar tej części wynosi W. Przenosimy go również do środka redukcyi C, a zatem wszystkie reakcye, przenikające przez przekrój C, sprowadzają się do siły W+ W' i do pary o momencie W. BC+^ W .BC.

Tej sile i parze nadawano w różnych czasach nazwy rozmaite. Składowe siły w kierunku belki i w kierunku poprzecznym nazywano siłą ciągnącą i siłą tnącą. Ponieważ pierwsza z nich ma kierunek normalny do prostopadłego przekroju belki, nazywano ją przeto także naprężeniem normalnem. Wielkość pary nazywano tendencyą sił do złamania belki albo krótko tendencyą do złamania; zowią ją także momentem gną-cym lub naprężeniem gnącym (Rankine, Applied Mechanics). W dalszym ciągu ograniczymy się jedynie do tego przypadku,

w którym belka jest bardzo cienka, tak że w rozważaniach geometrycznych będziemy ją mogli uważać za linię.       -

	
	
	
143.    Uogólniając rozważania powyższe, dojdziemy do wyniku następującego: działanie iv jakimkolwiek przekroju belki^ jest równe i ^odwrotne do wypadkowej wszystkich sił, działających na belkę po jednej stronie tego przekroju.







Reakcye, przenoszone przez przekrój C na część CB^ ró-wnoważą siły, działające na CB^ reakcye zaś równe i odwrotne, przenoszone przez ten sam przekrój na AC, równoważą siły, działające na AC. W stanie równowagi siły, działające na belkę po jednej stronie C, równoważą siły, działające po drugiej stronie, a zatem jest rzeczą obojętną, który z tych dwóch układów sił mamy brać pod uwagę.

Tak więc moment pary gnącej w C jest równy sumie momentów wszystkich sił, działających po jednej stronie C, a siła tnąca w C jest równa sumie rzutów tych sił na normalną do belki w C.

Uważając, że belka jest nieco sprężysta, możemy w inny sposób wytłomaczyć powstanie tej siły i pary. Ciężar W zgina nieco belkę, skutkiem czego włókna górne zostają rozciągnięte, a dolne ściśnięte. Stąd wynika, że działanie w przekroju C składa się z nieskończonej liczby małych naprężeń, przenoszonych przez elementy przekroju. Obrawszy jakiś punkt przekroju za środek redukcyi, możemy sprowadzić te naprężenia do jednej siły i pary (104).

	
	
	
144.    Prz. 1. Belka AB danej długości l wspiera się końcami na dwóch podstawkach, położonych na jednym poziomie; po niej wędruje zwolna od jednego końca do drugiego ciężka cząsteczka M, ważąca W. Wyznaczyć naprężenie w jakimkolwiek punkcie belki.







Niech będzie AM=^, BM=l-^, i niech B, R' oznaczają reakcye, które podstawki wywierają na belkę w A i B. Reakcye te wyznaczymy z równań

R'l=WA, Rl=W(.l-^).
[image: ]

Dajmy na to, że chodzi o naprężenie w punkcie P, i niech będzie AP=x. Rozważamy równowagę części belki AP lub części BP. Wy-bieramy pierwszą z nich jako dogodniejszą, gdyż działa na nią tylko jedna siła R; zatem siła tnąca w P wynosi R, a moment pary gną-cej Rx.

Jeżeli mamy wyznaczyć naprężenie w punkcie P', położonym po drugiej stronie M, to dogodniej będzie rozważać równowagę części BP'. Siła tnąca wyniesie tu R', a moment gnący R\l— x‘), gdzie x'=AP'.

Para gnąca może wogóle snadniej spowodować złamanie belki, niż siła tnąca lub siła ciągnąca, dlatego też odtąd zwrócimy całkowicie uwagę na tę parę. Zbudujmy w każdym punkcie P rzędną PQ proporcyonalną do momentu pary zginającej w P; miejsce geometryczne punktów Q będzie naocznym obrazem pary zginającej we wszystkich punktach belki. W wypadku danym miejsce geometryczne punktu Q składa się z odcinków dwóch prostych, zaznaczonych na rysunku kropkami. Rzędna największa wypada w punkcie M i wynosi w obranej skali Rk lub R'(l—^ zależnie od tego, czy weźmiemy względem M momenty sił, działających po stronie AM, czy po stronie MB Podstawiwszy zamiast R lub R' odpowiednią wartość, znajdziemy, że

W^l-^)

para gnąca w M posiada moment ---I--• Moment ten osiąga raa-ksymum, gdy M przechodzi przez punkt środkowy belki.

Wyobraźmy sobie, że człowiek idzie wolno przez kładkę, przerzuconą nad strumieniem. Największa para gnąca występuje w kładce w tym punkcie, który człowiek w danej chwili przebywa, a gdy znajdzie się on po środku pomiędzy punktami oparcia, to owa para będzie największa.

Prz. 2. Jednorodna ciężka sztaba AB, której jednostka długości waży w, jest podparta w dwóch końcach. Okazać, że para gnąca

, .           . w.AP. BP

w punkcie P wynosi--2—-—.

	
	
	
145.    W podobny sposób można zbudować dyagramat naprężeń gnących i w tym razie, gdy na belkę działa większa liczba sił. Dajmy na to, że na belkę AB działają siły Rr, R2..., przyłożone odpowiednio w punktach A1, A2... i skierowane tak, jak wskazują strzałki. Oznaczmy A,A2 przez a2, AA3 przez a3, i t. d. Otrzymamy moment gnący w jakimkolwiek punkcie P, położonym np. pomiędzy A3 i At, biorąc momenty sił, działających na Ai, A2, As, t. j. na punkty, położone po jednej stronie punktu P. Wypadnie







J = Rx - R2(x - a,) + Ra(x - aa), gdzie x=ArP. Gdy wzniesiemy rzędną PQ, równą y, to miejsce geometryczne punktu Q pomiędzy A3 i At będzie linią prostą.

Gdy punkt P przejdzie przez At, to będziemy musieli dodać do wyrażenia powyższego moment siły Rą czyli—R,(x—a). Miejscem geo-metrycznem punktu Q będzie tutaj inna prosta, przecinająca poprzednią w punkcie x=a, t. j. w wierzchołku rzędnej, wzniesionej w A{.

	
•                           --"


	
A, A, A, A,





Fig. 37.

Jeżeli więc na belkę działają siły, przyłożone w punkiach odosobnionych, to dyagramat pary gnącej składa się z odcinków linii prostych. Daje to łatwą metodę wykreślania takich dyagramatów. Obliczamy rzędne, odpowiadające parom gnącym w owych punktach odosobnionych, i końce ich łączymy liniami prostemi. Rzędna nie może oczywiście osiągnąć maksymum w przedziałach pomiędzy punktami A1,A2..., na które działają siły, a zatem para gnąca osiąga maksymum w jednym z tych punktów przyłożenia.

Przypuśćmy teraz, że belka jest ciężka, i że ciężar jej jest rozłożony na całej długości. Para gnąca w punkcie P będzie teraz zawierała nie tylko momenty sił, przyłożonych w A1, A2..., ale także moment ciężaru części belki ArP. Jeżeli ciężar jednostki długości belki wynosi w, to para gnąca w P będzie

ww2

J=2R(-d)-9, bo ciężar części ArP wynosi wx i jest przyłożony w punkcie środkowym tego odcinka.

Jest to równanie paraboli, a zatem dyagramat składa się z szeregu łuków parabolicznych-, każdy z nich przecina łuk sąsiedni na końcu rzędnej, wzdłuż której działa jedna z sił odosobnionych. Wszystkie te parabole posiadają osi pionowe, a jeżeli ciężar jednostki długości we wszystkich przedziałach belki jest jednakowy, to wszystkie parabole posiadają równe latera recta.

Wzór powyższy daje moment gnący, z którym siły, działające po lewej lub ujemnej stronie punktu P, usiłują skręcić część belki, położoną po stronie dodatniej punktu P, w kierunku ruchu wskazówki zegara.

Przypuśćmy, że część CD belki ACDB jest nieważka, i że pomiędzy O i D niema żadnego punktu oparcia. Pozostałe części belki, położone po obydwóch stronach CD, mogą posiadać ciężary dowolne i dowolne liczby punktów oparcia. W takim razie para gnąca w każdym punkcie pomiędzy C i D będzie zawsze proporcyonalna do rzędnej pewnej linii prostej. Lecz jeżeli J1, Y2, y oznaczają odpowiednio rzędne pewnej prostej, wystawione w C, D i P, a l, 12 odległości GP PD, to, jak łatwo widzieć,                                 -

y(l,+1))=yi 12+J2 I,.

Takie więc równanie musi także zachodzić pomiędzy momentami gną-cymi J1, J2, y w punktach O, D oraz w dowolnym punkcie pośrednim P.

Przypuśćmy teraz, że część CD jest ciężka. Para gnąca w jakimkolwiek punkcie tej części jest w tym razie proporcyonalna do rzędnej wx2

paraboli y—A+Bx —, gdzie — ^Ba i B=ZR Jeżeli Ui y2, y oznaczają rzędne w G, D i w jakimkolwiek punkcie P, a GP—li i PD=l2, to łatwo okazać, że

_ 7 , wl,l2(l+12)

J(1+l2) =Yil2+Y2l1-----o---•

Związek taki zachodzi pomiędzy momentami gnącymi trzech dowolnych punktów ciężkiej belki, jeżeli na rozważanej długości nie istnieje żaden punkt oparcia.

Prz. Niech y^ y2, y3 oznaczają momenty gnące w trzech kolejnych punktach oparcia, a l, l2 odległości pomiędzy punktami; w takim

wldAL + L)

razie J2(4+l2)=Y,l2+yal4--,---Rl, 12, gdzie R oznacza reakcyę w środkowym punkcie oparcia, w zaś ciężar jednostki długości belki.

	
	
146.    Para gnąca w jakimkolwiek punkcie P jest równa sumie momentów sił poszczególnych, działających po jednej stronie punktu P, widzimy więc, że udział każdej siły w parze gnącej jest taki, jak gdyby sama jedna działała na belkę. Niekiedy też bywa dogodnie rozważać skutki działania każdej siły z osobna.





Przypuśćmy np., że na ciężkiej belce AB, podpartej w obydwóch końcach, wisi w punkcie M ciężar W. Para gnąca w dowolnym punkcie P jest sumą par gnących, wyznaczonych w par. 144 dla dwóch przypadków, (1) gdy belka jest lekka, i (2) gdy w M nie działa żadna siła; zatem owa para wyznaczy się z równania

wl

ly = W. BM.AP+ — . AP. BP.

	
	
147.    Prz. 1. Ciężki pręt, oparty końcami o dwa kołki, pozostaje w położeniu poziomem. Na pręcie w punkcie M leży cząsteczka, n razy cięższa od pręta. Okazać, że para gnąca jest największa albo w jakimś punkcie pomiędzy M a środkiem C pręta, albo w M, zależnie od tego, czy odległość punktu M od G jest większa czy mniejsza niż n razy powiększona odległość jego od najbliższego końca pręta.





Prz. 2. Drut AGB w kształcie półkola wiruje ze stałą szybkością kątową około stycznej, poprowadzonej w końcu A. Okazać, że para gnąca jest równa zeru w B, osiąga maksymum w punkcie środkowym G, znika w pewnym punkcie pomiędzy C i A i znowu osiąga maksymum ze znakiem odwrotnym w A- Okazać także, że maksymum w A jest większe niż w G.

Skutki ruchu wirowego możemy wyrazić tak: uważamy, że drut pozostaje w spoczynku, i że oś obrotu odpycha każdy element z siłą proporcyonalną do odległości i do masy elementu.

Prz. 3. Pozioma belka AB, zupełnie lekka, jest podparta w końcach; po niej wędruje ciężar W, rozłożony jednostajnie na odcinku PQ o długości stałej. Okazać, że gdy ciężar przechodzi przez jakikolwiek punkt belki X, to moment gnący w tym punkcie osiąga maksymum w chwili, gdy X dzieli odcinek PQ w tym samym stosunku, co i AB. Okazać także, że ten największy moment gnący wynosi

■ W.AX.BX^AB-1/2PQ}

--------AB2--.           (Townsend.)

Niech będzie AX=a BX=b, AB=a+b, PQ—l, AP—x, BQ=k, prócz tego oznaczamy przez R siłę tnącą, a przez y moment gnący w punkcie X. Ciężar odcinka PX, wynoszący w(a— x), działa na punkt środkowy, a zatem biorąc momenty sił, działających na część belki AX, w(a—x) (a+x)

względem A, otrzymamy----9---yABa—o; otrzymamy podo-iv(b— €) (b+€)

bnież-----y—Bb=o, biorąc momenty sił, działających na BX, względem B. Gdy wyrugujemy z tych równań R, to będzie

2l(a+b)y= W\ab(a+b') — ba2- at2|.

Wyznaczając dla y maksymum pod warunkiem, aby było x+ź=a+b — l, otrzymamy wynik żądany.

Prz. 4. Belka pozioma, jednakowo obciążona we wszystkich punktach, posiada oparcie w jednym końcu i jeszcze w innym punkcie. Okazać, że zniesie ona największe obciążenie, jeżeli ten drugi punkt oparcia dzieli ją w stosunku 1:(V2— 1).               (Math. Tripos.)

Przypuśćmy, że belka ABC jest podparta w A i B, że obciążenie elementu dx jest równe wdx, i że reakcye w A, B wynoszą odpowiednio wR, wR’-, oznaczmy prócz tego przez l długość belki i przez § odległość AB. W takim razie 26> l, i znajdziemy bez trudności, że

Weźmy dwa punkty P i Q, położone odpowiednio na OB i BA, i niech x—CP, x'—AQ. Biorąc momenty względem P oraz Q, znajdziemy, że pary gnące y i y' mają w tych punktach wartości

wx?            wx'2 J=--—, y'=wRx' —.

Największa rzędna paraboli pierwszej odpowiada punktowi B, a największa rzędna drugiej punktowi x'=R, leżącemu pomiędzy


A i B.




Pary gnące w tych punktach są równe




iv (l~ 8)2 w, —-— 1 — l--
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Jeżeli punkt



te pary są nierówne pomiędzy sobą, to można tak przesunąć oparcia B, aby większą z nich zmniejszyć. Położenie najkorzystniejsze otrzymamy wtedy, gdy pary te będą równe, a zatem

[2                                                                                              l

±(— ^)—l— —. Wobec tego, że $ musi być większe od —, równanie 2 $                                                              2

to daje $ V2=l

Prz. 5. Trzy drążki ^B, BO, CA, połączone przegubami w A, B, C, tworzą żóraw. Kąt B jest rozwarty, drążek AB pionowy, i punkt A osadzony nieruchomo w ziemi. Do drążka AB około punktu B jest przymocowany koniec linki, która idzie następnie wzdłuż drążka AC, przechodzi przez blok, osadzony w C, i dźwiga na drugim końcu ciężar W, bardzo duży w porównaniu z ciężarem drążków i linki. Wyznaczyć pary, które usiłują złamąć żóraw w punktach A i B.

(Math. Tripos.)

Prz. 6. Trójnóg cygański składa się z trzech jednorodnych prostych drążków, połączonych swobodnie w jednym końcu. Na tym wspólnym końcu wisi kocioł. Trzy pozostałe końce drążków spoczywają na gładkiej poziomej płaszczyźnie, a przed rozsunięciem zabezpiecza je okrągła gładka obręcz, opasująca je wszystkie i przymocowana do płaszczyzny. Okazać, że równowaga jest możliwa tylko w tym razie, gdy długości drążków są jednakowe; prócz tego, mając dane ciężary drążków (równe lub nierówne), okazać, że największy moment gnący przypada punkcie środkowym drążka, że jest on niezależny od długości drążków i nie wzrośnie, gdy powiększymy ciężar kotła.

(Math. Tripos, 1878.)

Prz. 7. Kruchy pręt AB jest osadzony na gładkich zawiasach A i B i podlega przyciąganiu środka sił C według prawa natury. Przypuszczając, że przyciąganie wzrasta nieograniczenie, okazać, że pręt a+B          a— 3 pęknie w punkcie E, określonym w równaniu sin —2 cos 2=sin 2 gdzie a i 3 oznaczają kąty BAC, ABC, 3 zaś kąt AEC.

(Math. Tripos, 1854.)

1

 niech A, A' oznaczają pola trójkątów ABC, DEF. Można okazać, że

A’ AF . BD . CE+AE. CD. BF

abc

Iloczyny AF. BD. CE i AE. CD. BF tworzymy tak: wychodzimy z któ-regobądź wierzchołka, np. A, i obiegamy trójkąt naokoło, biorąc podczas każdego obiegu po jednym odcinku z każdego boku. Każdemu z czynników przypisujemy znak w sposób następujący: długość odmierzoną na boku trójkąta ABC od jednego z wierzchołków uważamy za dodatnią lub ujemną zależnie od tego, czy ciągnie się ona w stronę drugiego wierzchołka, czy też w stronę odwrotną. Naprzykład długość AF jest odmierzona od wierzchołka A w stronę wierzchołka B, a więc uważamy ją za dodatnią; również dodatnia jest długość BF, bo ciągnie się od wierzchołka B w stronę wierzchołka A. Gdyby punkt F leżał na przedłużeniu AB poza B to AF byłoby i w tym razie dodatnie, ale BF byłoby ujemne. Gdy punkt F biegnie w kierunku AB, to pole DEF stopniowo znika i staje się ujemnem, gdy F prze-kracza sieczną ED.

Poprowadźmy jeszcze przez wierzchołki trójkąta trzy dowolne proste AD, BE, CF. Utworzą one trójkąt PQR, którego pole oznaczmy przez A". Można dowieść, że

A"       (AF. BD . CE- AE. CD . BF)2

A - (ab-CE. CD) (bc-AE.AF) (ca-BF.BD)

Autor nie spotkał nigdzie tych związków, które są nie raz potrzebne; dlatego też przytoczył je na tern miejscu, aby ułatwić zrozumienie rachunku, podanego w tekście.

2

 Zobacz Wł. Folkierskiego „Zasady rachunku różniczkowego i całkowego" (Warszawa, 1904), tom I, str. 563.          Przyp. tłom.


Zagadnienia nieokreślone.

	
	
148.    Ciało, spoczywające na płaszczyźnie poziomej, wywiera na nią dzięki swemu ciężarowi reakcyę, która rozkłada się na różne punkty oparcia. Jeżeli tych punktów oparcia jest więcej od trzech albo więcej od dwóch w tej samej płaszczyźnie pionowej, to wypada, że ów rozkład jest nieokreślony. Weźrny dla przykładu stół z nogami pionowemi; oznaczmy punkty przecięcia nóg z poziomą płaszczyzną blatu przez





A, A,..., a rzut środka ciężkości ciała na tę płaszczyznę przez G. Ciężar stołu W podtrzymują pewne reakcye R^ R2 -- -działające na punkty A,, A,... Obierzmy w płaszczyźnie blatu osi Ox, Oij prostokątnego układu współrzędnych; w takim razie .oś Oz będzie pionowa. Oznaczmy jeszcze przez (x, ij^^ (x, J2) .... współrzędne punktów A,, A,...., a przez (xy) współrzędne punktu G. Ponieważ siła W równoważy się z układem sił równoległych, przeto według paragrafów 110 i 111

W=R+R+...

Wx — R^ + R2x2 + ...

WlJ =R,U+R,y,+ -

Równania te wystarczają do wyznaczenia Rv R2...., jeżeli istnieją tylko trzy takie reakcye, działające nie w jednej płaszczyźnie pionowej. Wypada natomiast zagadnienie nieokreślone, jeżeli liczba reakcyi przewyższa trzy.

W rozwiązaniu powyższem zastąpiliśmy działanie podłogi siłami R,, R2--^ działającemi wzdłuż nóg w górę, i dowiedliśmy, że stół może być podtrzymany przez rozmaite kom-binacye sił takich. Przypuśćmy, że stół ma cztery nogi; możemy w tym razie jedną reakcyę obrać dowolnie, a trzy pozostałe dadzą się wyznaczyć z powyższych trzech równań. Oczy-wistem jest przeto, że gdy chodzi o wyznaczenie czterech sił, które mogą podtrzymać stół, to zagadnienie takie jest nieokreślone.

Istotne reakcye, które stół wywiera na podłogę, nie są nieokreślone, bo w naturze wszystko musi być określone. Jeżeli wypada jakaś nieokreśloność, to z pewnością pominęliśmy pewne dane zagadnienia, a mianowicie pewną właściwość ma-teryi, od której zależy rozwiązanie.

Aksyomaty zasadnicze o siłach, wygłoszone w paragrafie 18, nie zawierają żadnej wzmianki o naturze materyału, z którego ciało się składa. W rozdziałach następnych widzieliśmy, że równania, wynikające z tych aksyomatów, wogóle wystarczały do wyznaczenia wszystkich wielkości nieznanych w dotychczasowych zagadnieniach statycznych, a zatem we wszystkich tych zagadnieniach wielkości reakcyi oraz położenia równowagi zależały nie od materyału ciał, lecz od ich kształtów i od wielkości sił przyłożonych. Jeżeli natomiast pewne wielkości niewiadome zależą od materyału ciała, to oczywiście aksyomaty owe nie mogą być do wyznaczenia ich wystarczające. W tych razach musimy uciec się do nowych doświadczeń, aby wykryć dalsze aksyomaty statyczne. Tak np. do badania położeń równowagi ciał niegładkich potrzebne są nowe wyniki doświadczeń, zależne od stopnia chropowatości ciał badanych. Znaleziono podobnież, że rozkład reakcyi na nogi stołu zależy od giętkości materyałów.

Giętkość materyału, z którego zrobiono stół, może być bardzo mała, pomimo to jednak pod działaniem ciężaru W nogi doznają wyraźnych jakkolwiek bardzo drobnych odkształceń. Odkształcenia te zależą od Rp Rt..., i nawzajem wywierają wpływ na te reakcye. Stopień odkształcenia, które wywołuje w ciele działająca nań siła, bywa zazwyczaj rozważany w tej części mechaniki, którą nazywamy teoryą sprężystości. Co się tyczy owego szczególnego zagadnienia o stole, to dotychczas nie znaleziono rozwiązania kompletnego, ale można łatwo wykazać na kilku przykładach, że zagadnienie staje się określo-nem, gdy mamy dane pewne określone prawo sprężystości. (Elements de Staticpie Poinsota i Traite de Mecaniąue Poissona.)

	
	
149.    Prz. 1. Stół prostokątny posiada w rogach cztery nogi, zupełnie jednakowe i z lekka sprężyste. Zakładamy, że skurczenie każdej nogi jest proporcyonalne do wywieranego na nią ciśnienia, oraz że podłoga i blat stołu są sztywne. Wyznaczyć reakcye, działające na wszystkie nogi przy jakiemkolwiek obciążeniu stołu. Okazać prócz lego, że stół wspiera się tylko na trzech nogach, jeżeli ciężar wypadkowy przypada na jednej z czterech prostych, przeprowadzonych na blacie.





(Math. Tripos, 1860.)


D
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Fig. 38.




Obierzmy boki AB, AD za osi x, y, przypuśćmy, że ciężar wypadkowy W działa na punkt G, którego współrzędne są (x y), i niech będzie AB—a, AD=b. Blat stołu jest sztywny, zatem powierzchnia jego pomimo skurczenia nóg pozostanie płaską. Skurczenie jest małe, a zatem, odrzucając małe wielkości drugiego rzędu, możemy uważać, że reakcye w punktach A, B, C, D pozostają piono-wemi. Otrzymamy zwykłe równania statyczne

W=R,+R,+R,+R,      \           1

Wx=(R2+R3)a, Wy=(R3+Rj)b. J .........

Przekątnia blatu pozostaje linią prostą, zatem obniżenie się jej środka jest średnią arytmetyczną obniżeń końców, a stąd wynika, że przeciętne skurczenie nóg A i C jest równe przeciętnemu skurczeniu nóg B i D. Ale według założenia reakcye są proporcyonalne do tych odkształceń, a zatem

R1+R=R2+R4...............(2).

Te cztery równania określają reakcye całkowicie.

Zakładając R3=o, znajdziemy z łatwością, że ap=l to zna-czy, że stół wspiera się tylko na trzech nogach A, B, D, jeżeli ciężar W leży na prostej, łączącej środki boków AB i AD. Łącząc środki innych boków, otrzymamy cztery proste, wyobrażone na figurze liniami kropkowanemi. Jeżeli ciężar W leży wewnątrz figury punktowanej, to wszystkie cztery nogi są skurczone, jeżeli nazewnątrz, to tylko trzy. W przypadku ostatnim równania powyższe byłyby poprawne tylko w takim razie, gdyby reakcye mogły przybierać wartości ujemne; ponieważ jest to wogóle niemożliwe, musimy przeto poprawić równania (1), czyniąc jedną z reakcyi zerem. Równanie (2) wypada w tym razie odrzucić.

Prz. 2. Sztaby ADB i CD mogą się swobodnie obracać na zawiasach A i C, osadzonych nieruchomo na jednym pionie. Sztaba CD podpiera sztabę AB, która posiada położenie poziome i dźwiga na końcu B ciężar W. Wyznaczyć reakcyę w C w dwóch przypadkach: (1) gdy sztaby łączą się w D zapomocą przegubu, (2) gdy sztaba CD tworzy jedną całość z AB, pomijając w obydwóch przypadkach ciężary sztab.                                           (Math. Tripos, 1841.)

W. AB z owych reakcyi wynosi —---, gdzie AN oznacza prostopadłą AN

z A do CD.

W przypadku drugim nic nie wskazuje, jaki kierunek posiada reakcya w C. Wiemy tylko, że równoważy ona nieznaną siłę i parę. Gdy napiszemy trzy równania równowagi całego ciała, to nie będzie można wyznaczyć z nich czterech składowych dwóch reakcyi, działających w A i C. Widzimy więe, że zagadnienie jest nieokreślone.

Prz. 3. Sztywną lekką sztabę zawieszono w położeniu poziomem na trzech pionowych prętach równych i nieco sprężystych. Dolne końce prętów są zaopatrzone w małe obrączki A, B, C, i przez te obrączki przechodzi sztaba. Następnie na sztabie w punkcie Gr zawieszono ciężar. Zakładamy, że wydłużenie lub skurczenie każdego pręta jest proporcyonalne do siły, która go rozciąga lub ściska, oraz że pręty i po zawieszeniu ciężaru zachowują położenie pionowe. Okazać, że pręt, zakończony obrączką B, się skurczy, jeżeli G leży na dłuźszem z dwóch ramion AB, BC, a przytem odległość jego od B przewyższa AB2 + BO2

ABLBC                                  (Math. Tripos, 1883.)

Prz. 4 Pręty AB, BC, CD, DA tworzą boki kwadratu, a pręty AC, BD jego przekątnie, i wszystkie łączą się przegubami w wierzchołkach. W punktach B i D przykładamy równe i odwrotne siły F w kierunkach DB i BD. Pręty są sprężyste, ale zachodzące tu skrócenia i wydłużenia można traktować jako nieskończenie małe. Oznaczamy przez e, stosunek wydłużenia (lub skrócenia) na jednostkę długości pręta AB do siły odkształcającej. Jest to stała zależna od mate-ryału i od przekroju pręta. Oznaczamy dalej przez €2, e3 .... e6 odpowiednie stałe dla innych prętów w porządku, w którym wymieniliśmy je wyżej. Okazać, że naprężenie w pręcie BD wynosi.

[1---—26 V2--—)F.   (Coli. Exam., 1886.) e1+e,+es+e,+2(es+e) V 2 '

Wobec tego, że odkształcenia są drobne, tworzymy zwykłe równania równowagi, uważając, że figura zachowała postać pierwotną, t. j. że ABCD jest wciąż kwadratem. Znajdziemy wówczas, że naprężenia we wszystkich bokach są równe. Oznaczając to wspólne naprężenie przez P, a naprężenia w przekątniach BD, AC przez T i T', otrzymamy Pv2 +T= o, Pv2 +T+F=o.

Poszukujemy następnie związku geometrycznego, który zachodzi w stanie odkształconym figury pomiędzy długościami boków i przekątni. Oznaczmy te długości w porządku wzmiankowanym przez a(1+x), a(1+y), a(1+z), a(1+u), a v2 (1+p‘), a V2 (1+p). Odrzucając kwadraty wielkości małych, otrzymamy 2(p+p‘)=x+y+z+u. Stosując prawo sprężystości, otrzymamy stąd 2(eT+eT)=(e,+e2+e+e4) P.

Mamy teraz trzy równania do wyznaczenia P, T i T' w funkcyi F.

	
	
150.    Kratownica sztywna 1). Niech Ar, A2 .... oznaczają n cząsteczek połączonych prętami prostymi; dajmy na to, że połączenia zostały uskutecznione zapomocą przegubów, i że wszystkie siły, działające na układ, są przyłożone do cząsteczek. Stąd wynika, że reakcye, występujące na końcach każdego pręta, są skierowane według tegoż pręta. Pragniemy zbadać, czy liczba równań statycznych jest wystarczająca do wyznaczenia tych wszystkich reakcyi; innemi słowy chcemy się przekonać, czy mamy tu do czynienia z zagadnieniem okre-ślonem, czy nieokreślonem. Jeżeli zagadnienie jest nieokreślone, tg wy-padnie jeszcze zbadać, czy liczba równań sprężystości wystarczy do znalezienia rozwiązania kompletnego.


	
151.    Przedewszijstldem wyznaczymy liczbą prętów łączących, dostateczną do usztywnienia kratownicy. W przypuszczeniu, że n jest nie mniejsze od 2, usztywniamy naprzód dwie cząsteczki A| i A2, łącząc je jednym prętem. Z A, i A2 mamy połączyć n—2 cząsteczek pozostałych. Aby otrzymać sztywne połączenie cząsteczki A3 z dwiema pierwszemi, musimy ją połączyć zarówno z jedną jak i z drugą, a to wymaga dwóch nowych prętów. Otrzymamy sztywne połączenie cząsteczki A,, łącząc je z dwiema z trzech pierwszych. Postępując tak w dalszym ciągu, przekonamy się, że do przyłączenia każdej następnej cząsteczki niezbędne są dwa pręty nowe. Do sztywnego połączenia n cząsteczek wystarcza 2(n-2)+1 czyli 2n—3 prętów.





Gdy wypada połączyć pewną cząsteczkę, np. A3, z dwiema inne-mi, np. A1, A2, to powinna obowiązywać jakaś umowa, wskazująca, po której stronie podstawy A,A2 ma leżeć wierzchołek trójkąta 43A,A2. W razie przeciwnym może istnieć niejeden wielobok, posiadający boki równe długościom danym.

Potrzeba jeszcze zaznaczyć, że w wypadku szczególnym, gdy cząsteczka A3, połączona dwoma prętami z już utrwalonemi cząsteczkami di, A2, leży na prostej A{A2, połączenie nie jest całkowicie sztywne. Cząsteczka A3 może doznać nieskończenie małego przesunięcia w kierunku prostopadłym do prostej A,A2A3 w jedną lub w drugą stronę. Jest to przesunięcie wyobrażalne, które należy brać w rachubę, gdy okoliczności wymagają odrzucenia nieskończenie małych drugiego rzędu.

Jeżeli cząsteczki nie leżą w jednej płaszczyźnie, i n jest nie mniejsze od 3, to usztywniamy naprzód trzy cząsteczki, łącząc je trzema prętami. Każdą następną z n—3 cząsteczek pozostałych musimy połączyć z trzema już utrwalonemi. Ostatecznie do sztywnego połączenia n cząsteczek wystarczy 3(n~3)+3 czyli 3n — 6 prętów.

Nie jest rzeczą konieczną, aby połączenia pomiędzy cząsteczkami odpowiadały całkowicie opisowi powyższemu; dowiedliśmy jedynie, że można usztywnić układ zapomocą 2n—3 albo 3n—6 prętów, umieszczonych w sposób właściwy. Możliwe są różne rozkłady prętów, usztywniające układ 2). Z drugiej jednak strony, jeżeli pręty nie zostały rozłożone w sposób właściwy, to układ może nie być sztywny; tak np. jedna część układu może być usztywniona większą liczbą prętów, niż tego wymaga konieczność, gdy inna część posiada zamało prętów.

Układ cząsteczek, który uczyniono sztywnym zapomocą ściśle niezbędnej liczby prętów, nazwiemy dostatecznie sztywnym. Jeżeli liczba prętów jest większa od niezbędnej, to będziemy układ nazywali przesztywnionym. Jeżeli wreszcie liczba prętów nie wystarcza do usztywnienia układu, to możemy nazwać kratownicę niedosztywnioną lub odkształcalną. W przypadku ostatnim nie znamy kształtu, który układ przybiera w stanie równowagi; należy go wyznaczyć wraz z re-akcyami z równań równowagi.

	
	
152.    Z rozważań powyszych wynika wniosek, że wielokąt o n wierzchołkach jest dany, gdy znamy długości 2n—3 boków. Jeżeli liczba boków i przekątni wielokąta wynosi ni, to pomiędzy ich długościami musi zachodzić m — (2n—3) związków. Widzimy zatem, że z owych m długości 2n—3 są dowotne; muszą one jedynie czynić zadość tym warunkom, które umożliwiają utworzenie figury. Tak np. trójkąt można utworzyć z trzech długości dowolnych, ale suma każdych dwóch powinna być większa od trzeciej.





Gdy w wielokącie o n wierzchołkach wszystkie wierzchołki są połączone pomiędzy sobą, to liczba długości wynosi (n—2) (n—3)


n(n-l)

--, a zatem



wypadnie - .— 9--związków pomiędzy bokami i przekątniami.

Tak samo znajdziemy, że liczba związków pomiędzy krawędziami


(n-3) (n—4)




wielościanu jest równa



	
	
153.    Zobaczmy teraz, ile mamy równań statycznych. Zakładamy, że na układ działają siły jakiekolwiek, posiadające punkty przyłożenia w niektórych, albo we wszystkich cząsteczkach. Nazwiemy te siły zewnętrznemi.





Każda cząsteczka poszczególna pozostaje w równowadze, a zatem rzutując siły, działające na każdą z nich, na osi współrzędnych, otrzymamy 2n albo 3n równań statycznych stosownie do tego, czy układ jest płaski, czy przestrzenny.

Z równań tych można zawsze wyrugować reakcye, działające wzdłuż prętów, bez względu na to, jak liczne są te reakcye; tym sposobem otrzymamy trzy równania, jeżeli układ jest płaski, albo sześć, jeżeli układ jest przestrzenny. Daje się to okazać w sposób następujący. Wszystkie cząsteczki razem tworzą jeden układ, w którym reakcye wewnętrzne się równoważą. Jeżeli układ jest płaski, to bie-rzemy rzuty sił zewnętrznych na jakieś dwa kierunki i momenty względem jakiegoś punktu; tym sposobem otrzymamy trzy równania równowagi, niezawierające żadnych reakcyi wewnętrznych (112)*). Jest rzeczą jasną, że ani rzuty na jakieś inne kierunki ani momenty względem jakichś innych punktów nie dadzą nam więcej od trzech równań niezależnych (115). Jeżeli układ jest przestrzenny, to tak samo oka-żerny, że można otrzymać sześć równań wolnych od reakcyi wewnętrznych; w tym celu należy wziąć rzuty na trzy kierunki oraz momenty względem trzech osi. Z tego wynika, że do wyznaczenia reakcyi pozostanie 2n— 3, względnie 3n—6 równań. Tyle właśnie reakcyi niezależnych występuje w kratownicy dostatecznie sztywnej. Tak więc w kratownicy dostatecznie sztywnej, na którą nie działają żadne nieznane siły zewnętrzne, liczba równań statycznych wystarcza do wyznaczenia wszystkich 2n — 3 lub 3n—6 reakcyi.

Jeżeli kratownica podlega pewnym ograniczeniom zewnętrznym, jeżeli np. pewne jej punkty są osadzone w przestrzeni nieruchomo, to liczba prętów, niezbędnych do usztywnienia układu, będzie inna. Przypuśćmy, że układ sztywny czy niesztywny, zawiera 2n — 3—k albo 3n — 6—k prętów. Wypada łatwo, że równania równowagi po wyrugowaniu reakcyi wewnętrznych dają nam k+3 albo k+6 równań do wyznaczenia reakcyi zewnętrznych i położenia równowagi. Zagadnienie jest określone, jeżeli równania le są wystarczające.

	
	
154.    Nawet w tych razach, w których liczba równań byłaby dostateczna do wyznaczenia reakcyi wewnętrznych, możliwe są wypadki wyjątkowe. Równania, otrzymane w sposób wskazany, mogą nie być niezależne, lub mogą być sprzeczne.





Dla przykładu rozważmy przypadek taki: Trzy pręty A,A3 , A,A,, A^2 łączą się przegubami Ar, A3, A2, długości zaś ich są takie, że wszystkie trzy leżą na jednej prostej. A A Przypuśćmy, że na końce A^ A 2 działają F._e......   7   42 F dwie równe i odwrotne siły F, i ozna-                     -czmy reakcye, działające wzdłuż A,A2,           Fig. 40.

A,A,, A^ odpowiednio przez R12 , R23,

R13. Kratownica taka jest dostatecznie sztywna, a zatem powinni-cząsteczkę Ar działa reakcya R12, skierowana do A2; w takim razie na cząsteczkę A2 działa równa i odwrotna reakcya R21, skierowana do A2. Rzuty tych reakcyi R12 i R21 na oś x są oczywiście równe i odwrotne. Dodajmy wszystkie równania, które otrzymaliśmy, rzutując na oś x siły, działające na poszczególne cząsteczki; otrzymamy oczywiście w sumie równanie, wolne od wszelkich R. W ten sam sposób rzuty na osi a i ^ dadzą nam dwa inne równania, nie zawierające żadnych reakcyi wewnętrznych.

Ponieważ siły, działające na każdą cząsteczkę, są w równowadze, przeto suma ich momentów względem każdej prostej jest równa zeru. Rozumując, jak wyżej, dojdziemy, że moment reakcyi R12, działającej na A1} jest równy i odwrotny do momentu reakcyi R21, działającej na A2. Dodajemy wszystkie równania, które otrzymaliśmy, biorąc momenty sił, działających na poszczególne cząsteczki. W sumie wypa-dnie nowe równanie, wolne od reakcyi R.

byśmy mieć dostateczną liczbę równań do wyznaczenia reakcyi; tymczasem, tworząc równania dla trzech wierzchołków, otrzymamy

Ri+R,,=F,    R=R,3,    R,2+R,= F.

Nie wystarcza to oczywiście do wyznaczenia trzech reakcyi.

Takie przypadki wyjątkowe zachodzą w warunkach, które wskazuje teorya równań liniowych. Wszystkie 2n— 3 albo 3n— 6 równań do wyznaczenia reakcyi w wierzchołkach kratownicy są liniowe. Jeżeli pewien wyznacznik jest równy zeru, to przynajmniej jedno równanie wynika z pozostałych, albo jest z niemi w sprzeczności. W przypadku ostatnim wypadałoby, że niektóre reakcye są nieskończenie wielkie, co w naturze jest niemożliwe. W przypadku pierwszym jedna reakcya jest dowolna; reakcye pozostałe można wyrazić w funkcyi tej pierwszej oraz sił zewnętrznych. W podobny sposób możemy znaleźć warunki, przy których dwie reakcye będą dowolne. Warunki te dają się wyrazić w sposób bardziej określony, ale odnośna część teoryi wyprowadza się łatwiej z zasady pracy przygotowanej, odłożymy ją przeto do rozdziału, poświęconego tej zasadzie.

	
	
155.    Przypuśćmy teraz, że układ, złożony z n cząsteczek, posiada więcej prętów, niż potrzeba niezbędnie do usztywnienia. W tym razie liczba równań jest niedostateczna do wyznaczenia reakcyi, jeżeli nie wiemy o nich czegoś ponadto, co zawierają równania statyczne. Pręty, łączące cząsteczki, są z natury sprężyste, a siły, działające wzdłuż pręta, są następstwem odkształcenia, czyli skurczenia lub rozciągnięcia. Dajmy na to, że związek pomiędzy siłą i odkształceniem jest znany; mamy zbadać, czy wypływające z niego równania dodatkowe wystarczają do wyznaczenia reakcyi. Kratownica, na którą zaczęły działać siły zewnętrzne, zaczyna się odkształcać i odkształca się dopóty, dopóki wywołane reakcye wewnętrzne nie wzmogą się dostatecznie do utrzymania układu w spoczynku. Będziemy uważali dla skrócenia rozważań, że odkształcenie ostateczne jest bardzo drobne, i że zgodnie z prawem Hooke’a reakcya wzdłuż danego pręta jest równa pewnej znanej wielokrotności stosunku wydłużenia do długości pierwotnej. Ta wielokrotność zależy od natury materyału, z którego pręt zrobiono.





Przypuśćmy, że kratownica posiada m prętów, i że liczba ta jest o k większa od 2n—3 lub 3n—6. Jeżeli na kratownicę nie działają żadne reakcye zewnętrzne, to potrzeba mieć k równań dodatkowych (par. 153). W myśl par. 152 znajdziemy k związków pomiędzy długościami prętów li, l2...., i niech jeden z tych związków będzie

m, 1,.)=0................(i).

Różniczkując to równanie, otrzymamy

M1dl1 + M2dl2+ ....=0..............(2), gdzie M, , M2.... oznaczają pochodne cząstkowe, a dl , dl.... wydłużenia prętów.

Oznaczając przez R, R2-- reakcye, działające wzdłuż prętów i przez X, , ).2.... odwrotności znanych wielokrotności, przekształcimy równania ostatnie przy pomocy prawa Hooke’a na

M,),L,R,+M,)„,1,R,+ ••• =0

Widzimy, że każde równanie takie, jak (1), dostarcza jednego równania pomiędzy reakcyami, a więc teorya sprężystości dostarcza potrzebnej liczby równań dodatkowych.

W przypadku, wzmiankowanym w par. 154, związek pomiędzy długościami, odpowiadający (1) będzie 113 + 123 — l 12=0, gdzie 112 =A|A2 i t. d. Różniczkując, znajdziemy, że wszystkie trzy reakcye są równe co do wielkości, jeżeli wszystkie trzy pręty są zrobione z jednego materyału i posiadają przekroje równe.

Astatyka.

	
	
156.    Na ciało sztywne działają siły P1, P2...., przyłożone w punktach Av A, ... . ; wielkości tych sił oraz ich kierunki w przestrzeni są dane. Przypuśćmy, że ciało to doznaje jakiegokolwiek przesunięcia; pragniemy zbadać, jak zmieni się siła wypadkowa i para wypadkowa.





Obieramy pewien środek redukcyi 0 i osi układu prostokątnego Ox, Oy, utrwalone w danem ciele. Żądane przesunięcie możemy wykonać w dwóch stadyach. Przedewszystkiem przesuwamy ciało równolegle tak, aby punkt O zajął żądane położenie 01, następnie obracamy ciało około punktu 0^ dopóki oś Ox nie dojdzie do położenia żądanego. Wówczas każdy punkt ciała zajmie położenie żądane, bo w razie przeciwnym odległości różnych punktów ciała od początku 0 i od osi 0x nie byłyby stałe.

Jeżeli wielkości siłP P...., a także ich kierunki w przestrzeni są niezmienne, to oczywiście ani rzuty tych sił na osi ani ich momenty względem O skutkiem przesunięcia równoległego nie ulegną zmianie. Możemy przeto pominąć przesunięcie równoległe i uważać 0, 01 za jeden punkt.

Rozważamy teraz przesunięcie obrotowe. Chodzi tu naturalnie o położenie względne sił i ciała; gdybyśmy obrócili siły wraz z ciałem, to skutek byłby tylko ten, że siła wypadkowa oraz para wypadkowa obróciłyby się o ten sam kąt. Z tego wynika, że zamiast obracać ciało około punktu O o dany kąt 3, zachowując bez zmiany kierunki sił, możemy obrócić każdą siłę około jej punktu przyłożenia o taki sam kąt w kierunku odwrotnym, nie zmieniając przytem położenia ciała (par. 70).

	
	
157.    Jesteśmy teraz w możności określić zmiany, jakie zajdą w sile wypadkowej i w parze wypadkowej. Za osi Ox i Oy obieramy proste utrwalone w ciele, i niech P oznacza jedną z sił P^ P2. . .. ; jej punkt przyłożenia oznaczmy przez A, a jej nachylenie do osi a przez a. Obróćmy tę siłę około punktu A w kierunku dodatnim o kąt 3; będzie więc ona teraz działała w kierunku, wskazanym na figurze przez AP'.

[image: ]

Fig. 41.





Podobnie i







Oznaczmy przez X, Y rzuty siły wypadkowej na osi, a przez G moment pary wypadkowej przed przesunięciem; X’, Y\ G' będą oznaczały te same wielkości po przesunięciu, r par. 106 otrzymamy

X’ ^-P cos(a + 3) = Xcos 9 — Psin 8, Y = ŁP sin( + 9) = X sin 9 + Tcos 9, G' = EP[x sin (a +8) — y cos (a + 8)] = G cos 8+V sin 8,

gdzie G=^{xPy - yP.), V=(xP,+ ijPy). Px i Py oznaczają tu rzuty siły P na osi x i y.

Symbol G wyraża moment pary wypadkowej, czyli sumę momentów sił względem środka obrotu O, przed przesunięciem. Jeżeli

T

U=9, to G‘= V- A zatem symbol V wyraża sumę momentów sił względem punktu O po obróceniu tychże o kąt prosty.3) Jeżeli wolno jest nieco zmienić znaczenie nazwy, danej przez Clausiusa (Phil. Mag., sierpień 1870), to możemy nazwać V wiryałem sił. Oznaczmy wartość, którą przy-bierze wiryał po obróceniu sił o kąt 3, przez V. W takim razie

V‘=zP[x cos («+9)+y sin (+8)]= V cos }- G sin 9.

Z równania tego widać, że moment G posiada taką wartość, jaką przybierze wiryał po obrocie o kąt prosty, lecz ze znakiem odwrotnym.

Można wiryałowi V przypisać i inne znaczenie. Przypuśćmy, że składowe Pi Py działały początkowo na punkt O, i przesuńmy ich punkt przyłożenia do punktu N, położonego na osi Ox tak, aby było 0N=x. Praca składowej Px wyniesie xPx, a praca składowej Py będzie zerem. Przesuńmy następnie punkt przyłożenia z N do A tak, aby było NA=y. Teraz praca składowej Px będzie zerem, a praca składowej Py wyniesie yPy. Suma takich prac dla wszystkich sił jest równa V. Widzimy więc, że V jest t o praca, potrzebna do przeniesienia sił ze środka reduk-cyi do ich obecnych punklóin przyłożenia; wielkości i kierunki sił powinny przytem pozostać bez zmiany.

	
	
158.    Jeżeli przed przesunięciem ciało było w równowadze, to X=0, Y~ 0, G=0, a zatem po obrocie o kąt 3 będzie X‘=0, Y' — Q, G‘= Vsin 3. Stąd wynika, że nowe położenie będzie tylko wtedy położeniem równowagi, gdy 0 = T. Jeżeli ciało jest w równowadze w dwóch położeniach, tworzących kąt 0 różny od T, to równowaga zachodzi we wszystkich położeniach. Warunek analityczny równowagi we wszystkich położeniach polega na tem, aby w jednem z położeń równowagi było V=0.


	
159.    Prz. 1. Ciało nie jest w równowadze, lecz siły są takie, że obydwa rzuty X i Y są zerami. O jaki kąt należy obrócić ciało, aby otrzymać położenie równowagi?





Prz. 2. Ciało znajduje się w położeniu równowagi pod działaniem sił danych co do wielkości i kierunków. Okazać, że równowaga jest trwała lub chwiejna zależnie od tego, czy V jest dodatnie czy ujemne.

	
	
160.    Środek sił. Okazaliśmy w par. 118, że cały układ sił daje się sprowadzić do jednej wypadkowej w skończonej odległości od środka redukcyi, jeżeli tylko sumy rzutów na osi (t. j. X i Y) nie są zerami. Po obrocie sił o kąt 3 równanie linii działania tej wypadkowej będzie





G‘-Y+1X‘=0,

czyli (G — 6 Y+ 7X) cos 9 + (V— 4X- 1 Y) sin 9 = 0.

Z równania tego wynika, że jakkolwiek obrócimy siły około ich punktów przyłożenia, to zawsze wypadkowa przejdzie przez pewien punkt stały; współrzędne jego określają równania

G-iY+^X=0

	
V- 4X- Y=0



Punkt ten nazywamy środkiem sił. Pierwsze z równań powyższych jest równaniem linii działania wypadkowej przy pierwo-tnem położeniu sił, t. j. gdy 3 = 0, równaniu drugiemu odpowiada linia działania wypadkowej po obrocie sił o kąt prosty, t. j. gdy •=3

W teoryi tej uważamy, że punkt przyłożenia danej siły jest w ciele niezmienny, a z tego względu będzie dogodnem uważać środek sił za punkt przyłożenia wypadkowej. Tak więc wypadkowa, równoważna całemu układowi, posiada podobnie do innych sił określoną wielkość, określony kierunek i określony punkt przyłożenia w ciele. Możemy zatem określić środek sił w sposób podobny, jak określiliśmy go w przypadku sił równoległych (83). Jeżeli punkty przyłożenia sił danych są w ciele niezmienne, to i punkt przyłożenia wypadkowej zachowuje w ciele położenie niezmienne, jakkolwiek przesuniemy to ciało; wielkości i kierunki sił powinny przytem pozostać bez zmiany. Taki punkt stały nazywamy środkiem sił.

Obrawszy przy pewnem określonem położeniu ciała i sił prostokątny układ współrzędnych, otrzymamy współrzędne (^rj) środka sił we wzorach

LR2 - VX+ G Y, 7 R2 = V Y- GX;

V i G odpowiadają tutaj początkowi układu, jako -środkowi redukcyi, a R jest wypadkową sił X i Y.

	
	
161.    Prz. 1. Okazać, że środek sił leży w nieskończoności, jeżeli układ sprowadza się do pary wypadkowej.





Prz. 2. Dowieść, że jakkolwiek obrócimy siły i przy każdem G

środku redukcyi stosunek — jest równy tangensowi kąta, który tworzy prosta, łącząca O ze środkiem sił C, z kierunkiem wypadkowej R; okazać prócz tego, że wartość G2+V2 jest niezmienna i równa R2.CO2.

Układ jest równoważny jednej sile R, przyłożonej w C, a więc oczywiście Gr=R. ON, gdzie ON oznacza odległość linii działania siły Rod O. Obróciwszy R o kąt prosty, znajdziemy V=R.CN. Stąd wynikają bezpośrednio żądane wnioski.

	
	
162.    Istnieje inna metoda wyznaczania wypadkowej astatycznej danego układu sił.4) Nadajemy ciału pewne dogodne położenie względem sił danych i rozkładamy każdą z nich na składowe w kierunkach Ox i Oy. Sumę składowych w kierunku Ox oznaczamy przez X, a sumę składowych w kierunku Oy przez Y. Osi Ox i Oy powinny być tak dobrane, aby ani X ani Y nie było zerem. Bierzemy naprzód pod uwagę składowe równoległe do osi Ox. Są one równoważne jednej sile X=^Px, działającej na punkt niezmienny w ciele; współrzędne (x,y,) tego punktu znajdziemy z równań





xX=XxP,,   y\X —^yPx-

Składowe równoległe do osi Oy tworzą również układ sił równoległych równoważny jednej sile Y=%Py; siła ta jest przyłożona w punkcie (x2, J2), i

x,¥=EyP, J2Y=EyPs

Osi współrzędnych można obierać dowolnie, przyczem niekoniecznie mają tworzyć kąt prosty; tak więc sprowadziliśmy dany układ do dwóch sił, działających na dwa punkty w ciele niezmienne w kierunkach obranych dowolnie lecz nierównoległych. Położenie owych punktów zależy od obranych kierunków.

	
	
163.    Oznaczmy owe punkty niezmienne przez A i B, i niech w pewnem położeniu ciała względem sił składowe X i Y przecinają się w punkcie I, a ich wypadkowa niech działa na prostej IF. Ta prosta IF przecina koło, opisane na trójkącie ABT, w punkcie C. Z asta-tycznego trójkąta sił wynika, że punkt C jest w ciele niezmienny, a możemy uważać, że wypadkowa sił X i Y jest przyłożona właśnie w tym punkcie C; zatem punkt C jest środkiem sił.





Odwrotnie, jeżeli znamy środek i siłę wypadkową, to możemy ją rozłożyć na dwie składowe astatyczne, posługując się trójkątem sił w sposób, opisany w par. 73.

ROZDZIAL°V.

TARCIE.

	
	
164.    Wiadomo z doświadczenia, że gdy jedno ciało pod ciśnieniem sunie lub toczy się po drugiem, to powstaje siła, przeciwdziałająca ruchowi. Aby zbadać prawa, którym ta siła podlega, rozpoczniemy od doświadczeń nad pewnym prostym przypadkiem równowagi, a następnie będziemy usiłowali uogólnić otrzymane wyniki aż do przypadków najbardziej złożonych.





Wyobraźmy sobie skrzynkę A, ustawioną na chropowatym stole BC. Do skrzynki w punkcie D jest przymocowany
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Fig. 42.




sznur DEH^ który przechodzi przez bloczek E i dźwiga szalkę H; na szalkę można kłaść gwichty lub sypać piasek. Kładąc ciężary do skrzynki A i zmieniając wagę szalki, możemy zbadać wszelkie przypadki. Obciążamy więc skrzynkę A i powiększamy stopniowo ciężar szalki, sypiąc na nią piasek, który będzie można następnie zważyć. Czynimy tak aż do chwili, w której skrzynka ruszy z miejsca. Znajdziemy, że skrzynka niezależnie od zawartego w niej ładunku rusza dopiero wtedy, gdy waga szalki dojdzie do pewnej określonej wielokrotności wagi skrzynki i ładunku. W doświadczeniu takiem, rzecz prosta, potrzeba daleko więcej uwagi poświęcić szczegółom, niż by wynikało z powyższego opisu; tak np. należy uwzględnić tarcie w bloczku E.

	
	
165.    Prawa tarcia. Doświadczenie powyższe wykazuje, że zjawiskiem tarcia rządzą prawa następujące:





	
1.    Kierunek tarcia jest odwrotni] do kierunku, w którym wymuszany jest ruch ciała.


	
2.    Wielkość tarcia jest taka, jaka właśnie wystarcza do przeszkodzenia ruchowi. Tak np. pomiędzy skrzynką i stołem tarcia niema, dopóki na skrzynkę nie zacznie działać ciężar H^ a odtąd tarcie co do wielkości jest równe temu ciężarowi.


	
3.    Wywołane tarcie nie może przekroczyć pewnej określonej granicif; ruch następuje, gdy ta granica już została osiągnięta, a pomimo to tarcie nie wystarcza do utrzymania ciała w spokoju. To największe tarcie osiągalne nazywa się grani-cznem.


	
4.    Wielkość tarcia granicznego pozostaje w stałym stosunku y. do ciśnienia normalnego, które istnieje pomiędzy ciałem, spo-czywającem na płaszczyźnie, i tą płaszczyzną. Ten stały stosunek p. zależy od natury stykająch się materyałów; nazywamy go zwykle współczynnikiem tarcia.



Nie twierdzimy tutaj, że wywołane tarcie jest w każdym wypadku p. razy większe od ciśnienia normalnego; taka jest tylko największa wartość, do jakiej tarcie dojść może. Dla ciał gładkich .=0. Dla ciał, z któremi będziemy mieli najczęściej do czynienia, p. leży pomiędzy zerem i jednością.

	
5.    Tarcie jest niezależne od wielkości powierzchni ciała, pozostającej w zetknięciu z chropowatą płaszczyzną.


	
6.    Znaleziono, że, gdy ciało jest w ruchu, to wywołane tarcie jest niezależne od szybkości i proporcyonalne do ciśnienia normalnego. Stosunek nie jest dokładnie ten sam, co dla tarcia granicznego w spoczynku.



Tarcie, które trzeba przezwyciężyć, aby wprawić w ruch skrzynkę, stojącą na stole, jest większe od tarcia pomiędzy temi samemi ciałami w ruchu przy tern samem ciśnieniu. Jeżeli skrzynka stała na stole pod ciśnieniem przez czas dłuższy, to będziemy mieli do przezwyciężenia więcej tarcia, niż wprawiając ją w ruch przy tern samem ciśnieniu natychmiast po powstaniu zetknięcia. Dla niektórych ciał ta różnica pomiędzy tarciem statycznem i dynamicznem jest bardzo drobna, dla innych bywa dość znaczna. Wogóle współczynnik tarcia, p. dla ciał w ruchu jest nieco mniejszy niż dla ciał w spokoju.

Wypada jeszcze zaznaczyć, że tarcie należy do tych sił, które nazywamy zwykle oporami. Wskazuje na to drugie z praw wyżej podanych. Gdy przyciskamy ciało do ściany, to powstaje opór, czyli reakcya; wielkość tej reakcyi jest dokładnie taka, jaka właśnie wystarcza do zrównoważenia siły przyciskającej. Gdy niema ciśnienia, to niema i reakcyi. Zupełnie taksamo tarcie tylko przeciwdziała przesuwaniu, lecz go nie wywołuje.

	
166.    Istnieje jeszcze inna metoda badania praw tarcia; unika się w niej użycia bloka i sznura, a więc posiada ona pewną wyższość nad poprzednią. Wyobraźmy sobie skrzynkę A,
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ustawioną symetrycznie na płaszczyźnie pochyłej BC. Niech W oznacza ciężar skrzynki, a 3 nachylenie płaszczyzny do poziomu. Znajdziemy łatwo, że reakcya normalna R= W cos 3, a siła tarcia B = Wsin 3, a zatem


— =tan 3.



Powiększamy stopniowo nachylenie płaszczyzny do poziomu czyli kąt 3, dopóki skrzynka nie zacznie się zsuwać. Wtedy właśnie tarcie staje się granicznem. Znaleziono, że owo nachylenie jest zawsze jednakowe niezależnie od obciążenia skrzynki. Stąd wynika, że stosunek tarcia granicznego do ciśnienia normalnego jest od tego ciśnienia niezależny.

W doświadczeniu tern mamy łatwą metodę wyznaczania współczynnika tarcia p. dla dwóch danych materyałów. Umieszczamy ciało A, zrobione z jednego materyału, na płaszczyźnie pochyłej BC^ zrobionej z drugiego. Dajmy na to, że ciało pozostawało początkowo w spokoju; powiększamy stopniowo nachylenie, dopóki A nie zacznie się zsuwać. Jeżeli ruch nastąpi przy nachyleniu 3, to p. jest nieco mniejsze od wyznaczonego w ten sposób tan0. Przypuśćmy teraz, że początkowo ciało A się zsuwa; zmniejszamy nachylenie, dopóki nie dojdziemy do takiego kąta 3, przy którym A właśnie pozostaje w spokoju; w tym razie współczynnik M. jest nieco większy od otrzymanego tan 3. W ten sposób znajdziemy dwie blizkie liczby, pomiędzy któremi leży p.. Kąt 3, którego tan jest równg M., zowie się zwykle kątem tarcia.

Prz. Czynimy przypuszczenie, że tarcie graniczne składa się z dwóch części, z których jedna jest proporcyonalna do ciśnienia, a druga do powierzchni zetknięcia. Ustawiamy na danej równi pochyłej prostopadłościan o krawędziach a, b, c, i przypuśćmy, że najmniejsza siła, która może go utrzymać w równowadze, wynosi odpowiednio

P, Q lub R, gdy na równi spoczywają ściany bc, ca lub ab. Okazać, że w takim razie (ę—R^bc+ęR—P^ca+ęP—ę^ab—O. (Triu. Coli., 1884).

	
167.    Para tarcia. W przypadku koła, toczącego się po płaszczyźnie chropowatej, należy prowadzić doświadczenie w inny sposób# Kładziemy na chropowatej płaszczyźnie poziomej cylinder o promieniu r; ciężar jego niech będzie równy W. Na cylinder zarzucamy sznur, którego końce przechodzą przez szparę, wyciętą w płaszczyźnie poziomej, i na tych końcach zawieszamy ciężary P i P+p. Rysunek wyobraża cylinder w prze



kroju, zrobionym przez sznur; C oznacza środek, A punkt zetknięcia z płaszczyzną poziomą. Przypuśćmy, że p jest z początku zerem, a następnie wzrasta, dopóki cylinder nie zacznie się poruszać. Biorąc rzuty na kierunek pionowy, znajdziemy, że reakcya w punkcie A wynosi W+2P + p, a biorąc rzuty na kierunek poziomy, przekonamy się, że w punkcie A nie działa żadna siła pozioma, a więc siła tarcia jest równa zeru. Bierzemy wreszcie momenty względem punktu A; wypadnie, że musi istnieć para tarcia o momencie pr.
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168.    Powstanie tej pary możemy wytłomaczyć w sposób następujący. Cylinder nie jest całkowicie sztywny; spłaszcza się on nieco w okolicach A i zatem styka się z płaszczyzną poziomą na małej powierzchni. Gdy cylinder zaczyna się toczyć, to elementy tylne tej powierzchni, odrywane od płaszczyzny, usiłują utrzymać się na niej, elementy zaś przednie opierają się dalszemu ściskaniu. Wszystkie te działania można zastąpić parą i siłą, przyłożoną w stosownym środku redukcyi. Spłaszczenie cylindra w A zmienia nieco położenie środka ciężkości całej masy, ale zmiana ta jest małoznacząca i zazwyczaj nie bierzemy jej w rachubę. Postępujemy tak, jak gdyby przekrój ciała był dokładnem kołem, stykającem się z płaszczyzną w geometrycznym punkcie A. Całe działanie wyraża siła wypadkowa, przyłożona w A, i para. Składowe siły w kierunku normalnej i stycznej w A zowią się nieraz reakcyą normalną i siłą tarcia-, w doświadczeniu naszem ta ostatnia była równa zeru. Parę nazywamy parą tarcia.



Doświadczenia wskazują, że wielkość siły p, ściśle wystarczająca do poruszenia cylindra, jest wprost proporcyonalna do ciśnienia normalnego i odwrotnie proporcyonalna do promienia cylindra. Możemy zatem wygłosić nowe prawo tarcia: moment pary tarcia jest niezależny od krzywizny i proporcyona-tny do ciśnienia normalnego. Stosunek momentu do ciśnienia normalnego bywa nieraz nazywany współczynnikiem pary tarcia. Para tarcia jest zwykle bardzo drobna; skutki jej dają się odczuwać jedynie w takich okolicznościach, w których siła tarcia jest znikomo mała.

	
169.    Należy zaznaczyć, że prawa tarcia, które poznaliśmy w paragrafach poprzedzających, są tylko przybliżeniami. Stosunek tarcia granicznego do ciśnienia nie jest bezwzględnie stały we wszelkich okolicznościach. Owe prawa należy uważać za zwięzłe streszczenie wyników wielkiej liczby doświadczeń, i można im ufać, o ile ciśnienie leży w granicach tych doświadczeń. Granice te są tak rozległe, że w rachunkach matematycznych uważa się prawa tarcia za słuszne ogólnie.



Obecnie wypadałoby z kolei zbadać, z jakiem przybliżeniem prawa tarcia są w zgodzie z rzeczywistością, aby w razie potrzeby można było wprowadzić stosowną poprawkę; należałoby również zestawić przybliżone wartości współczynnika p dla różnych materyałów. Ale rozważania te zajęły by zbyt wiele miejsca i odwiodłyby nas zbyt daleko od teoryi przedmiotu.

	
170.    Doświadczenia nad tarciem były tak liczne, że możemy wspomnieć tylko niektóre nazwiska. Pierwszym był prawdopodobnie Amontons w r. 1699; po nim pracowali nad tarciem Muschanbroek i Nollet. Najgłośniejsze były doświadczenia Coulomba (Savaiits etran-gers, Acad. des Sc. de Paris X. 1785), Ximenesa (Teoria e pratica delle resistenze ddsolidi nedoro attriti. Pisa 1782), Vince‘a (Phil. Trans. vol. 75, 1785) i Morina (Sanants etrangers Acad. des Sc. de Paris IV. 1833). Prócz tego ogłosili swe badania Southern, Rennie, Jenkin i Ewing, Osborne Reynolds i in.


	
171.    Jedno z praw tarcia głosi, że kierunek tarcia powinien być odwrotny do kierunku, w którym wymuszany jest ruch ciała. Jeżeli ciało może się zacząć poruszać tylko jednym sposobem, to kierunek tarcia jest wiadomy z góry, i pozostaje wyznaczyć tylko wielkość jego. Jeżeli natomiast ciało może się poruszać rozmaitymi sposobami, zależnie od popędu, to tarcie jest nieznane ani pod względem wielkości ani kierunku. Zatem zagadnienia na tarcie można ryczałtowo podzielić na dwie klasy; do pierwszej zaliczymy te, w których ciała posiadają jeden lub więcej punktów oparcia, i we wszystkich są znane linie działania sił tarcia, ale nieznane ich wielkości; do klasy *



drugiej zaliczymy zagadnienia, w których chodzi o wyznaczenie zarówno kierunku jak i wielkości tarcia.

Rozwiążemy naprzód pewną liczbę zadań pierwszej klasy, stosując tylko co poznane prawa tarcia; rozważymy następnie, jak można wyznaczyć kierunki sił tarcia, gdy stan ciała już doszedł do granicy pomiędzy spoczynkiem i ruchem.

	
172.    Cząsteczka pozostaje na chropowatej krzywej w dwóch wymiarach pod działaniem sił jakichkolwiek; mamy wyznaczyć położenia równowagi.



Niech X i Y oznaczają sumy rzutów sił przyłożonych na osi, gdy cząsteczka zajmuje położenie P, a R niech oznacza reakcyę normalną krzywej na cząsteczkę; będziemy mierzyli tę reakcyę wewnątrz krzywej. Oznaczmy prócz tego przez F wywołane tarcie, mierzone w kierunku łuku s, i przez P kąt, który styczna tworzy z osią x. Przypuszczamy przytem, że cząsteczka znajduje się na właściwej stronie krzywej, tak że pod działaniem sil przyłożonych przyciska się do tej linii. Biorąc rzuty na styczną i normalną w punkcie P (fig. 45), otrzymamy

Xcos 1+ Ysin$+F=0

— Xsin 1 + Ycos 1 + R= 0.

Jeżeli ma zachodzić równowaga, to liczbowa wartość F powinna być mniejsza od M.R, gdzie M. oznacza współczynnik tarcia; a więc szukane położenia równowagi, znajdują się w tych punktach krzywej, dla których wyrażenie

Xcos 1 + Psin $

— Xsin 1 + Ycos • jest liczbowo mniejsze od M.. Wyrażenie to jest funkcyą położenia cząsteczki na krzywej; oznaczmy je przez f{x).

Rozwiązując równanie f(x)= dM, znajdziemy te położenia równowagi, w których cząsteczka znajduje się w stanie, graniczącym pomiędzy spoczynkiem i ruchem. Równanie to może posiadać nie jeden pierwiastek, a zatem znajdziemy różne skrajne położenia równowagi. W takim razie należy zbadać, czy równowaga zachodzi dla położeń pośrednich, t. j. czy liczbowo f(x) jest dla nich mniejsze czy większe od p..

Kwestyę ostatnią można nieraz rozstrzygnąć w sposób następu-ący: Wyznaczyliśmy położenie skrajne równowagi, np. X=X, rozwią-zając f(x)=^. Jeżeli w położeniach, odpowiadających wartościom x nieco mniejszym od X1 zachodzi równowaga, to f(x) musi wzrastać, gdy x, wzrastając, przekracza wartość x^ Odwrotnie, jeżeli dla owych wartości x równowaga uslaje, to f(x) musi się zmniejszać. Z tego wynika, że dla wartości x nieco większych od X1 równowaga ustaje lub trwa zależnie od tego, czy f\x) dla x=x jest dodatnie, czy ujemne. Przypuśćmy teraz, że znaleziono położenie skrajne x=x2, rozwiązując równanie f(x)==u. Jeżeli w położeniach, odpowiadających wartościom x, nieco mniejszym od X2, zachodzi równowaga, to f(x) musi zmniejszać się algebraicznie, gdy- x, wzrastając, przekracza X2, a zatem f‘(x2) jest ujemne.

Jeżeli przeto skrajne położenie równowagi odpowiada wartości X1 zmiennej niezależnej, to dla wartości x nieco większych od X1 równowaga ustaje lub zachowuje się zależnie od tego, czy f‘(x) posiada znak zgodny z p., czy odwrotny. Prawidło to można oczywiście stosować i do ciała sztywnego, jeżeli jego położenie w przestrzeni określa się jedną zmienną niezależną.

[image: ]

Fig. 45.




	
173.    Stożek tarcia. Istnieje inna metoda wyznaczania położeń równowagi, stosowniejsza w tym razie, gdy chodzi o rozwiązanie geometryczne. Oznaczmy przez e kąt tarcia, a zatem p. = lane. Poprowadźmy przez punkt P dwie proste, położone po dwóch stronach normalnej w P do krzywej i tworzące z tą normalną kąty e. Niech to będą proste PA i PB. W takim razie linia działania reakcyi wypadkowej (t. j. wypadkowej sił R i F) musi leżeć pomiędzy PA i PB. Nazwie-my te proste skrajnemi lub granicznemi liniami tarcia. Jeżeli siły, działające na cząsteczkę, nie są ograniczone do dwóch wymiarów, to zataczamy prosty stożek około linii działania normalnej reakcyi B; wierzchołek tego stożka powinien leżeć w P, a połowa kąta wierzchołkowego ma być równa arc tan p.. Stożek taki zowie się stożkiem tarcia.



W stanie równowagi reakcya wypadkowa jest równa i odwrotna do wypadkowej wszystkich innych sit, przyłożonych do cząsteczki, a stąd wynika prawidło następujące. Cząsteczka po-zoslaje iv równowadze w tych wszystkich punktach, w których siła przyłożona działa wewnątrz stożka tarcia. W granicznych położeniach równowagi wypadkowa sił przyłożonych (t. j. wszystkich sił z wyjątkiem reakcyi krzywej) działa na powierzchni stożka tarcia.

	
174.    Cząsteczka w trzech wymiarach pozostaje na krzywej chropowatej pod działaniem sił jakichkolwiek. Pragniemy wyznaczyć położenia równowagi.



Oznaczmy przez X, Y, Z sumy rzutów sił przyłożonych do cząsteczki na osi, przez R wypadkową tych sił, a przez T jej rzut na styczną do krzywej w punkcie, który obecnie zajmuje cząsteczka. W każdem położeniu równowagi T musi być mniejsze od p. razy wziętego ciśnienia normalnego, czyli T2<i\pęR2 — T^. Oznaczywszy przez ds element łuku krzywej, możemy ten warunek napisać w postaci

+Y^-+ zdz? <  3 (X2 +74 Z2).

\ ds ds dsl 1 +

X, Y, Z i s są funkcyami współrzędnych x, y, z. Cząsteczka pozostanie w równowadze we wszystkich punktach krzywej, w której nierówność powyższa jest spełniona. Zmieniwszy nierówność na znak równości, otrzymamy równanie do wyznaczenia granicznych położeń równowagi.

	
175.    Cząsteczka pozostaje na chropowatej powierzchni pod działaniem sił. Wyznaczyć położenia równowagi.



Niech f(x, y, z) = Q będzie równaniem powierzchni, a Q niech oznacza sumę rzutów sił przyłożonych na normalną do powierzchni w punkcie, który obecnie cząsteczka zajmuje. W położeniu równowagi będzie R2— Q2<0202, z czego wynika

(Xfx+ Yfy + Zf^ X‘+ Y2 + Z2 12+12+12 " 1 + ^2 ‘ gdzie fx, fy> fz oznaczają odpowiednio pochodne cząstkowe f(x, y, z) względem cc, y, z. X, Y, Z i f są funkcyami współrzędnych; gdy zmienimy nierówność na równość, to otrzymamy równanie powierzchni, która przecina daną powierzchnię f=0 według pewnej linii. Krzywa ta jest granicą położeń równowagi cząsteczki.

Statyka, 9

	
176.    Prz. 1. Paciorka, ważąca W, jest nawleczona na chropowaty drut, zgięty w postaci koła i ustawiony nieruchomo w płaszczyźnie pionowej. W jednym końcu średnicy poziomej znajduje się środek siły odpychającej; wywiera on na paciórkę siłę pr, gdy odległość wynosi r. Wyznaczyć graniczne położenia równowagi.



Jeżeli oznaczymy przez 28 kąt, który promień, przechodzący przez paciórkę, tworzy z poziomem, to siły styczna i normalna będą ( Wcos29— prsin 8) i (Wsin 28+prcos 8). Zakładając, że stosunek pierwszej z tych sił do drugiej =±tan s, znajdziemy sin(r=e-29)=±cos Y sin s, gdzie W— patan i a oznacza promień koła. Przeprowadzić roztrząsanie tych położeń.

Prz. 2. Ciężka cząsteczka pozostaje w równowadze na chropowatej cykloidzie, której oś jest pionowa, a wierzchołek zwrócony ku dołowi. Okazać, że wzniesienie cząsteczki nad wierzchołkiem nie przenosi 2a sin 2s, gdzie a oznacza promień koła tworzącego.

Prz. 3. Sztywna rama w postaci rombu o boku a i ostrym kącie a wisi na chropowatym kołku; współczynnik tarcia jest równy p. Okazać, że odległość pomiędzy punktami skrajnymi jednego boku, które mogą spoczywać na kołku, wynosi ap. sin o. (Zob. par. 173).

(St John’s Coli., 1890.)

Prz. 4. Dwie jednorodne sztaby AB i BG są połączone sztywno w punkcie B pod kątem prostym i sztaba AB wspiera się w punkcie D na krawędzi stołu. Wyznaczyć największą możliwą długość wystającej części DB; okazać prócz tego, że układ pozostanie w równowadze, opierając się tylko w punkcie A, jeżeli współczynnik tarcia prze-AB(AB+2BG)                 _ - .   _ wyzsza-----2--.                             (Math. Tnpos, 1874.)

BG

Prz. 5. Trzy chropowate cząsteczki o masach m,, m2, m3 są połączone lekkimi i gładkimi drutami, schodzącymi się w punkcie O; cząsteczki tworzą wierzchołki trójkąta równobocznego, a punkt O jest jego środkiem. Układ ten leży na płaszczyźnie pochyłej, tworzącej z poziomem kąt a, i może się obracać w tej płaszczyźnie około punktu O. Dowieść, że układ będzie w równowadze w każdem położeniu, jeżeli współczynnik tarcia dla każdej cząsteczki jest nie mniejszy od


tan a




m1—M2—M3



(mi2 + m22 + m,3 — mam, — nigmi — mm).

(Math. Tripos, 1877.)

Prz. 6. Cząsteczka pozostaje na powierzchni xyz=c3 pod działaniem stałej siły równoległej do osi z; współczynnik tarcia jest ró-

wny M. Dowieść, że linia przecięcia powierzchni ze stożkiem — 4—-J


możliwa od punktów, (Math. Tripos, 1870.)



odgranicza punkty, w których równowaga jest w których równowaga jest niemożliwa.

x2 y2 22


pionowa. Okazać, że



Prz. 7. Oś x elipsoidy — —%—-—= 1 jest a2 b2 c2

cząsteczka pozostanie na powierzchni jej w równowadze wszędzie po y2 / a2 \ z2 / a2 \

nad linią przecięcia z cylindrem — 14—— )4—, 1-—— = 1, gdzie U.

M2D-/ CE M."C’/

oznacza współczynnik tarcia.                          (Trin. Coli., 1885.)

	
177.    Zagadnienie następujące rozważymy z rozmaitych punktów •widzenia, pragnąc zilustrować różne metody postępowania.



Prz. 1. Drabina ma stać oparta o chropowatą podłogą poziomą i o chropowatą ścianę pionową, pozostając w płaszczyźnie pionowej, prostopadłej do ściany. Wyznaczyć położenia równowagi.

Oznaczmy przez A i B końce drabiny (fig. 46), przez 21 jej długość, przez w jej ciężar, działający na punkt środkowy C, i przez 9 nachylenie do poziomu.

Niech dalej R i R' oznaczają reakcye normalne w A i B, działające odpowiednio na prostych AD i BD, a p i p.’ współczynniki tarcia w tych punktach. Siły tarcia w A i B będą kR i ^R', gdzie 6 i n są wielkościami odpowiednio mniejszemi liczbowo od p i p.’. W pewnych zagadnieniach § i A mogą być dodatnie lub ujemne, ale ponieważ tarcie jest tylko oporem a nie siłą czynną, przeto w danym przypadku możemy przyjąć, że siły tarcia działają w kierunkach AL i LB; można więc tu uważać § i A za dodatnie. Ograniczenie takie wynika także z równań równowagi.

Biorąc rzuty i momenty, otrzymamy

kR—R',         ^R'+R=w,

2^R'l cos 9+2R‘l sin }= wl cos %.

1-8

Rugując R i R', znajdziemy tan *=2 . Każda wartość dodatnia na tan 8, którą otrzymamy z tego wzoru, dając § i 0 wartości mniejsze od p i u’, wskaźe możliwe położenie równowagi. Jeżeli chropowatość jest tak mała, że pp‘<1, to najmniejszą wartość tan 8 otrzyma-1 — uu‘

my ze wzoru tan s=—-—. Jeżeli chropowatość jest tak znaczna, że

pp‘> 1, to drabina będzie w równowadze przy każdem nachyleniu.

Prz. 2. Ustawiono drabinę pod danym kątem 9 do poziomu; wyznaczyć ciężar, który można umieścić na danym szczeblu, nie zakłócając równowagi.

Oznaczmy dany szczebel przez M, a zawieszony na nim ciężar przez W; załóżmy prócz tego, że AM—m, p=tan£ i p‘=tan e‘.
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Fig. 46.




Rozwiązanie geometryczne. Poprowadźmy proste AE i BF tak, aby było DAE=s i DBE=F. Reakcye wypadkowe w punktach A i B muszą leżeć wewnątrz tych kątów, a ich punkt przecięcia leży wewnątrz czworoboku EFDH. Niech G będzie środkiem ciężkości ciężarów W i w. Jeżeli pion, poprowadzony przez punkt Gr, przechodzi po lewej stronie punktu E, to możemy uważać, że ciężar W+ w działa na jakiś punkt P, położony wewnątrz wspomnianego czworoboku. Można w tym razie rozłożyć ten ciężar na dwie składowe w kierunkach PA i PB; zrównoważą je reakcye w A i B, gdyż każda z nich leży między liniami granicznemi. Tak więc, równowaga będzie zachowana, jeżeli pion przez G przechodzi po lewej stronie punktu E.

Powyższy sposób rozumowania posiada oczywiście znaczenie ogólne. Można go stosować do wyznaczenia warunków równowagi ciała, którego dwa punkty mogą przesuwać się na dwóch krzywych danych, jeżeli tylko siły wywierane (z pominięciem reakcyi krzywych) dają się dogodnie sprowadzić do jednej wypadkowej. Prowadzimy linie graniczne w tych punktach owych krzywych, na których wspiera się ciało, i tym sposobem tworzymy czworobok. Warunek równowagi polega na tern, aby wypadkowa sił wywieranych przecinała pole tego czworoboku.

Powracając do naszego zagadnienia, znajdziemy bez trudności, że odcięte punktów E i Gr, mierzone poziomo od punktu A w prawo, wynoszą odpowiednio


2l(pp.’ cos 3+p sin 3)




up‘+1




(Wm + wl) cos 3 W+w



Jeżeli punkt C leży po prawej stronie pionu przez E, (t. j. gdy lcos8 > x), to równowaga jest możliwa pod warunkiem, aby dany szczebel leżał po lewej stronie tegoż pionu (mcos8<x),; przytem ciężar W, zawieszony na szczeblu powinien być dostatecznie duży, aby ogólny środek ciężkości G znalazł się po lewej stronie owego pionu (x<x).

Jeżeli O leży po lewej stronie pionu przez E (Z cos 3 <x), to równowaga zachowa się przy każdem W, jeżeli i dany szczebel leży po tej samej stronie (m cos 8<x). Lecz jeżeli szczebel leży po prawej stronie (mcos8> x), to ciężar W powinien być dostatecznie mały, aby nie przeciągnąć na tę stronę ogólnego środka ciężkości.

Jeżeli wreszcie pion przez E przechodzi po prawej stronie pun-

T

ktu B (arctan"29 3); to ciężar W może być jakikolwiek i może wisieć na którymkolwiek szczeblu.

Rozwiązanie analityczne. Trzymając się oznaczeń, wprowadzo- " nych w prz. 1, znajdziemy przy pomocy rzutów i momentów

^R=R',    ^'AR^ W+w,

2R‘l cos ^+2R'l sin 8 = (Wm+ wl) cos 8.

Rugując R i R', otrzymamy

21(5-cos 8+6 sin 8)   ( Wm+ wb) COS 8


(A).




§+1



W+w

Warunek równowagi polega na tern, aby można było uczynić zadość ostatniemu równaniu, dając § im wartości niniejsze odpowiednio od p i p‘. Wyznaczając największą wartość lewej strony równania, moglibyśmy dojść do pewnego warunku geometrycznego, a mianowicie, że ogólny środek ciężkości ciężarów W i w powinien leżeć po lewej stronie pewnej linii pionowej. Chodzi nam jednak o dysku-•syę równania na innej drodze.

Będziemy uważali § i n za współrzędne pewnego punktu Q w układzie prostokątnym. W takim razie (A) perboli, której jedną gałąź zaznaczono na fig. 47 linią kropkowaną. Jeżeli ta hiperbola przechodzi przez pole prostokąta NN', utworzonego przez proste §== ±p,   =±u‘, to równaniu (A) mogą czynić zadość wartości 6 i mniejsze od granicznych, i równowaga zachodzi. Jeżeli hiperbola nie przecina prostokąta, to równowaga przy danych współczynnikach tarcia jest niemożliwa.


będzie równaniem hi-
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Fig. 47.




Na prawej stronie równania (A) mamy tę samą wielkość, którą oznaczyliśmy poprzednio przez x. Przenieśmy ją na lewo, a otrzymamy równanie postaci z=0; zauważymy przytem, że w początku układu z jest ujemne. Hiperbola przetnie prostokąt, jeżeli z jest dodatnie w punkcie N, gdzie §==u,  ==u‘; jest to warunek konieczny i wystarczający. Tak więc szukany warunek równowagi głosi, że

2l(pp‘cos 8+p sin 8)

pu‘+1

powinno być dodatnie. Wynik ten nie różni się od poprzedzającego i można go interpretować w podobny sposób.

Prz. 3. Drabina AB opiera się o chropowatą pionową ścianę wielkiej skrzyni, stojącej na podłodze, jak wskazuje fig. 46. Wyznaczyć warunki równowagi.

Musimy teraz rachować się z równowagą skrzyni BLL'. Oznaczmy ciężar jej przez W', reakcyę normalną pomiędzy nią i podłogą przez R" i tarcie przez (R". W takim razie do równań z przykładu 1 przybywają jeszcze


R‘‘= W‘+R‘,




(R‘=R‘.



Rugując R", znajdziemy

(W + w) E$ + W’ - wĘ = 0.

Mamy prócz tego z prz. 1


(A).




(BY



6+26 tan 8- .........

Aby mieć n i $ w funkcyach § rugujemy :

2 (W' + w) 86 tan 0 + wt - (2 W' + w)ć = 0

Warunkiem równowagi jest, aby równaniom (A) i (B) czyniły jednocześnie zadość wartości §, , % mniejsze odpowiednio od p, p.’ p", gdzie p" oznacza współczynnik tarcia skrzyni o podłogę.

Uważajmy §, ", $ za współrzędne punktu Q; w takim razie równaniom (A) i (B) odpowiadają powierzchnie cylindryczne. Powierzchnie te przecinają się według linii. Jeżeli część tej linii leży wewnątrz równoległościanu prostokątnego, utworzonego przez płaszczyzny §== ±u, ==p‘, (==±u", to warunki równowagi są spełnione.

Zamiast uciekać się do geometryi trójwymiarowej, możemy (A) i (B) uważać za równania hiperbol, przyczem it będą oznaczały rzędne, a § odciętą. Tarcia są tu tylko oporami, a więc 6, ", C przybierają tylko wartości dodatnie, i będzie dostatecznem wykreślić tylko część
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Fig. 48.




figury, zawartą w ćwiartce dodatniej. Uczyńmy 0M=p, OM' = ^', OM"=[i", i niech OB i AH będą hiperbolami (B) i (A). Znajdziemy z łatwością, że


M'A ==




1

u.‘+2tan 8



(2W+w)y"

2 (W' + w) p" tan 3+w

Warunki równowagi polegają na tern, aby istniała rzędna, przecinająca hiperbole w punktach Q, Q', z których każdy leży wewnątrz odpowiedniego prostokąta ograniczającego. Warunki te dają się wyrazić w sposób następujący.

	
(1)    Hiperbola AH powinna przecinać pole prostokąta ON', a do tego potrzeba, aby było M'A<[i.


	
(2)    Jeżeli hiperbola OB przecina M"N" po lewej stronie punktu N", t. j. jeżeli M‘B<p, to powinno być M'A <M"B, bo inaczej rzędna QQ‘ nie mogłaby przecinać obydwóch krzywych wewnątrz pola przepisanego. Warunek ten zawiera się w (1), jeżeli M"B>^.



Jeżeli ustawiono drabinę w taki sposób, że nierówność (2), stała się równością (M'A=M"B), a nierówność (1) nie jest naruszona, to tarcia it osiągają wartości graniczne, a § nie dochodzi jeszcze do granicy; w takim razie górny koniec drabiny ma właśnie zacząć się osuwać po skrzyni, a skrzynia ma właśnie zacząć się posuwać po podłodze.

Jeżeli drabina jest ustawiona tak, że nierówność (1) stała się równością {M'A— == OM), gdy nierówność (2) nie została naruszona, to § i 0 doszły do wartości granicznych, a $ jest mniejsze od swej granicy. Skrzynia w takim razie pozostanie nieruchomą, a drabina osunie się w obydwóch końcach.

	
178.    Prz. 1. Drabina stoi oparta w górnym końcu B o gładką ścianę, a w dolnym końcu A o chropowatą podłogę. Na drabinę wstępuje człowiek, ważący n razy więcej od niej. Okazać, że tarcia w A w dwóch przypadkach skrajnych, odpowiadających położeniom człowieka na dwóch końcach drabiny, mają się do siebie, jak 2n+1 do 1.



Prz. 2. Chłopiec, ważący w, stoi na lodzie i ciśnie rękami gładką pionową ścianę ciężkiego krzesła, ważącego nw. Okazać, że może on nachylić swe ciało do poziomu pod każdym kątem większym od arccot 2u lub arccot 2u.n, zależnie od tego, czy cięższe jest krzesło, czy chłopiec; współczynniki tarcia chłopca o lód i krzesła o lód wynoszą obydwa p..                                               (Queen's Coli.)

Prz. 3. Podstawy dwóch półkul o promieniach a i b spoczywają nieruchomo na płaszczyźnie poziomej, a na półkulach leży symetrycznie sztaba. Jedna półkula jest gładka, a współczynnik tarcia sztaby o drugą jest równy p.. Dowieść, że, gdy sztaba ma właśnie zacząć się zsuwać, to odległość jej środka od punktu zetknięcia z półkulą gładką

wynosi----.                                       (St John’s Coli. 1885.)

Prz. 4. Ciężka sztaba opiera się jednym końcem o płaszczyznę poziomą, a drugim o pionową ścianę. Do sztaby w pewnym punkcie przywiązano koniec sznura, którego koniec drugi jest przymocowany na linii przecięcia płaszczyzny ze ścianą, przyczem ściana i sznur leżą w płaszczyźnie pionowej, prostopadłej do ściany. Okazać, że gdy sztaba

T tworzy z poziomem kąt a mniejszy od 2 26, to równowaga jest możliwa tylko w takim razie, jeżeli sznur tworzy z pionem kąt ostry, niniejszy od 0+e, gdzie € oznacza kąt tarcia sztaby o ścianę i płaszczyznę.                                                  (Math. Tripos, 1890.)

Prz. 5. Płyta paraboliczna, której środek ciężkości leży w ognisku, spoczywa w płaszczyźnie pionowej na dwóch chropowatych sztabach, zrobionych z jednego materyału i tworzących kąt prosty. Dowieść, że tan2 (a— q) tan (c+:— q)=tan (a — e), gdzie « oznacza kąt, który kierownica paraboli tworzy z poziomem w jednem ze skrajnych położeń równowagi, e kąt tarcia i a nachylenie jednej ze sztab do poziomu.                                                    (Trin. Coli., 1882.)

Prz. 6. Na chropowatej płaszczyźnie poziomej stoją w płaszczyźnie pionowej dwie sztaby AC i BC, połączone w G gładkim przegubem. Wyznaczyć warunki równowagi.

Niech 3, 0‘ oznaczają nachylenia sztab do poziomu, W, W' ich ciężary, wreszcie (R, ^R), (R1, R‘) reakcye normalne i siły tarcia w A i B. . Biorąc, jak zwykle, rzuty i momenty, otrzymamy

w+w           w+w

F—--------A=------------

■ Wtan 8‘+(2W+W) tan 8‘ W‘tan $+(2 W‘+ W) tan 9‘

Jeżeli powyższa wartość § jest >u, to nastąpi poślizg w A, jeżeli >p, to w B. Jeżeli poślizg zachodzi tylko w A, to §>*, a stąd

Wtan I< W‘tan 0‘.

Prz. 7. W płaskiej desce ma być wycięty rowek; okazać, że forma jego może czynić zadość warunkowi następującemu: jeżeli deska pozostanie w równowadze granicznej, gdy ją zawiesimy na chropowatym kołku, wchodzącym w rowek w jednym w jego punktów, to takaż sama równowaga będzie zachodziła i wtedy, gdy kołek wejdzie w jakikolwiek inny punkt rowka.                (Math. Tripos, 1859.)

Prz. 8. Chropowata płyta wisi na trzech sznurach, przyczepionych do haka 0. Okazać, że granicą położeń równowagi cząsteczki P na płycie jest okręg koła.               (Math. Tripos, 1880.)

Niech N oznacza spodek prostopadłej z O do płyty, D środek ciężkości płyty, wreszcie G środek ciężkości płyty i cząsteczki razem. W stanie równowagi prosta OG jest pionowa, a NG jest linią największego spadku płyty. Kąt NOG, równy nachyleniu płyty do poziomu, jest stały, gdyż równowaga ma być graniczna. Miejscem geometry-cznem punktu G jest koło, którego środek leży w N, a ponieważ stosunek DP: DG jest stały, przeto miejscem geometrycznem cząsteczki P jest również koło.

Prz. 9. Każda z dwóch kul, ważących W i W', spoczywa na innej płaszczyźnie pochyłej. Najwyższe punkty kul są połączene sznurem, przechodzącym poziomo nad prostą przecięcia tych płaszczyzn, i prostopadłym do tej prostej. Okazać, że w przypadku równowagi granicznej p. W=u‘ W', gdzie p. i p.’ oznaczają współczynniki tarcia.

(Math. Tripos.)

Rozważamy równowagę jednej kuli. Wypadkowa naprężenia T i tarcia pR równoważy wypadkową sił W i R. Biorąc momenty względem środka, otrzymamy T=uR; stąd i z figury wyniknie, że R= W, a zatem T=p W; prowadzi to bezpośrednio do związku żądanego.

Prz. 10. Sztaba jednorodna tkwi pomiędzy dwoma kołkami, przechodząc nad jednym z nich i pod drugim. Współczynnik tarcia sztaby o kołki jest równy p, odległość pomiędzy kołkami wynosi b, a łącząca je prosta tworzy z poziomem kąt 3. Okazać, że równowaga tan 1+--

(Coli. Ex.)

Prz. 11, Sztaba jednorodna ACB o długości 2a opiera się jednym końcem o ścianę, i prócz tego środek jej C jest przywiązany do ściany sznurem. Okazać, że w stanie równowagi sztaby punkt C może zajmować dowolne położenie na łuku kołowym, którego końce są odległe od ściany o a i a cos e, gdzie € oznaczą kąt tarcia. (Należy wziąć momenty względem O.)

Prz. 12. Dwie równe i jednorodne sztaby o długości 2a są połączone na sztywno w końcach i tworzą kąt 2a. Układ ten siedzi na nieruchomym chropowatym cylindrze, którego oś jest pozioma, a promień równy a tan a. W położeniu równowagi granicznej prostopadła z punktu przecięcia sztab do osi cylindra tworzy z pionem kąt 3. Okazać, że sin2asin $=cos(9—) sin e, gdzie tane jest równy współczynnikowi tarcia.                                                   (Coli. Ex.)

Prz. 13. Trzy ciężkie, równe i jednorodne sztaby AB, PC i CD łączą się przegubami B i C, a za koniec D są zawieszone na sznurze u nieruchomego punktu E. Układ wisi w taki sposób, że koniec A ma właśnie zacząć się posuwać po chropowatej płaszczyźnie poziomej w stronę pionu przez E. Okazać, że

cos(o— e) cos (3— e) COS (—?) JJ.COS (3— e) cos a 3 cos 3    5 cos     6 cos 8

gdzie a, 3, Y oznaczają kąty, które sztaby, poczynając od najniższej, tworzą z poziomem, 3 kąt sznura z poziomem i p.==tan: współczynnik tarcia.                                                         (Coli. Ex., 1881.)

Prz. 14. Kula leży na chropowatej płaszczyźnie poziomej, a jej najwyższy punkt łączy się sznurem wyprężonym i równoległym do płaszczyzny z kołkiem, wbitym w płaszczyznę. Płaszczyzna zaczyna się zwolna obracać około jednej ze swych prostych prostopadłych do kierunku sznura. Okazać, że kula nie zacznie się zsuwać, dopóki kąt płaszczyzny z poziomem nie dojdzie do arctan 2u, gdzie p. oznacza współczynnik tarcia.                               (Math. Tripos, 1886.)

Prz. 15. Półkula jednorodna, spoczywająca podstawą na chropowatej płaszczyźnie pochyłej, pozostaje w równowadze granicznej. Do punktu półkuli, najdalszego od płaszczyzny, jest przyczepiony sznur, który zaczynamy ciągnąć równolegle do prostej największego spadku w górę z siłą, stopniowo wzrastającą. Okazać, źe półkula zacznie się posuwać lub przechylać, zależnie od tego, czy 13tanjest mniejsze czy większe od 8, gdzie P oznacza nachylenie płaszczyzny do poziomu. Środek ciężkości półkuli leży w odległości trzech ósmych promienia od środka.

(Coli. Ex., 1888.)

Prz. 16. Na dwóch chropowatych kołkach, położonych na jednym poziomie w odległości Sasina, położono krążek o promieniu a; środek ciężkości krążka znajduje się w odległości c od środka geometrycznego. Dowieść, że równowaga będzie zachowana we wszystkich położeniach, jeżeli

a sin a sin (A+)2)> c sin (2a=) ±22), gdzie X, i )2 oznaczają kąty tarcia krążka o kołki.

(St John’s Coli., 1880.)

Prz. 17. Do sznura w pewnych odstępach są przyczepione cząsteczki jednakowo chropowate, i jeden koniec sznura jest umocowany w punkcie płaszczyzny pochyłej. Okazać, że, gdy wszystkie części sznura są wyprężone, to cząsteczka najniższa zajmuje położenie możliwie najwyższe, jeżeli sznur przebiega w linii prostej, tworzącej tan). .

z linią największego spadku kąt arcsin--, gdzie A oznacza kąt tarcia, tana

a a nachylenie płaszczyzny do poziomu. Dowieść prócz tego, że, gdy jedna z części tworzy taki kąt z linią największego spadku, to toż samo muszą czynić wszystkie inne części, położone niżej.

(Math. Tripos, 1886.)

Prz. 18. Chropowata paraboloida obrotu, której latus rectum wynosi 4a, a współczynnik tarcia cot 3, wiruje ze stałą szybkością kątową około swej osi, zajmującej położenie pionowe. Okazać, że przy g V 3                     / g


szybkości kątowej większej od (



2a) cotg lub mniejszej od 24 cząsteczka może pozostawać na powierzchni w każdem miejscu z wyjątkiem pewnej strefy, ale dla każdej szybkości kątowej, zawartej w granicach powyższych, równowaga jest możliwa w każdym punkcie powierzchni.                                       (Math. Tripos, 1871.)

Dajmy na to, że ciężar cząsteczki wynosi mg. Możemy uważać, że paraboloida jest nieruchoma, a na cząsteczkę działa siła mo2r, prostopadła do osi i zwrócona na zewnątrz; w oznacza tu szybkość kątową paraboloidy, a r odległość cząsteczki od osi. Wiadomo o tern z dynamiki.

Można dowieść, że rzędne położeń granicznych równowagi czynią zadość równaniu ^y2— (2aw2— g) y+2aug=0. Strefa istnieje, jeżeli pierwiastki tego równania są rzeczywiste.

Prz. 19. Sztaba pozostaje po części wewnątrz i po części na zewnątrz naczynia w kształcie prostopadłościanu, opierając się o chropowatą pionową ścianę i o przeciwległą krawędź gładką. Naczynie waży cztery razy więcej od sztaby, i położenie jest takie, że sztaba omal się. nie osuwa, a naczynie omal się nie przewraca. Okazać, że


XI      /cos X

sztaba tworzy z pionem kąt 22 arccos \—3



, gdzie X oznacza kąt

tarcia.                                                  (Math. Tripos, 1880.)

Prz. 20. Pręt pozostaje po części wewnątrz a po części naze-wnątrz naczynia cylindrycznego, opierając się dolnym końcem o pionową ścianę; największy kąt, jaki pręt może przytem tworzyć z pionem, jest równy a, a najmniejszy 3. Okazać, że kąt tarcia wynosi sin3a— sin 33:

1/2 arctan---------.                   (Math. Tripos, 1875.)

sin 2a cos a + sin 23 cos 3

Prz. 21. Ciężki pręt o długości 2Z pozostaje w położeniu poziomem wewnątrz próżnego stożka o powierzchni chropowatej; oś stożka jest pionowa, wierzchołek zwrócony ku dołowi, kąt wierzchołkowy jest równy 2a, a współczynnik tarcia p. mniejszy od cota. Okazać, że największe możliwe wzniesienie pręta nad wierzchołkiem stożka wy-

1+cos 2—sin o ysin 20—4u2 ]%— . , nosi lcoto---------------. (Math. Tripos, 1885.)

L        2 (1 — [x2 tan 2a) J

Prz. 22. Ciężki jednorodny pręt AB umieszczono wewnątrz chropowatej paraboli, której oś jest pionowa, a ognisko leży w punkcie S. Dowieść, że, gdy równowaga jest graniczna, to kąt tarcia wynosi i(SAB-SBA).                                   (Coli. Ex., 1889.)

Prz. 23. Końce pręta MN pozostają w dwóch nieruchomych, chropowatych, prostych rowkach O A i OB, położonych w jednej płaszczyźnie pionowej i tworzących z poziomem odpowiednio kąty a i 3. Dowieść, że gdy tarcie w M jest graniczne, to pręt tworzy z pozio-sin (a—3-2) mem kąt, którego tangens wynosi --------——----.

	
	
4                  •     2sm(^ + e) sm(«-e)





(Math. Tripos, 1876.)

Prz. 24. Jednorodna prostokątna deska ABCD opiera się rogiem A o chropowatą pionową ścianę, a bokiem BO o gładki kołek; płaszczyzna deski pozostaje przytem pionową i prostopadłą do ściany. Okazać, że można, nie naruszając równowagi, przesunąć kołek wzdłuż boku BC o odległość pcoso (a cosa+bsin a), jeżeli tylko współczynnik tarcia u. zawiera się w pewnych granicach; a oznacza tu kąt, który bok BG tworzy ze ścianą, a, b zaś długości boków AB, BC. Wyznaczyć także granice współczynnika p..                    (Math. Tripos, 1880.)

Prz. 25. Cylinder eliptyczny, pozostający w zetknięciu z pionową ścianą i podłogą, ma właśnie zacząć się osuwać, gdy duża oś tworzy z poziomem kąt a. Wyznaczyć związek pomiędzy współczynnikami tarcia cylindra o podłogę i ścianę; ze związku tego wyniknie, że jeżeli ściana jest gładka, a kąt a wynosi 45°, to współczynnik tarcia cylindra

e2

o podłogę jest równy —, gdzie e oznacza mimośród przekroju, pro

stopadłego do osi cylindra.                        (Math. Tripos, 1883.)

Prz. 26. Chropowaty cylinder eliptyczny o osi poziomej opiera się o podłogę i ścianę, które są jednakowo chropowate. Okazać, że cylinder zacznie się 'osuwać, gdy duża oś elipsy utworzy z pionem jeżeli kwadrat mimośrodu elipsy jest równy 2sin e (sine+cos s);

s oznacza tu kąt tarcia.


(Coli. Ex„ 1885.)



Prz. 27. Trzy jednorodne sztaby o długości a, b, c są połączone sztywno w końcach i tworzą trójkąt ABC. Trójkąt ten wisi na chropowatym kołku, wspierając się na nim bokiem BC. Wyznaczyć długość, zajętą przez punkty sztaby BG, które mogą pozostawać w zetknięciu a{a-]-b + c')C—B . z kołkiem, i okazać, że jeżeli u >------cosec G + tan—-—, gdzie

b(b + ć)                  2

OB, to trójkąt pozostanie w równowadze w każdem położeniu.

(Math. Tripos, 1887).

Prz. 28. Wózek na czterech jednakowych kołach, osadzonych na gładkich osiach, stoi na chropowatej powierzchni nieruchomego, poziomego cylindra kołowego. Osie wózka są równoległe do osi cylindra i płaszczyzna ich zawiera środek ciężkości wózka. Zbadać ciśnienia na koła i dowieść, że płaszczyzna, przechodząca przez osie, tworzy z poziomem (w— w') tano

kąt arctan _--w--J, gdzie w, w oznaczają ciężary, przypadające na osi, W ciężar całego wózka, i 2a kąt pomiędzy płaszczyznami sty-cznemi w punktach oparcia kół o cylinder. (Math. Tripos, 1888.)

Prz. 29. Trzy jednakowe cylindry kołowe A, B, C posiadają osi poziome, a ich środki ciężkości leżą w jednej płaszczyźnie pionowej. Cylinder A jest nieruchomy, cylindry A i B leżą na jednym poziomie, C zaś na poziomie niższym w zetknięciu z tamtymi, przyczem wspólne płaszczyzny styczne są nachylone do poziomu pod kątem 45°. Cylindry B i G utrzymują się w położeniu wskazanem dzięki doskonale chropowatej opasce, okalającej wszystkie trzy cylindry w płaszczyźnie środków ciężkości. Okazać, że można utrzymać równowagę, zaciskając dostatecznie opaskę, jeżeli współczynnik tarcia pomiędzy cylindrami jest większy od 1--—; znaleźć także, w jaki sposób rozpocznie się

	
V 2



poślizg, jeżeli opaska jest wyprężona niedostatecznie.

(Math. Tripos, 1888.)

Prz. 30. Dwie jednakowe sztaby AB, BC, połączone przegubem w B, stoją w płaszczyźnie pionowej na chropowatej płaszczyźnie poziomej; ich nachylenia do poziomu są równe, a tarcie w A i C jest całkowicie rozwinięte. Okazać, że para tarcia w przegubie wynosi Wa(sin a — — 2u. Coso), gdzie p. oznacza współczynnik tarcia, W ciężar, 2a długość i a nachylenie do poziomu każdej sztaby. (St John’s Coli., 1890.)

Prz. 31. Z sześciu jednakowych prętów utworzono łańcuch, łącząc ich końce pięcioma gładkimi przegubami. Następnie ustawiono te pręty w płaszczyźnie pionowej na chropowatej płaszczyźnie poziomej, tworząc symetryczną arkadę. Długość każdego pręta wynosi 2a, a współczynnik tarcia pręta o płaszczyznę 1/6. Okazać, że rozpiętość

arkady nie może przewyższać 2a 1---— ---— ) V 2.

\ V 5 V13/

(Coli. Ex., 1886.)

Bierzemy pod uwagę tylko połowę arkady. Reakcya w przegubie najwyższym jest pozioma i równa połowie ciężaru jednego pręta. Bierzemy momenty (1) dla górnego pręta, (2) dla dwóch górnych i (3) dla wszystkich trzech prętów. Wypadnie, że nachylenia prętów do pionu wynoszą 4, arctan 1/3, arctan 1/5. arkady bez trudności.


Mając to, obliczymy rozpiętość



	
	
179.    Tarcie koła o oś. Prz. 1. Wózek dwukołowy jest zbudowany w taki sposób, że gdy dyszel ma położenie poziome, to środek ciężkości wózka i dyszla leży pionowo nad osią. Wózek ten stoi na doskonale chropowatym gruncie. Wyznaczyć wielkość i kierunek najmniejszej siły, która wprawi w ruch wózek, działając na koniec dyszla, ustawionego poziomo.





Oś jest tak dopasowana, aby koło mogło się na niej łatwo obracać; w tym celu średnica osi jest cokolwiek mniejsza od średnicy otworu w piaście, i dwa te cylindry stykają się według pewnej tworzącej; w punktach tej tworzącej są przyłożone ciśnienia pomiędzy kołem i osią.

Niech X, Y oznaczają składowe poziomą i pionową szukanej siły, przyłożonej w końcu' dyszla.

Rozważamy równowagę koła. Koło styka się z gruntem w punkcie A, a grunt jest doskonale chropowaty; stąd wynika, że tarcie w A nie może być graniczne. Oznaczmy reakcyę normalną i siłę tarcia przez R i F. Przyjmujemy, że siła X działa w prawo, a zatem tarcie, które ma ją równoważyć musi działać w lewo.

Oś styka się z okrągłym otworem piasty w pewnym punkcie B, W tym punkcie działa normalna reakcya R' oraz tarcie F1; tar

cie jest tu graniczne, skoro wózek ma właśnie ruszyć, a zatem F’=^R'. Wypadkowa sił R' i nR' musi równoważyć wypadkową * sił R, F i ciężaru koła, a stąd wynika, że punkt B leży po lewej stronie punktu G, t. j. pozo-staje w tyle za osią. Oznaczmy kąt AGB przez 3, a promienie koła i osi przez a i b. Biorąc momenty względem A, otrzymamy R'a sin ^—^R\a cos 3 — b}.

[image: ]

Fig. 49.




Gdy zamiast p. wprowadzimy tan e, to równanie to przekształci się na b sin (s — 0) —— sin e.

a

Ponieważ b jest mniejsze od a, przeto 3 jest dodatnie i mniejsze od s.

Rozważamy następnie równowagę wózka. Siły R' i [iR' działają na wózek w kierunkach odwrotnych do wskazanych na rysunku. Niech W oznacza ciężar wózka. Biorąc rzuty na kierunki poziomy i pionowy, a także momenty względem O, otrzymamy

X=- R' sin 8+MR’ cos 8,

Y= — R' cos 8—R‘ sin 3+ W,

Yl=^R'b-

l oznacza tu długość dyszla. Bównania powyższe określają X i Y.

Prz. 2. Lekki sznur, dźwigający na końcach ciężary W i W', przechodzi przez koło, które może się obracać około wału nieruchomego i chropowatego; poślizg pomiędzy sznurem i kołem jest wyłączony. Okazać, że warunkiem równowagi granicznej jest

(W- W) a=(W+ W') b sin 8, gdzie a, b oznaczają promienie koła i wału, i p==tan e.

Prz. 3. W ciele stałem wydrążono otwór cylindryczny i osadzono je na nieruchomym wale, dobrze dopasowanym do otworu. Cała figura jest symetryczna względem pewnej płaszczyzny prostopadłej do wału; w płaszczyźnie tej działają na ciało siły, i wał jest chropowaty. Wyznaczyć najmniejszy współczynnik tarcia, przy którym jeszcze ciało pozostanie w równowadze.

Na rysunku przekroje otworu i wału posiadają wymiary różne; wykreślono je w ten sposób, aby zaznaczyć wyraźnie, że reakcya normalna i tarcie działają w pewnym określonym punkcie; będziemy jednak w rozważaniach geometrycznych promienie otworu i wału uważali za równe.

Płaszczyznę symetryi obieramy za płaszczyznę xy a jej przecięcie O z osią za początek. Sumy rzutów sił na osi oznaczamy przez X, Y, a sumę momentów względem początku przez G-, uważając, że

[image: ]



siły te dążą do wywołania obrotu w kierunku odwrotnym do ruchu wskazówek zegara.

Wał styka się ze ścianą otworu według pewnej tworzącej; oznaczmy przez B jej punkt przecięcia z płaszczyzną xy, przez 3 kąt BOx, wre-szcie przez R i F reakcyę normalną i tarcie w B. Gdy ciało ma zacząć się poruszać, to F—[i.R.

Biorąc momenty i rzuty, znajdziemy R (COS 3+u sin 3) + X=0, R (sin 9 — p cos 9) + Y=Q,

— p. Ra + G=0;

a oznacza tu promień otworu. Zakładając p.==tan e, z równań powyższych otrzymamy

Y tan(3—)===,     R2=(X2+Y2) cos 2.

	
X.



Związki te określają położenie punktu B i reakcyę R. Najmniejszą wartość współczynnika tarcia określa równanie

(X2+ Y^a2 sin2=G2.

	
	
180.    Twierdzenie pomocnicze. Gdy przesuniemy płytę z jednego położenia do drugiego w jej płaszczyźnie, to pewien punkt płyty znajdzie się ostatecznie w swem położeniu dotych-czasowem. Można więc osiągnąć tę samą zmianę położenia, utrwaliwszy ów punkt i obróciwszy około niego płytę o kąt odpowiedni.





Niech A, B oznaczają pewne dwa punkty płyty w położeniu pierwotnem, i A', B' te same punkty w położeniu osta-tecznem. Jeżeli zapomocą obrotu około jakiegoś nieruchomego punktu I doprowadzimy A, B do położeń A', Bj to i cała płyta przejdzie jednocześnie z po-łożenia pierwotnego do ostatecznego. Po- ._    __I prowadźmy ze środków odcinków AA',  57 BB' prostopadłe do nich proste LI^ Ml.  (V/ \ -

Oczywiście IA=IA' i IB—IBj a ponie-waż długość odcinka AB podczas ruchu 3 B M B' nie uległa zmianie, przeto boki trójką-         Fig. 51. tów A1B, A'IB' są odpowiednio równe. Stąd wynika, że kąty AIB^ A'IB' są równe, a więc kąty ALA’, BIB' są także równe. Gdy zatem obrócimy płytę około I o kąt równy AIA', to A dojdzie do położenia A', B do B\ i całe ciało zostanie przesunięte z jednego położenia do drugiego.

Jeżeli ciało przesunęło się równolegle, to jest jeżeli wszystkie punkty poruszały się równolegle do pewnej prostej, to proste LI^ MI są równoległe, a zatem punkt I jest nieskończenie odległy.

Jeżeli kąt AIA' jest nieskończenie mały, to nieruchomy punkt 1 płyty zowie się środkiem chwilowym.

	
	
181.    Tarcia w kierunkach nieznanych. Jesteśmy teraz w możności przystąpić do uogólnienia praw tarcia. Przypuśćmy, że ciało ciężkie leży na chropowatym stole poziomym, wspierając się na nim w n punktach. Punkty te oznaczmy literami At1 A2...An, a ciśnienia w tych punktach niech będą P1, P2...Pn. Przypuśćmy jeszcze, że na ciało działa para i siła, przyłożona w stosownym środku redukcyi, i że wszystkie siły są równoległe do stołu. Temu układowi sił przeciwdziałają siły tarcia, wywołane w punktach oparcia; ich wielkości i kierunki są nieznane, wiemy tylko, że każda z nich co do wielkości nie przewyższa tarcia granicznego, a kierunek każdej jest odwrotny do wypadkowej wszystkich sił zewnętrznych i między cząsteczkowych, działających na dany punkt oparcia. Jeżeli wszystkie ciśnienia Pt... Pn są znane, to pozostaje jeszcze 2n wielkości niewiadomych, a mamy wszystkiego trzy równania równowagi. Widzimy więc, że siły tarcia w punktach Ar, A2...An są wo-góle nieokreślone.





Twierdzenie ostatnie znaczy, że można wskazać rozmaite układy sił, przyłożonych w punktach oparcia i równoważących siły dane. Który z tych układów możliwych odpowiada prawdziwemu rozmieszczeniu śił tarcia, zależy to od właściwości ciała, a mianowicie od tego, w jaki sposób ciało zaczęło się odkształcać pod działaniem sił danych. Przypuśćmy np. że na punkt B ciała działa siła Q, wzrastająca stopniowo. Z początku siły tarcia w, punktach oparcia, położonych w najbliższem sąsiedztwie punktu B, wystarczą do utrzymania równowagi, ale gdy Q wciąż wzrasta, to wreszcie tarcia te dojdą do wartości granicznych. Jak tylko najbliższe punkty oparcia zaczną ustępować, wchodzi w grę tarcie w punktach następnych, i w ten sposób działanie siły Q rozchodzi się po całem ciele.

Jeżeli siły zewnętrzne są niedostateczne do poruszenia ciała w całości, to w każdym razie wywołują one pewne odkształcenia, czyli przesunięcia jednych części ciała względem innych; przesunięcia te mogą być niezmiernie drobne, nie mniej jednak od nich zależą wielkości i kierunki sił tarcia, wywołanych w punktach oparcia. Nawet gdy żadne siły zewnętrzne nie działają, można ustawić ciało w stanie naprężenia, i może ono utrzymać się w tym stanie dzięki tarciu. Tak więc siły tarcia zależą od naprężeń początkowych tak samo, jak od sił zewnętrznych. Możliwy jest również wypadek, że ciało, na pozór pozostające w spoczynku, odbywa drobne drgania około pewnego położenia równowagi stałej. Okoliczność ta wywrze również wpływ na siły tarcia.

	
	
182.    Równowaga graniczna. Przypuśćmy teraz, że siły zewnętrzne stopniowo wzrastały według pewnego określonego prawa, i ostatecznie ciało doszło do punktu ruszania. Chcemy przez to powiedzieć, że w stanie obecnym najmniejsze złagodzenie chropowatości płaszczyzny, lub najmniejszy wzrost sił zewnętrznych wywoła natychmiast ruch ciała. Mamy zbadać, pod jakim warunkiem owe siły są ściśle dostatecznie duże do wywołania ruchu albo ściśle dostatecznie małe do utrzymania spokoju.





W chwili, gdy ciało ma właśnie ruszyć, rozkład sił tarcia znacznie się upraszcza. Przyjmiemy, że ciało jest prawie sztywne, a więc odległości pomiędzy cząsteczkami jego nie ulegają wyraźnym zmianom. Stąd wynika, że ruchy tych cząsteczek nie są niezależne, ale podlegają prawu, udowodnionemu w twierdzeniu pomocniczem (180); kierunki sił tarcia muszą być odwrotne do kierunków ruchów, a zatem podlegają temu samemu prawu.

Gdy ciało obraca się około osi chwilowej, to tarcie w każdym punkcie oparcia działa w takim kierunku, przy którym może najskuteczniej przeciwdziałać ruchowi. Zobaczymy to w dalszym ciągu. Jeżeli zatem siły tarcia w układzie takim nie są w stanie przeszkodzić ruchowi, to nie istnieje żaden inny układ, przy którym by to było możliwe.

Gdy ciało porusza się w płaszczyźnie poziomej, to ruch jego jest w każdej chwili obrotowy około pewnej osi pionowej. Przypuśćmy, że oś chwilowa przecina ową płaszczyznę w punkcie I. Wypada teraz rozważyć dwa przypadki: (1) punkt 1 nie leży w żadnym z punktów oparcia, (2) punkt I przypada * w jednym z nich.

Rozważymy obydwa te przypadki z kolei. Położenie punktu I jest nieznane; oznaczmy przez §, 7 jego współrzędne w odniesieniu do pewnych osi, obranych w płaszczyźnie stołu. Wszystkie punkty A^^.^An zaczynają się poruszać prostopadle do prostych, łączących je z punktem I, a zatem siły tarcia w tych punktach byłyby wiadome, gdybyśmy znali punkt I. Działają one prostopadle do IA, IA2..., są zwrócone w tę samą stronę dookoła I, a pod względem wielkości wynoszą M.1P1, M„P..., gdzie (.1, (.2 ... oznaczają współczynniki tarcia. Możemy uważać, że ciało jeszcze pozostaje w równowadze, gdyż siły zewnętrzne zaledwo cokolwiek przemagają siły tarcia. Utworzywszy trzy równania równowagi, będziemy mieli dostateczną liczbę równań do wyznaczenia §, 7 oraz warunku, który powinien być spełniony, aby ciało było w trakcie ruszania. Możliwą jest rzeczą, że owe równania nie dadzą żadnych przydatnych wartości na §, 7; będzie to znaczyło, że wbrew założeniu punkt I leży w jednym z punktów oparcia.

	
	
183.    Przypuśćmy teraz, że I leży w jednym z punktów oparcia, np. w A1, a więc współrzędne jego §, 7 są w tym razie wiadome. Siły tarcia znamy taksamo, jak w przypadku pierwszym; ich kierunki są prostopadłe do A^2, A{A3.., a wielkości wynoszą p.,P2. M.3P3... Punkt Alf jako środek obrotu, ma pozostać nieruchomym, a zatem nie jest rzeczą konieczną, aby tarcie w nim było graniczne. Powinno ono jedynie wystarczać do utrzymania go w spokoju. Niech F1, Fi’ będą składowemi tej siły tarcia w kierunkach osi a i y. Utworzywszy trzy równania równowagi, będziemy mieli dostateczną liczbę równań do wyznaczenia F1, F‘ oraz potrzebnego warunku, aby ciało było w trakcie ruszania. Jeżeli jednak otrzymane wartości na F1, F^ są takie, że F12+F‘2 jest większe od .12P12, to znaczy, że nawet tarcie graniczne nie zdoła utrzymać punktu At w spoczynku, i niemożliwą jest rzeczą, aby ciało zaczęło się obracać Statyka. 10





około A1, jako środka chwilowego. W podobny sposób zbadamy, czy ciało może zacząć się obracać około A,, i t. d.

	
	
184.    Należy teraz utworzyć równania, potrzebne do wyznaczenia współrzędnych §, tj oraz warunku równowagi granicznej. Równania te są dość złożone, i w większości wypadków dogodniej będzie wyznaczać położenie punktu I zapomocą jakiejś metody geometrycznej wyrażania warunków równowagi.





Przypuśćmy, że na ciało działa para o momencie L oraz siła, posiadająca składowe X, Y, przyłożone w początku układu. Współrzędne punktów di, A2 ... oznaczymy przez (xiy1), (x2J2)..., współrzędne punktu I przez (§n), a odległości IAr, IA2... przez I, 12... Dajmy na to, że kierunek obrotu ciała jest odwrotny do ruchu wskazówek zegara; tarcia przeciwdziałają ruchowi, a zatem działają naokoło I w kierunku odwrotnym.

Obróćmy wszystkie siły tarcia około ich punktów przyłożenia o kąt prosty. Ułatwi nam to rzutowanie na osi. Tak więc siły tarcia będą działały na prostych lAi, IA2... i będą wszystkie zwrócone do punktu I albo odwrócone od niego. Zrobimy to drugie założenie, a przeto rzuty tych sił na osi powinny się znosić z siłą X, działającą w kierunku dodatnim na osi y, i z siłą Y, działającą w kierunku ujemnym na osi x.

Biorąc rzuty, otrzymamy

xppśme + Y=0 r
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2p"-J_x- 0

Równanie momentów należy utworzyć, nie zmieniając kierunków sił tarcia. Bierzemy momenty względem I.

EpPr+Y-X-L=0.....(2)

Jeżeli środek chwilowy I leży w Ax, to równania równowagi będą nie wiele różniły się od poprzedzających. Napiszemy (xi yA za-miast (§ n), Fr i — FA zamiast ^Pi---- i ^P^ ---, a w równaniu mo-

F1                 Ti mentów odrzucimy wyraz ^^Pir-i.

	
	
185.    Metoda minimum. Do równań powyższych można dojść na innej drodze, przyczem jaśniej występuje związek pomiędzy obydwoma możliwymi przypadkami. Jeżeli ciało ma właśnie zacząć się obracać około pewnej osi chwilowej, to ten sam ruch nastąpiłby i w takim razie, gdyby ta oś była osadzona w przestrzeni nieruchomo. Niech I oznacza jakikolwiek punkt płaszczyzny xy, zobaczmy, czy ciało zaczęłoby się około niego obracać, gdyby przezeń przechodziła oś nieruchoma. Bierzemy momenty względem P, uważamy przytem, że





tarcie jest całkowicie rozwinięte, i obieramy za dodatni ten kierunek, w którym działa tarcie. Wypadnie

«=XpPr+ YE-X-L.

Jeżeli dla jakiegoś położenia punktu I u jest ujemne, to moment sił jest potężniejszy od momentu tarcia, i ciało zacznie się poruszać. Je-♦ żeli natomiast u jest dodatnie, to przewagę ma moment tarcia, i ciało da się utrzymać w spokoju przy tarciu mniejszem od granicznego. Wyznaczmy taki punkt I, dla którego u osiąga minimum. Jeżeli nawet dla tego punktu u jest dodatnie lub równe zeru, to wogóle niema punktu, około którego ciało mogłoby się zacząć obracać.

Aby uczynić u najmniejszem, przyrównywamy do zera pochodne tej funkcji względem 6 i . Uwzględniając, że r2=(x—6)2+(y—)2, otrzymamy równania (1) z par. 184.

Treść statyczna tych równań jest następująca: jeżeli ową oś nieruchomą obrano w taki sposób, że u osiągnęło minimum, to jej ciśnienie na ciało jest równe zeru. Jeżeli to nie jest oczywiste, to oznaczmy składowe tego ciśnienia w kierunkach osi przez Rx, Ry. Sumy rzutów na osi sił przyłożonych oraz sił tarcia łącznie z Ra, Ry muszą być zerami; ale równania (1) mówią, że rzuty te są zerami i bez Rr, Ry, a więc Rx^ i Ry==0.

Można okazać, że przy takiem położeniu punktu I funkcya u osiąga minimum a nie maksymum; w tym celu należy wyznaczyć drugie pochodne względem 6 i . Wyrazy drugiego rzędu będą

ZpP IG — y)dł ~ (L - «)dl2,

2,3———

gdzie sumowanie rozciąga się do wszystkich punktów Ar, A2... Każdy z tych kwadratów jest dodatni, a więc u osiąga minimum.

Tak więc możemy znaleźć oś, około której ciało zacznie się obracać, wyznaczając minimum momentu sił czyli funkcyi u; zakładając, że ten moment jest równy zeru, otrzymamy warunek, który powinien być spełniony, aby siły przyłożone były ściśle wystarczające do poruszenia - ciała.

	
	
186.    Wielkości r, r2... są z natury rzeczy dodatnie, a więc nie mogą zmniejszać się nieograniczenie. Funkcya u obok wartości najmniejszych, które wyznaczymy stosując reguły rachunku różniczkowego, może posiadać jeszcze inne minima lub maksyma, które wypadają, gdy jedno z ri, r2... staje się zerem.





Przypuśćmy, że u osiąga minimum, gdy 7=0, t. j. gdy punkt I leży w Ar. Obieramy A, za początek współrzędnych i odsuwamy cokolwiek I od Aj. Skutkiem tego współrzędne I przybiorą, dajmy na to, wartości §=r COS 31, =r sin 31. Niech współrzędne punktu A2 będą (1232), punktu A3 (r333) i t. d. Zatrzymując jedynie pierwsze potęgi 71, jako wielkości małej, znajdziemy, że u przybrało wartość .

u=pPr,+M2P2[r2—ri cos($,—92)]-....+ Yrcos%,— Xrsins,— L.

Funkcya u osiąga minimum, jeżeli jej przyrost dla każdego małego przesunięcia punktu I jest dodatni. Warunek ten będzie spełniony gdy współczynnik przy ”1, czyli

MP—p2P2 cos (8,— 02)-.+ Ycos 3,—Wsin 3, , będzie dodatni dla wszystkich wartości 3,. Można to napisać w postaci

pP+A cos 01+B sin 3 , gdzie A i B nie zależą od 31 . Jasną jest rzeczą, że aby współczynnik ten był dodatni dla każdego 31 , to MPi musi być liczbowo większe od VA2+B2.

Zaznaczamy, że

A——p2 P2 cos $2—..,+ Y

B=-p,P, sin 8--X,

a stąd widać, że A i —B są to sumy rzutów na osi sił zewnętrznych oraz wszystkich sił tarcia z wyjątkiem tej, która działa na A}. Jeżeli tarcie w Ar jest równe » F, to ciśnienie wypadkowe na oś wyniesie F+ ^A^+B2. Można to doprowadzić do zera, dając tarciu F wartość mniejszą od granicznej (par. 183).

Z rozważań tych wynika: jeżeli uwzględnimy wszystkie położenia punktu I, dla których moment u osiąga minimum, zarówno przypadające w punktach oparcia, jak i nie przypadające, to oś chwilowa przejdzie przez to z nich, dla którego a jest najmniejsze.

	
	
187.    Gdy obrócimy płytę około osi, przechodzącej przez punkt 1 o mały kąt dł, to siły zewnętrzne łącznie z siłami tarcia wykonają pracę ud^; kąt d9 mierzymy tu w stronę, w którą działa tarcie. Funkcya u osiąga minimum, gdy owa praca osiąga minimum dla danego kąta obrotu.


	
188.    Prz. 1. Stół trójkątny, posiadający punkty oparcia w wierzchołkach A, B, C, stoi na chropowatej podłodze poziomej. Wyznaczyć najmniejszą parę, która go może poruszyć.





Można okazać, że ciśnienie w każdym punkcie oparcia jest równe trzeciej części ciężaru stołu, a zatem graniczne siły tarcia w A, p w

B, C wyniosą 3 każda.

Przypuśćmy, że trójkąt zaczyna się obracać około pewnego punktu I, leżącego nie w wierzchołku. Siły tarcia równoważą parę, a zatem same będą w równowadze, gdy je obrócimy o kąt prosty tak, aby działały wzdłuż Al, BI, CI. Stąd wynika, że'punkt I musi leżeć wewnątrz trójkąta. Wszystkie trzy siły tarcia są równe, a zatem każdy z kątów AIB, BIC, CIA musi być równy 120°. Jeżeli więc żaden z kątów trójkąta nie dosięga i20°, to punkt I leży w przecięciu dwóch łuków, zatoczonych na dwóch którychkolwiek bokach i obejmujących po 120°. Moment najmniejszej pary, która mogłaby poruszyć stół, u TT

wynosi 3 (A+BI+ CI).

Przypuśćmy teraz, że punkt I przypada w wierzchołku C. Obróć-


w G musi równoważyć dwie bokach AC i BC. Wypadkowa



my siły tarcia jak poprzednio. Tarcie siły, wynoszące po 3 i działające na pw C tych dwóch sił jest równa -2COS o; to ta wypadkowa jest większa od "," , a więc przypadek taki jest niemożliwy. Trójkąt tylko w takim, razie może zacząć obracać się około wierzchołka, jeżeli kąt u tego wierzchołka przewyższa 120°. Jeżeli wierz-p. W


jeżeli kąt C nie dosięga 120°,



chołkiem takim jest C, to najmniejsza para wyniesie -^-(CA+CB).


którego suma osiąga mini-




w tym celu wyznaczyć takie położenie punktu I, dla /                .pw\

odległości Al, BI, CI ^pomnożonych przez stałą 3) mum bezwzględne.

Prz. 2. Cztery jednakowe cząsteczki ciężkie A, B,




C, D są połą-



Można rozwiązać to zagadnienie statyczne w inny sposób; należy czone lekkimi prętami i tworzą czworobok sztywny. Czworobok ten leży ha chropowatej płaszczyźnie poziomej. Zakładając, że ciśnienia na wszystkie cząsteczki są jednakowe, wyznaczyć najmniejszą parę, która zdoła poruszyć układ.

Położenie środka chwilowego I zależy od tego, czy przekątnie przecinają się wewnątrz czworoboku, czy nazewnątrz; w pierwszym przypadku I leży w tern przecięciu, a w drugim w jednym z wierzchołków.

Prz. 3. Ciężka sztaba spoczywa na chropowatej krzywej poziomej, wspierając się na niej w punktach A i B. Do sztaby w punkcie C, stanowiącym środek części AB, przywiązujemy sznur i ciągniemy w jakimkolwiek kierunku w płaszczyźnie poziomej z siłą, ściśle wystarczającą do poruszenia sztaby. Dowieść, że miejscem geometrycznem punktów przecięcia sznura z siłami tarcia, wywołanemi w A i B, jest łuk koła łącznie z częścią linii prostej. Znaleźć także, jak siła powinna działać, aby jej punkt przecięcia z siłami tarcia zatoczył pozostałą część koła.

Przypuśćmy naprzód, że sztaba ma zacząć się posuwać jednocześnie w A i B, i niech F, F' będą siłami tarcia w tych punktach. Obydwie te siły są znane i zależą jedynie od ciężaru i położenia środka ciężkości sztaby. Dajmy na to, że środek ciężkości leży bliżej B niż A; w takim razie tarcie graniczne w B będzie większe niż w A. Ponieważ zachodzi równowaga, przeto obydwa tarcia i naprężenie nici muszą przechodzić przez jeden punkt, np. punkt P. Odcinki AC

i CB są równe, zatem odcinek CP jest połową przekątni równole-głoboku, zbudowanego na AP i BP, a na zasadzie trójkąta sił odcinki AP, BP i 2PC reprezentują siły, działające w tych kierunkach. Stąd
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wynika, że AP: PB = F: F', a więc stosunek AP: PB dla wszystkich kierunków sznura jest stały, i miejscem geometrycznem punktu P jest koło.

1

 Bliższe wskazówki można znaleźć w dwóch pracach Max-wella, drukowanych w Phil. Mag. 1864 i w Edinburgh Transactions 1872, oraz w Statigue Graphigue M. Levy’ego, 1887.

2

 Wywody powyższe dadzą się streścić, jak następuje. Mając dany pewien stały układ współrzędnych, możemy określić figurę pod względem położenia i formy zapomocą 2n, względnie 3n, współrzędnych wierzchołków. Są to wielkości dowolne kratownicy. Jeżeli chodzi jedynie o określenie formy, to odnosimy figurę do pewnego układu osi, związanych z nią samą; w takim razie nie rozporządzamy już współrzędnemi, określającemi położenie ciała sztywnego i swobodnego. Pozostaje zatem 2n—3 lub 3n—6 wielkości dowolnych, zależnie od tego, czy ciało jest płaskie, czy trójwymiarowe (zob. par. 206).

Statyka. 8

’) Jeżeli nie jest całkowicie jasnem, że te trzy równania wynikają z 2n lub 3n równań równowagi cząsteczek poszczególnych, to można uzupełnić dowód w sposób następujący. Dajmy na to, że na

3

 Darboux, Sar beguilibre astaligue, str. 8.

4

 Stosowali ją Darboux (Sur reąuilibre astatiąue) i Larmor (Messenger of Mathematics).


Dajmy na to, że punkt C jest ciągniony w stronę PC, czyli że prosta CP na rysunku wyobraża przedłużenie sznura.

Sznur CP przecina koło w dwóch punktach, ale siły mogą się zbiegać tylko w jednym z nich. Wiemy, że sztaba zacznie się obracać około jakiegoś punktu I; jest to punkt przecięcia prostopadłych do PA, PB w A i B. Tarcia równoważą naprężenie sznura, a więc są zwrócone do punktu P, a kierunki ruchu muszą być odwrócone od tego punktu. Jest to oczywiście możliwe tylko w takim razie, gdy punkty I i P leżą po tej samej stronie prostej AB, a więc kąt PAB musi być większy od prostego, i punkt P nie może leżeć na kropkowanej części koła.

Przypuśćmy teraz, że ma zacząć się przesuwać tylko jeden z punktów sztaby, opartych na krzywej. Jeżeli środek ciężkości leży bliżej od B niż od A, to poruszy się punkt A, t. j. sztaba zacznie się obracać około B. Stąd wynika, że tarcie działa w kierunku QA, i miejscem geometrycznem punktu P jest prosta QA.

Punkt przecięcia sił nie może leżeć na kropkowanej części tej prostej. Aby to okazać przypuśćmy, że leży on w R. Jeżeli teraz odcinek AR reprezentuje siłę F, to RB powinno być mniejsze od F', bo w B poślizgu nie będzie. Lecz R leży wewnątrz koła, a zatem stosunek AR: RB jest mniejszy od stosunku AP:PB, czyli mniejszy od F: F' i RB jest większe od F', a to przeczy założeniu.

Przedłużenie sznura przetnie zawsze linię, złożoną z łuku i części prostej w jednym punkcie, i siły tarcia są skierowane do tego punktu, gdy sztaba ma zacząć się poruszać.

Jeżeli miejscem geometrycznem punktu P ma być kropkowana część koła, to jedna z sił tarcia powinna być skierowana do P, a druga od tego punktu, a zatem siła zewnętrzna musi być zawarta pomiędzy PA i przedłużeniem PB. Z trójkąta sił APB wynika, że powinna ona działać równolegle do boku AB i być doń proporcyonalna.

Prz. 4. Płyta spoczywa na poziomym stole, opierając się na nim w trzech punktach A, B, C. Oparcie w C jest gładkie, w A i B chropowate. Ciągniemy poziomo za sznur, przywiązany do płyty w pewnym punkcie D, z taką siłą, że właśnie ma się rozpocząć ruch. Przyjmujemy, że przy danych współczynnikach tarcia i danem położeniu środka ciężkości tarcia graniczne F, F' w A i B mają się do siebie jak BD:AD. Okazać, że miejscem geometrycznem punktu P, w którym zbiega się linia sznura z liniami działania sił tarcia, jest (1) część koła, opisanego na ABD, (2) część hiperboli równoramiennej, której środek leży w środku odcinka AB, i która przechodzi przez punkty A, B, D, (3) części dwóch linii prostych.

Dajmy na to, że AD=b i BD=a; w takim razie Fb=F'a.

Poprowadźmy proste LAL', HBFL' prostopadle do AB. Jeżeli poślizg ma nastąpić tylko w jednym z punktów oparcia A, B, to punkt P leży na jednej z tych prostopadłych.

Jeżeli mają się poruszyć obydwa punkty A, B, to, biorąc momenty względem D, znajdziemy, że sin PAD=sin PBD, a zatem kąty

PAD i PBD są albo spełniające albo równe. Stąd wynika, że miejscem geometrycznem punktu P jest koło, opisane na trójkącie ABD, i równoramienna hiperbola, opisana na tym samym trójkącie. Pierwsze z tych miejsc geometrycznych można również otrzymać przy pomocy trójkąta astatycznego, o którym była mowa w par. 71. Drugie miejsce geometryczne otrzymamy, obierając prostą AB za oś x i wyrażając w równaniu równość tangensów kątów PBA i PAB~y, gdzie Y oznacza różnicę kątów DAB i DBA.
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Pragnąc zbadać, które części tych dwóch krzywych stanowią prawdziwe miejsce geometryczne punktu P, rozważamy położenia względne punktu P oraz środka chwilowego I. Punkty te stanowią przeciwległe końce średnicy koła, opisanego na trójkącie ABP, a zatem, jeżeli P leży na zewnątrz prostopadłych LL', HS', to I musi także leżeć na zewnątrz. W takim razie prosta PD przebiega wewnątrz kąta APB, bo inaczej siły tarcia nie mogłyby równoważyć naprężenia sznura. Jeżeli P leży pomiędzy prostopadłymi, to PD biegnie naze-wnątrz kąta APB.

Proste LL1, HF’, DA, DB dzielą płaszczyznę na dzięsięć sekcyi; niektóre z tych sekcyi w myśl tylko co podanego prawidła są wyłączone i nie mogą zawierać miejsca geometrycznego punktu P. Dogodnie będzie odznaczyć w jakikolwiek sposób (np. zapomocą cieniowania) te sekcye, w których P leżeć może. Wykreślamy następnie koło i hiperbolę i włączamy do szukanego miejsca geometrycznego tylko części, położone w sekcyach odznaczonych. W przypadku, gdy punkt D leży pomiędzy prostemi LL', HH' figura będzie inna, niż w przypadku, gdy ten punkt leży nazewnątrz.

Prz. 5. Jeżeli w przykładzie ostatnim tarcia graniczne stoją do siebie w stosunku jakimkolwiek, to miejsce geometryczne punktu przecięcia sznura z liniami sił tarcia składa się z części krzywej czwartego stopnia i dwóch prostych. Należą tu, jak poprzednio, części położone w sekcyach odznaczonych.

	
	
189.    Prz. 1 Jednorodna prosta sztaba AB leży na chropowatym stole, wspierając się na nim wszystkimi elementami jednakowo. Wyznaczyć najmniejszą siłę, która poruszy sztabę, działając prostopadle do niej na koniec A.





Niech l będzie długością sztaby, a w ciężarem jednostki długości. Każdy element sztaby dx ciśnie stół z siłą wdx, a zatem tarcie graniczne tego elementu wynosi \i.wdx. Jeżeli I jest środkiem chwilowym, to tarcie, działające na pewien element, jest prostopadłe do A A                          prostej, łączącej go z I, a wszystkie _ I        I H‘ B tarcia równoważą siłę zewnętrzną HP, działającą na A.

v                                      Daje się łatwo okazać, że śro-

Fig. 55.              dek chwilowy I musi leżeć na samej sztabie. Przypuśćmy na chwilę, że leży on gdzieś na stronie. Obróćmy wszystkie siły tarcia (184) o kąt prosty tak, aby wszystkie były zwrócone do punktu I; musia-łyby one wówczas równoważyć siłę P, działającą równolegle do sztaby. Lecz to jest niemożliwe, jeżeli I nie leży na samej sztabie.

Tak więc I leży na sztabie; załóżmy, że Al—z. Na element H lub H' siła tarcia działą prostopadle do sztaby w stronę, wskazaną na rysunku. Tarcia wypadkowe, działające na Al i BI wynoszą odpowiednio }iwz i [iw(l—z) i są przyłożone w środkach ciężkości tych części. Biorąc rzuty i momenty względem A, otrzymamy

pwz—pw (l—z^—P,     p.wz2==pw (l2—z2).

Z ostatniego równania wynika, że z\/' 2=1, a z pierwszego, że P=u W(V 2—1); W- oznacza tu ciężar całkowity sztaby.

Prz. 2. Dowieść, że sztaba nie może zacząć się obracać około punktu I, położonego po lewej stronie punktu A, albo po prawej punktu B.

Prz. 3. Ciśnienia elementów sztaby na stół są wprost propor-cyonalne do odległości od końca A, i na końce A, B działają odpowiednio siły P, Q, ściśle dostateczne do poruszenia sztaby. Okazać, że stosunek P do Q wynosi 2(V 2—1).

Prz. 4. Dwie jednorodne i jednakowo chropowate sztaby AB, BC, połączone gładkim przegubem B, leżą na stole poziomym, tworząc linię prostą, i na koniec A działa siła P w kierunku prostopadłym do tej prostej. P stopniowo wzrasta dopóki nie rozpocznie się ruch. Dowieść, że sztaba AB ruszy wcześniej niż BC, jeżeli 2( V 2—1) W’ jest większe od W; jeżeli zaś 2(V 2—1) W’ jest mniejsze od W, to obydwie sztaby ruszą jednocześnie. W i W' oznaczają tu odpowiednio ciężary sztab AB i BC. Dowieść prócz tego, że w tym drugim przypadku 2=1+2(V 2—1)—, gdzie z oznacza odległość środka chwilowego dla sztaby AB od końca A, l zaś długość tej sztaby.

Prz. 5. Ciężka sztaba AB, leży na chropowatym stole poziomym, i na jej punkt C działa siła P w kierunku, tworzącym z nią kąt a. Siła ta ściśle wystarcza do wywołania ruchu. Środek chwilowy leży ną prostopadłej, poprowadzonej do sztaby w punkcie B, a jego odległość od A jest dwa razy większa od długości sztaby. Okazać, że

2(2- V 3) . tano=--—---, i wyznaczyć położenie punktu C.

V 3 log 3

Prz. 6. Do obręczy, leżącej na chropowatym stole poziomym, jest przywiązany w punkcie A sznur; ciągniemy za ten sznur w kierunku stycznej do obręczy w tym punkcie. Dowieść, że obręcz zacznie się obracać około drugiego końca B średnicy, przechodzącej przez A.

(Math. Tripos, 1873.)

Obróćmy każdą z sił około jej punktu przyłożenia o kąt prosty; wówczas wszystkie siły tarcia zwrócą się do środka chwilowego I (par. 184), a wypadkowa ich będzie równoległa do średnicy AB. Stąd wynika bezpośrednio, że punkt I leży na średnicy AB.

Rozważmy teraz równanie momentów. Położenie punktu I powinno być takie, aby suma momentów sił tarcia, działających na wszystkie elementy obręczy, względem punktu A była równa zeru. Warunkowi temu czyni zadość koniec B średnicy AB, bo, gdy I leży w B, to linie działania wszystkich sił tarcia przechodzą przez A.

Jest może zbytecznem dowodzić, że żaden inny punkt średnicy AB warunkowi powyższemu zadość nie czyni, można jednak to zrobić łatwo w sposób następujący. Przypuśćmy na chwilę, że I leży nie w B, lecz na średnicy AB wewnątrz koła. Weźmy na obręczy dowolny punkt P. Kąt IPA jest mniejszy od prostego, a tarcie w P działa w kierunku prostopadłym do IP. Gdy wykreślimy figurę, to stanie się oczywistem, że wszystkie siły tarcia usiłują wywołać obrót około A i tę samą stronę, a więc ich suma momentów względem A nie może być zerem. W ten sam sposób dowiedziemy, że I nie może leżeć nazewnątrz koła.

Prz. 7. Drut jednorodny w kształcie półkola leży na poziomym chropowatym stole. AB jest średnicą, łączącą końce półkola, a C oznacza punkt środkowy drutu. Zaczynamy ciągnąć z lekka za sznur, przywiązany do drutu w punkcie C, w kierunku CA i powiększamy naprężenie stopniowo. Okazać, że drut zacznie się poruszać, gdy naprę-22. W ' żenie dojdzie do--, gdzie W oznacza ciężar drutu. (Środek

TC

chwilowy wypadnie w B).                     (St John’s Coli., 1886.)

Prz. 8. Kawałek jednorodnego drutu, tworzący część spiralnej logarytmicznej, leży na chropowatej płaszczyźnie poziomej. Do pewnego punktu, sztywnie połączonego z drutem, przykładamy siłę, która ściśle wystarcza do poruszenia drutu około bieguna spiralnej, jako środka chwilowego. Dowieść, że siła ta jest równa ciężarowi drutu prostego o długości takiej, jak odległość pomiędzy końcami spiralnej, pomnożonemu przez współczynnik tarcia. Wskazać także, jak ów punkt znaleźć.                                              (Math. Tripos, 1888.)

Prz. 9. Trzy jednakowe ciężary A, B, C, zajmujące wierzchołki równobocznego trójkąta, połączono sztywno i położono na chropowatej równi pochyłej. Podstawa AB leży na linii największego spadku, a najwyższy wierzchołek A przyczepiono sznurem do punktu 0, położonego wyżej na tejże linii. Układ ten ma właśnie zacząć się poru-(2+ V3)p. szać. Okazać, że tangens nachylenia równi wynosi ----——, gdzie U.

V 3

oznacza współczynnik tarcia.                      (Math. Tripos, 1870.)

Przypuśćmy, że I nie leży w żadnym z wierzchołków; w takim razie wszystkie siły tarcia będą równe. Ponieważ A może się poruszać tylko w kierunku prostopadłym do OA, przeto I musi leżeć na OAB. Suma rzutów sił tarcia na prostopadłą do AB nie będzie równa zeru, jeżeli I nie leży na AB w spodku prostopadłej z C. Biorąc momenty względem I, otrzymamy żądany rezultat. Czynimy założenie drugie: przypuszczamy mianowicie, że I leży w wierzchołku A. Suma rzutów sił tarcia w B i C na prostopadłą do AB jest zbyt wielka nawet, gdy w A tarcie jest graniczne. Stąd wynika, że to drugie założenie jest niemożliwe.

Prz. 10. Stołek trójnożny stoi na płaszczyźnie poziomej. Na jedną z nóg jego zaczyna działać w pewnym kierunku mała siła pozioma i wzrasta stopniowo, dopóki stołek nie ruszy z miejsca. Współczynniki tarcia wszystkich trzech nóg o płaszczyznę są równe. Okazać, że owa siła będzie największa, jeżeli jej linia działania przetnie pion, przechodzący przez środek ciężkości stołka. (Math. Tripos.)

Prz. 11. Ciężka tarcza okrągła leży na chropowatej równi pochyłej i może się obracać około punktu O, położonego na obwodzie. Okazać, że tarcza pozostanie w spokoju w kaźdem położeniu, jeżeli 32p > 9x tan i, gdzie i oznacza nachylenie równi do poziomu. Należy przyjąć, że ciężar jest rozłożony równomiernie na całą powierzchnię.

(Pet. Coli., 1857.)

Niech W oznacza ciężar tarczy. Obrawszy O za początek, znaj-Wcos i.rd^ dr dziemy, że tarcie na element r d^ dr wynosi--—---. Biorąc

Ta-momenty względem O, otrzymamy przy pomocy całkowania żądany wynik.

Prz. 12. Prosty stożek, którego kąt jest równy 2a, a ciężar W, umieszczono wierzchołkiem na dół w okrągłym otworze, wyciętym w poziomym stole. Okazać, że najmniejsza para, która mogłaby poruszyć stożek, posiada moment AWr coseca, gdzie r oznacza promień otworu.

Ciśnienie Rds na element ds brzegu otworu działa normalnie do powierzchni stożka. Biorąc rzuty na kierunek pionowy, znajdziemy fRds sin a= W. Tarcie graniczne wynosi na każdy element [iRds; biorąc momenty względem osi stożka, otrzymamy moment szukany.

Prz. 13. Ciężka cząsteczka leży na chropowatej płaszczyźnie pochyłej, której nachylenie jest równe kątowi tarcia. Do cząsteczki jest przywiązana nić, która następnie przechodzi przez otwór w płaszczyźnie, położony niżej od cząsteczki, lecz nie na linii największego spadku. Przeciągamy nić bardzo wolno przez otwór; okazać, że cząsteczka będzie posuwała się po linii prostej, a następnie zatoczy półkole.

(Zagadnienie Maxwella, Math. Tripos, 1866.)

Oznaczmy przez W składową ciężaru cząsteczki w kierunku linii największego spadku, a przez F siłę tarcia. W takim razie F= W. Cząsteczka porusza się bardzo wolno, a zatem siły F, W oraz naprężenie nici T są w każdej chwili w równowadze. Gdy cząsteczka pozo-staje wyżej od otworka 0, to naprężenie T jest znikomo małe; wystarcza ono jedynie do zakłócenia równowagi, i cząsteczka schodzi po linii największego spadku. Gdy cząsteczka przekroczy prostą poziomą, na której leży 0, to T staje się skończonem. Nić wówczas stanowi dwusieczną kąta pomiędzy F i W; innemi słowy promień wodzący OP tworzy jednakowe kąty ze styczną do toru (t. j. F) i z linią największego spadku. Utworzywszy równanie różniczkowe toru, znajdziemy, że jest to półkole; punkt O leży na końcu jego średnicy poziomej.

Prz. 14. Tarcie pomiędzy cząsteczką a stołem jest odwrotnie proporcyonalne do odległości od pewnej prostej, przeprowadzonej na stole. Jeżeli przy przesuwaniu cząsteczki z jednego położenia do drugiego praca wykonana ma być jak najmniejsza, to torem cząsteczki powinno być koło.                                            (Trin. Coli.)

Twierdzenie to wynika bezpośrednio z prawidła Lagrange‘a w rachunku waryacyjnym.

	
	
190.    Prz. 1. Sznur o bardzo małej sprężystości, łączy dwie ciężkie cząsteczki A, A', leżące na chropowatym stole. Początkowo sznur jest wyciągnięty, lecz nie wyprężony, a na cząsteczkę A działa w danym kierunku AC siła P. Kierunek ten tworzy z przedłużeniem A‘A kąt 3 mniejszy od prostego. Jeżeli siła P będzie stopniowo wzrastała, to czy ruszy wprzód cząsteczka A, czy też obydwie cząsteczki ruszą razem?





Niech F, F' będą granicznemi siłami tarcia w A, A'. Przypuśćmy, że siła P wzrasta, poczynając od zera. Dopóki nie przekroczy ona wartości F, równoważy ją całkowicie tarcie w A, sznur zaś, jakkolwiek prawie nierozciągalny, może nie mieć żadnego naprężenia. Przypuśćmy, że        M‘ siła P nieco przewyższyła F, i niech         / ją reprezentuje odcinek AL. Popro-        / wadźmy prostą LMM1 równolegle do A' L AA' i zatoczmy z punktu A koło promieniem F. Przetnie ono ową równo-            Fig. 56. ległą w punktach M, M', i odcinek LM będzie odpowiadał naprężeniu sznura. Z dwóch punktów przecięcia prostej LMM' z kołem obrano bliższy punktu L, bo przy takiem założeniu kierunek tarcia w A staje się odwrotnym do P, gdy P=F.
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Gdy P stopniowo wzrasta w dalszym ciągu, to M wędruje po łuku CH. Równowaga cząsteczki A staje się niemożliwą, gdy prosta LAIM' przestaje przecinać koło, t. j. gdy M dojdzie do H. Cząsteczka A' ruszy, gdy LM osiągnie wartość F'. Lecz HK=Fcot 3, a zatem cząsteczka A ruszy pierwsza, jeżeli Fcot 3< F', a obydwie cząsteczki ruszą jednocześnie, jeżeli Fcot^,>F'.

Jeżeli tarcia graniczne F, F są równe, a kąt 3 mniejszy od połowy kąta prostego, to obydwie cząsteczki ruszą jednocześnie. Jedna z sił tarcia działa na prostej AA’, druga zaś tworzy kąt 3 z siłą P, a zatem P— 2F cos 3.

W rozwiązaniu powyższem wyłączyliśmy punkt M', kierując się zasadą ciągłości, lecz cząsteczka A może także pozostawać w równowadze pod działaniem sił AL, LM', M'A. Gdyby sznur posiadał stosowne naprężenie początkowe, równoważone przez siły tarcia w A i A' oraz przez początkową siłę P, działającą w kierunku AC, to M' byłby stosownym punktem przecięcia.

Prz. 2. Dwa ciężary A i B, połączone sznurem, leżą na poziomym stole; współczynnik tarcia jest równy p.. Siła P, mniejsza od p.A+uB, działa początkowo w kierunku BA na ciężar A, a następnie obraca się w płaszczyźnie stołu o kąt 8. Okazać, że obydwa cię-p.?( B2-42) + P2 żary ruszą jednocześnie przy cos 3=------Jeżeli P jest większe

2u BP

od p. VA2+B2, lecz jeżeli P jest mniejsze od p VA2+B2 i większe od

"A, to ciężar A ruszy sam, gdy sin‘=p:

Prz. 3. n— 1 sznurów bardzo mało sprężystych łączy n cząsteczek A,, Ai... An—i według porządku wskaźników. Ciężary wszystkich cząsteczek oraz długości wszystkich sznurów są jednakowe. Cząsteczki ułożono na chropowatej płaszczyźnie poziomej na łuku koła, mniejszym od ćwierci okręgu, przyczem sznury zostały wyciągnięte lecz nie wyprężone. Następnie na cząsteczkę A,_1 zaczęła działać siła P w kierunku An_tAn, gdzie An oznacza wyobrażalną (n+1)-szą cząsteczkę, i siła ta stopniowo wzrasta. Przy jakiej wartości P układ za-cznie się poruszać?

Dajmy na to, że dwie następujące po sobie cząsteczki Am i Am+1 są już w stanie, graniczącym ze stanem ruchu. Oznaczmy przez Pm kąt, który tarcie w Am tworzy z cięciwą A+1Am, przez Tm naprężenie sznura AmAm+l, przez 3 kąt pomiędzy dwoma kolejnymi sznurami, wreszcie przez F tarcie graniczne jednej cząsteczki o stół.

Biorąc rzuty sił, działających na cząsteczki Am i A,+1, odpowiednio na kierunki prostopadłe do Am_1Am i A,+14m+2, otrzymamy

Tm sin ^ = F sin (P„+8),      Tm sin }= Fsin 9+1 •

Biorąc rzuty tych samych sił na kierunki prostopadłe do sił tarcia obydwóch cząsteczek, znajdziemy

Im sin ?n=Tn-1 sin (?n+3), Tn+1 sinn+1==Im sin (?n+1+3).

Z dwóch pierwszych równań wynika, że ©„+3 i @„+1 są albo równe albo spełniające do 180°, a pozostałe równania wskazują, że przy drugiej alternatywie T,+1=T_1. Obydwa te przypadki są statycznie możliwe, a więc można rozmaicie dobrać siły tarcia, które, działając na cząsteczki, zabezpieczałyby równowagę.

Należy obrać alternatywę zgodną z założeniem, że sznury początkowo nie były wyprężone. Gdy P jest mniejsze od F, to tarcie w An_y ma kierunek odwrotny do P, ą wszystkie naprężenia są zerami; gdy P przekroczy F, to sznur A,_2A,_ 1 nieco się wydłuża, i wchodzi w grę naprężenie jego. Wówczas występuje tarcie w An_2j działając w kierunku odwrotnym do owego naprężenia, a naprężenia w sznurach pozostałych są jeszcze zerami. W miarę tego, jak P wzrasta, występują po kolei tarcia cząsteczek oraz naprężenia sznurów. Skoro początkowo naprężenia były zerami, to musimy przyjąć, że naprężenia, wywołane przez siłę P, są w następujących po sobie.sznurach coraz mniejsze, poczynając od sznura An_rAn aż do tego, w którym naprężenie jest jeszcze równe zeru. Każde inne założenie prowadzi do wniosku, że, ciągnąc z pewną siłą za koniec sznura, można po pokonaniu oporów wywołać większe naprężenie na drugim końcu. Ponieważ Tm+A musi być większe od Tm_v przeto ?n+1==9n+B.

Przypuśćmy, że wszystkie cząsteczki, poczynając od Av aż do A,-1 są już w stanie, graniczącym ze stanem ruchu, i że T,-1=0. W takim razie ®,=0, ®,+1=3, i wogóle

9p+x==/8, T,+1sin s= Fsin (+1)8.

Siła P, która doprowadza wszystkie cząsteczki od A, do A,^ do stanu, graniczącego z ruchem, jest równa Tn_x, a zatem

P—F p) 3 . cosec 3.

Gdy P przekroczy wartość powyższą, to wchodzi w grę naprężenie sznura A^Ap. Naprężenie sznura ApAp+l, potrzebne do poruszenia samej cząsteczki Ap bez Ap^, wynosi F cosec 3, gdy tymczasem naprężenie, potrzebne do poruszenia obydwóch, wynosi F sin 23 cosec 3. To drugie jest mniejsze od pierwszego, a stąd wynika, że tarcie cząsteczki Ap_t stanie się granicznem, zanim Ap zacznie się poruszać. Widzimy więc, że gdy P ustawicznie wzrasta, to cząsteczki dochodzą z kolei do stanu granicznego, ale żadna z nich nie ruszy bez pozostałych.

T

Jeżeli n3 <2, to wszystkie cząsteczki ruszą jednocześnie, i do tego potrzebna jest siła P=F sin n3 cosec 3.


Przypuśćmy teraz, że n3
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widzieliśmy że można bez naru-



szenia równowagi powiększyć P do Fsin p3 cosec 3, gdzie p3 jest mniej-

T

sze, a (P+1)8 większe od —. Wówczas Tn_p_x—0. Gdy P przekroczy tę wartość, to cząsteczka An_t ruszy sama jedna. Mianowicie do po-Tuszenia An_1 potrzebna jest siła F cosec 3, a naprężenie 7,2 wynosi wówczas Fcot. Jest to mniejsze od F sin p3 cosec 3, a więc układ At_^, An_3... nie doszedł jeszcze do stanu granicznego.

ROZDZIAŁ VI.

ZASADA PRACY PRZYGOTOWANEJ.

	
191.    W rozdziale II poznaliśmy zasadę pracy przygotowanej w zastosowaniu do sił, działających na cząsteczkę. Mamy teraz rozważyć tę samą zasadę ogólniej i zastosować ją do układów ciał w dwóch i trzech wymiarach.



Sama zasada daje się wypowiedzieć w sposób następujący. Dajmy na to^ że siły Pt, P^... działają na punkty A1, A,... pewnego układu ciał. Pomiędzy temi ciałami mogą istnieć dowolne połączenia, umożliwiające lub wyłączające ruchy względne, a zatem ciała mogą wywierać reakcye jedne na drugie. Przypuśćmy, że układ przesunął się nieco, i punkty A,, A, ... zajęły sąsiednie położenia A^A^... Niech dpx, dp2,... będą rzutami przesunięć AtAj, A2A2'... na kierunki sił Pr, P2--, i niech będzie dW—Pldp1 + P2dp2 + ... Układ jest w równowadze, jeżeli dW—0 dla wszystkich przesunięć, na które tylko pozwalają związki geometryczne, zachodzące pomiędzy ciałami układu.

Układ nie jest w równowadze, jeżeli daje się wynaleźć jedno lub więcej przesunięć, dla których dW nie jest zerem.

Biorąc ściśle, należałoby mówić, że dW jest nie zerem, lecz małą wielkością drugiego rzędu według terminologii rachunku różniczkowego. Wyjaśni się to w dalszym ciągu.

	
192.    Owe przesunięcia uważać należy za ruchy wyobra-żalne; układ może je wykonywać, ale nie jest koniecznem, aby to nastąpiło. W zasadzie pracy przygotowanej mamy sprawdzian, czy dane położenie układu jest położeniem równowagi. Rozważamy przedewszystkiem, jakiemi drogami układ może wyruszyć z danego położenia. Nie posunie się on na tej, dla której ^Pdp jest zerem. Badamy wszystkie przesunięcia możliwe; jeżeli dla każdego z nich ^Pdp jest zerem, to dane położenie jest położeniem równowagi.



Takie próbne małe przesunięcia układu zowiemy przesunięciami przygotoiuaneini. Iloczyn Pdp nazywa się niekiedy momentem przygotowanym, a niekiedy pracą przygotowaną siły P. Sumę liPdp nazywamy momentem przygotowanym lub pracą przygotowaną wszystkich sił.

	
193.    Dowiedliśmy już zasadę pracy przygotowanej dla sił, działających na cząsteczkę pojedyńczą. W odniesieniu do układów ciał nie udało się dotychczas wyprowadzić tej zasady z elementarnych aksyomatów statycznych w sposób zadowalający. Świetną próbę uczynił w tym kierunku Lagrange; poznamy ją później.



Można obrać inną drogę postępowania. Uważamy, że układ składa się z ciał prostych. Na każde z nich działają niektóre z sił danych, a związek pomiędzy niemi tworzą reak-cye wzajemne. Tak np. Poisson uważa układ za zbiór punktów, połączonych wiotkimi sznurami lub sztywnymi i nieważkimi prętami Unikając wszelkich założeń, dotyczących molekularnej budowy ciał, będziemy uważali, że układ składa się z ciał sztywnych takich rozmiarów, aby można było stosować do nich elementarne prawa statyki.

Dowiedziemy naprzód zasadę pracy przygotowanej dla ciała prostego, uważając składanie i rozkładanie sił za znane. Tern samem zasada będzie udowodniona i dla układu ogólnego, jeżeli tylko dołączymy do sił Pv P^--- wszystkie reakcye, które ciała układu wywierają jedne na drugie.

Zbadamy wreszcie wszystkie te reakcye. Znajdziemy, że nie występują one jawnie w równaniu ogólnem pracy przygotowanej. Stąd wynika, że zasadę wolno stosować tak, jak gdyby na układ działały jedynie siły P1, P2...

Główna trudność, związana z tym sposobem postępowania, jest następująca. Musimy znać dostatecznie reakcye jednych ciał na drugie, aby można było udowodnić, że ich prace przygotowane są albo zerami, albo znoszą się nawzajem.

W wyżej naszkicowanym dowodzie pójdziemy w pewnej mierze śladem Fouriera (Journal Polytechniąue^ tom II).

Aby udowodnić twierdzenie odwrotne wypadnie zbadać,, jakiemi drogami układ, pozostający w spoczynku, może wyruszyć z danego położenia. Okażemy, że droga jest przecięta, jeżeli na niej praca przygotowana sił jest zerem.

	
194.    Dowód zasady dla swobodnego ciała sztywnego. Dowiedziemy naprzód, że praca przygotowana jakiegokolwiek układu sił jest równa pracy przygotowanej wypadkowych, jeżeli tylko punkty przyłożenia wszystkich sił danych są połączone w sposób niezmienny (par. 19).



Cała czynność, prowadząca do tych wypadkowych, daje się podzielić na trzy działania: (1) składamy lub rozkładamy siły, działające na punkt, zapomocą równoległoboku; (2) przenosimy siłę z jednego punktu A do drugiego punktu B^ położonego na jej linii działania; (3) usuwamy lub dodajemy do układu siły równe i odwrotne. Stosując kilkakrotnie te działania, możemy dany układ sił przekształcić na inny, prostszy, który nazywamy wypadkowym (117).

Dowiedliśmy w par. 66, że pierwsze z tych działań nie zmienia pracy przygotowanej, dowiedziemy teraz, że nie zmienia jej również działanie drugie. Z tego będzie wynikało, że suma prac przygotowanych dwóch sił równych i odwrotnych, które wprowadza działanie trzecie, jest równa zeru, a zatem nie wpływa na pracę przygotowaną całego układu.


x 7       *v*

Fig. 57.



Niech A'B' będzie przesuniętem położeniem odcinka AB, i niech F oznacza siłę, której punkt przyłożenia ma być przeniesiony z A do B. Poprowadźmy A'AL i B'N prostopadle do AB. Przed przeniesieniem praca przygotowana wynosiła

F. AM, a po przeniesieniu

F. BN. A'B' tworzy z AB kąt nieskończenie mały; kosy nus jego można uważać za jedność, a zatem MN— A'B'. Jeżeli przeto odległość pomiędzy punktami przyłożenia pozo-staje bez zmiany, t. j. jeżeli AB=A'Bj to BN=AAI. Stąd wynika bezpośrednio, że F.AM—F.BN.

Tak więc przy wszelkich przekształceniach układu sił, zgodnych z zasadami statyki, praca, którą wykonywają siły skutkiem jakiegokolwiek drobnego przesunięcia, pozostaje bez zmiany.

	
195.    Zastosujmy wynik powyższy do układu sił P1, P.2..., działających na swobodne ciało sztywne.



Statyka. 11.

Wszystkie siły, dadzą się sprowadzić do siły B^ działającej na dowolnie obrany punkt O, i do pary G (par. 105). W myśl paragrafu poprzedzającego praca przygotowana sil P^ P2... jest przy każdem przesunięciu równa pracy przygotowanej siły B i pary G.

Jeżeli siły P1, P^- - są w równowadze, to zarówno B, jak i G, są zerami (par. 109), a zatem praca przygotowana sił P1, Ą-- jest przy każdem przesunięciu równa zeru.

Odwrotnie, jeżeli praca przygotowana- sił P1, P^"- jest zerem przy każdem przesunięciu, to i praca przygotowana B i G jest równa zeru, a do tego potrzeba, jak to zaraz okażemy, aby zarówno B, jak i G, były zerami.

Nadajmy ciału małe przesunięcie równoległe Sr w kierunku, w którym działa siła B; jej praca przygotowana wyniesie R8r. Przypuśćmy, że ramieniem pary jest AB, i że jej siły są przyłożone w A i B. Punkty te otrzymują równe i równoległe przesunięcia AA1 i BB', a ponieważ siły, działające na nie, są równe i odwrotne, przeto oczywiście prace ich znoszą się nawzajem. Tak więc praca pary G jest równa zeru, a zatem suma prac B i G może zniknąć w tylko w takim razie, jeżeli B=0.

Obróćmy teraz ciało o mały kąt 80 około prostopadłej z O do płaszczyzny pary. Obrót wykonajmy w tę stronę, w którą popędza ciało para G. Niech punkt O będzie środkiem ramienia AB, i niech siły pary będą —Q. Każdy z pun-ktow A i B otrzymuje przesunięcie —9— W kierunku siły, która nań działa, a zatem suma prac sił pary wyniesie AB. Q8o, czyli G8o. Praca przygotowana siły B byłaby równa zeru, nawet gdyby ta siła różniła się od zera, bo jej punkt przyłożenia nie został przesunięty. Widzimy, że i G musi być zerem, aby zbiorowa praca B i G mogła zniknąć. Stąd wynika bezpośrednio, że ciało jest w równowadze.

	
196.    Siły, nie występujące w równaniu pracy przygotowanej. Przypuśćmy teraz, że ciało nie jest swobodne. Ruch jego ograniczają pewne przeszkody, lub podlega ono działaniu innych ciał sztywnych. Jest rzeczą niezbędną zbadać, które reakcye nie wejdą do ogólnego równania pracy przygotowanej (jak to już wyjaśniliśmy w par. 193). Niema sposobu podać tu spisu wyczerpującego, ograniczymy się więc do tych przypadków, z którymi spotykamy się najczęściej.



	
	
I.    Przypuśćmy, że dwie cząsteczki A', B, należące do układu, wywierają jedna na drugą siły, skierowane według prostej AB. Jeżeli odległość AB się nie zmienia podczas przesunięć, to prace przygotowane owych sił znoszą się nawzajem. Jeżeli np. cząste-steczki te łączy sznur niesprężysty, to naprężenie jego nie wejdzie do równania pracy przygotowanej.





Wynika to bezpośrednio z paragrafu 194. Mianowicie możemy siłę, działającą na A przenieść do B, i wówczas dwie siły równe i odwrotne, działające na B, doznają jednego i tego samego przesunięcia. Oczywiście ich prace przygotowane będą równe i odwrotne.

	
	
II.    Jeżeli pewne ciało układu może tylko obracać się około punktu nieruchomego lub osi nieruchomej, to praca przygotowana reakcyi tego punktu lub osi jest równa zeru. Jest to oczywiste, gdyż przesunięcie punktu przyłożenia takiej reakcyi jest równe zeru.


	
III.    Punkt A ciała może tylko posuwać się na pewnej powierzchni nieruchomej.





Jeżeli powierzchnia jest gładka, to reakcya, działająca na punkt A, jest normalna do powierzchni. Dajmy na to, że punkt A przesunął się do sąsiedniego położenia" A'-, w takim razie przesunięcie AA' tworzy z siłą kąt prosty, a więc praca w myśl par. 68 jest równa zeru.

Jeżeli powierzchnia jest niegładka, to niech F będzie siłą tarcia. Działa ona w kierunku A'A, i jej praca wynosi — F. AA'. Praca ta wogóle nie jest zerem.

	
	
IV.    Jeżeli jakieś ciało układu toczy się bez poślizgu po po





wierzchni nieruchomej, to praca r


akcyi jest równa zeru.
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Jeżeli twierdzenie to nie jest dostatecznie oczywiste, to można je dowieść w sposób następujący. Ciało DA.E, tocząc się po nieruchomej powierzchni MABN, zajęło sąsiednie położenie D'BE'. Fig 58 ma wyobrażać przekrój powierzchni, zrobiony przez wspólną normalną w A

i przez elementarny łuk toczenia się AB. Punkt A wyrusza w kierunku wspólnej normalnej i przybywa do A'. Zastąpmy krzywe DAE i MAB ich kołami krzywizny. Łuki AB i A'B są równe, a przeto, jak wiadomo, AA': AB2 jest równe połowie sumy krzywizn przeciwległych. Przyjmując, że obydwie krzywizny są skończone, dojdziemy do wniosku, że AA' należy do tego samego rzędu wielkości małych, co AB2, czyli że AA' jest małą wielkością rzędu drugiego. Jeżeli więc zatrzymujemy tylko wyrazy pierwszego rzędu, jak w zasadzie pracy przygotowanej, to możemy tak traktować ruch ciała, jak gdyby obracało się około punktu A, w danej chwili nieruchomego. Stąd i z twierdzenia poprzedzającego wynika, że gdy ciało toczy się po powierzchni nieruchomej, gładkiej czy chropowatej, to praca przygotowana reakcyi jest równa zeru.

	
	
V.    Jeżeli powierzchnia, po której ciało się toczy, należy do innego ciała układu, to powierzchnia ta jest ruchoma. Jeżeli jednak włączymy obydwa ciała do jednego równania pracy przygotowanej, to ich wzajemne reakcye, jak to zaraz okażemy, w równaniu tern nie wystąpią.





Każde takie przesunięcie możemy uskutecznić w sposób następujący: (1) przesuwamy obydwa ciała razem tak, aby ciało MABN zajęło położenie ostateczne, (2) toczymy ciało DAE po ciele AIABD, które już teraz pozostaje nieruchomem, dopóki DAE nie zajmie położenia ostatecznego. W ciągu pierwszego z tych ruchów obydwie reakcye, równe, odwrotne i przyłożone w tym samym punkcie A, wytwarzają oczywiście prace równe i odwrotne; suma tych prac jest równa zeru. W ciągu drugiego ruchu ciało DAE toczy się po powierzchni nieruchomej, a zatem praca przygotowana reakcyi jest równa zeru (par. 65).

	
197. Praca sznura sprężystego. Jeżeli punkty A i B łączy sznur sprężysty, to może być potrzebna praca, którą wykona naprężenie tego sznura, gdy długość jego zmieni się z l na l+dl. Sznur taki może być wyprostowany, albo zgięty w przejściach przez gładkie obrączki ruchome lub nieruchome, albo wreszcie może opasywać gładką powierzchnię; we wszystkich tych przypadkach praca przygotowana naprężenia T jest równa —Tdl.



Aby jaśniej wyłuszczyć sprawę, rozważymy te różne przypadki z osobna.

	
(1)    Sznur jest wyprostowany. Powróćmy do fig. 57. Praca przygotowana naprężenia w A jest równa =T.AM. Postawiliśmy znak dodatni, bo naprężenie działa na A w kierunku AB, i przesunięcie AM odbywa się w tym samym kierunku (par. 62). Naprężenie w B wykona pracę — T. BN, a suma tych prac wyniesie — T(A'B' — AB), czyli —Tdl.



Jeżeli na A i B działają siły odpychające R, a nie przyciągające, jak w przypadku powyższym, to zastosujemy ten sam rachunek; potrzeba tylko wziąć —R zamiast T. Praca przygotowana będzie oczywiście Rdl.

	
(2) . Sznur, łączący A i B, przechodzi przez pewną liczbę małych gładkich obrączek C, D i t. d. Obrączki są nieruchome, a sznur w przejściach zmienia kierunek.



Do rozważań naszych wystarczą dwie obrączki; oznaczmy je przez C i D. Dajmy na to, że końce A, B przesunęły się do A', B', i niech A'M, B'N będą prostopadłe do AC i BD. Sznur wydłużył się o BN i skrócił o AAL, a zatem dl=BN— AM.
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Fig. 59.


Naprężenie jest we wszystkich punktach sznura jednakowe i równe T, a zatem prace w A i B wyniosą odpowiednio T. AM i —T. BN. Praca całkowita jest równa ich sumie, czyli —Tdl.

	
(3)    Obrączki C, D..., przez które przechodzi sznur, są przymocowane do innych ciał układu, a więc są ruchome.



Przypuszczamy, że wszystkie ciała są włączone do jednego równania pracy przygotowanej. W takim razie na układ działają siły następujące: T działa na A w kierunku AC, T na C w kierunku CA, T na C w kierunku CD, T na D w kierunku DC i t. d. W myśl tego, co tylko co było dowiedzione, suma prac dwóch pierwszych sił wynosi — T.d(AC), praca dwóch następnych —Td^CD) i t. d. Jeżeli zatem l oznacza całkowitą długość sznura, czyli AC+ CD+..., to całkowita praca wyniesie —Tdl.

We wszystkich tych przypadkach naprężenie sznura nie wystąpi wcale w równaniu pracy przygotowanej, jeżeli długość jego podczas przesunięcia nie ulegnie zmianie.

	
(4)    Sznur, łączący A i B, biegnie po gładkiej powierzchni nieruchomej, lub należącej do jednego z ciał, które obejmuje równanie pracy przygotowanej. Z każdym elementarnym lukiem sznura możemy postąpić w sposób wyżej wyłożony, a zatem wypadnie, że praca naprężenia wynosi —Tdl.



Uważaliśmy tu, że naprężenia we wszystkich częściach sznura, leżącego na gładkiej powierzchni, są jednakowe. Można to okazać w sposób następujący. Przypuśćmy, że sznur tworzy na gładkiej powierzchni łuk BC. Dowolny element PR' tego łuku pozostaje w równowadze pod działaniem naprężeń w P i P' oraz normalnej reakcyi powierzchni, a więc suma rzutów tych sił na styczną w P musi być równa zeru. Oznaczmy owe naprężenia przez T, f, kąt pomiędzy stycznemi w P, P' przez d), a długość luku PP' przez ds. Przypuśćmy jeszcze, że ciśnienie powierzchni na jednostkę długości sznura jest skończone i równe R, to ciśnienie na łuk PP' wyniesie Rds. Rzut jego na styczną w P jest mniejszy od Rds sin d<\>, a więc należy do drugiego rzędu wielkości małych. Suma rzutów naprężeń jest równa T—T1 cos d'^ co sprowadza się do T— T', jeżeli odrzucamy małe wielkości drugiego rzędu. Ponieważ suma tu musi być zerem, przeto T—T'. Biorąc cały szereg elementów sznura, a mianowicie PP', P'P"..., znajdziemy, że naprężenia w punktach P, P', P"... są równe, czyli, że naprężenie sznura nie zmienia się na całej długości. Gdyby powierzchnia nie była gładka, to wynik byłby inny, bo, biorąc rzuty na styczną, mu-sielibyśmy uwzględnić siłę tarcia.

Można także okazać, że naprężenia są równe, stosując zasadę pracy przygotowanej do sznura BC. Przesuwamy sznur ten po danej powierzchni, nie zmieniając przytem jego długości. Będzie wówczas T.BB'=T'. CG', a zatem T=T’.

Przypuśćmy jeszcze, że sznur przechodzi przez okrągły blok o powierzchni chropowatej; blok może się swobodnie obracać około gładkiej osi, a sznur leży w płaszczyźnie prostopadłej do osi. Możemy w tym razie okazać równość naprężeń, biorąc momenty względem osi. Dajmy na to, że sznur ABGD przylega do bloku na łuku BG. Oznaczmy naprężenia w AB i GD przez T, T', a promień bloka przez r. Biorąc momenty względem osi, otrzymamy Tr=T'r, a stąd T—T'.

	
	
198.    W rozważaniach poprzedzających przyjmowaliśmy w milczeniu, że reakcye, zastępujące połączenia, są co do wielkości skończone. Jeżeli założenie takie nie jest zgodne z prawdą, to ńie jest pewnem, czy praca przygotowana będzie równa zeru. Jeżeli w iloczynie P.dp czynnik P jest nieskończenie wielki, to nie wystarcza zniknięcie czynnika dp, aby zniknął cały iloczyn. Tego rodzaju przypadki zachodzą niekiedy w przykładach naszych, jeżeli traktujemy ciało jako nieodkształcalne masy sztywne. W naturze jednak pod działaniem sił bardzo wielkich ciała doznają odkształceń, których pomijać niewolno, i przesunięcia różnią się wówczas wyraźnie od przesunięć ciał sztywnych.


	
199.    Twierdzenie odwrotne. W paragrafie 195 dowiedliśmy twierdzenie proste i odwrotne dla prostego ciała sztywnego; wypada jeszcze udowodnić twierdzenie odwrotne dla układu ciał.





Umieszczono układ w pewnem położeniu w spoczynku, i wiadomo, że praca sił zewnętrznych dla wszystkich małych przesil-nięć, nie naruszających połączeń, jest równa zeru; mamy dowieść, że układ jest w równowadze.

Jeżeli równowagi niema, to układ zacznie się poruszać. Zbadajmy wszystkie drogi, któremi układ może wyruszyć z położenia danego. Obrawszy jedną z tych dróg, urządźmy sprawę tak, aby układ nie mógł obrać żadnej innej. Oczywiście będziemy mogli to osiągnąć, wprowadzając odpowiednią liczbę gładkich krzywych prowadzących. Tak np. w obranym rodzaju ruchu pewien punkt zatacza w przestrzeni pewną krzywą. Przyczepiamy do tego punktu gładką obrączkę i nawlekamy ją na sztywny gładki drut, posiadający kształt owej krzywej. Urządzenie takie zapobiega wszelkim odmiennym ruchom punktu. Reakcye owych krzywych prowadzących, jak już dowiedliśmy, nie wykonywają pracy, a więc, wprowadzając je, nie zmieniliśmy wcale pracy sił zewnętrznych podczas obranego przesunięcia.

Aby teraz układ nie ruszył z danego położenia, potrzeba tylko przyłożyć pewną siłę F do któregokolwiek punktu A w kierunku odwrotnym do tego, w którymby poszedł punkt A, gdyby siła F nie działała. Gdy uczynimy tak, to siły, działające na układ, będą w równowadze. Nadajmy układowi dowolne przesunięcie przygotowane na jedynej drodze, która jeszcze stoi otworem. Wówczas punkt A znajdzie się w położeniu Aj i suma prac sił wraz z pracą siły F będzie równa zeru. Ale według założenia praca sił dla takiego przesunięcia jest zerem, a zatem i praca siły F musi być równa zeru. Wynosi ona—F. AAj a skoro AA jest dowolne, przeto F musi być zerem. Tak więc siła F jest niepotrzebna; układ i bez niej nie wyruszy obraną drogą, i to samo dotyczy dróg pozostałych. Stąd wynika, że układ jest w równowadze. (Thomson i Tait. Treatise on Natural Philosophy, 1879, par. 290).

	
	
200.    Ruch początkowy. Wyobraźmy sobie, że układ ciał w pe-wnem położeniu jest w chwili obecnej w spoczynku, lecz działające nań siły zewnętrzne się nie równoważą. Układ więc zacznie się poruszać, i dowiedziemy, że praca sił podczas przesunięcia początkowego musi być dodatnia 1).





Dowód tego twierdzenia jest w gruncie rzeczy powtórzeniem rozumowania, które już znamy z par. 199. Jeżeli układ wychodzi ze stanu spoczynku pewną drogą, to wprowadźmy takie krzywe prowadzące, aby ruch był możliwy tylko na tej drodze. Przyłóżmy następnie do punktu A siłę F, zapobiegającą ruchowi; okażemy, jak wyżej, że suma prac sił zewnętrznych oraz pracy siły F jest równa zeru. Lecz kierunek siły F jest odwrotny do tego, w którym poszedł by punkt A, gdyby siła F nie działała; z tego wynika, że przy lakiem przesunięciu praca siły F jest ujemna, a praca sił zewnętrznych dodatnia.

	
	
201.    Z ostatniego twierdzenia wynika bezpośrednio wniosek następujący: równowaga układu jest dostatecznie zabezpieczona, jeżeli praca sił dla wszystkich przesunięć jest ujemna, bo w takim razie układ nie może wyruszyć żadną drogą ze stanu spoczynku. Jeżeli jednak dla pewnego przesunięcia praca sił jest ujemna, to dla przesunięcia odwrotnego, w którem kierunek ruchu każdej cząsteczki zostaje odwrócony, praca ta będzie dodatnia; jeśli przeto pragniemy uniemożliwić te wszystkie przesunięcia, na których praca sił jest dodatnia, to zwykle bywa niezbędnem, aby praca dla wszystkich przesunięć była zerem.





Istnieją jednak szczególne rodzaje połączeń, które pozwalają na pewne przesunięcia, wyłączając przesunięcia odwrotne. W takim razie nie jest rzeczą niezbędną, aby praca była zerem dla wszystkich przesunięć. Tak np. ciężka cząsteczka, umieszczona wewnątrz stożka o osi pionowej, jest oczywiście w równowadze, gdy tymczasem praca jest dla wszystkich przesunięć ujemna, a więc różna od zera.

	
	
202.    Stosowanie zasady pracy przygotowanej. Dajmy na to, że przy danych połączeniach układu punkty jego A1, A,... muszą pozostawać na pewnych powierzchniach nieruchomych. Mamy teraz przed sobą dwa zadania: (1) utworzyć równania równowagi, nie zawierające reakcyi, (2) wyznaczyć te reakcye. Aby osiągnąć pierwszy z tych celów nadajemy układowi przesunięcia takie, podczas których punkty A1, A,... nie odchodzą od owych powierzchni prowadzących, i przyrównywamy do zera sumę prac przygotowanych, odpowiadającą każdemu przesunięciu. Drugi cel osiągniemy, nadając układowi szereg przesunięć innych; przy każdem z nich jeden z punktów A1, A2 ... powinien odejść od swej powierzchni prowadzącej. Przyrównywamy znowu do zera dla każdego przesunięcia sumę prac przygotowanych, dołączając pracę reakcyi w owym punkcie. Tym sposobem otrzymamy dostateczną liczbę równań do wyznaczenia reakcyi.


	
203.    Wyprowadzić równania równowagi z zasady pracy.





Równania równowagi układu wyrażają dwa twierdzenia: (1) suma rzutów sił na każdy kierunek jest dla każdego ciała lub dla każdej grupy ciał układu równa zeru, (2) suma momentów względem każdej prostej jest równa zeru.

Równania równowagi układu w jednej płaszczyźnie otrzymaliśmy w roz. IV (109—111), odpowiednie równania dla układu w przestrzeni podamy szczegółowo dopiero w rozdziale dalszym; aby jednak uniknąć powtarzać włączamy je już tutaj do rozważań obecnych. (Zob. także 105 i 113).

Mamy teraz wyprowadzić te obydwa twierdzenia z zasady' pracy. Niech P,P,... oznaczają, jak poprzednio, siły, Ą, A, ... ich punkty przyłożenia, (0,, Bi, 1), (a2, 32, Y2)... ich kąty kierunkowe. Nadajmy ciału lub pewnej grupie ciał układu przesunięcie da, równoległe do osi x. Punkt A dojdzie do A', prze
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sunięcie jego AA' — dx (fig. 60), rzut zaś AN tego przesunięcia na linię działania siły = da cos a. Zatem w myśl zasady pracy będzie

PY cos 0.1 dx + P, coś 0.2 dx + ... = 0.

Dzieląc to przez dx, otrzymamy równanie rzutów

P cos0.1 + P, cosa2 +... = 0.

Równanie to powinno obejmować wszystkie reakcye, wywierane na dane ciała przez ciała inne.

Aby otrzymać równanie momentów względem jakiejś prostej, np. względem osi z, obróćmy rozważane ciało około tej osi o kąt do.

Załóżmy naprzód, że wszystkie siły działają w płaszczyźnie ay, i oznaczmy odległości ich linii działań od początku układu przez P1, P2... Tak np. na fig. 61 OM—p. Przesunięcie AA' punktu A, powstałe skutkiem owego obrotu, wynosi O A. da\ a rzut jego na linię działania siły OA. do sin OAM^ czyli pdm. W myśl zasady pracy będzie

Pipido + P,P2do + ... = 0.       '

Dzieląc przez do, otrzymamy równanie momentów

PP, + P,p,+...= 0.

Przypuśćmy teraz, że siły działają w przestrzeni. Rozkładamy przedewszystkiem każdą siłę P na dwie składowe, równoległą i prostopadłą do osi z. Składowe te będą Pcos i Psin. Przesunięcie AA ich punktu przyłożenia, wynikające z obrotu około osi z, jest prostopadłe do tej osi, a zatem praca pierwszej składowej jest zerem. Druga składowa jest równoległa do płaszczyzny xy, i pracę jej znajdziemy zupełnie tak samo, jak gdyby działała w płaszczyźnie xy. Praca ta wyniesie Psinpdm^ gdzie p oznacza odległość rzutu siły na płaszczyznę xy od punktu O. Ostatecznie otrzymamy, jak poprzednio

Pr sin 1P1+Pa sin 2P2+... =0.

Jest to właśnie równanie momentów.

	
	
204.    Łączenie równań. Biorąc rzuty i momenty, otrzymujemy równania równowagi dla każdego z ciał układu; z równań tych możemy tworzyć dowolne kombinacye liniowe. Mamy np. dwa równania; jedno z nich otrzymaliśmy, biorąc rzuty na pewną prostą x, a drugie, biorąc momenty względem innej prostej z. Mnożymy pierwsze z tych równań przez X, drugie przez p. i dodaj emy iloczyny. Równanie, otrzymane w ten sposób, może być przydatniejsze, do celów naszych, niż każde z równań pierwotnych.





Okażemy teraz, że takie równanie pochodne daje się zawsze otrzymać wprost z zasady pracy przygotowanej; potrzeba tylko obrać stosowne przesunięcie. Przypuśćmy, że obydwa równania, z których powstała wyżej wskazana kombinacya liniowa, są równaniami równowagi tego samego ciała. Napiszmy je w postaci

ŁP cos a=0, ^Pp=Q.

Nadajemy ciału przesunięcie dx, równoległe do osi x, i obraca-camy je około osi z o kąt d^. Na całkowitem przesunięciu siła P wykona pracę, równą sumie prac, wykonanych na każdem z przesunięć składowych, a zatem równanie pracy przygotowanej, odpowiadające całkowitemu przesunięciu, będzie

(^P cos o)dx+(ŁPp)do=0. Obrawszy dx i dw w taki sposób, aby ich stosunek był równy X: p, otrzymamy od razu żądane równanie pochodne.

Jeżeli do danej kombinacyi należą równania równowagi ciał różnych, to przesuwamy te poszczególne ciała, przyczem zawsze przesunięcie równoległe powinno odpowiadać równaniu rzutów, a przesunięcie kątowe równaniu momentów.

Tworząc równania równowagi przy pomocy rzutów i momentów, zastępujemy połączenia stosownemi reakcyami; toż samo uczynić należy przy tworzeniu równań pracy przygotowanej.

Jeżeli można z równań równowagi wyrugować pewne reakcye nieznane, dając stosowne wartości współczynnikom X, p. ..., to zawsze można otrzymać to samo równanie pochodne, również wolne od owych reakcyi, przy pomocy stosownego przesunięcia układu lub szeregu przesunięć.

	
	
205.    Przykłady na pracę przygotowaną. Prz. 1. Płaszczyzna półkolistej tarczy ma położenie pionowe, a podstawa jej spoczywa na gładkiej płaszczyźnie poziomej. Na dwa dane punkty obwodu tarczy cisną dwie ciężkie sztaby, wstawione luźno w gładkie i nieruchome rury pionowe. Jaki powinien być stosunek ciężarów sztab, aby tarcza była w równowadze?                                  (Math. Tripos, 1853.)





Oznaczamy ciężary sztab AB, A'B' przez W, W', kąty, które promienie CA, CA' tworzą z poziomą średnicą Cx, przez 9, «‘, promień tarczy przez a, odległość pomiędzy rurami przez b, wreszcie wyniesienie środków ciężkości sztab ponad Cx przez y, y'. Zasada pracy przygotowanej daje nam równanie

Fis. 62.

W cos d+ W' cos ©‘dę‘=0.

Prócz tego mamy związek geometryczny

a cos ©+a cos q‘= b.

Różniczkujemy to równanie i rugujemy de : dP. Wypadnie

W cot ę= W cot ‘, co określa stosunek żądany.

Prz. 2. Trzy ciężkie sztaby, ważące W, W2, Wa, wstawiono luźno w trzy rury pionowe i nieruchome. Końce sztab są oparte o gładką półkulę, której podstawa spoczywa na gładkiej płaszczyźnie poziomej. Prowadzimy przez środek półkuli C dowolną prostą poziomą Cx, a przez tę prostą oraz dolne końce sztab trzy płaszczyzny. Nachylenia tych płaszczyzn do poziomu oznaczamy przez 3,, 32, 33: Okazać, że w przypadku równowagi XW cot 8=0.

Prz. 3. Końce ośmiu jednakowych jednorodnych prętów połączono luźno w taki sposób, że powstał ośmiościan. Jeden wierzchołek, w którym schodzą się cztery pręty, zawieszono w punkcie nieruchomym i połączono z nim wierzchołek przeciwległy sprężystym sznurem. Naturalna długość sznura jest równa długości jednego pręta, a pod działaniem ciężaru wszystkich prętów sznur wyciągnąłby się do długości podwójnej. Dowieść, że w położeniu równowagi każda sztaba tworzy z pionem kąt arccos 3/4.                         (Coli. Ex., 1889.)

Dajmy na to, że AE, BE, CE, DE, AE, BE, CE, DE oznaczają pręty, a EF sznur sprężysty, niech prócz tego W będzie ciężarem je
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dnego pręta, 2a jego długością, i 3 jego nachyleniem do pionu. Gdy ośmiościan jest w równowadze, nadajmy mu odkształcenie symetryczne, skutkiem czego kąt 3 przy-bierze przyrost d^. Gdy obierzemy punkt E za początek, to głębokość środka ciężkości jednego z prętów górnych wyniesie a cos 8, a głębokość jednego z dolnych 3a cos0; prace przygotowane ciężarów czterech górnych prętów i czterech dolnych będą odpowiednio 4 Wd (a cos 3) i 4Wd(3acos 3).

Naturalna długość sznura wynosi 2a, a jego długość obecna EF=4a cos 0; w myśl


E(4a cos 3— 2a) 2a



prawa Hooke’a naprężenie T=


gdzie E oznacza siłę,



która mogłaby wyciągnąć sznur do długości podwójnej. W danym razie E — 8W, i praca przygotowana sznura =- Td(4a cos 3) (par. 197). Dodając te wszystkie prace przygotowane, otrzymamy

16 IW (u cos 9-)- Td (4a cos 9)=0.

Po wprowadzeniu wyżej podanej wartości naprężenia T znajdziemy łatwo, że Cos 9= 3.

Prz. 4. Cylinder, posiadający promień r i ciężar W, ma być poruszony pod górę na płaszczyźnie, nachylonej do poziomu pod kątem a, zapomocą prostej dźwigni o długości l, tworzącej z poziomem kąt 3.

Wr sin a Okazać, że potrzebna siła wynosi —— . -------.

‘                       l 1+cos (o+3)

(Math. Tripos, 1883.)

Prz. 5. Gładki drążek przechodzi przez pierścień, umocowany w ognisku elipsy. Duża oś elipsy jest pozioma, a dolny koniec drążka spoczywa na ćwiartce krzywej, bardziej odległej od owego ogniska.

(3+ V1+8e2)a

Okazać, że długość drążka musi co najmniej wynosić-------‘ gdzie a oznacza połowę dużej osi i e mimośród. (Math. Tripos, 1883.)

Prz. 6. Płyta w postaci trójkąta równoramiennego spoczywa w płaszczyźnie pionowej wierzchołkiem na dół pomiędzy dwoma gładkimi kołkami, położonymi na tym samym poziomie. Podstawa płyty jest trzy razy dłuższa od odległości pomiędzy kołkami, a kąt u wierzchołka jest równy 2a. Okazać, że zachodzi równowaga, jeśli podstawa tworzy z pionem kąt arc sin (cos 2a).              (Math. Tripos, 1881.)

Prz. 7. Trzy sztaby AB, BC, CD, każda o długości 2a, łączą się gładkimi przegubami B i C. Sztaby AB i CD są oparte o dwa gładkie kołki, położone na jednym poziomie w odległości 2c jeden od drugiego, i tworzą z poziomem jednakowe kąty a. Okazać, że naprężenie sznura AD, który utrzymuje układ w obecnej formie, wynosi — (3+2 cos 3), gdzie w oznacza wagę każdej sztaby.


Wcosec a sec2a 3c

4 La



(St John’s Coli., 1890.)

Prz. 8. Cztery sztaby równe i jednorodne są połączone przegubami i tworzą kwadrat w płaszczyźnie pionowej; jedna z przekątni tego kwadratu ma położenie pionowe, a dwie sztaby górne spoczywają na dwóch gładkich kołkach, położonych na jednym poziomie. Okazać, że na kołkach są oparte środki sztab, i wyznaczyć reakcye w przegubach.                                                     (Coli. Ex., 1884.)

Prz. 9. Trzy jednakowe, jednorodne sztaby AB, BC, CD łączą się przegubami w B i C. Końce A i D są zaopatrzone w gładkie obrączki, nawleczone na paraboliczny drut. Oś paraboli jest pionowa, wierzchołek zwrócony ku górze, a latus rectum równy połowie sumy długości wszystkich trzech sztab. Okazać, że kąt 3, który sztaba AB lub CD tworzy z pionem, czyni zadość równaniu cos I— sin $+sin 28=0.

(Coli. Ex., 1881.)

Prz. 10. Brzeg nieruchomego naczynia półkulistego o promieniu r leży w płaszczyźnie poziomej. Do naczynia włożono ciężki jednorodny prostokąt ABCD tak, że boki AD i BC są oparte o brzeg, a wierzchołki A i B spoczywają na powierzchni wewnętrznej. Okazać, że

4(r2—b2) COS 223— U2 COS 20=0,

gdzie 3 oznacza nachylenie prostokąta do poziomu, AB=2b i BC—2a.

(Coli. Ex., 1891.)

Prz. 11. Połączono luźno n jednakowych i jednorodnych sztab tak, że stanowią symetryczne tworzące stożka, którego kąt wierzchołkowy jest równy 2a. Ciężar każdej sztaby wynosi W', a długość l; owo luźne połączenie znajduje się w wierzchołku stożka. Sztaby są oparte wolnymi końcami o wewnętrzną powierzchnię kuli o promieniu r, przy-czem oś stożka jest pionowa i u wierzchołka wisi ciężar W Okazać, że

l2(3n2 W‘2+4n W' W) cos 2==(r2—[2) (n I‘+2 W),

i wyznaczyć reakcyę, działającą w wierzchołku stożka na każdą sztabę.

(Coli. Ex., 1884.)

Prz. 12. Namiot stożkowy, ustawiony na gładkiej podłodze, składa się z wielkiej liczby jednakowych trójkątów równoramiennych, połączonych luźno w wierzchołku, a ciężka obręcz, założona na namiot, utrzymuje go w obecnej formie. Okazać, że połowa kąta u wierz-

(r / 3 W’ \‘/s chołka stożka wynosi arc sin (h (Wi3W1) J ‘ gdzie W, W' oznaczają ciężary stożka i obręczy, r promień obręczy, i h wysokość trójkąta.

(St John’s Coli., 1885.)

Prz. 13. Na nieruchomej gładkiej kuli leży strefa drobnych jednakowych kulek. Zsuwaniu się kulek zapobiega sprężysta przepaska, tworząca na kuli poziome koło, którego promień widać ze środka pod

W tan a

kątem a. Okazać, że naprężenie przepaski T =----, gdzie W ozna-

2T

cza zbiorowy ciężar kulek i przepaski.          (St John’s Coli., 1885.)

Należy przyjąć, że środek ciężkości takiej strefy leży w środku wysokości.

Fankcya sił.

	
	
206.    Współrzędne układu. W statyce głównem zadaniem naszem jest wyznaczenie położeń równowagi układu ciał. Do tego są potrzebne jakieś wielkości, określające położenie układu w przestrzeni. Tak np. położenie cząsteczki w geome-tryi dwuwymiarowej jest określone, gdy znamy jej dwie współrzędne x, y. Jeżeli pewne ciało posiada swobodę ruchu w płaszczyźnie xy, to położenie jego jest określone, gdy mamy współrzędne x, y jednego z jego punktów oraz kąt 3, który pewna prosta, należąca do ciała, tworzy z osią x. Te trzy wielkości x, y i 3 nazywamy współrzędnemi ciała.





Gdy chodzi o ciało w przestrzeni, to, pragnąc określić położenie jego, podajemy (1) współrzędne x, y, z pewnego punktu A, należącego do ciała, i (2) dwa kąty, które pewna prosta AB, należąca do ciała, tworzy z osiami x i y. Jeśli tylko te wielkości są dane, to położenie ciała nie jest jeszcze całkowicie utrwalone, bo może ono obracać się około prostej AB. Potrzebny jest nadto (3) kąt, który pewna płaszczyzna, przechodząca przez AB i należąca do ciała, tworzy z pewną płaszczyzną, utrwaloną w przestrzeni. Te sześć wielkości, lub jakieś inne sześć wielkości, określających położenie ciała, zowią się współrzędnemi jego.

Jeżeli ciało jest nieswobodne, to sprawa zmienia się niewiele. Przypuśćmy dla przykładu, że końce pręta długości danej muszą pozostawać na dwóch danych krzywych w płaszczyźnie pionowej. W takim razie położenie pręta daje się określić nachyleniem jego do poziomu lub odciętą jednego z końców. Każda z tych wielkości, albo jakaś inna wielkość, określająca położenie pręta, zowie się jego współrzędną.

	
	
207.    W przypadku ogólnym, gdy chodzi o cały układ ciał, luspółrzędnemi układu zowią się jakiekolwiek wielkości, określające położenia wszystkich części składowych układu.





Jeśli pewien punkt musi pozostawać na pewnej powierzchni lub pewnej linii, to pomiędzy współrzędnemi Kartezyusza tego punktu istnieją związki, wyrażone w równaniach. Zupełnie tak samo, gdy ruch układu podlega pewnym ograniczeniom, to współrzędne układu są powiązane równaniami. Przy pomocy tych równań można wyrugować tyle współrzędnych, ile jest równań; osiągniemy przez to, że położenie układu będzie zależało od mniejszej liczby współrzędnych. Te pozostałe współrzędne będą niezależne jedne od drugich, bo już nie istnieją żadne równania połączeń, ograniczających ruch układu.

Przypuśćmy, że układ jest odniesiony do współrzędnych niezależnych. Każda z nich może się zmieniać, gdy inne pozo-stają bez zmiany, a więc istnieje tyle rodzajów ruchu układu, ile jest współrzędnych. Każde małe przesunięcie, określone przez jednoczesną zmianę pewnej liczby współrzędnych, możemy odtworzyć, zmieniając naprzód jedną ze współrzędnych, potem drugą i t. d. Z tego względu liczba współrzędnych niezależnych zowie się liczbą stopni swobody układu.

	
	
208.    Funkcya sił. Umieśćmy układ ciał w pewnem położeniu i dajmy mu następnie nieskończenie małe przesunięcie, nienaruszające ograniczeń, którym skutkiem danych połączeń podlega ruch układu. Niech X, Y, Z będą składowemi siły P, a {xyzj współrzędnemi prostokątnemi jej punktu przyłożenia. Praca siły P jest równa pracy składowych, a zatem ogólne wyrażenie pracy będzie





^Pdp^{Xdx + Ydy + Zdz)......... (1); znak sumy Z rozciąga się tu na wszystkie siły układu.

Niech 3, “, ... będą współrzędnemi niezależnemi układu, a zatem współrzędne x, y, z każdego punktu każdego ciała dadzą się wyrazić w funkcyach 3, ©... Tak więc x, y, z oraz

	
X, Y, Z są to wszystko funkcye wiadome współrzędnych 3, «... Gdy wprowadzimy je do (1), to równanie to przybierze postać



2Pdp=@d8+@dp+...               (2), gdzie 0, ... oznaczają znane funkcye współrzędnych 3, ©...

	
	
209.    Współczynniki Q, c ,... posiadają nieraz elementarne znaczenie statyczne. Przypuśćmy dla przykładu, że gdy 8 się zmieni (przy-czem inne współrzędne pozostają bez zmiany), to ciało obróci się około pewnej prostej o kąt d3. W takim razie Od8 jest pracą, wykonaną przez siły podczas tego obrotu. Lecz według paragrafu 203 praca ta wynosi Md^, gdzie M jest momentem, a zatem 0 jest momentem sił względem owej prostej.





Przypuśćmy dalej, że zmiana, zachodząca we współrzędnej d^, wywołuje przesunięcie ciała równoległe do osi x; w takim razie według tego samego paragrafu H oznacza sumę rzutów sił na oś x.

	
	
210.    Znaleziono, że najczęściej powyższe wyrażenie na pracę jest różniczką zupełną pewnej wielkości, którą oznaczymy przez W. Przypuśćmy dla przykładu, że siła P, działająca na punkt (xyz), jest odpychaniem, wywieranem przez pewien środek sił C, czyli że jej linia działania przechodzi wciąż przez nieruchomy punkt C. Praca takiej siły dla każdego drobnego przesunięcia wynosi Pdr, gdzie r oznacza odległość punktu przyłożenia od punktu C. Jeżeli P jest funkcyą odległości r, to ta część wyrażenia 'LPdp, która pochodzi od siły P, jest różniczką zupełną.





Albo przypuśćmy, że pomiędzy punktami A i A', należącymi do układu, działa siła T. Może ją wywierać sznur sprężysty, podobny do opisanego w par. 197, albo jakaś inna przyczyna, dość że siła ta jest pewną funkcyą odległości pomiędzy A i A’. Praca siły takiej wynosi — Pdr; jest to różniczka zupełna, bo T jest funkcyą r.

Układ może podlegać działaniu różnorodnych sił centralnych, albo mogą w nim działać siły pomiędzy różnemi parami punktów; we wszystkich tych przypadkach część pracy przygotowanej, dostarczona przez każdą z sił, jest różniczką zupełną.

Dwa przypadki powyższe są typowe. Zwykle siły zewnętrzne są siłami centralnemi, a siły wewnętrzne albo wcale nie występują w równaniu pracy przygotowanej, albo działają pomiędzy parą punktów układu, jak wyżej opisane.

	
	
211.    We wzorze (2) paragrafu 208 mamy ogólne wyrażenie pracy sil w jakiemkolwiek małem przesunięciu, a więc całka tego wyrażenia, wzięta w pewnych granicach, jest pracą sił, wykonaną podczas przesunięca skończonego, gdy układ przechodzi od pewnego położenia I do innego położenia II. Aby znaleźć granicę niższą nadajemy współrzędnym 3, © ... te wartości, które przybierają one w położeniu I, granicę wyższą znajdziemy, dając tym współrzędnym wartości, odpowiadające położeniu II.





Jeżeli wyrażenie (2) jest różniczką zupełną, to możemy wykonać całkowanie, nie znając wcale drogi, którą układ przechodzi z jednego położenia do drugiego. Całka W jest w takim razie funkcyą granic i zależy jedynie od pierwotnego i końcowego położenia układu. Położenia pośrednie nie wywierają wpływu, a zatem praca sił w przejściu z jednego położenia do drugiego jest zawsze ta sama, jakąkolwiek drogę obierze układ, jeżeli tylko nigdzie na niej nie zostaną naruszone związki geometryczne, ograniczające swobodę ruchu.

Jeżeli wyrażenie ItPdp jest różniczką zupełną, to mówimy, że siły tworzą układ konserwatywny.

Obierzmy pewne położenie układu ciał za podstawę; określimy je wartościami współrzędnych 3=31, ©=®1,... Biorąc podstawę za niższą granicę całki, a jakieś położenie ogólne za granicę wyższą, otrzymamy

w= / ^.Pdp - F(9, -)- F(%, ,P.).

Gdy nie zachodzi potrzeba obierania podstawy od razu, to pi-szemy całkę w postaci nieokreślonej, a mianowicie

W=F(9, P,..)+C.

Funkcya W, zwłaszcza w postaci nieokreślonej, zowią się zwykle funkcyą sił.

W pewnych razach podstawę obiera się za granicę górną, a położenie ogólne za dolną. Dajmy na to, że podstawę określają wartości 3 =92, ={2,...; w takim razie otrzymamy całkę

v-F(9, 2-)-F(0, P,.).

Zowie się to zwykle energią potencyalną sił w odniesieniu do położenia, określonego wartościami 3=32, ©=®2,... Jeżeli w obydwóch razach obrano tęż samą podstawę, to W= — V.

Statyka. 12

Wypada zaznaczyć, że w każdym razie W + V wyraża pracę, którą wykonają siły, gdy układ przejdzie jakąkolwiek drogą z położenia ($1, 1,...) do położenia (32, ?2,-)- Jeżeli te położenia zostały utrwalone, to suma owa jest stała dla wszystkich położeń układu.

	
	
212.    Maksymum i minimum. Dajmy na to, że układ jest w równowadze; w takim razie dla każdego przesunięcia przygotowanego dW=0, a więc W osiągnęło maksymum, lub minimum, albo stoi w mierze. Alternatywa ostatnia odpowiada przypadkowi, w którym zniknięcie pierwszych pochodnych nie jest oznaką prawdziwego maksymum lub minimum.





Zyskujemy tu nową metodę wyznaczania położeń równowagi układu. Uważamy funkcyę sił jako wiadomą funkcyę współrzędnych 3, «, ..., a mianowicie

1

 Dowód dynamiczny. Jeżeli układ wyruszył ze stanu spoczynku, to jak wiadomo z dynamiki, jego siła żywa po przesunięciu jest równa pracy, wykonanej przez siły zewnętrzne. Lecz siła żywa jest to

suma iloczynów z mas cząsteczek przez połowy kwadratów ich szybkości, a zatem siła żywa nie może być ujemna. Jest przeto rzeczą oczywistą, że układ nie może wyruszyć taką drogą, na której praca przygotowana sił byłaby ujemna.


W=F(, P,...)+C.

Aby znaleźć położenia równowagi, wyznaczamy przy pomocy prawideł rachunku różniczkowego te wartości współrzędnych 3, ©..., dla których W osiąga maksymum lub minimum.

	
	
213.    Jeżeli wszystkie współrzędne 3, ©,... są niezależne, to przyrównywamy do zera wszystkie pochodne cząstkowe funkcyi W. Jest to toż samo, co nadać układowi stosowne przesunięcia geometryczne, które otrzymamy, zmieniając po kolei 0, « ..., i przyrównać do zera każdą z odnośnych prac przygotowanych. Pomimo to metoda, wskazana w par. poprzedzającym, jako analityczna a nie geometryczna, posiada w wielu razach stanowczą wyższość.





Jeżeli położenie układu nie daje się wyrazić we współrzędnych niezależnych, to możemy sprowadzić zagadnienie do rozwiązywania równań przy pomocy metody czynników nieoznaczonych Lagrange‘a.

Przypuśćmy, że pomiędzy n współrzędnemi 31, 32, ... zachodzi m związków geometrycznych

1(9,9.,.)==0, /(9,, 9..)=0 i t. d.

Tak więc z n współrzędnych n—m jest niezależnych. Różniczkując i wprowadzając m czynników X15 X,... , otrzymamy


-0W  Of   0f
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dł=0.



gdzie Z rozciąga się na 31, 32.... Mamy tu do rozporządzenia m czyn-ników ku X2. —; obieramy je tak, by zniknęły współczynniki różniczek m współrzędnych zależnych. Pozostałe współrzędne są niezależne; możemy każdą z nich zmieniać niezależnie od pozostałych, a przeto z równania wynika, że odpowiednie współczynniki muszą być również zerami. Skoro współczynniki wszystkich d8 są zerami, mamy więc n równań postaci

dW   dR dR

— +          +...=o.
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Dołączając do tego m danych związków geometrycznych, będziemy mieli m+n równań do wyznaczenia n współrzędnych i m czynników.

	
	
214.    Równowaga trwała i chwiejna. Układ ciał jest pewnem położeniu w równowadze, jeżeli funkcya W posiada tem położeniu maksymum lub minimum, albo jeśli stoi mierze. Pomiędzy tymi różnymi przypadkami istnieją jednak ważne różnice.





Dajmy na to, że układ pozostaje iv równoiuadze iv taktem położeniu, w którem W osiągnęło prawdziwe maksymum. Gdy układ przejdzie do jakiegokolwiek położenia sąsiedniego bez naruszenia połączeń, to W się zmniejszy. Umieśćmy istotnie układ w jednem z owych położeń sąsiednich. Nie będzie już tam równowagi, a więc rozpocznie się ruch. Ruch ten w myśl par. 200 musi być taki, aby początkowa praca sił była dodatnia, t. j. aby W wzrastało. Stąd wynika, że układ usiłuje zbliżyć się do pierwotnego położenia równowagi. Mówimy, że w położeniu owem równowaga była trwała.

Przypuśćmy teraz, że układ pozostaje w równowadze w ta-kiem położeniu, w którem W osiągnęło prawdziwe minimum. Gdy układ przejdzie do jakiegoś położenia sąsiedniego, to W wzrośnie. Umieśćmy układ w jednem z owych położeń sąsiednich. Znajdziemy tak samo, jak poprzednio, że pójdzie on drogą, która oddala go od pierwotnego położenia równowagi. Równowaga zowie się w tym razie chwiejną.

Przypuśćmy wreszcie, że układ pozostaje w równowadze w ta-kiem położeniu, w którem dla W nie zachodzi ani prawdziwe maksy mum, ani prawdziwe minimum. W niektórych położeniach sąsiednich W jest większe, w innych mniejsze. Rozumując tak samo, jak poprzednio, znajdziemy, że równowaga jest trwała dla jednych przesunięć, a chwiejna dla innych. Zgodnie z de-finicyą, podaną w par. 75, taki stan równowagi uważać należy wogóle za nietrwały.

	
	
215.    Rozważaliśmy jedynie, w jaki sposób układ ruszy ' z miejsca, lecz nie badaliśmy wcale, czy w dalszym ciągu będzie on zbliżał się do położenia równowagi, czy oddalał od niego. Wyjaśniliśmy już w paragrafie 75, że jest to zagadnienie dynamiczne, wogóle jednak wyniki badań dynamicznych są zgodne z tymi, do których doszliśmy tutaj.


	
216.    Zamiast funkcyi prac można stosować energię po-tencyalną. Suma W + V jest stała, a zatem wszystkie wyniki powyższe zamieniają się na wprost odwrotne. Gdy umieścimy układ w jakiemkolwiek położeniu, w którem niema równowagi, to zacznie się on poruszać w taki sposób, że energia potencyalna będzie się zmniejszała. W położeniu równowagi energia potencyalna osiąga maksymum lub minimum, albo stoi w mierze. Równowaga jest trwała lub chwiejna stosownie do tego, czy nastąpiło prawdziwe minimum, czy maksymum.


	
217.    W rozważaniach poprzedzających przyjmowaliśmy, że żadne z położeń sąsiednich nie jest położeniem równowagi; jest wszakże rzeczą możliwą, że W pozostaje stałem dla jakichś dwóch położeń kolejnych, a zmniejsza się, gdy układ przechodzi do każdego innego położenia sąsiedniego. W takim razie równowaga jest obojętna dla przesunięcia od jednego z owych położeń kolejnych do drugiego i trwała dla wszystkich przesunięć pozostałych. Możliwe są tu różne przypadki. Tak np. równowaga może być obojętna dla większej liczby przesunięć lub nawet dla wszystkich przesunięć z danego położenia; albo W może być stałe dla wszystkich położeń, określonych przez pewne związki pomiędzy współrzędnemi, zmniejszać się zaś dla wszelkich zboczeń układu od tego miejsca geometrycznego. Mamy w takim razie miejsce geometryczne położeń równowagi, i w ka-żdem z nich równowaga jest trwała dla wszelkich przesunięć w bok od tego miejsca. Jeżeli układ ciał posiada tylko dwie współrzędne 3, «, to możemy uważać 3, « i W za trzy współrzędne x, y, z powierzchni. Każda osobliwość, pozostająca w związku z maksymum lub minimum współrzędnej z takiej powierzchni, posiada odpowiednik statyczny w położeniach równowagi układu.


	
218.    Wzniesienie środka ciężkości. Często spotykamy się z następującem ważnem zastosowaniem twierdzenia pracy przygotowanej. Przypuśćmy, że ciążenie jest jedyną siłą zewnętrzną, działającą na układ. Oznaczmy przez m,, m,... masy różnych cząsteczek układu, przez 21, Z... ich wzniesienia nad pewną stałą płaszczyzną poziomą i wreszcie przez z wzniesienie ich środka ciężkości. Wypadnie wtedy z^m = ^mz. Jeżeli g jest stałe, a więc mg wyraża ciężar masy m, to praca przygotowana ciążenia będzie





dW= —hmgdz^ —gdz^m^ a zatem funkcya sił W= —zg^m+C.

Funkcya ta osiągnie prawdziwe maksymum lub prawdziwe minimum stosownie do tego, czy środek ciężkości zajmie położenie najniższe, czy najwyższe.

Wyprowadzamy stąd twierdzenie następujące. Przypuśćmy, że na układ ciał działają tyłka siły ciążenia i takie reakcye wzajemne, które nie występują w równaniu pracy przygotowanej; przypuśćmy dalej, że układ ten jest podtrzymywany przez reakcye pewnych nieruchomych powierzchni gładkich lub przez jakieś inne siły, nie występujące w równaniu pracy przygotowanej. Równowaga zachodzi dla tych położeń, w których wzniesienie środka ciężkości układu nad jakąś stałą płaszczyzną poziomą osiąga maksymum lub minimum, albo stoi w mierze. Równowaga będzie trwała lub chwiejna zależnie od tego, czy wzniesienie środka ciężkości osiągnęło prawdziwe minimum, czy nie osiągnęło.

	
	
219.    Następstwo kolejne położeń trwałych i chwiejnych. Przypuśćmy, że skutkiem istniejących połączeń układ posiada tylko jeden stopień swobody. Gdy układ ten porusza się w przestrzeni, to jego środek ciężkości zatacza pewną linię określoną. Położenia, w których rzędna jego osiąga prawdziwe maksymum lub prawdziwe minimum oczywiście następują naprzemian. Stąd wynika, że położenia równowagi prawdziwie stałej i równowagi prawdziwie chwiejnej również następują naprzemiany.


	
220.    Metoda analityczna badania trwałości równowagi. Aby okazać, w jaki sposób twierdzenie powyższe daje się stosować do wyznaczania położeń równowagi w sposób analityczny, przypuśćmy, że układ posiada tylko jeden stopień swobody. Obieramy naprzód pewną wielkość, określającą położenie układu; będzie to współrzędna jego. Oznaczmy ją literą 3. Chodzi więc o znalezienie tej wartości 3, przy której układ jest w równowadze. Niech z oznacza wzniesienie środka ciężkości układu nad pewną stałą płaszczyzną poziomą. Opierając się na geometrycznych danych zagadnienia, wyrazimy z w funkcyi 0, i wówczas wyznaczymy żądaną wartość 3 z ró-dz





wnania — = 0. Aby sprawdzić, czy równowaga jest trwała czy d^z

chwiejna, różniczkujemy po raz drugi i znajdujemy —09. Jeżeli ta druga pochodna dla tylko co wyznaczonej wartości 3 jest dodatnia, to równowaga jest trwała, w przeciwnym razie chwiejna. Jeżeli druga pochodna jest zerem, to należy zbadać trzecią i wyższe pochodne stosownie do prawideł, podawanych w rachunku różniczkowym na rozróżnianie maksymum i minimum funkcyi jednej zmiennej niezależnej.

Jeżeli współrzędna 9 nie zmienia się od 3= oo do 3=+oo, to może ona sama posiadać maksyma i minima. Warto przypomnieć, że przy tych wartościach zmiennej 3 wzniesienie z może osiągać maksyma i minima odmienne od tych, które otrzymujemy przy pomocy zwykłej metody rachunku różniczkowego.

	
	
221.    Przykłady. Prz. 1. Jednorodna ciężka sztaba AB jest oparta o gładką pionową ścianę i o gładki kołek C. Wyznaczyć położenie równowagi i zbadać, czy równowaga jest trwała, czy chwiejna.





Niech 2a będzie długością sztaby, b odległością kołka od ściany; kąt, który sztaba tworzy ze ścianą, oznaczymy literą 9 i obierzemy za oś x prostą poziomą, przechodzącą przez C. W takim razie wzniesienie środka ciężkości sztaby


of
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z—a cos 3 — b cot 3,


dz d8 d2z 78.2



— — a sin 3 + b (sin 3) -2,

= — a cos 3— 2b (sin 3)-3 cos 3.

dz

Zakładając —=0, znajdziemy, że równowaga następuje, gdy sin 33=—; d^’                                                                  a

d2z równowaga ta jest chwiejna, gdyż —— jest ujemne.

Prz. 2. Prosty stożek ścięty wisi na gładkiej ścianie na sznurze, przyczepionym do obwodu podstawy. Długość sznura / jest równa średnicy podstawy, a odległość środka ciężkości stożka od podstawy wynosi kl. Stożek pozostaje w równowadze, opierając się o ścianę jednym punktem obwodu podstawy. Okazać, że tangens kąta, który

2k

sznur tworzy z pionem, jest równy —. Czy równowaga jest trwała?

Prz. 3. Ciało pozostaje w równowadze pod działaniem trzech sił P, Q, R, przyłożonych w punktach A, B, C. Gdy poruszymy ciało, to siły nie przestają działać w tych samych kierunkach i nie zmieniają się pod względem wielkości. Odległości punktów A, B, C w stanie równowagi od punktu O, w którym przecinają się linie działania sił, wynoszą a, b, c; uważamy je za dodatnie, gdy są mierzone od punktu O w kierunkach sił. Okazać, że dla przesunięć w płaszczyźnie sił równowaga jest trwała, obojętna lub chwiejna stosownie do tego, czy Pa+QbpRc jest wielkością dodatnią, zerem, czy ujemną.

(Coli. Ex., 1892.)

Rozwiązanie elementarne podaliśmy w par. 77. Aby zastosować kryteryum pracy, obracamy ciało o kąt 3 około punktu O i pozostawiamy je w spokoju w tern nowem położeniu. Podczas powrotu ciała do położenia pierwotnego siły wykonają pracę X(1— cos 3), gdzie X=Pa + Qb+Rc. Jeżeli X jest dodatnie, to równowaga jest trwała (200 lub 214).

[image: ]



	
	
222.    Prz. Ciężkie ciało może poruszać się w płaszczyźnie pionowej, przyczem jego punkty A i B muszą pozostawać odpowiednio na dwóch gładkich krzywych podobnych i równych, posiadających równania x—f(<y') i x=—f{y), jeśli'oś y ma kierunek pionowy. Prostopadła, poprowadzona ze środka ciężkości G do cięciwy AB, dzieli ją na pół w E. Wskazać, jak się znajduje położenia równowagi, i sprawdzić, czy w położeniu poziomem cięciwy AB równowaga jest trwała.





Niech będzie AB=2a, GE=h, i niech 9 oznacza nachylenie prostej AB do poziomu, a (xy) współrzędne środka ciężkości G. Ponieważ punkty A, B leżą na danych krzywych, przeto


x+h sin 3+a cos ^=f(y—h cos 3+a sin 8)   \

x+h sin 8—a cos =- f{y—h cos 9— a sin 9) /

Rugując x, otrzymamy

2a cos $=fy—h cos 8+a sin ^)+f(y — h cos I— a sin 9)

Różniczkujemy i zakładamy —=0. Wypadnie

do

-2a sin ^z^f^y—h cos 8+a sin 9)(h sin $+a cos 8) \

Ą-f'{y—h cos I— a sin 8)(h sin 9— a cos 9) / '




(1).




(2).




(3).



Z równania tego łącznie z (1) możemy wyznaczyć x, y i 3. Oczywiście 3=0 czyni zadość (3), a zatem w położeniu poziomem AB przypada jedno z położeń równowagi.

Aby zbadać rodzaj równowagi w tem położeniu, różniczkujemy (2) dwa razy, i po dokonaniu redukcyi znajdziemy bez trudności, że

d2U _a+a2f"(y-h') d^~~ f(y-h)


(4).



Równowaga będzie trwała lub chwiejna stosownie do tego, czy strona prawa jest ujemna, czy dodatnia.

• d2y .                                , .

Jeżeli w położeniu równowagi — jest zerem, to mówimy, że równowaga jest obojętna w przybliżeniu pierwszem. Należy w takim razie różniczkować (2) w dalszym ciągu, aby się przekonać, czy y osiąga prawdziwe maksymum, czy minimum, czy ani jedno ani dru-gie. Znajdziemy, że —=0 i

d‘y_-a+(3h2-4@2f"(y-h)+6azhf""(y-h±a‘f""(y-h)

~d^~               ”(-1)

Równowaga będzie trwała lub chwiejna stosownie do tego, czy prawa strona jest ujemna czy dodatnia. Jeżeli i to znika, uciekamy się do pochodnych wyższych.

	
	
223.    Prz. 1. Pryzmat, którego przekrój poprzeczny jest trójkątem równobocznym, spoczywa dwiema krawędziami na dwóch gładkich płaszczyznach, nachylonych do poziomu pod kątami a i 3. Okazać, że





23 sin a sin 3 +sin (A.+3) tan 0=---—-----,

V3 sin (a — 3)

jeżeli 3 oznacza kąt, który ściana pryzmatu, zawierająca owe krawędzie, tworzy z pionem.                                 (Coli. Ex., 1889.)

Prz. 2. Czasza ma postać takiej powierzchni obrotu, że każdy pręt, spoczywający w niej poziomo, jest w równowadze obojętnej w przybliżeniu pierwszem. Okazać, że

dx\2

—) =2log^ dy/

jest równaniem różniczkowem krzywej tworzącej (południka), jeżeli oś y ma kierunek pionowy. Okazać prócz tego, że równowaga będzie trwała lub chwiejna stosownie do tego, czy długość pręta jest mniej-2a

sza, czy większa od —-, gdzie e oznacza podstawę logarytmow natu-ela

ralnych.

Prz. 3. Jednorodna płyta kwadratowa może się obracać w płaszczyźnie pionowej około wierzchołka A. Sznur, przyczepiony do sąsiedniego wierzchołka B, przechodzi przez blok, umieszczony pionowo

1 nad A w odległości równej bokowi kwadratu, i dźwiga ciężar V2 razy większy od ciężaru płyty. Wyznaczyć położenia równowagi i określić ich rodzaje.                                      (Matli. Tripos, 1855.)

Prz. 4. Końce nieważkiego pręta mogą się przesuwać po gładkiej obręczy, położonej w płaszczyźnie pionowej. U końców pręta wisi ciężar na dwóch sznurach, przechodzących przez mały gładki pierścionek, umocowany pionowo pod środkiem obręczy. Dowieść, że ciężar jest w równowadze trwałej, gdy pręt przechodzi przez środek biegunowej pierścionka względem obręczy.            (Math. Tripos, 1859.)

Prz. 5. Trzy wierzchołki jednorodnego i foremnego czworościanu pozostają w zetknięciu z wewnętrzną powierzchnią nieruchomego naczynia w kształcie półkuli; wielkość naczynia jest taka, że gdyby je dopełnić do kuli, to powierzchnia jego przeszłaby i przez czwarty wierzchołek czworościanu. Okazać, że czworościan jest w równowadze we wszystkich położeniach, prócz tego okazać, że 3(P2 + Q2 + R2) — —2(QR+RP+PQ)=3 W2, gdzie W oznacza ciężar czworościanu, a P, Q, R reakcye naczynia.                                 (Math. Tripos, 1869.)

Prz. 6. Prosty stożek styka się swą krzywą powierzchnią z dwoma jednakowymi gładkimi, cylindrami. Osi tych cylindrów są równoległe i leżą w jednej płaszczyźnie poziomej, a przekroje poprzeczne są kołami o promieniu a. Okazać, że stożek może pozostawać w równowadze, gdy oś jego leży w płaszczyźnie prostopadłej do osi cylindrów i tworzy z pionem kąt 3, czyniący zadość równaniu 4d cosł=3rcos2a+4a coso; d oznacza tu odległość pomiędzy osiami cylindrów, 20 kąt wierzchołkowy stożka i r promień jego podstawy. Zbadać prócz tego, czy równowaga jest trwała.                              (Math. Tripos, 1890.)

Prz. 7. Prosty stożek, którego wysokość jest równa h, a kąt wierzchołkowy 2a, wstawiono w okrągły otwór o promieniu a, zrobiony w płycie poziomej. Okazać, że przy położeniu pionowem osi stożka równowaga jest trwała lub chwiejna stosownie do tego, czy 16a jest większe, czy mniejsze od od 3h sin 2o.

(St John’s Coli., 1887.)

	
	
224.    Prz. Koniec A prostej sztaby AB o długości l opiera się o gładką pionową ścianę, a koniec B o nieznaną krzywą. W zniesienie środka ciężkości sztaby nad pewną płaszczyzną poziomą wynosi h. Wyznaczyć tak postać krzywej, aby w położeniu równowagi zachodził związek 4ch — l2—c2, jakiekolwiek będzie l i h.          (Zagadnienie Boole’a.)





Niech (0, y‘) i (x, y) będą współrzędnemi punktów A i B. W takim razie

2h=y+y‘ . . . (i),     x2+^y-hy=i2... (2)

Przedewszystkiem wypada stwierdzić, że możliwa jest krzywa, na której sztaba o danej długości l będzie w równowadze w sposób, opisany w zagadnieniu. Taką krzywą wyznaczymy, czyniąc wysokość h stałą. Będzie to elipsa (2), gdzie h i l posiadają jakiekolwiek wartości stałe, czyniące zadość danemu związkowi. Obwiednia wszystkich takich elips odpowiada także zagadnieniu mechanicznemu, gdyż obwiednia styka się z każdą elipsą, i obydwie krzywe wywierają reakcye jednakowe. Wyznaczymy obwiednię w sposób zwykły; będzie to parabola x2=4cy.

Można otrzymać ten sam wynik bez uciekania się do teoryi obwiedni. W stanie równowagi przy l stałem dh=0, a zatem różniczkując (2), otrzymamy

xdx + 4(y — h) dy=0.

Lecz związek (2) musi być spełniony i w tym razie, gdy zmieniają się jednocześnie l i h, zatem

xdx+4(y—h)(dy— dh)—ldl,

a ponieważ 4ch—l2=c2, przeto

2cdh=ldl.

Rugując z tych równań różniczki, znajdziemy 2(h—y)=c, a stąd i z danego związku wyznaczymy h i l w funkcyach y. Podstawiając to w (2), otrzymamy żądany związek pomiędzy x i y. Sprowadza się on do podanej wyżej paraboli.
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225.    Prz. Ciężkie ciało może się poruszać w płaszczyźnie pionowej w taki sposób, że dwie jego proste CA i CĘ przesuwają się przytem po dwóch podobnych i równych krzywych nieruchomych. Równania tych krzywych są p^f^} i (ł—f^'\ gdzie p i q oznaczają długości prostopadłych, poprowadzonych z początku układu do stycznych, a w i o’ kąty, które te prostopadłe tworzą z odwrotnemi stronami osi x, gdy oś y ma kierunek pionowy. Środek ciężkości G leży na dwusiecznej kąta C B w odległości h od każdej z prostych CA, CB. Wskazać, jak się wyznacza kąt, który prosta CG- tworzy z pionem w stanie równowagi, i jak można rozpoznać rodzaj           Fig. 66. równowagi, gdy CG zajmuje położenie pionowe.





Oznaczmy przez 2a kąt C, przez 9 nachylenie dwusiecznej CG do pionu, a przez y wzniesienie punktu G. Z rozważań geometrycznych wynika, że

y sin 2o=(p— h) cos (3—a)+(q-h) cos (3+a).

dy

Zakładamy —-=0, uwzględniając przytem, że p—f^+a) i q=f(o— a);

otrzymamy tym sposobem równanie do wyznaczenia 3.

Gdy CG ma położenie pionowe, to 3=0, i zatem p=q. Różniczkując po raz drugi, znajdziemy ' d2p\         dp


sin 2a d2y

2792



h-p-\---cos a+2— sina.


d9



d92/ d9

Można podać interpretacyę geometryczną tej wartości drugiej pochodnej. Gdy CG posiada położenie pionowe, to prosta CA styka się z jedną z linii prowadzących w punkcie P. Oznaczmy przez p promień krzywizny owej linii w P i przez § odciętą poziomą tego punktu. Można okazać, że

d2y

Sin a--= h—p— 26 sec a. d92

Równowaga jest trwała lub chwiejna stosownie do tego, czy ta war-dzu                                         . ćCu

tosć — jest dodatnia, czy ujemna. Jeżeli —=0, to wypada róŻnicz-d^                             dz^ kować raz jeszcze.

	
	
226.    Przykłady z atomistyki. Teorya atomów Bosko wieża dostarcza dobrych przykładów na określanie trwałości równowagi przy pomocy funkcyi sił. Zagadnienia, które tu zamieszczamy, prawie wszystkie zostały podane przez Sir W. Thomsona (późniejszego lorda Kel-vina) w Naturę z listopada 1889 r.





Do celów naszych wystarczy wiedzieć, że według Boskowicza materya składa się z atomów lub punktów, pomiędzy którymi zachodzi odpychanie przy odległościach najmniejszych, przyciąganie przy większych, odpychanie przy jeszcze większych i t. d.; kończy się na przyciąganiu według prawa Newtona dla wszelkich odległości, dla których prawo to zostało stwierdzone. Boskowicz przyjmował liczne przejścia od odpychania do przyciągania i odwrotnie, my jednak dla uproszczenia sprawy będziemy rozważali jedynie zagadnienia z jedną taką zmianą.

Przypuśćmy więc, że siły, które dwa atomy wywierają jeden na drugi, są odpychające, równe zeru, lub przyciągające stosownie do tego, czy odległość pomiędzy tymi atomami jest mniejsza od p, równa p, lub większa od p. W tern przypuszczeniu rozważymy trwałość równowagi pewnych grup atomów.

	
	
227.    Prz. 1. Trzy cząsteczki o masach m, m', m" odpychają się nawzajem w taki sposób, że siła działająca pomiędzy m i m1 wyraża się wzorem F= — mm\r—p)"-1, gdzie n jest liczbą całkowitą parzystą. Cząsteczki te są w równowadze, gdy tworzą trójkąt równoboczny o boku p. Okazać, że równowaga jest trwała.                             .





Wyraz funkcyi sił W, odpowiadający sile F, będzie

J n

Dajmy na to, że atomy zostały rozsunięte, i że boki trójkąta wynoszą obecnie p+x, p+y, p+z. W myśl paragrafu 211 będzie

n^C— W)= m'm"xn + m' mynFmm'zn.

Równowaga jest trwała lub chwiejna stosownie do tego, czy W osiągnęło maksymum, czy minimum, albo czy prawa strona ostatniego równania osiągnęła minimum, czy maksymum. Lecz n jest parzyste, a zatem prawa strona osiąga minimum, gdy x, ij i z są zerami; przy tych wartościach prawa strona jest równa zeru, a przy wszystkich innych wartościach większa od zera. Stąd wynika, źe równowaga jest trwała.

Założyliśmy tutaj, że prawo siły zawiera tylko jedną potęgę r—p, ale toż samo rozumowanie nie przestaje być słusznem i w tym razie, gdy siła wyraża się wielomianem, złożonym z wyrazów w różnych potęgach nieparzystych. Można nawet posunąć jeszcze dalej uogólnienie, bo dostatecznem będzie, aby najniższa potęga była nieparzysta.

Zupełnie tąk samo daje się dowieść, że grupa, złożona z czterech cząsteczek, umieszczonych w wierzchołkach foremnego czworościanu o krawędzi p, stanowi układ trwały.

Prz. 2. Trzy jednakowe atomy A, B, C są w równowadze na linii prostej. Siła odpychająca F=-u(r—p)"1, gdzie n jest liczbą całkowitą parzystą. Zbadać, czy konfiguracya taka jest trwała, czy chwiejna.

W położeniu równowagi każda z odległości AB i BC musi być mniejsza od odległości krytycznej p, na-BAC tomiast odległość AG powinna być wię----—           ksza od p. Przypuśćmy, że AB= BC — a.

4           B C Ponieważ chodzi nam tylko o przesunię-

Fig 67            cia względne, założymy przeto, że atom 18 1             A jest nieruchomy. Dajmy na to, że atomy B, C zostały przesunięte do B', C', i niech (xy) będą współrzę-dnemi punktu B' w odniesieniu do B, a ^'y') współrzędnemi punktu C w odniesieniu do C. Oznaczywszy jeszcze AB' przez r, otrzymamy

(                                  y2 r=(a+x)2+y2) =a+x+— +. ,

zatem

{r-p)n = ęa-p)n + ii(a-p)n-'l(x+^ + I^-—(a-p)n~2x2 + ... \ AC/ A

Gdy w tem wyrażeniu zastąpimy (xy) przez (x‘— x, y' — y), to otrzymamy (r"— p)n, gdzie r"=B' C'; gdy natomiast zastąpimy (xy) przez (x‘y‘) i napiszemy 2a zamiast a, to otrzymamy (r'—pS\ gdzie r'=AC.

Łącząc te wyrażenia znajdziemy, jak poprzednio

I( o- w) = (r-p^+^-py+(" -Py=

=a-p-(=+ 0-123402) + n“"a-p—Auace—p-

+n(2a-p)"—‘(x‘+%} + "0,1(2a-p)"-2x"+..

Wszystkie wyrazy stałe zostały tu pochłonięte przez C.

W położeniu równowagi W osiąga maksymum lub minimum, a w a w w d W zakładamy więc —=0,  -—=0,  — =0,  -—=0. Stąd wyniknie dx Ox‘ dy oy'

(a— py~ 1+ (2a—p)"‘=0. Ponieważ n—1 jest nieparzyste, i p zawiera

2p


Można dojść do



się pomiędzy a i 20, przeto — (a—p)=2a—p, i d=3 • tego samego w sposób prostszy, przyrównawszy siły, działające na A, t. j. odpychanie atomu B i przyciąganie atomu C.

Aby rozpoznać, czy W osiągnęło maksymum czy minimum, badamy wyrazy drugiego stopnia. Znajdziemy, że po prawej stronie dają one razem

—n(p—a"—C2U.V2  --(5—(p-ay-2 1x*+x"2.+(x‘—x)?2i.

Oczywiście wyrażenie to nie może zachować tego samego znaku dla wszystkich wartości x, y, x', y', gdyż wyrazy z (y, y'} są ujemne, a z (x, x‘) dodatnie; wnioskujemy przeto, że W nie osiągnęło ani maksymum ani minimum. Równowaga jest trwała dla wszystkich przesunięć, gdy atomy pozostają na prostej pierwotnej, i chwiejna dla wszystkich przesunięć prostopadłych do tej prostej. Na ogół równowaga jest chwiejna.

Obraliśmy metodę powyższą, aby okazać, jak można posługiwać się tutaj prawidłami rachunku różniczkowego. Ten sam wynik daje się otrzymać prostszym sposobem. Przesuwamy jedną z cząsteczek prostopadle do prostej ABC i wyznaczamy normalną siłę odpychającą. Przekonamy się wówczas, że równowaga dla takiego przesunięcia jest chwiejna.

Prz. 3. Okazać, że następujące konfiguracye czterech atomów jednakowych są nietrwałe: (1) trzy atomy w wierzchołkach trójkąta równobocznego, a czwarty w jego środku, (2) cztery atomy w wierzchołkach kwadratu, (3) cztery atomy na linii prostej.

Prz. 4. Trzy jednakowe cząsteczki, które odpychają się nawzajem proporcyonalnie do n - tej potęgi odległości, połączono trzema ró-wnemi sprężystemi nićmi. Wyznaczyć położenie równowagi i okazać, że jest ona trwała, jeżeli n<---, gdzie a oznacza długość nici nie-p—a rozciągniętej, p zaś rozciągniętej.

	
	
228.    Prz. Trzy cienkie pręty sztywne zajmują położenia przekątni foremnego sześcioboku, i każdy z nich może się swobodnie obracać około wspólnego środka w płaszczyźnie sześcioboku. Na końcach prętów znajduje się sześć jednakowych cząsteczek, odpychających się nawzajem odwrotnie proporcyonalnie do jakiejkolwiek potęgi odległości. Okazać, że równowaga układu jest trwała.





(Math. Tripos, 1859.)

	
	
229.    Kratownice. Dobre przykłady na zastosowanie teo-ryi pracy spotykamy przy wyznaczaniu sił, działających wzdłuż sztab kratownicy. Tryb postępowania można ogólnikowo opisać w sposób następujący. Usuwamy z kratownicy niektóre stosownie obrane sztaby i zastępujemy je siłami, przyłożonemi w ich końcach. Tym sposobem rozluźniamy kratownicę, i można jej teraz nadawać przesunięcia. Zasada pracy dostarcza równań, zawierających związki pomiędzy siłami, które działają na układ, z pominięciem reakcyi, występujących pomiędzy sztabami nieusuniętemi. Tym sposobem możemy otrzymać równania, określające reakcye, które działają na dowolnie obrane sztaby.


	
230.    Prz. Kratownica składa się z dowolnej liczby sztab niekoniecznie w jednej płaszczyźnie, i na jej wierzchołki, czyli punkty węzłowe, działają siły. Reakcyę R, działającą wzdłuż którejkolwiek sztaby, uważamy za dodatnią, jeżeli sztaba podlega ściskaniu; oznaczmy przez r długość tej sztaby, a przez X, Y, Z sumy rzutów sił, które działają na wierzchołek, posiadający współrzędne x, y, z. Okazać, że





^Rr + z (Xx + Yy+Z z) = 0,

gdzie sumowanie rozciąga się na całą kratownicę. Maxwell, Edinburgh Transactions, 1872, tom 26, str. 14.

Usuwamy wszystkie sztaby i przykładamy odpowiednie reakcye do cząsteczek, umieszczonych w wierzchołkach. Rozsuwamy następnie nieco ten układ w taki sposób, aby figura przekształcona pozostała podobną do pierwotnej. Z zasady pracy wynika ^Rdr+^XdxY Ydy+Zdz)—0.

dr d3

Lecz skoro figury są podobne, to — — — =... Po podstawieniu otrzy-

I a

mamy natychmiast żądany rezultat.

	
	
231.    Stosując zasadę pracy do kratownicy, musimy rozsuwać wierzchołki; dobrze będzie odróżniać te przesunięcia przy pomocy nazw odpowiednich.





Jeżeli kratownica nie jest usztywniona zapomocą dostatecznej liczby sztab czyli jest niedosztywniona (151), to można zmieniać kąty o przyrosty skończone, nie zmieniając przytem długości sztab. W tym razie nazywamy każdą zmianę odkształceniem iwrmalnem. Przesunięcie, nadane istotnie, może być nieskończenie małe, ale zmianę kąta można by tu powiększać, tak że w końcu stałaby się skończoną.

Jeżeli kratownica jest usztywniona zapomocą dostatecznej liczby sztab, to może sztaby łączące dają się tak rozłożyć, aby dozwalały na nieskończenie małe zmiany kątów, ale niema sposobu osiągnąć zmiany skończonej kąta bez zmiany długości sztab (151). Przesunięcie tego rodzaju zowie się odkształceniem anormalnem albo osobliiuem. Jest to przesunięcie wyobrażalne; może ono być istotnem tylko w takim razie, gdy pomijamy wielkości małe drugiego rzędu.

Jeżeli kratownica jest usztywniona zapomocą ściśle wystarczającej liczby sztab, to pomiędzy długościami ich nie zachodzą żadne związki; każda sztaba może się wydłużać, nie zrywając połączeń z pozostałemi. Kratownice takie zowią się dostatecznie sztywnemi lub rozszerzalnemi swobodnie.

Jeżeli kratownica zawiera więcej sztab niż potrzeba do usztywnienia, to pomiędzy długościami sztab zachodzą związki; zmiana długości jednej z nich pociąga za sobą zmiany w długościach niektórych innych. Taka kratownica zowie się nieroz-szerzalną albo rozszerzalną warunkowo.

Nazwy te wprowadził Maxwell (Phil. Mag. 1864), oraz w pewnej części M. Levy (Statique Graphique).

	
	
232.    Kratownica dostatecznie sztywna składa się ze sztaby połączonych gładkimi przegubami A,, A, ... , i pozostaje w równowadze pod działaniem jakiegokolwiek układu sił. Mamy wyznaczyć naprężenie sztaby A1A,, na którą żadne siły zewnętrzne nie działają.





Niech R12 będzie reakcyą, działającą wzdłuż sztaby A,A,; będziemy uważali ją za dodatnią, jeśli sztaba podlega ściskaniu. Długość sztaby oznaczmy przez 112.

Siły zewnętrzne, działające na kratownicę, są w równowa-wadze, a zatem praca ich jest równa zeru przy każdem przesunięciu, nie zmieniającem długości sztab. Usuwamy z kratownicy sztabę A1A2 i zastępujemy jej działanie, przykładając do krańcowych cząsteczek siły R12. Gdy teraz osadzimy nieruchomo w przestrzeni jedną ze sztab pozostałych, np. przyległą sztabę A±An, to wielobok będzie miał jeden stopień swobody. Może się on odkształcać, i każdy wierzchołek zatacza krzywą, posiadającą określone położenie w przestrzeni. Dajemy kratownicy drobne odkształcenie; skutkiem tego długość 112 wzrośnie o dl12, a siły zewnętrzne wykonają pracę dW. Inne reakcye nie wejdą do równania pracy, a więc będzie

R,2dl,2+dW=0............(1).

Jeżeli w dodatku do tego odkształcenia nadamy jeszcze sztabie A1An pewne przesunięcie przygotowane, przesuwając wraz z nią całą kratownicę, to praca dW nie ulegnie zmianie.

Z tego widać, że sposób, w jaki przesuwamy układ, nie wywiera tu wpływu. Nie jest nawet niezbędnem usuwać boku 112; nadajemy mu po prostu przyrost dl12. Z (1) wypadnie, że

- dW

Ei= 7 .............(2).

Tak więc, jeżeli bez rozerwania kratownicy można powiększać długość każdej sztaby, na którą nie działają siły zewnętrzne, to reakcya, działająca wzdłuż takiej sztaby, jest wyznaczalna. Tak np., jeżeli sił zewnętrznych niema wcale, to reakcya wzdłuż każdego z takich boków jest równa zeru.

	
	
233.    Gdy na sztabę A,A, działają jakieś siły zewnętrzne, to linie działania reakcyi w wierzchołkach A1, A, mogą nie leżeć na sztabie. Przypadek ten daje się sprowadzić do poprzedzającego. W tym celu zastępujemy każdą z owych sił zewnętrznych dwiema siłami równoległemi, przyłożonemi w końcach sztaby. Wyłożyliśmy tę metodę w paragrafie 134. Można także wyznaczyć reakcye w sposób bardziej bezpośredni.





Rozkładamy reakcyę, działającą na koniec A1 sztaby A,A,, na dwie składowe, a mianowicie R12 w kierunku sztaby i S12 w kierunku prostopadłym do sztaby. Tak samo reakcyę w końcu A, tej samej sztaby rozkładamy na R21, S21. Usuwamy następnie sztabę A1A2, zastępując jej działanie na pozostałe części kratownicy siłami R12, S19 i R21, S21, przyłożonemi w końcach. Uważamy R12, R21 za dodatnie, jeżeli sztaba podlegała ściskaniu.

Odkształcamy teraz układ w taki sposób, aby długość sztaby A,A, otrzymała przyrost dli2, przyczem wierzchołek A, powinien pozostać na miejscu, i sztaba powinna zachować dawny kierunek w przestrzeni. Prace przygotowane reakcyi R1, S21 i S12 będą oczywiście zerami. Niech dW będzie pracą przygotowaną sił zewnętrznych, działających na układ po usunięciu sztaby A,A,; w takim razie

R,2dl,2+ dW=0.

Aby wyznaczyć 812, musimy nadać układowi inne przesunięcie. Skoro usunęliśmy siły, działające na sztabę A^2, to pozostałe siły zewnętrzne nie są już w równowadze, i ich praca przygotowana podczas przesunięcia całej kratownicy niekoniecznie będzie zerem. Obracamy kratownicę o kąt cl^- około osi, która przechodzi przez A, i jest prostopadła do płaszczyzny, zawierającej A, i siłę S12; wierzchołek A, pozostanie podczas tego nieruchomym, i długość 112 nie ulegnie zmianie. Jeżeli dW oznacza znowu pracę sił zewnętrznych, to będzie

S12l12d^ + dW=0.

Przy pomocy tych dwóch odkształceń można wyznaczyć reakcye JRn i S12, działające w wierzchołku A1. Jeżeli kratownica jest zupełnie swobodna, to zawsze można wywołać odkształcenie niezbędne do wyznaczenia S12; odkształcenie, potrzebne do wyznaczenia R12, jest możliwe, jeśli długość sztaby daje się zmieniać. Wypada przeto, że te obydwie reakcye są wy-znaczalne^ jeżeli można zmieniać długość sztaby A,A,, nie niszcząc połączeń kratownicy.

W przypadku, gdy ruch kratownicy podlega ograniczeniom zewnętrznym, można je zastąpić ciśnieniami, wywiera-nemi na odpowiednie punkty. Wyznaczywszy wielkości tych ciśnień z ogólnych równań równowagi, możemy uważać, że kratownica jest całkowicie swobodna, i że działają na nią siły znane. W takim razie reakcye w wierzchołkach dadzą się wyznaczyć tak, jak gdyby kratownica była swobodna.

Wyżej wskazane przesunięcia nie zawsze są dogodne ze względu na geometryczne właściwości zagadnienia. Przełożymy nieraz inne przesunięcia czy to ze względów symetryi, czy to dla tego, że dla nich daje się łatwiej wyznaczyć praca przygotowana. Jakiekolwiek dwa przesunięcia, wprowadzające do równań pracy przygotowanej jedynie R12 i S12^ nadają się do wyznaczenia tych składowych.

Jeżeli układ jest trójwymiarowy, to reakcya S12 może być nieznana nietylko pod względem wielkości, ale i pod względem kierunku. W takim razie zamiast siły S12 wprowadzamy jej składowe w dwóch kierunkach, i potrzebne będą trzy przesunięcia do utworzenia trzech równań pracy przygotowanej.

	
	
234.    Przykłady. Prz. 1. Sześć jednakowych sztab ciężkich łączy się swobodnie w końcach, tworząc sześciobok foremny ABCDEF. Sześciobok ten jest zawieszony za wierzchołek A, a lekkie pręty BF i CE utrzymują go w obecnej postaci. Okazać, że naprężenie pręta BF jest pięć razy większe od naprężenia pręta CE, i wyznaczyć wielkości tych naprężeń.                                           (Math. T., 1874.)





Statyka. 13

Przypuśćmy, że każda ze sztab górnych tworzy z pionem kąt 3, i niech długość każdej sztaby będzie równa 2a.

Aby wyznaczyć naprężenie T pręta BF, przypuśćmy, że długość jego nieco wzrosła. Skutkiem tego nachylenie sztab AB i AF do pionu

[image: ]



wzrośnie o d8, praca naprężenia T wyniesie Td(4a sin 3), a praca ciężarów dwóch sztab górnych 2Wd(a cos 8). Środek cięż-B kości każdej z czterech sztab pozostałych podniesie się nieco, i ciężary ich wykonają pracę 4 Wd(2a cos 3), a zatem będzie Td(4a sin 3) + 2 Wd{a cos^)+4 Wd(a cos 9) =0, skąd         2 T=5 W tan 9.

C

Aby wyznaczyć naprężenie T' pręta CE przypuszczamy, że długość jego nieco wzrosła. Ciężary czterech sztab górnych nie wykonają żadnej pracy, a środki ciężkości dwóch sztab dolnych nieco się uniosą. Jeżeli 3 oznacza kąt, który każda ze sztab dolnych tworzy z pionem, to łatwo wypadnie, że

T'd(.4:a sin 3)+2 Wd{a cos^)=0,


skąd



2T‘= Wtan 3.

Żądany wniosek otrzymamy od razu.

Prz. 2. Czworościan, utworzony z sześciu ciężkich sztab jednakowych, połączonych swobodnie w końcach, wisi na sznurze, przywiązanym w środku jednej z krawędzi. Wyznaczyć reakcye w wierzchołkach.

Czworościan jest regularny, a zatem sztaby najwyższa i najniższa, AB i CD, są poziome. Jeżeli L i M są środkami tych sztab, to prosta LM jest pionowa. Oznaczmy przez z długość LM, przez w ciężar każdej sztaby i przez P, P’ reakcye, działające wzdłuż sztab

AB, CD.

[image: ]

Fig. 69.




Powiększamy długość sztaby AB o dr, nie zmieniając ani jej kierunku w przestrzeni, ani położenia jej punktu środkowego. Podczas tego przesunięcia reakcye prostopadłe w A i B nie wykonają pracy, a zatem równanie pracy przygotowanej będzie


dz

Pdr + 4W9 + wdz—0




(1).



Tak samo, gdy powiększymy o dr długość sztaby CD, nie zmieniając jej kierunku ani położenia środka, to wypadnie

P'dr—4iv— — ivdz+Tdz=0............(2),

dr gdzie T oznacza naprężenie sznura. Ponieważ T=6iv, a stosunek — jest w obydwóch równaniach jeden i ten sam, przeto otrzymamy od razu P=P'.

Wyznaczenie związku pomiędzy dr i dz wymaga pewnych rozważań geometrycznych. Z prostokątnych trójkątów BLG i LGM wynika

BG2-BL2^GL2=CM2+z2..............(3) dr

Tworząc równanie (1) powiększyliśmy bok BL o —, gdy boki CM i BG pozostały bez zmiany, zatem

— BLd(BL)=zdz

skąd                      dr=— 2\/2dz.

dr                    .

Tworząc (2) powiększyliśmy CM o —, a więc znajdziemy, jak poprzednio, dr =— 2 V2 dz. Podstawiając te wartości dr w (1) i (2), znajdziemy, . 3 V 2w że każda z reakcyi P i P wynosi —4—.

Możemy teraz wyznaczyć reakcye pozostałe. Wobec tego, że w każdym wierzchołku schodzą się trzy sztaby, wypada określić dokładnie urządzenie połączeń. Przyjmiemy, że każda ze sztab, wychodzących z danego wierzchołka, łączy się gładkim przegubem z nieważką cząsteczką, umieszczoną w owym wierzchołku. Można będzie uważać następnie, że cząsteczka taka należy do jednej ze sztab, a zatem rozwiązanie obejmie i ten przypadek, gdy dwie sztaby są w wierzchołku połączone przegubami z trzecią.

Reakcya pomiędzy cząsteczką i jedną ze sztab jest siłą pojedyń-czą. Biorąc momenty sił, działających na sztabę, względem pionu, poprowadzonego przez jeden z końców, znajdziemy, że reakcya w drugim końcu leży w płaszczyźnie pionowej, przechodzącej przez sztabę; możemy przeto rozłożyć każdą reakcyę na składową, działającą wzdłuż sztaby, i składową pionową. Dajmy na to, że te składowe w punkcie A dla sztab AC i AD są Q i Z. Q uważamy za dodatnie, jeżeli siła ta ściska sztabę, a Z, jeżeli działa w górę. Tak samo Q', Z' mają oznaczać takie składowe w dolnym końcu każdej z tych sztab.

Wydłużamy teraz każdą ze sztab pochyłych o dp, przyczem sztaba górna ma pozostać w spokoju. Równanie pracy przygotowanej dla niższej sztaby poziomej wraz z dwiema cząsteczkami na końcach będzie

4Q'dp+4:Z,dz+wdz=Q..............(4).

Sztaba GD została tu po prostu przesunięta pionowo, możnaby przeto otrzymać toż samo równanie, biorąc rzuty sił na kierunek pionowy (204).

Aby wyznaczyć związek pomiędzy dp i dz uciekamy się znowu do (3). Tworząc równanie (4), zmieniliśmy BC o dp, pozostawiając bez zmiany BL i CM, zatem

BC. d(BC)=zdz,

skąd                        dz— V 2rdp;

Wydłużamy znowu każdą ze sztab pochyłych o dp, utrzymując w spokoju sztabę CD. Równanie pracy przygotowanej dla sztaby górnej i dwóch cząsteczek na końcach będzie

Prz. 3. Dwie sztaby CA i CB, połączone swobodnie w C, pozo-stają w płaszczyźnie pionowej, opierając się w A i B o gładki stół poziomy. Końce A i B są połączone sznurem AQPB, który przechodzi przez gładkie obrączki P i Q, umocowane w punktach środkowych sztab CA i CB. Okazać, że naprężenie sznura czyni zadość równaniu

/ 1       1       1 \

T. AB--- ---1--= Wcos A cos Bcosec C, \BP  AQ  AB)

gdzie W oznacza ciężar obydwóch sztab.          (Coli., Exam., 1890.)

Prz. 4. Rama ABCD składa się z czterech lekkich sztab, połączonych swobodnie; długość każdej z nich jest równa a. Przekątnia AC ma położenie pionowe, sztaby BC, CD pozostają w zetknięciu z gładkimi, nieruchomymi kołkami E, F, położonymi na jednym poziomie w odległości c jeden od drugiego, i lekka sztaba BD o długości b rozpiera przeguby B, D. Okazać, że gdy w najwyższym przegubie A umieścimy ciężar W, to na BD zacznie działać siła ściskająca, której wielkość R wyznacza się z równania Rb2(4a2— b^^ = W(2a2c — b3)-Zbadać przypadek, w którym b=(2a?c)"*.               (Math. T., 1886.)

Prz. 5. Cztery jednakowe sztaby ARB, CRD, ESB, FSD tworzą romb RBSD. Dwie pierwsze mogą się obracać około nieruchomych punktów A i C, położonych w odległości a od R. R, B S i D są gładkimi przegubami, a na końce E i F działają siły, prostopadłe do sztab i równe P. Okazać, że a cot a—2 (aĄ-b) tan 3+a cot 3, gdzie a oznacza kąt, który reakcye w A i C tworzą z AC, 29 kąt ARC i b bok romba.

(Coli. Exam., 1889.)

Obieramy środek odcinka AC za początek układu, a prostą AC za oś x, i niech X, Y oznaczają reakcye w A, a x=asin 3, y=2(a+b} cos 3 współrzędne punktu E. Wydłużamy bok AC, nie zmieniając jego kierunku w przestrzeni, ani położenia środka. Równanie pracy przygotowanej będzie Xd(asin 8)+P sin ^ dy—P cos O1 dx—0, a biorąc rzuty, otrzymamy Y+Psin 8=0. Stąd od razu wynika związek żądany.

Prz. 6. Cztery jednakowe sztaby AB, BC, CD, DA są połączone luźno w końcach i tworzą kwadrat, zawieszony w wierzchołku A. Formę utrzymuje sznur, łączący środki boków AB i BC. Okazać, że naprężenie sznura i reakcya w najniższym wierzchołku C wynoszą od-

WV5

powiednio 4 W i —2—, gdzie W oznacza ciężar jednej sztaby.

Prz. 7. Przekątnie n rombów leżą na jednej prostej, dwa z nich następujące po sobie mają wspólny wierzchołek, a długości boków wszystkich figur są równe b. Skrajne boki pierwszego i ostatniego romba zostały przedłużone o długość a w kierunkach odwrotnych odpowiednio do punktów A, B, C, D. Uważajmy wszystkie odcinki figury za sztaby, połączone gładkimi przegubami w punktach przecięcia i osadzone na nieruchomych gładkich zawiasach C i D. Na swobodne końce A i B działają równe siły prostopadle do sztab. Okazać, że acot©= =2 {a+nb') tan 3+a cots, jeżeli reakcye w C i D tworzą z CD kąt , a wspólna przekątnia z każdym bokiem kąt 8. (Coli. Exam., 1889.)

Prz. 8. Trójnóg składa się z trzech jednakowych sztab, połączonych luźno końcami. Każda sztaba waży W. Całość stoi na gładkiej podłodze, i swobodne końce nóg są połączone sznurami o długości równej długości sztab. Wyznaczyć naprężenie sznurów. W szczególności, jeżeli na trójnogu zawiesimy ciężar W, równy ciężarowi jednej 5 V6w

sztaby, to naprężenie będzie---.            (St John’s Coli., 1882.) 36

Prz. 9. Sześć sztab jednorodnych, połączonych przegubami, tworzy sześciobok foremny, zawieszony za jeden z wierzchołków. Każda sztaba waży W, a siódma lekka sztaba pozioma łączy dwa środkowe boki sześcioboku. Dowieść, że, jeżeli te dwa boki mają położenie pionowe, to sztaba pozioma dzieli je w stosunku niezależnym od ich długości. Jeżeli sztaba pozioma jest ciężka i jednorodna z pozostałem!, 7 WV3 to stosunek ten =6:1, a naprężenie jej =—9 . Wyznaczyć także reakcye w przegubach.                             (Coli., Exam., 1888.)

	
235.    Odkształcenia anormalne. Powracając do twierdzenia ogólnego, które poznaliśmy w par. 232, wskażemy na pewien przypadek wyjątkowy.



Przypuśćmy, że wszystkie siły, działające na kratownicę, są przyłożone w węzłach, a zatem reakcye działają na bokach wieloboku. Gdy usuniemy sztabę A,A,, to możemy odkształcić kratownicę, i zasada pracy przygotowanej daje

R12dl12 + dW=G............(1).

Dajmy na to, że bok A,A, pozostaje nieruchomym; mo-żliwem jest, że podczas odkształcania kratownicy wierzchołek A, zaczyna się poruszać w kierunku prostopadłym do boku A1A2. W takim razie dl12 — 0. Jeżeli jednocześnie przesuwa się i AnAr w jakikolwiek sposób wraz z całą kratownicą, to ruch ten nie wpływa na dl12, a zatem przyrost ten i wówczas pozostanie zerem. Przywróciwszy na miejsce sztabę A,A,, będziemy mogli teraz nadać kratownicy małe odkształcenie, nie zmieniające długości sztab, jeżeli pomijamy małe wielkości drugiego rzędu. Ponieważ kratownica była sztywna, przeto odkształcenie tego rodzaju zowie się anormalnem (231).

Siły zewnętrzne, działające na kratownicę, są w równowadze, a zatem ich praca przygotowana podczas każdego przesunięcia całej kratownicy jest równa zeru. Jeżeli nie jest ona zerem również i w owem odkształceniu anormalnem, to reakcya R12 musi być nieskończenie wielka. Lecz jeżeli dW jest zerem, to równanie (1) staje się tożsamością, gdyż i dl12 jest zerem. W takim razie reakcya R12 może być skończona.

Chcąc, aby podczas odkształcenia reakcya R12 wykonała pracę, musimy usunąć lub wydłużyć dwie lub więcej sztab. Niech to będzie dana sztaba l12 i jakaś inna, np. l23. Wypadnie

R.2dL2 + R2.dl^ + dW^0.........(2).

-—EM40040                   E.

Możemy skorzystać z tego równania, jeżeli znamy stosunek pomiędzy odpowiadającymi sobie przyrostami dwóch sztab. Równanie (2) da nam w takim razie związek pomiędzy odno-śnemi reakcyami. Tak więc reakcye są nieokreślone; jedna z nich jest dowolna, a pozostałe można wyrazić w jej funkcyach.

	
236.    Związek pomiędzy przyrostami dwóch boków w większości wypadków daje się wyznaczyć bezpośrednio z figury, albo przez różniczkowanie jakiegoś znanego związku pomiędzy bokami wielokąta. W przypadkach trudniejszych postępujemy, jak następuje. (Zob. Levy, Statique Graphiąiie).



Uważając kratownicę sztywną za wielobok ogólny o bokach nieokreślonych, możemy wyznaczyć tyle kątów, ile potrzeba, w funkcyach boków. Przypuśćmy dla przykładu, że znaleźliśmy dwa równania, wią-żące dwa kąty 31, $2 z bokami, i niech równania te będą

fi(cos Ba, cos 82, 112, l»3 •) =0) fz (cos 81, cos 8,, 1,2, 123 ...) =0

W danym przypadku szczególnym wielobok może uledz drobnemu odkształceniu bez zmian w długościach boków, przeto będzie
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Mnożymy te równania przez minory pierwszego szeregu wyznacznika J i dodajemy stronami. Po lewej stronie wypadnie zero, i otrzymamy związek pomiędzy przyrostami długości sztab w postaci

P,2 dl,2+Paa dla+...=0.

Związek ten musi być spełniony przy wszelkich założeniach co do zmian w długościach sztab.

	
237.    Naprężenia nieokreślone. Najdogodniej bywa zwykle rozważać te reakcye nieokreślone niezależnie od wszelkich sił zewnętrznych. Aby sprawę tę wyjaśnić, przypuśćmy, że dwa układy sił zewnętrznych, jednakowe pod każdym względem, działając na kratownicę niejednocześnie, mogą wywołać w niej dwa różne układy naprężeń wewnętrznych. W takim razie możemy odwrócić jeden z układów zewnętrznych i pozwolić im działać jednocześnie; tym sposobem otrzymamy kratownicę w stanie naprężenia, jakkolwiek żadne siły zewnętrzne na nią nie działają. Jeżeli zatem umiemy wyznaczyć wszystkie naprężenia, zachodzące w kratownicy, gdy żadne siły zewnętrzne nie działają, to możemy je dołączyć do każdego układu naprężeń, wywoływanych przez dany układ sił; tym sposobem otrzymamy wszelkie stany kratownicy, które mogą współistnieć z owemi siłami.


P-w w





W tomie dziesiątym Proceedings o/ the Mathematical Society, 1878, Crofton rozważa pewne przypadki sześcioboków i ośmioboków stanie samonaprężeń. Teoryę jego rozszerzył następnie M. Levy r. 1888 w Statigue Graphigue.

	
238.    Prz. 1. Kratownica płaska posiada liczby parzystą, a mianowicie n, wierzchołków. Sztaby tworzą n boków, łączących te wierzchołki, n



i 2 przekątni, łączących wierzchołki przeciwległe. Okazać, że kratownica może pozostawać w stanie naprężenia bez działania sił zewnętrznych, jeżeli 9 punktów przecięcia boków przeciwległych leży na jednej prostej. (Twierdzenie Levy’ego.) Dowód następujący jest zupełnie ogólny, jakkolwiek rysunek wyobraża sześciobok. Aby mówić o czemś określonem, będziemy uważali, że boki podlegają ściskaniu, a przekątnie wyciąganiu.

[image: ]



Skoro reakcye R12 ... są w równowadze; to oczywiście siły R12, R32 równo-ważą siłę R25, a więc są równoważne siłom R5i i R56. Mając to na uwadze i przenosząc punkty przyłożenia, znajdziemy, że siły R12 i Ra5 są równoważne siłom R23 i R56, i analogicznie każda z tych par jest równoważna siłom Raa i R61. Wypadkowe tych trzech par są przyłożone odpowie-. dnio w L, M, N i są równoważne. Stąd wynika, że L, M, N, t. j. punkty przecięcia przeciwległych boków, leżą na jednej prostej. •

Przypuśćmy teraz naodwrót; że punkty L, M, N leżą na jednej prostej. Przykładamy w L i M dwie dowolne siły F, równe i odwrotne. Niech składowe tych sił w kierunkach boków przecinających się w L i M, będą odpowiednio (R,2, Ras) i (Ra2, Rg5). Te cztery siły są w równowadze, innemi słowy siły R,2 i Ra2, działające na A^, równoważą siły Ri5 i R65, działające na A5. Wypadkowa dwóch pierwszych działa w kierunku A2A5, a wypadkowa dwóch pozostałych w kierunku A,A2, i wypadkowe te są równe. Z innemi przekątniami postępujemy w len sam sposób. Z tego wynika, że w każdym wierzchołku siły się równoważą, i stosunek każdej reakcyi do siły F, obranej dowolnie daje się wyznaczyć. Inny dowód wskaźemy w rozdziale o statyce graficznej.

Twierdzenie to jest tembardziej godne uwagi, że liczba sztab łą-

3n

czących, t. j. 9 (jest to mniej od 2n- 3, gdy n przewyższa 6) nie wystarcza do określenia figury (151).

Gdy jeden z boków uczynimy nieskończenie małym, to wypa-dnie odpowiednie twierdzenie dla kratownicy o nieparzystej liczbie boków.

Prz. 2. Sztaby kratownicy są bokami sześcioboku i przekątniami, łączącemi wierzchołki przeciwległe. Okazać, że kratownica taka może podlegać naprężeniom wewnętrznym, jeżeli sześciobok jest wpisany w stożkową. Wyznaczyć prócz tego stosunek reakcyi.

(Twierdzenie Croftona.)

Prz. 3. Sztaby kratownicy tworzą boki sześcioboku Aj... Ag ora jego przekątnie A|A,, A2A6, A,A;. Okazać, że kratownica może posiadać naprężenia wewnętrzne, jeżeli odpowiednie sztaby, położone po dwóch stronach prostej A|A,, przecinają się po dwie na tej prostej.

(Crofton.)

	
239.    Metoda geometryczna badania trwałości równowagi. Gdy ciało porusza się w dwóch wymiarach w jakikolwiek sposób, to można zawsze odtworzyć ruch jego, lub przesunięcie w czasie dt, obracając je około pewnego punktu I o kąt nieskończenie mały (par. 180). Położenie tego punktu zmienia się ustawicznie tak, że zatacza on (1) pewną krzywą w przestrzeni i (2) pewną krzywą w ciele. Weżmy na pierwszej z tych krzywych szereg nieskończenie krótkich łuków II'1'1"... i odmierzmy na drugiej łuki IJ'. J'J"... odpowiednio równe tamtym. Gdy ciało obróci się około I o pewien kąt de, to punkt J' znajdzie się w I'. Punkt ten stanie się wówczas środkiem chwilowym obrotu, i można będzie odtworzyć przesunięcie ciała w najbliższym elemencie czasu, obracając je około I'. Dajmy na to, że łuk II' = ds.



Kąt pomiędzy stycznemi II' i IJ' do owych dwóch krzywych jest nieskończenie mały, a więc krzywe stykają się w punkcie I. Można zatem odtworzyć ruch ciała, tocząc drugą krzywą po pierwszej bez poślizgu, przyczem krzywa ruchoma powinna unosić z sobą ciało. Stosunek szybkości, z którą środek chwilowy obiega obydwie krzywe, do szybkości kątowej' ciała wynosi oczy-ds wiście —.

di

Niech P oznacza położenie jakiegoś punktu ciała na początku pierwszego elementu czasu. Punkt ten zaczyna się poruszać w kierunku prostopadłym do PI, a więc PI jest normalną do toru punktu P. Dajmy na to, że P' jest położeniem tego samego punktu w końcu okresu dt. Kąt PIP' = dd-, a ponieważ ciało zaczyna odtąd obracać się około I', przeto P'P jest następną normalną do toru rozważanego punktu.

Jeżeli P ma takie położenie, że kąt IPI jest także równy d^, to następujące po sobie normalne do toru są równoległe i promień krzywizny tego toru w P jest nieskończenie wielki.
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Zatoczmy okręg, z którego odcinek II' widać pod kątem d3; kaidy punkt tego okręgu znajduje się właśnie w tym punkcie swego toru, w którym promień krzywizny jest nieskończenie wielki. Ze względu na cele statyki nazwiemy to koło kołem trwałości równowagi1). Można je wykreślić w sposób następujący. Budujemy normalną do toru środka chwilowego w przestrzeni w obe-, ds cnym środku I i odmierzamy na tej normalnej długość

Koło, zatoczone na średnicy 18, będzie kołem trwałości.

	
240.    Ciało porusza się w płaszczyźnie w jakikolwiek sposób, i w położeniu danem koło trwałości jest wiadome. Wyznaczyć promień krzywizny R toru jakiegokolwiek punktu, należącego do ciała.



Niech G będzie jakimkolwiek punktem ciała, nie leżącym na okręgu trwałości, i niech P będzie tym punktem prostej IG, w którym promień krzywizny jest nieskończenie wielki, a więc prosta GPI jest normalną do torów punktów G i P (fig. 71). Gdy ciało obróci się około I o kąt d8, to punkty Gr i P zajmą nowe położenia G-' i P'\ każdy z kątów GIG' i PIP' jest równy d8, prosta I'P' jest równoległa do IPG^ a prosta G'P jest następną normalną do toru punktu G. Punkt O, w którym przecinają się proste G'I' i GI, jest szukanym środkiem krzywizny. Z podobieństwa trójkątów wynika

GP: GI= G'P': G'I= G'P: G'O.

W granicy punkty P, P\ oraz punkt P1, w którym GP przecina okręg, przypadają razem, a zatem będzie R. GR= GP.

Możemy zatem wygłosić prawidło następujące 2): aby wyznaczyć promień krzywizny R toru punktu G, znajdujemy naprzód punkt P1, w którym prosta GI przecina okręg koła trwałości; wówczas R.GPr — GP.

Uważaliśmy na figurze naszej odcinki, poprowadzone z G w kierunku punktu I, za dodatnie; z tego wynika, że R jest dodatnie lub ujemne stosownie do tego, czy GP jest dodatnie, czy ujemne. Innemi słowy tor punktu G jest zwrócony do I wklęsłością lub wypukłością stosownie do tego, czy G leży na zewnątrz, czy wewnątrz koła trwałości.

	
241.    Prawidło statyczne. W położeniu równowagi styczna do toru środka ciężkości G jest pozioma, a więc prosta IG musi być pionowa. Równowaga jest trwała lub chwiejna stosownie do tego, czy wzniesienie środka ciężkości osiągnęło minimum czy maksymum, innemi słowy, czy tor jego jest zwrócony wklęsłością w górę, czy na dół. Sprawę tę od razu rozstrzyga prawidło, że tor punktu G jest zwrócony do punktu I wklęsłością z wyjątkiem tego przypadku, gdy G leży wewnątrz koła trwałości równowagi.


	
242.    Prz. 1. Punkty A i B ciała ruchomego obiegają krzywe znane. Wskazać, w jaki sposób można znaleźć (1) środek chwilowy I, (2) koło trwałości równowagi.



Normalne w A i B do danych krzywych spotykają się w I, a zatem punkt I jest wyznaczony (par. 180). Odmierzamy na prostych Al i BI odpowiednio długości AP,= — i BP.2=—, gdzie Pi i P, ozna-

Pi                 P2

czają promienie krzywizny danych krzywych w A i B. Koło opisane na trójkącie IPP2 będzie szukanem kołem trwałości.

Prz. 2. Ciało porusza się w płaszczyźnie, i środek chwilowy jest wiadomy. Okazać, że jakaś prosta, należąca do ciała, styka się ze swą obwiednią w punkcie G-, leżącym na prostopadłej IGr do tej prostej.

Prosta GrI jest normalną do toru punktu G, a zatem element GG' tego toru leży na danej prostej. Stąd wynika, że prosta przecina swe położenie następne w G', a więc G' lub G leży na obwiedni.

(Prawidło Robervala.)

Prz. 3. Ciało porusza się w płaszczyźnie, i położenie obecne koła trwałości równowagi jest wiadome. Uzasadnić następującą kon-strukcyę środka krzywizny obwiedni jakiejś prostej ciała. Ze środka chwilowego I prowadzimy prostopadłą IQ do owej prostej; przetnie ona okręg trwałości w Pr. Następnie na prostej QPrl odmierzamy 10 = II\. Punkt O jest szukanym środkiem krzywizny.
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Z poprzedniego przykładu wiemy, że 10 jest normalną do obwiedni w punkcie Q. Obróćmy ciało wraz z należącą doń prostą o kąt d8 około punktu I i poprowadźmy z P prostopadłą I'Q' do nowego położenia owej prostej. Oczywiście I'Q' będzie następną normalną do obwiedni, a punkt O, w którym przecinają się normalne Q'P i Ql, będzie szukanym środkiem krzywizny.

Proste 10 i 1'0 są odpowiednio prostopadłe do dwóch następujących po sobie położeń tej samej prostej ciała, a zatem kąt IOP jest równy d^. Poprowadźmy prostą PP' równolegle do IPX; przetnie ona okręg trwałości w P', i w myśl par. 239 kąt P'IPi jest także równy d^. Stąd wynika, że prosta PO jest równoległa do P'I, i czworobok P'O jest równoległobokiem; a więc odcinki 10 i PP' są równe, i zatem w granicy odcinki 10, IPX stają się także równymi.

Prz. 4. Wierzchołki trójkąta ABC poruszają się po trzech krzywych, których normalne w A, B, C spotykają się w punkcie I, a z I widać boki trójkąta pod kątami a, 3, Y. Okazać, że

AB sin a BI? sin 8 CIsinr             . .

---1---- -I---- = Al sin a + BI sin 3 + CI sin Y,

Pi               02               P3

gdzie P1, P2, P3 oznaczają promienie krzywizny danych krzywych w A, B, C.

	
243.    Prz. 1. Wnętrze kielicha tworzy powierzchnia obrotu o osi pionowej, a w kielichu spoczywa jednorodna sztabka AB o długości 2l. Dowieść, że równowaga jest trwała lub chwiejna stosownie do tego, czy l2p jest mniejsze, czy większe od n3, gdzie p jest promieniem krzywizny w A lub B, a n długością normalnej (par. 222).



Normalne w A i B spotykają się na w Z osi obrotu. Odmierzamy


Al2

—. Koło opisane na ILAL

P
[image: ]




na tych normalnych odcinki AL i BM równe będzie kołem trwałości równowagi. Okręg, przechodzący przez I i stykający się ze sztabką w Gr, przecina Al w punkcie H, i AH. AI=AG2. Równowaga jest chwiejna, jeżeli środek ciężkości G leży wewnątrz koła ILM, czyli jeśli AL jest niniejsze od AH, a więc . n2                                 [2 jesh — jest mniejsze od —.

Wyobraźmy sobie, że sztabka posiada na końcach gładkie obrączki, nawleczone na krzywą symetryczną względem osi pionowej. W takim razie położenie poziome A'B', dla którego punkt przecięcia normalnych leży pod sziabką, jest także położeniem równowagi. Z takich samych rozważań wyniknie, że tor punktu G jest zwrócony do I wklęsłością, jeżeli l2p<ns. Warunki trwałości równowagi są tu odwrócone: równo-waga jest trwała lub chwiejna stosownie do tego, czy l2p jest większe, czy mniejsze od n3.

Prz. 2. Pręt posiada na końcach gładkie obrączki, nawleczone na drut eliptyczny; duża oś elipsy ma położenie pionowe. Dowieść, że w niższem położeniu poziomem równowaga pręta jest chwiejna, a w wyższem trwała, jeżeli długość pręta przewyższa latus rectum. Warunki się odwracają, jeżeli pręt jest krótszy od latus rectum. Jeśli mała oś jest pionowa, to niższe położenie poziome będzie trwałe, a wyższe chwiejne.

/b2\2

W elipsie P\—)=n, gdzie 2a i 2b są odpowiednio osiami pionową i poziomą. Korzystając z tej właściwości, wyprowadzimy żądane wnioski z prz. 1.

Okazaliśmy w par. 126, że gdy duża oś elipsy jest pionowa, to pręt pozostaje w równowadze tylko w położeniu poziomem, albo gdy przechodzi przez jedno z ognisk. Znajdziemy łatwo warunki trwałości dla ostatniego przypadku, posługując się zasadą, że musi zachodzić minimum wzniesienia środka ciężkości. Dajmy na to, że pręt AB zajmuje położenie jakiekolwiek, niech S oznacza ognisko dolne, i niech AM i BN będą odległościami od kierownicy dolnej. Wzniesienie

.       . AM+BN SA+SB , . środka ciężkości nad tą kierownicą wynosi 2—— = —2 , gdzie e oznacza mimośród liczbowy elipsy. SA i SB są to boki trójkąta SAB, a zatem wzniesienie osiąga minimum wtedy, gdy S leży na AB. Jeżeli S oznacza ognisko górne, to to samo wyrażenie określi głębokość środka ciężkości pod kierownicą górną. Jeżeli zatem pręt przechodzi przez ognisko dolne, to równowaga jest trwała, a jeżeli przez górne, to chwiejna.

Prz. 3. Pręt AB posiada na końcach obrączki, nawleczone na dwie równe i odwrotne łańcuchowe; krzywe te mają wspólną kierownicę pionową i wspólną oś poziomą. Dowieść, że w dolnem położeniu poziomem równowaga pręta jest trwała. Zob. par. 126, prz. 5.

Wykreśliwszy figurę, zobaczymy, że tory punktów A i B są zwrócone do I wypukłościami, a zatem A i B leżą wewnątrz koła trwałości. Stąd wynika, że G leży także wewnątrz, a więc tor jego zwraca się również do I wypukłością, i równowaga jest trwała.

Prz. 4. Końce pręta pozostają na cykloidzie, której oś jest pionowa. Okazać, że gdy pręt zajmuje położenie poziome, to równowaga jego jest trwała.

	
244.    Staczanie głazów. Ciało ciężkie, doskonale chropowate, pozostaje w równowadze na powierzchni nieruchomej; mamy zbadać, czy równowaga jest trwała, czy chwiejna. Naprzód założymy, że ciało może się przesuwać w płaszczyźnie symetryi, a zatem możemy tymczasem uważać zagadnienie za dwuwymiarowe.


	
Metoda geometryczna, wyłożona w par. 241, daje w większości wypadków łatwe rozwiązanie. Dajmy na to, że obydwie ------ powierzchnie stykają się w punkcie 1-, /      _ w takim razie punkt ten jest środkiem g Cchwilowym. Niech prosta C1C będzie | As / wspólną normalną w położeniu równo-\           / wagi, a C, C‘ środkami krzywizny. Krzy-")/ /   wizny te będziemy uważali za dodatnie, /IR    jeżeli są zwrócone w strony odwrotne. c \       Przypuśćmy, że ciało poruszyło się cokolwiek, i punkt 1! stał się nowym punktem



Fig. 74. zetknięcia. Kąt d^, o który obróciło się ciało, jest równy kątowi pomiędzy normalnemi CJ' i CT, a ten jest oczywiście równy sumie kątów J'C1, I' C'l, a ponieważ 11' = U' = ds, przeto

ds ds --- — = do. P P

Zob. Salmona Higher Piane Curues, par. 312, lub Besanta Rou-lettes and Glissettes^ par. 33.

Aby wykreślić koło trwałości równowagi odmierzamy na ds wspólnej normalnej 1C w położeniu równowagi długość IS=-^.

Oznaczając tę długość przez z, otrzymamy

	
1    1 1 — =   — • z P P



Koło, zatoczone na średnicy 18, jest kołem trwałości; przypuśćmy, że IG przecina jego okręg w punkcie P.

Jeżeli środek ciężkości G leży nazewnątrz tego koła, to tor jego zwraca się do 1 wklęsłością, a zatem równowaga jest trwała lub chwiejna stosownie do tego, czy G leży pod punktem P, czy nad tym punktem. Jeżeli G leży w P, to równowaga jest obojętna w pierwszem przybliżeniu.

Wysokość krytyczna 1P, która dzieli trwałość od chwiej-. pp‘coso nosci, wynosi oczywiście     z cos"=p+pgdzie a oznacza kąt, który wspólna normalna w położeniu równowagi tworzy z pionem.

	
	
245.    Prz. 1. Półkula o promieniu p spoczywa na wierzchołku kuli nieruchomej o promieniu p‘, stykając się z nią powierzchnią krzy-wą. Środek ciężkości półkuli leży w odległości — od środka. Okazać, 8 że równowaga jest trwała lub chwiejna stosownie do tego, czy p jest 3p'





mniejsze, czy większe od —.

50


powinno być mniejsze



W tym razie 0=0, a więc IG, czyli —, 8

od z, jeżeli równowaga ma być trwała.

Prz. 2. Półkula jednorodna spoczywa na chropowatej płaszczyźnie, nachylonej do poziomu pod kątem 3. Wyznaczyć kąt, który podstawa półkuli tworzy z poziomem, i okazać, że równowaga jest trwała.

Środek ciężkości musi leżeć na pionie, przechodzącym przez /, a prosta CG jest prostopadła do podstawy półkuli. Z tego wynika, że szukane nachylenie spełnia kąt CGI do T. Pion punktu I nie może

przechodzić przez G, jeżeli CI.sin3 przewyższa CG, a ponieważ 3p

CG = ~, przeto koniecznym warunkiem równowagi jest, aby sin 3 <3/8.

Wyznaczymy teraz koło trwałości równowagi. W tym razie P‘==c, a zatem z=p, i koło, zatoczone na V średnicy IC będzie kołem trwałości. Kąt /    \ CGI jest większy od prostego, a więc G c/       |      leży wewnątrz koła trwałości; tor punktu G /Y   )      jest zwrócony wklęsłością w górę, i równo-/  \   • / waga jest trwała. /     \ | /         Prź. 3. Półkula jednorodna, której pro-S      mień wynosi a, ciężar zaś W, spoczywała na _            szczycie kuli nieruchomej o promieniu b w równowadze obojętnej. Okazać, że 5u=3ó.

Fig. 75.          Następnie na brzegu podstawy półkuli umocowano ciężar P. Dowieść, że jeżeli 55 P=18 W, to półkulę można i teraz umieścić na szczycie kuli w równowadze obojętnej.                                            (Math. Tripos, 1869.)

Prz. 4. Ciężkie półkuliste naczynie o promieniu a, zawierające wodę, spoczywa na chropowatej płaszczyźnie, nachylonej do poziomu pod kątem a. Okazać, że stosunek ciężaru naczynia do ciężaru wody, 2 sin a

nie może być mniejszy od---, gdzie xa‘COS2 jest polem po-sin— 2sino

wierzchni wody.                                   (Math. Tripos, 1877.)

Gdy naczynie zmienia położenie, to woda się w niem porusza; przyjmujemy, że zawsze przytem zajmuje ona położenie równowagi, a zatem jej skutek statyczny będzie taki sam, jak cząsteczki o tym samym ciężarze, umieszczonej w środku naczynia. Ciężar naczynia można skoncentrować w jego środku ciężkości, czyli w punkcie środkowym średniego promienia.

Prz. 5. Naczynie paraboliczne, ważące W, stoi na poziomym stole i zawiera pewną ilość wody, ważącą n W; wysokość ogólnego środka ciężkości naczynia i wody wynosi h. Dowieść, że równowaga jest trwała, jeżeli latus rectum paraboli przewyższa 2(n+1)h.

(Math. Tripos, 1859.)

Niech punkt H będzie środkiem ciężkości wody, gdy oś naczynia ma położenie pionowe. Ustawmy naczynie nieruchomo w położeniu sąsiedniem, przyczem powierzchnia wody pozostanie poziomą (par. 215). Pion, przechodzący przez nowe położenie H' środka ciężkości wody, przetnie oś paraboloidy w punkcie M, i można dowieść, że odcinek HM jest równy połowie latus rectum. Ten punkt M zowie się meta-centrem. Podobnie, jak w przykładzie poprzedzającym, można zastąpić wodę przez cząsteczkę, umieszczoną w metacentrze. Równowaga będzie trwała, jeżeli wysokość ogólnego środka ciężkości czyni zadość warunkowi paragrafu 244.

	
	
246.    Wyobraźmy sobie ciało cylindryczne, spoczywające na nieruchomej płaszczyźnie poziomej. Z rozważań poprzedzających łatwo daje się wywnioskować, że równowaga jest trwała lub chwiejna stosownie do tego, czy środek ciężkości ciała leży niżej czy wyżej od środka krzywizny w punkcie zetknięcia.





Jest jednak pewien przypadek szczególny, wymagający rozważań dalszych. Dajmy na to, że rozwijana (t. j. miejsce geometryczne środków krzywizny) posiada ostrze O, zwrócone pionowo na dół, gdy punktem zetknięcia jest A, i że środek ciężkości leży cokolwiek wyżej

od O. Równowaga ciała jest chwiejna, ale w najbliższem sąsiedztwie po obydwóch stronach istnieją położenia równowagi trwałej. Ciało przybierze takie położenie, gdy któraś ze stycznych z G do rozwijanej stanie się pionową. Styczne te mają punkty zetknięcia L i M, a ponieważ ostrze zwraca się na dół, przeto każdy z tych punktów będzie leżał nad G, gdy jego styczna będzie pionową. Gdy G zbliża się do O, to te dwa położenia ró-wnowagi trwałej zbliżają się do położenia rownowagi chwiejnej i ostatecznie się z niem schodzą. Jeżeli zatem środek ciężkości leży w samem ostrzu rozwijanej, to równowaga jest trwała.
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Fig. 76.




Jeżeli ostrze O jest zwrócone do góry, a G leży nieco niżej, to równowaga jest trwała przy blizkiem położeniu chwiejnem po każdej stronie. W granicy, gdy G dojdzie do O, równowaga staje się chwiejną. (J. Larmor, Critical Equilibrium w czwartym tomie Proceedings of the Cambridge Philosophical Society, 1883.)

	
	
247.    Ciała kuliste, przybliżenie drugie. Jeżeli równowaga jest obojętna, to trzeba zbadać pochodne wyższe, aby rozpoznać trwałość tej równowagi. Metoda geometryczna nie na-daje się dobrze do tego celu. W przypadku, gdy obydwie po-


wierzchnie







kuliste, możemy wyświetlić wszelkie okoliczności równowagi przy pomocy metody, wyłożonej w par. 220.


Są
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Fig. 77.




Przesuńmy ciało, wyobrażone na fig. 74, w taki sposób, aby punkt J' znalazł się w T. To nowe położenie ciała widzimy na fig. 77, gdzie J oznacza ten punkt ciała górnego, który w położeniu równowagi znajdował się w Z. Niech będzie JG = r, IG'I' =, JOT =*; w takim razie p‘l‘=po. Oznaczmy jeszcze wznie-


sienie środka

Statyka. 14



ciężkości G nad O' przez y. Nachylenia do pionu odcinków CC^ CJ i JGr wynoszą odpowiednio a+1‘, a +1+1’, $+1. Rzutując te trzy odcinki na kierunek pionowy, otrzymamy

y =(p+ p‘) cos (o. + $‘) - p cos (a + P + $‘) + r cos(p + $‘).

Podstawiamy — zamiast • i rozwijamy wyrażenie po-P

wyższe według wzrastających potęg V’. Współczynniki przy V’, 4/2

... będą kolejnemi pochodnemi zmiennej J, można więc znaleźć trwałość równowagi z dowolnym stopniem przybliżenia według prawidła paragrafu 220.

Współczynnik przy V’ jest zerem, współczynnik przy 9

. (z cosa — r) p‘2                                       . wynosi  ----72—9 gdzie z oznacza to samo, co i poprzednio.

Równowaga jest trwała lub chwiejna stosownie do tego, czy współczynnik ten jest dodatni, czy ujemny, t. j. czy r jest mniejsze, czy większe od z cos a.

Jeżeli i ten współczynnik jest zerem, to równowaga jest obojętna w przybliżeniu pierwszem. Badamy w takim razie współczynnik przy p‘8. Jeżeli nie jest on zerem, to równowaga jest trwała dla przesunięć w jedną stronę od położenia równowagi i chwiejna dla przesunięć w drugą. Jeżeli znika współczynnik przy p‘, to badamy wyrazy czwartego stopnia. Równowaga będzie trwała lub chwiejna stosownie do tego, czy współczynnik przy $‘4 jest dodatni, czy ujemny.

	
	
248.    Prz. 1. Powierzchnia kulista spoczywa na szczycie innej powierzchni kulistej, a środek, ciężkości pierwszej leży na takiej wysokości nad punktem zetknięcia, że równowaga jest obojętna w pier-szem przybliżeniu. Dowieść twierdzenie następujące: jeżeli powierzchnia dolna leży wypukłością do góry, jak na fig. 77, to równowaga jest nietrwała bez względu na to, czy ciało górne jest zwrócone wypukłością w górę czy na dół; jeżeli powierzchnia dolna leży wklęsłością do góry, to równowaga jest trwała lub chwiejna stosownie do tego, czy promień krzywizny powierzchni dolnej jest większy, czy mniejszy od podwójnego promienia ciała górnego.





Współczynnik przy 1’2 jest tu zerem. Współczynnik przy 1’4 po p‘(p‘+2p)(p‘+p) wyrugowaniu r sprowadza się do---—— --. Równowaga będzie trwała lub chwiejna stosownie do tego, czy współczynnik ten jest dodatni, czy ujemny, a stąd wynika bezpośrednio twierdzenie żądane.

Prz. 2. Ciało, posiadające w części dolnej powierznię kulistą, spoczywa wewnątrz nieruchomego naczynia kulistego w równowadze pozornie obojętnej; ciała te stykają się w najniższym punkcie naczynia. Okazać, że równowaga jest istotnie obojętna, jeżeli promień jednej powierzchni jest dwa razy większy od promienia drugiej.

	
	
249.    Ciała niekuliste, przybliżenie drugie. Jeżeli powierzchnie ciał, pozostające w zetknięciu, nie są kuliste, to można zastosować metodę następującą.





Dajmy na to, że ciało górne stoczyło się z położenia równowagi do położenia, wyobrażonego na fig. 77. Jeżeli teraz G leży po prawej stronie pionu, przechodzącego przez I’, to oczywiście ciało potoczy się dalej od położenia równowagi, lecz jeżeli G leży po lewej stronie tego pionu, to ciało potoczy się z powrotem. Niech i oznacza kąt, który GI' tworzy z pionem; mamy wyznaczyć ten kąt i.       .

Wreszcie, oznaczając przez 1‘ nachylenie normalnej CC do pionu, d'Y 1 otrzymamy z=^ — ©, i — = —, a zatem ze względu na (2) ds p‘

di 1    1    COSe

W tych trzech równaniach zawierają się wszelkie warunki trwałości równowagi. W położeniu równowagi środek ciężkości leży pionowo nad punktem oparcia, a więc wówczas i=0. W każdem położeniu in-nem wartość i określa szereg Taylora

. di       d2i 8s2 i=—■ 8s— —--L...

ds     ds21.2

Jeżeli w tym szeregu pierwsza nieznikająca pochodna jest nieparzystego rzędu i dodatnia, to odcinek IG odchyla się od pionu w tę samą stronę, w którą porusza się ciało. Stąd wynika, że równowaga jest chwiejna dla odchyleń w obydwie strony od położenia równowagi. Jeżeli owa pochodna jest ujemna, to równowaga będzie trwała. Jeżeli pierwszy wyraz nieznikający jest rzędu parzystego, to nie zmienia on znaku ze zmianą znaku os, a więc równowaga będzie trwała dla odchyleń w jedną stronę i chwiejna dla odchyleń odwrotnych.

Pierwszą pochodną mamy w (3), drugą znajdziemy różniczkując de dr

	
(3)    i podstawiając — i — z (2) i (1). Powtarzając to działanie, znaj-ds ds



dziemy trzecią pochodną i każdą następną.

Po pierwsze przypuśćmy, że w położeniu równowagi — nie jest ds

zerem; w takim razie warunek trwałości równowagi polega na tem, aby

	
	
1    1 cos©





--1-----było ujemne. Prowadzi to do prawidła, które pozna-

0,P‘ r

liśmy już w par. 244.

Po drugie przypuśćmy, że w położeniu równowagi środek cięż

kości leży na okręgu trwałości. W takim razie — =0. Różniczkując (3) ds


dH

ds2




(4).



Po trzecie przypuśćmy, że w położeniu równowagi i druga pochodna, czyli (4), jest zerem. Różniczkując (3) dwa razy i rugując r, jak poprzednio, otrzymamy

Równowaga jest trwała lub chwiejna stosownie do tego, czy wyrażenie to jest ujemne, czy dodatnie.

	
	
250.    Prz. 1. Równowaga ciała, spoczywającego na powierzchni innego, jest obojętna w przybliżeniu pierwszem, i obydwa ciała są symetryczne względem wspólnej normalnej. Okazać, że równowaga może być trwała tylko w takim razie, jeżeli punkt zetknięcia jest szczytem powierzchni nieruchomej, albo jeżeli p'=—2p.





Prz. 2. Równowaga ciała, spoczywającego na chropowatej płaszczyźnie pochyłej, jest obojętna w przybliżeniu drugiem. Okazać, że d2p równowaga ta jest trwała lub chwiejna, stosownie do tego, czy 792 jest dodatnie, czy ujemne.

Prz. 3. Ciało pozostaje w równowadze na powierzchni innego ciała nieruchomego, przyczem na środek ciężkości G pierwszego działa siła zewnętrzna; siła ta jest skierowana do pewnego punktu O, położonego na przedłużeniu GI, i zmienia się proporcyonalnie do odległości. Prócz tego na IG, leży punkt G', położony w taki sposób, że 111

-—= — + -—; okazać, że równowaga jest trwała, jeżeli G' znajduje IG IG 10

się wewnątrz koła trwałości równowagi, i chwiejna w przypadku odwrotnym.

	
	
251.    Staczanie głazów w trzech wymiarach. Gdy ciało górne zajmuje położenie równowagi, obieramy wspólną płaszczyznę styczną w punkcie zetknięcia 0 za płaszczyznę xy, i niech wówczas równania powierzchni ciała górnego i dolnego będą odpowiednio





2z = ax2 + 2 bxy + cy2 +.. A

—2z'=a'x2+2b'xy+c'y2+.. J

Zatem w przypadku, obranym za modłę, ciała są zwrócone do siebie wypukłościami. Przypuśćmy teraz, że ciało górne potoczyło się z położenia równowagi po dolnem wzdłuż osi x o mały łuk ds, i niech OP=OP’ ^=ds.

Zobaczmy naprzód, jak trzeba obrócić ciało górne, aby płaszczyzna styczna w P przystała do płaszczyzny stycznej w P'. Z równań
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(1)    wyniknie, że styczne do łuków OP i OP' w punktach P i P' two-dz rzą z płaszczyzną XJ kąty odpowiednio równe Te = ads i


dz

---— — a'ds. dx





Styczne te przystaną, gdy obrócimy ciało górne około Oy o kąt Q,=(a + a')ds. Zwróćmy następnie uwagę na styczne w punktach P i P', prostopadłe do OP i OP'; tworzą one z płaszczyzną xy kąty dz          dz' dy —bds i             Aby styczne te przystały potrzeba obrócić ciało górne około 0x o kąt 0,==- (b + b')ds. Gdy wykonamy te obydwa obroty jednocześnie, albo jeden po drugim, to ciało górne potoczy się na łuku 0P= ds.

Dwa obroty 0, i 02 około osi x i y są równoważne obrotowi wypadkowemu L około pewnej osi Oy'. Oznaczywszy kąt xOy' przez i, znajdziemy 9 cos i=0, oraz Lsini=w2. Nie jest koniecznem, aby oś prostopadła do łuku toczenia 0x. Gdy jeden z tych dany, to drugi można wyznaczyć na mocy związków ustawimy ciało nieruchomo w nowem położeniu, to środek ciężkości G- już nie będzie leżał na pionie, przechodzącym przez punkt zetknięcia, i ciało zacznie się poruszać pod działaniem siły ciążenia. Założymy, że ciało jest zmuszone albo iwacać do położenia równowagi tą samą drogą, którą przyszło, albo odchylać się dalej. W takim razie równowaga będzie trwała lub chwiejna stosownie do tego, czy moment siły ciążenia względem osi równoległej do Oy' i przechodzącej przez nowy punkt zetknięcia, usiłuje powrócić ciało do położenia równowagi, czy odchylić jeszcze dalej.


obrotu Oy' była kierunków jest powyższych.

252. Gdy



Przesunięcia środka ciężkości G dogodniej będzie odnosić do nowego układu prostokątnego Ox', Oy' i Oz; niech współrzędne jego w tym nowym układzie w położeniu równowagi będą x', y', z. Oznacz-my prócz tego OG przez r, i kąty kierunkowe prostej OG przez a', 3‘, Y. W takim razie będzie x‘=rcosa‘, y'=r cos^,', z=^r cos .

Poprowadźmy prostą GN prostopadle do Oy'. Skutkiem obrotu Q2 środek ciężkości G przebiegnie mały łuk koła GG'; płaszczyzna tego koła jest równoległa do płaszczyzny x'z, środek leży w N, a promień jest równy NG. Stąd wynika, że punkt G przesunie się równolegle do osi x‘ o Lz, a równolegle do osi z o — Qx‘. Oznaczywszy ciężar ciała przez W, znajdziemy, że składowe jego w kierunkach osi x', y', z będą

X=- Wcosa’, Y=—Wcos^>', Z—— Wcosy,

moment zaś siły W względem prostej, równoległej do Oy' i przechodzącej przez nowy punkt zetknięcia P, wyniesie

M= (z— Qx‘) X — (x‘ +^iz — ds sin i)Z= {rQ(cos 2a' + cos 2r) — ds sin i cos Y | W.

Równowaga zatem będzie trwała lub chwiejna stosownie do tego, czy M jest ujemne czy dodatnie.

	
	
253.    Zauważymy, że 9 oraz i nie zależą od krzywizn a, a' lub b, b' lecz od ich sum a + a' i b + b'. Możemy zatem zastąpić ciało górne innem, na którem krzywizny przekrojów normalnych są równe krzywiznom względnym ciał danych; to ciało zastępcze powinno spoczywać na płaszczyźnie chropowatej, nachylonej do poziomu pod kątem . Warunki równowagi jego będą takie same, jak ciała danego.





Równanie powierzchni tego ciała nowego będzie

...........................................(2).

Otrzymamy indicatrix (courbe indicatrice Dupina), odrzucając wyrazy oznaczone przez domyślnik i dając z jakąś wartość stałą. Stożkową tę można nazwać indicatrix względną powierzchni, określonych przez równania (1). Musi to być elipsa, bo inaczej toczenie się byłoby niemożliwe. Oś y' posiada równanie 02x=w,y, czyli (a+a')x+(b + b')y—0; jest to średnica sprzężona z x. Tak więc oś obrotu Oy' i styczna Ox do łuku toczenia są średnicami sprzężonemi indicatrix względnej.

Niech pip' będą promieniami krzywizny względnej przekrojów normalnych, zrobionych przez Ox i Oy', a P1, P2 głównymi promieniami krzywizny. Każde p jest proporcyonalne do kwadratu odpowiedniej średnicy krzywej indicatrix; opierając się na tem i na własnościach średnic sprzężonych, znajdziemy, że pp‘ sin2i=P1P2 .

	
	
254.    Pragnąc zbadać znak momentu M, podstawmy (a + aj ds, ds czyli — zamiast Lsin i. Wówczas będzie P





/         P1P2     \Wds

M= rsin2‘--cosy).................(3).

\           p‘      / psin i

Równowaga jest trwała lub chwiejna dla pewnego przesunięcia, stosownie do tego, czy pierwszy czynnik jest ujemny, czy dodatni.

Dajmy na to, że ciało górne spoczywa na samym wierzchołku ciała dolnego. W takim razie środek ciężkości G- leży na wspólnej

T

normalnej Oz, a zatem 3’= 2‘ T=0, i

P1P-) Wds p' / p sin ż

Rozważając przesunięcia we wszystkich kierunkach, widzimy, że równowaga będzie całkowicie trwała, jeżeli OG, czyli r, jest mniejsze od najmniejszego promienia krzywizny względnej łuku toczenia; jeżeli zaś OG jest większe od największego promienia krzywizny względnej, to równowaga będzie całkowicie chwiejna. Jeżeli OG zawiera się w tych granicach, to równowaga jest trwała dla pewnych odchyleń, a chwiejna dla innych. Granicę stanowi to odchylenie, w którem promień p‘ krzy


P1P2 r



wizny łuku sprzężonego jest równy

Prz. Ciało ma kształt paraboloidy obrotu z podstawą prostopadłą do osi w odległości 9/8 latus rectum od wierzchołka. Okazać, że równowaga takiego ciała jest trwała, gdy opiera się ono końcem latus rectum paraboli tworzącej o płaszczyznę poziomą. (Coli. Ex., 1891.)

	
	
255.    Dowód Lagrange‘a zasady pracy przygotowanej. Przypuśćmy, że na ciało ABC działają współmierne siły P, Q, R ..., przyłożone w punktach A, B, C..., i niech wspólna miara 2K zawiera się w owych siłach odpowiednio Z, m, n... razy. Umocujmy gładki bloczek w punkcie A ciała, i taki sam bloczek urządźmy w nieruchomym punkcie A', tak aby prosta AA' miała kierunek siły P. Oprowadźmy następnie te bloczki wiotkim sznurem tak, aby przechodził przez każdy bloczek Z razy. Jeżeli teraz naprężenie sznura będzie równe K, to oczywiście siła, działająca na punkt A, będzie równa danej sile P i będzie działała w tym samym kierunku. Podobne bloczki
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Fig. 80.








urządzamy w B, C... i naprzeciwko w nieruchomych punktach B', C... Ten sam sznur oprowadzamy m razy około bloczków B, B', n razy około C, C i t. d. Jeden koniec sznura przywiązujemy w nieruchomym punkcie O, a drugi przeprowadzamy przez gładki bloczek D, ustawiony nieruchomo w przestrzeni, i zawieszamy na nim ciężar K. Tym sposobem zastąpiliśmy siły P, Q, R ... ciśnieniami bloków, które wywołuje naprężenie sznura K.


Przypuśćmy teraz, że ciało



otrzymało pewne małe przesunięcie, skutkiem czego bloczki A, B, C... zbliżyły się odpowiednio do A', B', C... o a, 3, Y...; te małe długości a, 3, ... mogą być dodatnie lub ujemne. Sznur owija bloczki A, A' l razy, gdy więc bloczki te zbliżą się o a, to sznur skróci się o 2/a. Podobnie sznur skróci się o 2m3, gdy B zbliży się do B' o 3 i t. d. Odległości OA', A'B'... są niezmienne, a zatem skutkiem owego przesunięcia ciężar K opadnie o s=2(la+m3+...). Po-nieważ P=2lK, Q=2mK..., przeto praca tych sił wyniesie 2K(la+m3+...), czyli Ks.

Lagrange rozumuje dalej tak. Ciężar K ma dążność do opadania, gdyby więc było możliwe przesunięcie układu, pozwalające ciężarowi opadać, to ciężar ten by opadł i wywołał owe przesunięcie. Stąd wynika, że jeżeli układ jest w równowadze, to żadne z przesunięć możliwych nie pozwala na opadanie ciężaru, a więc s=0, i praca przygotowana wszystkich sił jest równa zeru.

Następnie Lagrange czyni uwagę taką. Jeżeli wielkość la+m^+... różni się od zera, lecz jest ujemna, to warunek ten na pozór zabezpiecza równowagę, bo jest rzeczą niemożliwą, aby ciężar K Sam przez się zaczął się podnosić; ale jeżeli dla pewnego przesunięcia wielkość la+m3+ ... jest ujemna, to będzie ona dodatnia dla przesunięcia wprost odwrotnego. Przy tern przesunięciu odwrotnem ciężar K opada, a więc równowaga zostanie zakłócona.

Wielu wybitnych matematyków uznało, że założenie, dotyczące opadania ciężaru K, jest uprawnione; swoją drogą nie wydaje się ono tak oczywistem i elementarnem, aby zasada prac przygotowanych, dowiedziona w sposób powyższy, mogła stać się podstawą nauki. Uczyniono także zarzut, że założenie to nie jest słuszne bez pewnych dalszych ograniczeń; gdy np. ciężka cząsteczka spoczywa w równowadze chwiejnej na najwyższym punkcie gładkiej nieruchomej kuli, to małe przesunięcie umożliwi cząsteczce opadanie pomimo, że istnieje równowaga.

	
	
256.    Odwrotnie, jeżeli równanie la + m3 + ... = 0 zachodzi dla wszelkich możliwych przesunięć nieskończenie małych układu, to układ jest w równowadze. Przy tych wszystkich przesunięciach ciężar K pozostaje w spokoju, niema więc racyi, dlaczego by siły, działające na układ, miały poruszyć go w jakimś kierunku albo w kierunku odwrotnym; a zatem układ pozostanie w równowadze.





Sposób, w jaki Lagrange udowadnia to twierdzenie odwrotne, podlega różnym zarzutom; można je znaleźć w artykule De Morgana Virtual Yelocities w Knighfs English Cgclopaedia. Autor proponuje pewne zmiany w dowodzie Lagrange’a, pozwalające uniknąć zwykle czynionych zarzutów, ale ten nowy sposób dowodzenia nasuwa również pewne wątpliwości.

ROZDZIAŁ VII.

SIŁY W TRZECH WYMIARACH.

	
	
257.    Wyznaczyć wypadkowe jakiejkolwiek liczby sił, działających na ciało w trzech wymiarach. Metoda Poinsota.





Oznaczmy siły przez P1,P2,..., a ich punkty przyłożenia przez A1, A2,... Niech O będzie punktem, obranym dowolnie; mamy sprowadzić siły dane do jednej siły, przyłożonej w 0, i do pary.

Obieramy punkt O za początek prostokątnego układu
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104), wprowadzając



współrzędnych. Niech P będzie jedną z sił danych, i niech x=OM, y — MN i z = NA będą współrzędnemi jej punktu przyłożenia A.

Przedewszystkiem rozkładamy P na trzy składowe Px, Py, Pz w kierunkach osi; każdą z tych składowych przenosimy następnie do punktu 0 (jak w par. w tym celu do układu stosowną parę. Przykładamy więc w punkcie M dwie siły odwrotne, z których każda jest równa i równoległa do Pz; takie same dwie siły przykładamy w punkcie O. Możemy uważać, że siła Pz jest przyłożona w punkcie N, a zatem siła ta jest równoważna sile Pz, przyłożonej w O, i dwom parom, których momenty wynoszą odpowiednio yPz i —xPz, i których płaszczyzny są równoległe do yz i xz. Każda z tych par usiłuje obrócić ciało w kierunku dodatnim lub ujemnym płaszczyzny współrzędnych, w której działa; stosownie do tego przypisujemy jej momentowi znak + lub -. Prowadząc prostopadłą z punktu A do płaszczyzny yz, możemy dowieść zupełnie tak samo, jak poprzednio, że składowa Px daje się zastąpić przez taką samą siłę, przyłożoną w O, i przez pary zPx i -yPx-> działające odpowiednio w płaszczyznach xz i xy. Wreszcie zastępujemy składową Py przez siłę Py^ przyłożoną w O, oraz dwie pary xPy i —zP,, działające w płaszczyznach xy i yz. Ostatecznie zamiast siły P mamy trzy składowe Px, Pyi Pz, przyłożone w 0 i działające w kierunkach osi współrzędnych, oraz trzy pary o momentach yPz — zPy^ zPx — xPz^ xPy — yPx^ działające odpowiednio w płaszczyznach yz, zx, xy.

1

 W cynematyce koło to zowie się kołem przegięć, gdyż leżące na niem punkty układu ruchomego przebiegają właśnie w danej chwili przez przegięcia swych torów.                           Przyp. tłom.

2

 Wzór powyższy jest w zasadzie równoważny z tym, który podał Abel Transon w Liouville's Journal, 1845, str. 148, jakkolwiek posługuje się on średnicą PS, a nie samem kołem. Miał on na celu wyznaczenie promienia krzywizny rulety. Zob. także w tym samym tomie pracę Chasles’a o promieniu krzywizny obwiedni rulety.


Czyniąc to samo ze wszystkiemi siłami danemi, sprowadzimy dany układ do trzech sił X, Y, Z, działających na osiach współrzędnych i do trzech par, których momenty wynoszą L, M, N, i których osi leżą na osiach współrzędnych; co do wielkości

X^Px,   X^yPz-zPy\

Y^Py,    M=X(zP„-xP),

Z^Pz,   N=^xPy-yPxy

Nazywamy te wielkości sześcioma składnikami lub sześcioma współrzędnemi układu sił.

Trzy składniki X, Y, Z można połączyć w jedną siłę. Niech R oznacza jej wielkość, a (l, m, n) kosynusy kierunkowe jej kierunku dodatniego. W takim razie

Pl--^X, Rm=^Y, Rn = Z, R^X^+ Y2 + Z\

Moigno nazwał tę siłę siłą główną dla punktu 0.

Można również połączyć pary L, M, N w jedną parę; oznaczmy moment jej przez G, a kosynusy kierunkowe przez (A, p, v).

G\=:L, Gp=M, Gv = N,

G^L2 + M2 + N\

Parę G nazywamy parą główną dla punktu O. Jej składowe L, M, N zowią się także momentami sił względem osi.

	
	
258.    W zagadnieniu tern obraliśmy środek redukcyi O za początek układu współrzędnych. Gdy trzeba będzie rozróżniać te dwa punkty, to wypadnie zmienić wzory powyższe. Niech środkiem redukcyi będzie punkt O', posiadający współrzędne i, 7, C- Wyrażenia składników dla tego nowego środka redukcyi możemy otrzymać z wyrażeń składników dla środka redukcyi w początku układu; należy tylko w tym celu zastąpić x, y, z przez a — §, y — 7, z — C.





Wyrażenia składowych siły R nie zawierają x, y, z, a więc wielkość i kierunek głównej siły R są dla wszystkich środków redukcyi jednakowe.

Wyrażenia składowych pary G będą teraz

L' ^\(y-^Pz-{z~^Py\=L-^Z^Y,

M' = ^z- QPX -(x-6 )PB} = M- (X+ EZ,

N'^\x-^Py-{y-^Px\=N-^Y+^X.

Widzimy, że wielkość i oś pary głównej G są wogóle różne dla różnych środków redukcyi.

	
	
259.    Warunki równowagi. Dowiedliśmy w par. 105, że siły, działające na ciało, dają się zawsze sprowadzić do jednej siły R i do jednej pary G. Rozumując, jak w par. 109, znaj-dziemy, że do równowagi potrzeba i wystarcza, aby ta siła i para znikały z osobna, czyli aby było P — Q i G=0.





W przypadku, gdy układ współrzędnych jest prostokątny, prowadzi to do sześciu warunków następujących

X=0, Y=0, Z=0, L = Q, M=0, N=0.

Możemy wynikom tym nadać postać dogodniejszą.

Warunek niezbędny i wystarczający do tego, aby wypadkowa R była zerem, jest następujący: suma rzutów wszystkich sił na każdą z trzech prostych, obranych dowolnie, lecz nie równoległych do jednej płaszczyzny, powinna być równa zera. Aby to udowodnić przypuśćmy, że GA, OB, OC są równoległe do owych trzech prostych. Jeżeli rzut wypadkowej B na OA jest zerem, to albo R jest zerem, albo kierunek tej siły jest prostopadły do OA. Gdyby wypadkowa R nie była zerem, to kierunek jej musiałby być prostopadły do trzech prostych, przechodzących przez O i nie leżących w jednej płaszczyźnie, a to jest niemożliwe.

Rozkładamy pary według tych samych zasad, co i siły, a zatem i dla par istnieje twierdzenie analogiczne. Dla punktu O, jako środka redukcyi, każdej z sił danych odpowiada para, i wypadkową tych par jest G. Aby ta para główna była zerem, to sumy rzutów osi owych par składowych na trzy proste, przechodzące przez 0 i nieleżące w jednej płaszczyźnie, powinny być zerami; jest to warunek konieczny i wystarczający. Zobaczymy w dalszym ciągu, że taka suma rzutów na prostą, przechodzącą przez O, jest także momentem sił względem tej prostej (par. 263).

Parę można przenieść do płaszczyzny równoległej, przy-czem jej skutki działania nie ulegną zmianie, łatwo więc zrozumieć, że, gdy R jest zerem, to momenty układu względem wszystkich prostych równoległych są równe. A więc do równowagi wystarcza, aby moment sił względem każdej z trzech prostych obranych dowolnie (przecinających się lub nieprzecinają-cychj był równy zeru; proste te jednak nie powinny być równoległe do jednej płaszczyzny. Wkrótce wyjaśnimy szczegółowo, w jaki sposób wyznaczają się te momenty.

	
	
260.    Współrzędne siły. Siła jest dana, gdy znamy jej wielkość i mamy równania jej linii działania, lecz widzieliśmy w par. 257, że niekiedy bywa dogodniej określać siłę P war-tościami jej sześciu składników lub współrzędnych Px, Py, Ps oraz yPz-zPy, zPx — xPz, xPy — yPx. Osiągamy przy tern tę korzyść, że możemy wyznaczyć ogólne skutki działania dowolnej liczby sił, dodając odpowiednie współrzędne tych ostatnich.





Każdą prostą można uważać za linię działania pewnej siły, której wielkość obieramy dowolnie; współrzędne tej siły określą całkowicie ową prostą. Niech (Z, m, n) będą kosynu-sami kierunkowymi pewnej prostej, a (x, y, z) współrzędnemi któregokolwiek z jej punktów. Obrawszy siłę jednostkową, otrzymamy współrzędne prostej

	
	
	
l,    m, n, k — yn — zm, M. =zl- xn, v = xm — yl.







Pomiędzy wielkościami temi zachodzi oczywisty związek

....................(1).

Jeżeli na tej prostej działa siła P, to współrzędne tej siły będą

PI, Pm, Pn; Pk, PM., Pm, a współrzędne układu pewnej liczby sił przybierają postać

X=1PI, Y=^Pm, Z^Pn- L^Pk, M^P^, N^Pm.

W tym razie związek

XL+YM+ZN=O............(2). nie zawsze istnieje.

	
	
261.    Widzieliśmy w par. 257, że wszystkie siły układu można sprowadzić do jednej siły R i jednej pary G. Takie połączenie siły i pary Plucker nazwał dynamą, a sześć wielkości X, Y^ Z, L^ M, N zowią się składnikami lub współrzędnemi dynamy. Trzy pierwsze są wielokrotnościami pewnej siły jednostkowej, a trzy ostatnie pewnej pary jednostkowej.





Jeżeli współrzędne dynamy czynią zadość warunkowi (2), to, jak zobaczymy w dalszym ciągu, albo siła R albo para G jest równa zeru.

	
	
262.    Prz. 1. Siła posiada współrzędne 1, 2, 7; 4, 5,—2. Okazać, że wielkość siły wynosi V54, a równania jej linii działania są





Ty—2z  z— 7x ^x—y

-4 5—5-278

Prz. 2. Dynama posiada współrzędne 1, 2, 3; 4, 5, 6. Okazać, że wielkość siły wynosi \/14, a jej kosynusy kierunkowe są propor-cyonalne do 1, 2, 3. Jeżeli siła działa na początek układu, to wielkość pary wynosi V77, a kosynusy kierunkowe jej osi są proporcyonalne do 4, 5, 6.

	
	
263.    Moment siły. W par. 257 była już mowa o tern, że wyrażenia na L, M^ N zowią się zazwyczaj momentami sił względem osi x, y, z. Wyrażenia te są





L = ^yP3 - zPy\ M = ^{zPx - xPz\ N^{xPy - yPx}.

Zobaczymy, czy taki sposób mówienia jest w zgodzie z de-finicyą, podaną w par. 113. W tym celu zbadajmy, jak powstało wyrażenie na N. Siłę P rozłożyliśmy na składowe Pa, Py^ Pz. Dwie pierwsze działają w płaszczyźnie prostopadłej do osi z, a więc w myśl definicyi z par. 113 wyrażenia —yPx i ^Pv są odpowiednio równe ich momentom względem tej osi. Trzecia składowa Ps działa równolegle do osi z; jeżeli zdefiniujemy jej moment jako zero, to wyrażenie na N będzie momentem sił względem osi z. Z drugiej strony jest rzeczą jasną, że para, złożona z siły P oraz z siły równej i odwrotnej, przyłożonej w O, posiada trzy pary składowe, których osi leżą na osiach x, y, z. Moment ostatniej pary jest równy xPy — yPx’, jest to także rzut osi pary danej na oś z, a zatem N jest sumą rzutów takich osi.

Niech Q będzie wypadkową sił Pa i Ps; w takim razie moment tej siły Q względem osi z jest równy sumie momentów składowych Px i Pz (116). Przychodzimy tedy do następującej definicyi momentu siły względem prostej. Oznaczmy tę prostą przez CD. Rozkładamy siłę P na dwie składowe, z których jedna jest równoległa, a druga prostopadła do CD. Moment pierwszej według definicyi jest zerem, moment drugiej otrzymamy, mnożąc jej wielkość przez najkrótszą odległość pomiędzy nią i prostą CD.

Ta najkrótsza odległość jest oczywiście równa najkrótszej odległości pomiędzy siłą P i prostą CD, bo każda z nich jest równa odległości prostej CD od płaszczyzny, zawierającej obydwie składowe. Oznaczmy tę odległość przez r, a kąt pomiędzy siłą P i prostą CD przez 0; w takim razie składowa prostopadła do CD wyniesie Psin 3. Wypada więc, że moment siły P względem CD jest równy Pr sin 3.

Gdy mamy dodawać momenty różnych sił względem CD, to należy baczyć, aby każdy z nich wszedł ze stosownym znakiem. Pewien kierunek obrotu około CD obieramy za dodatni i uważamy moment siły za dodatni, jeżeli usiłuje ona obrócić ciało około CD w kierunku dodatnim.

	
	
264.    Dajmy na to, że dwie siły równe działają w kierunkach dodatnich na prostych AB i CD. Z paragrafu poprzedzającego wynika, że moment pierwszej siły względem CD jest równy momentowi drugiej względem AB.





Iloczyn r sin 3 zowie się niekiedy momentem jednej z prostych AB, CD względem drugiej. Niech i oznacza moment pierwszej prostej względem drugiej, i przypuśćmy, że na pierwszej działa siła P. W takim razie moment siły P względem drugiej prostej wyniesie Pi.

	
	
265.    W pewnych razach wypada liczyć się ze znakami r i 8. Przypuśćmy, że kierunek dodatni na wspólnej prostopadłej prostych AB i GD został już obrany, musimy więc mierzyć r w tym kierunku. Kąt 3 mierzymy w jakiejkolwiek płaszczyźnie, prostopadłej do r od rzutu jednej prostej do rzutu drugiej w takim kierunku, aby siła dodatnia, działająca na jednej prostej, wywoływała obrót w kierunku dodatnim około drugiej, gdy r i sin 8 są dodatnie (97).


	
266.    Znaczenie geometryczne momentu i. Wiadomo, że objętość czworościanu jest równa szóstej części iloczynu z dwóch przeciwległych krawędzi, ich najkrótszej odległości oraz synusa kąta pomiędzy niemi 1) Niech AB i CD będą jakimikolwiek odcinkami, położonymi od





powiednio na dwóch prostych. Moment wzajemny tych prostych wynosi


6V

abIdc'




gdzie V oznacza objętość



czworościanu, w którym AB i CD są

krawędziami przeciwległemi.

Wyznaczenie analityczne momentu i. Niech (fg h), (f' g' h') będą współrzędnemi punktów A, C, a (jmn), {l'm'n') kosynusami kierunkowymi kierunków dodatnich prostych AB, GD. Moment wzajemny prostych AB, CD jest równy wyznacznikowi f-f, 9~9\ h-h'

l, m, n

	
V, m', n'



Porządek wyrazów w tym wyznaczniku jest następujący: jeżeli f, g, h poprzedzają f, g', h' w pierwszym wierszu, to l, m, n poprzedzają V, m', n' w porządku wierszy.

Aby to udowodnić obieramy G za początek, i niech będzie x=f—f, y=g—g', z=h—h'. W takim razie moment żądany wyniesie IX’ +npd +nv‘; znaczenia liter X, p., v wskazaliśmy w par. 260.

	
	
267.    Prz. 1. Dwie proste posiadają współrzędne (lmnłuv) i C'm'n'\'[t''/); okazać, że ich moment wzajemny i=[k'+m[d+nZ + +l‘+m‘u+n‘v. Wielkość ta jest zatem dla dwóch danych prostych niezależna od tego, jak obraliśmy prostokątny układ współrzędnych. Jeżeli i=0, to proste się przecinają.
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Taki sam kąt








Inne twierdzenia o momentach linii prostych można znaleźć w książce Scotta p. t. Determinants.

Prz. 2. Punkty H i K, położone na linii działania siły P, posiadają współrzędne czworościanowe (xyzu), (x'y'z'u'). Okazać, że moment siły P względem krawędzi AB czworościanu wynosi

P 6v 2, 2‘ ' HK. AB I u, u' | ’

Jeżeli siła dodatnia działa w kierunku HK, to wyrażenie powyższe daje moment jej w kierunku obrotu około AB od wierzchołka C do wierzchołka D.

Prz. 3. Momenty wzajemne przeciwległych krawędzi czworościanu są równe; okazać, że iloczyny tych krawędzi są także równe. Okazać prócz tego, że

r4-2r2s2 cos 2r+s*=s4-2s2t2 C0S2 ------------   cos28+r4, gdzie r, s, t oznaczają długości odcinków, łączących środki przeciwległych krawędzi, a a, 3, Y kąty pomiędzy tymi odcinkami.

(St John’s, 1891.)

Prz. 4. Oko, umieszczone w punkcie O, widzi trójkąty ABC i A'B'C' w perspektywie. Na bokach BC, CA, AB działają odpowiednio siły P, Q, R, a na bokach C'B', A'C, B'A' siły P', Q', R1, i cały ten układ sił jest w równowadze; okazać, że

A. P.OA’ _ A'. P. 0A _A.Q.OB_AQ.OB_A.R.oc_ ^.R'. OC mPAA' - B‘C‘.AA‘ - CA. BB' - CAPBB' - AB. CC' - A'B'. CC'’ gdzie A i A' są objętościami czworościanów O ABC i OA'B'C'.

(Math. Tripos, 1883.)

Odcinki OA, OB, OC, AB, BC, CA są krawędziami czworościanu. Przyrównywując do zera momenty wszystkich sześciu sił względem krawędzi OA, znajdziemy, że dwa pierwsze z wyrażeń powyższych są równe. W ten sam sposób, biorąc momenty względem AB, dowiedziemy równości drugiego i czwartego, a z symetryi wyniknie, że wszystkie sześć wyrażeń są równe. Momenty można wyznaczać przy pomocy prawidła, podanego w par. 266.

	
	
268.    Zagadnienia równowagi. Prz. 1. Układ sił działa na ciało, które może obracać się swobodnie około osi nieruchomej. Pragniemy znaleźć warunki równowagi oraz reakcye osi.





Oś obrotu obieramy za oś z, a za osi x i y proste do niej prostopadłe.

Ciśnienia różnych elementów osi tworzą układ sił. Gdyby ciało mogło przesuwać się wzdłuż osi bez tarcia, to każde z tych ciśnień byłoby prostopadłe do osi. Ograniczenie to jednak nie upraszcza rozważań, założymy więc, że kierunki ciśnień są zupełnie ogólne. Obieramy na osi dowolny punkt B za środek redukcyi i każde ciśnienie przenosimy do B, wprowadzając stosowną parę; płaszczyzna tej pary Statyka. 15


AGz
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oczywiście przechodzi przez oś. Tak sprowadzimy wszystkie ciśnienia do jednej siły, przyłożonej w B, i do pary, której płaszczyzna przechodzi przez oś. Przenieśmy tę parę w taki sposób, aby jedna z jej sił działała na B, i zmieńmy tak jej ramię, aby druga siła działała na inny punkt C, również obrany na osi. Składając siły, działające na punkt B, sprowadzimy ciśnienia wszystkich elementów osi do dwóch reakcyi, przyłożonych w dwóch punktach B i C, obranych na osi dowolnie. Możemy uważać, że ciało jest osadzone na osi w tych punktach zapomocą gładkich zawias.
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Fig. 83.





współrzędnemi



Niech Fx, Fy, Fz i G, G-y, G, będą odpowiednio składowemi reakcyi w B i C, b i c rzęd-nenii tych punktów, wreszczie X, Y, Z, L, M, N ego układu sił. Biorąc rzuty na osi i momenty względem nich, jak w par. 257, otrzymamy

F,+G,+x=0       -Fh-GcYL=Q

Fv + a^+Y^         Fxb + Gxc+M=0

Fs+Gz+Z=Q)                  N=0

Równanie ostatnie zawiera warunek równowagi; głosi ono, że ciało będzie się obracać około osi, jeżeli moment sił danych względem osi nie jest równy zeru.

Mamy więc pięć równań do wyznaczenia sześciu składowych reakcyi osi. Składowe Fx, Fy, G,, Gy są oczywiście wyznaczalne, co się zaś tyczy składowych Fz i G,, to jedynie suma ich daje się wyznaczyć.

Możemy sobie ułatwić rozwiązywanie tych równań, obierając stosownie punkty B i C. Okoliczności zagadnienia wskazują zwykle najdogodniejsze położenie początku układu; jeżeli w tym samym punkcie umieścimy B, to Gy i G, otrzymamy bezpośrednio.

Przypuśćmy dla przykładu, że ciałem są ciężkie drzwi, których linia zawias tworzy z pionem kąt a. Moment sił względem osi musi być zerem, a więc w tym razie środek ciężkości drzwi leży w płaszczyźnie pionowej, przechodzącej przez oś. Obieramy tę płaszczyznę za płaszczyznę xz, a linię zawias za oś z. Niech x. O, ż oznaczają współrzędne środka ciężkości, a W ciężar drzwi. Aby dogodniej było wyznaczać momenty, zastępujemy W składowemi Wsin o i — Wcoso, przyłożonemi w środku ciężkości i równoległemi do osi x i z. Punkt B obieramy w początku układu, a punkt 0 w odległości c od początku. Biorąc rzuty i momenty, jak poprzednio, otrzymamy

F,+G,+Wsino=0                  —G„c=0

F,+G,       =0 G,c+Wz sin a+Wa cos a==0

FzYGz — Wcos 0=0

Z równań tych wynika, że Fy i G-y są zerami, a więc reakcye wypadkowe działają w płaszczyźnie pionowej, przechodzącej przez oś. Wartości Fx, G, i F,+G, dają się wyznaczyć bez trudności.

Prz. 2. Trzy jednakoive kule, których środkami są A, B, C, leżą na gładkim stole poziomym, opasane sznurem. Sznur przebiega w płaszczyźnie środków i posiada stosowną długość, ale jeszcze nie jest wy-
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Fig. 84.
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prażony. Kładziemy na wierzch czwartą taką samą kulę D tak, aby wsparła się na wszystkich trzech dolnych. Okazać, że w sznurze po


wstanie naprężenie




T=



Oznaczmy przez R reąkcyę górnej kuli na jedną z dolnych, i niech DN będzie odległością jej środka D od płaszczyzny ABC. Znaj-dziemy, że 3Rcos ADN=W. Rozważmy teraz równowagę kuli A. Dwie pozostałe kule dolne nie wywierają na nią żadnych reakcyi. Składowa reakcyi R w kierunku NA równoważy naprężenia w częściach sznura,


równoległych do AB i AC. BAC=60°, i



Zatem R cos DAN = 2Tcos BAN.


Kąt




AN sin ADN= —

AD



2 AM_ 2 2rsin600

3 ’ AD — 3 ' 2r ‘

Można teraz łatwo wyrazić T w funkcyi W.

Prz. 3. Cztery jednakowe kule pozostają w zetknięciu na dnie gładkiego kulistego naczynia, a ich środki leżą w jednej płaszczyźnie poziomej. Kładziemy na nie piątą kulę taką samą. Okazać, że kule dolne się rozejdą, jeżeli promień naczynia przewyższa (2 V13+1) razy wzięty promień kuli.                              (Math. Tripos, 1883.)

Prz. 4. Końce sześciu jednakowych prętów połączono luźno w taki sposób, że powstał czwprościan foremny, w którym pręty są krawędziami. Jedna jego ściana spoczywa na gładkiej płaszczyźnie poziomej. Okazać, że naprężenie podłużne w każdym boku tej ściany W

wynosi —-—, gdzie W oznacza wagę jednego pręta.        (Coli. Ex.)

	
	
	
2 V 6







Prz. 5. Ciężka elipsoida jednorodna leży na trzech gładkich kołkach, położonych w jednej płaszczyźnie poziomej, opierając się na nich końcami średnic sprzężonych. Dowieść, że zachodzi równowaga, i że reakcye kołków mają się do siebie, jak pola’ sprzężonych przekrojów centralnych.                                                    (Coli. Ex.)

Prz. 6. Cztery jednakowe sztaby, połączone w końcach swobodnie, tworzą czworobok skośny. Jedna z nich jest umocowana w położeniu poziomem, a na przeciwległą działa para sił o osi pionowej. Okazać, że w stanie równowagi dolna sztaba tworzy z górną kąt

G

	
	
	
	
2 arc sin wi gdzie G oznacza moment pary, W ciężar, a l długość sztaby. Wyznaczyć prócz tego reakcyę w jednem z połączeń dolnych.                                                       (Coli. Ex., 1880.)









Prz. 7. Trójkątna równoboczna płyta jest zawieszona za wierzchołki u trzech punktów ruchomych na trzech sznurach pionowych. Płyta ma położenie poziome, a długość każdego sznura jest równa średnicy 2a koła opisanego na trójkącie. Okazać, że moment pary, która utrzyma płytę na wysokości 2(1— n)a nad położeniem początko-wem, wynosi Wa V1—n2.                            (Coli. Ex., 1886.)

Prz. 8. Lekka sztaba o długości 2l pozostaje w danem położeniu poziomem, oparta końcami o krzywe powierzchnie dwóch poziomych gładkich cylindrów kołowych. Promień każdego cylindra jest równy a, osi są równoległe, a odległość pomiędzy niemi wynosi 2c. Na sztabę działa siła P, przyłożona w środku, i para. Wyznaczyć parę w przypadku równowagi i dowieść, że moment jej jest najmniejszy, gdy P

a (

działa pionowo, jeżeli c<‘sin+—-=sec—; P oznacza tu kąt pomiędzy

sztabą i osiami cylindrów.


(Math. Tripos, 1889.)



Prz. 9. Pełny cylinder o wysokości li i promieniu a składa się z nieskończenie wielkiej liczby nici równoległych i jednakowo sprężystych. Końce nici są przymocowane do dwóch tarcz, stanowiących podstawy cylindra, a wszystkie nici razem uniosłyby ciężar W, gdyby je wyciągnąć do długości 2h. Cylinder ten jest zawarty w innym próżnym cylindrze sztywnym, wypełniając go całkowicie. Przekręcamy jedną z tarcz końcowych w jej płaszczyźnie o kąt a. Zakładając, że każda nić przybiera kształt śrubowej, okazać, że w kierunku osi cy-2Wa2   h ,     h2\ lindra zacznie działać siła —---- V h2—a2q2 -i--

a' 2      0.2                    0.2/

(Math. Tripos, 1871.)

Prz. 10. Trzy jednakowe kule są zawieszone u nieruchomego punktu na trzech jednakowych sznurach o długości l. Każda kula waży W i posiada promień a. Umieszczamy na kulach symetrycznie lekką szalkę kulistą o promieniu b i lejemy do niej ostrożnie wodę. Okazać, że im więcej wody zawiera szalka, tern bliżej muszą leżeć kule dolne jedna od drugiej, aby równowaga była możliwa, i że równowaga stanie się niemożliwą, gdy ciężar wody przekroczy nW; n oznacza tu pierwiastek dodatni równania

n\l - b) (l+2a+b)+(2n+3) (a2 —Bab— 3b2)==0.

Promień szalki b jest według założenia tak mały, że sznury zachowują kształt linii prostych.                                 (Math. Tripos, 1890.)

	
	
269.    Prz. 1. Ciężka sztaba OAB może obracać się swobodnie około nieruchomego punktu O i opiera się o brzeg CAD chropowatej ściany. Tworzy ona przytem z prostopadłą OC do brzegu ściany kąt 3, a kąt, który OC tworzy z prostopadłą OE do pionowej powierzchni ściany, jest równy 3. Okazać, że tan 3 sin J=p, gdy równowaga jest graniczna.





Aby ułatwić sobie opis figury obierzmy OAB za oś x, a za oś z prostą prostopadłą do płaszczyzny A OC; oś y będzie prostopadła do x i z. Ciężar sztaby W zastępujemy przez składową                  B

W cos 3, równoległą do z, oraz składową Wsin 3,       CA4_ -równoległą do CO. Tę drugą rozkładamy jeszcze / I na siły Wsin 3 cos $ i W sin 3 sin 9 odpowiednio / /“ równoległe do osi x i y.                       /

/E———

Reakcya R w punkcie A jest prostopadła / do OA i CD, a więc równoległa do osi z. O Punkt A sztaby może przesunąć się tylko w kie-        Fig. 85.

runku prostopadłym do OA, a więc siła tarcia działa nie wzdłuż brzegu ściany, lecz odwrotnie do kierunku ruchu czyli równolegle do osi y. Biorąc momenty względem osi y i z, otrzymamy.

Wcosp. 0G-=R.0A, Wsin sin $.OG=pR.0A.

Stąd wypadnie, że p=tan 3 sin 3.

Prz. 2. Trzy jednakowe kule, z których każda waży W, leżą na chropowatej podłodze możliwie blizko jedna od drugiej, ale jeszcze nie w zetknięciu. Na nich kładziemy czwartą kulę, ważącą nW. Okazać, że układ pozostanie w równowadze, jeżeli współczynnik tarcia pomiędzy kulami przewyższa tan —, a współczynnik tarcia pomiędzy

a n kulą i podłogą przewyższa tan — .---, gdzie z pionem tworzy prosta, łącząca środek kuli górnej ze środkiem jednej z dolnych.


a oznacza kąt, który



Prz. 3. Drążek jednorodny opiera się końcem A o podłogę, a drugim końcem o pionową ścianę. Podłoga jest tak chropowata, że wszelki ruch końca A jest wyłączony, a współczynnik tarcia drążka o ścianę wynosi p. B oznacza położenie graniczne drugiego końca drążka dla pewnego położenia końca A, N spodek prostopadłej z A do ściany, a kąt BAN i 3 nachylenie prostej BN do pionu. Dowieść, że tan a tan 0 jest wielkością stałą, i wyznaczyć tarcie całkowite w B. Wyznaczyć prócz tego miejsce geometryczne punktu B na ścianie, gdy N jest nieruchome, i okazać, że B odchyla się najdalej od pionu, przechodzącego przez N, gdy a=3=arc tan Vp .           (Coli. Ex., 1886.)

Prz. 4 Sztaba o długości 2a stoi na podłodze, oparta o pionową ścianę. Współczynniki tarcia sztaby o podłogę i ścianę wynoszą odpowiednio M.1 i p2, odległość dolnego końca sztaby od ściany jest równa k, a płaszczyzna pionowa, przechodząca przez sztabę, tworzy ze ścianą kąt 8. Okazać, że sztaba ma zacząć się osuwać w dolnym końcu, gdy ku,(M22 sin2 8—cos2 8)2 == k-2u,(4a2 sin 8—k2)^, i że wówczas reakcya styczna w górnym końcu tworzy z poziomem kąt arc sec (U.2 tan 9).

(Math. Tripos, 1887.)

Prz. 5. Pierścień, nawleczony na cylinder poziomy, podtrzymuje kotarę zapomocą haczyka, umocowanego w tem miejscu pierścienia, który zajmuje położenie najniższe, gdy kotara zwisa swobodnie. Okazać, że (1) pierścień może stykać się z cylindrem w jednym, a najwyżej w dwóch punktach, (2) w przypadku zetknięcia podwójnego pierścień się nie przesunie, jakkolwiek będziemy ciągnęli kotarę, jeżeli (2a+b) cos 8. współczynnik tarcia przewyższa (2a-b)s i—--—L, gdzie b oznacza promień koła tworzącego, a promień koła kierowniczego, i 3 nachylenie płaszczyzny koła kierowniczego do osi cylindra. Ciężar samego pierścienia nie jest tu brany w rachubę.                        (Math. T.)

Obieramy oś pierścienia za oś z, płaszczyznę koła kierowniczego za płaszczyznę xy, a oś x prowadzimy przez haczyk. Niech B, B' oznaczają punkty zetknięcia pierścienia z cylindrem, i dajmy na to, że B' leży bliżej haczyka. Oznaczmy jeszcze reakcye w tych punktach przez (R- p.R) i {R'; ^R'}\ wszystkie te cztery siły leżą w płaszczyźnie xz. Biorąc momenty względem osi, przechodzącej przez haczyk, i rozwiązując, znajdziemy

(2a+b) cos 3— pb cos 9

	
1    (2a+b) sin 8— b+pb(1+sin 9)’



gdzie p oznacza stosunek R' do R. Dopóki istnieje zetknięcie podwójne, to zarówno R, jak i R', muszą być dodatnie. Jeżeli jednak p. jest większe od wartości, podanej w zadaniu, to z równania powyższego wypada, że p musi być ujemne.

Prz. 6. Ciężki stożek styka się wzdłuż tworzącej z chropowatą pionową ścianą i może obracać się swobodnie około wierzchołka, umocowanego nieruchomo. Na stożek działa para o momencie L w płaszczyźnie równoległej do podstawy. Okazać, że w stanie równowagi tworząca zetknięcia tworzy z pionem kąt 3, czyniący zadość równaniu

	
	
3 Whsin I-tano                                         .


	
L—-----, gdzie W oznacza wagę stożka, 20. kąt wierzchołkowy, 4







i h wysokość. Okazać jeszcze, że współczynnik tarcia musi wynosić 2 tan 9

conajmniej ——, jeżeli jedynie obwod podstawy stożka jest chro-sin 20

po waty.

Oś centralna i niezmienniki.

	
	
	
	
270.    Oś centralna Poinsota. Obrawszy środek redukcyi O, sprowadziliśmy układ do siły JR, przyłożonej w 0, i do pary G. Zbadamy teraz, czy układ nie da się uprościć jeszcze bardziej przez stosowny obiór środka redukcyi.









Dajmy na to, że siła R tworzy z osią pary G kąt 3. Rozkładamy G na dwie pary składowe G cos9 i Gsin 0; płaszczyzna pierwszej jest prostopadła do R, a płaszczyzna drugiej zawiera R. Para Gsin 9 i siła R są równoważne jednej sile, działającej w ich płaszczyźnie, równej R^ równoległej do niej i po-. •     — Gsin 9 , — łożonej w odległości ——— od O.

R

Tym sposobem sprowadziliśmy cały układ do siły R i do pary^ której płaszczyzna jest prostopadła do siły. Ta siła R jest równoległa do siły głównej któregokolwiek środka redukcyi; jej linia działania zowie się osią centralną Poinsota.

Przypuśćmy, że para G i siła R są dane dla jakiegokolwiek środka 0; pragniemy zbudować geometrycznie oś centralną. Należy w tym celu wziąć pod uwagę, że (1) oś centralna

Gsin 9

jest równoległa do R, (2) leży w odległości ---—— od R, (3)

h

prosta, poprowadzona prostopadle z O do osi centralnej, jest prostopadła do R i do osi pary G, (4) para Gsin 3 powinna popychać spodek tej prostopadłej na osi centralnej w tym samym kierunku, co i siła R.

	
	
	
	
271.    Śruby i skrętniki. Wyobraźmy sobie, że ciało obróciło się około pewnej prostej o mały kąt do i jednocześnie przesunęło się równolegle do niej o małą odległość ds. Mówimy, że ciało odbyło wzdłuż tej prostej ruch śrubowy,









, ds                                                .                                                   , , . a stosunek — nazywamy stromością śruby. Jeżeli stromosc jest jednostajna, to możemy ją zdefiniować jako drogę, odbytą wzdłuż osi podczas obrotu o jeden radyan, t. j. o jednostkę kąta miary bezwzględnej. Widzimy więc, że stromość śruby jest długością. Nieraz dla krótkości śrubą nazywamy oś śruby.

Jeżeli w układzie, złożonym z siły i pary, oś pary leży na linii działania siły lub jest do niej równoległa, to układ taki nazywamy skrętnikiem. Termin ten (po angielsku wrench) wprowadził Sir R. Bali *). Wyrażenie skrętnik na śrubie ozna-cza siłę, skierowaną według osi śruby, i parę, działającą w płaszczyźnie prostopadłej do śruby, przyczem moment pary jest równy iloczynowi z siły przez stromość. Siłę nazywamy natężeniem skrętnika. Jeżeli stromość śruby jest zerem, to skrętnik jest po prostu siłą, jeżeli stromość jest nieskończenie wielka, to skrętnik sprowadza się do pary. Niekiedy wyrażenie skrętnik na śrubie oddajemy jednym wyrazem skrętnik.

Skrętnik jest to dynama, której siła posiada kierunek prostopadły do płaszczyzny pary.

Do określenia śruby potrzeba pięciu wielkości. Cztery z nich są niezbędne do określenia położenia osi; mogą to być np. współrzędne jej punktów przecięcia z dwiema płaszczyznami współrzędnych. Piąta wielkość określa stromość śruby. Określenie skrętnika na śrubie wymaga jeszcze szóstej wielkości, a mianowicie wielkości siły.

	
	
	
	
272.    Rozróżniamy śruby prawoskrętne i lewoskrętne, stosownie do tego, w którą stronę obraca się ciało podczas tego samego przesunięcia. Wyobraźmy sobie, że obserwator stoi oparty o oś plecami; jeżeli przesunięcie odbyło się w kierunku od stóp do głowy, to nazywamy je dodatniem. Jeżeli przy-tem obserwator widzi obrót ciała w kierunku ruchu wskazówki zegara, to śrubę nazywamy lewoskrętną, jeżeli w odwrotnym to prawoskrzętną. (Zob. par. 97).









Zwykły korkociąg jest przykładem śruby prawoskrętnej, a oto przykład inny. Niech czytelnik wyciąga obydwie ręce poziomo ku przodowi, obracając jednocześnie wielki palec prawej ręki w prawo, a lewej w lewo. Ruch prawej ręki będzie ilustracyą śruby prawoskrętnej, a ruch lewej śruby lewo-skrętnej.

Figury rozdziału niniejszego wykreślono zgodnie z układem współrzędnych, zwykle używanym w geometryi trójwymiarowej, a zatem śruba lewoskrętną stanowi podstawę umów, zawartych celem

*) Polską nazwę skrętnik wprowadził J. N. Franke. Ten sam ds

autor nazywa stosunek -- wskaźnikiem skrętnika-, wydało mi się, że do

wyraz stromość maluje dosadniej to pojęcie.          Przyp. tłómacza. rozróżnienia kierunków dodatnich i ujemnych w ruchu postępowym i obrotowym. Uczyniwszy zamianę pomiędzy osiami x i y, można przystosować figury do układu odwrotnego.

	
	
	
	
273.    Skrętnik równoważny. Dany jest układ sił zapo-mocą sześciu składników X, Y, Z, L, M, N, odniesionych do jakiegokolwiek układu prostokątnego ze środkiem redukcyi w początku O. Mamy znaleić wyrażenia analityczne na skrętnik równoważny.









Jest rzeczą oczywistą, że oś skrętnika równoważnego leży na osi centralnej Poinsota i jest równoległa do siły głównej R jakiegokolwiek środka redukcyi. Wynikają stąd wnioski następujące:

	
	
	
	
(1 ) Kosynusy kierunkowe osi centralnej wynoszą


	
(2 ) Siła, czyli natężenie skrętnika, jest równa R.


	
(3 ) Niech T oznacza szukaną parę skrętnika. W myśl twierdzenia Poinsota wszystkie siły są równoważne sile R i parze T, a więc moment wszystkich sił układu względem dowolnej prostej jest równy momentowi R i T względem tejże prostej. Jeżeli ta prosta jest równoległa do osi centralnej, to moment siły R jest zerem, a moment pary jest równy T. Wynika stąd, że moment sił układu względem każdej prostej, równoległej do osi centralnej, jest równy momentowi względem osi centralnej.









Główna siła R punktu O, jako środka redukcyi, jest równoległa do osi centralnej, jeżeli więc 0 oznacza kąt pomiędzy Cr i R, to

r = G cos ^ — Ll + Mm + Nn,

a zatem         TR= LX+ MY+ NZ.

Stromość śruby, na której działa skrętnik, będzie

_T _LX+MY+NZ PFR- R2 '

	
	
	
	
(4 ) Niech (§n%) będą współrzędnemi któregokolwiek punktu osi centralnej. Obierzmy ten punkt za środek redukcyi. Składowe L', M‘, N' pary mieliśmy w par. 258; są one pro-









	
266.    Znaczenie geometryczne momentu i. Wiadomo, że objętość czworościanu jest równa szóstej części iloczynu z dwóch przeciwległych krawędzi, ich najkrótszej odległości oraz synusa kąta pomiędzy niemi 2) Niech AB i CD będą jakimikolwiek odcinkami, położonymi odpowiednio na dwóch prostych. Moment wzajemny tych prostych wynosi gdzie V oznacza objętość czworościanu, w którym AB i CD są


6V

abIdc’





krawędziami przeciwległemi.

Wyznaczenie analityczne momentu i. Niech (fgh), [f g'h') będą współrzędnemi punktów A, C, a (jmn), (1'm'n') kosynusami kierunkowymi kierunków dodatnich prostych AB, CD. Moment wzajemny prostych AB, CD jest równy wyznacznikowi

f-f, 9~9', h-h'

l, m, n

1',       m',     n'

Porządek wyrazów w tym wyznaczniku jest następujący: jeżeli f, g, h poprzedzają f, g', h' w pierwszym wierszu, to l, m, n poprzedzają l', m', n' w porządku wierszy.

Aby to udowodnić obieramy C za początek, i niech będzie x=f—f‘, y=g—g', z—h—h'. W takim razie moment żądany wyniesie IX‘+mu‘+nv‘; znaczenia liter X, p., v wskazaliśmy w par. 260.

	
267.    Prz. 1. Dwie proste posiadają współrzędne (lmn)^D i (rm'n'\'ik''/y, okazać, że ich moment wzajemny i=l\'+m[).'+nM' + + l'XAm'ii.+n'v. Wielkość ta jest zatem dla dwóch danych prostych niezależna od tego, jak obraliśmy prostokątny układ współrzędnych. Jeżeli i=0, to proste się przecinają.



Inne twierdzenia o momentach linii prostych można znaleźć w książce Scotta p. t. Determinants.

Prz. 2. Punkty H i K, położone na linii działania siły P, posiadają współrzędne czworościanowe (xyzu), (x'y'z'u'). Okazać, że moment siły P względem krawędzi AB czworościanu wynosi

6V | z, z' i

" AB ) u, u’ I'

Jeżeli siła dodatnia działa w kierunku HK, to wyrażenie powyższe daje moment jej w kierunku obrotu około AB od wierzchołka C do wierzchołka D.

Prz. 3. Momenty wzajemne przeciwległych krawędzi czworościanu są równe; okazać, że iloczyny tych krawędzi są także równe. Okazać prócz tego, że

r4- 2r2s2 cos 2+s*=s4-2s2t2 cos2 a+1=t—2t?r2cos2 8+r4, gdzie r, s, t oznaczają długości odcinków, łączących środki przeciwległych krawędzi, a a, 3, Y kąty pomiędzy tymi odcinkami.

(St John’s, 1891.)

Prz. 4. Oko, umieszczone w punkcie O, widzi trójkąty ABC i A'B'C' w perspektywie. Na bokach BC, CA, AB działają odpowiednio siły P, Q, B, a na bokach C'B', A' C, B'A' siły P', Q, B', i cały ten układ sił jest w równowadze; okazać, że

A. P. OA' _ A'. P'. OA _ A . Q . OB' _ A'. Q'. OB _ A . B . OC _ A'. B'. OC ^BC?AA' - B‘C‘.AA‘ - CA . BB' - C'A'.BB' - AB. CC' - A'B'. CC'’ gdzie A i A' są objętościami czworościanów O ABC i OA'B'C'.

(Math. Tripos, 1883.)

Odcinki OA, OB, OC, AB, BC, CA są krawędziami czworościanu. Przyrównywując do zera momenty wszystkich sześciu sił względem krawędzi OA, znajdziemy, że dwa pierwsze z wyrażeń powyższych są równe. W ten sam sposób, biorąc momenty względem AB, dowiedziemy równości drugiego i czwartego, a z symetryi wyniknie, że wszystkie sześć wyrażeń są równe. Momenty można wyznaczać przy pomocy prawidła, podanego w par. 266.

	
268.    Zagadnienia równowagi. Prz. 1. Układ sił działa na ciało, które może obracać się swobodnie około osi nieruchomej. Pragniemy znaleźć warunki równowagi oraz reakcye osi.



Oś obrotu obieramy za oś z, a za osi x i y proste do niej prostopadłe.

Ciśnienia różnych elementów osi tworzą układ sił. Gdyby ciało mogło przesuwać się wzdłuż osi bez tarcia, to każde z tych ciśnień byłoby prostopadłe do osi. Ograniczenie to jednak nie upraszcza rozważań, założymy więc, że kierunki ciśnień są zupełnie ogólne. Obieramy na osi dowolny punkt B za środek redukcyi i każde ciśnienie przenosimy do B, wprowadzając stosowną parę; płaszczyzna tej pary

Statyka. 15

oczywiście przechodzi przez oś. Tak sprowadzimy wszystkie ciśnienia do jednej siły, przyłożonej w B, i do pary, której płaszczyzna przechodzi przez oś. Przenieśmy tę parę w taki sposób, aby jedna z jej sił działała na B, i zmieńmy tak jej ramię, aby druga siła działała na inny punkt C, również obrany na osi. Składając siły, działające na punkt B, sprowadzimy ciśnienia wszystkich elementów osi do dwóch reakcyi, przyłożonych w dwóch punktach B i C, obranych na osi dowolnie. Możemy uważać, że ciało jest osadzone na osi w tych punktach zapomocą gładkich zawias.

[image: ]

Fig. 83.





współrzędnemi



Niech Fg Fy, Fe i G,, Gy, G, będą odpowiednio składowemi reakcyi w B i 0, b i c rzęd-nemi tych punktów, wreszczie X, Y, Z, L, M, N ego układu sił. Biorąc rzuty na osi i momenty względem nich, jak w par. 257, otrzymamy

F,+G,+x=0         -J?sb~l}tc+L=0

F„+G-U+Y=O          F.b+G,c+M=0

F,+G,+Z=0                  N=Q

Równanie ostatnie zawiera warunek równowagi; głosi ono, że ciało będzie się obracać około osi, jeżeli moment sił danych względem osi nie jest równy zeru.

Mamy więc pięć równań do wyznaczenia sześciu składowych reakcyi osi. Składowe Fx, F , G,, Gy są oczywiście wyznaczalne, co się zaś tyczy składowych Fe i Gz, to jedynie suma ich daje się wyznaczyć.

Możemy sobie ułatwić rozwiązywanie tych równań, obierając stosownie punkty B i C. Okoliczności zagadnienia wskazują zwykle najdogodniejsze położenie początku układu; jeżeli w tym samym punkcie umieścimy B, to G, i G, otrzymamy bezpośrednio.

Przypuśćmy dla przykładu, że ciałem są ciężkie drzwi, których linia zawias tworzy z pionem kąt a. Moment sił względem osi musi być zerem, a więc w tyra razie środek ciężkości drzwi leży w płaszczyźnie pionowej, przechodzącej przez oś. Obieramy tę płaszczyznę za płaszczyznę xz, a linię zawias za oś z. Niech x. O, ż oznaczają współrzędne środka ciężkości, a W ciężar drzwi. Aby dogodniej było wyznaczać momenty, zastępujemy W składowemi Wsin a i — Wcoso, przyłożonemi w środku ciężkości i równoległemi do osi x i z. Punkt B obieramy w początku układu, a punkt C w odległości c od początku. Biorąc rzuty i momenty, jak poprzednio, otrzymamy

F,+G,+Wsino=0                  —G„c=0

F+G, = 0 G,c+Wz sin a+Wa cos =0 F,+G, — Wcos 0=0

Z równań tych wynika, że Fy i Gy są zerami, a więc reakcye wypadkowe działają w płaszczyźnie pionowej, przechodzącej przez oś. Wartości Fx, G, i F,+G, dają się wyznaczyć bez trudności.

Prz. 2. Trzy jednakowe kule, których środkami są A, B, C, leżą na gładkim stole poziomym, opasane sznurem. Sznur przebiega w płaszczyźnie środków i posiada stosowną długość, ale jeszcze nie jest wyprężony. Kładziemy na wierzch czwartą taką samą kulę D tak, aby wsparła się na wszystkich trzech dolnych. Okazać, że w sznurze po-
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Fig. 84.
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W

wstanie naprężenie T — 3 16

Oznaczmy przez R reąkcyę górnej kuli na jedną z dolnych, i niech DN będzie odległością jej środka D od płaszczyzny ABC. Znaj-dziemy, że 3R cos ADN— W. Rozważmy teraz równowagę kuli A. Dwie pozostałe kule dolne nie wywierają na nią żadnych reakcyi. Składowa reakcyi R w kierunku NA równoważy naprężenia w częściach sznura, równoległych do AB i AC. Zatem R cos DAN— 2T cos BAN. Kąt BAC=6Q°, i

AN  2 AM  2 2rsin 60° sin ADN— — = — . — = — .----.

AD  3 AD  3 2r

Można teraz łatwo wyrazić T w funkcyi W.

Prz. 3. Cztery jednakowe kule pozostają w zetknięciu na dnie gładkiego kulistego naczynia, a ich środki leżą w jednej płaszczyźnie poziomej. Kładziemy na nie piątą kulę taką samą. Okazać, że kule dolne się rozejdą, jeżeli promień naczynia przewyższa (2 V13+1) razy wzięty promień kuli.                              (Math. Tripos, 1883.)

Prz. 4. Końce sześciu jednakowych prętów połączono luźno w taki sposób, że powstał czworościan foremny, w którym pręty są krawędziami. Jedna jego ściana spoczywa na gładkiej płaszczyźnie poziomej. Okazać, że naprężenie podłużne w każdym boku tej ściany W

wynosi ———, gdzie W oznacza wagę jednego pręta.        (Coli. Ex.)

	
2 v 6



Prz. 5. Ciężka elipsoida jednorodna leży na trzech gładkich kołkach, położonych w jednej płaszczyźnie poziomej, opierając się na nich końcami średnic sprzężonych. Dowieść, że zachodzi równowaga, i że reakcye kołków mają się do siebie, jak pola’sprzężonych przekrojów centralnych.                                                    (Coli. Ex.)

Prz. 6. Cztery jednakowe sztaby, połączone w końcach swobodnie, tworzą czworobok skośny. Jedna z nich jest umocowana w położeniu poziomem, a na przeciwległą działa para sił o osi pionowej. Okazać, że w stanie równowagi dolna sztaba tworzy z górną kąt 2 arc sin w gdzie G oznacza moment pary, W ciężar, a Z długość sztaby. Wyznaczyć prócz tego reakcyę w jednem z połączeń dolnych.                                                       (Coli. Ex., 1880.)

Prz. 7. Trójkątna równoboczna płyta jest zawieszona za wierzchołki u trzech punktów ruchomych na trzech sznurach pionowych. Płyta ma położenie poziome, a długość każdego sznura jest równa średnicy 2a koła opisanego na trójkącie. Okazać, że moment pary, która utrzyma płytę na wysokości 2(1 — n)a nad położeniem początko-wem, wynosi Wav1—n2.                           (Coli. Ex., 1886.)

Prz. 8. Lekka sztaba o długości 2Z pozostaje w danem położeniu poziomem, oparta końcami o krzywe powierzchnie dwóch poziomych gładkich cylindrów kołowych. Promień każdego cylindra jest równy a, osi są równoległe, a odległość pomiędzy niemi wynosi 2c. Na sztabę działa siła P, przyłożona w środku, i para. Wyznaczyć parę w przypadku równowagi i dowieść, że moment jej jest najmniejszy, gdy P

C ©

działa pionowo, jeżeli c<‘sin+—^sec—; P oznacza tu kąt pomiędzy

sztabą i osiami cylindrów.


(Math. Tripos, 1889.)



Prz. 9. Pełny cylinder o wysokości h i promieniu a składa się z nieskończenie wielkiej liczby nici równoległych i jednakowo sprężystych. Końce nici są przymocowane do dwóch tarcz, stanowiących podstawy, cylindra, a wszystkie nici razem uniosłyby ciężar W, gdyby je wyciągnąć do długości 2h. Cylinder ten jest zawarty w innym próżnym cylindrze sztywnym, wypełniając go całkowicie. Przekręcamy jedną z tarcz końcowych w jej płaszczyźnie o kąt a. Zakładając, że każda nić przybiera kształt śrubowej, okazać, że w kierunku osi cy-

. 2W(a2   h ,______, h lindra zacznie działać siła —---V h2—a2q2 -—

a2 2 a2               a

(Math. Tripos, 1871.)

Prz. 10. Trzy jednakowe kule są zawieszone u nieruchomego punktu na trzech jednakowych sznurach o długości l. Każda kula waży W i posiada promień a. Umieszczamy na kulach symetrycznie lekką szalkę kulistą o promieniu b i lejemy do niej ostrożnie wodę. Okazać, że im więcej wody zawiera szalka, tern bliżej muszą leżeć kule dolne jedna od drugiej, aby równowaga była możliwa, i że równowaga stanie się niemożliwą, gdy ciężar wody przekroczy nW; n oznacza tu pierwiastek dodatni równania

n\l - b) (l+2a+b)+(2n+3) (a2 -6a&—3b2)=0.

Promień szalki b jest według założenia tak mały, że sznury zachowują kształt linii prostych.                                 (Math. Tripos, 1890.)

	
	
269.    Prz. 1. Ciążka sztaba OAB może obracać się siuobodnie około nieruchomego punktu O i opiera się o brzeg CAD chropowatej ściany. Tworzy ona przytem z prostopadłą OC do brzegu ściany kąt 3, a kąt, który OC tworzy z prostopadłą OE do pionowej powierzchni ściany, jest równy B. Okazać, że tan^> sin^=[)., gdy równowaga jest graniczna.





Aby ułatwić sobie opis figury obierzmy OAB za oś x, a za oś z prostą prostopadłą do płaszczyzny AOC; oś y będzie prostopadła do x i z. Ciężar sztaby W zastępujemy przez składową                  B

W cos 3, równoległą do z, oraz składową Wsin 3,       CAA__ równoległą do GO. Tę drugą rozkładamy jeszcze /D na siły Wsin 8 cos $ i Wsin 3 sin $ odpowiednio / /“ równoległe do osi x i y.                 /

/.E     -—- —J

Reakcya R w punkcie A jest prostopadła £ do OA i CD, a więc równoległa do osi z. O Punkt A sztaby może przesunąć się tylko w kie-        Fig 85.

runku prostopadłym do OA, a więc siła tarcia działa nie wzdłuż brzegu ściany, lecz odwrotnie do kierunku ruchu czyli równolegle do osi y. Biorąc momenty względem osi y i z, otrzymamy.

W cos 3. OG^R.OA, Wsin 3 sin 8 .OG^R . OA-

Stąd wypadnie, że p=tan 3 sin 3.

Prz. 2. Trzy jednakowe kule, z których każda waży W, leżą na chropowatej podłodze możliwie blizko jedna od drugiej, ale jeszcze nie w zetknięciu. Na nich kładziemy czwartą kulę, ważącą nW. Okazać, że układ pozostanie w równowadze, jeżeli współczynnik tarcia

a.

pomiędzy kulami przewyższa tan —, a współczynnik tarcia pomiędzy

a n kulą i podłogą przewyższa tan — .---, gdzie


a oznacza kąt, który



2 n — 3 z pionem tworzy prosta, łącząca środek kuli górnej ze środkiem jednej z dolnych.

Prz. 3. Drążek jednorodny opiera się końcem A o podłogę, a drugim końcem o pionową ścianę. Podłoga jest tak chropowata, że wszelki ruch końca A jest wyłączony, a współczynnik tarcia drążka o ścianę wynosi p. B oznacza położenie graniczne drugiego końca drążka dla pewnego położenia końca A, N spodek prostopadłej z A do ściany, a kąt BAN i 3 nachylenie prostej BN do pionu. Dowieść, że tan a tan 9 jest wielkością stałą, i wyznaczyć tarcie całkowite w B. Wyznaczyć prócz tego miejsce geometryczne punktu B na ścianie, gdy N jest nieruchome, i okazać, że B odchyla się najdalej od pionu, przechodzącego przez N, gdy o=}=arc tan Vp .           (Coli. Ex., 1886.)

Prz. 4 Sztaba o długości 2a stoi na podłodze, oparta o pionową ścianę. Współczynniki tarcia sztaby o podłogę i ścianę wynoszą odpowiednio M.1 i p.2, odległość dolnego końca sztaby od ściany jest równa k, a płaszczyzna pionowa, przechodząca przez sztabę, tworzy ze ścianą kąt 3. Okazać, że sztaba ma zacząć się osuwać w dolnym końcu, gdy ku,(M22 sin21> —cos2 8) 2 = k— 2p,(4a2 sin 8—k2)^, i że wówczas reakcya styczna w górnym końcu tworzy z poziomem kąt arc sec (ug tan 8).

(Math. Tripos, 1887.)

Prz. 5. Pierścień, nawleczony na cylinder poziomy, podtrzymuje kotarę zapomocą haczyka, umocowanego w tern miejscu pierścienia, który zajmuje położenie najniższe, gdy kotara zwisa swobodnie. Okazać, że (1) pierścień może stykać się z cylindrem w jednym, a najwyżej w dwóch punktach, (2) w przypadku zetknięcia podwójnego pierścień się nie przesunie, jakkolwiek będziemy ciągnęli kotarę, jeżeli (2a+b) cos 9. współczynnik tarcia przewyższa (20-b) si—9—b‘ gdzie b oznacza promień koła tworzącego, a promień koła kierowniczego, i 3 nachylenie płaszczyzny koła kierowniczego do osi cylindra. Ciężar samego pierścienia nie jest tu brany w rachubę.                        (Math. T.)

Obieramy oś pierścienia za oś z, płaszczyznę koła kierowniczego za płaszczyznę xy, a oś x prowadzimy przez haczyk. Niech B, B' oznaczają punkty zetknięcia pierścienia z cylindrem, i dajmy na to, że B' leży bliżej haczyka. Oznaczmy jeszcze reakcye w tych punktach przez (R, LR) i (R‘, p. R‘); wszystkie te cztery siły leżą w płaszczyźnie xz. Biorąc momenty względem osi, przechodzącej przez haczyk, i rozwiązując, znajdziemy

(2a + b) cos 3— pb cos 9

I (2a+b) sin 9—b+pb(1+sin 9)’

gdzie p oznacza stosunek R' do R. Dopóki istnieje zetknięcie podwójne, to zarówno R, jak i R', muszą być dodatnie. Jeżeli jednak p. jest większe od wartości, podanej w zadaniu, to z równania powyższego wypada, że p musi być ujemne.

Prz. 6. Ciężki stożek styka się wzdłuż tworzącej z chropowatą pionową ścianą i może obracać się swobodnie około wierzchołka, umocowanego nieruchomo. Na stożek działa para o momencie L w płaszczyźnie równoległej do podstawy. Okazać, że w stanie równowagi tworząca zetknięcia tworzy z pionem kąt 3, czyniący zadość równaniu 3 Wh sin 9- tan a

L=--4---, gdzie W oznacza wagę stożka, 2a kąt wierzchołkowy,

i h wysokość. Okazać jeszcze, że współczynnik tarcia musi wynosić 2 tan 9-                                                         .

conajmniej--, jeżeli jedynie obwod podstawy stożka jest chro-sin 2a

po waty.

Oś centralna i niezmienniki.

	
	
270.    Oś centralna Poinsota. Obrawszy środek redukcyi O, sprowadziliśmy układ do siły JR, przyłożonej w O, i do pary G. Zbadamy teraz, czy układ nie da się uprościć jeszcze bardziej przez stosowny obiór środka redukcyi.





Dajmy na to, że siła R tworzy z osią pary G kąt 3. Rozkładamy G na dwie pary składowe G coss i G sin 8; płaszczyzna pierwszej jest prostopadła do R^ a płaszczyzna drugiej zawiera R. Para Gsin 8 i siła R są równoważne jednej sile, działającej w ich płaszczyźnie, równej R, równoległej do niej i po-. • Gsin 9 -łożonej w odległości ——— od O.

Tym sposobem sprowadziliśmy cały układ do siły R i do pary, której płaszczyzna jest prostopadła do siły. Ta siła R jest równoległa do siły głównej któregokolwiek środka redukcyi; . jej linia działania zowie się osią centralną Poinsota.

Przypuśćmy, że para G i siła R są dane dla jakiegokolwiek środka O; pragniemy zbudować geometrycznie oś centralną. Należy w tym celu wziąć pod uwagę, że (1) oś centralna

G sin 9-              . jest równoległa do R, (2) leży w odległości ---7— od R, (3) prosta, poprowadzona prostopadle z O do osi centralnej, jest prostopadła do R i do osi pary G, (4) para G sin 3 powinna popychać spodek tej prostopadłej na osi centralnej w tym samym kierunku, co i siła R.

	
	
271.    Śruby i skrętniki. Wyobraźmy sobie, że ciało obróciło się około pewnej prostej o mały kąt do i jednocześnie przesunęło się równolegle do niej o małą odległość ds. Mówimy, że ciało odbyło wzdłuż tej prostej ruch śrubowy, ds





a stosunek — nazywamy stromością śruby. Jeżeli stromość jest jednostajna, to możemy ją zdefiniować jako drogę, odbytą wzdłuż osi podczas obrotu o jeden radyan, t. j. o jednostkę kąta miary bezwzględnej. Widzimy więc, że stromość śruby jest długością. Nieraz dla krótkości śrubą nazywamy oś śruby.

Jeżeli w układzie, złożonym z siły i pary, oś pary leży na linii działania siły lub jest do niej równoległa, to układ taki nazywamy skrętnikiem. Termin ten (po angielsku wrench) wprowadził Sir R. Bali 3). Wyrażenie skrętnik na śrubie ozna-cza siłę, skierowaną według osi śruby, i parę, działającą w płaszczyźnie prostopadłej do śruby, przyczem moment pary jest równy iloczynowi z siły przez stromość. Siłę nazywamy natężeniem skrętnika. Jeżeli stromość śruby jest zerem, to skrętnik jest po prostu siłą, jeżeli stromość jest nieskończenie wielka, to skrętnik sprowadza się do pary. Niekiedy wyrażenie skrętnik na śrubie oddajemy jednym wyrazem skrętnik.

Skrętnik jest to dynama, której siła posiada kierunek prostopadły do płaszczyzny pary.

Do określenia śruby potrzeba pięciu wielkości. Cztery z nich są niezbędne do określenia położenia osi; mogą to być np. współrzędne jej punktów przecięcia z dwiema płaszczyznami współrzędnych. Piąta wielkość określa stromość śruby. Określenie skrętnika na śrubie wymaga jeszcze szóstej wielkości, a mianowicie wielkości siły.

	
	
272.    Rozróżniamy śruby prawoskrętne i lewoskrętne, stosownie do tego, w którą stronę obraca się ciało podczas tego samego przesunięcia. Wyobraźmy sobie, że obserwator stoi oparty o oś plecami; jeżeli przesunięcie odbyło się w kierunku od stóp do głowy, to nazywamy je dodatniem. Jeżeli przy-tem obserwator widzi obrót ciała w kierunku ruchu wskazówki zegara, to śrubę nazywamy lewoskrętną, jeżeli w odwrotnym to prawoskrzętną. (Zob. par. 97).





Zwykły korkociąg jest przykładem śruby prawoskrętnej, a oto przykład inny. Niech czytelnik wyciąga obydwie ręce poziomo ku przodowi, obracając jednocześnie wielki palec prawej ręki w prawo, a lewej w lewo. Ruch prawej ręki będzie ilustracyą śruby prawoskrętnej, a ruch lewej śruby lewo-skrętnej.

Figury rozdziału niniejszego wykreślono zgodnie z układem współrzędnych, zwykle używanym w geometry! trójwymiarowej, a zatem śruba lewoskrętną stanowi podstawę umów, zawartych celem rozróżnienia kierunków dodatnich i ujemnych w ruchu postępowym i obrotowym. Uczyniwszy zamianę pomiędzy osiami x i y, można przystosować figury do układu odwrotnego.

	
	
273.    Skrętnik równoważny. Dany jest układ sił zapo-mocą sześciu składników X, Y, Z, L, M, N, odniesionych do jakiegokolwiek układu prostokątnego ze środkiem, redukcyi w początku O. Mamy znaleić wyrażenia analityczne na skrętnik równoważny.





Jest rzeczą oczywistą, że oś skrętnika równoważnego leży na osi centralnej Poinsota i jest równoległa do siły głównej R jakiegokolwiek środka redukcyi. Wynikają stąd wnioski następujące:


Kosynusy kierunkowe osi centralnej wynoszą



(1)

	
(2)


Siła, czyli natężenie skrętnika, jest równa R.

Niech P oznacza szukaną parę skrętnika. W myśl




	
(3)



twierdzenia Poinsota wszystkie siły są równoważne sile R i parze T, a więc moment wszystkich sił układu względem dowolnej prostej jest równy momentowi R i r względem tejże prostej. Jeżeli ta prosta jest równoległa do osi centralnej, to moment siły R jest zerem, a moment pary jest równy T. Wynika stąd, że moment sił układu względem każdej prostej, równoległej do osi centralnej, jest równy momentowi względem osi centralnej.

Główna siła R punktu O, jako środka redukcyi, jest równoległa do osi centralnej, jeżeli więc 3 oznacza kąt pomiędzy G i R, to

P = G cos 3 = Ll + Mm + Nn,

a zatem          TR = LX + M Y + NZ.

Stromość śruby, na której działa skrętnik, będzie

_r _LX+MY+^Z

P~R - R2 '

	
(4)    Niech (§%) będą współrzędnemi któregokolwiek punktu osi centralnej. Obierzmy ten punkt za środek redukcyi. Składowe L', M‘, N' pary mieliśmy w par. 258; są one pro-porcyonalne do kosynusów kierunkowych osi pary głównej, a więc przy pomocy (1) otrzymamy



L - 2+ C Y _ M- IX + ^Z N-k Y+ X X = Y        Z

Są to równania osi centralnej.

Pomnóżmy licznik i mianownik każdego ułamka odpowiednio przez X, Y, Z i weżmy stosunek sum liczników i mianowników, to wypadnie, że każdy ułamek jest równy stromości śruby p.

	
274.    Jeżeli X, Y, Z są zerami, to przestaje istnieć zasada, z której wyszliśmy przy wyprowadzaniu równań powyższych. Ale w tym razie dany układ sił jest równoważny parze wypadkowej, i każda prosta równoległa do osi tej pary, jest osią centralną.



Jeżeli T=0, to dany układ jest równoważny jednej sile R. W tym razie dla każdego punktu (§1%), położonego na linii działania tej siły, składowe L', M\ N' są zerami, a zatem

L-1Z+tY=0, M-ZX+^Z=^ N-ĘY+X=0.

Którekolwiek dwa z tych równań są równaniami linii działania wypadkowej R.

	
275.    Można otrzymać równania osi centralnej na innej drodze. L, M, N są to momenty układu, złożonego z siły R oraz pary I, względem osi współrzędnych, a zatem momenty samej siły R wynoszą L—II, M—Ym, N—Yn, czyli L—Xp, M—Yp, N—Zp. Tak więc współrzędne siły R a także osi centralnej są X, Y, Z, L—Xp, M—Yp, N—Zp.


	
276.    Odwrotnie, mając dany skrętnik równoważny, może



my wyznaczyć sześć składników układu sił dla jakiegokolwiek


środka redukcyi.



Niech Oz będzie daną osią skrętnika, a mamy wyznaczyć składniki układu dla punktu 0'. Prowa-

[image: ]

Fig. 86.




dzimy 0'0 prostopadle do Oz, O'C równolegle do Oz i wreszcie 0'B prostopadle do płaszczyzny 0'Oz. Długość odcinka 00' oznaczmy przez r.

Siłę R, działającą na prostej Oz, możemy przenieść na 0'C, wprowadzając parę JRr, której oś leży na prostej. 0'B. Oś pary T przenosimy również z Oz na 0' C. Składając te obydwie pary, otrzymamy parę wypadkową O] oś jej leży w płaszczyźnie BO'O na prostej 0'A. Oznaczając przez 3 kąt AO'Cy otrzymamy

Q2 = T2 + R2r^ tan=.

	
277.    Z wzorów powyższych wynika kilka wniosków oczywistych.



	
	
	
(1)    Moment O jest zawsze liczbowo większy od I, a więc para główna jest najmniejsza wtedy, gdy środek redukcyi leży na osi centralnej.


	
(2)    Prostopadłą 00' można poprowadzić w którymkolwiek kierunku od Oz^ a więc miejscem geometrycznem środków redukcyi, dla których para główna G posiada wartość daną, jest prosty cylinder kołowy; oś jego leży na osi centralnej.


	
(3)    Miejscem geometrycznem osi 0’A pary głównej danej wielkości jest układ hiperboloid obrotu.



	
278.    Przykłady. Prz. 1. Pomiędzy osią równoważnego skrętnika i daną prostą a prowadzimy prostą najkrótszej odległości; prze-tnie ona prostą a w punkcie A. Okazać, że ze wszystkich punktów prostej a punktowi A, jako środkowi redukcyi, odpowiada najmniejsza para główna. Wyznaczyć prócz tego na prostej a środek redukcyi, którego oś pary głównej tworzy z prostą a kąt najmniejszy.





Prz. 2. Dowieść, że gdy środkiem redukcyi jest początek układu, to jest równaniem płaszczyzny, zawierającej siłę IZ i oś pary G. Okazać prócz tego, że minory wyrazów pierwszego wiersza, podzielone przez R2, są współrzędnemi spodka prostopadłej, poprowadzonej z początku układu do osi centralnej. Następnie, uważając oś centralną za prostą przechodzącą przez ten punkt i równoległą do R, wyznaczyć jej równania.

Prz. 3. Dwanaście sił równych działa na krawędziach sześcianu tak, że równoległe są zwrócone w jedną stronę. Okazać, że osią centralną takiego układu jest przekątnia. Okazać prócz tego, że jeżeli siły zastąpimy przez dwanaście par równych, to oś centralna będzie równoległa do przekątni.

Prz. 4. Sześć sił równych działa na krawędziach AB, BC, CA, DA, DB, DC czworościanu foremnego. Okazać, że osią centralną jest prostopadła, poprowadzona z wierzchołka D do ściany ABC.

Prz. 5. Sześć sił działa na krawędziach AB, BC, CA, AD, BD, CD czworościanu; siły te pod względem wielkości są proporcyonalne do krawędzi, na których działają. Okazać, że oś centralna jest równole


24 COS

3Dq



gła do DC, i przebiega w odległości tu środek ciężkości czworościanu, A pole ściany ABC i « kąt, który DG tworzy z tą ścianą.


od tej prostej; G oznacza



Prz. 6. Odcinki A^/, A2A2'... AnAn' wyobrażają siły, a G i G' są odpowiednio środkami ciężkości dwóch grup jednakowych cząsteczek, umieszczonych w A, ... An oraz w AJ ... An'. Okazać, że oś centralna tych sił jest równoległa do GG'. Przypuśćmy, że jakaś płaszczyzna prostopadła do GG' przecina siły w Br, B2,...Bn, i że w tych punktach mieszczą się cząsteczki, których masy są wprost proporcyonalne do rzutów sił na GG'. Okazać, że oś centralna przecina ową płaszczyznę w środku ciężkości tych cząsteczek. (Coli. Ex., 1889.)

Prz. 7. Siły układu przecinają płaszczyznę xy i płaszczyznę równoległą z=h odpowiednio w punktach Ar, A2... i AJ, Aj ...; wielkości tych sił są 0.1 . ArAJ, 0.2 . A2AJ ..., a stromość skrętnika równoważnego wynosi p. Okazać, że oś centralna przecina owe płaszczyzny w punktach H, H', których współrzędne (Em) i (6‘m‘) określają wzory


F-x/=t-x=UU)P,

h




,   ,            (x‘— x)p

I— =—Y=---- —• h



We wzorach tych (xy) oznaczają współrzędne środka ciężkości G mas a1? a2..., umieszczonych w Ai, A2..J i (x'y’) współrzędne środka ciężkości G' takich samych mas, umieszczonych w AJ, AJ ....

Okazać prócz tego, że (1) odcinek GH jest prostopadły do GK' p

i równy GK'. —, gdzie K' oznacza rzut punktu G' na płaszczyznę xy, h

i (2), że prosta HH' jest równoległa do GG'.

	
	
279.    Niezmienniki układu. Z wniosku (3) w par. 273 wynika bezpośrednio, że wielkość I-— LX + MY-]- NZ przy wszelkich środkach redukcyi oraz przy wszelkich kierunkach osi prostokątnego układu współrzędnych pozostaje niezmienną i równą TR. Kwadrat wypadkowej, czyli R2== X2 + Y2 + Z2 jest również niezmienny. Te dwie wielkości I oraz R2, zowią się niezmiennikami. Gdy znane są niezmienniki I i R2, to można od razu wyznaczyć niezmiennik trzeci, czyli stromość p — —^.





Jeżeli układ jest taki, że pierwszy z tych niezmienników jest zerem, to albo R=0, albo I=0. Tak więc I=0 stanowi warunek^ aby układ był równoważny jednej sile lub jednej parze. Możemy rozróżnić te przypadki, badając niezmiennik drugi. Jeżeli układ ma być równoważny jednej sile, to R nie powinno być zerem.

	
	
280.    Mając dane dwa układy sił P1,P2... oraz Q1 , Q2..., tworzymy wyrażenia





ŁPQrsin(P, Q\     1PQ cos (P, Q), gdzie r oznacza najkrótszą odległość pomiędzy siłami P i Q, a (P, Q) kąt, pomiędzy temi siłami; przytem każdy iloczyn należy brać ze stosownym znakiem. Każde z tych wyrażeń pozo-staje niezmiennem, gdy przekształcamy dane układy sił na jakiekolwiek układy równoważne.

Twierdzenie to zostało podane przez Chasles’a {Lioiwille^ Journal, i8^7).

Aby to okazać będziemy uważali obydwa układy za jeden. Niezmiennik I układu połączonego pozostaje bez zmiany przy wszelkich przekształceniach sił, a zatem suma

ZP,P,risin(P,, P,)+2Q,Q,"sin(Q, Q, +^PQr sin (P, Q) ) jest niezmienna. Lecz każdy z dwóch wyrazów początkowych jest niezmienny, a zatem i ostatni wyraz jest niezmienny.

Zupełnie w taki sam sposób, rozważając niezmiennik R2, okażemy, że ZPQ cos(P, Q) jest niezmienne.

	
	
281.    Wyznaczyć niezmienniki układa sił. Aby wyznaczyć niezmienniki dwóch sił Pr i P2 powrócimy do fig. 86. Przypuśćmy, że linią działania siły Pr jest oś z, a linią działania siły P2 prosta O'A, i niech prosta najkrótszej odległości 00' będzie osią X. Współrzędne układu sił będą





X=0,      Y=P, sin 9,       Z=Pi + P2 cos9,

L=0,     M=-P2rcos^,   N=P2rsin^, gdzie r= 00'. Niezmienniki są niezależne od układu współrzędnych, a zatem

I=LX+MY+NZ=PiP2r sin^-, R?= P,2+P,2+2P,P, cos 9.

Widzimy, że I=P1N, a więc niezmiennik dwóch sił jest równy jednej z nich, pomnożonej przez moment drugiej względem pierwszej.

*) Jest to niezmiennik I układu połączonego; dowód na to znajduje się w par. następującym.                            Przyp. tłom.

Określamy kierunek dodatni na linii prostej znakami kosynu-sów kierunkowych tej prostej, a kierunek dodatni obrotu około tej prostej określa prawidło z par. 272 lub 97. Niezmiennik dwóch sił będzie miał znak dodatni lub ujemny stosownie do tego, czy znak jednej z sił i znak momentu drugiej są jednakowe, czy odmienne.

Jeżeli wyobrazimy siły P i P2 zapomocą odcinków na ich prostych działania, to niezmiennik I będzie równy sześciokrotnej objętości czworościanu, w którym owe odcinki są krawędziami przeciwle-głemi. Mówi się niekiedy, że czworościan ten jest zbudowany na dwóch siłach. Zob. par. 266.

Wyznaczyć niezmiennik I jakiejkolwiek liczby sił P1, P^- - Obieramy prostokątny układ współrzędnych. Sześć współrzędnych układu sił mamy w par. 257. Wyrażenia te wskazują, że niezmiennik I będzie funkcyą drugiego stopnia PY, P2... postaci

I=A,P,2+A„P,2+2A,,P,P,+.. ,

gdzie Au, A22... są niezależne od wielkości sił. Gdyby wszystkie siły z wyjątkiem P i P2 były zerami, to wyrażenie powyższe powinno by się sprowadzić do PPrsin(P, Pj), gdzie (P^ P2) oznacza kąt pomiędzy kierunkami sił. Stąd wynika, że A,1==0, A22==0. Stosując to samo rozumowanie do innych sił, znajdziemy ostatecznie, że

I=XP,Pan sin(P, P,).

Widzimy, że I jest równe połowie sumy wszystkich iloczynów z każdej siły przez sumą momentów wzglądem niej sił pozostałych; każdy moment brać należy ze stosownym znakiem.

Można również powiedzieć, że niezmiennik dowolnej liczby sił jest równy sumie niezmienników wszystkich układów, utworzonych z danych sił, branych po dwie.

Gdy mamy daną pewną liczbę układów sił, to niezmiennik całości jest równy sumie niezmienników układów poszczególnych oraz niezmienników wszystkich układów, branych po dwa, gdyż przy lakiem sumowaniu każda siła wejdzie w kombinacyę z każdą inną w niezmienniku cząstkowym, do którego należą obydwie.

	
	
282.    Niezmiennik I siły R i pary o momencie G jest równy RGr cos, gdzie 3 oznacza kąt pomiędzy siłą i osią pary, gdyż według definicyi I=Rr=EGr cos 8.





Niezmiennik I dwóch par jest zerem. Aby to udowodnić przenosimy tak siły każdej pary w jej płaszczyźnie, aby stały się równole-głemi do prostej przecięcia płaszczyzn. Wszystkie cztery siły są teraz równoległe, a zatem niezmiennik każdych dwóch jest zerem, i suma takich niezmienników jest zerem.

Jeżeli P, P' są siłami dwóch skrętników, posiadających stromości p, p', to niezmiennik skrętników wynosi

P2p + P‘2p‘+ PP' {(p +pj cos 9 + r si n 91.

Udowodnimy to, sumując stosownie do par. 281 sześć niezmienników sił P, P' oraz par Pp, P'p', branych po dwie.

Prz. Układ składa się z trzech sił X, Y, Z, działających na osiach układu ukośnokątnego, oraz z trzech par L, M, N, których osi leżą odpowiednio na tychże osiach; okazać, że niezmiennik

I^=LX+MY+NZ+(YN+ZM) cos (y, z)+(ZL+XN) cos 0, x)+ + (XM+LY) cos (x, y).

	
	
283.    Przykłady. Prz. 1. Siły la, mb, nc działają na trzech nie-przecinających się krawędziach równoległościanu; długości tych krawędzi wynoszą odpowiednio a, b, c, a objętość bryły —V. Dowieść, że niezmiennik I=(lm+mn+nl) V.                   (St John’s, 1890.)





Prz. 2. Układ, złożony z n sił danych, łączymy z siłą P, daną pod względem wielkości i przechodzącą przez punkt dany. Okazać, że siła P musi leżeć na pewnym prostym stożku kołowym, jeżeli wszystkie n+1 sił mają się sprowadzać do jednej wypadkowej, i że siła P musi leżeć na pewnym stożku czwartego stopnia, jeżeli najmniejszy moment główny wszystkich sił ma być wielkością stałą; okazać prócz tego, że w drugim przypadku oś centralna wszystkich n+1 sił leży na pewnej hiperboloidzie obrotowej, jeżeli dany układ n sił sprowadza się do pary.                                (Math. Tripos, 1871.)

Prz. 3. Dane są linie działania dwóch sił oraz płaszczyzna pary, i wiadomo, że układ ten sprowadza się do jednej wypadkowej. Okazać, że ta wypadkowa leży na pewnej paraboloidzie hiperbolicznej.

(Math. Tripos.)

Prz. 4. Na ciało sztywne działają trzy siły 2 P tan A, —Ptan B i 2Ptan C według nieprzecinających się krawędzi sześcianu. Krawędzie te są symetryczne względem układu współrzędnych, którego osi są do nich równoległe, a początek leży w środku sześcianu. Okazać, że siły sprowadzają się do jednej wypadkowej, która działa na prostej, posiadającej równania 2a cot B—xcotA=2ycotB+acotA=—zcot C. W równaniach tych 2A, 2B, 2 0 oznaczają kąty trójkąta, którego boki tworzą postęp arytmetyczny, i 2a długość krawędzi sześcianu.

(Math. Tripos, 1867.)

1

 Wyznaczyć objętość czworościanu. Przesuwamy płaszczyznę przez krawędź GD i wspólną prostopadłą EF krawędzi GD oraz krawędzi przeciwległej AB. Objętość czworościanu AB GD jest równa sumie lub różnicy objętości dwóch czworościanów, których wierzchołkami są A i B, a wspólną podstawę stanowi trójkąt DEC; zatem objętość czworościanu ABGD jest równa trzeciej części pola DEC, pomnożonej przez ABsin 8, gdzie 3 oznacza kąt, który AB tworzy

z płaszczyzną DEC-

Wyobraźmy sobie prostą, poprowadzoną przez punkt E w płaszczyźnie DEC prostopadle do EF; oczywiście będzie to rzut prostej AB na płaszczyznę DEC, a zatem ta prosta tworzy z nim kąt 0. tworzy z AB prosta CD, bo leży ona również w płaszczyźnie DEC i jest prostopadła do EF; widzimy więc, że 3 jest kątem pomiędzy przeciwległemi krawędziami AB, GD. Ostatecznie obję-AB. GD. EF. sin 3

tość czworościanu wypadnie---6----•

2

 Wyznaczyć objętość czworościanu. Przesuwamy płaszczyznę przez krawędź CD i wspólną prostopadłą EF krawędzi CD oraz krawędzi przeciwległej AB. Objętość czworościanu

D        ABCD jest równa sumie lub różnicy objętości

/      dwóch czworościanów, których wierzchołkami są

/ / >”    A i B, a wspólną podstawę stanowi trójkąt DEC;

/ / / \    zatem objętość czworościanu ABCD jest równa

A-———C trzeciej części pola DEC, pomnożonej przez _-+ ABsin3, gdzie 9 oznacza kąt, który AB tworzy E /- z płaszczyzną DEC-

L          Wyobraźmy sobie prostą, poprowadzoną przez

P        punkt E w płaszczyźnie DEC prostopadle do EF;

Fig. 82. oczywiście będzie to rzut prostej AB na płaszczyznę DEC, a zatem ta prosta tworzy z nim kąt 0. Taki sam kąt tworzy z AB prosta CD, bo leży ona również w płaszczyźnie DEC i jest prostopadła do EF; widzimy więc, że 3 jest ką-tem pomiędzy przeciwległemi krawędziami AB, CD. Ostatecznie obję-. AB. CD. EF. sin 3 tość czworościanu wypadnie----—---•

3

 Polską nazwę skrętnik wprowadził J. N. Franke. Ten sam ds

autor nazywa stosunek — wskaźnikiem skrętnika-, wydało mi się, że di

wyraz stromość maluje dosadniej to pojęcie.          Przyp. tłómacza.


Śruby i skrętinki.

	
	
284.    Wyznaczyć skrętnik wypadkowy dwóch danych skrętników lub dwóch danych sił. Metoda analityczna.





Niech P, P' oznaczają siły danych skrętników, p i p' stro-mości, 3 kąt, który tworzą osie, i wreszcie h najkrótszą odległość pomiędzy osiami. Gdyby wypadło wyznaczyć skrętnik wypadkowy dwóch śił, to należy tylko założyć w działaniach następujących p=Q i p' = Q.

Oznaczmy przez R siłę wypadkowego skrętnika i przez q stromość. Przyrównywamy niezmienniki skrętników danych do niezmiennika wypadkowego. Wypadnie

Jł2q = P2p + P‘p2 + PP' 1 {p + p1) cos 9 + h sin 9 I

R2= P2+P2+2PP‘cos9.

Równania te określają wielkość skrętnika wypadkowego. Otrzymamy z łatwością

p+p (P2 - P/2)(p-p)  , • G

I - 1o) =  -----o ——— + PP ‘h sin 3.

	
	
285.    Wypada teraz znaleźć położenie osi skrętnika wypadkowego w przestrzeni. Niech AA' będzie wspólną prostopadłą do osi AP, A'F' skrętników danych; na osiach tych strzałki wskazują kierunki dodatnie, w których działają siły P, P'. Oś centralna musi być równoległa do wypadkowej sił P, P', przeniesionych do dowolnego środka redukcyi, a więc musi być prostopadła do AA'. Moment skrętników danych względem AA' jest równy zeru, a przeto (oś jej, jak widzieliśmy, jest prostopadła do AA') względem tejże prostej musi być także równy zeru. Do tego potrzeba koniecznie, aby oś centralna przecinała prostą AA' w jakimś punkcie O.

[image: ]

Fig. 87.

moment siły R oraz pary I








Obieramy prostą AA' za oś x, a szukaną oś centralną za oś z. Dajmy na to, że AF i A'F' tworzą z osią centralną kąty 7, Y; w takim razie 3=+’. Biorąc rzuty sił na stosowne kierunki, otrzymamy

Rsin= P‘ sin 8, R cos =P+P‘coss,


(1)



R sin‘= Psins, R cos‘‘= P‘+Pcoss Oznaczmy przez C środek odcinka AA', i niech będzie GO = k-Przyrównajmy moment skrętnika wypadkowego względem prostej, przeprowadzonej przez O równolegle do Oy, do momentu skrętników danych względem tejże prostej. Wypadnie

RE = —(P COS Y - P' COS Y‘) - Ppsin Y + P‘p‘sin Y‘.

Podstawiając wartości sin, cos... z (1), otrzymamy

R36 = 3(P2 -P'^- PP‘sin 9 (p - p').

Równanie to określa odległość § osi centralnej dwóch skrętników od punktu C, mierzoną w stronę siły P.

Prz. Dowieść, że oś centralna dwóch sił danych P, P' dzieli ich najkrótszą odległość AA' w stosunku P‘(P‘+Pcos9) : P(P+P‘cos), niezależnym od długości AA'; 9 oznacza tu kąt pomiędzy siłami.

	
	
286.    Wyznaczyć skrętnik wypadkowy dwóch skrętników, których osi przecinają się w punkcie A. Wielkości R i I wyznaczamy przy pomocy tych samych niezmienników, co w przypadku ogólnym, ale położenie osi wypadkowego skrętnika daje się wyznaczyć znacznie prościej.





Dajmy na to, że wypadkowa R sił P, P' działa na prostej AB i tworzy kąty Y, Y‘ z AF, AF'. W takim razie R sin =P‘sin 3 i R sin ‘= Psin 0. W płaszczyźnie sił prowadzimy prostą AD prostopadle do R i zgodnie z prawidłem wyznaczania osi centralnej, po-danem w par. 270, rozkładamy pary dane w kierunku tej prostej oraz w kierunku prostopadłym. Składowa pary wypadkowej w kierunku AD będzie

[image: ]

Fig. 88.





Pp sin Y — P'p' sin Y‘:




PP‘sin 3 (p— p‘)



, . PP‘sin S(p — p')


w kierunku prosto-



Odnuerzanuj następnie długość A0=--


R2



padłym do płaszczyzny sił i prowadzimy prostą Oz równolegle do R. Ta prosta Oz będzie osią centralną.

Wypada jeszcze wskazać, w którą stronę od płaszczyzny sił należy odmierzyć długość AO. Otóż para Ppsiny powinna obracać AO około A w stronę siły R.

	
	
287.    Cylindroida. Powierzchni tej używał Sir R. Bali do rozkładania i składania skrętników. Zgodnie z jego przedstawieniem rzeczy rozważymy naprzód przypadek szczególny i na nim oprzemy rozwiązanie ogólne.





Mamy dane dwa skrętniki o danych natężeniach i danych stromościach; osie ich przecinają się pod kątem prostym. Wyznaczyć skrętnik wypadkowy. Osie śrub obieramy za osie a i y, siły oznaczymy przez X, Y7 stromości przez p, p'. Niech R będzie wypadkową sił X, Y, a OA jej linią działania, niech dalej G będzie parą wypadkową par Xp^ Ypj OB jej osią. Kąt A OB

Statyka. 16. oznaczmy przez t. Rozkładamy G na pary składowe G cos © według O A i Gsin ( według prostopadłej do OA. Para G

[image: ]

oznaczywszy więc przez 3




wraz z siłą R są równoważne skrętnikowi, którego oś CD jest ,. Gsin t równoległa do OA, i OC =—— (par 270). Siła, czyli natężenie, tego skrętnika jest równa R, a para G cos «.

G cos © i Gsin« są to momenty układu względem OA i względem prostopadłej do OA, kąt xOA, otrzymamy

G cos = Xp cos 3 + Yp' sin 3 = R(p cos29 + p‘sin29) G sinę = — Xpsin 3 + Yp'cos $ = R(p' - p sin Jcos J.

Oznaczmy jeszcze przez p stromość skrętnika wypadkowego, a przez z długość OC. Znajdziemy, że

p = p cos2 3 +p' sin 29 \

z = (p1 - p) sin 9 cos 9 i .............1

Prócz tego X= Rcoss, Y=Rsin 8.

Przypuśćmy, że skrętniki na osiach Ox, Oy mają stałe stromości, lecz zmienne natężenia. Znajdziemy miejsce geometryczne osi CD skrętnika wypadkowego, zakładając tan=y i rugując 3 z drugiego z równań (1). Wypadnie

z(x2 + if)-(p'-p)xij^0. . ...........(2)

Powierzchnia ta zowie się cylindroidą.

Zatoczmy cylinder około osi z, i wyobraźmy sobie, że prosta CD wędruje od położenia Ox aż do położenia Oy, zatoczy ona ćwierć cylindroidy, a jej punkt przecięcia z cylindrem wykreśli krzywą, którą na rysunku wyobraża linia kropkowana. W następnej ćwierci powierzchni linia kropkowana (niewykre-ślona na rysunku) przebiega pod płaszczyzną xy, w trzeciej ćwierci nad tą płaszczyzną i t. d.

	
	
288.    Każda tworząca cylindroidy, np. tworząca CD, jest osią śruby o stromości p cos28 + p‘sin29. Zbudujmy cylinder, mający za podstawę stożkową px2+p‘y?= H, gdzie H jest jakąś stałą. Przypuśćmy, że tworząca CD przetnie powierzchnię tego cylindra w punkcie D.





Stromość śruby, której osią jest CD, wynosi oczywiście —„.


Sir R.



CD

Bali nazwał podstawę tego cylindra stożkową stromości.

	
	
289.    Dane są siły pewnej liczby skrętników na danej cy-lindroidzie; mamy znaleźć skrętnik wypadkowy oraz warunki równowagi.





Siły dane oznaczamy przez P P..., a ich nachylenia do osi x przez 31, 3, ... Niech CD (fig. 89) będzie osią jednego ze skrętników danych o natężeniu P i takiej stromości, jaka odpowiada osi CD. Składowe siły P w kierunku osi x, y, z są Pcos 0, Psin 0 i 0\ 3 oznacza tu nachylenie CD do osi x. Rozkładanie skrętnika na składowe jest działaniem odwrotnem do składania skrętników, opisanego w par. 287, dojdziemy więc łatwo, iż momenty skrętnika względem osi współrzędnych wynoszą odpowiednio Pcos.p, Psin 3. p‘ i zero.

Rozkładając wszystkie skrętniki dane, otrzymamy współrzędne układu

X=ŁPcos 9, Y=XPsin 0,    Z=0,

L= ŁPcos8 .p=Xp, M=XPsin 9.p'= Ypj N—0.

Tym sposobem układ sprowadza się do dwóch skrętników na osiach x, y, o stromościach p, p'.

Z definicyi cylindroidy wynika, że oś skrętnika wypadkowego leży na tej samej cylindroidzie. Stromość p i wysokość z skrętnika wypadkowego mamy w równaniach (1) par. 287.

	
	
290.    Niezbędne i dostateczne warunki równowagi są ŁPcos$= 0 i ZPsin 3 =0, bo gdy te sumy znikają, to wszystkie sześć warunków równowagi jest spełnionych. Wyciągamy stąd bezpośrednio wniosek następujący: jeżeli siły skrętników, położonych na jednej cylindroidzie, po przeniesieniu do jednego punktu są w równowadze, to równoważą się i same skrętniki.





Tak np. trzy skrętniki na tej samej cylindroidzie są w równowadze, jeżeli siła każdego z nich jest proporcyonalna do synusa kąta pomiędzy pozostałemi.

Gdy mamy wyznaczyć skrętnik wypadkowy dwóch skrętników danych na jednej cylindroidzie, to wyznaczamy naprzód wypadkową ich natężeń. Oś skrętnika szukanego jest równoległa do tej wypadkowej, a stromość jest taka, jaka tej osi odpowiada.

	
	
291.    Twierdzenie powyższe będzie można zastosować do wyznaczania skrętnika wypadkowego jakichkolwiek dwóch skrętników, jeżeli udowodnimy, że istnieje tylko jedna cylin-droida, zawierająca dwie śruby dane.





Dajmy na to, że CD, CD' są osiami śrub danych, a CC ich najkrótszą odległością; w takim razie prosta CC będzie osią z cylindroidy. Niech h będzie długością CC, a kątem pomiędzy osiami, i p, p‘ stromo-ściami śrub. Należy dowieść, że mając te cztery wielkości, można wyznaczyć tylko jeden komplet wartości rzeczywistych na p, p', (z, 0), (z', 3‘). Wprowadzając wartości dane na p, z, p‘, z' do równań (1) par. 287 i dołączając równania z—z'—h, 3—$‘=a, będziemy mieli sześć równań, które dają się rozwiązać. Znajdziemy, że na p, p'... wypada po jednej wartości.

	
	
292.    Praca skrętnika. Wyznaczyć pracę, którą wykona skrętnik na śrubie danej, gdy ciało otrzyma przesunięcie, przygotowane na innej śrubie danej.





Wyznaczmy naprzód pracę, wykonaną podczas przesuwania pary w jej płaszczyźnie z jednego położenia do drugiego. Przesunięcie takie daje się wykonać w sposób następujący: przesuwamy naprzód parę równolegle tak, aby koniec A ramienia AB zajął nowe położenie; następnie obracamy parę około punktu A tak, aby koniec B doszedł do nowego położenia. Praca dwóch sił równych i odwrotnych podczas przesunięcia równoległego jest oczywiście równa zeru; praca siły, przyłożonej w A, podczas obrotu jest także zerem. Pozostaje wyznaczyć pracę siły, przyłożonej w B.

Niech F oznacza siłę, a długość ramienia AB i dep kąt obrotu. Siła, przyłożona w B, wykona oczywiście pracę Fad^. Jeżeli kąt przesunięcia jest skończony, to wyznaczymy pracę, całkując Fade^. Tak więc praca, wykonana przez parę o danym momencie, jest równa iloczynowi z momentu przez kąt obrotu w płaszczyźnie pary. (Zob. par. 203.)

Obróćmy teraz parę o mały kąt de^ około osi, położonej w płaszczyźnie pary. Końce A, B ramienia zaczną się poruszać prostopadle do płaszczyzny sił, a zatem praca przygotowana każdej siły będzie zerem.

	
	
293.    Z pomocą wyników powyższych wyznaczymy pracę skrętnika, okręconego na pewnej śrubie.





Niech p, p' będą stromościami śruby i skrętnika, 3 kątem pomiędzy osiami, i h najkrótszą odległością tych osi. Przyj-mierny w przypadku typowym, że gdy 3 i h są dodatnie, to siła, działająca na jednej osi w kierunku dodatnim, wywołuje obrót około drugiej w kierunku dodatnim (par. 265). Siłę

skrętnika oznaczymy przez R.

[image: ]



Oś śruby obieramy za oś z, a wspólną prostopadłą OH za oś x. Poprowadźmy proste HC, HB odpowiednio równolegle do osi z, i] i rozłóżmy siłę R na składowe R cos I, Rsin 9 w kierunkach HC, HB. Gdy przesuniemy ciało równolegle do osi z o pd^ i obrócimy je około tejże osi o kąt d^, to pierwsza z tych składowych wykona pracę Rsin 9 . hd^.

Parę skrętnika Rp' rozkładamy na pary Rp‘cos I i Rp‘sin 3, których osi mają kierunki HC i HB. Praca pierwszej będzie Rp'cos 3. d^^ praca drugiej jest równa zeru. Praca całego skrętnika

dW=Rd^ {(p+p‘) cos 8+h sin 0}.

Jest to funkcya symetryczna stromości p i p', gdy więc śruby zamienią pomiędzy sobą role, to praca nie ulegnie zmianie.

	
	
294.    Śruby przekorne1). Nazwiemy tak dwie śruby, posiadające właściwość następującą: gdy ciało zostaje okręcone około jednej z nich, to skrętnik, działający na drugiej, nie wykonywa pracy. Analityczny warunek przekorności dwóch śrub wyraża się równaniem





(p+p") cos 9+h sin $=0.

Tak więc dwie przecinające się śruby są przekorne, jeżeli tworzą kąt prosty, lub jeżeli stromości są równe i odwrotne.

Z zasady pracy przygotowanej wynika, że ciało, które może jedynie poruszać się na śrubie a, pozostanie w równowadze pod działaniem skrętnika, działającego na śrubie przekornej do a.

	
	
295.    Jeżeli śruba a jest przekorna do śrub a i 3, to jest ona również przekorna do każdej śruby na cylindroidzie, zawierającej a i 3. Weżmy na cylindroidzie dowolną śrubę Y. Skrętnik na tej śrubie Y daje się zastąpić skrętnikami na a i 3, jeżeli siły na a i 3 są składo-wemi siły na Y (289). Praca przygotowana każdego z tych skrętników składowych podczas okręcania na o jest równa zeru, a więc śruby Y i o są przekorne. Powiemy krótko, że śruba o jest przekorna do cy-lindroidy.


	
296.    Śruba o, przekorna do cylindroidy, przecina jedną z tworzących pod kątem prostym. Cylindroida jest powierzchnią trzeciego rzędu, a zatem śruba a przecina ją w trzech punktach, i przez każdy z nich przechodzi jedna ze śrub cylindroidy. Każda z tych trzech śrub przecina śrubę a i jest do niej przekorna, a więc w myśl par. 294 każda z nich musi albo tworzyć z a kąt prosty, albo posiadać stromość równą i odwrotną do stromości o. Lecz stromość p jakiejkolwiek śruby na cylindroidzie jest równa p cos29+p‘sin 29, a zatem na cylindroidzie istnieją tylko dwie różne śruby o danej stromości; odpowiadają im spełniające do 180° wartości kąta 8. Z tego wynika, że śruba a musi przecinać jedną z owych trzech śrub pod kątem prostym. Jeżeli śruba a nie jest osią cylindroidy, to może ona być prostopadła najwyżej do jednej z przeciętych śrub cylindroidy, a zatem stromości dwóch pozostałych muszą być równe i odwrotne do stromości śruby o.


	
297.    Prz. 1. Okazać, że miejscem geometrycznem śruby przekornej do czterech śrub danych, z których żadne trzy nie należą do jednej cylindroidy, jest cylindroida.





Do całkowitego określenia śruby potrzeba pięciu wielkości, jeżeli więc mają być spełnione cztery warunki przekorności, to wogóle śruba musi leżeć na pewnej powierzchni prostokreślnej (surface reglee.) Jeżeli powierzchnia ta nie jest cylindroidą, to poprowadźmy cylin-droidę przez którekolwiek dwie tworzące; każda śruba tej cylindroidy będzie także przekorna do czterech śrub danych, a zatem szukanem miejscem geometrycznem byłaby nie pojedyńcza powierzchnia liniowa, lecz cały układ cylindroid.

Prz. 2. Dowieść, że wogóle istnieje tylko jedna śruba przekorna do pięciu śrub danych.

Śruba szukana musi tu czynić zadość pięciu warunkom, a zatem liczba śrub takich jest skończona; lecz gdyby istniały dwie takie śruby, to istniałaby cała cylindroida śrub przekornych.

Prz. 3. Okazać, że jakiekolwiek dwie śruby przekorne jednej cylindroidy są równoległe do średnic sprzężonych stożkowej stromości.

Oznaczmy przez p, p‘ stromości, a przez z, z' wysokości, i niech będzie z>z' i 8> 8‘ (par. 293). Dojdziemy, że siła, działająca na osi którejkolwiek ze śrub, wywołuje obrót około osi drugiej w kierunku ujemnym, zakładamy przeto h—z—z' i =—(9—8‘). Według par. 294 warunek przekorności śrub zawiera się w równaniu (p+p‘) cos+hsin «=0. Podstawiając zamiast p, p‘, z, z' wartości, podane w par. 287, otrzymamy p cos 8 coss‘+p‘sin 8 sin 8‘=0, a to wskazuje, że osi śrub są równoległe do średnic sprzężonych stożkowej stromości (288).

O siłach sprzężonych.

	
	
298.    Płaszczyzna zerowa. Miejscem geometrycznem linii prostych, które przechodzą przez dany punkt 0, i względem których znika moment układu, jest płaszczyzna.





Płaszczyznę taką nazywamy płaszczyzną zerową, a punkt 0 zowie się punktem zerowym tej płaszczyzny. Każda prosta, względem której moment sił jest zerem, nazywa się linią zerową.

Aby udowodnić twierdzenie powyższe obierzmy punkt 0 za środek redukcyi i sprowadźmy układ do pary G i siły R. Widać od razu, że moment względem prostej, przechodzącej przez 0, nie będzie zerem, jeżeli ta prosta nie leży w płaszczyźnie pary. Stąd wynika, że można zdefiniować płaszczyznę zerową, jako płaszczyznę pary głównej punktu 0,

Nazwy punkt zerowy i płaszczyzna zerowa wprowadził Moebius {Lehrbuch der Statik, 1837). Cremona w książce Le figurę reciproche (1872) używał wyrazów biegun i płaszczyzna biegunowa, Chasles stosował nazwę ognisko (Comptes Rendus, 1843).

	
	
299.    Jeżeli w płaszczyźnie zerowej punktu 0 istnieje linia zerowa, nie przechodząca przez 0, to moment siły R względem tej linii musi być zerem, a do tego potrzeba, aby siła R albo była zerem, albo działała w płaszczyźnie zerowej. W przypadku pierwszym układ sił jest równoważny jednej parze, i płaszczyzna zerowa jest równoległa do płaszczyzny tej pary, w przypadku drugim układ jest równoważny jednej sile, i płaszczyzna zerowa przechodzi przez linię działania tej siły. W obydwóch przypadkach niezmiennik I układu jest równy zeru.


	
300.    Jeżeli płaszczyzna zerowa punktu A przechodzi przez punkt B, to i płaszczyzna zerowa punktu B przechodzi przez punkt A.





Z definicyi płaszczyzny zerowej punktu A wynika, że prosta AB jest linią zerową, a zatem prosta AB musi leżeć w płaszczyźnie zerowej punktu B.

	
	
301.    Wyznaczyć równanie płaszczyzny zerowej danego punktu (§5) w odniesieniu do jakiegokolwiek prostokątnego układu współrzędnych.





Kosynusy kierunkowe szukanej płaszczyzny są proporcyo-nalne do momentów sił względem osi, przechodzących przez punkt zerowy, a zatem według par. 258 równanie żądane będzie (L - 1Z+ C Y)x + {M- tX+ kZ)y + (N - (Y+ r]X)z = Lk + Mn + Nt.

Prz. Dane są równania prostej

x—f _ y—9 _ 2—h

l m n

Okazać, że jest to linia zerowa, jeżeli
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302.    Wyznaczyć punkt zerowy płaszczyzny danej. Obieramy w danej płaszczyźnie dwa stosownie położone punkty; ich płaszczyzny zerowe przetną płaszczyznę daną w punkcie szukanym (par. 300).





Prz. 1. Za oś z obrano oś centralną układu; okazać, że współrzędne punktu zerowego płaszczyzny z—Ax+By-\-C są ^——ijB, r^—pA, ‘= C, gdzie p oznacza stromość skrętnika równoważnego.

Prz. 2. Płaszczyzna przecina oś centralną w punkcie C i tworzy z nią kąt «. Okazać zapomocą rozumowania, jak w par. 270, że punkt zerowy O leży na prostopadłej CO do osi centralnej, i CO— T cot«

Prz. 3. Momenty sił względem boków trójkąta ABC wynoszą odpowiednio M1, M2, M3, a suma rzutów na prostopadłą do płaszczyzny trójkąta jest równa Z. Dowieść (1), że współrzędne trójliniowe punktu zerowego O w odniesieniu do trójkąta ABC są I, Ma,

Z Z Z i (2), że płaszczyzny zerowe wierzchołków A, B, C przecinają pła szczyznę trójkąta odpowiednio według prostych AO, BO, CO.

	
	
303.    Siły sprzężone. Obierzmy na danej prostej OA środek redukcyi O i sprowadźmy układ do siły R i pary Gr.





Przesuńmy następnie płaszczyznę przez prostą OA i siłę R; przetnie ona płaszczyznę pary BOC według prostej OB.

Siły F^ F' nazywamy siłami sprzężonemi, a ich linie działania prostemi sprzężonemi.

	
	
304.    Punkt O obraliśmy dowolnie na prostej OA, a zatem gdy punkt ten wędruje, po prostej O A, to jego płaszczyzna zerowa przechodzi wciąż przez prostą sprzężoną, obracając się około niej, jak około osi.


	
305.    Niezmiennik I znika. Jeżeli siła R jest zerem, albo leży w płaszczyźnie BOC, to układ sprowadza się do jednej pary albo do jednej siły. W obydwóch przypadkach każdy punkt płaszczyzny BOC jest punktem zerowym.





Dajmy na to, że układ jest równoważny jednej parze, i prosta OA przecina płaszczyznę pary; R—Q, i siła F, działająca na OA, jest zerem. Prosta sprzężona znajduje się w nieskończoności, i jej siła jest także zerem. Jeżeli OA leży w płaszczyźnie pary, to siła jej stanowi jedną z sił pary, a siła sprzężona jest drugą siłą pary. Odległość pomiędzy siłami sprzężonemi, czyli ramię pary, jest dowolna.

Przypuśćmy teraz, że układ sprowadza się do jednej siły wypadkowej. W takim razie OR leży w płaszczyźnie BOC, i jeżeli dana prosta nie przecina tej jedynej wypadkowej, to siła F na OA jest zerem, a drugą siłą sprzężoną jest wypadkowa. Jeżeli prosta OA przecina wypadkową, to sprzężoną jest każda prosta, przechodząca przez ich punkt przecięcia i położona w ich płaszczyźnie; siłę sprzężoną znajdziemy, rozkładając wypadkową w tych dwóch kierunkach.

Odwrotnie, ponieważ 1= FF'r sin 3 (par. 281), przeto gdy niezmiennik jest równy zeru, to albo jedna z sił sprzężonych jest zerem, albo siły te leżą w jednej płaszczyźnie.

	
	
306.    Wyznaczyć prostą sprzężoną z linią zerową. W tym przypadku OA leży w płaszczyźnie zerowej punktu O; jeżeli B nie jest zerem i nie leży w tejże płaszczyźnie, to proste OA i OB idą w kierunkach przeciwnych (303). Składowe F^ F' siły R są nieskończenie wielkie i działają w kierunkach odwrotnych na tej samej prostej OA. Możnaby nazwać tego rodzaju proste samosprzężonemi, Cremona nazwał je prostemi podiuójnemi.





W przypadku granicznym, gdy niezmiennik I jest zerem, każda prosta w płaszczyźnie pary wypadkowej, lub każda prosta, przecinająca siłę wypadkową, jest linią zerową. Wyżej widzieliśmy, że sprzężone takich prostych są nieokreślone.

	
	
307.    Widzieliśmy wyżej, że sprzężona każdej prostej, przechodzącej przez dany punkt O, leży w płaszczyźnie zerowej tego punktu; okażemy teraz, że sprzężona każdej prostej, położonej iv tej płaszczyźnie, przechodzi przez punkt zerowy.





Jest rzeczą oczywistą, że, jeżeli jedna z prostych sprzężonych przecina linię zerową, to druga albo musi przecinać tę samą linię, albo jej siła będzie równa zeru. Linie zerowe płaszczyzny BOC promieniują z 0^ i przecina je każda prosta DE, obrana w tej płaszczyźnie. Z tego wynika, że albo sprzężona z prostą DE przecina te wszystkie linie zerowe, albo siła sprzężona jest zerem. Jeżeli niezmiennik I jest skończony, to siła sprzężona nie może leżeć w płaszczyźnie BOC ani być zerem, a zatem musi przechodzić przez punkt zerowy O. Jeżeli 1=0, to każdy punkt płaszczyzny jest punktem zerowym, a więc twierdzenie jest słuszne i w tym przypadku.

	
	
308.    Mając daną prostą





x-f_ U-9 _ z~h             I

1 m n ..........‘ wyznaczyć równania prostej z nią sprzężonej.

Z par. 304 wynika, źe płaszczyzny zerowe dwóch punktów O i Oj obranych dowolnie na prostej OA, przecinają się na prostej sprzężonej. Obieramy na danej prostej punkt (/gh) i drugi punkt w nieskończoności; współrzędne tego ostatniego są proporcyonalne do 1, m, n. Płaszczyzny zerowe tych punktów będą odpowiednio

(L -gZ + hY)x + {M-hX + fZ)y + (N-fY+ gX)z = Lf+ Mg + Nh

{ — mZ + n Y)x + (— nX + lZ)y +( - l Y + mX)z = LI + Mm + Nn.

Takie są równania prostej sprzężonej. Można im także nadać postać


	
x U z
	

	
x y z
	
= af-x) + M(g-y)+N(h-z


	
f 9 h
	

	
x y z
	

	
X Y Z
	
= LI + Mm + Nn.


	
l m n
	



Przypuśćmy, że dana jest, jak poprzednio, linia działania siły F zapomocą równań (1); możemy dla siły F znaleźć wyrażenie analityczne, które daje się użyć w tych razach, gdy nie chodzi o wielkość i położenie siły sprzężonej F‘. W tym celu przyłączamy do danego układu siłę równą i odwrotną do F. Ten nowy układ będzie równoważny jednej sile, a zatem jego niezmiennik jest równy zeru. Jeżeli Z, m, n są kosynusami linii działania siły F, to współrzędne nowego układu będą


X'=X~Fl^ Y=Y-Fm, Z' = Z-Fn,



L' =L+ Fmh — Fng^ M'^M+Fnf-Flh,


Gdy przyrównamy wyróżnik L'X' + M‘ Y' + N'Z'




do zera,




to wypadnie




LX+MY+NZ F “




= Ll-\- MmĄ-^n —



N‘ ^N+ Fig- Fmf.

W ten sposób otrzymaliśmy dla F jedną wartość. Wartość ta może być nieskończenie wielka, jeżeli prawa strona jest równa zeru; bywa tak to wtedy, gdy dana prosta jest linią zerową (par. 301).

Skoro wyznaczyliśmy siłę F^ to znamy wszystkie sześć współrzędnych nowego układu. Linię działania jedynej wypadkowej F' możemy wyznaczyć według par. 274, a wielkość jej z równania F'2 = X12 + Y'2 + Z'2.

	
	
309.    Zbadać rozkład sił sprzężonych względem osi centralnej.





Wiemy z par. 285, że oś centralna przecina pod kątem prostym wspólną prostopadłą dwóch prostych sprzężonych. Niech Oz będzie osią centralną, R i T daną siłą i parą. Przypuśćmy, że F^ F' są siłami sprzężonemi, działającemi na prostych AF, A' F\ i że odcinek AA' jest ich najkrótszą odległo-

ścią. Oznaczamy odcinki OA i OA' przez a i a’, mierząc je od O w kierunkach odwrotnych, i zakładamy a+a‘= h.

[image: ]

Fig. 92.




Zastępujemy siłę R przez dwie .    , _ Ra’ . Ra

składowe równoległe I i —, przyłożone odpowiednio w A i A' (par. 79). Para T jest równoważna dwom siłom, przyłożonym w tych samych punktach, równoległym do osi y i równych +1 Ponieważ wypad-kowemi sił, przyłożonych w A, A', są F, F", przeto


T = Ra‘tany,

T = Ra tan Y,



F2h2=T2+R2a‘2,

FV2h2=T2+R242.

Gdy dana jest jakaś prosta AF jako linia działania jednej z sił, to tern samem dane sąi a, a z równań powyższych można wyznaczyć F, F‘, Y, a'. Warto jeszcze zaznaczyć, że rzuty sił F, F' na płaszczyznę xy są równoważne parze I, , r a zatem F‘sin ^ = F sin Y‘ = —.

	
	
310.    Gdy figura obraca się około Oz, to proste sprzężone AF, A'F' zataczają współosiowe hiperboloidy obrotu; pomiędzy ich osiami rzeczywistemi a, a' zachodzą związki (1). Osi urojone są acotr i a‘cot‘;





aa'            T z (1) wypadnie łatwo, że każda z nich jest równa —, gdzie p— R jest stromością skrętnika.

	
	
311.    Otrzymamy klasyfikacyę prostszą, układając siły sprzężone nie w hiperboloidy, lecz w płaszczyzny. Gdy siła F obraca się około A, zataczając płaszczyzną prostopadłą do OA, to a pozostaje stałem, a zmienia się kąt Y. Z wzorów (1) widać, że Y‘ jest stałe, a zatem siła sprzężona F' przesuwa się równolegle do położenia pierwotnego, zataczając inną płaszczyznę, przechodzącą przez O A. Płaszczyzny te przecinają się według prostej zerowej, a gdy a się zmienia, to ta prosta przecięcia zatacza paraboloidę pz——xy, gdzie p oznacza stromość skrętnika.





Prz. Dowieść, że dwa jakiekolwiek układy sił posiadają wspólny układ prostych sprzężonych, rzeczywisty lub urojony. Jeżeli 00'—2c jest najkrótszą odległością pomiędzy osiami centralnemi danych układów, a O środkiem odcinka 00', to odległość wspólnych sprzężonych od O wyznacza się z równania kwadratowego x2+(p—p‘)x cot9+pp‘— — c2— (p+p‘)ccot8=0, gdzie p, p' są stromościami skrętników równoważnych, a 3 kątem pomiędzy osiami.

	
	
312.    Prz. 1. Jeżeli dwie proste przecinają się w punkcie 0, to ich sprzężone przecinają się również i leżą w płaszczyźnie zerowej punktu 0 (par. 303).





Prz. 2. Prosta a przecina dwie proste sprzężone. Dowieść, że każdy z punktów przecięcia jest punktem zerowym płaszczyzny, zawierającej prostą a i drugą prostą sprzężoną.

Widać to stąd, że każda prosta, przechodząca przez jeden z punktów przecięcia i przecinająca drugą prostą sprzężoną, jest linią zerową (303).

Prz. 3. Przez dany punkt O prowadzimy prostą w taki sposób, aby momenty sił sprzężonych F, F' względem niej tworzyły dany stosunek p.. Okazać, że miejscem geometrycznem takiej prostej jest płaszczyzna, a jeżeli p=-1, to miejscem tem jest płaszczyzna zerowa punktu O. Przy każdem p. płaszczyzna ta przechodzi przez prostą przecięcia płaszczyzn, przechodzących przez 0 oraz odpowiednio przez

Fpsin ©

	
F, F', i tworzy z temi płaszczyznami kąty P, P‘ takie, że



p i p' oznaczają tu odległości punktu O od danych prostych.

	
	
313.    Prz. 1. A i B oznaczają dwa punkty dowolne na linii zerowej. Dowieść, że układ daje się sprowadzić do dwóch sił sprzężonych, działających na A i B, przyczem pierwsza ma tworzyć z AB dany kąt «. Dowieść prócz tego, że gdy P się zmienia, to miejscem geometrycznem siły, działającej na jeden z tych punktów, jest płaszczyzna zerowa drugiego.





Obieramy A za środek redukcyi (par. 257) i przekształcamy parę główną w taki sposób, aby jej siły przeszły przez A i B.

Prz. 2. Dane są dwie płaszczyzny, przecinające się na linii zerowej. Okazać, że układ można sprowadzić do dwóch sił sprzężonych, leżących w danych płaszczyznach. (Obieramy punkty A, B z przykładu 1, w punktach zerowych płaszczyzn danych).

Prz. 3. AM i BN są liniami zerowemi; okazać, że układ można sprowadzić do dwóch skończonych sił sprzężonych, z których każda przecina obydwie dane proste AM i BN.

Punkt A obieramy dowolnie na AM; płaszczyzna zerowa punktu A przejdzie przez AM i przetnie BN w punkcie B. Reszta wynika z prz. 1.

	
	
314.    Charakterystyką płaszczyzny zowie się prosta sprzężona z prostopadłą do płaszczyzny w jej punkcie zerowym (Chasles, Comptes Rendus, 1843).





Prz. 1. Dwie proste sprzężone przecinają daną płaszczyznę w M i M'; dowieść, że prosta MM' przechodzi przez punkt zerowy płaszczyzny. Dowieść również, że rzuty tych sprzężonych na daną płaszczyznę przecinają się na charakterystyce. (Twierdzenie Chasles’a.)

Prz. 2. Miejscem geometrycznem osi par głównych, gdy środek redukcyi obiega daną prostą, jest paraboloida hiperboliczna. Jeżeli dana prosta może być charakterystyką, to paraboloida jest płaszczyzną; w tym razie obwiednią osi par głównych jest parabola, której ognisko leży w biegunie, czyli w punkcie zerowym płaszczyzny.

(Chasles.)

Niech AB będzie daną prostą, a CD jej sprzężoną. Obieramy za środek redukcyi jakikolwiek punkt O na AB; według par. 303 oś pary głównej będzie prostopadła do płaszczyzny OCD. Obróćmy teraz prostą AB około CD o mały kąt d^-, każdy punkt O prostej AB przebiegnie krótką drogę, prostopadłą do płaszczyzny OCD, a więc położoną na osi pary głównej. Widzimy, że wszystkie osi przecinają dwie proste, t. j. prostą AB oraz jej położenie następne, a więc wszystkie są równoległe do płaszczyzny prostopadłej do CD. Miejscem geometry-cznem jest zatem paraboloida hiperboliczna.

Twierdzenia o siłach.

	
	
315.    Trzy siły. Jeżeli trzy siły są w równowadze, to muszą leżeć w jednej płaszczyźnie.





Obierzmy na liniach działania dwóch sił punkty A i B. Moment całego układu względem prostej AB jest zerem, a zatem musi ona przecinać trzecią siłę w jakimś punkcie C. Pozostawmy punkt A w spokoju i przesuwajmy B na linii działania siły drugiej; prosta AB zatoczy przytem płaszczyznę, i w płaszczyźnie tej muszą leżeć siły druga i trzecia. Utrwalamy następnie C i przesuwamy B jak poprzednio; wypadnie, że w tejże płaszczyźnie musi leżeć i pierwsza siła.

Prz. 1. Układ sił można sprowadzić do trzech sił Fi, F2, F3, działających na bokach dowolnego trójkąta ABC i do trzech innych sił Z1, Z2, Z3, przyłożonych w wierzchołkach A, B, C i prostopadłych do płaszczyzny trójkąta.

Rozkładamy każdą z danych sił P na dwie składowe, z których jedna działa w płaszczyźnie ABC, a druga prostopadle do tej płaszczyzny. Pierwszą z tych składowych zastępujemy przez trzy siły, działające na bokach trójkąta (par. 120, prz. 2), a drugą przez trzy siły równoległe, przyłożone w wierzchołkach (par. 86, prz. 1). Gdyby siła P była równoległa do płaszczyzny ABC, to przenosimy ją do tej płaszczyzny, wprowadzając stosowną parę. Obróciwszy tę parę w jej płaszczyźnie, dołączymy jej siły do sił prostopadłych.

Prz. 2. Układ sił można sprowadzić do trzech sił, przyłożonych w wierzchołkach dowolnego trójkąta, i czyniących zadość trzem innym warunkom.

Zastępujemy Fr przez Fy + u, przyłożoną w B, i — u w C, F2 przez F2+v w C i — v w A, wreszcie F3 przez F-i + w w A i —w w B. Składamy następnie siły, przyłożone w wierzchołkach; przy pomocy trzech dowolnych wielkości u, v, w możemy uczynić zadość trzem postawionym warunkom.

Prz. 3. Sprowadzamy układ do trzech sił, przyłożonych w punktach nieruchomych A, B, C. Jeżeli kierunek pierwszej pozostaje stałym, to okazać, że każda z dwóch pozostałych leży w niezmiennej płaszczyźnie, i płaszczyzny te przecinają się na boku BC.

(Coli. Ex., 1891.)

	
	
316.    Cztery siły. Jeżeli cztery siły, działające na czterech prostych wichrowatych, są w równowadze, to te proste należą do tego samego pasma tworzących hiperboloidy jednopowło-kowej. Moebius, Lehrbuch der Statik.





Wyobraźmy sobie prostą ruchomą, która przecina wciąż trzy dane proste wichrowate, zwane kierownicami. Miejscem geometrycznem prostej ruchomej będzie, jak wiadomo, hiperbo-loida, a różne położenia tej prostej tworzą jedno pasmo tworzących. Istnieje nieskończenie wiele prostych, przecinających trzy siły dane, lecz każda z nich musi również przecinać czwartą siłę, bo inaczej moment układu względem takiej siecznej nie byłby zerem. Gdy obierzemy trzy z tych siecznych za kierownice, to wypadnie, że cztery dane siły leżą na odnośnej hiperbo-loidzie.

Twierdzenia następujące mają służyć, jako przykłady; dla tego też dowody są tylko zaznaczone w kilku słowach.

Prz. 1. n sił działa na tworzących hiperboloidy, należących do jednego pasma i wiadomo, że siły te sprowadzają się do jednej wypadkowej; okazać, prowadząc sieczne, że linia działania tej wypadkowej jest również tworzącą i należy do tego samego pasma.

Prz. 2. Dwie siły P, P' działają na tworzących jednego pasma, a dwie inne Q, Q‘ na tworzących drugiego tej samej hiperboloidy. Siły te tworzą czworobok skośny. Właściwości takiego układu sił badaliśmy w par. 103, niezmienniki będą podane w 317 i 323.

Okazać, że siły takie nie mogą się równoważyć, jeżeli nie leżą w jednej płaszczyźnie. W tym celu należy rozważyć sieczne, poprowadzone przez punkt przecięcia P i Q'.

Prz. 3. Trzy siły P, P2, P3 działają na tworzących jednego pasma, a czwarta Q na tworzącej drugiego. Dowieść, że układ taki nie może być w równowadze, jeżeli wszystkie siły nie leżą w jednej płaszczyźnie.

Gdyby każda sieczna sił Px, P2, P3 przecinała i Q, to ostatnia przecinałaby wszystkie tworzące swego pasma.

Prz. 4. Cztery siły działają na tworzących jednego pasma hiperboloidy; gdyby je przenieść równolegle do jednego punktu, to zachodziłaby równowaga. Dowieść, że siły te równoważą się i obecnie.

Suma rzutów na każdą prostą jest oczywiście równa zeru, i moment względem każdej tworzącej drugiego pasma jest także zerem (par. 259). 2) Pliicker i Darboux.

Prz. 5. Cztery siły P, P2, P3, P, są w równowadze; okazać, że niezmiennik którychkolwiek dwóch jest równy niezmiennikowi dwóch pozostałych (twierdzenie Chasles’a), a niezmiennik każdej trójki jest zerem.

Gdy odwrócimy kierunki sił P3, P, to staną się one równoważne siłom P1, P2, a zatem niezmienniki są równe.

Prz. 6. Cztery siły, działające na prostych a, b, c, d są w równowadze. Oznaczamy symbolem ab iloczyn z najkrótszej odległości pomiędzy prostemi a, b przez sin kąta pomiędzy niemi; okazać, że owe siły są proporcyonalne do (bc . cd . db)'2, (cd . da . ac^2, (da . ab . bd)' 3, (ab . bc. ca)^2.                            (Cayley, Comptes Rendus, 1865.)

Według twierdzenia Chasles’aP1P2.ab—PiPi.cd i PlPi.ac=PiPi.bd. Mnożąc jedno przez drugie, otrzymamy stosunek P^-.P^.

	
	
317.    Niech będą osi hiperboloidy a, b, c V—1; obrawszy te osi za osi współrzędnych, otrzymamy równania tworzącej





x— a cos 0 y — bsin 9 z

asin 3     — b cos I —c‘ gdzie 3 oznacza anomalię ekscentryczną3) punktu przecięcia z płaszczyzną xy, tworząca należy do jednego lub drugiego pasma stosownie do znaku, stojącego przed c. Przypuśćmy, że na tej tworzącej działa siła P, której współrzędne oznaczmy przez X, Y, Z, L, M, N. Znajdziemy, że

x= + Zsins, Y==!Zcos9, c                     c

ab

L=bZsin, M= — aZcose, N=— 7, gdzie znaki górne należy brać razem.

Prz. 1. Cztery siły działają na tworzących hiperboloidy, należących do jednego pasma; dowieść, że sześć równań równowagi sprowadza się do trzech EZsin 8=0, ŁZ cosł=0, ŁZ=0. Będziemy w tern mieli dowód analityczny twierdzenia z par. 316 prz. 4.

Prz. 2. Okazać, że niezmiennik I dwóch sił, działających na tworzących tego samego pasma, = +--Z,z, versin (9,- •,) 4). Jeżeli linie działania sił należą do różnych pasm, to niezmiennik jest zerem, bo takie proste się przecinają. Jeżeli mamy większą liczbę sił, działających na różnych tworzących, to niezmiennik jest równy sumie niezmienników sił, branych po dwie (par. 281).

Prz. 3. Dane są cztery tworzące tego samego pasma; okazać, że stosunki sił w równowadze określają równania

_____Zi2__________

vers (92— 0) vers (9-a—94) vers ($4—32)

_____Z22______

vers (33—3,) vers (8,— 3,) vers (91—9)

Związki te można otrzymać, przyrównywując niezmienniki dwójek sił, jak w dowodzie twierdzenia Cayley’a w par. 316.

Prz 4. Cztery tworzące hiperboloidy przecinają płaszczyznę osi rzeczywistych w punktach A1, A2, Ag, A,, i siły, działające na nich, są w równowadze. Okazać, że rzuty tych sił na oś urojoną są propor-cyonalne do pól trójkątów A,AJA,, AzA,A{ ..., przyczem siły w przyległych wierzchołkach czworoboku A,A2A344 mają znaki odwrotne.

Prz. 5. Siły działają na tworzących tego samego rodzaju; dajmy na to, że c jest dodatnie. Dowieść, że stromość p skrętnika równoważnego

ab                          , bc ca zawiera się pomiędzy--i większą z wielkości — i —. Wynika to c           ab . I ZL.EX+...  ,   2+62—1 stąd, ze PER—(x)2+. =aa4+6382+=‘ gdzie 6, " stoja zamiast EZcos8 . “Zsin 9   . ,                 ab , ,            bc --i--. Widać od razu, że p-— jest dodatnie, a p — — ~Z       LZ                            c                     a ujemne, jeżeli b>a.

Prz. 6. Siły działają na tworzących tego samego pasma, a stromość skrętnika równoważnego jest równa p. Dowieść, że oś centralna jest tą tworzącą hiperboloidy koncyklicznej 5)

fbc   \     (ca   \     (ab   \     (bc   \(ca   \(ab

[--p )X-H——p] yi—[ — +pz2 = (--p (--p -p a   / b   / C   /      a   /b   /\c która przecina płaszczyznę xy w punkcie

ac — bp ZZcosS        bc — ap ZZsin 9

c -A              c LZ

Prz. 7. Siły działają na tworzących tego samego pasma, i cały układ sprowadza się do jednej wypadkowej, która przecina płaszczyznę xy w punkcie D. Okazać, że prosta OD oraz rzut wypadkowej są równoległe do średnic sprzężonych.

Prz. 8. Siły działają na tworzących tego samego pasma hiper-boloidy. Okazać, że układ sprowadza się do jednej wypadkowej, jeżeli oś centralna jest równoległa do jednej z tworzących stożka asymptot, i że jest to warunek niezbędny.                   (Math. Tripos, 1877.)

	
	
318.    Związki czterech sił z czworościanem. Prz. 1. Na środki kół, opisanych na ścianach czworościanu, działają siły prostopadłe do tych ścian i proporcyonalne do ich pól. Dowieść, że siły te się równoważą, jeżeli wszystkie są skierowane wewnątrz, albo wszystkie nazewnątrz.





Prz. 2. Na wierzchołki czworościanu działają siły prostopadłe do ścian przeciwległych i proporcyonalne do ich pól. Okazać, że siły te się równoważą, jeżeli wszystkie są skierowane wewnątrz czworościanu albo wszystkie na zewnątrz.               (Math. Tripos, 1881.)

Mamy czworościan AB CD i jego wysokości AK, BL... Iloczyn każdej wysokości przez pole odpowiedniej ściany jest równy trzykrotnej objętości czworościanu, a zatem siły są odwrotnie proporcyonalne do wysokości, na których działają. Przypuśćmy, że wynoszą one odpowiednio —, —...

AK BL

U.

Rozkładamy siłę — na trzy składowe w kierunkach krawędzi AK

AB, AC, AD. Biorąc rzuty na prostopadłą do ściany ACD, wyznaczy-

BL my składową F, działającą w kierunku AB. Wypadnie, że F. —-=

= -—cos 9, gdzie 9 jest kątem pomiędzy wysokościami AK i BL. Tak AK

samo rozkładamy siłę Nr na składowe w kierunkach krawędzi. Skła-

AK

dową F', działającą w kierunku BA, znajdziemy ze związku F'. —=

AD

= — cos 3. Z tego wynika że siły F i F' są równe i odwrotne. Tak BL

samo możemy okazać, że na każdej z pozostałych krawędzi działają także siły równe i odwrotne, a zatem układ jest w równowadze.

Prz. 3. Siły, działające na środki ciężkości czterech ścian czworościanu, są prostopadłe do tych ścian i co do wielkości proporcyonalne do ich pól, a przytem wszystkie są zwrócone wewnątrz czworościanu lub wszystkie na zewnątrz. Okazać, że siły takie się równoważą.

Łącząc środki ciężkości, zbudujemy czworościan wpisany, którego ściany są równoległe do ścian czworościanu danego i proporcyonalne do nich. Dane siły działają na wierzchołki tego czworościanu nowego, a zatem w myśl przykładu 2 są w równowadze.

Prz. 4. Na środki ciężkości ścian zamkniętego wielościanu działają siły prostopadłe do tych ścian, a pod względem wielkości propor-cyonalne do ich pól. Dowieść, że te siły są w równowadze.

Każdą ścianę rozkładamy na trójkąty zapomocą stosownej liczby przekątni, a łącząc następnie jakiś punkt wewnętrzny P z wierzchołkami, rozłożymy całą bryłę na czworościany. Siły, działające na środki ciężkości ścian każdego czworościanu, według przykładu 3 są w równowadze. Gdy usuniemy siły równe i odwrotne, działające na każdą ze ścian wewnętrznych, to pozostaną siły, działające na ściany zewnętrzne, które oczywiście muszą się równoważyć.

Prz. 5. Na środki krawędzi zamkniętego wielościanu działają siły. Każda siła jest prostopadła do odnośnej krawędzi, leży w płaszczyźnie dwusiecznej kąta dwuściennego, a co do wielkości jest pro-porcyonalna do iloczynu z długości krawędzi przez cos połowy kąta dwuściennego. Dowieść równowagi sił.

Przyłóżmy w płaszczyźnie każdej ściany do środków boków siły prostopadłe do tych boków i proporcyonalne do ich długości. Według par. 37 siły takie będą w równowadze. Składając siły, działające na każdą krawędź, otrzymamy twierdzenie żądane.

	
	
319.    Siły normalne do powierzchni. Prz. 1. Siły działają normalnie na każdy z elementów powierzchni zamkniętej. Okazać, że zachodzi równowaga, jeżeli każda siła jest albo (1) proporcyonalna do pola elementu, albo (2) proporcyonalna do iloczynu z tego pola przez 1     1





--1—? gdzie pip' oznaczają główne promienie krzywizny.

P P

Możemy uważać powierzchnię za przypadek graniczny wielościanu, a zatem twierdzenie pierwsze jest następstwem prz. 4 par. poprzedniego.

Prowadząc linie krzywizny, podzielimy powierzchnię na prostokątne elementy, które możemy uważać za ściany wielościanu, i wówczas twierdzenie drugie wyniknie z prz. 5. Niech ABCD będzie jednym z tych elementów. Kąt zewnętrzny pomiędzy ścianami, które

AB

przecinają się według BC wynosi —, więc siła, działająca na tę kra-P

BC. AB wędź ==—---i jest prostopadła do elementu.

2P

Joubert wyprowadza drugie twierdzenie z pierwszego, a z drugiego wyciąga wniosek, ze siły normalne i proporcyonalne do ilorazu z pola elementarnego przez pp‘ są w równowadze. Liouville’s J. tom XIII, 1848.

Prz. 2. Na każdy element ósemki elipsoidy, zawarty pomiędzy płaszczyznami głównemi, działają siły normalne i proporcyonalne do pól elementów. Okazać, że siły te sprowadzają się do jednej wypad-,    ......          . /   4a  , /   4b\    /  4c\   , . kowej, działającej na prostej a x — — — by——- )= c I z--I, gdzie 20,

\    3T/ \    3T/     \   3T/

2b, 2c oznaczają osi główne elipsoidy.                    (June Exam.)

	
	
320.    Pięć sił. Jeżeli pięć sił wichrowatych jest w równowadze, to siły te muszą przecinać diyie proste rzeczywiste lub urojone. Moebius.





Dowiedziemy naprzód, że każde cztery proste a, b, c, d można przeciąć dwiema siecznemi. W tym celu budujemy hi-perboloidę na kierownicach a, b, c; prosta d przecina ją w dwóch punktach rzeczywistych lub urojonych. ' Przez każdy z tych punktów przechodzi jedna tworząca tego pasma, do którego a, b, c nie należą, a więc przecinająca zarówno a, b, c, jak i d. Poprowadźmy więc dwie sieczne czterech sił; każda z nich musi przecinać i piątą siłę, bo inaczej moment układu względem niej nie byłby zerem. Te dwie sieczne możemy nazwać kierownicami pięciu sił.

	
	
321.    Obieramy za oś z wspólną prostopadłą dwóch prostych. Pięć sił przecina te proste odpowiednio w odległościach (rg'^, (rar,)... od osi z, a Z1, Z, ... oznaczają rzuty sił na tę oś. Dowieść^ że warunki równowagi są ^Z = 0, l^Zr—O, ^Zr' = 0, ^Zrr' = 0.





Obieramy początek współrzędnych w środku najkrótszej odległości kierownic; oznaczamy tę najkrótszą odległość przez 2c, kąt pomiędzy kierownicami przez 23, i obieramy dwusieczne tego kąta za osi x i y. Równanie każdej siły możemy napisać w postaci

a—r cos $     y — r sin $ z — c

{r—r‘) cos 9   (r+r) sin 3 2c

Zakładamy

,3 = (r - r)2 cos2 • + (r + r')2 sin2 • + 4c2

i oznaczamy siły przez P ... Ps. Biorąc teraz rzuty na osie i momenty względem osi, otrzymamy sześć równań równowagi

EPp(r - r') cos $ = 0, ŁP(r+ r‘)sin$=0, 2XPpc= 0, X(yZ- zY^ — ^P^r- r')c sin 3=0, 2(z X — x Z} = - ZPp(r + r)c cos $ = 0, ^xY — yX)=2E Pprr‘sin9cos$ =0.

Jeżeli c i sin 29 nie są zerami, to te sześć równań sprowadza się do czterech wyżej podanych. Owe cztery równania określają stosunki pięciu sił P1... P5, gdy są znane punkty przecięcia ich linii działania z kierownicami.

	
	
322.    Dajmy na to, że kierownice zmieniły położenie w przestrzeni, nie przestając przecinać osi z pod kątami prostymi, ale zmieniło się ich nachylenie wzajemne 29, albo odległość 2c. Z wyników poprzedzających wyciągamy wniosek, że równowaga będzie istniała i nadal, jeżeli (1) siły przecinają kierownice w tych samych odległościach od osi z, i (2) jeżeli rzuty sił na oś z nie uległy zmianie.





Gdy mamy w płaszczyźnie pięć sił, czyniących zadość trzem warunkom równowagi i prócz tego jeszcze warunkowi ZZrr‘=0, to możemy przy pomocy powyższego zbudować przestrzenny układ pięciu sił w równowadze.

	
	
323.    Prz. 1. Pewna liczba sił przecina dwie kierownice w pun-sin 29





ktach A, B, C..., A', B', C ...; okazać, że niezmiennik J—  --2Z%2. A B. A' B'.

2c

Prz. 2 Cztery siły działają na bokach skośnego czworoboku, obieganych w jedną stronę; pod względem wielkości siły te są odpowiednio a, 3, Y, 8 razy większe od boków, na których działają, jak w par. 103, prz. 5. Okazać, że niezmiennik I~ 2c sin 28(ay— ^)DD', gdzie D, D' oznaczają długości przekątni, 2c ich najkrótszą odległość i 23 kąt po-, między niemi.

Prz. 3. Pewna liczba sił przecina dwie kierownice i przez każdą z tych ostatnich przechodzi płaszczyzna równoległa do drugiej. Wyznaczyć współrzędne punktów, w których oś centralna przecina te płaszczyzny. Odpowiedź zawiera prz. 7 par. 278.

Prz. 4. Pięć sił w równowadze przecina dwie kierownice w punktach ABCDE i A'B'0'D'E', a wielkości tych sił są odpowiednio a.AA’, ^.BBr... Dowieść, że (1) suma współczynników a., 3... jest równa zeru, i (2) że

1 CD. BE   DB.CE I _ 1 DE. CA   EC.DA I

a | C'D'.B'E' D'B'.C'E' |   8 D'E'. CA' E'C'.D'A' F.......

(Coli. Ex., 1892.)

Prz. 5. Dowieść, że siła, działająca na AA', jest zerem, jeżeli stosunki anharmoniczne punktów BCDE i B'C'D'E' są równe. Jest to znana właściwość jakiejkolwiek czwórki tworzących hiperboloidy, przeciętych dwiema siecznemi.

Prz, 6. Momenty układu sił są równe zeru (1) względem trzech prostych, (2) względem czterech, (3) względem pięciu; okazać, że w przypadku (1) osią centralną jest jedna z tworzących hiperboloidy koncy-klicznej, w przypadku (2) oś centralna przecina pewną prostą określoną pod kątem prostym, a w przypadku (3) jest określona.

(Math. Tripos, 1888.)

	
	
(1)    Zastępujemy układ przez dwie siły sprzężone, z których jedna przecina trzy dane proste; w takim razie i druga będzie je przecinała, a więc te siły są tworzącemi hiperboloidy. Twierdzenie pierwsze wynika odrazu z prz. 6 par. 317.


	
(2)    Jedną z sił sprzężonych obieramy na prostej, przecinającej wszystkie cztery proste dane, jak w par. 320; w takim razie i druga przetnie te proste, a więc położenie tych dwóch sił w przestrzeni jes zupełnie określone. Według par. 285 oś centralna przecina ich wspólną prostopadłą pod kątem prostym.


	
(3)    Z pięciu prostych danych tworzymy dwie czwórki; otrzymamy tym sposobem dwie proste, które oś centralna przecina pod kątami prostymi. Stąd wynika, że oś centralna jest określona.



	
324. Sześć sił. 6) Siły, działające na sześciu prostych, są iv równowadze. Dowieść, że gdy dane jest pięć tych prostych oraz jeden punkt szóstej^ to ta szósta musi leżeć w pewnej płaszczyźnie określonej.



Niech będzie siła P, dana zapomocą sześciu współrzędnych PI, Pm, Pn Pk, P^, Py (par. 260), i jakiś punkt {fghj na jej linii działania. W takim razie

k=^gn-hm, ^ = hl — fn, v — fm — gl.

Przypuśćmy, że każda z sześciu sił P1...P. jest dana w ten sam sposób, możemy przeto uważać (lm,n,X1MV1), (l2m2...)... za współrzędne ich linii działania.

Siły te są w równowadze, a zatem muszą czynić zadość sześciu równaniom równowagi, a więc będzie

ŁPI= 0, lPm = 0, ^Pn^O- ŁPX= 0, EP[.=0, EPy=0.

Z tych sześciu równań wynika, że wogóle każda z sił P1 ... Pe powinna być zerem, ale gdy wyrugujemy stosunki tych sił, to otrzymamy równanie wyznacznikowe, wyrażające waru-

nek, pod którym siły mogą być skończone. Wyznacznik posiada sześć wierszy, z których każdy składa się z sześciu współrzędnych jednej z sześciu prostych danych.

I, m, n, 91n1-hm, h,1-fin, t\mi-9xh =0

	
12 m2 • . •



Przypuśćmy, że pięć z tych prostych jest danych, a szósta ma przechodzić przez dany punkt (f 96 he). Niech x, y, z oznaczają współrzędne bieżące szóstej prostej. Gdy napiszemy w ostatnim wierszu zamiast f, 96, he różnice x—f, y— 9, z— h6, to powyższe równanie wyznacznikowe zamieni się na równanie miejsca geometrycznego szóstej prostej. Będzie to oczywiście równanie pierwszego stopnia, a zatem miejscem geometrycznem szóstej prostej jest płaszczyzna.

	
	
325.    Jeżeli sześć prostych posiada takie położenie, że może . na nich działać sześć sił w równowadze, to mówimy, że te sześć prostych jest iv iniuolucyi. Gdy mamy dane pięć prostych i punkt O, leżący na szóstej, to płaszczyzna, stanowiąca miejsce geometryczne szóstej, zowie się płaszczyzną biegunową punktu 0 względem pięciu prostych danych.





Jeżeli pięć prostych ma takie położenie, że mogą na nich działać siły, pozostające w równowadze, to są one w inwolucyi z każdą szóstą prostą, a siła, działająca na tej szóstej, jest zerem. Wyrażamy to krótko, mówiąc, że te pięć prostych jest w inwolucyi.

Jeżeli proste są w inwolucyi, to każdą siłę, działającą na jednej z nich, można zastąpić przez składowe skończone, działające na prostych pozostałych, jeżeli tylko te pozostałe nie są same w inwolucyi.

	
	
326.    Dajmy na to, że każda z sześciu prostych jest siedliskiem skrętnika o danej stromości; pragniemy znaleźć warunki równowagi.





Niech P będzie siłą jednego ze skrętników, p stromością, a (tmnh^^ współrzędnemi osi. Biorąc rzuty na osi i momenty względem osi, otrzymamy

1PI = O        IPm^O        ^Pn = Q

ZP(+ pl^h    EP(p. +pm) = 0    EP(y +pn) = G.

Gdy wyrugujemy siły, to wypadnie równanie wyznacznikowe o sześciu wierszach. Podajemy tylko wiersz pierwszy

lr m, n, ^t+pA ^i+PP^ ^^p^ _

Wiersze pozostałe różnią się od pierwszego jedynie co do wska-źników. Bali nazwał wyznacznik powyższy seksyanlem.

Przypisując stromościom p^.-p^ wartości zero lub nieskończoność, znajdziemy warunki równowagi m sił i n par (in + n = &), związanych z danemi sześcioma prostemi.

	
	
327.    Biorąc momenty sześciu sił Pr... P z kolei względem każdej linii działania, otrzymamy sześć równań postaci





P,. o+ P,(12) + P,(13) + P,(14) + P,(15) + P,(16) - o, gdzie (12) oznacza moment wzajemny linii działania sił Pv i P2 (par. 264). Gdy wyrugujemy sześć sił, to wypadnie sześciowier-szowy wyznacznik, przyrównany do zera. Wyraża on warunek niezbędny, aby sześć prostych było w inwolucyi.

Biorąc którekolwiek pięć z tych równań, wyznaczymy stosunki sześciu sił. Jeżeli 112 oznacza minor wyrazu pierwszego wiersza kolumny drugiej, to

P_P_P_

11 12 13

Ponieważ zaś 11122= 1312, możemy więc otrzymać związki bardziej symetryczne

p 2   p 2    p 2

1 = - 2 _ 13 _

11   122   133

Taką postać nadał stosunkom sił Spottiswoode w Comptes Ren-dus, 1868.

	
	
328.    Otrzymaliśmy więc dwie definicye inwolucyi w postaci dwóch wyznaczników; jeden z nich składa się ze współrzędnych sześciu prostych, a drugi z ich momentów wzajemnych. Wyznaczniki te nie są jednak niezależne; jeden z nich jest kwadratem drugiego. Można to udowodnić, podnosząc pierwszy do kwadratu i uwzględniając wyrażenie momentu wzajemnego, podane w prz. 1 par. 267.


	
329.    Jeżeli proste A, B, C, D, E, F nie są w iniuohicyi, to każdą siłę R można rozłożyć na sześć składowych, działających na tych prostych.





Niech l' m n' X’ p.’ v‘ oznaczają współrzędne linii działania siły R, a Pt... P, jej sześć składowych na danych prostych, W myśl par. 324 mamy: ^Pl = Rlj..., LPk= RX ... Te sześć równań dają sześć wartości rzeczywistych na P1... P. Warlości te będą skończone, jeżeli wyznacznik z par. 324 nie jest zerem, t. j. jeżeli dane proste nie są w inwolucyi.

Zauważymy, że P^ będzie żerem, jeżeli zerem jest wyznacznik, który powstanie, gdy w pierwszym wierszu zastąpimy lr, m^... przez Ij m1..., czyli jeśli linia działania siły R jest w inwolucyi z BCDEF.

Prz. Okazać, że wogóle układ sił daje się tylko jednym sposobem sprowadzić do sześciu sił, działających na sześciu prostych danych. Gdy mamy dane linie działania pięciu z tych sił, a prócz tego, wielkość i punkt przyłożenia szóstej, to miejscem geometrycznem szóstej będzie prosty stożek kołowy.               (Coli. Exam., 1887.)

	
	
330.    Jeżeli momenty układa sił względem sześciu prostych, nie tworzących inwolucyi, są zerami, to siły się równoważą.





Jeżeli równowagi niema, to niech (T, Ii) będzie skrętnikiem równoważnym układu. Obieramy oś tego skrętnika za oś z i oznaczamy przez (31 @191), ($2(2 12)... kąty, które dane sześć prostych tworzy z osiami z, x, y, a przez (r, rj rj'), (r, r2‘ r,") ••• ich najkrótsze odległości odpowiednio od z, x, y.

Każda z danych sześciu prostych jest linią zerową układu, a zatem dla każdej zachodzi równanie Tcoss+ Rr sin $ =0. Mamy teraz dowieść, że dane sześć prostych tworzy inwolueyę, jeśli tym sześciu równaniom czynią zadość wartości T i R różne od zera.

Jeżeli można wyznaczyć sześć sił P...P, działających na danych sześciu prostych i pozostających w równowadze, to siły te muszą czynić zadość sześciu równaniom równowagi, a mianowicie

ŁPcos$=0,     ŁPcosę=0,     ZPcost=0,

^Pr sin 3=0,     'LPr1 sin=0,    ZP"sin$=0.

Równania te wymagają wogóle, aby każda z sił Pr... P była zerem, ale jeżeli jest spełnione sześć warunków, podanych poprzednio, to równania ZPcos9=0 i ZPrsin $ =0 wynikają jedno z drugiego. Pozostaje więc tylko pięć koniecznych i dostatecznych warunków równowagi, którym siły P...P powinny czynić zadość. Można zatem wyznaczyć stosunki sił, a z tego wynika, że dane proste są w inwolucyi.

Jeżeli proste nie tworzą inwolucyi, to nie mogą wszystkie być jednocześnie liniami zerowemi skrętnika, a zatem T i R muszą być zerami. Z rozważań tych widać, że sześć równań momentów względem sześciu prostych nie wystarcza do zapewnienia równowagi, jeżeli te sześć prostych tworzy inwolucyę.

	
	
331.    Moment układa sił względem każdej z m prostych, oraz sama rzatów na każdą z n prostych są zerami, i m + n = 6. Układ ten jest w równowadze, jeśli owe proste są takie, że siły, działające na m pierwszych, oraz pary, posiadające osie na n pozostałych, nie mogą się równoważyć, przyczem te siły i pary nie powinny być wszystkie zerami.





Założymy dla krótkości, że moment układu względem każdej z prostych 1. 2, 3, 4, oraz suma rzutów na każdą z prostych 5 i 6 jest zerem. Jeżeli układ nie jest w równowadze, to niech (T, R) będzie skrętnikiem równoważnym. Obieramy, osie współrzędnych i oznaczenia tak samo, jak w par. 330. Mamy więc cztery równania momentów

T cos 31 + Rri sin 31 = 0, l1 cos $2 + Rr, sin 3 = 0..... oraz dwa równania rzutów

R cos 3,=0, Rcos?, =0. Nazwijmy te sześć równań równaniami (A).

Dajmy na to, że na prostych 1... 4 działają siły Pt... P^, a na prostych 5, 6 leżą osie par M,, Mg. Jeżeli te siły i pary mają być w równowadze, to muszą istnieć równania

Pcos 8,+ .... + P, cos 9, = 0,

Pr, sin 8, + ... + Parąsin 8, + M,cos 8, + M^ cos 96 =0 wraz z czterema innemi, które otrzymamy, pisząc tylko « i • zamiast 9. Nazwiemy te sześć równań równaniami (B).

Równania (B) wymagają wogóle, aby siły P... P, oraz pary M,, M. były zerami. Jeśli wszakże równaniom (A) mogą czynić zadość wartości Ti R różne od zera, to równania (B) nie są niezależne. Jeżeli mianowicie pierwsze z nich pomnożymy przez I, a drugie przez R i dodamy iloczyny, to suma będzie tożsamością na zasadzie (A). W tym razie równania (B) sprowadzają się najwyżej do pięciu równań niezależnych, a zatem mogą im czynić zadość wartości P... P, oraz M^ M, różne od zera.

Tak więc, jeżeli sześć danych prostych posiada taką własność, że siły P^... P, oraz pary M5, M, nie mogą być w równowadze, to wartości F i R, określone przez równania (A), muszą być zerami, a zatem dany układ sił jest w równowadze.

	
	
332.    Jeżeli z sześciu prostych danych cztery zajmują osie par, a na dwóch pozostałych istnieją tylko pary równe zeru, albo siły równe zeru, to można tak dobrać cztery pierwsze pary, aby zachodziła równowaga (99). Z tego wynika, że m równań momentów, oraz n równań rzutów nie wystarcza do wyrażenia warunków równowagi, jeżeli m jest mniejsze od trzech.


	
333.    Twierdzenie paragrafu 331 można także wyprowadzić z twierdzenia, dowiedzionego w par. 330.





Moment układu sił względem prostej, poprowadzonej w płaszczyźnie xz równolegle do osi x w odległości l od tej osi, w myśl par. 258 wyrazi się tak: L'=L+IY. Jeżeli l jest bardzo wielkie, to warunek L‘= 0 prowadzi do Y—0. Stąd wynika, że przyrównać do zera sumę rzutów sił na prostą y, jest to to samo, co przyrównać do zera moment tych sił względem prostej prostopadłej do y i bardzo od niej odległej. Prócz tego wiemy, że siła zero, działająca na takiej prostej nieskończenie odległej, jest równoważna parze, posiadającej oś na y.

Niech teraz będzie układ taki, że jego momenty względem m prostych oraz rzuty na n prostych są zerami, a m+n=6. Zamiast n prostych danych możemy wprowadzić n prostych nieskończenie odległych i prostopadłych do tamtych, i powiemy wówczas, że momenty danego układu względem m prostych zwykłych i n nieskończenie odległych są zerami. Z tego wyniknie, że dany układ będzie w równowadze, jeżeli nie można wyznaczyć m sił, działających na owych m prostych, i równoważących się z n parami, których osi leżą na n prostych danych.

	
	
334.    Pogląd geometryczny. Sześć sił jest w równowadze. Jeżeli dane są linie działania pięciu, to szósta leży na linii zerowej dwóch sił określonych, działających na dwóch siecznych którejkolwiek czwórki z pięciu sił danych. Można z tego wyciągnąć nowy dowód twierdzenia Moebiusa.





Oznaczymy linie działania sił P^... P^ cyframi 1... 6, a momenty wzajemne tych prostych symbolami (12), (3 4)... (par. 264). Niech prócz tego a, b oznaczają sieczne prostych 1, 2, 3, 4 (par. 320). Skoro siły P... P są w równowadze, to moment sił P i P, względem każdej z tych siecznych jest zerem, zatem

P,(5c) + P^ - 0, P^b} + P^b} - 0......(1)

Rugując stosunek p‘, otrzymamy

(5b)(6a) - (5a)(6b) .......*......(2)

Tak więc szósta prosta jest położona w taki sposób, że moment dwóch sił, działających na a, b i proporcyonalnych do (pb), (—5a), względem niej jest zerem. Oznaczmy te siły przez Pa i Pb^ to będzie

Pa(Gd) + Pb(6b) = 0.

Zaznaczamy, że położenia siecznych a i b zależą od położenia prostych 1, 2, 3, 4, lecz są niezależne od wielkości odnośnych sił. Stosunek sił, które przykładamy na siecznych, zależy od położenia prostej 5 względem a i b. Pomiędzy siecz-nemi a, b i prostemi 5, 6 zachodzi związek taki, że pierwsze są liniami zerowemi sił P^ P^ a drugie sił Pa, Pb.

Z rozważań powyższych wynika wniosek następujący: gdy siły P... P się zmieniają, lecz wciąż zachodzi równowaga, to szósta prosta pozostaje wciąż linią zerową sił Fa i Pb. Jeżeli zatem jest dany jakiś punkt O na linii działania siły P, to siła ta musi leżeć w płaszczyźnie zerowej punktu O względem sił Pa i Pb.

	
	
335.    Można również zastosować jakiekolwiek dwie siły sprzężone, równoważne z Pa, Pb. Obieramy np. jakiekolwiek dwa punkty A i B\ ich płaszczyzny zerowe względem Pa, Pb przetną się według prostej CD sprzężonej z AB (par. 308). Każda prosta, przecinająca AB i CD, jest linią zerową, a więc możliwą linią działania siły szóstej.


	
336.    Gdy szósta prosta obraca się około punktu O w jego płaszczyźnie biegunowej, to pozostaje ona wciąż w inwolucyi z prostemi 1 ...5; podczas tego stosunki sił P... P6 się zmieniają.





Połączmy O z punktem, w którym sieczna a przecina płaszczyznę biegunową, i otrzymaną prostą obierzmy za linię działania siły szóstej. Będzie to linia zerowa sił, działających na siecznych, a zatem musi przecinać i sieczną b. Widzimy, że płaszczyzna biegunowa punktu O przecina sieczne a i b w dwóch punktach, leżących na jednej prostej z O.

Można wyznaczyć położenie tej prostej w przestrzeni, mając dane proste 1, 2, 3, 4 oraz punkt 0. Nazwijmy ją linią c punktu 0 względem czterech prostych 1, 2, 3, 4. Aby ją wyznaczyć budujemy naprzód sieczne a i b, a następnie prowadzimy przez każdą z nich i przez O płaszczyznę. Przecięcie tych płaszczyzn będzie linią c.

Gdybyśmy rozpoczęli konstrukcyę od wyznaczania siecznych a', b' innej czwórki prostych danych, np. 1, 2, 3, 5, to doszlibyśmy do tej samej płaszczyzny, t. j. do płaszczyzny biegunowej punktu O. Łącząc dane proste w czwórki, możemy otrzymać pięć takich prostych, jak c, i wszystkie są położone w płaszczyźnie biegunowej punktu O; dwie z nich określają tę płaszczyznę.

Jeżeli dane są cztery proste 1, 2, 3, 4 i punkt O, a piąta prosta jest dowolna, to płaszczyzna biegunowa punktu 0 przechodzi przez prostą niezmienną c.

	
	
337.    Jeżeli siły P ... P są w równowadze, to moment sił P, P względem każdej z siecznych a, b jest zerem, a zatem w myśl par. 334





P,(5c)+P,(6c)=0, P,(5b)+P,(6b)=0. .........(1).

Gdy szósta prosta zajmuje położenie c, to momenty szóstej siły względem siecznych a i b są zerami. Dajmy na to, że szósta prosta obróciła się z tego położenia w płaszczyźnie zerowej punktu 0 o kąt 0. Aby teraz wyznaczyć momenty szóstej siły, rozkładamy ją na dwie składowe w kierunku prostej c oraz w kierunku prostej d, poprowadzonej w płaszczyźnie biegunowej prostopadle do c. Momenty pierwszej są zerami, a momenty drugiej będą P6sinJ(da) i P sin ^(db). Z każdego z równań (1) wynika, że stosunek P5:P6jest proporcyonalny do sin^, a więc jest największy, gdy szósta prosta jest proslopadba do c.

Zakładaliśmy, że momenty (5a) i (5b) nie są obydwa zerami, t. j. że pięć prostych danych nie posiada kierownic czyli dwóch siecznych wspólnych (par. 320). Gdy przypadek taki zachodzi, to proste 1, 2, 3, 4, 5 są same w inwolucyi. W takim razie, jak wskazują równania (1), siła P jest zerem, jeżeli jej linia działania nie przecina tych samych kierownic.

	
	
338.    Prz. 1. Jeżeli proste A, B, C, D, E, F są w inwolucyi, i siły, działające na E i F, nie są zerami, to płaszczyzny biegunowe punktu 0 względem A, B, C, D, E i względem A, B, G, D, F leżą razem.





Niech będzie w pierwszej płaszczyźnie biegunowej dowolna prosta M, przechodząca przez 0. Siłę, działającą na tej prostej M, można zastąpić przez pięć sił, działających na A, B, C, D, E; lecz siłę, działającą na E, można zastąpić przez siły, działające na A, B, C, D, F, zatem siła, działająca na M, jest równoważna siłom na A, B, C, D, F, i prosta M leży i w drugiej płaszczyźnie biegunowej. Stąd wynika przystawanie obydwóch płaszczyzn biegunowych.

Prz. 2. Gdy dane są dwie sieczne a i b, to możemy zastosować układ współrzędnych z par. 321. Oznaczmy ich najkrótszą odległość przez 2c, kąt pomiędzy niemi przez 29, i niech 1" będzie równe zna-1—M

nemu stosunkowi (5a):(5b), t. j. stosunkowi momentów piątej siły względem siecznych a i b (334). Okazać, że równanie płaszczyzny biegunowej punktu O będzie

x sin (h+pc)+y cos (h+c)—z(fsin 8+ug cos 8)==c(fsin8+gcos8).

Równanie to otrzymamy, podstawiając w (2) paragrafu 334 wyrażenia momentów we współrzędnych Kartezyusza, podane w par. 266.

1

 Teoryę śrub przekornych (reciprocal screws), zawdzięczamy Sir R. Ballowi, i z jego książki o śrubach jest zaczerpnięta treść paragrafów 294—297. Do tejże książki odsyłamy czytelnika po dalsze rozwinięcie przedmiotu.

2

 W oryginale podany jest inny, mniej prosty dowód.

Przyp. tłom.

3

 Równania parametryczne elipsy przecięcia z płaszczyzną xy, czyli elipsy szyjnej, są x=acosł i y=bsin 0. Kąt 0 zowie się anomalią ekcenlryczną.                                             Przyp. tłom.

4

 Versin a lub sinvera=1 — cos a.                 Przyp. tłom.

5

 Hiperboloidy zowią się koncyklicznemi, gdy posiadają wspólne płaszczyzny przecięć kołowych.                       Przyp. tłom.

Statyka. 17

6

 Twierdzenie, że miejscem geometrycznem szóstej siły jest płaszczyzna, zawdzięczamy Moebiusowi {Lehrbuch der Statik, 1837), ale nie podał on konstrukcyi tej płaszczyzny. Uczynił to Sylvester w rozprawie „Sur fiiwolution des lignes droites dans 1’espace, consideres com-me des axes de rotation“. (Comptes Rendus, 1861). Podał on szereg twierdzeń, dotyczących położenia względnego piątej i szóstej prostej; on również wprowadził nazwy „inwolucya" i „płaszczyzna biegunowa". W drugiej rozprawie, umieszczonej w tym samym tomie, Sylvester wyprowadza kryteryum inwolucyi sześciu prostych w postaci wyznacznika, który podaj emy w par. 327, i wspomina przy tern, że Cayley znalazł inny wyznacznik, który może również określać inwolucyę; wyznacznik ten jest pierwiastkiem kwadratowym wyznacznika Sylvestra. Dowód podał Spottiswoode, Comptes Rendus, 1868. Por. także „Theory of determi-nantsu Scotta. Badania analityczne i statyczne, dotyczące inwolucyi, prowadził Cayley w pracy „On the six coordinates of a lineu, Cambridge Transactions 1867. Rozszerzenie wyznacznika z par. 327 do sześciu skrętników znajdujemy w „Theory of Screws^, 1876, Sir R. Balia.


Współrzędne czworościanome.

	
	
339.    Okazać, że każdy układ sił można sprowadzić do sześciu sił, działających na krawędziach dowolnego czworościanu o objętości skończonej.





Niech będzie czworościan ABCD, i przypuśćmy, że jedna z sił układu przecina ścianę ABC w punkcie D'-, rozkładamy ją na dwie składowe, z których jedna leży w płaszczyźnie ABC, a druga ma kierunek DD’. Pierwszą z nich w myśl par. 120 zastępujemy przez trzy siły, działające na bokach trójkąta ABC, a drugą przenosimy do D i rozkładamy na trzy siły według krawędzi, zbiegających się w D.

Za kierunki dodatnie na krawędziach obieramy AB, BC, CA, AD, BD, CD. Porządek liter jest tu taki, że siła dodatnia, działająca na jednej krawędzi, usiłuje wywołać obrót około krawędzi przeciwległej w kierunku dodatnim (par. 97). Siły, działające na krawędziach, oznaczymy symbolami Fl2, F^i F3l, F14, F2, Fzl. Porządek wskaźników odpowiada tu kierunkom dodatnim sił. Gdy pragniemy mierzyć siły w kierunkach odwrotnych, to odwracamy porządek wskaźników; tym sposobem F2=-F21. Stosunek sił do długości odnośnych krawędzi będziemy oznaczali przez fi2 ..., a objętość czworościanu przez V.

Prz. 1. Okazać, że sześć prostych, stanowiących krawędzie czworościanu, nie mogą być w inwolucyi.

Jeżeli siły, działające na krawędziach, są w równowadze, to bio-rąc momenty względem krawędzi, dowiedziemy, że każda z tych sił jest zerem.

Prz. 2. Siła P działa na prostej, łączącej punkty Hi K w kierunku od H do K, a współrzędne czworościanowe tych punktów są (x, y, z, ii) i (x‘, y','z', u'). Rozkładamy tę siłę na sześć składowych według krawędzi czworościanu ABCD; okazać, że składowa, działająca na AB, wynosi

Aby to udowodnić przyrównywamy momenty sił F12 i P względem krawędzi CD, przyczem należy zastosować wyrażenie momentu, dane w prz. 2 par. 267.

Prz. 3. Dwie siły jednostkowe działają na prostych HK i LM w kierunkach od H do K i od L do M, a punkty H, K, L, M mają odpowiednio współrzędne czworościanowe (x, y, z, u), (x‘...), (a, 3, Y, 8), (a'...). Okazać, że moment jednej z sił względem linii działania drugiej

6 PA w kierunku dodatnim obrotu wynosi----—, gdzie

	
• HK.MN



X y z u

A x‘ y' z' u' a 3 r a a' 8‘ r‘ z’

Porządek wierszy odpowiada tu kierunkom, w których działają siły na HK i LM, a porządek kolumn kierunkom dodatnim na krawędziach. Wynika to z par. 266. Warto jeszcze zauważyć, że wyrażenie to jest niezmiennikiem I dwóch sił jednostkowych.

Prz. 4. Punkt ma współrzędne czworościanowe (a, 3, Y, 8); równanie jego płaszczyzny zerowej względem sześciu sił F12 ... jest


+f21




X u +fai a a




J z+fa 8 r




+f34



a równanie płaszczyzny zerowej wierzchołka D będzie f23 x+fs J+f2z=0. Współrzędne powierzchniowe punktu zerowego płaszczyzny ABC są proporcyonalne do fia, fa, f^.

Prz. 5. Okazać, że niezmiennik 1 sześciu sił wyraża się lak

= 6 VCizfaa+lzaf4—fai fa).

Prz. 6. Okazać, że jeżeli sześć sił posiada jedną wypadkową, to wypadkowa la przecina każdą ze ścian w punkcie zerowym tej ściany. Wyznaczyć prócz tego jej równanie, korzystając z prz. 4.

ROZDZIAŁ VIII.

STATYKA GRAFICZNA.

Teorya geometryczna figur odiurotnych.

	
	
340.    Dwie figury płaskie i prostoliniowe zowią się biegunowo odwrotnemi1), (1) jeżeli składają się z jednakowych liczb odcinków czyli krawędzi, i odpowiednie krawędzie są równoległe, i (2) jeżeli krawędzie jednej figury, zbiegające się w jednym punkcie węzłowym lub węźle, odpowiadają bokom drugiej, tworzącym wielobok zamknięty lub kratę.





Gdy jedną z takich figur obrócimy o kąt prosty, to odpowiednie krawędzie staną się prostopadłemi jedna do drugiej; w takiem położeniu figury zowią się także biegunowo odwrotnemi.

Figura może posiadać odwrotną tylko wtedy, gdy są spełnione następujące dwa warunki: (1) w każdym węźle zbiegają się conajmniej trzy krawędzie, (2) figura daje się rozbić na kraty w taki sposób, że każda krawędź stanowi podstawę dwóch krat i tylko dwóch.

Krawędzie, które w jednej figurze zbiegają się w tym samym węźle, odpowiadają krawędziom, tworzącym w drugiej wielobok zamknięty. Lecz {wielobok zamknięty musi posiadać co najmniej trzy boki, a więc i w punkcie węzłowym muszą się schodzić co najmniej trzy krawędzie.

Można niekiedy tworzyć z krawędzi figury różne kombi-nacye, skutkiem czego powstają różne układy wieloboków, ale uważamy za kraty tylko te wieloboki, które odpowiadają węzłom figury odwrotnej. Mówimy, że figura została rozłożona na kraty. Bokowi pewnej kraty odpowiada w drugiej figurze krawędź, zakończona w węźle, który tej kracie odpowiada. Krawędź ma dwa końce, a więc jest rzeczą jasną, że zawszę dwie kraty, i tylko dwie, stykają się wzdłuż każdej krawędzi.

	
	
341.    Twierdzenie Maxwella. Jeżeli boki figury płaskiej są rzutami prostokątnymi krawędzi wielościanu zamkniętego, to figura taka posiada odwrotną, którą można otrzymać przy pomocy metody na-stępującej.





Przypuśćmy, że jeden z wielościanów jest dany. Tworzymy inny wielościan, biegunowo odwrotny do pierwszego względem para-boloidy x2+y2=2hz; znaczy to, że każda ściana jednego będzie płaszczyzną biegunową odpowiedniego wierzchołka drugiego.

Dowiedziemy, że rzuty prostokątne takich wielościanów na płaszczyznę xy są figurami odwrotnemi, których odpowiednie krawędzie są do siebie prostopadłe.

Weźmy jakąkolwiek krawędź jednego wielościanu. Stanowi ona prostą przecięcia dwóch ścian. W wielościanie drugim odpowiada jej krawędź, łącząca bieguny tamtych ścian. Weźmy pod uwagę krawędzie jednego wielościanu, zbiegające się w wierzchołku A. Odpowiednie krawędzie drugiego wielościanu leżą w płaszczyźnie biegunowej punktu A. Tak więc każdemu wierzchołkowi jednego wielościanu odpowiada ściana drugiego, i ściana ta posiada tyle boków, ile krawędzi zbiega się w owym wierzchołku.

Wypada teraz udowodnić, że rzut każdej krawędzi jednego wielościanu jest prostopadły do rzutu odpowiedniej krawędzi drugiego. W tym celu utwórzmy równania dwóch ścian jednego wielościanu, stanowiących płaszczyzny biegunowe wierzchołków (4M%) i (§‘‘(‘) drugiego. Wypadnie

h(z+^=x^+y^,     h(z+6)=yt‘+yn‘.

Rugując z, otrzymamy równanie rzutu krawędzi wielościanu pier-Statyka. 18.

wszego, a mianowicie h(‘—(‘)=x(§—6)+y(—’). Równanie rzutu krawędzi drugiego wielościanu, czyli krawędzi, łączącej obrane wierzchołki, będzie (y—)(6—6)—(x-4)(—‘)=0. Dwa te rzuty tworzą oczywiście kąt prosty.

Warto zaznaczyć jeszcze, że biegun płaszczyzny z—Ax+By-]-C posiada współrzędne ^=hA, -r\—hB, ^=—C.

Prz. Okazać, że gdy przesuniemy paraboloidę równolegle, to Maxwellowska figura odwrotna nie ulegnie zmianie, lecz tylko zmieni położenie, a gdy zmienimy latus rectum paraboloidy, to figura ta pozostanie podobną. Co stanie się z figurą odwrotną, gdy przesuniemy wierzchołki pierwszego wielościanu w taki sposób, że rzuty ich pozostaną bez zmiany?

	
	
342.    Twierdzenie Cremony. Cremona podał inną konstrukcyę. Przypuśćmy, że dany jest jeden wielościan; tworzymy drugi, łącząc bieguny ścian pierwszego. Cremona nazywa biegunem danej płaszczyzny pewien punkt, położony w tej samej płaszczyźnie. Gdy wyznaczymy rzuty prostokątne krawędzi takich wielościanów, to powstaną figury odwrotne, których odpowiednie krawędzie są równoległe.





Niech płaszczyzną rzutów będzie płaszczyzna xij. W takim razie biegun Cremony daje się zdefiniować następującymi sposobami. Sla-lycznie biegunem płaszczyzny nazwiemy punkt zerowy tej płaszczyzny dla układu sił, którego skrętnik równoważny leży na osi z, a stro-mość jest równa h. Analitycznie biegunem płaszczyzny z=Ax+By + C jest punkt i,~ — hB, ^\=hA, ^=C (par. 302). Geometrycznie-, przypuśćmy, że płaszczyzna dana przecina oś z w punkcie G i tworzy z tą osią kąt«. W takim razie biegun O leży na prostej CO, poprowadzonej w danej płaszczyźnie prostopadle do osi z, przyczem CO—hcol^.

Konstrukcya Cremony daje się łatmo wyprowadzić z konstrukcyi Maxwella. Obróćmy odwrotną figurę Maxwella około osi z o 90°. Skutkiem tego współrzędne bieguna, stosowanego w jego konstrukcyi, przybiorą wartości następujące: ^= — hB, r{=hA, l=—G. Gdy jeszcze zmienimy znak współrzędnej (, to wypadną współrzędne bieguna z konstrukcyi Cremony. Skutkiem obrotu rzuty odpowiednich krawędzi wielościanów, które były prostopadłe, staną się równoległymi, a zmieniając znak współrzędnej %, zastępujemy wielościan odwrotny przez jego obraz, odbity w płaszczyźnie xy, jak w źwierciadle. Ta ostatnia zmiana nie wywiera wpływu na rzuty wielościanu na płaszczyznę xy, a więc obydwie konstrukcyę prowadzą do tych samych figur odwrotnych; cała różnica polega na tera, że w jednym wypadku odpowiednie proste są do siebie prostopadłe, a w drugim równoległe.

	
	
343.    Przykład figury odwrotnej. Fig. 94 składa się z 8 węzłów, 18 krawędzi oraz 12 krat trójkątnych z punktami węzłowemi w O i O'. Sześcioboku, utworzonego przez krawędzie 1... 6, nie uznajemy za kratę, a zatem możemy uważać figurę, za rzut wielościanu, złożonego z dwóch piramid; piramidy te posiadają wspólną podstawę ABGDEF, a wierzchołki 0 i O' leżą po tej samej stronie podstawy, lub po stronach odwrotnych. Z tego wynika, że figura ta posiada odwrotną.





Aby zbudować tę odwrotną, prowadzimy płaszczyzny biegunowe punktów 0 i 0'. Ich prosta przecięcia będzie miała w myśl twierdzenia Maxwella rzut prostopadły do rzutu prostej 00'. Na fig. 93 rzut obrócono o 90°, skutkiem czego odpowiednie proste stały się ró-wnoległemi, i rzut prostej LM.N... jest równoległy do rzutu 00'. W O i O1 zbiega się po sześć krawędzi, a więc w płaszczyznach bie
[image: ]

gunowych tych wierzchołków otrzymamy sześcioboki 1...6, 1'...6'. W każdym z sześciu wierzchołków pozostałych zbiegają się cztery krawędzie, a płaszczyzny biegunowe dadzą nam sześć krat czworokątnych; krawędzie 11‘, 22', 33'... figury 93 idą równolegle do krawędzi 1,2,3... figury 94.

Krawędzie 12, 1'2' leżą w płaszczyźnie jednego czworokąta oraz w płaszczyznach sześcioboków, a zatem krawędzie te się przetną i punkt przecięcia musi leżeć na prostej LMN...

Fig. 93 wyobraża wielościan odwrotny lub rzut jego. Widzimy, że figura odwrotna ma 8 krat, 12 węzłów i 18 krawędzi.

	
	
344.    Gdy dana jest jakakolwiek figura płaska, to można wogóle znaleźć wielościan, dla którego figura ta jest rzutem; w tym celu potrzeba w wierzchołkach pobudować rzędne i połączyć ich końce. Należy jednak przy tern uważać, aby utworzone ściany były płaskie. Jeżeli kraty figury są trójkątne, to warunek powyższy spełnia się sam przez się przy wszelkich długościach rzędnych, bo ściana, zawarta w trzech krawędziach, jest zawsze płaska. Jest również rzeczą oczywistą, że jeżeli figura ma być rzutem wielościanu, to kraty powinny pokrywać jej pole dwa razy lub wogóle parzystą liczbę razy.


	
345.    Aby zbudować figurę odwrotną prowadzimy proste równoległe do krawędzi figury danej, uwzględniając przytem właściwości, które poznaliśmy dotychczas. Tak więc, aby zbudować fig. 93 obieramy punkt L i prowadzimy przezeń proste LMN, L21, L2‘1‘ odpowiednio równolegle do 00', OA, 0'A. Obieramy następnie na L1 punkt 2 i prowadzimy przezeń 22', 2M równolegle do AB, OB; otrzymamy wówczas prostą 2‘M, która na fig. 93 jest równoległa do 0'B i będzie tak samo, jakkolwiek obierzemy punkt 2 na LI. Wynika to z teoryi podobieństwa figur (czyli jednokładności), albo z trójkątów współbie-gunowych2). Na prostej 2M obieramy punkt 3 i prowadzimy 33', 3N, 3‘N równolegle do BO, 00, 0'0. Tak samo postępujemy z węzłami 4, 5, 6; wierzchołek 1 wypadnie jako przecięcie R6 i L2. Gdybyśmy obrali jeden z węzłów inaczej, gdybyśmy np. punkt 6 przysunęli bliżej do Q, to otrzymalibyśmy nowy trójkąt R11‘, którego wierzchołki leżałyby na prostych LM, L2, L2', a boki R1, Rl' byłyby równoległe do ich kierunków poprzednich. Z własności trójkątów współbiegunowych wynika, że i trzeci bok 11' pozostałby równoległym do poprzedniego kierunku.


	
346.    Właściwości mechaniczne figur odwrotnych. Wyobraźmy sobie kratownicę i przypuśćmy, że na każdej sztabie działają dwie siły równe i odwrotne, przyłożone w końcach. Jeżeli wielkości tych sił są proporcyonalne do odpowiednich krawędzi figury odwrotnej, to siły w każdym punkcie węzłowym kratownicy są w równowadze.





Twierdzenie to jest bezpośredniem następstwem tej okoliczności, że sztaby, zbiegające się w tym samym węźle kratownicy, są równoległe do boków wielokąta zamkniętego na figurze odwrotnej.

Przypuśćmy dla przykładu, że fig. 93 wyobraża kratownicę z 18 sztab, połączonych swobodnie w węzłach, i dajmy na to, że jedna ze sztab się kurczy, skutkiem czego cała kratownica jest w stanie naprę-żenią. Wyznaczymy naprężenie każdej sztaby, mierząc długości krawędzi odpowiednich figury odwrotnej. Obacz także par. 354.

	
	
347.    Gdy węzeł kratownicy jest w równowadze pod działaniem sił, które w tym węźle się schodzą, to można wykreślić odpowiedni wielobok sił. Gdy wszystkie węzły są w równowadze, to otrzymamy tyle wieloboków, ile jest węzłów. Jeżeli można wykreślić figurę odwrotną, to wieloboki te dadzą się tak dopasować jeden do drugiego, że każdej sztabie kratownicy będzie odpowiadała tylko jedna krawędź kompletnego wielo-boku sił. W razie przeciwnym, jeżeli warunki paragrafu 340 nie są spełnione, a zatem figura odwrotna jest niemożliwa, to wieloboki cząstkowe nie dopasują się całkowicie. Skutkiem tego jednej sile będą odpowiadały równe i równoległe odcinki, położone w różnych częściach figury. Swoją drogą pewna licz-ba wieloboków cząstkowych może się dopasować, bo w pewnych razach część kratownicy może stanowić rzut jakiegoś wielościanu zamkniętego. Dyagramat sił, jakkolwiek niedoskonały, może jednak być użyteczny przy wyznaczaniu naprężeń.
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Fig. 95.                          Fig. 96.






Dla przykładu rozważmy kratownicę, wyobrażoną na fig. 95. Uważajmy, że niektóre pary sztab, a mianowicie F, G; L, M;... nie są połączone w punktach skrzyżowania i nie wywierają na siebie wzajemnie reakcyi. Jeżeli tutaj jedna sztaba się skurczy, to naprężenia innych będą wyznaczalne, chociaż nie będzie można wykreślić figury odwrotnej. Sztaba N jest krawędzią czterech krat, a mianowicie NFH, NGI, NJL i NKM, gdyby więc istniała figura odwrotna, to krawędź, odpowiadająca sztabie N, miałaby cztery końce. Możemy jednak zbudować dyagramat, wyobrażony na fig. 96; tutaj każdej z sił H, I, J, K odpowiadają dwa odcinki równoległe.

	
	
348.    Siły zewnętrzne. Z kratownicy, wyobrażonej na fig. 93, usuńmy sześć sztab, tworzących sześciobok zewnętrzny, a także sztaby pośrednie 11', 22'.... Przyłóżmy następnie do wierzchołków 1... 6 sze-ścioboku pozostałego siły P... P6, zastępujące naprężenia w sztabach usuniętych. Tym sposobem powstanie kratownica, złożona jedynie ze sztab 12, 23,..., połączonych w wierzchołkach przegubami, i podlegająca działaniu sił zewnętrznych P... P. Kratownica taka jest podobna do wieloboku sznurowego, który opisaliśmy w par. 140; różnica polega na tem, że siły, przyłożone w wierzchołkach, nie koniecznie mają być pionowe. Znając te siły zewnętrzne, zmieniamy odpowiednio do ich wielkości fig. 94 (zob. par. 352). Można więc wyznaczyć graficznie naprężenia kratownicy i w tyra przypadku, gdy naprężenia te powstają pod działaniem sił zewnętrznych, przyłożonych w węzłach, jeżeli tylko potrafimy dopełnić figurę w taki sposób, aby było można wykreślić figurę odwrotną. Takie dopełnianie figury nie jest jednak w zwyczaju, gdyż niema potrzeby wyznaczać naprężeń, które panowałyby w sztabach dodatkowych, gdyby sztaby te istniały rzeczywiście. Wykreśla się jedynie części figury niezbędne do wyznaczenia naprężeń w kratownicy danej.


	
349.    Niekiedy bywa w użyciu inny sposób znaczenia figur, przy którym odwrotność ich występuje dobitniej. Proste, zbiegające się
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Fig. 98.








w węźle jednej figury, odpowiadają prostym, tworzącym wielobok zamknięty w drugiej, dogodnie więc jest oznaczać tą samą literą węzeł jednej figury oraz kratę drugiej. Tym sposobem krawędzie, wychodzące z wierzchołka A figury 97 są równoległe do krawędzi, tworzących kratę A figury 98, a krawędzie kraty P.są równoległe do krawędzi, zbiegających się w węźle P. Krawędź CD jednej figury, przedzielająca kraty P i Q, jest równoległa do prostej PQ figury drugiej. Taka metoda znaczenia figur odwrotnych nazywa się systemem Bow’a. (On Ihe economics of construclion in relation to framed structare. Spon, 1873.)
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Fig. 99.                 Fig. 100.




Jeszcze inną metodę znaczenia figur odwrotnych stosował Max-well. Odpowiednie proste oznacza on tą samą literą z pewnym znakiem odróżniającym. Na jednej figurze używał np. liter dużych, a na drugiej małych. Metodę tę ilustrują figury 99 i 100.

	
550.    Jak wykreślić figurę odwrotną do figury prostoliniowej danej6? Daje się to najlepiej wyjaśnić na przykładzie. Na figurze 97, lub 98, wszystkie kraty są trójkątne; znajdziemy odwrotną, opisując na kratach koła. Proste, łączące środki tych kół, będą oczywiście prostopadłe do odpowiednich boków figury danej. Gdy zbudujemy w ten sposób jedną figurę odwrotną, to każda figura do niej podobna będzie także odwrotną.



W przypadkach bardziej złożonych koła takie nie dadzą się wykreślić. Przypuśćmy, że mamy wykreślić figurę odwrotną do 99. Zwykle bywa dogodnie zaczynać konstrukcyę od węzła, w którym schodzą się trzy krawędzie, gdyż trójkąt, odpowiadający temu węzłowi da nam trzy krawędzie figury odwrotnej. Prowadząc proste a, b, c równoległe do A, B, C, otrzymamy trójkąt, odpowiadający węzłowi, z którego wychodzą krawędzie A, B, C. Przez punkt przecięcia b i c prowadzimy równoległą e do E, gdyż E tworzy trójkąt z B i C. Prowadzimy również d równolegle do D przez przecięcie a, b. Proste D, E, F, G- tworzą wielobok, a zatem otrzymamy fig, prowadząc równoległe do F i Gr przez punkt przecięcia prostych e, d. Również proste A, C, K, L, H tworzą wielobok zamknięty, a więc proste k, l, h przejdą przez przecięcie a, c. Prostą i prowadzimy równolegle do I przez przecięcie h, f, a prostą j równolegle do J przez przecięcie g, k. Prosta, wykreślona na ostatku, powinna przejść przez przecięcie Z, i, bo inaczej nie mogłaby powstać figura odwrotna. Z twierdzenia, dowiedzionego w par. 341, wynika, że warunek ten jest spełniony.

Prz. 1. Wewnątrz trójkąta obrano dwa punkty i połączono je z wierzchołkami. Zbudować figurę odwrotną.

Prz. 2. Poprowadzono odcinki AA', BB', CC, które w przedłużeniu przechodzą przez jeden punkt, oraz odcinki AB, BC, CA, A'B', B'C, CA'. Tym sposobem powstały trzy czworoboki i dwa trójkąty. Zbudować figurę odwrotną.

	
351.    Niech W oznacza liczbę węzłów lub wierzchołków figury danej, B liczbę boków lub krawędzi, wreszcie K liczbę krat lub wie-loboków. W, B', K' mają oznaczać to samo w figurze odwrotnej. Z de-finicyi, podanej w par. 340, wynika, że B=B', W=K!, K= W’.



Otrzymujemy boki figury odwrotnej, prowadząc proste równoległe do boków figury danej. Naprzód budujemy krawędź AB równoległą do pewnej krawędzi figury danej, następnie prowadzimy przez A i B proste równoległe do odpowiednich krawędzi figury danej. Postępując tak dalej, otrzymujemy każdy nowy wierzchołek jako przecięcie dwóch nowych boków. Podobnie, jak w par. 151, obiór pierwszego boku AB określa dwa węzły; aby wyznaczyć pozostałe W’ —2 wierzchołki, potrzeba jeszcze prócz AB przeprowadzić 2(W‘— 2) proste. Jeżeli zatem B'—2W' — 3, to wszystkie wierzchołki są określone, i figura jest sztywna. Pod tym warunkiem daje się zbudować dyagramat, w którym kierunki prostych są dane dowolnie. Jeżeli B' jest mniejsze od 2W‘—3 to postać figury jest nieokreślona lub odkształcalna. Jeżeli B’ przewyższa 2W’— 3, to konstrukcya jest możliwa tylko wtedy, gdy kierunki prostych czynią zadość B1—2 W‘+3 warunkom.

Figura 97 posiada cztery wierzchołki, cztery kraty trójkątne

i sześć boków, a zatem na tej figurze W+K=B+2. Możemy z figury tej otrzymać inną, prowadząc nowe proste dopełniające. Gdy z jakiegoś wierzchołka P poprowadzimy prostą do punktu Q, niezłączonego z figurą, to każda z liczb W i B powiększy się o jednostkę. Gdy następnie dopełnimy nowy wielobok, łącząc Q z innym wierzchołkiem P', to znowu liczby K i B wzrosną o jednostkę każda. Gdy podzielimy jedną z krat na dwie części, łącząc dwa punkty na jej bokach, to znowu W+K i B wzrosną jednakowo. Z rozważań tych wynika, że jeżeli związek W+ K=B+2 jest ważny dla pewnej figury prostoliniowej, to jest on ważny i dla wszystkich innych figur, które z tamtej wyprowadzić się dają 3).

Rozważając obydwie figury, t. j. daną i odwrotną, otrzymujemy związki następujące:

B=B', W=K', K^W, W+K=B+2, W'+K'=B'+2.

Jeżeli figura dana jest taka, że W—K, to B=2W— 2 oraz B'—2 W — 2. W przypadku takim w każdej figurze liczba wierzchołków jest równa liczbie krat, i każda z figur ma o jedną krawędź więcej, niż wystarczałoby do usztywnienia. Istnieje dla każdej pewien warunek geometryczny, któremu powinny podlegać krawędzie; inaczej żadna z figur nie będzie możliwa.

Jeżeli W<K, jak w par. 343, to B>2W-2 i B'<2W'-2; figura odwrotna, przy założeniu takiem, jest nieokreślona. Jeżeli W>K, to B<2W— 2 i B‘> 2 W‘—2; w tym przypadku nie można określić figury odwrotnej, jeżeli nie jest spełnionych W— K+1 warunków.

Rozważania statyczne.

	
352.    Dane są linie działania oraz wielkości sił P,P... P; mamy wyznaczyć wypadkową.



Aby wyznaczyć wielkość i kierunek wypadkowej budujemy dyagramat lub wielobok sił, jak to już było wyjaśnione w par. 36. Kreślimy więc odcinki równoległe i proporcyo-nalne do sił danych, szeregując je jeden za drugim w dowolnym porządku. Wypadkową określi odcinek zamykający, wzięty w stosownym kierunku. Przypuśćmy, że odcinki 1 ... 5 odpowiadają siłom P...P5; w takim razie odcinek 6 wyrazi wypadkową co do wielkości i kierunku.

Badając ten wielobok, nie braliśmy pod uwagę punktów przyłożenia sił, a zatem wypadkowa nie jest określona całkowicie, i wypada uciec się do drugiego dyagramatu; ta figura druga zowie się wielobokiem sznurowym.

W dyagramacie sił obieramy dowolnie pewien punkt 0 i prowadzimy zeń promienie wodzące do wierzchołków. Promienie te dzielą figurę na szereg trójkątów, służących do rozkładania sił P, P2 ... w stosownych kierunkach. Bok, łączący 0 z którymkolwiek wierzchołkiem wieloboku, należy do dwóch trójkątów, a zatem reprezentuje dwie siły, działające w kierunkach odwrotnych; dlatego też na tych odcinkach nie porobiono strzałek. Ów dowolny punkt O zowie się biegunem wieloboku. Przecięcie boków 1 i 2 nazywamy węzłem 12, a odcinek, łączący 0 z tym węzłem, promieniem biegunowym 12.
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Możemy teraz przystąpić do budowy wego. Za punkt wyjścia obieramy dowolny punkt L. Przez ten punkt L prowadzimy prostą LA równolegle do promienia biegunowego 61; przetnie ona prostą działania siły P1 w punkcie A1. Następnie przez A, prowadzimy A,A, równolegle do promienia biegunowego 12 aż do przecięcia w A, z P2. Dalej wykreślamy proste A,A3, A,A4, A,A; równolegle do promieni biegunowych 23, 34, 45. W końcu prowadzimy A,A: równolegle do 56; przetnie ona prostą ArL w punkcie Ag, i punkt len jest szukanym punktem przyłożenia wypadkowej.

Aby to udowodnić zwróćmy uwagę, że siła P, przyłożona w A|, rozkłada się zapomocą jednego z trójkątów w wieloboku sił na dwie składowe, działające na prostych LA, i A2A1. Ta druga łącznie z P2 jest równoważna sile, działającej na A,A2; ta znowu łącznie z P3 jest równoważna sile, działającej na A,A3 i t. d. Znajdziemy ostatecznie, że siły P ... P^ sprowadzają się do dwóch, z których jedna działa na LAt, a druga na A645, stąd zaś wynika, że te dwie proste muszą przecinać się na linii działania wypadkowej. Na figurze 101 odcinek P, poprowadzony równolegle do 6, wyraża siłę, równoważącą

Gdybyśmy wyszli nie z L, lecz z jakiegoś innego punktu, to otrzymalibyśmy inny wielobok sznurowy; boki jego byłyby równoległe do boków A^.-.A^. Wykreślając dwa wieloboki sznurowe, możemy otrzymać, gdzie to jest pożądane, dwa punkty linii działania wypadkowej.

Jeżeli w wieloboku sił obierzemy za biegun jakiś punkt O’, różny od O, lecz zachowamy poprzedni punkt wyjścia L wieloboku sznurowego, to boki nowego wieloboku sznurowego nie będą równoległe do boków ArA2... A&-, niektóre z tych nowych boków zaznaczono na rysunku liniami kropkowanemi. Ostatni punkt A będzie i teraz leżał na wypadkowej. Wynika stąd twierdzenie geometryczne, że dla wszelkich biegunów tego samego wieloboku sił miejscem geometrycznem punktu Ag jest linia prosta.

	
353.    Warunki równowagi. Z rozważań powyższych wynika, że jeżeli tylko wielobok sił nie jest zamknięty, to dany układ sił posiada wypadkową; położenie jej możemy wyznaczyć, budując wielobok sznurowy.



Inaczej będzie, gdy wielobok sił jest zamknięty. Aby można było skorzystać z fig. 101 i 102 przypuśćmy, że układ składa się z sił P... P. Obieramy znowu dowolny punkt L i prowadzimy, jak poprzednio, prostą LAr równolegle do promienia biegunowego 61. Prowadząc dalej budowę wieloboku sznurowego, dojdziemy ostatecznie do punktu Ag, położonego na sile P, w tym przypadku danej. Do dokończenia budowy pozostaje jeszcze poprowadzić przez Ag prostą równoległą do tego samego promienia biegunowego 61, od którego rozpoczęliśmy. Ta ostatnia prosta albo pójdzie po prostej LA, którą wykreśliliśmy na samym początku, albo będzie do niej równoległa. Tym sposobem cały układ sił sprowadził się do dwóch sił równych i odwrotnych; jedna z nich działa na ArL^ druga na równoległej do niej przez A6.

Jeżeli te dwie proste leżą razem, to działające na nich siły, równe i odwrotne, się znoszą, i układ jest w równowadze. W tym przypadku wykreślony przez nas wielobok sznurowy (a więc i każdy inny wielobok sznurowy, jaki tylko daje się wykreślić), jest zamknięty.

Jeżeli owe dwie proste są równoległe, to układ sprowadza się do dwóch sił równych, równoległych i odwrotnych. W tym więc razie układ jest równoważny parze sił^ i wielobok sznurowy jest niezamknięty. Moment pary wypadkowej będzie równy iloczynowi jednej z sił przez odległość pomiędzy niemi.

	
354.    Przypuśćmy, że odcinki A,A,, A2A3..., łączące punkty przyłożenia sił, wyobrażają sztaby, połączone przegubami w A,, A,... ; wiemy, że sztaby takie wywierają na przeguby siły, działające w ich własnych kierunkach (131). Figurę zbudowano w taki sposób, że reakcye w każdym przegubie równoważą działającą nań siłę zewnętrzną, a więc wszystkie sztaby razem tworzą kratownicę, której część każda jest w równowadze pod działaniem sił zewnętrznych; naprężenia w sztabach możemy wyznaczyć, mierząc odpowiednie odcinki w wieloboku sił.



Weżmy kilka sił, działających na następujące po sobie wierzchołki wieloboku sznurowego, np. P,, P5, P. Układ taki jest statycznie równoważny naprężeniom czyli reakcyom, które działają na bokach, wychodzących z wierzchołków skrajnych, w danym razie na A,A4, A,Ag. Stąd wynika, że boki muszą przecinać się na linii działania wypadkowej tak obranego układu. Tak więc gdy biegun O i punkt wyjścia L są nieokreślone, to miejscem ,geometrycznem przecięcia dwóch odpowiednich boków wielobokn sznurowego (np. A,A, i A,A£) jest linia prosta. W wielobokn sznurowym zamkniętym taka prosta stanowi linię działania wypadkowej każdego z dwóch układów sił, przedzielonych przez obrane boki. Tak np. boki A3A, i A,A, przecinają się na wypadkowej sił P4, P,, P lub P3, P2, P.

	
355.    Fig. 101 nie może posiadać odwrotnej, gdyż odcinki, reprezentujące siły Pi... P, nie stanowią krawędzi żadnych krat; pomimo to jednak wielobok sił został zbudowany. Było to możliwe dlatego, że fig. 101 stanowi część innej figury bardziej kompletnej i posiadającej odwrotną. Gdy dopełnimy figurę, budując drugi wielobok sznurowy, odpowiadający innemu biegunowi O', to w myśl paragrafu 348 cała figura stanie się rzutem wielościanu, a przeto będzie posiadała odwrotną. Znajdziemy, że wogóle figury, kreślone celem wyznaczania naprężeń kratownicy, są niekompletnemi figurami odwrotnemi. Wykreśla się tę część, która w danem zagadnieniu posiada znaczenie istotne, i opuszcza się resztę. Teorya figur odwrotnych jest ważna pod tym względem, że pozwala badać związki pomiędzy różnymi elementami figury w drodze czysto geometrycznej.


	
356.    Siły równoległe. Jeżeli siły są równoległe, to obydwa wieloboki będą prostsze (par. 140). Dajmy na to, że odcinki Ao^, AA2, A,A3, A,A4 wyobrażają lekkie sztaby, połączone przegubami A1, A,, A,, i w tych przegubach są zawieszone ciężary P, P2, Ps.
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W tym razie wielobok sił sprowadza się do odcinka prostej ab, podzielonego na części, wyobrażające siły P1, P2, P3. Odcinki Oa i Ob są równoległe do skrajnych sztab A,A1, A,A,; długości tych odcinków określają naprężenia sztab; również odcinki, łączące O z węzłami 12, 23 dają nam naprężenia w sztabach pośrednich.

Aby wyznaczyć wypadkową trzech danych sił P1, P2^ P^^ obieramy w wieloboku sił dowolny biegun O i budujemy odpowiedni wielobok sznurowy A,A,... A,. Skrajne boki A,A1 i A4A3 przecinają się na linii działania wypadkowej. Wypadkowa ta jest pod względem wielkości równa sumie sił danych, a pod względem kierunku jest do nich równoległa.

	
357.    Dany jest wielobok sił oraz punkt wyjścia L, a biegun wędruje na jakiejkolwiek prostej 00'. Dowieść (1), że każdy bok wieloboku sznurowego obraca się około punktu nieruchomego, i (2), że wszystkie te punkty nieruchome leżą na linii prostej, równoległej do 00'. Twierdzenie to wynika ze znanych własności biegunowych wielościanów odwrotnych Maxwella (343). Podajemy tu dowód statyczny.



Zbudujmy dwa wieloboki sznurowe, jeden odpowiadający biegunowi 0, drugi biegunowi O' na fig. 101 i 102. Punkty przecięcia odpowiednich boków oznaczymy przez L, M, N..., a (R61, R21) i (R‘61, R‘21) mają oznaczać reakcye, działające na tych bokach, które spotykają się na linii działania siły P. Te dwa układy posiadają wspólną wypadkową Pi, a zatem siły R61, Rje, R21 i R‘12 są w równowadze; stąd wynika, że wypadkowa sił R61 i Rj6, przyłożonych w L, musi równoważyć wypadkową sił R2r i Rj^^ przyłożonych w M, a więc te obydwie wypadkowe działają na prostej LM. W równoległoboku sił siłom R61 i R‘6i odpowiadają promienie biegunowe, poprowadzone z O i O' do wierzchołka 61, a wypadkowa tych sił musi być równoległa do 00'. W taki sam sposób dowiedziemy, że i prosta MN jest równoległa do 00', a zatem punkty L, M, N leżą na prostej.

(Levy, Statique Graphique).

Zbudujmy jeszcze trzeci wielobok sznurowy, odpowiadający trzeciemu biegunowi O"■> położonemu również na 00', wychodząc znowu z L. Ten nowy wielobok przetnie pierwszy, dajmy na to, w M', N'... Obydwie proste LMN... i LM'N'... są równoległe do 00'0", a zatem M' leży razem z M, N' z N i t. d. Widzimy, że istotnie punkty M, N... należą do wszystkich wieloboków sznurowych.

Wyznaczyć w danym wieloboku sił miejsce geometryczne bieguna O lak, aby odnośny wielobok sznurowy, wyszedłszy z danego punktu M, przeszedł przez inny punkt dany N. Wiemy, że szukanem miejscem geometrycznem będzie prosta, równoległa do MN; potrzeba wykreślić tę prostą.

Przypadek L Jeżeli dane punkty M, N leżą pomiędzy następują-cemi po sobie siłami (np. Plf Pj), to obieramy pierwszy bok A{A2 na prostej MN W takim razie biegun 0 musi leżeć na prostej, poprowadzonej przez wierzchołek 12 danego wieloboku sił równolegle do AYA2 (par. 352).

Przypadek II. Przypuśćmy teraz, że M leży pomiędzy siłami P i P2, a N pomiędzy dwiema innemi, np. Ps i Pą. Możemy usunąć przedzielającą siłę P2, zastępując ją dwiema siłami, przyłożonemi w M, N, i równoległemi do P2; oznaczymy te siły przez Q2, Qj (par.

360). Podobnież zastąpimy inną przedzielającą siłę Pa siłami Q3, Q‘3, przyłożonemi w M, N, i równoległemi do P3. Do zmian tych przystosowujemy wielobok sił, przyczem wypadnie tylko zmienić boki 2 i 3. Prowadzimy więc odcinki równoległe do Q2, Q3, Q2‘, Q3', poczynając od końcowego punktu siły 1 i kończąc, musowo, w początkowym punkcie siły 4. Punkty M, N leżą teraz pomiędzy następującemi po sobie siłami Q3, Q2‘, a zatem, jak w przypadku poprzedzającym, miejscem geometrycznem bieguna 0 będzie prosta, przechodząca przez przecięcie tych sił w wieloboku sił i równoległa do MN.

(Levy, Statique Graphique.)

Mając dane siły, poprowadzić wielobok sznurowy przez, trzy dane punkty L, M, N.

Wyznaczamy naprzód miejsce geometryczne bieguna 0, gdy wielobok sznurowy przechodzi przez L i M, a następnie miejsce geometryczne dla punktów L i N. Punkt szukany leży na przecięciu.

Mając dane siły, zbudować wielobok sznurowy w taki sposób, aby jeden z boków był prostopadły do prostej danej.

Dajmy na to, że bok A,A2 mą być prostopadły do danej prostej; w takim razie promień biegunowy 12 musi być także prostopadły do tej prostej (par. 352). Tak więc biegun O będzie leżał na prostej, poprowadzonej przez wierzchołek 12 wieloboku sił prostopadle do prostej danej.

Prz. Wypadkowa dwóch sił układu jest prostopadła do wypadkowej jednej z nich oraz trzeciej siły. Okazać, że można zbudować wielobok sznurowy, zawierający trzy kąty proste. (Coli. Ex., 1887.)

	
358.    Z wieloboku sznurowego usuwamy pewną liczbę sił kolejnych, zastępując je innemi siłami statycznie równoważnemi. Okazać, że te boki, pomiędzy którymi zawierają się usuwane siły, pozostaną bez zmiany co do położenia i kierunku, lecz nie co do długości. Zastąpmy np. Pa i Ps ich wypadkową; w takim razie w wieloboku sił wypadnie zastąpić boki 4 i 5 odcinkiem, łączącym 34 z 56. Promienie biegunowe 34 i 56 się nie zmieniają, a do nich są równoległe boki AJA, i A5A6, pomiędzy którymi leżały usunięte siły. Boki te przechodzą prócz tego przez nieporuszone punkty A3, Ag, a więc nie zmieniają ani położenia, ani kierunku.


	
359.    Dowieść, ze wogóle wielobok sznurowy nie istnieje, jeżeli siły nie leżą w jednej płaszczyźnie. Dajmy na to, że chodzi o wyznaczenie wypadkowej sił P, P2 ...Pn- Wielobok sznurowy Aj, A2:..An, o ile istnieje, musi czynić zadość dwóm warunkom: (1) ponieważ każda siła P daje się rozłożyć na dwie składowe, działające na przyległych bokach, przeto każda siła oraz jej dwa boki przyległe muszą leżeć w jednej płaszczyźnie; (2) składowe dwóch sił kolejnych na boku, łączącym ich punkty przyłożenia, muszą być równe i odwrotne. Gdy siły leżą w jednej płaszczyźnie, to tem samem jest spełniony warunek pierwszy, i potrzeba jeszcze tylko spełnić warunek drugi. Ten drugi warunek wystarcza całkowicie do określenia wszelkich możliwych wieloboków sznurowych.



Gdy w przypadku ogólnym obierzemy jeden bok, np. A1A2, to warunek pierwszy wogóle już określa wszystkie boki pozostałe. Aby to okazać poprowadźmy płaszczyznę przez A,A2 i P2; przetnie ona P3 w As, a więc bok A2A3 jest określony, i tak obejdziemy cały wielo-bok. Z tego widać, że nie rozporządzamy tu dostateczną liczbą stałych, aby czynić zadość drugiemu warunkowi, jakkolwiek w pewnych przypadkach szczególnych obydwa warunki mogą dać się spełnić jednocześnie.

	
360.    Prz. 1. Uzasadnić następującą konstrukcyę rozkładania danej siły P2, przyłożonej w danym punkcie A2, na dwie siły, równoległe do P2 i przyłożone w danych punktach Alf A3. Wykreślamy odcinek ac, wyrażający P2 co do kierunku i wielkości w jakiejkolwiek skali danej. Następnie prowadzimy proste aO, cO odpowiednio równoległe do A2A3, A|A2, i przez ich przecięcie O równoległą Ob do A|A3; przetnie ona ac w b. Odcinki ab i bc określają żądane składowe, przyłożone W A3 i dr



Inna konstrukcya. Dajmy na to, że linia działania siły P2 przecina A|A; w punkcie N. W takim razie odcinki AN i NA; określają odpowiednio składowe w A; i Ax w takiej samej skali, w jakiej A|A3 określa daną siłę P2.

Prz. 2. Dowieść, że istnieje tylko jeden rozkład siły P na trzy składowe, działające na trzech danych prostych, położonych z tą siłą w jednej płaszczyźnie. Uzasadnić prócz tego konstrukcyę następującą. Dajmy na to, że linia działania siły P przecina dane proste BC, CA, AB odpowiednio w punktach L, M, N. Aby wyznaczyć składową S, działającą na AB, wyrażamy siłę P pod względem wielkości i kierunku odcinkiem Np; prowadzimy następnie równoległą ps do CN aż do przecięcia s z AB. Odcinek Ns określa szukaną składową S. (prz. 2 par. 120).

Oznaczmy szukane składowe przez Q, R, S. Suma ich momentów względem C musi być równa momentowi siły P, a zatem moment składowej S względem C jest równy momentowi P. Pola trójkątów CNp i CNs są równe, bo prosta ps jest równoległa do CN, a więc momenty Ns i p względem C są równe, i odcinek Ns określa istotnie składową S.

Prz. 3. Rozłożyć graficznie daną parę na trzy siły składowe, działające na trzech prostych danych, położonych w płaszczyźnie równoległej do płaszczyzny pary. Uzasadnić przytem konstrukcyę następującą. Przesuwamy parę w taki sposób, aby jedna z jej sił przeszła przez wierzchołek C danego trójkąta. Przypuśćmy, że druga siła przetnie AB w punkcie N, i że wyraża ją odcinek Np-. Prowadzimy ps równolegle do CN aż do przecięcia s z AB. Wówczas odcinek Ns określi składową, położoną na prostej AB.

	
361.    Lekka pozioma belka A,A; jest oparta w końcach A,, A,, a na niej wiszą ciężary W1, W2, W3, Wa, uczepione w punktach A,, A2, A,, A,. Chodzi o wyznaczenie graficzne reakcyi w punktach oparcia belki.



W tym razie wszystkie siły są równoległe i wielobok sił przechodzi w odcinek ab. Odcinek ten dzielimy na cztery części, wyrażające ciężary Wi ...Wa, gdy odcinki bc i ca mają określać reakcye R' i R w punktach A5 i Ao. Chodzi o wyznaczenie punktu c.

Obieramy dowolnie biegun O i wykreślamy promienie biegunowe, łączące punkt O z końcami odcinków, wyrażających siły. Wyszedłszy następnie z punktu Ao i prowadząc równoległe do promieni biegunowych, wykreślamy wielobok sznurowy A, B... B. Promień biegunowy Oc będzie równoległy do prostej B5A0, zamykającej wielobok sznurowy. Tym sposobem wyznaczymy punkt c, a wraz z nim obydwie reakcye R i R'.
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Jeżeli belka jest ciężka, to możemy ześrodkować jej ciężar w środku ciężkości; nie wpłynie to na reakcye R i R'. Reakcye te znajdziemy, jak poprzednio, uwzględniając przy wykreślaniu wielo-boku sznurowego ów ciężar dodatkowy.

	
362.    Lekką belkę poziomą A,A,, opartą w końcach, obciążają w punktach A|... A, ciężary W1... Wą. Mamy wyznaczyć parę gnącą w jakimś punkcie M (par. 145).



Wyznaczamy naprzód reakcye w punktach oparcia, a następnie dla wszystkich sześciu sił budujemy wielobok sznurowy, przechodzący przez A, i A5. Dowiedziemy, że para gnąca w punkcie M wynosi Hy, gdzie y oznacza rzędną wieloboku sznurowego w M, a H naprężenie poziome.

Niech AoCi ... C4A5 będzie wielobokiem sznurowym. Układ sztab, wyobrażonych przez odcinki A0Ci, CiC2— 0^, pozostaje w równowadze pod działaniem ciężarów W..W, reakcyi pionowych R, R' i naprężenia poziomego H na A|A5 (par. 354). Weźmy momenty dla części

A, ... P względem punktu P, stanowiącego koniec rzędnej w M. Wy-padnie, że Hy jest równe sumie momentów ręakcyi R oraz ciężarów W ..., położonych po jednej stronie P, a więc Hy jest momentem gnącym belki w punkcie M (par. 143).

Aby wielobok sznurowy przeszedł przez punkty At i A5, potrzeba tylko obrać biegun O' na poziomej, przechodzącej przez c w wielo-boku sił; sam wielobok sznurowy wykreśla się tak samo, jak poprzednio. Prosta cO idzie równolegle do A,B5, a zatem B5 wypadnie w A5, jeżeli O leży na cO'. Odcinek O'c określa oczywiście naprężenie poziome.

Przypuśćmy, że O' wędruje wzdłuż prostej cO'; zmienia się przy-tem cały wielobok sznurowy, a więc zmienia się rzędna MP i naprężenie poziome cO', ale pozostaje bez zmiany iloczyn, gdyż jest on równy momentowi gnącemu w M. Twierdzenie to daje się także udowodnić bezpośrednio.

Jeżeli belka jest ciężka i jednorodna, to nie zmienimy momentu gnącego w M, zastępując ciężary części A0M, MA^ przez ich połowy, przyłożone odpowiednio w A,, M i M, A5 (par. 134). Jeżeli są potrzebne momenty gnące we wszystkich punktach At ... A^, to możemy zastąpić ciężar każdego odcinka przez dwie połówki, przyłożone w końcach. Tym sposobem ten sam wielobok sznurowy może służyć do wyznaczenia wszystkich momentów.

	
363.    Kratownice. Siły zewnętrzne są przyłożone do kratownicy w punktach węzłowych] wskazać sposób graficzny wyznaczania reakcyi, działających wzdłuż sztab.
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Wyobraźmy sobie, że kratownica składa się z trzech trójkątów, jak to bywa często w żelaznych konstrukcyach dachowych. Na węzły A1, A,, A3, A,, A, działają, dajmy na to, siły P,P, Pa, P, P, i cały układ pozostaje w równowadze.

Statyka. 19

Gdyby te siły były równoległe, to trzy z nich możnaby uważać za ciężary, umieszczone w przegubach, przyczem Cała kon-strukcya byłaby oparta w końcach A, i A, .

Siły P... P5 są w równowadze, a zatem odcinki 1 ... 5, reprezentujące je w wieloboku sił, tworzą pięciobok zamknięty. Wypada teraz wykreślić odcinki, odpowiadające naprężeniom kratownicy.

Wyżej opisana kratownica nie posiada figury odwrotnej; przyjmiemy tymczasem, że można ją dopełnić zapomocą pię-cioboku ^...a^ (par. 355). W par. 365 rozważymy, jakie powinno być to dopełnienie 4).

Sztaba A|A, stanowi krawędź kraty czworokątnej A{A,a,a,. Czworobokowi temu odpowiadają na figurze odwrotnej cztery odcinki, wychodzące z jednego punktu, a zatem sztabie A|A, odpowiada prosta, przechodząca przez przecięcie kolejnych sił 1, 5 i równoległa do A{A,. To samo dotyczy każdej innej sztaby; każdej odpowiada na figurze odwrotnej linia prosta, przechodząca przez przecięcie kolejnych sił, przyłożonych w końcach. Przy pomocy tego prostego prawidła figury odwrotne dają się wykreślić bez trudności. Tak np. bokowi A1A, odpowiada odcinek, równoległy do A|A2 i przechodzący przez punkt przecięcia kolejnych sił, oznaczonych cyframi 1 i 2. Na dya-gramacie sił odcinki te oznaczono wskaźnikami liter, stojących przy końcach odpowiednich sztab.

Wykreśliwszy trójkąt, reprezentujący siły w A1, przechodzimy do najbliższego węzła A,. Siłom, działającym na ten węzeł, odpowiadał czworobok. W myśl powyższego prawidła prowadzimy przez przecięcie kolejnych sił 4 i 5 prostą 45, równoległą do A,As. Mamy już teraz trzy boki czworoboku, a mianowicie 5, 15 i 45. Dopełnimy go, prowadząc przez przecięcie znanych prostych 12 i 15 prostą 25 równoległą do A,A;.

Przejdźmy do węzła A,. Przeprowadziwszy według prawidła prostą 34, będziemy mieli trzy boki odpowiedniego czworoboku, a mianowicie 34, 4 i 45. Czwarty bok 24 przechodzi przez przecięcie już znanych prostych 45 i 25.

Węzłowi A, odpowiada trójkąt. Dwa jego boki, 3 i 34, są już wykreślone, bok trzeci przechodzi przez przecięcie znanych prostych 34 i 24 i przez przecięcie sił kolejnych 2 i 3. Bok ten powinien być równoległy do sztaby A,A3, co może być częściową próbą dokładności rysunku.

Wreszcie siłom, działającym na węzeł A,, powinien odpowiadać pięciokąt. Zbadawszy dyagramat sił, znajdziemy, że wszystkie boki tego pięciokąta, a mianowicie 2, 23, 24, 25, 12 są już wykreślone.

Aby wyznaczyć reakcye, działające wzdłuż sztab kratownicy, potrzeba tylko jeszcze zmierzyć długości różnych odcinków dyagramatu.

	
364.    Na każdej sztabie kratownicy działają dwie reakcye równe i odwrotne, i dla tego też na odcinkach dyagramatu sił zazwyczaj nie stawia się grotów kierunkowych. Dogodnie jest natomiast odróżniać zapomocą stosownych znaków sztaby, podlegające wyciąganiu, od sztab, podlegających ściskaniu. Pierwsze nazywamy ścięgnami, drugie rozporami.



Rozważmy raz jeszcze siły, działające w węźle A,. Są one równoległe do boków trójkąta 1, 12 i 15. Kierunek siły 1 jest znany, a kierunki dwóch pozostałych określa prawo trójkąta sił. Na węzeł A, siły te działają w kierunkach 15 i 21; stąd widać, że sztaba A,A2 podlega ściskaniu, jest to więc rozpora, a sztaba A|A, podlega wyciąganiu i jest ścięgnem. Możemy to zaznaczyć na rysunku, robiąc w A1, A, groty, zwrócone do Alt A,, oraz w Ao A; groty, odwrócone od At, Ay Inny sposób wskazał prof. R. H. Smith. Oznacza on ścięgna znakiem +, a rozpory znakiem —. Znaki te można stawiać na każdym wieloboku.

	
365.    Figura, którą wykreśliliśmy, wystarcza do wyznaczenia naprężeń, panujących w sztabach kratownicy, nie jest to jednak kompletna figura odwrotna. Pragnąc ją dopełnić, musimy naprzód wykreślić wielokąt a,... as w taki sposób, aby figura odwrotna stała się możliwą. Statycznie wielokąt taki powinien być dla danych sił sznurowym, bo inaczej siły w wierzchołkach a, ... a5 nie byłyby w równowadze (par. 354). Geometrycznie wielobok powinien być taki, aby pięć czworoboków a,a,A|A2,... było rzutami płaskich ścian wielościanu. Można ten wielościan zbudować, wystawiając rzędne w wierzchołkach.



Wykreślmy dla sił Pi ... Ps dwa wieloboki sznurowe ax ...a5 i by... b^, wiemy, że pięć przecięć a^, byb.^; aa,, baba;... leży na prostej LMN (par. 357). Rzuciwszy okiem na fig. 93, na której widzimy wieloboki sznurowe 1... 6 i 1'... 6', przekonamy się, że pięć czworoboków aa,b,ba,... mogą być rzutami ścian płaskich. Aby zbudować wielościan pozostawiamy a, ... «5 na miejscu, a w punktach b, ... b5 wznosimy rzędne, proporcyonalne do odległości tych punktów od LMN. Boki A|A2,... mogą leżeć w płaszczyznach a,a,bba,..., a zatem pięć czworoboków a,a2A1A2, ... są również rzutami ścian płaskich, i można wyznaczyć rzędne w 4i... A5.

Jeżeli obierzemy ax ... a^ za wielobok sznurowy sił P ... P, to na dyagramacie sił odpowiadają mu proste punktowane; wychodzą one z odpowiedniego bieguna O i biegną do punktów, w których przecinają się siły. Linie te są praktycznie bez związku z resztą figury, i niema potrzeby wykreślać ani wieloboku sznurowego a^-.a^, ani odpowiednich prostych w wieloboku sił, chyba że pragniemy się upewnić, czy siły P... Ps są w równowadze.

	
366.    Metoda przekrojów. Opiszemy teraz wyznaczanie reakcyi zapomocą metody przekrojów. Przypuśćmy, że chodzi o wyznaczenie
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Fig. 106.






reakcyi, działających według sztab A,A,, A2A5, AzA,. Oznaczmy te reakcye odpowiednio przez Q, R, S.. Robimy przekrój kratownicy przez wspomniane sztaby, i niechaj B, G, D będą punktami przecięcia. Usuńmy teraz wszystkie części kratownicy, położone po jednej stronie przekroju. Jeżeli reszta ma pozostać na miejscu, to wypadnie tylko przyłożyć w B, C, D siły Q, R, S, działające w kierunku sztab. Usuwamy w danym przypadku tę część kratownicy, która leży po prawej stronę przekroju, • jako bardziej skomplikowaną, i wyznaczamy siły Q, R, S z warunków równowagi części pozostałej.

W naszym przykładzie tylko trzy sztaby zostały przecięte, mamy wyznaczyć tylko trzy siły, i zadanie jest określone. Według par. 360, prz. 2, każda siła daje się rozłożyć na trzy składowe, działające na trzech danych prostych, i rozkład ten można wykonać graficznie.

Równie łatwo można otrzymać szukane reakcye zapomocą zwykłych metod statyki analitycznej. W par. 120 rozwiązaliśmy takie zadanie, biorąc momenty względem punktów przecięcia danych prostych.

Jeżeli kratownica jest tak nieskomplikowana, jak figury rozważane dotychczas, to obydwie metody, t. j. metoda dyagramatu sił i metoda przekrojów, nadają się jednakowo. Wogóle jednak każda z nich posiada właściwe sobie zalety. Pierwsza daje nam wszystkie reakcye na jednej figurze, ale gdy liczba sztab jest znaczna, to figura taka może być wielce złożona. Metoda przekrojów jest szczególnie dogodna, gdzie chodzi jedynie o trzy reakcye; możemy je wyznaczyć, nie kłopocząc się o pozostałe, jeżeli przekrój przechodzi tylko przez trzy odnośne sztaby, nie dotykając innych.

	
367.    W tego rodzaju kratownicach każda sztaba pozostaje w równowadze pod działaniem dwóch sił, przyłożonych w końcach, gdyż jej ciężaru własnego możemy nie brać w rachubę. Te dwie siły działają zatem wzdłuż sztaby, i ta podlega wyciąganiu lub ściskaniu. Jest to okoliczność, posiadająca w pewnych razach ważne znaczenie, bo sztaba może znieść bez szkody pewną siłę rozciągającą lub ściskającą, a nie zniesie takiej samej siły, działającej ukośnie. Gdyby sztywność konstrukcyi osiągnięto zapomocą usztywnienia węzłów, to wytrzymałość byłaby mniejsza.



W rzeczywistości niektóre siły mogą nie działać na węzły; tak np. własny ciężar każdej sztaby jest przyłożony w środku ciężkości. Wypadkową takich sił, działających na sztabę, wyznaczamy zapomocą zwykłych metod statyki; następnie rozkładamy tę wypadkową na dwie składowe równoległe, przyłożone w węzłach, pomiędzy którymi mieści się sztaba.

Takie przekształcenie sił, działających na sztabę, nie wywrze wpływu na rozkład naprężeń w reszcie kratownicy. Gdy połączymy owe równoległe składowe z innemi siłami, działającemi w węzłach, to tern samem uwzględnimy całkowite działanie kratownicy na każdą sztabę, sama zaś sztaba przypuszczalnie nie wygnie się wyraźnie pod działaniem własnego ciężaru oraz innych sił, przyłożonych pomiędzy węzłami.

	
368.    Naprężenia nieokreślone. Przypuśćmy, że siły P^, P2,...Pn są w równowadze, i niech będą dwa wieloboki sznurowe tego układu A ... An i A/... An'. Przypuśćmy dalej, że odpowiednie wierzchołki A^A'1; A2,A'2,... połączono sztabami, i że.obydwa wieloboki składają się ze sztab, przyczem sztaby wieloboku zewnętrznego podlegają wy



ciąganiu, a sztaby wewnętrznego ściskaniu.


Z teoryi wieloboku sznu



rowego wiadomo, że taka kratownica będzie w równowadze, i również jest rzeczą jasną, że naprężenia (w tym razie ściskanie) sztab poprzecznych A^/,... są odpowiednio równe siłom danym Pi, P2,-Pn- Tym sposobem zbudowaliśmy kratownicę, której sztaby są w stanie naprężenia, chociaż nie działają siły zewnętrzne (par. 237). W myśl twierdzenia o wielokątach sznurowych, które poznaliśmy w par. 357, odpowiednie boki iv punktach, leżących na linii prostej.
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Fig. 107.





tej kratownicy przecinają się



Jeżeli dany układ składa się tylko z trzech sił, to wieloboki są trójkątami. Ponieważ siły P, P2, P3 są w równowadze, przeto proste A| A|‘, A2A2‘, A;A;’, łączące odpowiednie węzły, muszą zbiegać się w jednym punkcie. Trójkąty takie zowią się współbiegunowymi (lub trójkątami Desargues’a). Widzimy, że w trójkątach współbiegunowych mogą istnieć naprężenia nieokreślone.

Stąd można wyprowadzić twierdzenie Levye’go, które poznaliśmy w par. 238. Weźmiemy tylko sześć sił, gdyż na fig. 107 wykreślono sześciobok, i przypuśćmy, że (P, P), (P2, P), (Pa, P) są to trzy układy sił, równych, odwrotnych i pozostających w równowadze. Niech A| ... A, będzie jakimkolwiek wielobokiem sznurowym; drugi wielobok zbudujmy w taki sposób, aby wierzchołek A^ leżał w A4. i obierzmy biegun tak, aby wierzchołki A,', A,' wypadły odpowiednio w A5, A, (357). W takim razie drugi wielobok całkowicie przystanie do pierwszego i sztaby poprzeczne A| A4, A2A5, A3A; będą przekątniami sześcioboku.

Tym sposobem zbudowaliśmy ramę o parzystej liczbie boków; jej przekątnie i boki są w stanie naprężenia, pierwsze podlegają ściskaniu, a drugie wyciąganiu.

	
369.    Linia ciśnień. Wyobraźmy sobie szereg ciał, pomiędzy któremi istnieją pewne połączenia, i które pozostają w równowadze pod działaniem pewnego układu sił. Przypadek taki wyobraża fig. 108,
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na której widzimy cztery ciała, pozostające pod działaniem trzech sił P, Q, R, Przypuszczamy, że ciała te są symetryczne względem pewnej płaszczyzny, którą w danym razie jest płaszczyzna rysunku. Ciało pierwsze jest osadzone na nieruchomej zawiasie A i połączone przegubem B z BCC'. Ciało drugie styka się z trzeciem CCD na płaskiej powierzchni CC, ciało trzecie łączy się przegubem D z czwartem, i wreszcie to ostatnie siedzi na nieruchomej zawiasie E.

Reakcya zawiasy A działa na pewnej prostej Ap, przecinającej linię działania siły P w punkcie p. Wypadkowa tych dwóch sił musi równoważyć reakcyę przegubu B, a więc musi przechodzić przez B. Reakcya w B przecina siłę Q w q, a wypadkowa ich musi równowa-

żyć ciśnienie na CC. Z tego wynika, że ta wypadkowa przecina CC w pewnym punkcie M pod kątem prostym. Punkt M musi leżeć wewnątrz pola zetknięcia, i wypadkowa powinna ściskać powierzchnię CC. Ciśnienie to działa na trzecie ciało według prostej MD i przecina R w punkcie D. Wreszcie wypadkowa tych dwóch sił musi przechodzić przez E.

Jest rzeczą oczywistą, że linia ApąDE jest wielobokiem sznurowym sił P, Q, R. Jeżeli zatem mamy taki szereg ciał, podparty w punktach krańcowych, to do równowagi potrzeba i wystarcza, aby istniał wielobok sznurowy, przechodzący przez owe punkty oparcia oraz wszystkie przeguby i przecinający powierzchnię ciśnienia pod kątem prostym. Ten szczególny wielobok sznurowy zowie się linią ciśnień.

	
370.    Uczyńmy w wyobraźni jakiś przekrój xy, dzieląc cały układ na dwie części; pragniemy wyznaczyć działanie wypadkowe w tym przekroju.



Jest to wypadkowa sił, działających na wszystkie elementy powierzchni przekroju, ale działanie jednej części układu na drugą powinno być takie, aby utrzymać tę drugą część w równowadze. Można przeto wyznaczyć działanie wypadkowe, opierając się na zasadzie ogólnej, że równoważy ono wszystkie siły zewnętrzne, działające na którąkolwiek z dwóch części układu (par. 143). Stąd wynika odrazu, że działanie wypadkowe w przekroju xy jest to wyżej wzmiankowana siła, działająca na prostej pq. To samo dotyczy każdego innego przekroju, a zatem działanie wypadkowe w każdym przekroju jest to siła, działająca na odpowiednim boku linii ciśnień.

Gdy przekrój xy przesuwa się od końca A układu do końca E, to mogą nawinąć się pewne wątpliwości, który bok linii ciśnień należy uważać za „odpowiedni“. Zdarza się to mianowicie wtedy, gdy przykrój mija punkt przyłożenia siły. Przypuśćmy dla przykładu, że siła P jest przyłożona w punkcie a. Jeżeli przekrój x'y' przechodzi po lewej stronie a, zresztą dowolnie blizko od tego punktu, to odpowiednim bokiem jest Ap, ale jeżeli przekrój znajdzie się po prawej stronie, chociażby cokolwiek, to odpowiednim bokiem będzie pq. Jeżeli przekrój jest równoległy do siły P, to odpowiednim jest zawsze przecięty bok linii ciśnień; zatem w przypadku, gdy wszystkie siły są pionowe, dogodniej będzie rozważać działania w przekrojach pionowych, niż w przekrojach pochyłych.

Linia działania siły, wyrażającej działanie wypadkowe w przekroju, może nie przecinać pola tego przekroju. Łatwo to zrozumieć, biorąc pod uwagę, że siła owa jest wypadkową wszystkich sił elementarnych, działających na różne elementy pola przekroju. Niektóre z tych sił elementarnych mogą być ciśnieniami, inne zaś ciągnieniami, a zatem wypadkowa może przechodzić na zewnątrz pola. Jeżeli wszystkie siły elementarne są zwrócone w jedną stronę, jak np. w przekroju CC, w którym jedno ciało ciśnie na drugie, to wypadkowa musi przechodzić w granicach przekroju.

	
371.    Reakcye w przegubie, lub na powierzchni granicznej pomiędzy dwoma ciałami, dają się tak samo wyznaczyć i w tyra przypadku, gdy ciała są ciężkie. Uważamy, że ciężar każdego ciała jest przyłożony w środku ciężkości, i zaliczamy go do układu sił zewnętrznych, a reakcyą w pewnem zetknięciu będzie siła, działająca na odpowiednim boku wieloboku sznurowego.



Jeżeli jednak chodzi o działanie w jakimkolwiek przekroju, np. xy na fig. 108, to taki cząstkowy wielobok sznurowy jest niewystarczający. Musimy w tym razie uważać, że ciało BCC składa się z dwóch ciał odrębnych, przedzielonych płaszczyzną xy. Ciężar każdej z tych części zbieramy w jej własnym środku ciężkości i odpowiednio do tego budujemy wielobok sznurowy. Przypuśćmy, że Q jest ciężarem ciała BCC', a punkt 3 środkiem ciężkości. Usuwamy ten ciężar Q i zastępujemy go dwoma ciężarami, przyłożonymi w środkach ciężkości części Bxy oraz xyCC'. Wielobok sznurowy będzie teraz miał o jeden bok więcej, niż poprzednio, a mianowicie straci on węzeł, należący do siły Q, a zyska dwa nowe węzły, położone na liniach działania tych nowych ciężarów. Ale reakcya w B musi, jak dawniej, równoważyć te wszystkie siły zewnętrzne, których punkty przyłożenia leżą po lewej stronie przegubu B, a reakcya w M wciąż równoważy siły zewnętrzne, położone w prawo od CC; z tego wynika, że boki pB i MD wieloboku sznurowego nie ulegną zmianie. Tak więc dwa nowe wierzchołki będą leżały na bokach Bq, qD, i nowy wielobok sznurowy bidzie wpisany w poprzedni.

Prowadźmy dalej działanie powyższe, t. j. dzielmy ciała układu na coraz więcej części. Liczba boków wieloboku sznurowego będzie wzrastała, ale każdy bok, przechodzący przez przecięcie istotne, t. j. przez zetknięcie dwóch ciał, zachowa położenie pierwotne. Ostatecznie, gdy podzielimy ciała na elementy, to wielobok stanie się linią krzywą. Krzywa ta styka się z każdym wielobokiem cząstkowym w każdym przegubie i na każdej istotnej powierzchni granicznej.

Przykłady.

	
372.    Prz. 1 Kratownica składa się z jedenastu jednakowych sztab ciężkich. Dziewięć z nich tworzy trzy równoboczne trójkąty ABC, BDE, DFG-, których podstawy AB, BD, DF łączą się przegubami na prostej poziomej. Dwie sztaby pozostałe łączą wierzchołki C, E, Gr. Cała konstrukcya jest podparta w dolnych końcach A, F, a w górnych węzłach C, E, G obciążają ją ciężary W,, w2, wu Zbudować dyagramat sił, określający naprężenia sztab.



Prz. 2. Przęsło poziome składa się z czterech belek poziomych AB, BC, CD, DE o długości 5 stóp każda, z trzech sztab pionowych BB', CC, DD' po 3 stopy, ze sztab poziomych B'C, CD' i wreszcie ze sztab ukośnych AB’, B'C, CD', D'E. Na przęśle leży równomiernie rozłożony ciężar W; wyznaczyć wykreślilie ciągnienia i parcia w sztabach.                                                 (St John’s Coli., 1893.)

Prz. 3. Kratownica płaska ABGDEFGi, położona w płaszczyźnie pionowej, składa się ze sztab, połączonych przegubami. Konstrukcya jej jest następująca. Proste ABGD i GFE są poziome; węzeł A leży pionowo nad G; ABFG oraz BGEF są kwadratami; sztaba CD jest równa CE, a usztywniające sztaby BG-, CF i DE tworzą przekątnie. Cała konstrukcya jest umocowana w węzłach A i G-, a ciężar jest zawieszony w D. Zbudować dyagramat, określający naprężenia wszystkich sztab; należy przyjmować przytem, że ciężar każdej sztaby jest rozłożony na dwie połowy, działające na końce, i że siła, podtrzymująca kratownicę w A, ma kierunek poziomy. Okazać, że naprężenia w sztabach G-F i BG, a także w FE i GD są równe, i rozpoznać, które sztaby są rozporami a które ścięgnami.                   (Coli. Ex., 1894.)

Prz. 4. Przęsło dachowe ABGD w kształcie połowy sześciokąta foremnego opiera się o mur w punktach A i D; usztywniają je sztaby poprzeczne AC i BD. Wyznaczyć naprężenia w sztabach, które wywołuje ciężar dachówek, ułożonych równomiernie. (St John’s Coli., 1892.)

Prz. 5. Kratownica składa się z sześciu lekkich prętów, połączonych przegubami i tworzących sześciokąt foremny ABCDEF, i z lekkich prętów BF, OA, OC, OE, gdzie O oznacza środek sześciokąta. Pręty BF i OA nie są połączone w punkcie przecięcia. Kratownica ta jest zawieszona za węzeł A i dźwiga w węźle D ciężar W. Okazać zapomocą metody graficznej, że w rozporze BF panuje naprężenie Wv 3, i wyznaczyć naprężenia w innych sztabach. (Trin. Coli., 1895.)

Prz. 6. Kratownica w kształcie dwunastokąta foremnego składa się z ciężkich prętów, połączonych luźno, a każdy węzeł łączy się lekkim prętem z czopem, osadzonym w środku. Cała konstrukcya spoczywa na tym czopie w płaszczyźnie pionowej, przyczem jedna z przekątni zajmuje położenie pionowe. Okazać, że naprężenia prętów są nieokreślone; założywszy następnie, że pręty poziome nie są naprężone, zbudować dyagramat sił i obliczyć naprężenia prętów pozostałych.

(Coli. Ex., 1893.)

Prz. 7. Sześć sił, których linie działania są znane, pozostają w równowadze. Pierwsza siła jest znana, a także znane są stosunki drugiej do trzeciej i czwartej do piątej. Wyznaczyć graficznie siły pod względem wielkości.                               (Math. Tripos, 1895.)

Prz. 8. Z wierzchołkami B i D romba ABGD, zrobionego ze sztab, są połączone równe sztaby OB i OD. Wszystkie połączenia są gładkie luźne, a na węzły O, A, C działają siły równoległe, nie na jednej prostej. Zbudować wielobok sił i dowieść, że równowaga możliwa jest tylko w tym razie, gdy siły są równoległe do BD.

(Math. Tripos, 1891.)

Prz. 9. Cztery siły, działające na bokach czworokąta ABGD są proporcyonalne do tych boków. Zbudować wielobok sznurowy, którego jeden bok łączy środki boków AB i BG, przyczem parcie w nim powinien wyrazić odcinek CA w takiej samej skali, w jakiej boki czworokąta wyrażają siły.                        (St John’s Coli., 1893.)

Prz. 10. Dane są linie działania n — 1 sił; dowieść, że można zawsze tak dobrać wielkości tych sił, aby układ, złożony z nich oraz z siły odwrotnej do ich wypadkowej, utrzymał w równowadze kratownicę, złożoną z n sztab, połączonych przegubami, i posiadającą kształt wieloboku o kątach równych, przyczem na każdy węzeł powinna działać jedna z owych sił.                (St John’s Coli., 1890.)

Prz. 11. Każdy z czterech punktów A, B, C, D wywiera siły na pozostałe, i pod działaniem tych sił wszystkie punkty są w równowadze. Udowodnić następującą konstrukcyę dyagramatu sił. W trójkąt ABC wpisujemy stożkową, której jedno ognisko znajduje się w D, i wyznaczamy drugie ognisko D'; prowadzimy następnie prostopadłe D'A', D'B', D' C do boków trójkąta ABC. W takim razie D'A'B'C' jest dyagramatem sił, którego każdy bok ma kierunek prostopadły do odnośnej siły.                                                (Math. Tripos.)

Niech P oznacza punkt przecięcia prostych AD i B'C. Zauwa-żymy (1), że AD, AD' tworzą równe kąty ze stycznemi, poprowadzo-nemi z A, a zatem kąty PAC' i B'AD' są równe; (2) na D'B'C'A można opisać koło, a więc kąty ACP i AD'B' są równe. Stąd wynika, że trójkąty PAC i B'AD' posiadają równe kąty, a zatem prosta AD jest prostopadła do B'C.

Prz. 12. Dziewięć lekkich prętów łączy się w końcach przegubowo; sześć z nich tworzy obwód sześciokąta foremnego, a trzy pozostałe łączą przeciwległe wierzchołki. W każdym węźle jest umocowany ciężar W, i cała rama wisi w płaszczyźnie pionowej na dwóch sznurach, uczepionych w przyległych wierzchołkach A, B. Bok AB ma położenie poziome, a sznury są dwusiecznemi zewnętrznemi kątów sześcioboku. Wyznaczyć zapomocą dyagramatu naprężenia wszystkich prętów.                                           (Coli. Ex., 1887.)

Prz. 13. Punkty Pi Q są położone wewnątrz sześciokąta AB CDEF; punkt P łączy się z wierzchołkami A, B, O, D, a punkt Q z wierzchołkami D, E, F, A. Zbudować figurę odwrotną.

ROZDZIAŁ IX.

ŚRODEK CIĘŻKOŚCI.

	
373.    Środek sił równoległych. Dowiedliśmy w par. 80, że wypadkową dowolnej liczby sił równoległych P1, P2..., działających na punkty A19 A,:.., złączone sztywno, jest siła równa ZP.



Wyobraźmy sobie, że ten sztywny układ punktów zmienia jakkolwiek położenie w przestrzeni, lecz siły P1, P,...dzia-łają wciąż na te same punkty, zachowując stałą wielkość i stały kierunek w przestrzeni. Dowiedliśmy, że w takim razie linia działania wypadkowej przechodzi wciąż przez pewien punkt, zachowujący względem A15 A,... położenie niezmienne. Ten właśnie punkt uważamy zwykle za punkt przyłożenia wypadkowej i nazywamy środkiem sił równoległych. Główną właściwością środka sił równoległych jest jego niezmienne położenie w układzie punktów A,, A, ...

Jeżeli siły P1, P2... są ciężarami cząsteczek ciała, to środek tych sił zowie się środkiem ciężkości. Tak więc środek ciężkości jest to szczególny przypadek środka sił równoległych.

	
374.    Definicya środka ciężkości. Uważajmy ciężary rozmaitych cząsteczek ciała za układ sił równoległych. Przypuszczamy mianowicie, że na każdą cząsteczkę działa siła pionowa; nazywamy ją siłą ciążenia. Wypadkową tych wszystkich sił jest ciężar ciała. Z teoryi sił równoległych wnioskujemy, że w każdem ciele (lub w każdym sztywnym układzie ciał) istnieje pewien punkt niezmienny, przez który przechodzi linia działania ciężaru przy każdem położeniu ciała. Punkt ten nazywany środkiem ciężkości 5).



Z definicyi powyższej wynika, że gdy podparty jest środek ciężkości, to ciało będzie w równowadze we wszelkich położeniach.

	
375.    Ciało posiada tylko jeden środek ciężkości. Wynika to w sposób oczywisty z par. 83; podajemy tu jeszcze dowód samoistny.



Przypuśćmy na chwilę, że istnieją dwa takie punkty A i B. Gdy będziemy obracali układ na wszelkie możliwe sposoby, to wypadkowa zachowa niezmienny kierunek w przestrzeni. Ustawmy ciało w taki sposób, aby prosta AB stała się prostopadłą do kierunku wypadkowej. Oczywiście linia działania tej siły nie może już teraz przechodzić jednocześnie przez A i przez B.

	
376.    Niechaj (x, Y1 z^, (x, J2 z,)... oznaczają współrzędne punktów przyłożenia sił równoległych P1, P^ - - w odniesieniu do jakiegokolwiek układu prostokątnego lub ukośno-kątnego. W myśl par. 80 współrzędne środka tych sił będą



_ ZPa              _ ^Pz

1

 Następująca notatka bibliograficzna nie będzie bez pożytku. Maxwell, On reciprocal figures and diagrams of forces, Phil. Mag. 1864; Edin. Trans, t. XXVI, 1870. Maxwell pierwszy podał teoryę kompletną, i od niego zaczerpnęliśmy trzy przykłady, podane w par. 347 i 349. Cremona, Le figurę reciproche netta statica grafica, 1872; istnieją przekłady francuski i angielski. Fleeming Jenkin, On the practical application of reciprocal figures to the calculation of strains on frameworks and sonie forms of roofs. (O zastosowaniu praktycznem figur odwrotnych do wyznaczania naprężeń w kratownicach i w niektórych konstrukcyach dachów.) Autor zaznacza, że jego metoda została odkryta niezależnie przez Taylora, rysownika praktyka. Rankine, Applied Mechanics, wydanie jedenaste, 1885. Maurice Levy, Statique Graphiąue, wydanie drugie, 1886. Levy traktuje przedmiot bardzo obszernie w kilku tomach. Culmann, Die graphische Statik, Zurich, wydanie drugie, 1875. Major Ciarkę, Princi-ples of graphic statics, wydanie drugie, 1888. Graham, Graphic and ana-hjtic statics, wydanie drugie, 1887. Eddy, American Journal of Malhe-matics, tom I, 1878.

2

 Autor nazywa współbiegunowymi (co-polar) dwa trójkąty ArB^i i A2B2O2, których pary wierzchołków odpowiednich leżą na trzech prostych a, b, c, wychodzących z jednego punktu. Według twierdzenia Desargues’a punkty przecięcia odpowiednich boków leżą na jednej prostej.                                      (Przyp. tłom.)

3

 Jest to ten sam związek, który zachodzi pomiędzy liczbami wierzchołków, ścian i krawędzi prostego wielościanu, i który odkrył Euler. W każdym wieloboku W=B, i K=l, a zatem W+K=B+1. Aby zbudować wielościan obieramy pewien wielobok i stopniowo łączymy z nim krawędziami inne wieloboki. Można łatwo sprawdzić, że, dołączając nową ścianę, powiększamy w równej mierze W+K i B, a zatem związek W+K=B+1 jest słuszny dla wielościanu niezamknięlego. Gdy zamkniemy wielościan, dodając ścianę ostatnią, to K wzrośnie o jednostkę, a W i B pozostaną bez zmiany. Stąd wynika, że w wielościa-nie zamkniętym W+K— B+2. W przypadku granicznym, gdy wszystkie wierzchołki wielościanu znajdą się w jednej płaszczyźnie, otrzymujemy figurę płaską, w której do każdej krawędzi przylegają tylko dwie ściany. Jest rzeczą oczywistą, że i dla takiej figury związek Eulera musi być ważny.

4

 Jeżeli nie chcemy się powoływać na teoryę figur odwrotnych, to wypadnie uzasadnić konstrukcyę nieco inaczej. W niektórych wierzchołkach zbiega się więcej od trzech sił, skutkiem czego wykreślenie dyagramatu sił może nastręczać pewne trudności. Aby wykreślić odcinek, odpowiadający sztabie A|A5, zauważymy, że siły, działające na Ai, powinien reprezentować trójkąt, którego dwa boki są odpowiednio równoległe do P i A|A5, a siły w A; reprezentuje czworobok, którego dwa boki są równoległe do Ps i A{A5. Można wykonać konstrukcyę próbną, posługując się prawidłem, podanem w tekście. Pokaże się, że konstrukcya taka czyni zadość warunkom powyższym, z czego wyniknie, że założenie było słuszne (347).

5

 Pojęcie środka ciężkości zawdzięczamy Archimedesowi, który żył około r. 250 przed Chr. W dziele, którego tytuł łaciński brzmi

„De aequiponderantibusu, wyznaczył on środki ciężkości rownoległo-boku, trójkąta, zwykłego trapezu prostoliniowego, odcinka parabolicznego, trapezu parabolicznego i t. d.


ETYP V=xp‘ Z = ^P'

Należy zwrócić uwagę na następującą ważną okoliczność. Jeżeli wszystkie siły zmienią się w tym samym stosunku, to i wielkość wypadkowej zmieni się w jednakowym stosunku, ale współrzędne punktu przyłożenia pozostaną bez zmiany.

	
377.    Jeżeli dwie jakiekolwiek części danego ciała, posiadające jednakowe objętości, ważą toż samo, to mówimy, że ciało jest jednorodne, lub że gęstość jego jest jednostajna. W ciałach tego rodzaju ciężary objętości różnych są proporcyonalne do objętości, i ciężar objętości elementarnej do możemy mierzyć tą objętością. Zatem na zasadzie paragrafu poprzedzającego będzie



Zastąpiliśmy tu znak sumy całką, gdyż uważamy siły równoległe, o których była mowa, za ciężary elementarnych objętości ciała.

Równania powyższe straciły wszelkie ślady ciężaru, i możemy z tego względu nazwać punkt (x y z) środkiem objętości.

Jeżeli ciało nie jest jednorodne, to ciężary elementów nie są proporcyonalne do objętości. Ciężar elementu dv oznaczymy przez pdu^ gdzie p każdego elementu ciała jest inne. Jeżeli budowa ciała jest znana, to p można wyrazić w funkcyi współrzędnych elementu. W takim razie będzie

_pdv.x fpdv. y fpdu . z fpdv ‘ J fpdu ‘         fpdv ■

W równaniach tych moglibyśmy zastąpić p przez xp, gdzie %* jest niezmienne dla wszystkich elementów ciała; potrzeba jedynie, aby pdv było proporcyonalne do ciężaru elementu dv.

Można definiować p jako granicę stosunku ciężaru małej objętości, zawierającej punkt (xyz\ do ciężaru takiej samej objętości pewnej substancji, obranej za wzorzec.

Dla zwięzłości będziemy mówili o p jako o gęstości ciała. Jeżeli ciało jest jednorodne, to iloczyn z gęstości przez objętość zowie się masą. W razie przeciwnym, jeżeli ciało jest niejednorodne, pdv będzie masą objętości elementarnej dv^ a fpdv masą całego ciała. Gdy założymy dm = pdv, to równania powyższe przybiorą postać taką:

_ Jdm . a        sdm . y _ fdm . z

fdm ‘    9 fdm ‘    2 fdm

Jeżeli uważamy masę elementu za właściwość samoistną ciała, niezależną od ciężaru, to możemy nazywać wyżej określony punkt środkiem masy.

	
378.    Równania podobne do powyższych spotykamy nietylko tam, gdzie chodzi o siły równoległe; występują one i w innych zagadnieniach. W takich razach wielkości, które oznaczaliśmy przez P lub m, posiadają jakieś znaczenia odmienne, i odpowiednio do tego punkt, określony przez współrzędne x, y, z, będzie miał inną nazwę, odpowiadającą biegowi rozumowań, które do tych równań doprowadziły. Okoliczność ta komplikuje sprawę, ale ma tę dobrą stronę, że nazwa specyalna, użyta właściwie, wskazuje czytelnikowi na właściwość wspomnianego punktu, o którą w danym razie chodzi.



W rozważaniach poprzedzających otrzymaliśmy ów punkt, jako szczególny przypadek środka sił równoległych, a mianowicie ten przypadek, w którym siły pochodzą z ciążenia, słusznie więc będzie posługiwać się w tym razie nazwą środek ciężkości. Dogodna jest także bezbarwna nazwa centroid. Prócz tego używa się często nazwa środek bezwładności; pozostaje ona w związku z pewną dynamiczną właściwością ciał, której nie możemy roztrząsać w książce, poświęconej statyce.

	
379.    W wielu przypadkach można wskazać środek ciężkości od razu. Tak więc środek ciężkości dwóch cząsteczek jednakowych leży w środku odcinka łączącego, środek ciężkości jednorodnego pręta prostego i cienkiego leży w środku tego pręta. Wogóle, jeżeli ciało jest symetryczne względem punktu, to ten punkt jest środkiem ciężkości, jeżeli jest symetryczne względem osi, to środek ciężkości leży na tej osi i t. d.


	
380.    Prawidło robocze. Mając wyznaczyć środek ciężkości ciała lub układu ciał, postępujemy, jak następuje. Dzielimy to ciało lub układ na części skończone co do wymiaru lub elementarne. W każdym razie części te powinny być takie, aby była znana masa każdej z nich oraz położenie jej środka ciężkości. Niech m,, m,... oznaczają masy części, a (x, Y1 ą), (x, y2 zj)... współrzędne ich środków ciężkości.



Ciężar każdej części jest wypadkową ciężarów cząsteczek, przyłożoną w środku ciężkości tej części (par. 82), możemy przeto uważać, że na całe ciało działa układ sił równoległych, przyłożonych w (x, Y1 zr\ (x, y2 z^)..., a pod względem wielkości proporcyonalnych do ml, m2... Znajdziemy więc środek ciężkości przy pomocy wzorów

_ ^mx    _ ^my _ 'Linz

"FEm‘  "5Em‘

	
381.    Warto zaznaczyć, że we wzorach powyższych niektóre masy mogą być ujemne. Może być np. ciało takie, że jego masa i środek ciężkości byłyby znane, gdyby wypełnić w niem pewną pustą przestrzeń. Uważamy ciało tego rodzaju za różnicę dwóch ciał. Jedno z nich wypełnia całkowitą objętość, włączając w to i ową przestrzeń pustą, a na cząsteczki jego działa ciążenie w sposób zwykły; drugie ciało wypełnia tylko przestrzeń pustą, i na jego cząsteczki działają siły równe i odwrotne do sił ciążenia. Uwzględnimy takie odwrócenie siły ciążenia, uważając masę drugiego ciała za ujemną. W teoryi sił równoległych siły mogą mieć znaki dodatnie lub ujemne, a zatem można zastosować wzory powyższe do wyznaczenia środka ciężkości nowego układu.


	
382.    Prz. 1. Utworzono paletę malarską, wycinając kółko o promieniu b z tarczy okrągłej o promieniu a. Wyznaczyć odległość środka ciężkości palety od środka większego koła.



Niech 0 i C oznaczają odpowiednio środki dużego i małego koła, i niech będzie OC—c. Obieramy O za początek układu i OC za oś x. Masy kół są proporcyonalne do pól, zakładamy więc, że m^Ka2, m,= =-xb2 Drugą masę uważamy za ujemną, gdyż materyał został usunięty. Środki ciężkości kół leżą w ich środkach, a zatem x^o i x^c.

Ema xa2. O—^b2. c b2c Będzie więc x=--- =--------- =----- Znak — wskazuje, że

Sm Ta-—Tb- a^—b2 środek ciężkości palety leży po stronie punktu O odwrotnej do C.

Prz. 2. Jeżeli środki ciężkości pewnej liczby ciał leżą na jednej prostej, to i środek ciężkości całego układu leży na tej prostej.

Obieramy tę prostą za oś x; w takim razie y i z każdego środka ciężkości są zerami, a zatem w myśl par. 380 [=0 i x=0.

Prz. 3. Dwie cząsteczki m, i m2 umieszczono w punktach A i B. Okazać, że ich środek ciężkości G dzieli odcinek AB w stosunku odwrotnym do mas (par. 53 prz. 1).

Prz. 4. Trzy cząsteczki leżą w wierzchołkach trójkąta i ciężary ich W, W2, w 3 zmieniają się, spełniając równanie lW,+mw,+nw,=0. Okazać, ze miejscem geometrycznem środka ciężkości jest linia prosta. Jakie będzie równanie powierzchniowe tej prostej (par. 53 prz. 2)?

Prz. 5. Cztery ciężary mieszczą się w czterech danych punktach przestrzeni. Znana jest suma dwóch z nich oraz suma dwóch pozostałych. Okazać, że środek ciężkości układu leży w pewnej płaszczyźnie niezmiennej.                            (Math. Tripos, 1869.)

Prz. 6. Woda leje się zwolna do cylindrycznego naczynia o stałej grubości ścian i stałej gęstości. Okazać, że miejscem geometrycznem środka ciężkości wody, naczynia i trzonka jest hiperbola.

(Math. Tripos, 1859.)

Prz. 7. Woda leje się zwolna do naczynia dowolnego kształtu, i w pewnej chwili środek ciężkości wody i naczynia zajął położenie możliwie najniższe; dowieść, że leżał on wówczas na powierzchni wody.                                             (Math. Tripos, 1859.)

Prz. 8. W figurze Euklidesa, księga I, teor. 47 1), uważamy obwody kwadratów za jednorodne linie fizyczne; dowieść że figura taka będzie w równowadze, gdy przeciwprostokątną ustawimy poziomo i podeprzemy jej środek.                          (Math. Tripos, 1860.)

Gdy obierzemy przeciwprostokątną za oś x, a środek jej za początek, to wypadnie od razu, że x=0.

	
383.    Pole trójkąta. Wyznaczyć środek ciężkości jednorodnego pola trójkątnego ABC.



Podzielmy dane pole na paski elementarne prostemi ró-wnoległemi do boku BC i połączmy środek tego boku D z wierz-

[image: ]

Fig 109.




chołkiem A. Prosta AD prze-tnie prostą PQ, jedną z owych równoległych do BC, w punkcie N. Z podobieństwa trójkątów wynika, że

PN.NQ^BD-DG.

Lecz BD = DC, a zatem N jest środkiem odcinka EQ. Widzimy, że środki wszystkich odcinków równoległych do BC leżą na AD.

Możemy uczynić każdy pasek dowolnie wązkim, a zatem środek ciężkości każdego z nich leży w środku geometrycznym (podobnie jak środek ciężkości cienkiego pręta (par. 379), czyli na prostej AD. Z tego wynika, że środek ciężkości całego trójkąta leży na AD (par. 382, prz. 2).

Dowiedziemy tak samo, że środek ciężkości trójkąta leży na prostej BE, łączącej środek boku AC z wierzchołkiem B, a więc w przecięciu G prostych BE i AD.

Punkty D i E są środkami boków CB i CA, a zatem trójkąt CED jest podobny do trójkąta CAB, odcinek zaś ED jest równoległy do boku AB i równy połowie tego boku. Z tego wynika, że trójkąty DEG i ABG są także podobne, i DG : GA = = ED :AB. Wypada, że odcinek DG jest równy połowie AG, a więc stanowi trzecią część odcinka AD.

	
384.    Otrzymaliśmy dwa prawidła do wyznaczania środka ciężkości trójkąta jednorodnego.



	
	
	
(1 ) Prowadzimy dwie ośrodkowe czyli proste, łączące którekolwiek dwa wierzchołki ze środkami przeciwległych boków. Środek ciężkości leży w przecięciu.


	
(2 ) Prowadzimy jedną ośrodkową, np. AD. Środek ciężkości G jest położony na AD tak, że AG—^AD.







Nie będzie bez pożytku uwaga, że środek ciężkości trójkąta ma to samo położenie, co środek ciężkości trzech jednakowych cząsteczek, umieszczonych w wierzchołkach.

Oznaczmy masę jednej takiej cząsteczki przez m. Środkiem ciężkości cząsteczek, położonych w B i C będzie punkt D, a środek ciężkości wszystkich trzech jest to to samo, co środek ciężkości Im, położonych w D, oraz m w A; z tego wynika, że dzieli on AD w stosunku 1:2 (par. 382). Ten sam punkt jest środkiem ciężkości trójkąta.

Jeżeli masa każdej z tych cząsteczek wynosi jedną trzecią masy trójkąta, to ciężar wypadkowy wszystkich trzech jest równy ciężarowi trójkąta, i tylko co widzieliśmy, że dwie te siły mają wspólny punkt przyłożenia. Trzy takie cząsteczki są równoważne trójkątowi, gdy chodzi o jakiekolwiek składowe ciężarów lab o ich momenty.

Gdy pragniemy zapomocą metody paragrafu 380 wyznaczyć środek ciężkości figury, złożonej z trójkątów, to możemy zastąpić każdy trójkąt trzema cząsteczkami równoważnemi; połączona masa tych cząsteczek powinna być równa masie trójkąta. Stosując następnie do powstałego w ten sposób zbioru cząsteczek prawidło ogólne, znajdziemy środek ciężkości całej figury.

	
	
	
385.    Prz. 1. Pole trójkąta posiada środek ciężkości w tym samym punkcie, co trzy jednakowe cząsteczki, położone w środkach boków.







Prz. 2. Na bokach trójkąta, obieganych w jedną stronę, odmierzono od wierzchołków długości AP, BQ, CB, proporcyonalne do tych boków. Okazać, że środek ciężkości trzech jednakowych cząsteczek, umieszczonych w P, Q, R, leży w środku ciężkości trójkąta.

Prz. 3. Na bokach wieloboku odmierzono od wierzchołków w jedną stronę długości AP, BQ... proporcyonalne do tych boków. Okazać, że jednakowe cząsteczki, umieszczone w P, Q..., mają środek ciężkości w tern samem miejscu, co jednakowe cząsteczki, umieszczone w wierzchołkach wieloboku (par. 79). Wielobok może nie być płaski.

Prz. 4. Na bokach płaskiego wielokąta ABC... zbudowano podobne trójkąty ABP, BCQ.... Dowieść, że środek ciężkości równych ciężarów, umieszczonych w P, Q ..., leży razem ze środkiem ciężkości równych ciężarów, położonych w A, B ....

Prz. 5. Prostopadłe z wierzchołków A, B, C przecinają boki trójkąta w P, Q, R. Okazać, że środek ciężkości sześciu cząsteczek, odpowiednio proporcyonalnych do sin2A, sin 2B, sin2C, cos2^, cos2B, cos2C i położonych w A, B, C, P, Q, R, leży w środku ciężkości trójkąta PQR.                                         (Math. Tripos, 1872.)

Prz. 6. Dany punkt G- leży wewnątrz czworościanu ABCD. Wy-znaczyć zapomocą konstrukcyi geometrycznej trójkąt, którego wierzchołki leżą na krawędziach DA, DB, DC, a środek ciężkości w G. Zna-

Statyka. 20

leźć również położenie graniczne punktu G, przy którem jeszcze kon-strukcya jest możliwa.

	
	
	
386.    Obwód trójkąta. Prz. 1. Trzy cienkie pręty a, b, c tworzą trójkąt ABC. Dowieść, że współrzędne powierzchniowe środka ciężkości H są proporcyonalne do b+c, c+a, a+b.







Prz. 2. Środek ciężkości obwodu trójkąta ABC jest środkiem koła, wpisanego w trójkąt DEF, gdzie I), E, F oznaczają środkowe punkty boków trójkąta ABC.                        (Statyka Locka.)

Prz. 3. H, G oznaczają odpowiednio środki ciężkości obwodu i pola trójkąta, I środek koła wpisanego. Dowieść, że H, G-, I leżą na jednej prostej, i że GH stanowi połowę IG. Udowodnić prócz tego podobieństwo trójkątów IGF i EGO, gdzie O jest środkiem koła opisanego, a P punktem przecięcia wysokości.

Prz. 4. Boki wielokąta ważą jednakowo. Dowieść, że środek ciężkości obwodu leży razem ze środkiem ciężkości jednakowych cząsteczek, umieszczonych w wierzchołkach (par. 385, prz. 3).

	
	
	
387.    Pole czworokątne. Wyznaczyć środek ciężkości czworokątnego pola ABCD.







W myśl par. 384 zastępujemy trójkąt ADG trzema cząsteczkami, umieszczonemi w A, D, C, z których każda posiada masę trzy razy mniejszą od masy trójkąta ADC. Zastąpimy również trójkąt ABC trzema masami, umieszczonemi w wierzchołkach i trzy razy mniejszemi od masy trójkąta. Tym spo-

M sobem w A i C znajdą się masy, wynoszące po , jeżeli M oznacza masę całego czworokąta.

Masy, umieszczone w B i D, oznaczmy przez mr i m2. M

Suma ich wynosi także —, a stosunek jest równy stosunkowi 0
[image: ]

Fig. 110.


pól trójkątów ABC i ADC, czyli BE\ED. Aby otrzymać rozkład dogodniejszy, zastąpimy te dwie masy trzema innemi, .   • i .M M

umieszczonemi w B, D, E, i wynoszącemi odpowiednio —, 9,


M 3:



M • , Suma tych mas zastępczych jest także równa 9, i łatwo się przekonać, że mają one ten sam środek ciężkości, co m. i m2. Mianowicie według par. 380 odległość ich środka ciężkości od E wynosi

_ _ Zma _ }M . BE-^M. DE+^M. 0

“=Im F JMT

Z drugiej zaś strony odległość od E środka ciężkości mas m1 i m2 wypad nie

_ _ m^BE-m^DE _ BE2-DE2

	
	
m, + m,      BE + DE ‘





czyli tożsamo, co poprzednio.

Środek ciężkości pola czworokąta ma to samo położenie, co środek ciężkości czterech jednakowych cząsteczek, umieszczonych w wierzchołkach, oraz piątej cząsteczki, umieszczonej na przecięciu przekątni, o masie takiej samej lecz ujemnej.

Możemy prawidłu temu nadać postać analityczną. Niech (x1Y1), (x,y2)... oznaczają współrzędne wierzchołków i punktu przecięcia przekątni. W takim razie otrzymamy

[image: ]



i analogiczne wyrażenie dla y (Quaterly Journal of Mathematics, tom XI, 1871, str. 109).

Radzimy czytelnikowi posługiwać się tymi punktami równoważnymi z dwóch względów: przedewszystkiem dla tego, że tą drogą dochodzimy od razu do wyrażeń analitycznych, a powtóre, że punkty te są używane w dynamice ciał sztywnych do wyznaczania momentów bezwładności oraz momentów odśrodkowych (iloczynów bezwładności) czworokąta.

Moglibyśmy cztery cząsteczki w wierzchołkach zastąpić przez cztery takie same cząsteczki, umieszczone w środkach boków lub w innych położeniach równoważnych, opisanych w par. 385.

	
	
	
388.    Prz. 1. Udowodnić następującą konstrukcyę geometryczną środka ciężkości pola czworokątnego. Na BD i AC obieramy punkty P, Q w taki sposób, aby QA, PB były odpowiednio równe EC, ED. Środek ciężkości czworoboku leży w środku ciężkości trójkąta EPQ. (Quaterly Journal of Mathein. t. VI, 1864.)







Prz. 2. Przekątnia BD dzieli czworokąt na dwa trójkąty, których środkami ciężkości są punkty M, N, i prosta MN przecina BD w punkcie I. Odmierzamy na większym odcinku NI długość NG-, ró-wną długości mniejszego odcinka MI. Okazać, że G jest środkiem ciężkości pola czworokąta.                                    (Guldin.)

Prz. 3. W trapezie boki AB—a i CD—b są równoległe. Dowieść, że środek ciężkości G pola trapezu leży na prostej, łączącej środki M, N boków AB, GD; dowieść prócz tego, że MG-: GN=(a-\-2b): (2a + b). (Archimedes i Guldin.)

Należy zwrócić uwagę, że stosunek MG: GN nie zależy od wysokości trapezu, lecz jedynie od długości boków równoległych.

(Poinsot.)

Prz. 4. Okazać, że środek ciężkości czworokąta AB CD leży razem ze środkiem ciężkości czterech cząsteczek, umieszczonych w wierzchołkach i posiadających masy odpowiednio proporcyonalne do 3+Y+3, 1+3+a, 8+a+3, 0+3+1, gdzie a, 3, y, 8 są odwrotnościami długości EA, EB, EG, ED, a E oznacza przecięcie przekątni. (Caius Coli., 1877.) określają rzędną z środka ciężkości pola pięciokąta; w równaniach tych a, b, c, d, e, f, g są rzędnemi punktów A, B, C, D, E, F, G w odniesieniu do jakiejkolwiek płaszczyzny xy.


Prz. 5. W pięciokącie ABGDE przekątnie CA i CE przecinają przekątnie EB i AD odpowiednio w punktach F i G. Dowieść, że




związki




3z—b + c+d —




f+g-a-e

1“n




(b-f)(d-g) (b — e^ęd—a)



	
	
	
389.    Czworościan. Wyznaczyć środek ciężkości czworościanu ABCD.







Dzielimy czworościan na warstwy elementarne płaszczyznami równoległemi do jednej ze ścian. Niech jedną z tych płaszczyzn będzie abc, i niech E będzie środkiem krawędzi BC. Prosta DE dzieli na pół wszystkie odcinki takie, jak bc, równoległe do B C, a prócz tego widać, że proste AE i ae są ró-2 wnoległe. Gdy odmierzymy AF=— AE, to F będzie środkiem ciężkości podstawy ABC. Poprowadźmy prostą DF; przetnie ona ae w punkcie f. Z podobieństwa trójkątów wypadnie, że af;AF^Da:DA = ae;AE, zatem af=T9, z czego znów wynika, że f jest środkiem ciężkości trójkąta abc. Widzimy, że środki ciężkości wszystkich warstw elementarnych leżą na prostej DF, a więc na tejże prostej leży środek ciężkości całego czworościanu. Środek ciężkości czworościanu leży na każdej prostej, łączącej wierzchołek ze środkiem ciężkości przeciwległej ściany.


Niech K oznacza środek ciężkości ściany BOD. Proste



DF i AK leżą w płaszczyźnie DAE, a więc się przecinają, i punkt przecięcia G jest środkiem ciężkości czworościanu.

Dowiedziemy podobnie, jak w analogicznem twierdzeniu o trójkącie, że odcinek FK jest równoległy do AD i równy ^AD, a z podobieństwa trójkątów AGrD i KGrF wynika, że FGr=^^GD-, zatem DG =
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Aby wyznaczyć środek ciężkości czworościanu łączymy którykolwiek wierzchołek, np. D, ze środkiem ciężkości F ściany przeciwległej. Środek ciężkości G leży na DF, i DG = y)F.

Można określić środek ciężkości czworościanu zapomocą pewnych punktów równoważnych podobnie, jak to uczyniliśmy dla trójkąta. Środek ciężkości czworościanu jest tym samym punktem, co i środek ciężkości czterech jednakowych cząsteczek, umieszczonych w wierzchołkach. Dowód jest taki sam, jak dla trójkąta.

	
	
	
390.    Piramida i stożek. Wyznaczyć środek ciężkości objętości piramidy, mającej płaską podstawę o bokach prostych.







Postępując podobnie, jak w przypadku poprzedzającym, dzielimy piramidę na warstwy elementarne płaszczyznami ró-wnoległemi do podstawy. Wszystkie te przecięcia są podobne do podstawy, a środek ciężkości każdej warstwy leży na prostej, łączącej wierzchołek ze środkiem ciężkości podstawy; oczywiście i środek ciężkości piramidy leży na tej samej prostej.

Rozkładamy następnie podstawę na trójkąty. Łącząc wierzchołki tych trójkątów z wierzchołkiem piramidy, podzielimy całą piramidę na czworościany, posiadające wspólny wierzchołek. Środki ciężkości wszystkich czworościanów leżą w płaszczyźnie, równoległej do podstawy i położonej w odległości 2 wspólnej wysokości od wierzchołka.

Zestawiając wyniki powyższe, otrzymamy następujące prawidło do wyznaczania środków ciężkości piramid. Należy połączyć wierzchołek V ze środkiem ciężkości F podstawy i odmierzyć na VF od wierzchołka długość VG = IVF. Punkt G będzie środkiem ciężkości piramidy.

Jeżeli podstawa piramidy jest krzywoliniowa, to uważamy ją za granicę wieloboku. Wypada więc prawidło następujące. Aby wyznaczyć środek ciężkości stożka, łączymy wierzchołek V ze środkiem ciężkości F podstawy i odmierzamy na VF od wierzchołka VG = IVF. Punkt G będzie środkiem ciężkości stożka.

	
	
	
391.    Prz. 1. Połowa kąta wierzchołkowego stożka wynosi 1







arctan — 7; okazać, że stożek taki, umieszczony w kuli opisanej, po-V 2

zostanie w równowadze w każdem położeniu. (Math. Tripos, 1851.)


(Math. Tripos, 1859.)




wynosi —.



Prz. 2. Podstawa piramidy jest kwadratem, a ściany pozostałe są równymi trójkątami równoramiennymi. Dowieść, że piramida taka, umieszczona w kuli opisanej, pozostanie w równowadze w każdem położeniu, jeżeli cos kąta wierzchołkowego każdej ze ścian bocznych .2        .

Prz. 3. Podstawy pnia trójkątnej piramidy ABC, A'B'C są równoległe. Okazać, że środek ciężkości G leży na prostej, łączącej

,.. EG 1+2n+3n2 środki ciężkości E, E podstaw ABC, A'B C, i że--—---, EE' 4(1+n+n2)’

gdzie n oznacza stosunek któregokolwiek trójkąta A'B'C' do odpowiedniego boku trójkąta ABC.                                  (Poinsot.)

Prz. 4. Pień piramidy trójkątnej ABCD posiada podstawy ABC i A'B'C't niekoniecznie równoległe. Wyznaczyć środek ciężkości.

Oznaczmy odległości punktów A, B, C, A', B', C' od D przez a, b, c, a', b', c' i uważajmy DA, DB, DC za ukośny układ współrzędnych. W takim razie wypadnie

3(a2bc— a'2b'c')   _ 3(ab2c — a'b'2c')   _ 3(abc2—a'b'c'2)

^tabc — a'b'c') ’ 4(abc—a'b'c') ’ 4tabc — a'b'c')

Aby to udowodnić, uważamy pień za różnicę dwóch czworościanów, których objętości mają się do siebie jak abc:a'b'c'.

Prz. 5. Prosty stożek, którego kąt wierzchołkowy jest równy 2a, przecięto płaszczyzną, nachyloną do osi pod kątem 3, i część, zawierającą wierzchołek, ustawiono na równi w taki sposób, że duża oś przekroju znalazła się na linii największego spadku. Równia jest doskonale chropowata, a stożek jest na skraju równowagi. Dowieść, że tan kąta nachylenia równi do poziomu posiada jedną z wartości 4sin2a±sin2^                                        ... ---(Math. Tripos, 1876.) cos2a—cos2^

	
	
	
392.    Ściany i krawędzie czworościanu. Prz. 1. Okazać, że środek ciężkości wszystkich krawędzi czworościanu leży tam, gdzie środek ciężkości czterech cząsteczek, umieszczonych w wierzchołkach; każda z tych cząsteczek waży tyle, co trzy krawędzie, zbiegające się w odnośnym wierzchołku. Prócz tego dowieść, że twierdzenie byłoby słuszne i wtedy, gdybyśmy zamiast krawędzi napisali ściany (par. 79 i 86).







Prz. 2. Środek ciężkości czterech ścian czworościanu jest środkiem kuli, wpisanej w czworościan, którego wierzchołki są środkami ciężkości ścian czworościanu pierwotnego.

Prz. 3. H oznacza środek ciężkości ścian czworościanu, G środek ciężkości objętości, a I środek kuli wpisanej. Dowieść, że punkty H, G, I leżą na prostej, i że odcinek HG jest równy jednej trzeciej GI.

Prz. 4. Odcinki, łączące środki przeciwległych krawędzi czworościanu, zowią się ośrodkowemi. Okazać, że ośrodkowe przechodzą przez środek ciężkości G .czworościanu, i każda dzieli się w nim na pół.

Umieszczamy jednakowe cząsteczki w wierzchołkach A, B, G, D. Środki ciężkości cząsteczek A, B i G, D leżą odpowiednio w środkach M, N krawędzi AB, GD. Zatem środek ciężkości wszystkich czterech leży w środku G odcinka MN.

Prz. 5. Wielościan jest opisany na kuli. Okazać, że środki ciężkości objętości G i powierzchni H oraz środek kuli 0 leżą na pro-3

stej, i że OG——OH.                               (Liouville‘s J., 1843.)

	
	
	
393.    Czworościan równoramienny. Czworościan nazywamy równoramiennym, jeżeli w nim każde dwie krawędzie przeciwległe są równe. Z definicyi tej wynika, że każde dwie ściany mają boki odpowiednio równe.                                        •







Prz. 1. Okazać, że pięć punktów następujących leży razem: (1) środek ciężkości objętości, (2) środek ciężkości sześciu krawędzi, (3) środek ciężkości czterech ścian, (4) środek kuli opisanej, (5) środek kuli wpisanej. Oznaczymy ten punkt przez G.

Prz. 2. Okazać, że ośrodkowe przechodzą przez punkt G, dzielą się w nim na pół i są prostopadłe do odnośnych krawędzi. Prócz tego dowieść, że ośrodkowe tworzą prostokątny układ współrzędnych. (Ca-sey, Spherical Trigonometry, 1889, par. 127.)

Oznaczmy literami M, N, P, Q, R, S środki krawędzi AB, CD, BD, AC, AD, BG. Odcinki PR, QS są równoległe do AB, i każdy z nich jest równy połowie AB; podobnież PS, QR są równoległe do CD i równe połowie tej krawędzi. Lecz krawędzie przeciwległe AB, CD są równe, a zatem PQRS jest rombem, i jego przekątnie, czyli ośrodkowe czworościanu, PQ, RS tworzą kąt prosty. Ośrodkowa MN, prostopadła do płaszczyzny romba, jest prostopadła do PR, QS, a więc i do krawędzi AB.

	
	
	
394.    Czworościan podwójny. Wyznaczyć środek ciężkości bryły, zawartej w sześciu ścianach trójkątnych, l. j, złożonej z dwóch czworościanów przedzielonych wspólną ścianą.
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Niech ABC stanowi wspólną podstawę czworościanów, a D, D' ich wierzchołki, i niech E oznacza punkt przecięcia prostej DD' z podstawą. Czworościan ABCD zastępujemy czterema cząsteczkami, umieszczonemi w wierzchołkach; masa każdej z nich wynosi ćwierć masy czworościanu. Postępując tak samo z drugim czworościanem, skoncentrujemy w każdym z punktów A, B, C ćwierć masy całej bryły i prócz tego otrzymamy w D i D' dwie cząsteczki, których masa zbiorowa stanowi ćwierć pozostałą masy bryły. Stosunek mas tych dwóch cząsteczek jest równy stosunkowi objętości czworościanów, czyli DE:ED'. Rozumując zupełnie tak samo, jak w przypadku czworokąta, dojdziemy z łatwością, że dwie te masy można zastąpić przez trzy cząsteczki, z których każda ma czwartą część masy bryły; dwie z nich o masach dodatnich umieszczamy w D, D', a trzecią o masie ujemnej w E. Środek ciężkości całej bryły leży w środku ciężkości pięciu jednakowych cząsteczek, położonych w A, B, C, D, D', oraz szóstej cząsteczki, położonej w E i posiadającej masę równą każdej z tamtych lecz odwrotnego znaku.

	
	
	
395.    Prz. Środek ciężkości piramidy o podstawie czworokątnej leży razem ze środkiem ciężkości pięciu jednakowych cząsteczek, umieszczonych w wierzchołkach, oraz szóstej takiej samej lecz ujemnej cząsteczki, umieszczonej na przecięciu przekątni podstawy.







Poprowadziwszy płaszczyznę przez wierzchołek i jedną z przekątni podstawy, otrzymamy dwa czworościany, przedzielone wspólną ścianą.


396. Łuk koła. Wyznaczyć środek ciężkości łuku koła.



Mamy dany luk ACB, którego a promień = a. Kąt AOB oznaczmy przez 2a, i niech OC będzie dwusieczną jego; dalej PQ ma oznaczać jeden z elementów tuku, a kąt POC—^. W takim razie w myśl par. 380 m=ads, x = a cosi. Oznaczywszy przez x odległość szukanego środka ciężkości łuku od O, znajdziemy


środkiem jest punkt O,
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Fig. 113.




Zma  f ad^ . a cos 3 _ a sin a gdyż granice zmiennej 3 są 3 == - o i $= + o. Wynikowi powyższemu nadamy postać taką: Odległość śr. cięż. sin (połowa kąta)         cięciwa rom łuku od środka J połowa kąta Prom łuk P


Jadi




2m



Wzory te podał Wal lis.

	
	
	
397.    Prz. W łuk kołowy wpisano 2n [równych odcinków, tworzących linię łamaną; każdy z nich widać ze środka pod kątem 28. Okazać, że odległość środka ciężkości linii łamanej od środka wynosi rcos sin2n8 -    ., ,  ,







----. Stąd wyprowadzić wzór na środek ciężkości dowolnego 2n sin 3

łuku kołowego.                                (Zagadnienie Guldina.)

	
	
	
398.    Środek ciężkości łuku krzywej. Współrzędne środka ciężkości łuku jakiejkolwiek jednorodnej krzywej płaskiej określają wzory następujące:







_ Zmx fxdx     . fyds

Em fds ‘      4   fds '

We wzorach tych na miejsce elementarnego łuku ds należy napisać jego wartość, wziętą z rachunku różniczkowego, a mianowicie

ds=1+ ' | l dx, lub ds =)r2 + — l d^-, \dx I                       I              I

stosownie do tego, czy równanie krzywej mamy w postaci Kar-tezyusza y = f(x\ czy w postaci biegunowej r=F(J). Gdy krzywa jest przestrzenna, to dla z otrzymamy wyrażenie podobne do powyższych, a odpowiedni wzór na ds można znaleźć w podręcznikach rachunku różniczkowego.

	
	
	
399.    Cały proces wyznaczania środka ciężkości łuku polega na podstawieniu wartości ds, zaczerpniętej z danego równania krzywej, i całkowaniu. W odnośnych przykładach główną sprawą jest całkowanie, i byłoby zbytecznem przykłady te omawiać szczegółowo; podaje-my tylko rozwiązania w kilku przypadkach ważniejszych.







x      X


'                                                                                         C l '

Prz. 1. Środek ciężkości łuku łańcuchowej y— 2 e c(y—c) _ 1 /

*= 0 do *=x posiada współrzędne x~x---, y=~y



c +e c


od



Wynik ten możemy interpretować geometrycznie w sposób następujący. Niech będzie jakikolwiek łuk łańcuchowej PQ, i niech T oznacza przecięcie stycznych, poprowadzonych w P i Q, a N przecięcie normalnych, wystawionych w tychże punktach. Jeżeli teraz x, y są współrzędnemi środka ciężkości łuku PQ, to T= odciętej punktu T, a y— połowie rzędnej punktu N.

Prz. 2. Wyznaczyć środek ciężkości łuku OP cykloidy pomiędzy wierzchołkiem O, gdzie ©=0 i punktem P, gdy równania cykloidy są x=2ap+asin 2p, y=a — a cos2p, a długość łuku OP wynosi s=4a sin q.

—. _ , 2a(1—cos )2(2+cos«)   _ y

Wypadnie T=2d----—------, y=—.

3 sin (                 3

Prz. 3. G oznacza środek ciężkości łuku APlemniskaty r2=a2cos28; okazać, że OG- jest dwusieczną kąta AOP.

Prz. 4. Środek ciężkości łuku PQ krzywej r‘sin38=a3 leży na prostej, łączącej biegun O z przecięciem stycznych w P i Q.

Prz. 5. Gęstość w punktach krzywej r"sinn=an jest proporcyo-nalna do r-3; okazać, że środek ciężkości łuku PQ leży na prostej, łączącej biegun z przecięciem stycznych w P i Q.

Prz. 6. Miejscem geometrycznem środków ciężkości łuków le-mniskaty r2=a2 cos 29 o długości danej jest krzywa, odpowiadająca w inwersyi elipsie współśrodkowej. (Twierdzenie R. A. Roberta.)

	
	
	
400.    Wycinek koła. Wyznaczyć środek ciężkości wycinka kołowego.







Niech ACB będzie lukiem wycinka, a O środkiem. Podobnie jak w par. 396 promień oznaczamy przez a, kąt AOB przez 20 i prowadzimy dwusieczną OC kąta AOB. Dzielimy następnie wycinek na elementarne trójkąty o jednakowych polach; jednym z nich jest, dajmy na to, OPQ. W myśl par. 380 koncentrujemy masę tego trójkąta w jego środku ciężkości,

[image: ]

Fig. 114.




t. j. w takim punkcie p, że Op = ^OP. Czyniąc to samo w każdym trójkącie, otrzymamy szereg cząsteczek o jednakowych masach, rozłożonych w jednakowych odległościach na łuku kołowym ab. Na fig. 114 wyobrażono te cząsteczki zapomocą szeregu kropek. W granicy punkty te utworzą jednorodny łuk kola, możemy więc wyznaczyć środek ciężkości wycinka przy pomocy wzorów par. 396; odległość jego od środka O będzie

_ sina 2a 2 cięciwa AB . , .

X =--.—=.--—^—.promień 00.

a 3  3 łuk AB

Są to również wzory Wallisa.

	
	
	
401.    Prz. Wyznaczyć środek ciężkości pola ćwiartki koła AOB.







Jest to ten przypadek szczególny zagadnienia z paragrafu po


przedzającego, w którym a



	
7. Gdy obierzemy za osi współrzędnych



proste OA i OB, to współrzędne środka ciężkości G- będą: 4a T =OGCOS =, 37


4a

J=3,




402.

od środka odcinka.



Prz. Odległość środka ciężkości pola odcinka kołowego .       . 2a sino .             , koła wynosi----, gdzie a oznacza połowę kąta 3(0— sin a cos a)

(Gułdin.)

	
	
403.    Rzuty pól. Gdy wykonamy rzut prostokątny jakiegokolwiek pola płaskiego na płaszczyznę^ to środkiem ciężkości rzutu będzie rzut środka ciężkości pola danego.





Obierzmy płaszczyznę rzutów za płaszczyznę xy i oznaczmy przez a kąt pomiędzy płaszczyznami. Niech teraz dS oznacza element pola danego, a dli pole rzutu tego elementu. Wiadomo, że dll=dS.cosa, a współrzędne x i y elementów dS i dli są jednakowe, bo rzuty są prostokątne. Współrzędne środków ciężkości każdego pola wyznaczymy według wzorów _ Zma _ ^my . .    .  , x= En: y        na miejsce m należy tu postawie dli dla rzutu i dS dla oryginału. Otrzymamy dla obydwóch pól jednakowe x, y, gdyż stosunek dII:dS jest stały.

Aby z pożytkiem posługiwać się metodą rzutów, wypada do twierdzenia powyższego dołączyć dwa znane twierdzenia następujące: (1) rzuty prostych równoległych są równoległe, (2) stosunek dwóch odcinków równoległych pozostaje w rzucie bez zmiany. Możemy przeto postępować według reguły następującej.

Mamy, dajmy na to, pewien związek geometryczny pomiędzy odcinkami na figurze oryginalnej, a pragniemy wykryć odpowiedni związek w rzucie. Przedewszystkiem wyrażamy związek dany w postaci stosunków odcinków równoległych; w tym celu wypadnie niekiedy przeprowadzić nowe proste, równoległe do pewnych prostych oryginału, jeżeli w danym związku o takich równoległych niema wzmianki. Gdy mamy związek geometryczny w Epostaci stosunków, to taki sam związek zachodzi i w rzucie.

	
	
404.    Pola eliptyczne. Wiadomo, że elipsa jest prostokątnym rzutem koła, a zątem można otrzymać środki ciężkości różnych części pola elipsy ze środków ciężkości odpowiednich części koła. Koło, używane w tym celu, zowie się niekiedy kołem pomocniczem.


	
405.    Wyznaczyć środek ciężkości pola eliptycznego.





Niech będzie ćwiartka koła A0B\ obrawszy promienie OA i OB za osi współrzędnych i oznaczając współrzędne środka ciężkości ćwiartki przez x, y, możemy napisać

2-0-4        m

OA OB 37............

Lecz x i OA są to odcinki równoległe; toż samo dotyczy y i OB, a zatem związki powyższe zachodzą i w rzucie.

Wzory (i) dają współrzędne środka ciężkości pola ćwiartki elipsy, gdy OA i OB oznaczają połowy diiżej i małej osi.

Jeżeli płaszczyzna rzutów przecina ćwiartkę koła nie według jednego z promieni granicznych lecz według jakiejś innej prostej, to rzutem ćwiartki jest wycinek elipsy, zawarty pomiędzy dwiema średnicami sprzężonemi.

Gdy OA i OB są połówkami dwóch jakichkolwiek średnic sprzężonych elipsy, to wzory (Ij określają środek ciężkości wycinka eliptycznego, zawartego pomiędzy OA i OB.

Położenie środka ciężkości połowy elipsy pierwszy wyznaczył Guldin.

	
	
406.    Prz. 1. Środkiem elipsy jest punkt C, a jej ruchoma cięciwa PQ przechodzi wciąż przez stały punkt O. Dowieść, że miejscem geometrycznem środka ciężkości trójkąta CPQ jest elipsa podobna.





(Coli. Exam.)

Prz. 2. Środek ciężkości G wycinka eliptycznego, zawartego pomiędzy półśrednicami OP, OP', leży na średnicy OA, przechodzącej . OG 2 sin 8 . przez środek cięciwy PP , i ---, = —o—; sin v równa się tutaj Sto-

sunkowi cięciwy PP' do średnicy sprzężonej z OA'■

ab («‘ — ©)

Prz. 3. Wycinek eliptyczny POP' posiada pole A= -—2--s

a współrzędne środka ciężkości w odniesieniu do średnic głównych są

x 2 (sin e‘—sin«) y 2(cos —cose’) a 3(‘- p) ’ b 3(p‘—p) gdzie «, «‘ są anomaliami ekscentrycznemi2) punktów P, P'.

Prz. 4. Okazać, że położenie środka ciężkości G‘ odcinka elipty-,        ,             2. O A' sin 34

cznego, opartego na cięciwie PP', określa wzór 0G-'——--.-----,

3(P—sin p COS ) gdzie O A’ jest półśrednicą sprzężoną z PP', a sin« oznacza stosunek cięciwy PP1 do średnicy równoległej.

Prz. 5. G jest środkiem ciężkości pola, zawartego pomiędzy elipsą i dwiema stycznemi, poprowadzonemu z punktu T, obranego na przedłużeniu średnicy OA'. Dowieść, że

OG tan2 sin« OA' 3(tanp-«)‘

gdzie sin« jest stosunkiem cięciwy PP', łączącej punkty zetknięcia, do średnicy sprzężonej z OT.

. Dowieść prócz tego, że współrzędne punktu G w odniesieniu do stycznych TP, TP' jako do osi są


X

TP



J 1 / tan sin"e TP' 2 sin2\ 3(tan —i)

TP

W paraboli po odrzuceniu wyższych potęg P wypadnie T=5

TP'

5

Prz. 6. Środek ciężkości czworobocznego pola, zawartego pomiędzy łukami czterech elips współśrodkowych i współosiowych, posiada współrzędne

2 a,2b (sin ©,‘— sin ©1)+a2b,(sin‘— sin ,)+...

T=— .----------

3          d1bi(Pi‘—P1)—d,ba(P2‘—92) ... Wyrażenie na y jest podobne.

	
	
407.    Znaczenie analityczne metody rzutów. Geometryczna metoda rzutów, przy pomocy której przekształcamy elipsę na koło lub odwrotnie, jest równoważna zmianie współrzędnych. Zakładamy x=x‘ i y—gy', gdzie wartość g zależy od naszego uznania; możemy obrać ten współczynnik w taki sposób, aby równanie elipsy przeszło w równanie koła. Oczywiście zasada ta daje się rozciągnąć do każdej krzywej. Pisząc x=fx', y—gy', będziemy mieli do rozporządzenia dwie stałe zamiast jednej.





Geometrycznie działanie takie prowadzi do tego samego, co dwa rzuty kolejne. Pisząc y=gy', tworzymy rzut oryginału na płaszczyźnie, przechodzącej przez oś x, a pisząc x=fx', tworzymy nowy rzut na płaszczyźnie, przechodzącej przez oś y'. Stosując do tych rzutów uogólnionych dwa twierdzenia wyżej wspomniane, przeniesiemy wszystkie wzory, dotyczące stosunków odcinków równoległych, z jednej figury na drugą.


Przyp. tłom.



Analitycznie zapomocą podstawień x—fx', y—gy' przekształcamy równania linii granicznych pola A'. Niech (x, y), (x‘, y') będą środkami ciężkości pól A i A'. Otrzymamy

A=ffdxdy=fgUdx'dy,=fgA',

i tak samo x—fx', y=gy'. Granice całek rozciągają się tutaj na całe odnośne pola.

Prz. Możemy jeszcze bardziej uogólnić metodę rzutów, pisząc x—a+bx' + cy', y—eAfx'-Agy'. Okazać, że A^A'(bg — cf), x—a+bx' + cy', y=e+fx‘ +gy', gdzie A, A' są polami odpowiednich figur.

Warto zauważyć, że przekształcenie powyższe jest równoważne z przejściem do nowego układu ukośnokątnego wraz z następującymi po nim rzutami.

	
	
408.    Metoda rzutów nie da się tak łatwo stosować, gdy chodzi o wyznaczanie środków ciężkości pól hiperbolicznych, gdyż musieli-byśmy tworzyć rzuty urojone koła. Biorąc zamiast koła pomocniczego hiperbolę równoramienną można byłoby wyznaczyć środek ciężkości każdego pola hiperbolicznego.





Możemy wszakże z każdego twierdzenia ogólnego, dotyczącego elipsy, otrzymać odpowiednie twierdzenie o hiperboli przy pomocy zasady ciągłości. Tak np. środek ciężkości wycinka elipsy od x=x do 2ak x=a (406 prz. 2) określa wzór x ==--, gdzie dla skrócenia k stoi

3arcsink


. x2\

zamiast 1--

\    a2/



2

. Musi to być słuszne i dla urojonych gałęzi elipsy, powstających dla x>a. Zakładamy k=k'i i stosujemy znany wzór z trygonometryi analitycznej Ji=log(cos}+isin 3), gdzie J=arc sin k. Dla środka ciężkości wycinka hiperbolicznego otrzymamy

x            2k'                     (lx\2   13/2

— =---—---, gdzie — — 17 .

a 3log(k‘+ Vk‘2+1)           la/ )

	
	
409.    Środek ciężkości pola jakiegokolwiek. Wobec wzorów, podanych w par. 380, wyznaczanie środka ciężkości pola sprowadza się do dwóch czynności: (1) obieramy dogodnie element m i (2) uskuteczniamy potrzebne całkowania. To ostatnie działanie stanowi przedmiot rachunku całkowego a nie statyki, poprzestaniemy przeto na pewnych uwagach o obiorze elementu m.





Gdy mamy wyznaczyć środek ciężkości pola, zawartego pomiędzy rzędnemi Aa i Bb, to nadajemy równaniu krzywej postać y—f(x). a za element obieramy pasek PQM; tak więc PM—y i m—ydx. Współrzę-y

dne środka ciężkości elementu m będą e i 2, a wzory z par. 380 przekształcą się tak:

Zmx fydx. x _ fydx . %

== —— =---, J= ---- .

2m fydx        ydx

Gdy chodzi o wyznaczenie środka ciężkości pola wycinkowego AOB, to równaniu nadajemy postać r—f^), a za element obieramy
[image: ]

trójkątny pasek P0Q. W tym razie QP—r, m=-2, i środek ciężkości

	
2rcos 8 2rsin 8 elementu m ma współrzędne Kartezyusza —---, —---. Wzory na x, y przybierają postać



J2r2d8.3rcos8 _ J 2r2d8.3rsin $ J3r2d9 ‘      9 f^r2d^

Niekiedy mamy dane równanie krzywej w postaci parametrycznej x ==(t), y=^(t). Taką postać nadaje się naprzykład równaniu cy-kloidy (par. 399, prz. 2). W takich razach uciekamy się do wzoru r2d^=xdy—ydx, zaczerpniętego z rachunku różniczkowego. Wstawiając w zasadnicze wzory na x, y połowę wartości powyższej zamiast m, otrzymamy dogodne wzory do wyznaczania środka ciężkości.

	
	
410.    Gdy mamy wyznaczyć środek ciężkości figury w kształcie trójkąta lub czworokąta o bokach krzywych, to stosowny obiór elementu m zależy od postaci krzywych.





Połączywszy punkty wierzchołkowe z początkiem współrzędnych, otrzymamy trzy lub cztery wycinki i możemy wyznaczyć pole oraz środek ciężkości każdego z nich z osobna; następnie znajdziemy według paragrafu 380 środek ciężkości całej figury. W niektórych razach krzywe graniczne należą do tego samego rodzaju, i gdy wykonamy działanie powyższe dla jednego wycinka, to możemy już wywnioskować, co wypadnie dla pozostałych. W przypadkach takich metoda ta jest bardzo dogodna. Widzieliśmy już, jak można bezpośrednio otrzymać pole i środek ciężkości czworoboku, okolonego łukami eliptycznymi, mając pole i środek ciężkości wycinka eliptycznego (par. 406, prz. 6).

Nadając wywodom powyższym postać analityczną, otrzymamy dla trójkąta krzywoliniowego, zawartego pomiędzy krzywemi 1=f(8), r'=f^'l r‘‘=f,($")


Zmx=




3 I r3cossd9+

J a




/ T                 (0

3   r‘3cosS‘d8‘+1 r

J3 JY
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cos S"‘d8",



(3          (T           (a.

Sm=^ 12d8+7 r‘2d8‘+7 r"W".

Jo

W wyrażeniach tych a, 3, Y oznaczają nachylenia promieni wodzących punktów wierzchołkowych do osi x. Tworząc całki powyższe, obiegamy boki figury trójkątnej w porządku kołowym.

Może się wydać, że dodaliśmy wszystkie trzy wycinki, gdy tymczasem należało jedne dodać, a inne odjąć, ale chwila zastanowienia przekona, że tak nie jest; w tych wycinkach, które należało odjąć uczyniliśmy d& ujemnem, biorąc granice w tym samym porządku, w którym obiegaliśmy pole.

Zamiast łączyć punkty wierzchołkowe z początkiem układu można poprowadzić z nich prostopadłe do osi x. W takim razie wy-padnie

db

^mx=xydx+ , x’y'dx'+ I x"y,'dxr',

Ja Jb        Jc gdzie a, b, c są odciętemi punktów wierzchołkowych. I tutaj bierzemy granice w tym porządku, w którym obiegamy w koło boki trójkąta.

	
	
411.    W pewnych razach można stosować całkowanie podwójne. Przypuśćmy, że udało się wyrazić równania dwóch boków przeciwległych czworoboku krzywoliniowego w tej samej postaci przy pomocy pewnej wielkości pomocniczej u. Znaczy to, że pewne równanie reprezentuje jedną linię graniczną, gdy w niem u—a, i to samo równanie reprezentuje przeciwległą linię graniczną, gdy u=b. Niech ę(x, y, u)=0 będzie lakiem równaniem. Jest to zawsze możliwe, bo przypuśćmy, że fJx,y)=0 i fjx, y)—0 są równaniami przeciwległych boków; w takim razie





=(u-a)f(x, y)+{u-b)f2(x, y)=0 reprezentuje jeden lub drugi stosownie do tego, czy u —a, lub u = b. Taka jednak szczególna postać równania P nie zawsze jest dogodna. Załóżmy jeszcze, że w ten sam sposób V(x, y, v) ==0 reprezentuje dwa pozostałe boki, gdy v=e i v—f.

Po uskutecznieniu tego należy dalej postępować według prawideł rachunku całkowego. Nadając wielkościom u i v wszelkie wartości, zawarte pomiędzy u—a i u=b, oraz v=e i v—f, otrzymamy dwa pasma krzywych, dzielących pole na elementy. Niech m będzie polem jednego z takich elementów, i niech J oznacza wyznacznik Jakobiego zmiennych x, y względem u, v; w takim razie m=Jdudv, i

_   SSJdudv.x      _  ffJdudu.y

" ffJdadv ‘      9 ffdudu

Do wyznaczenia Jakobianu może być niezbędne rozwiązanie równań ©=0, V=0 celem wyrażenia x i y w funkcyach u, v. W takim ra-dx dy    dx dy

zie będzie J——. —----.—. Metoda ta może prowadzić do bar-da dv    dv da

dzo zawiłych rachunków, jeżeli od razu nie dobierzemy tak udatnie « i 1, aby Jakobian, wyrażony w funkcyi u, v, przybrał postać prostą. Zaleta metody polega na tern, że granice a i b zmiennej u, oraz granice e i f zmiennej v są stałe, można więc wykonać całkowania w dowolnym porządku lub nawet jednocześnie.

	
	
412.    Prz. 1. Z paraboli wycięto pole, ograniczone osią ON oraz


, , _ 3x rzędną PN; okazać, że x=—, 5




- 3J J=g*







Prz. 2. Do paraboli poprowadzono dwie styczne PP i TP'; okazać, że współrzędne środka ciężkości pola, zawartego pomiędzy krzywą i stycznemi, w odniesieniu do TP, TP', jako do osi, są: x=^TP, y=^TP' (406, prz. 5).                                          (Walton.)

Należy uważać owo pole za różnicę pól trójkąta i odcinka parabolicznego.

Prz. 3. Równania cykloidy są: x = a (1— cos 8), y = a (9 + sin 8). Okazać, że środek ciężkości połowy pola ma współrzędne z 7d, 6 a/ 16\

J=I- —).                                         (Wallis.)

2 \ JT/

Prz. 4. Wyznaczyć środek ciężkości pola, zawartego pomiędzy jedną pętlicą lemniskaty 12=a2cos29 a osią. Wypadnie

_ ma _ 3log(V2+1)—v 2

T = ——,    y^-------—--a.

4 v 2             6 v2

Prz. 5. Granicami pola czworokątnego są parabole y2=a3x, y2=b3x, x2=e3y, x2=fy. Wyznaczyć środek ciężkości.

Obieramy za równania boków przeciwległych y2—u3x oraz x?=vy. Rozwiązując otrzymamy x=uv2, y=u2v oraz J=3u?v2. Ostatecznie wypadnie

—9 (b—a*)(f"—e5)

" F20 (63—23) (43—e3)

Prz. 6. Środek ciężkości pola, zawartego pomiędzy dwiema elipsami i dwiema hiperbolami, gdy wszystkie cztery krzywe są współ-ogniskowe, leży na prostej

y _ (az—a )(az‘—a‘)(a,2+a a,+a,2—a2‘2—a,‘a2‘—a/2)

x (b2 b,)(b2‘ b,‘)(b22 +6,62 +6,2+ b2'2p b/b^ Pbi'2)

Statyka. 21 gdzie litery bez kresek oznaczają połówki osi elips, a litery kreskowane połówki osi hiperbol.

Równania przeciwległych boków obieramy w postaci —|—— =1, u u—h

x2 y2

—I---=1, gdzie u>h, i v<h. Z tego wynika hx=uv, —hy2—(u—h)(v—K), v v—h

następnie łatwo już otrzymuje się żądany wynik.

Prz. 7. Gęstość tarczy kołowej o promieniu a jest proporcyo-nalna do odległości od środka. W tarczy tej wycięto otwór w postaci koła, zatoczonego na jej promieniu, jako na średnicy. Okazać, że śro-6a

dek ciężkości tarczy z takim otworem leży w odległości---od 157—10

środka.                                             (Math. Tripos, 1875.)

Prz. 8. W tarczy kołowej, której gęstość zmienia się proporcyo-nalnie do odległości od środka, wycięto okrągły otwór, którego obwód przechodzi przez środek tarczy; promień tarczy =/•, a promień otworu —a. Dowieść, że środek ciężkości części pozostałej leży w odległości 644

------od środka tarczy.                            (Col. Ex., 1888.) 15713 — 10a3

Prz. 9. Krzywa posiada właściwość następującą: rzędna i odcięta środka ciężkości pola, zawartego pomiędzy rzędnemi x—a i x—x, mają się do siebie, jak graniczna rzędna y do odciętej x. Okazać, że równanie takiej krzywej jest a3y3—b3x3—x3y3.            (Math. Tripos, 1871.)

	
	
413.    Twierdzenia Pappusa. Przed przystąpieniem do wyznaczania środków ciężkości powierzchni i brył, nie od rzeczy będzie rozważyć pewną metodę wyznaczania powierzchni i objętości brył obrotu, w której zużytkujemy wyznaczone dotychczas środki ciężkości łuków i pól. Niżej podane twierdzenia pierwszy wygłosił Pappus w końcu przedmowy do siódmej księgi swego Zbioru (Zovaonh).





Dajmy na to, że pewne płaskie pole obróciło się o pewien kąt około osi, położonej w płaszczyźnie tego pola; w takim razie

	
	
(1 ) powierzchnia, którą zatoczył obwód pola, jest równa iloczynowi z obwodu przez długość drogi, którą obiegł środek ciężkości obwodu,


	
(2 ) objętość bryły, którą wytworzyło pole, jest równa iloczynowi z pola przez długość drogi, którą obiegł środek ciężkości pola.





W obydwóch twierdzeniach przypuszcza się, że oś obrotu nie przecina obwodu pola.

	
	
414.    Dajmy na to, że łuk AB pewnej krzywej leży w płaszczyźnie xz. Obróćmy go około osi z o elementarny kąt do. -Element PQ, = ds tego łuku dojdzie do położenia P'Q\ zataczając powierzchnię ds. PP'= ds . xd&. Cały łuk AB zatoczy powierzchnię d^fxds. Lecz to jest równe d9 . xs, jeżeli s oznacza długość łuku AB^ a x odległość środka ciężkości tego łuku od osi z. Gdy łuk AB obróci się około osi z o następny kąt elementarny do, to powstanie taka sama powierzchnia. Z tego wynika, że gdy kąt obrotu stanie się równy 0, to powierzchnia będzie s. x0. Lecz x0 jest to długość drogi, którą obiegł środek ciężkości łuku, a zatem twierdzenie pierwsze zostało dowiedzione.
[image: ]

Fig. 116.






Przypuśćmy teraz, że pewna krzywa zamknięta, położona w płaszczyźnie xz^ obróciła się, jak poprzednio, około osi z o kąt do. Skutkiem tego elementarne pole dA, położone w okolicach B^ zatoczyło bryłę, którą możemy uważać za elementarny cylinder. Podstawą jest dA, wysokość wynosi xdo, a zatem objętość wyniesie dA . xd^. Cała krzywa zamknięta wytworzy objętość d$fxdA. Lecz to jest równe d^.xA, gdzie A oznacza pole krzywej, a x odległość środka ciężkości tego pola od osi obrotu. Całkując raz jeszcze do pewnej skończonej wartości 0, znajdziemy, że objętość powstałej bryły wynosi A . x3. Wynik ten jest dowodem twierdzenia drugiego.

Przyjmowaliśmy w obydwóch dowodach, że krzywa leży całkowicie po jednej stronie osi obrotu. Przypuśćmy teraz, że punkty tej krzywej Px i P, leżą po stronach odwrotnych osi z; w takim razie odcięte ich x1, x, mają znaki odwrotne, a zatem odpowiednie elementy powierzchni lub objętości, jako zawierające czynnik xdo, będą miały także znaki odwrotne. Całka daje sumę takich elementów, wziętych z właściwymi znakami, a więc, jeżeli oś przecina krzywą, to prawidła Pappusa dają różnicę powierzchni lub objętości, które zataczają dwie części krzywej, położone po odwrotnych stronach osi obrotu.

	
	
415.    Prz. 1. Wyznaczyć powierzchnię i objętość pierścienia kołowego.





Bryła ta powstaje, gdy koło odbywa całkowity obrót około osi, położonej w jego płaszczyźnie. Oznaczmy przez a odległość środka od osi, a przez b promień koła tworzącego, przyczem powinno być a>b, jeżeli wszystkie elementy mamy uważać za dodatnie. Obwód koła tworzącego wynosi ‘lub, a długość drogi, którą obiega środek ciężkości, 2ma. Stąd wynika, że powierzchnia jest równa ^2ab. Pole koła wynosi xb2, a droga jego środka ciężkości 2xa; zatem objętość jest równa 2K2ab2.

Prz. 2. Wyznaczyć objętość wycinka kuli o kołowem obrzeżu, a także jego powierzchnię sferyczną.

Można uważać, że bryłę taką zatoczył wycinek koła, dokonawszy całkowitego obrotu około jednego ze swych promieni granicznych. Niech 2a będzie kątem tego wycinka kołowego, a promieniem, a 0 niech oznacza środek. Długość łuku wycinka = 2aa, a długość drogi, którą obiega środek ciężkości G łuku wynosi 2x.OGsin a, gdzie a sin a

OG = ---. Zatem powierzchnia sferyczna jest równa 4xa‘sin‘o. Pole a

wycinka kołowego =u2a, droga środka ciężkości G‘ wynosi 2n. O^sina, 9                                 4xa‘sin2o

gdzie OG‘=30G, a więc objętość jest równa---.——.

Prz. 3. Bryła powstała skutkiem obrotu trójkąta ABC około bo-, n cp2 ku AB. Okazać, że powierzchnia jej wynosi n^a+b^p, a objętość gdzie p oznacza odległość wierzchołka C od boku AB.

	
	
416.    Warto zaznaczyć, że podczas obrotu o elementarny kąt d9 oś obrotu może być tylko osią chwilową. Wyobraźmy sobie, że ruchome pole płaskie pozostaje wciąż normalnem do krzywej, którą obiega jego środek ciężkości. Gdy środek ciężkości zatacza łuk ds, to możemy uważać, że pole A obraca około osi, przechodzącej przez środek krzywizny toru. Stąd wynika, że objętość elementarna wynosi Ads, a cała objętość będzie równa iloczynowi z pola A przez długość drogi, którą obiegnie środek ciężkości pola.





Również gdy figura płaska ruchoma pozostaje wciąż normalną do toru środka ciężkości obwodu, to powierzchnia bryły będzie równa iloczynowi łuku przez drogę środka ciężkości obwodu.

	
	
417.    Jeżeli oś obrotu nie leży w płaszczyźnie krzywej, to objętość bryły, wytworzonej przez pole ruchome, daje się wyznaczyć przy pomocy pewnej modyfikacyi prawidła Pappusa.





Dajmy na to, że oś obrotu jest równoległa do płaszczyzny krzywej, że jest to np. prosta CL na fig. 116. Poprowadźmy z pewnego punktu R, położonego wewnątrz zamkniętej krzywej, prostopadłą do osi; przypuśćmy, że L będzie jej przecięciem z osią. Element pola dA, okalający punkt R, zatoczy część cienkiego pierścienia, którego środkiem jest L. Długość tej części wynosi ^.RL. Pole normalnego przekroju tego pierścienia jest równe dA. cos«, gdzie « oznacza kąt, który normalna RL do pierścienia tworzy z płaszczyzną elementu dA. Tak więc wytworzona objętość wyniesie RL .costf .^dA, a to jest równe x^dA. Otrzymaliśmy to samo, co poprzednio, gdy osią obrotu była oś z.

Gdyby ten sam element obracał się nie około CL, lecz około Oz, to powstał by pierścień o mniejszym promieniu, i położenie jego w przestrzeni byłoby odmienne. Lecz przekrój normalny pierścienia mniejszego tak dalece przewyższa przekrój większego, że objętości obydwóch są równe.

Z powyższego wynika, że prawidło Pappusa daje się zastosować i w danym przypadku, przyczem jednak musimy postępować tak, jak-gdyby rzut osi na płaszczyznę krzywej był prawdziwą osią obrotu. Kąt obrotu powinien być jednakowy dla obydwóch osi.

Gdy dane pole jest położone po obydwóch stronach rzutu, to należy mieć na uwadze, że objętości, które wytworzą dwie części pola, będą miały znaki odwrotne.

Prz. 1 Oś obrotu tworzy z płaszczyzną pola kąt a. Okazać, że prawidło Pappusa da nam objętość powstałej bryły, jeżeli będziemy postępowali z rzutem osi na ową płaszczyznę, jak z osią obrotu, uważając przytem za kąt obrotu 3 cos a zamiast 3.

Prz. 2. Ćwiartka koła odbyła całkowity obrót około osi, która przechodzi przez środek, jest prostopadła do jednego z promieni granicznych i tworzy z drugim kąt a. Okazać, że objętość powstałej bryły 2xa‘coso wynosi---.

Prz. 3. Łuk A1A2 krzywej płaskiej obrócił się o kąt 8 około osi prostopadłej do jego płaszczyzny. Okazać, że zaciągnięte pole wynosi


--2----, gdzie I




r2 są odległościami końców A^




A2 od osi obrotu.



Należy przyjąć, że promień wodzący r nie przechodzi pomiędzy A| i A2 ani przez maksymum, ani przez minimum. W razie przeci-

wnym pola, które zaciągną łuki, położone po odwrotnych stronach takiego punktu, będą miały znaki odwrotne.

Prz. 4. Pole obraca się około osi z, położonej w jego płaszczyźnie. Gęstość D w każdym punkcie P powstałej bryły jest daną fun-kcyą zip, gdy p oznacza odległość punktu P od osi obrotu. Okazać, że masę bryły można wyznaczyć zapomocą prawidła Pappusa, uważając D za gęstość powierzchniową pola tworzącego w punkcie P, którego współrzędnemi są z. i p.

	
	
418.    Powierzchnia boczna prostego stożka. Wyznaczyć środek ciężkości powierzchni bpcznej prostego stożka. Twierdzenie Guldina.





Niech 0 będzie wierzchołkiem stożka, a C środkiem podstawy; w takim razie prosta OC jest prostopadła do podstawy,
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i szukany środek ciężkości leży na tej prostej.

Podzielmy boczną powierzchnię na trójkąty elementarne, łącząc pro-stemi wierzchołek 0 z punktami podstawy a, b^ c... Środek ciężkości każdego trójkąta leży w płaszczyźnie, równoległej do podstawy i dzielącej boki Oa, Ob... w stosunku 2:1, a zatem środek ciężkości całej powierzchni bocznej leży w przecięciu tej płaszczyzny z OC.

Odległość środka ciężkości powierzchni prostego stożka od

wierzchołka wynosi dwie trzecie wysokości.

Prz. Okazać, że prawidło powyższe dotyczy również bocznej powierzchni prostego stożka o podstawie eliptycznej, lub wogóle o jakiejkolwiek podstawie symetrycznej względem dwóch średnic prostokątnych.

	
	
419.    Wyznaczyć wielkość oraz środek ciężkości części powierzchni prostego stożka o podstawie kołowej.





Niech będzie element PQ^dS bocznej powierzchni stożka (fig. 117), i P'Q' = dII rzut jego na płaszczyznę podstawy. Kąt pomiędzy PQ i P'Qj czyli kąt pomiędzy płaszczyzną trójkąta Oab i płaszczyzną podstawy, jest spełniającym połowy kąta wierzchołkowego stożka. Gdy ten ostatni oznaczymy przez 2a, to wypadnie dlI=dS.sin o. To samo dotyczy każdego innego elementu powierzchni, a zatem, pragnąc wyznaczyć wielkość

jakiejkolwiek części powierzchni prostego stożka, dzielimy przez sina pole jej rzutu na płaszczyznę prostopadłą do osi.

Jeżeli za oś z obierzemy oś stożka, to oczywiście elementy dS i dli będą miały jednakowe współrzędne a i y, a zatem, postępując zupełnie tak samo, jak w par. 403, przekonamy się, że rzut środka ciężkości jakiejkolwiek części powierzchni stożka na płaszczyznę prostopadłą do osi jest środkiem ciężkości rzutu tej części.

Pozostaje jeszcze wyznaczyć współrzędną z środka ciężkości. Obieramy za płaszczyznę xy dowolną płaszczyznę prostopadłą do osi; w takim razie wypadnie

1

 Jest tu mowa o twierdzeniu Pitagorasa, a zatem wzmiankowaną figurę stanowi trójkąt prostokątny, na bokach którego zbudowano kwadraty                                                 (Przyp. tłom.)

2

 Zob. przypisek do par. 317.


'Lmz fdS. z fzdll hm fdS fdU

Widzimy, że odległość środka ciężkości części S powierzchni od płaszczyzny xy jest równa ilorazowi objętości cylindrycznej bryły, zawartej pomiędzy S i rzutem II na ową płaszczyznę, przez pole II.

Takie wyniki są następstwem tej okoliczności, że stosunek elementu powierzchni dS do jego rzutu dU na płaszczyznę xy jest wielkością stałą, a do tego znowu potrzeba, aby wszystkie płaszczyzny, styczne do powierzchni, tworzyły z płaszczyzną xy kąty równe. Taką właściwość poza powierzchnią prostego stożka oraz płaszczyzną posiadają jeszcze i inne powierzchnie. Każda powierzchnia rozwijalna, stanowiąca obwiednię układu płaszczyzn, nachylonych do xy pod kątem danym, czyni oczywiście zadość warunkowi powyższemu.

Prz. 1. Płaszczyzna AB przecina stożek dowolnego kształtu, a przez wierzchołek stożka O przeprowadzono dowolnie prostą, przecinającą AB w punkcie H. Dowieść, że objętość stożkowej bryły, zawartej pomiędzy płaszczyzną AB i wierzchołkiem, jest równa iloczy-

OH

nowi —— przez pole rzutu przekroju AB na płaszczyznę prostopadłą do OH.

Prz. 2. Płaszczyzna przekroju AB prostego stożka przecina oś w punkcie H i tworzy z nią kąt 3, a kąt wierzchołkowy stożka == 2. Okazać (1), że boczna powierzchnia S, zawarta pomiędzy wierzchołkiem O i przekrojem eliptycznym AB, jest równa iloczynowi z prze-sinB

kroju AB przez ——, (2), że środek ciężkości powierzchni S leży na sin a

prostej, poprowadzonej przez środek C przekroju AB równolegle do osi stożka, (3), że odległość środka ciężkości powierzchni S od C wy-nosi ^OS.

Powierzchnia S i przekrój AB mają wspólny rzut eliptyczny A'B', a więc dwa pierwsze twierdzenia wynikają bezpośrednio z tego, co dowiedliśmy poprzednio.

Aby udowodnić trzecie twierdzenie, dzielimy powierzchnię S na trójkąty elementarne, prowadząc proste od wierzchołka do podstawy AB. Wypadnie, jak w par. 418, że środek ciężkości powierzchni leży na płaszczyźnie, równoległej do podstawy i odcinającej trzecią część od OH.

Prz. 3. Prosty cylinder posiada płaską podstawę A'B' dowolnej postaci i jest przecięty inną płaszczyzną AB. Okazać, że (1) powierzchnia boczna cylindra pomiędzy płaszczyzną AB i podstawą jest równa iloczynowi z obwodu podstawy przez wysokość środka ciężkości obwodu AB nad podstawą, (2) objętość cylindra, zawarta pomiędzy płaszczyzną AB i podstawą, jest równa iloczynowi z pola podstawy przez wysokość środka ciężkości pola AB nad podstawą.
[image: ]

Fig. 118.


Zakładając, że część obwodu podstawy stanowi linia krzywa, a część prosta, otrzymamy powierzchnię i objętość części cylindra, zawartej pomiędzy dwiema płaszczyznami równoległemi do osi i dwiema przecinającemi oś.

Prz. 4. Prosty cylinder posiada podstawę Ax2+By?=1 i jest przecięty płaszczyzną z—h+px+qy. Okazać, że współrzędne środka ciężkości bryły czynią zadość równaniom iAhx~p, 4Bhy—q1 2z—h+ +px + qy.

	
	
420.    Powierzchnie kuliste. Dwa rodzaje rzutów powierzchni kulistej są szczególnie użyteczne, mianowicie rzut na opisany cylinder i rzut na płaszczyznę, przechodzącą przez środek. Rozważymy te obydwa rzuty po kolei.





Obierzmy początek układu prostokątnego w środku kuli; w takim razie osie x, y, z przetną jej powierzchnię w punktach A, B, C. Współrzędne biegunowe jakiegoś punktu P będą, jak zwykle, OP — a^ kąt zOP~^ i N0A = ^-, niech prócz tego odległość PL punktu P od osi z będzie równa p; oczywiście OL^z.

Opiszmy na kuli cylinder, stykający się z nią według koła, którego ćwiartkę stanowi luk AB. Otrzymamy na cylindrze rzut punktu P, przedłużając LP do przecięcia z powierzchnią cylindryczną w P'. W myśl tej definicyi każdy punkt kuli P posiada ze swym rzutem P' jednakowe współrzędne z i p.
[image: ]

Pole elementu PQR powierzchni kulistej jest równe PQ. QR, czyli a sin 3de . ad^. Pole rzutu P'Q'R' na cylinder wynosi P'Q’.Q'R\ albo ad^.dz', gdzie z‘= CL = a - a cos 3; wstawiając tę wartość na miejsce z', znajdziemy, że obydwa te pola są równe. Tak więc każdy element powierzchni kuli jest równy swemu rzutowi na cylinder. 1)

Z rozważań powyższych wynika, że i każda skończona część powierzchni kuli jest równa polu swego rzutu na jakikolwiek cylinder opisany. Przy pomocy tego prawidła można wyznaczać pola różnych figur kulistych. Tak np. powierzchnia, którą wycinają z kuli dwie płaszczyzny równoległe, poprowadzone w odległości h jedna od drugiej, jest równa powierzchni bocznej cylindra o wysokości h, czyli 2v.ah. Wynik ten jest niezależny od położenia płaszczyzn; muszą one tylko być równoległe. Również krzywa powierzchnia odcinka kulistego o wysokości h wynosi 2^ah.

	
	
421.    Ważne to twierdzenie znalazło zastosowanie w konstrukcyi kart geograficznych. Rzuca się powierzchnię kuli ziemskiej w sposób podany wyżej na opisany cylinder, a następnie rozwija się powierzchnię cylindra na płaszczyźnie. W ten sposób cała ziemia daje się wyobrazić na mapie prostokątnego kształtu. Konstrukcya taka posiada tę zaletę, że równym polom na kuli odpowiadają równe pola na mapie. Dotyczy to wszelkich obszarów, dużych i małych, bez względu na to, w jakich okolicach kuli ziemskiej są położone. Wada konstrukcyi polega na tem, że jakaś drobna figura na mapie jest niepodobna do odpowiedniej figury na kuli. Jeżeli jeszcze figura leży blizko linii zetknięcia z cylindrem, to podobieństwo jest do celów praktycznych wystarczające, natomiast w pobliżu bieguna linii zetknięcia figury są rażąco niepodobne; tak np. małemu kołu, położonemu w okolicach bieguna, odpowiada wydłużony owal. W niektórych innych rodzajach kart geograficznych, np. Mercatora, mała figura na mapie jest podobna do odpowiedniej figury na kuli, lecz za to równym polom na mapie nie odpowiadają równe pola na kuli.





Prz. Wykonano mapę, trzymając się zasady następującej. Obrano na powierzchni kuli o promieniu jednostkowym punkt O i na mapie odpowiadający mu punkt O'; aby wyznaczyć punkty P', Qj odpowia-OP dające punktom P, I na kuli, odmierzono długości OrP’=atan

00

i O‘Q‘=atan 2 , a kąt P'O'Q' uczyniono równym POQ. Dowieść, że odpowiadające sobie nieskończenie małe części kuli i mapy są podobne. Prócz tego dowieść, że skala mapy w okolicach jakiegoś punktu P' zmienia się, jak a2+0‘P‘2.

Jeżeli w związkach powyższych zastąpimy tan przez sin, to pola odpowiadających sobie obszarów będą w stosunku stałym.

Nazywa się to rzutem stereograficznym i konstrukcyą chordalną.

	
	
422.    Środek ciężkości jakiejkolwiek części powierzchni kulistej leży w tej samej odległości od płaszczyzny zetknięcia, co środek ciężkości rzutu tej części na cylinder opisany. Wynika to wprost ze wzoru 7=3, bo elementy m i rzędne z powierzchni kulistej są równe odpowiednim elementom oraz rzędnym rzutu.





Wyciągamy stąd wniosek, że środek ciężkości powierzchni strefy kulistej, zawartej pomiędzy dwiema płaszczyznami ró-wnoległemi, leży razem ze środkiem ciężkości odpowiedniej strefy cylindra, czyli na połowie drogi pomiędzy płaszczyznami na promieniu prostopadłym.

Tym sposobem środek ciężkości cienkiej warstiuij półkulistej o grubości stałej leży w środku środkoiuego promienia.

	
	
423.    Prz. 1. Odcinek kuli o wysokości h ma podstawę płaską. Okazać, że środek ciężkości całkowitej powierzchni odcinka (krzywej ah





i płaskiej) leży w odległości 4 od podstawy; a oznacza w tern promień kuli.

Prz. 2. Odległość środka ciężkości wycinka powierzchni kulistej (t. j. części powierzchni kuli, zawartej w jednym kącie dwóch pła-,                             rasino szczyzn, przechodzących przez środek) od osi jest równa ———, gdzie 2a oznacza kąt wycinka.

Prz. 3. Czasza, zrobiona z cienkiego jednorodnego materyału ma kształt odcinka kulistego; zamyka ją płaskie okrągłe wieko, zrobione z tego samego materyału, i tej samej grubości. Wieko składa się z dwóch połów, osadzonych na zawiasach na średnicy podstawy. Czaszę postawiono na gładkiej płaszczyźnie poziomej z jedną połową wieka otwartą i spoczywającą na drugiej. Okazać, że płaszczyzna wieka two-

a

rzy z płaszczyzną poziomą kąt ? taki, że 3rtan =4tan 2 ; a oznacza tu kąt, pod którym promień wieka widać ze środka kuli.

(Math. Tripos, 1881.)

	
	
424.    Wyznaczyć środek ciężkości trójkąta sferycznego.





Wykonajmy naprzód rzut jakiejkolwiek części powierzchni kulistej na płaszczyznę, przechodzącą przez środek; płaszczyznę tę obie-rzemy za płaszczyznę xy. Niech dS oznacza element powierzchni, dII rzut jego i 8 kąt, który normalna w dS tworzy z osią z. W takim razie

a                                     z

dW=--dS. cos ^=dS.—.

a

Całkując, otrzymamy al=Sz.

Wynikają stąd twierdzenia następujące: środek ciężkości jakiej

kolwiek części S powierzchni kulistej leży w odległości — od płaszczy-S

zny, przechodzącej przez środek; II oznacza w tein rzut powierzchni S na ową płaszczyznę 2).

Twierdzenie powyższe jest następstwem związku Cos=—. Nie a

tylko kula posiada taką właściwość. Kula o promieniu stałym, poru-

[image: ]

Fig. 120.

boków AC, BC na tę płaszczyznę;




szająca się tak, że jej środek pozo-staje w płaszczyźnie xy, wytwarza powierzchnię, posiadającą taką samą właściwość. Można przytoczyć jako przykład pierścień kołowy.

Zastosujemy teraz powyższe twierdzenie pomocnicze do trójkąta sferycznego. Niech A, B, C ozna-czają kąty, a, b, c boki, O środek kuli i p promień. Poprowadźmy z wierzchołka C prostopadłą CN do płaszczyzny A OB i utwórzmy rzuty będą to łuki eliptyczne AN, BN.

W myśl twierdzenia pomocniczego

z:p=pole ANB:pole ABC.

Prócz tego

(pole ANB)=(pole A OB)- (pole AOC) cosA- (pole BOC) cos B— p2

—~(c—b cos A—a cosB).

Oznaczmy przez E nadmiar sferyczny trójkąta, czyli E=A+B+C— T. Wiemy z trygonometryi sferycznej, że pole ABC=^E, a zatem

z c— bcosA— acosB

p - 2E

Wzór ten daje odległość środka ciężkości od płaszczyzny AOB, zawierającej bok AB trójkąta. Analogiczne wzory wyrażają odległości od płaszczyzn BOC, COA, zawierających boki pozostałe.

Prz. 1. Jeżeli p, q, r oznaczają łuki prostopadłe z wierzchołków A, B, C do boków przeciwległych, a G środek ciężkości trójkąta sferycznego, to cosAOG-_cosBOG-_ cosCOGr _ 1 asin p bsin q csinr 2E

Jest to równoznaczne z wzorem, podanym w Statyce Moigno.

Prz. 2. Powierzchnię zatoczyła łańcuchowa, obracając się około swej osi. Obieramy tę oś za oś z, a płaszczyznę, opisaną przez kierownicę, za płaszczyznę xy. Rzucamy prostokątnie dowolną część S owej powierzchni na płaszczyznę xy, i niechaj V oznacza objętość cylindrycznej bryły, którą okalają prostopadłe z obwodu figury S. Dowieść, że x i y powierzchni S i bryły V są jednakowe, ale z pierwszej jest dwa razy większe niż drugiej. (Giulio, a także Walton).

	
	
425.    Powierzchnie i bryły obrotu wogóle. Znana krzywa płaska obraca się około osi, położonej w płaszczyźnie tej krzywej; obieramy oś obrotu za oś z i oznaczamy kąt, o który obróciła, się krzywa, przez 2a. Chodzi o wyznaczenie środka ciężkości zatoczonej powierzchni i objętości.





Każdy punkt zatacza oczywiście łuk koła, którego środek leży na osi z, a zatem cała bryła będzie symetryczna wzglę-przez oś z i dzielącej na pół


dem płaszczyzny, przechodzącej wszystkie łuki. Płaszczyznę tę obieramy za płaszczyznę xy, w niej leży szukany środek ciężkości. Dajmy na to, że PP' jest połową łuku, który zatoczył punkt P; drugą połowę, leżącą za płaszczyzną xz, pominięto na rysunku.



[image: ]

Fig. 121.




kiem elementarnym krzywej tworzącej; w myśl twierdzenia Pappusa powierzchnia elementarnego paska, który zatacza ds^ będzie m = 2xads. Środek ciężkości takiego paska leży na MP

3C s i n 0. w odległości —-—- od M. Stąd wynika, że współrzędne środka ciężkości powierzchni są

_ Zma ^ds sina _ fxzds r =--—=——. , z=^-r——.

źm   ]xds a       fxds

Tak samo znajdziemy współrzędne środka ciężkości bryły, a mianowicie

_ Zma Jx2do sina _ fxzdo Em fxdo a ‘ fxdf3 ‘

gdzie do oznacza element pola krzywej danej. Zamiast do możemy napisać dxdz lub rd^dr stosownie do tego, czy mamy rachować we współrzędnych Kartezyusza czy biegunowych; jednocześnie zastępujemy pojedyńczy znak całki przez znak całkowania podwójnego.

Otrzymujemy tu oczywiście te same całki, które służą w matematyce wyższej do wyrażania momentów oraz iloczynów bezwładności (czyli momentów odśrodkowych) łuków i powierzchni. Jeżeli poznaliśmy prawidła wyznaczania tych momentów, to rzadko wypada nam wykonywać całkowanie; zwykle przytaczamy od razu rezultat, jako coś znanego. Prawidła te są podawane zazwyczaj w związku z dynamiką ciał sztywnych, gdyż znajomość ich jest w tej gałęzi wiedzy sprawą zasadniczą, ale można je znaleźć także w niektórych traktatach rachunku całkowego, jak np. w dziele prof. Williamsona.

Prz. 1. Ćwiartka koła o promieniu a wykonała całkowity obrót około osi, równoległej do jednego z promieni granicznych i położonej w odległości b od niego. Dowieść, że środki ciężkości (1) krzywej powierzchni powstałej bryły, (2) samej bryły leżą w odległościach

a(2b±a) . a(8b±3a)

xb±2a 2(3xb±4a)

od płaszczyzny, którą zatoczył drugi promień graniczny. Przypuszcza się tutaj, że oś obrotu nie przecina ćwiartki tworzącej.

Prz. 2. Połówka elipsy obróciła się o kąt prosty około średnicy granicznej. Okazać, że odległość środka ciężkości powstałej bryły od


3ab

4rv2




osi obrotu wynosi



, gdzie 2r jest długością średnicy.

Prz. 3. Trójkąt obrócił się o dwa kąty proste około osi, położonej w jego płaszczyźnie. Okazać, że odległość środka ciężkości bryły od 2 (02+82+2)

osi jest równa-----, gdzie a, 3, Y są odległościami środków T(«+3+Y)

boków od osi.

Prz. 4. Koło o promieniu a obróciło się o kąt 2a około prostej, położonej w jego płaszczyźnie w odległości c od środka, większej niż a. Znaleźć objętość powstałej bryły i okazać, że jej środek ciężkości jest (4c2 - ) sin 0

odległy o -—------ od osi.                        (Coli. Ex, 1887.) 4 Ca

	
	
426.    Wyznaczyć środek ciężkości wycinka kuli z obrzeżem





kołowem.

Niech na fig. 114 OC oznacza promień środkowy wycinka, N środek obrzeża i G środek ciężkości wycinka; oznaczmy

dalej przez V objętość całej kuli i przez a promień. W takim


razie




QG JON+OC

•"=4   2   ’      °2a'




(Wallis.)



Aby to udowodnić uciekniemy się do tej samej metody, którą stosowaliśmy, wyznaczając środek ciężkości wycinka kołowego. Niech PQ będzie elementem powierzchni, a punkt p środkiem ciężkości piramidy OPQ] w takim razie Op = ^OP.

Jeżeli G‘ jest środkiem ciężkości powierzchni wycinka, to OG={0G. Lecz według par. 422 OG' — ^{0N+ 0G\ a stąd wynika wyżej podany rezultat. Objętość V wyznaczyliśmy już w par. 415.

Opierając się na wyniku powyższym, możemy od razu otrzymać środek ciężkości półkuli. Gdy założymy ON=0, to wypadnie, że środek ciężkości półkulistej bryły leży na promieniu środkowym, a odległość jego od środka wynosi 3 promienia.

Z tego znowu daje się łatwo wywnioskować położenie środka ciężkości ósemki kuli. Po każdej stronie płaszczyzny, przechodzącej przez środek, są położone cztery ósemki, i ich środki ciężkości muszą leżeć w jednakowych odległościach od tej płaszczyzny. W tej samej odległości musi także leżeć ogólny środek ciężkości wszystkich czterech ósemek, a tylko co dowie-3a

dliśmy, że odległość ta wynosi —. Tak więc środek ciężkości o

ósemki kuli leży w odległości 3 promienia od każdej z trzech płaszczyzn granicznych.

	
	
427.    Prz. 1. Następujące wzory określają środek ciężkości i objętość odcinka kuli, którego podstawa leży w odległości z od środka kuli 0:


m(a—z)2(2a+z)







9 (a+z)2

OG=Ą\--—, V= 2a+z

Prz. 2. Gęstość kuli zmienia się jak odwrotność odległości od punktu, położonego na powierzchni; okazać, że odległość środka ciężkości od tego punktu wynosi 2 średnicy.         (Math. Tripos, 1867.)

Prz. 3. Gęstość kuli zmienia się jak odwrotność piątej potęgi odległości od pewnego punktu zewnętrznego. Dowieść, że środek ciężkości takiej kuli leży w środku przecięcia kuli z płaszczyzną biegunową owego punktu zewnętrznego.            (Math. Tripos, 1872.)

	
	
428.    Środek ciężkości części elipsoidy. Pragniemy wyznaczyć środek ciężkości pewnej części elipsoidy, mając środek ciężkości odpowiedniej części kuli; zastosujemy w tym celu dalsze rozwinięcie tej samej metody rzutów, przy pomocy której przechodziliśmy od pól kołowych do pól eliptycznych.





Mówimy, żeśmy utworzyli rzut [x'y'z} punktu (xyz), gdy napiszemy x =axj y=byj z—cz'\ mówimy także, że punkty (xyz) i wyz'} odpowiadają sobie. Bryły V, V’ odpowiadają sobie, jeżeli granice ich zakreślają punkty odpowiednie. Niech (xyz) i (^x y'z'} będą środkami ciężkości brył V, V'; wypa-dnie, że

V= fffdxdijdz=abcfffdx'iiy'dz'=abcV.

W podobny sposób otrzymamy x =ax‘, y=by\ z — cz'.

Z równań powyższych wynika, że stosunek odpowiadających sobie objętości jest stały^ oraz że środek ciężkości jednej odpowiada środkowi ciężkości drugiej.

Można również udowodnić 3), że (1) prostym równoległym odpowiadają równoległe, i (2) stosunek długości odcinków równoległych w rzucie nie ulega zmianie. Stąd wynika, że prawidło dotyczące pól, wyłożone w par. 403, rozciąga się i do brył.

Zasady powyższe zastosujemy do bryły elipsoidalnej. Równanie elipsoidy, posiadającej osi 2a, 2b, 2c, przechodzi w równanie kuli współśrodkowej, gdy podstawimy x = axj y = byj z—cz'. Z tego wynika, że wszystkie twierdzenia rzutowe dają się przenieść z kuli na elipsoidę.

	
	
429.    Prz. 1. Wyznaczyć środek ciężkości wycinka elipsoidy z obrzeżem eliptycznem.





Niech O będzie środkiem elipsoidy a N środkiem obrzeża. W takim razie ON jest średnicą sprzężoną płaszczyzny obrzeża; przypuśćmy, że ta prosta przecina powierzchnię elipsoidy w punkcie C. W par. 426 mieliśmy twierdzenie odpowiednie dla wycinka kuli. Podane tam wartości OG- i V zależą od stosunków odcinków równoległych, można więc przenieść to na elipsoidę. Środek ciężkości G wycinka elipsoidy leży zatem na ON, i wypadnie


OG=3

4




ON+OC

2




ON

V=200Vo-




Prz. 2. Współrzędne środka ciężkości ósemki elipsoidy, zawartej




pomiędzy trzema płaszczyznami sprzęźonemi, są x




3a

8‘




36

8‘




_ 3c z——



Prz. 3. Środek ciężkości i objętość odcinka elipsoidy określają wzory następujące:

oc =3 (+z)2 v_(C-z)2(2c+2)y

• 4 2c+z‘               4c8 10

W tein 2c oznacza średnicę sprzężoną z podstawą odcinka, z rzędną tej płaszczyzny, mierzoną wzdłuż c, i Vo objętość całej elipsoidy.

	
	
430.    Zbudujmy dwie elipsoidy współśrodkowe i współosiowe; pomiędzy niemi powstanie cienka warstwa. Niech (a, b, c) i (a+da,...) oznaczają połowy osi elipsoid a p i p+dp prostopadłe do dwóch płaszczyzn stycznych równoległych. W takim razie t—dp będzie grubością warstwy w jakimkolwiek punkcie. Oznaczmy dalej przez da element powierzchni jednej z elipsoid, a przez dII rzut jego na płaszczyznę xy; wypadnie, że





pz dn=da—.

c2

Prz. 1. Okazać, że rzędna z środka ciężkości jakiejkolwiek części warstwy czyni zadość równaniu z v= c2 ( dI, gdzie V oznacza obję-

J P

tość tej części warstwy.

Prz. 2. Elipsoidy, stanowiące granice warstwy, są podobne, tak że da db dc dp

—=—=—==—; okazać, że z:c—Ildc:V.

a b c p

Gdy dwie płaszczyzny równoległe wycinają część takiej cienkiej warstwy, to środek ciężkości tej części leży na wspólnej średnicy sprzężonej w jednakowych odległościach od płaszczyzn. Par. 428.

Prz. 3. Granicami warstwy są elipsoidy współogniskowe, tak że ada=bdb=cdc=pdp. Dowieść, że

z  ndcf  (  c2\k22  /  c2\)

c    v l    \   a2/ a2   \   b2) b2 ^

gdzie IIk2 i IIk22 są odpowiednio momentami bezwładności II względem osi x i y (425).

Prz. 4. Gęstość warstwy, zawartej pomiędzy elipsoidami współ-środkowemi, podobnemi i położonemi podobnie, zmienia się jak odwrotność sześcianu odległości od punktu, położonego wewnątrz elipsoidy mniejszej; dowieść, że punkt ten jest środkiem ciężkości.

Jeżeli warstwa jest cienka i gęstość zmienia się, jak odwrotność sześcianu odległości od punktu zewnętrznego, to środek ciężkości leży w płaszczyźnie biegunowej owego punktu. Wyznaczyć położenie jego.

(Math. Tripos, 1880).

Przypuśćmy, że warstwa jest cienka, i punkt O.leży w przestrzeni wewnętrznej. Budujemy elementarny stożek z wierzchołkiem w O', wykraje on z warstwy dwie objętości elementarne v i v‘, położone w odległościach r i r' od O. Z właściwości elipsoid podobnych wynika, że — — 7/2. Niech D, D' oznaczają gęstości tych elementów.

u.p

Ponieważ D=,a 1D=/a przeto vDr=v' D'r', t. j. środek ciężkości elementów leży w 0. Stąd daje się łatwo wywnioskować, że w tym samym punkcie leży środek ciężkości całej cienkiej warstwy. Utwórzmy warstwę grubą, łącząc pewną liczbę warstw cienkich; z powyższego wynika, że środek ciężkości takiej grubej warstwy leży także w 0.

Niech teraz 0 będzie punktem zewnętrznym, i przypuśćmy, że stożek elementarny, wychodzący z 0, przecina płaszczyznę biegunową tego punktu w odległości p od 0. Biorąc pod uwagę, że p jest średnią harmoniczną odległości r i r', znajdziemy z łatwością, że vDr+v' D'r' = =(vD+v‘ D‘)p, czyli że środek ciężkości objętości elementarnych v i v‘ leży w płaszczyźnie biegunowej punktu 0; stąd zaś wynika, że środek ciężkości całej warstwy leży w tejże płaszczyźnie.

	
	
431.    Środki ciężkości brył i powierzchni wogóle. Wzory zasadnicze dla wszystkich przypadków znaleźliśmy już w par. 380, a mianowicie:





_ Zma     _ Zmy     _ Zmz

"=Zm‘   "=Em‘   5xm

Różnice, które mamy wskazać, zachodzą jedynie w wyborze elementu m.

Wyznaczmy naprzód środek ciężkości bryły. Jeżeli mamy stosować współrzędne Kartezyusza, to obieramy m = dxdydz i zastępujemy Z znakiem potrójnego całkowania. A więc będzie

fff dxdydz . x     . JJJ dxdydz. y     - JJJ dxdydz . z

fffdxdydz ‘    9 fffdxdydz ‘    Z fffdxdydz

Wzory te są oczywiście ważne i dla ukośnokątnego układu współrzędnych.

Stosując współrzędne biegunowe bierzemy

	
m = rd^ . dr . r si n 3 de, oraz x=rsin 8 cos ©, y = rsin S sin«, z=rcos9 i stawiamy zamiast Z całkę potrójną; uzasadnienie tych związków można znaleźć w podręcznikach rachunku całkowego. Wypadnie



	
	
—    fff rs sm2 ^ cos ^drd^d^        JJJr3sin29sinq drd 8 dep "     fff r2 sin 9 dr dSdp ‘     9     fff r2sin 8 dr dde   ‘ fff rsinJ cos 9 dr do de fff r2 sin ^ dr d^d^





Przy współrzędnych cylindrycznych bierzemy m=pd« . dpdz, a także x=pcose, y=psin e. Wypadnie

	
	
—    fff p2cosedodp dz    _ fff p2 sin « dedp dz "F fffpd^dpdz ‘         fffpd^dpdz





— JJpzdedpdz fffp^dpdz ’

	
Jeżeli wreszcie x, y, z są danerni funkcyami trzech zmiennych pomocniczych u, v, w, to możemy zastosować wyznacznik Jakobiego, jak w par. 411. Otrzymamy wówczas m — Jdududiv. 432.    Aby wyznaczyć środek ciężkości powierzchnią obieramy przedewszystkiem element m stosownie do rodzaju współrzędnych, który mamy stosować.



Jeżeli równanie powierzchni jest dane w postaci z— f(x, y\ to tworzymy rzut elementu powierzchni na płaszczyznę xy. Pole tego rzutu będzie dxdy. Niech a, 3, Y będą kątami kierunkowymi normalnej do tego elementu; w takim razie pole elementu wynosi sec 7 dxdy. Taką wartość posiada w tym razie element m, i wypadnie

„_Jsecidxdy.x - =f/sec^dxdiL^ ; t d ffsecydxdy ‘ J ffsecydxdy

Z równania normalnej wynika, że

1    /   /d22 idz^]1'^ Sec=--=1-— + — ( . COS l    \dxl   \dy / )

Jeżeli równanie powierzchni jest dane' we współrzędnych cylindrycznych z=f(p, «), to w podobny sposób znajdziemy f /    1 dz\2 / dz 2,1/, m=eded (1*dp) +y).

Gdy wreszcie mamy równanie powierzchni we współrzędnych biegunowych r=f(^, «), to

(idr\^           idr\^               ‘/2 m=rdSdo— + sin?9 — + r2 sin29 " .

Odr/                           )

	
433.    W pewnych razach dogodniej jest rozcinać bryłę na elementy większe; należy zwłaszcza, gdzie tylko można, obierać za elementy cienkie warstwy, których objętości i środki ciężkości są już znane. Dajmy np. na to, że chodzi o wyznaczenie współrzędnej x dla pewnej bryły. Za element obieramy cienką warstwę bryły, zawartą pomiędzy dwiema płaszczyznami pro-stopadłemi do osi x. Jeżeli granicę tej warstwy stanowi elipsa, trójkąt lub jakaś inna figura, której pole A jest znane, to możemy zastosować wzór



—_fAdx. x "F fAdx ’

Mamy tu całki pojedyńcze zamiast całek potrójnych. Jeżeli znamy nietylko pole A, ale i środek ciężkości warstwy, to możemy przy wyznaczaniu y i z korzystać z tych samych elementów.

Weżmy jeszcze dla przykładu bryłę niejednorodną. Zamiast wyżej wzmiankowanej warstwy płaskiej możemy tu obrać jakąś warstwę inną, ale w całej rozciągłości jednorodną. Jeżeli mamy masę i środek ciężkości takiej warstwy, to całkowanie pojedyńcze wystarczy do wyznaczenia środka ciężkości całej bryły.

	
434.    Prz. 1. Wyznaczyć środek ciężkości ósemki bryły

[image: ]





Ze względu na symetryę dostatecznie będzie wyznaczyć z, i oczywiście uprościmy zagadnienie, uwalniając równanie od a, b, c; zakładamy w tym celu x—ax', y—by1, z=cz' (428).

[image: ]



Za element obieramy warstwę płaską, równoległą do płaszczyzny xy, a do tego potrzeba mieć pole A przekroju PMQ. Pole to będzie

1

A—f y' dx'=f (1 — z,n—x'n)ndx'.

1

Granicami całkowania są tu O i (1 — z’n)n.

Fig. 122.         Podstawiając x‘=(1—z'n)£, sprowadzimy to do

A=(1—z’)— (1-6)"6"   d6=(1—z‘")n B. n •

Granicami całkowania są tu O i 1, a zatem B można wyrazić, jeżeli potrzeba, w funkcyach gamma.

Dalej znajdziemy

z - SAdA.z' fA~z,ny dz’.z’             ,

— =-----=-------od z—0 do z =1.

° JAdZ JA-^nYdz'

	
1                                                           .



Zakładając Z" =5 oraz — = m, sprowadzimy to wyrażenie do

z J(1-6)762" 1dE_T(2m+1)r(2m) T(3m+1) c /(1-g2mem-ldĘ P(4m+1) T(2m+1)P(m)

Stosując związek F(x+1)=xT(x), otrzymamy z 3 T(2m)T(3m) , .       1 — = —---, gdzie m=—. c   4 T(m)T(4m)           n

Prz. 2. Wyznaczyć środek ciężkości półkuli, w której gęstość zmienia się, jak n—ta potęga odległości od środka.

Cienka półkuli sta warstwa posiada w tym razie gęstość stałą; znamy objętość oraz środek ciężkości takiej warstwy, a więc obieramy ją za element. Osiągniemy tu jeszcze i inną korzyść, a mianowicie granice będą stałe, bo warstwa skrajna bryły jest jednorodna.

Promień środkowy półkuli obieramy za oś z, i niech (r, r+dr) będą promieniami pewnej warstwy, a jej gęstość D=ur". W takim razie


m=2Kr2dr. p.r", padnie więc



a według par. 422 rzędna środka ciężkości- Wy-

2


n+3 a"+4—b"+4




n—4 an+^_bn^



Całkowaliśmy tu w granicach od r=b do r=a, a więc znaleźliśmy środek ciężkości warstwy półkulistej grubości skończonej; promienie wewnętrzny i zewnętrzny są tu odpowiednio równe b i a. Dla półkuli a n—3

pełnej będzie 6=0 Jeżeli n+3 jest dodatnie, to z— 2 n+q’ w innych przypadkach z—Q. Jeżeli n—3, albo n+4, jest zerem, to całkowanie prowadzi do postaci logarytmicznych, ale z jest w każdym razie zerem.

Prz. 3. Gęstość w ósemce elipsoidy zmienia się, jak kwadrat od-5c a2+b2+2c2 ległosci od środka; okazać, że z— —-----—.

8                                16 a2+b2Ą-c2

435 Dwa twierdzenia Langrange’a. De/inicya. Gdy pomnożymy masę cząsteczki przez kwadrat odległości od danego punktu 0, to iloczyn nazywa się momentem bezwładności cząsteczki względem punktu 0. Moment bezwładności układu cząsteczek jest sumą momentów bezwładności cząsteczek poszczególnych.

	
	
436.    Pierwsze twierdzenie Lagrangea. Moment bezwładności układu cząsteczek względem punktu O, składa się z dwóch części; jedna z nich jest równa momentowi bezwładności układu względem środka ciężkości, a druga momentowi bezwładności, który by posiadał układ względem O, gdyby masę jego skoncentrować w środku ciężkości.





Dajmy na to, że cząsteczki m,, m, .... są położone w punktach A1, A, ...., posiadających współrzędne (x, y, z,), (x, J2 Z,) .... w odniesieniu do 0, jako do początku. Niech-x, y, z, oznaczają współrzędne środka ciężkości G, i załóżmy x = x + x\ J=y+y‘, z=z+z‘. W takim razie

Z(m . OA2) — ^m !(x +2)2 + (J+ u')2 + (z +2)3]

= Em . OG2 + 222ma‘ + 2[Zmy‘ + ^Thmz1 + z (m GA?).

Początkiem współrzędnych kreskowanych jest środek ciężkości, a zatem Zmx‘=0, Zmy‘=0, 'Lmz' — Q, i

Z(m. OA2)=^M. GOA^m. GA2) . . . . (A), gdzie M — ^m. Równanie to wyraża twierdzenie Lagrange’a w postaci analitycznej.

Zaznaczamy, że moment bezwładności ciała względem punktu 0 jest najmniejszy wtedy, gdy 0 jest środkiem ciężkości.

W dynamice ciał sztywnych potrzebne bywa pewne ważne uogólnienie twierdzenia powyższego. Dowodzi się lam, że jeżeli f(x, y, z) jest jakąkolwiek funkcyą drugiego stopnia współrzędnych cząsteczki, to

Xmf(x, y, z) — Jff(x, y, z) + ^m[(x\ y\ z').

	
	
437.    Drugie twierdzenie Lagrange’a. Niechaj m, m oznaczają masy jakichkolwiek dwóch cząsteczek, i AA' odległość pomiędzy niemi; w takim razie twierdzenie daje się analitycznie wyrazić tak:





^(mm'. AA‘?)=ME(m. GA2).....(B).

Suma iloczynów mas, wziętych po dwie, oraz kwadratu odległości pomiędzy niemi jest równa iloczynowi z całej masy przez moment bezwładności względem środka ciężkości.

Można to łatwo wyprowadzić z pierwszego twierdzenia La-grange’a. Według (A) mamy

Em, OA2=M . OG2 + ^mo GA2, gdzie X oznacza sumowanie dla wszystkich wartości a. Punkt 0 można obierać dowolnie, umieszczamy więc go po kolei w A1, A2...., i tym sposobem wypadnie

Z/n^A^^2 = M . ArG2 + ^mo GA^,

^m A2A2 —M.A2G2 + ^m GAr2

Mnożąc równania te odpowiednio przez m,, m2 .... i dodając ilo-czyny, otrzymamy

.   ^mam^A^Aa2 = M^m^A^G2 + Emg . 'Lm^GA^.

Po lewej stronie Z oznacza sumowanie dla wszystkich wartości zarówno a jak i 3, a zatem każdy wyraz wystąpi dwa razy, raz w postaci m^ma. A^Aa2, a drugi raz w postaci mam^ . AAg2. Jeżeli pragniemy, aby każdy wyraz wchodził tylko raz, to mu-simy wziąć połowę prawej strony. Obydwa wyrazy są tam jednakowe, a zatem

Zm,mą . A,A92 = MEm, • GA,?.

	
	
438.    Prz. Niechaj symbol [ABC oznacza pole trójkąta, który powstanie, gdy połączymy trzy punkty A, B, C; podobnież oznaczmy przez [ABCD\ objętość czworościanu, który powstanie, gdy połączymy cztery punkty A, B, C, D. Przy pomocy takich samych symbolów możemy rozciągnąć wyrażenia analityczne pól i objętości do dowolnej liczby punktów. Otrzymamy wówczas następujące rozszerzenia twierdzeń Lagrange‘a:





Sm OA 2=M.0G2+2m GA 2 a a                a a Em m>[0A AA2=M^m \OGA ]2+^m mAGA A,12 a 3- a 3        0.     0 a 3 a 3-

Sm mom [OA AaA 12=M2m mAOGA A,12+2m mom [GA APA 12 & 3-03     a >- a 3 a 3 Y a 3 {

m m0A AA—M^m GA 2 0 3 a 3          a a hm mam [A APA ]2=Mhm mAGA AA2

hm mom m,[A A0A AA2=Mhm mom [GA A0A. ]2 & 3YO03Y0    0    a > Y

W każdej z tych seryi równanie pierwsze jest tylko powtórzeniem odnośnego równania Lagrange’a, równania pozostałe podał Franklin. (American Journal of Mathematics, 1888.)

	
	
*439. Zastosowania geometryczne. Przy wykrywaniu nowych twierdzeń geometrycznych może nieraz przyjść nam z pomocą okoliczność, że każde ciało posiada tylko jeden środek ciężkości. Metoda ogólna daje się opisać w kilku słowach. W pewnych punktach figury umieszczamy stosownie dobrane ciężary; łącząc je różnymi sposobami, otrzymamy różne kon-strukcye środka ciężkości. Wszystkie te konstrukcye muszą prowadzić do jednego i tego samego punktu. Podajemy niżej kilka przykładów.





Prz. 1. Proste, łączące środki przeciwległych boków czworokąta oraz prosta, łącząca środki przekątni, przechodzą przez jeden punkt, punkt ten jest środkiem każdego z trzech odcinków.

(Coli. Exam.)

Prz. 2. Środek ciężkości czterech jednakowych cząsteczek, położonych w tej samej płaszczyźnie, jest środkiem stożkowej, która dzieli na pół odcinki, łączące te punkty.                         (Caius Coli.)

Jeżeli punkt nie jest środkiem stożkowej, to ma w nim środek tylko jedna cięciwa tej stożkowej. Lecz w środku ciężkości, według przykładu poprzedzającego, dzielą się na pół trzy cięciwy, a więc jest on środkiem stożkowej.

Prz. 3. Przez każdą krawędź czworościanu poprowadzono płaszczyznę dwusieczną odnośnego kąta dwuściennego, przecinającą krawędź przeciwległą. Okazać, że proste, łączące tak określone punkty krawędzi przeciwległych, schodzą się w jednym punkcie.

(St. John’s Coli., 1879.)

Umieszczamy w wierzchołkach ciężary, proporcyonalne do pól ścian przeciwległych. Środek ciężkości tych czterech ciężarów leży na każdej ze wzmiankowanych prostych.

	
440. Twierdzenia o środku ciężkości mogą być użyteczne jeszcze pod innym względem. Przychodzą one z pomocą pamięci, gdy pragniemy przypomnieć sobie związki, które istnieją pomiędzy pewnymi punktami, często spotykanymi w figurach geometrycznych, a innymi punktami lub liniami konstrukcyi. Tak np., jeżeli zapamiętaliśmy przykład 1, to możemy od razu wyznaczyć odległość środka stożkowej wpisanej od dowolnej prostej, biorąc tylko momenty względem tej prostej.



Prz. 1. Stożkowa, wpisana w trójkąt odniesienia, posiada równanie powierzchniowe Vix + V my+ Vnz = 0. Okazać, że środek tej stożkowej jest środkiem ciężkości trzech cząsteczek, których ciężary są proporcyonalne do l, m, n, i które leżą w środkach boków. Punkt ten jest również środkiem ciężkości trzech cząsteczek, których ciężary są proporcyonalne do m+n, n+l, l+m, i które leżą albo w punktach zetknięcia albo w wierzchołkach trójkąta.

Przypuśćmy, że stożkowa styka się z bokami w D, E, F; w takim razie D i E dzielą boki BC i AC w stosunkach m:n i l:n. Umieśćmy w A, B, O takie ciężary §, m, %, aby ich środek ciężkości leżał w środku stożkowej. Ciężary 6 i m są odpowiednio równoważne z ciężarami ^(Z+n) . n(m+n) .

---i---, położonymi w E i D, wraz pewnym ciężarem, umiesz-n           ii

czonym w C (par. 79). Lecz prosta, łącząca C ze środkiem 0 dzieli na pół odcinek DE, a więc biorąc momenty względem CO, znajdziemy że ciężary w D i E muszą być równe. Z tego wynika, że § i n są pro-porcyonalne do m+n i n+l.

Jeżeli stożkowa jest parabolą, to l+m+n=0, gdyż ciężary muszą się sprowadzać do pary sił, a zatem nieskończenie odległy koniec osi, lub nieskończenie odległe ognisko, jest środkiem ciężkości ciężarów Z, m, n, położonych w wierzchołkach A, B, G. Ponieważ iloczyny odległości ognisk od wszystkich stycznych są równe, przeto ognisko bliż-a2     62    c2 sze jest środkiem ciężkości ciężarów —,  —, —■, umieszczonych Z   m   n

w wierzchołkach.

Prz. 2. Stożkowa, opisana na trójkącie, posiada równanie powierzchniowe lyz+mzx+nxy=O. Okazać, że jej środek jest środkiem ciężkości sześciu ciężarów, a mianowicie ciężarów 12, m2, n2, umieszczonych w wierzchołkach, oraz ciężarów — 2mn,— 2nl,—2lm, umieszczonych w środkach boków.


stosować

Prz




441. Udowodniając właściwości geometryczne, możemy również




twierdzenia o rozkładaniu i dodawaniu sił.

1. Z wierzchołka D czworościanu poprowadzono prostą,




tworzącą równe kąty 8 z krawędziami DA, DB, DC;

AE

płaszczyznę ABC w punkcie E. Okazać że stosunki AB proporcyonalne do synusów kątów BEC, CE A, AED.







3cos8




przetnie ona

BE CE

—,   są

BD CD

Okazać prócz




ED



Prz. 2. Przeciwległe boki czworokąta AB CD przecinają się w X iy. Okazać, że dwusieczne kątów X, Y, dwusieczne kątów B, D i wreszcie dwusieczne kątów A, C przecinają się na linii prostej; wypada tu poczynić pewne zastrzeżenia, które pary dwusiecznych brać należy (Fig. 29).                                               (Math. Tripos, 1882.)

Przykładamy na bokach czworokąta cztery siły równe i wyznaczamy wypadkową, dodając je po dwie różnymi sposobami.

Prz. 3. Dowieść w drodze rozważań mechanicznych, że miejscem geometrycznem środków elips, wpisanych w czworobok, jest prosta, łącząca środki dwóch przekątni.                         (Coli. Exam.)

Niech litery A, B, C, D oznaczają kolejne wierzchołki. Na AB, AD, CB, CD przykładamy siły, proporcyonalne do tych boków. Uważajmy prócz tego, że odcinki boków od wierzchołka do przyległych punktów zetknięcia wyobrażają siły; wypadkowa takich dwóch sił przechodzi przez środek elipsy. Lecz osiem takich sił daje razem cztery siły AB, AD, CB, CD, a więc i wypadkowa tych ostatnich przechodzi przez środek. Lecz wypadkowa sił AB, AD, jak również wypadkowa sił CB, CD przechodzą przez środek przekątni BD. Wypadkowa przechodzi także przez środek drugiej przekątni.

Prz. 4 Przeciwległe boki czworoboku ABCD (fig. 29) przecinają się w punktach X i Y. Dowieść, że stosunek odległości punktów X, Y od przekątni AC jest równy stosunkowi odległości od przekątni BD. Prócz tego dowieść, że każdy z tych stosunków jest równy stosunkowi AB. CD sin Y do AD. BCsin X.

ROZDZIAŁ X.

O SZNURACH.

	
442.    Łańcuchowa. Sznury, o których będzie mowa w rozdziale niniejszym, mają być według założenia doskonale wiotkie. Rozumiemy przez to, że całkowite działanie, przenoszone przez każdy przekrój sznura, składa się z jednej siły, i linią działania tej siły jest styczna do linii sznura. Każdy przekrój normalny ma być tak mały, aby sznur można było uważać za linię krzywą, a zatem mamy prawo mówić o stycznej lub o płaszczyźnie ściśle stycznej.



Całkowite działanie w przekroju sznura nazywamy naprężeniem; będziemy je oznaczali literą T. W teoryi siła ta może być dodatnia lub ujemna, lecz jest rzeczą oczywistą, że w rzeczywistości sznur może tylko ciągnąć. Naprężeniu przypisujemy znak dodatni, gdy wywiera ono na pewien przedmiot ciągnienie zamiast pchania.

Ciężar elementu długości ds wyrażamy przez wds. W sznurze jednorodnym w jest ciężarem jednostki długości. Jeżeli sznur nie jest jednorodny, to iv oznacza ciężar jednostki długości pewnego sznura wyobrażalnego; każdy element ds tego sznura wy-obrażalnego jest podobny i równy rozważanemu elementowi ds sznura danego.

	
443.    Ciężki sznur jednorodny jest zawieszony w danych punktach A, B i pozostaje w równowadze w płaszczyźnie pionowej. Mamy znaleźć równanie krzywej, którą sznur tworzy. Krzywą tę nazywamy łańcuchową lub katenoidą pospolitą4).



Niechaj C oznacza najniższy punkt łańcuchowej, t. j. ten punkt, w którym styczna ma kierunek poziomy. Bierzemy za oś x poziomą prostą Ox, której odległość od C będziemy mogli następnie obrać według uznania. Prowadzimy prostą CO prostopadle do 0x i obieramy punkt 0 za początek układu. Oznaczamy dalej przez • kąt, który styczna w jakimś punkcie P tworzy z 0x, przez To, T naprężenia w C^ P i przez s łuk CP. Na fig. 123 umieszczono oś x, która ma następnie wyobrażać kierownicę, bliżej krzywej, niż być powinno; uczyniono tak dla zaoszczędzenia miejsca.

Część CP sznura pozostaje w równowadze pod działaniem trzech sił, a mianowicie naprężeń T i T, działających w C i P w kierunkach strzałek, oraz ciężaru tej części ws, przyłożonego w środku ciężkości G łuku CP.

Biorąc rzuty na kierunek poziomy i pionowy, otrzymamy

Tcost=  ........(1),

Tsinp = ws........(2) Dzielimy następnie drugie z tych równań przez pierwsze. Wypad nie

dy , , ws

detnt-7,()

Jeżeli sznur jest jednorodny, to iv jest stałe, i w tym razie dogodnie jest założyć T = wc. Aby otrzymać krzywą należy całkować równanie (3). Otrzymamy

/ds\2       /da\2 c2 — = 1 + — =1+5,

sds                        _____ skąd        dy=-—===== i ij + A^ — 1 s2+c2.

	
V s2 + c2

[image: ]





Wypada pozostawić tylko znak górny, bo z (3) widać, że y wzrasta, gdy wzrasta x i s. Gdy s=0, to y + A = c. Obieramy oś x o c niżej od najniższego punktu sznura C; z powyższego wynika, że w takim razie A = O. Równanie przybiera teraz postać

y2 — s2 + c2........(4).

Podstawiając taką wartość y w (3), znajdziemy


cds

V s2 + c2




= dx,



gdzie pierwiastek jest dodatni. Całka będzie

clog (s + Vs2 + c2) = x + B.

Lecz x i s znikają jednocześnie, a zatem B=clogc.

X

Z równania tego wypadnie Vs2 + c2 + s = cec. Bierzemy odwrotność i uwalniamy mianownik w sposób znany od pier-

X wiastka; wówczas będzie Vs2+c2— s — ce c.

Dodając i odejmując dwa równania ostatnie, otrzymamy przy pomocy (4)

x      C. / T     C

c c       Cc    C

e te /; S=gle - € / • • • • (5)

Pierwsze z tych równań jest równaniem katenoidy pospolitej we współrzędnych Kartezyusza. Prosta, którą obraliśmy za oś x, nazywa się kierownicą^ oś y osią łańcuchowej i punkt G wierzchołkiem.

Podnosimy jeszcze (1) i (2) do kwadratu i dodajemy; przy pomocy (4) otrzymamy

T2 = w2 (s2 + c2) = w2y2, skąd                       T= wy.........(6).

Równania (1) i (2) wyrażają dwie ważne właściwości krzywej: (1) naprężenie poziome jest we wszystkich punktach krzywej jednakowe i równe wc, (2) naprężenie pionowe w dowolnym punkcie P jest równe ws, gdzie s oznacza długość łuku od wierzchołka do P. Dodajemy do tego jeszcze trzecią właściwość łańcuchowej, zawartą w równaniu (6), a mianowicie: (3) naprężenie wypadkowe w każdym punkcie jest równe wy, gdzie y jest rzędną, mierzoną od kierownicy.

	
	
444.    Jeżeli PN oznacza rzędną punktu P (fig. 123), to T—w.PN. Poprowadźmy prostą NL prostopadle do stycznej w P; widzimy, że kąt PPL = ^, a na zasadzie (2) i (1).





PL^PN. sin*=s, NL = PN. cos P = c.

Te dwie właściwości geometryczne krzywej można byłoby również wyprowadzić z jej równania (5).

Różniczkując (3), otrzymamy

1    d^ 1            c              — —— —=—, czyli ==9,  • • • • Vł cos‘$   ds   c           COS"

Z trójkąta prostokątnego PNH wypada łatwo, że długość normalnej od krzywej do kierownicy, czyli PH, jest równa promieniowi krzywizny p w punkcie P.

Zwracamy uwagę, że wszystkie te równania zawierają tylko jedną stałą nieokreśloną c; gdy stała ta jest dana, to kształt krzywej jest całkowicie określony. Położenie krzywej w przestrzeni zależy od położenia dwóch prostych, zwanych kierownicą i osią. Stała c zowie się parametrem łańcuchowej. O dwóch łąkach katenoid, posiadających parametry jednakowe, mówimy, że należą do katenoid równych.

Według (7) pcos2^ = c, a zatem parametr c jest mały lub duży stosownie do tego, czy linia w okolicach wierzchołka jest silnie skrzywiona, czy słabo. Jeżeli np. sznur jest uwiązany w punktach A i B, położonych na jednym poziomie, to c będzie duże lub małe w porównaniu z odległością AB stosownie do tego, czy sznur jest wyprężony, czy luźny.

Można zawsze łatwo przypomnieć sobie związki, zachodzące w łańcuchowej pospolitej pomiędzy g, s, c, p, 1 i T, uciekając się do figury PLNH. Mamy tam PN—y, PL—s, NL=c, PH=ę. T—w. PN, i wreszcie kąt LNP, a także NPH, są równe 1. Tym sposobem ważne związki (1), (2), (3), (4) i (7) wynikają bezpośrednio ze zwykłych właściwości trójkąta prostokątnego.

	
	
445.    Weźmy dowolny łuk łańcuchowej AB. Trzy siły, a mianowicie naprężenia w A i B oraz ciężar części AB, są w równowadze, a zatem linie działania tych sił muszą schodzić się w jednym punkcie. Tak więc środek ciężkości G łuku leży pionowo nad przecięciem stycznych krańcowych tego łuku. Mamy tu dowód statyczny jednej części twierdzenia ogólniejszego, podanego w par. 399, prz. 1; dowiedliśmy tam jeszcze, że rzędna środka ciężkości wynosi połowę rzędnej punktu przecięcia normalnych krańcowych.


	
446.    Prz. 1. Okazać, że, jeżeli sznur ciężki nie jest pionowy, to nie można zapomocą sił przyłożonych w końcach, wyciągnąć go tak, aby utworzył linię dokładnie prostą.





Dajmy na to, że sznur tworzy prostą, nachyloną do poziomu pod kątem 1, i niech W oznacza jego wagę. Gdy rozłożymy W w kierunku sznura i w kierunku prostopadłym, to wypadnie Wcost=0, a zatem kąt • musi być prosty. Dowód len nie wymaga jednorodności sznura.

Prz. 2. Sznur, umocowany w punktach A i B, nie leżących na jednym pionie, tworzy linię prawie prostą. Okazać, że c jest bardzo wielkie.

Niechaj V i •‘ oznaczają nachylenia stycznych w A i B, a l długość sznura. W takim razie l=s— s‘=c(tany— tany’). Lecz • i V’ są prawie równe, zatem c jest duże w porównaniu z l.

Prz. 3. Koniec A ciężkiego jednorodnego sznura AB o długości l jest umocowany nieruchomo, a na drugi koniec B działa siła pozioma F—wa. Okazać, że odległości pozioma i pionowa pomiędzy punktami

A i B wynoszą odpowiednio alog--i Vl2+a2— a.

a

Prz. 4. Końce A i B ciężkiego sznura o długości 2Z są przywiązane do obrączek, nawleczonych na nieruchomy drążek poziomy, i na każdą obrączkę działa siła pozioma F—wl. Dowieść, że odległość pomiędzy obrączkami wynosi 2llog(1+ V2).

Prz. 5. Za zmienną niezależną obieramy nachylenie 1 stycznej do łańcuchowej w punkcie P. Okazać, że w takim razie

/ T     d \          c                             c x=clog tan ( — 4- — , J=----, s=ctan^, P=——,

\4   2/     COS                COS"

x=x— etan —, ij=—---— ccol’ ,

\cos. 7 gdzie x i y oznaczają współrzędne środka ciężkości łuku, zawartego pomiędzy wierzchołkiem i punktem P.

	
	
447.    Gdy znamy położenie punktów zawieszenia A i B, a także długość sznura lub łańcucha, to możemy utworzyć dostateczną liczbę równań do wyznaczenia paramatru c katenoidy oraz położeń jej kierownicy i osi.





Za początek współrzędnych obieramy punkt A, a za osi współrzędnych prostą poziomą i pionową. Niech (h, k) będą współrzędnemi punktu B w odniesieniu do A, a l długością sznura AB. Te trzy wielkości są dane. Niech dalej (x, y) i (x+h, y+k) będą współrzędnemi punktów A i B w odniesieniu do kierownicy i osi łańcuchowej; w takim razie x, y, c są wielkościami szukanemi. Według par. 443


y=S\e+e



x\ / a +h    x+h

c), y+k=-^\e c+e c ,


U).



Długość l jest różnicą algebraiczną łuków CA i CB, a zatem według wzmiankowanego paragrafu

[image: ]




(B).
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Jeżeli C leży pomiędzy A i B, to x jest ujemne. Te trzy równania wystarczają do wyznaczenia x, y i c, ale nie można ich rozwiązać w postaci skończonej. Niewiadome x i y dają się wyrugować w sposób następu-x h

jący. Zakładając u=ec, v=ec, otrzymamy z (A) i (B)

[image: ]




(C).



Zaznaczamy, że v zawiera tylko jedną niewiadomą c, bo h jest dane.

Aby wyrugować u podnosimy te równania do kwadratu i odejmujemy; wypadnie ostatecznie

h h \

_ c26-e 20).......(D).

Jest to zgodne z równaniem, które podał Poisson w Traite de Meca-nique.

Z równania powyższego trzeba wyznaczyć c. Wypadną dwie rzeczywiste wartości skończone, liczbowo równe, lecz różniące się w znakach. Przy c ujemnem y jest ujemne, a więc ujemna wartość c odpowiada łańcuchowej, zwróconej wypukłością do góry. Należy oczywiście wziąć dla c wartość dodatnią.

Aby przeprowadzić analizę równania (D), zakładamy c—— i na-

T dajemy mu postać

...........................

gdzie a2—l2—k2, i 2m=h. Obydwie te wielkości a i m są dodatnie, a ponieważ długość sznura l musi być większa niż odległość pomiędzy punktami zawieszenia, przeto znajdziemy, że a jest większe od 2m. Różniczkując, otrzymamy

dz_m(emT+e-mr)-a.

dy

dz

Gdy 1=0, to — jest ujemne, a więc gdy Y wzrasta, poczynając od zera, dy

to z jest z początku równe zeru, następnie staje się ujemnem i wreszcie dodatniem dla dużych wartości . Z tego wynika, że istnieje tam pewna wartość, Y powiedzmy q—i, przy której z=0. Gdyby istniała dz

jeszcze druga, np. 1= i', to pochodna — znikałaby dwa razy, raz po-d między 1=0 i Y= i i drugi raz pomiędzy r=i i ^—i'. Okażemy, że jest to niemożliwe.

Różniczkując po raz drugi, otrzymamy

d2z (M —

——mn2 e—e ).

dz

Pochodna ta jest dodatnia, gdyjest większe od zera, a zatem — wzra-dy

sta, poczynając od wartości 2m— a, gdy Y wzrasta, poczynając od y=0. Z tego wynika, że pierwsza pochodna nie może znikać dwa razy, gdy Y pozostaje dodatniem, a więc równanie daje tylko jedną wartość dodatnią niewiadomej c.

Gdy wyznaczymy tę jedyną wartość c z równania (D), to dodając do siebie równania (C), otrzymamy proste równanie do wyznaczenia u. Tym sposobem znajdziemy tylko jedną wartość rzeczywistą dla x; wreszcie pierwsze z równań (A) da nam wartość niewiadomej y. Wszystko to prowadzi do wniosku, że istnieje tylko jedno położenie równowagi sznura, zawieszonego w dwóch punktach nieruchomych.

Statyka. 23

Równanie (D) daje się rozwiązać w sposób przybliżony, gdy h .

— jest tak małe, że możemy rozwinąć funkcye wykładnicze w szeregi

i zatrzymać tylko najniższe potęgi —, nie znikające same przez się.

Przypadek taki zachodzi wtedy, gdy c jest duże, czyli gdy sznur jest silnie wyprężony, ale w tych razach dogodniej będzie podjąć całe zagadnienie od początku, zamiast uciekać się do równania (D) lub (E).

	
	
448.    Prz. 1. Końce sznura jednorodnego umocowano w punktach A i B, położonych na jednym poziomie. Odległość h pomiędzy tymi punktami jest prawie równa długości sznura Z; wyznaczyć parametr łańcuchowej.





Z fig. 123 widać, że S=9 i z= —, a zatem na zasadzie drugiego

z równań (5) par. 443 będzie

Równanie to określa parametr c dla wszelkich wartości li i Z. h

Jeżeli h i Z są prawie równe, to —, jak wiemy z par. 446, prz. 2, jest c małe, rozwijamy więc funkcye wykładnicze i zatrzymujemy jedynie h najniższe nieznikające potęgi —; wypadnie

13 c2=---.

24 (Z -h)

Sznur, który tu rozważamy, jest prawic poziomy, a więc we wszystkich elementach panują prawie równe naprężenia. Jeżeli sznur jest nieco sprężysty, i wydłużenie każdego elementu jest pewną funk-cyą naprężenia, to pozostanie on jednorodnym i po rozciągnięciu; powstanie łańcuchowa, której parametr wyznaczymy z tego samego wzoru, uważając Z za długość sznura rozciągniętego.

Pragnąc skorzystać ze wzoru powyższego, musimy zmierzyć długość sznura Z oraz odległość pomiędzy punktami zawieszenia A i B. Lecz pomiary nie dadzą się wykonać bez pewnych błędów, i konieczną jest rzeczą umieć ocenić wpływ tych błędów, aby można było stosować wzór poprawnie. Biorąc różniczki logarytmiczne otrzymamy

2 Sc  38h   ± 8l ±h

c h l—h

W równaniu tern S/z i SZ oznaczają błędy, które popełniliśmy, mierząc h i Z. Widzimy, że błąd, tkwiący w otrzymanem c, może stanowić znaczną część tej wielkości, jeżeli h lub Z—h jest małe. W danym wypadku Z — h jest małe, a zatem należy tak urządzić pomiary, aby błąd, tkwiący w Z—h, był mały w stosunku do małej wielkości l—h, natomiast dokładność pomiaru h jest wystarczająca, jeżeli stosunek błędu do h, t. j. do wielkości daleko większej, zawiera się w takich samych granicach. Pomiar różnicy Z—h powinien być dokonany z większą dokładnością, niż pomiar odległości h.

Przypuśćmy dla przykładu, że h=30m i l=31 m, przyczem możliwe błędy, popełnione przy pomiarach, nie przekraczają jednej tysiącznej części wielkości mierzonej. Z wzoru znajdziemy, że c—33,5 m, ale możliwy błąd wynosi aż trzydziestą część tej wielkości.

Prz. 2. Jednorodny łańcuch mierniczy o długości l rozciągnięto nad rzeką; środek jego dotyka powierzchni wody, a końce są umocowane na samych brzegach na wysokości k nad poziomem wody. Okazać, że różnica pomiędzy długością łańcucha i szerokością rzeki wy-8k2

nosi w przybliżeniu 31°

Prz. 3. Ciężki sznur o długości 2/ jest zawieszony u punktów A i B, położonych na jednym poziomie; odległość pomiędzy tymi punktami wynosi 2a. Na sznur jest nawleczony pierścień, ważący W; wyznaczyć parametr łańcuchowej i położenie równowagi pierścienia.

Oczywiście pierścień będzie w równowadze w najniższym punkcie D sznura, a BD i AD są rów-nemi częściami łańcuchowej. Przypuśćmy, że C jest wierzchołkiem łańcuchowej BD, a OCi 0x jej osią i kierownicą. Oznaczmy jeszcze przez x odciętą punktu D. Ponie-waż l jest różnicą łuków OB i CD, przeto
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Fig. 125.
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(1)



Pierścień podtrzymują dwa naprężenia pionowe sznura w punkcie D, a zatem

W-2we c -e


(2).



2

Równania (1) i (2) określają x i c; można następnie wyznaczyć rzędne punktów D i B, a więc i głębokość D pod AB.

Jeżeli ciężar pierścienia znacznie przewyższa ciężar sznura, to każda część sznura jest prawie wyprostowana. W takim razie — jest c

małe, ale — nie koniecznie musi być małem, bo C może leżeć w znacznej odległości od D. Rozwijamy wyrazy, zawierające wykładnik

—, i rugujemy wyrazy, zawierające —; otrzymamy w przybliżeniu

Wa c—------------.

2w Vl2—a2

Jeżeli przyczepimy ciężar W nie w środku sznura, lecz w jakimkolwiek punkcie D, to części AD i BD znowu utworzą łańcuchowe, i położenia tych krzywych dadzą się wyznaczyć w sposób podobny. Zauważymy, że te dwie łańcuchowe będą miały parametry równe. Aby to udowodnić, należy rozważyć równowagę ciężaru W; biorąc rzuty na kierunek poziomy, znajdziemy, że wc musi być jednakowe dla obydwóch krzywych.

Jeżeli sznur przechodzi luźno przez gładki pierścień umocowany, to naprężenia po obydwóch stronach pierścienia muszą być równe, a zatem obydwie łańcuchowe mają wspólną kierownicę. Parametry mogą nie być równe, bo różnica pomiędzy naprężeniami poziomemi w dwóch łańcuchowych jest równa ciśnieniu poziomemu na pierścień, a ciśnienie to może nie być zerem.

Prz. 4. Ciężki sznur o długości l przechodzi przez gładką nieruchomą obrączkę D, a końce jego są umocowane w punktach A, A', położonych na jednym poziomie. Oznaczamy spodek prostopadłej z D do AA' przez N, i niech będzie NA=h, NA'=h’, DN—k. Okazać, że parametry c, c' wyznaczają się z równania

( h1             h'\y /       125)

4c2== 12, cosh— cosech--1—— ? — kA cosech —

‘ 2c‘          \2c    2c ‘/)        \          2c/ oraz z równania drugiego, które otrzymamy czyniąc w pierwszem zamianę pomiędzy literami kreskowanemi i literami bez kresek.

Prz. 5. Część A C jednorodnego łańcucha leży wyprostowana na chropowatej płaszczyźnie poziomej, a część pozostała CB zwisa w postaci łańcuchowej z danego punktu B, położonego nad ową płaszczyzną. Cały łańcuch ma właśnie zacząć się przesuwać w kierunku pionu, przechodzącego przez B. Okazać, że parametr łańcuchowej

c=p (1-^-p.h)—p. V(2+1) h2+2phl, gdzie l oznacza całkowitą długość łańcucha, h wysokość punktu B nad płaszczyzną, i p. współczynnik tarcia.

Prz. 6. Ciężki sznur rozwieszono na dwóch gładkich kołkach nieruchomych; części końcowe zwisają swobodnie, a część środkowa tworzy łańcuchową. Dowieść, że końce leżą na kierownicy. Przyjmując dalej, źe kołki leżą na jednym poziomie w odległości 2a, dowieść, że koniecznym warunkiem równowagi jest, aby długość sznura była równa 2ae lub większa.

Prz. 7. Ciężki łańcuch jednorodny zawieszono w punktach A i B, położonych na jednym poziomie, a styczna w A tworzy z poziomem kąt 45°. Okazać, że odległość najniższego punktu łańcucha od prostej AB tak się ma do długości łańcucha, jak (V 2—1):2.

Prz. 8. Końce jednorodnego ciężkiego łańcucha zaopatrzono w obrączki, ważące jednakowo, obrączki nawleczono na dwa gładkie pręty, przecinające się w płaszczyźnie pionowej; każdy pręt tworzy z pionem kąt a. Jaki warunek powinien być spełniony, aby naprężenie w najniższym punkcie było równe połowie ciężaru łańcucha? Okazać, że w przypadku takim odległość pionowa pierścieni od punktu przecięcia prętów wynosi lcotalog(V 2-1-1), gdzie 2Z oznacza długość łańcucha.                                  (Math. Tripos, 1856.)

Prz. 9. Ciężki sznur jednorodny zawieszono u dwóch punktów danych, położonych na jednym poziomie, a w punkcie najniższym sznura przyczepiono ciężar, stanowiący n-tą część jego ciężaru. Okazać, źe tan©=(1+n) tan 8, gdzie 8 i « oznaczają kąty, które tworzą z pionem styczne w punkcie najwyższym i najniższym.

(Math. Tripos, 1858.) .

Prz. 10. Styczne w punktach zawieszenia sznura o długości l tworzą z pionem kąty a i 3; okazać, że wysokość jednego z punktów zawieszenia nad drugim wynosi

, . a~ 8 Z sin——

sin---

2                      (Pet. Coli., 1855.)

Prz. 11. Ciężki sznur bez końca założono na dwa małe gładkie kołki, umocowane na jednym poziomie, i połączono dolną część sznura z górną gładkim i nieważkim pierścionkiem. Dowieść, że stosunek kosynusów kątów, które z poziomem tworzą styczne u kołka, jest równy stosunkowi tangensów kątów, które z pionem tworzą styczne u pierścienia.                                        (Math. Tripos, 1872.)

Prz. 12. Dwa gładkie kołki A i B leżą na jednym poziomie, a pionowo pod środkiem odcinka AB leży taki sam kołek C. Na tych kołkach rozwieszono sznur bez końca, który utworzył trzy łańcuchowe AB, BG i CA, przyczem najniższy punkt łańcuchowej AB dotyka kołka C. Okazać, że kołki A, B dzielą cały sznur w stosunku 2w+w‘ do 2w—iv', gdzie w i w’ są składowemi pionowemi ciśnień na A i C.

(Math. Tripos, 1870.)

Prz. 13. Sznur bez końca rozwieszono na dwóch małych gładkich kołkach, osadzonych na jednym poziomie. Okazać, że w położeniu równowagi stosunek odległości pomiędzy wierzchołkami dwóch katenoid do połowy długości sznura jest równy tangensowi połowy kąta, który tworzą styczne do łańcuchowych w punkcie zawieszenia (Math. Tripos, 1855.)

Prz. 14. Ciężki sznur jednorodny o długości 4Z przechodzi przez dwie gładkie obrączki, nawleczone na nieruchomą sztabę poziomą; jedna z obrączek pozostaje nieruchomą, a drugą przesuwamy wzdłuż sztaby, przyczem sznur wciąż zachowuje równowagę. Dowieść, że koniec sznura bardziej odległy od obrączki nieruchomej zatoczy krzywą x=2Vlijlog,                                           (Coli. Ex.)

Prz. 15. Końce ciężkiego jednorodnego sznura umocowano w punktach A i B, położonych na jednym poziomie, i przyczepiono do sznura w pewnym punkcie P ciężką cząsteczkę. Okazać, że obydwie części sznura należą do łańcuchowych równych. Okazać dalej, że styczna w B dzieli odcinek stycznej w A, zawarty pomiędzy pionami, poprowadzonymi przez P i przez środek ciężkości sznura, w stosunku, niezależnym od położenia punktu P. Wreszcie oznaczywszy przez 0, « nachylenia do poziomu stycznych w P, a przez a, 3 nachylenia stycznych . -.      ian9+tan c         . .        ,           , . ,

W A i B, dowieść, że---jest niezmienne dla wszystkich po-tan a+tan 3

łożeń punktu P.                                        (St John’s Coli.)

Prz. 16. Ciężki sznur jednorodny założono na dwa gładkie kołki, leżące na jednym poziomie, przyczem długość każdej części pionowej jest równa długości sznura, zawartej pomiędzy kołkami. Dowieść, że całkowita długość sznura tak się ma do odległości pomiędzy kołkami, jak V 3 do log V 3; porównać prócz tego ciśnienie na kołek z ciężarem sznura.

Prz. 17. Jednorodny sznur bez końca o długości l umieszczono symetrycznie na gładkim nieruchomym sześcianie, którego przekątnia

ma położenie pionowe. Okazać, że sznur zsunie . 1 lv2log(1+V2) sześcianu nie jest większa od -------— 6


się, jeżeli krawędź (Emm. Coli, 1891.)



Prz. 18. Sznur bez końca wisi na dwóch małych kołkach, położonych na jednym poziomie, i styczna do jednej z katenoid w punkcie najwyższym tworzy z pionem kąt 3. Dowieść, że styczna do drugiej w tym samym punkcie musi tworzyć z pionem kąt 3 lub «, przyczem « posiada tylko jedną wartość i jest funkcyą samego 3. Jeżeli I    sec I cot =e , to =3.                                       (Coli. Ex.)

Prz. 19. Cztery gładkie kołki, położone w płaszczyźnie pionowej, tworzą kwadrat, którego jedna przekątnia ma położenie pionowe, a druga poziome. Na kołki założono łańcuch bez końca, przechodzący nad trzema górnymi i pod najniższym. Styczne do łańcucha tworzą z pionem kąt a u kołka najwyższego, 3 i Y u każdego ze środkowych i 8 u najniższego. Udowodnić związki następujące:

a 3                      Y 0 sin 3 108cot2 tan — — sm T log cot, tan —,

sin 3 sin 8 + sin a sin Y =2 sin a sin 8.

(Caius Coli.)

Prz. 20. Końce sztaby o długości 2a są przywiązane do końców ciężkiego sznura o długości 2Z, i sznur jest zawieszony symetrycznie na kołku. Ciężar sztaby jest n razy a naprężenie poziome — razy wię-2

ksze od ciężaru sznura. Okazać, że

(              a           a m2+n2= (n+1) cosech----n coth — 7 .

	
-             ml         ml) (Coli. Ex., 1889.)



Prz. 21. Jeden koniec ciężkiego łańcucha jest przymocowany do końca nieruchomego pręta, a drugi do gładkiej obrączki, nawleczonej na pręt. Okazać, że w położeniu równowagi

(    9-    / T     4\          / 1         1 \

5   2   \4    2/)        \cosy   sin /‘

	
	
9 oznacza tu nachylenie pręta, a ! nachylenie łańcucha w najwyższym punkcie do poziomu.                                       (Coli. Ex.)





Prz. 22. Końce sznura o długości ra są umocowane w odległości 2a jeden od drugiego, i sznur jest odpychany od prostej, łączącej końce, z siłą prostopadłą do tej prostej i odwrotnie proporcyonalną do kwadratu odległości. Dowieść, że sznur ma kształt półkola.

(Coli. Ex., 1882.)

Prz. 23. Łańcuch jest 21 długi i waży 2 W. Koniec jego A jest przymocowany nieruchomo do poziomego pręta, a koniec B do gładkiej obrączki, nawleczonej na pręt. Początkowo końce się stykają, następnie odsuwamy koniec B tak daleko, aby styczna w A do łańcucha utworzyła z pionem kąt 45°. Okazać, że wykonana praca wynosi Wl.{ 1— • 2 +log(1 + V2) }.                              (Coli. Ex., 1883.)

Prz. 24. Zbadać, czy łańcuchowa jest jedyną krzywą, posiadającą właściwość taką: jeżeli G jest środkiem ciężkości dowolnego łuku AB, a AT i BT stycznemi w A i B, to prosta G-T posiada kierunek stały.

Prz. 25. Ciężki łańcuch jednorodny o długości 2d zawieszono u dwóch punktów, położonych na tym samym poziomie. Jeden z tych punktów jest ruchomy. Wyznaczyć równanie linii, którą zatacza wierzchołek łańcuchowej, i dowieść, że pole, zawarte pomiędzy tą linią a?(„2— 4)

i linią końców wynosi ------.                   (Math. Tripos, 1867.)

	
449.    Trwałość równowagi. Do niektórych zagadnień na równowagę sznurów dogodnie jest stosować zasadę, że odległość środka ciężkości od pewnej określonej prostej poziomej musi być największa lub najmniejsza (par. 218). Jeżeli przytem są dozwolone odchylenia linii sznura od formy katenoidalnej, to zastosowanie tej zasady wymaga rachunku waryacyjnego; jeżeli jednak ograniczymy przesunięcia dozwolone, jeżeli postawimy warunek, że sznur ma zachowywać wciąż kształt łańcuchowej, a może zmieniać się jedynie parametr c, to zadanie da się rozwiązać przy pomocy zwykłych metod rachunku różniczkowego.



Metoda taka posiada pewne zalety, gdy chodzi o stwierdzenie, czy równowaga jest trwała, czy chwiejna. Wiemy mianowicie (par. 218), że równowaga będzie trwała lab chwiejna stosownie do tego, czy głębokość środka ciężkości pod pewną stałą płaszczyzną poziomą osiągnęła prawdziwe maksymum, czy minimum.

Prz. 1. Sznur o długości 2/ rozwieszono na dwóch gładkich kołkach, leżących na jednym poziomie w odległości 2a jeden od drugiego. Końce sznura zwisają swobodnie, a część środkowa tworzy łańcuchową. Okazać, że równowaga jest możliwa tylko wtedy, gdy l jest co najmniej równe ae. Jeżeli l>ae, to katenoidę równowagi trwałej dla a

przesunięć symetrycznych określa pierwiastek równania cec — l większy od a.                                           (Math. Tripos, 1878.)

Oznaczmy przez 2s długość części sznura pomiędzy kołkami, a przez y głębokość środka ciężkości całego sznura pod linią kołków. Znajdziemy łatwo (par. 399), że

2ly=sy—ca+ (l—s)2.

Wprowadzając zamiast s i y ich wyrażenia w funkcyi c, otrzymamy

oidlJ        1 \ p2(c— a)— (c+a)

2 I ---C )                ----. dc \ p / c gdzie p=e®. Łatwo się przekonać, że drugi czynnik prawej strony jest ujemny dla wszystkich wartości dodatnich parametru c. Gdy , dy przyrównamy — do zera, to wypadnie, że wszystkie możliwe położenia równowagi określa równanie l—cp. Pragnąc wyznaczyć najmniejszą wartość l, odpowiadającą temu równaniu, zakładamy —=0. Z te-dc

go wypadnie c—a, a więc l musi być równe ae lub większe.

Gdy l jest większe od ae, to dla c wypadają dwie wartości, z których jedna jest większa od a, a druga mniejsza. Pragnąc zbadać, która z tych dwóch łańcuchowych jest w równowadze trwałej, rozpatrujemy znak drugiej pochodnej (par. 220). Gdy l=cp, to

d2y .   . p2(c— a)-(c+a) dc27 c2

Równowaga będzie trwała, jeżeli wyrażenie to jest ujemne, a do tego potrzeba, aby c było większe od a.

Prz. 2. Koniec A ciężkiego sznura o długości danej jest umocowany nieruchomo; sznur przechodzi przez gładki kołek B, położony na jednym poziomie z A, i drugi koniec jego zwisa swobodnie. Okazać, że jeżeli długość sznura przekracza pewną wartość, to istnieją dwa położenia równowagi; równowaga jest trwała w tern położeniu w którem łańcuchowa ma parametr większy.

	
450.    Łańcuch niejednorodny. Ciężki łańcuch niejednorodny jest zawieszony w dwóch danych punktach A i B. Wyznaczyć równanie linii łańcucha.



Zagadnienie to daje się rozwiązać w sposób podobny do tego, który zastosowaliśmy w par. 443 do łańcueha jednorodnego. Równania (1) i (2) owego paragrafu otrzymaliśmy, bio-rąc rzuty na osi, a zatem będą one ważne z małemi tylko zmianami i w tym razie, gdy łańcuch nie jest jednorodny. Ciężar części łańcucha, poczynając od punktu najniższego będzie teraz fwds w granicach od s=0 do s=s (par. 442). Bio-rąc rzuty, jak poprzednio, otrzymamy

Tcost= T, . . . (1), Tsint =Jwds . . . (2).

Gdy podzielimy (2) przez (1), to wypadnie

Jwds = T tan $,

T skąd                  w = -—0,  .......(3).

p COS“V

Podstawiając zamiast p i tan P odpowiednie wyrażenia we współrzędnych Kartezyusza, otrzymamy


7 d2y dx °dx2 ds
[image: ]





(4).



Odwrotnie, gdy znamy prawo gęstości, np. w = f(s\ to ró-wnanie (3) daje nam związek pomiędzy s i Ti można mu nadać postać d =f(s). Otrzymamy stąd łatwo

x=/[1+ [f(s)]2}""ds, y=m+[f1^r^fl(s)ds.

Tak więc można wyrazić x i y w funkcyach pewnej zmiennej pomocniczej, posiadającej znaczenie geometryczne.

Prz. 1. Dowieść, że naprężenie w jakimkolwiek punkcie P łańcucha niejednorodnego jest równe ciężarowi łańcucha jednorodnego, którego długość jest równa rzutowi promienia krzywizny na kierunek pionowy, a gęstość jest taka sama, jak gęstość łańcucha danego w punkcie P.

Prz. 2. Prowadzimy przez punkt B, dowolnie obrany na osi y, prostą BR równolegle do normalnej w punkcie P do łańcucha; prze-tnie ona oś x w punkcie R. Okazać, że (1) naprężenie w P jest równe T

— . BR, i (2) ciężar luku OP, zmierzonego od najniższego punktu 0,

T

wynosi — . OR, gdzie OB—c, a To oznacza naprężenie poziome (par. 35)

	
451.    Łańcuch cykloidalny. Łańcuch niejednorodny przybrał pod działaniem siły ciążenia postać cykloidy; wyznaczyć prawo gęstości.



W cykloidzie p=4acosy i s=4a sin, gdzie a oznacza promień koła tworzącego. Podstawiając te wartości, otrzymamy

T 16a2T,

4a cosB (16a2—82) 2

Z tego wzoru wynika, że w częściach niższych łańcuch posiada gęstość prawie stałą; tak np. w punkcie, którego odległość od wierzchołka, zmierzona na krzywej, jest równa promieniowi koła tworzącego, gęstość wynosi około dziewięciu dziesiątych gęstości w wierzchołku. W częściach łańcucha, położonych wyżej, gęstość wzrasta gwałtownie, a w ostrzu jest nieskończenie wielka. Jeżeli zatem łańcuch, rozpięty pomiędzy dwoma punktami na jednym poziomie, jest wygięty niezbyt silnie, to możemy go uważać w przybliżeniu za jednorodny.

Łańcuch cykloidalny zasługuje na uwagę dzięki okoliczności następującej: gdy wyprowadzimy go nieco z położenia równowagi, to wykonywa małe drgania, których okres i amplituda dają się wyznaczyć.

Prz. Niech O będzie najniższym punkiem łańcucha cykloidal-nego, a B środkiem odcinka, łączącego ostrza. Prowadzimy w którymkolwiek punkcie P normalną do krzywej; przypuśćmy, że przetnie ona prostą, łączącą ostrza, w punkcie M; prowadzimy następnie przez B równolegle do MP prostą BR, przecinającą poziomą przez 0 w punkcie R. Dowieść, że środek ciężkości łuku OP leży w przecięciu prostej BR z pionem przez M. Znajdziemy, że T =2a), y=2alcoty, gdy B jest początkiem współrzędnych.

	
452.    Łańcuch paraboliczny. Ciężki łańcuch AOB jest zawie

[image: ]





szony u innego łańcucha DCE zapo-mocą sznurów pionowych; sznury te tak są liczne, że każdy element łańcucha AOB łączy się z odpowiednim elementem łańcucha DCE, i ciężary tych sznurów a także ciężar łańcucha DCE są nieznaczne w porównaniu z ciężarem łańcucha AOB. Mamy zbadać, jaką postać powinien posiadać łańcuch DCE, aby łańcuch AOB w położeniu równowagi był poziomy.

Naprężenie łańcucha AOB w punktach O i M są poziome i równe, a zatem część OM podtrzymują naprężenia w punktach 0 i P łańcucha BOB. Możemy przeto uważać, że łańcuch DGE jest ciężki, niejednorodny, i że ciężar dowolnej długości CP wynosi mx. Biorąc rzuty sił, działających na tę część łańcucha, na kierunki poziomy i pionowy, otrzymamy

Tcos!=T, TsinV=mx.

Gdy podzielimy jedno z tych równań przez drugie, to wypadnie mx=T tand= T.—, skąd

dx

mx2

1

 Związek pomiędzy wymiarami cylindra i kuli odkrył Archi-medes i napisał o tern dwie księgi. Badał on zarówno powierzchnie jak i objętości całkowite oraz części, zawarte pomiędzy płaszczyznami prostopadłemi do wspólnej osi. Dokonane odkrycia sprawiły mu tyle rozkoszy, że polecił wyryć na swym kamieniu grobowym cylinder, okalający kulę.

2

 Zastosowaliśmy tu metodę, podaną przez prof. Giulio, głównie dla tego, że powyższe twierdzenie pomocnicze posiada znaczenie ogólne i może być użyteczne w innych przypadkach. Praca Giulio ukazała się w tomie czwartym czasopisma Journal de Mathematigues Liouville’a. Istnieje przekład angielski w Mechanical Problems Waltona.

3

 Wyznaczmy rzut A’ B' prostej AB, pozostawiając y, z bez zmiany i pisząc x=ax'. Geometrycznie zbudujemy A‘B‘, powiększając odcięte LA, MB (L i M oznaczają rzuty punktów A i B na yz) w stosunku a-A. Wypadnie LA'—a. LA i MB'—a. MB. Czyniąc to samo z prostą CD równoległą do AB, dojdziemy łatwo z podobieństwa trójkątów, że prosta CD' jest także równoległa do A'B', i że stosunek CD''.A'B' jest równy stosunkowi CD: AB. Powtarzamy następnie to samo działanie, pisząc y—by' i wreszcie z=cz'. Twierdzenie jest oczywiście tak samo słuszne po trzecim rzucie, jak i po pierwszym.

4

 Podajemy tu w krótkim zarysie historyę zagadnienia, znanego pod nazwą „Chainette" według Montucli. Problemat formy łańcucha, zawieszonego w dwóch punktach, postawił Jakób Bernoulli, jako zagadnienie dla innych matematyków ówczesnych. Sławę rozwiązania zdobyło czterech matematyków, a mianowicie: Jakób Bernoulli, brat jego Jan, Leibniz i Huyghens. Ogłosili oni swe rozwiązania w Actes de Leipsick (Act. Erud. 1691), nie podając jednak analizy; pragnęli zapewne pozostawić parę listków wawrzynu dla następców. Dawid Gregory ogłosił rozwiązanie w kilka lat później w Phil. Trans. 1697.

Matematycy mają zwyczaj po przezwyciężeniu jednej trudności atakować następne, a nawet wytwarzają sobie nowe przeszkody, aby mieć przyjemność je pokonywać. Tak też postąpił i Bernoulli; rozwiązawszy zagadnienie katenoidy w przypadku najprostszym, przystąpił natychmiast do przypadków trudniejszych. Założył naprzód, że sznur jest niejednorodny i postawił pytanie, jak powinna zmieniać się gęstość, aby krzywa miała postać daną, i jaka będzie krzywa, jeżeli sznur jest rozciągalny. Wkrótce potem Bernoulli ogłosił rozwiązanie bez podania analizy. Wreszcie postawił zagadnienie, jaką postać przybierze sznur pod działaniem siły centralnej. Bozwiązania tych wszystkich zagadnień podał następnie Jan Bernoulli w Opera Omnia. (Ob. także Short History of Mathematics Balia).

Montucla zaznacza, że zagadnienie łańcuchowej wzbudziło już ciekawość Galileusza, który miał jakoby przyjść do wniosku, że krzywa jest parabolą. Venturoli stwierdził, że to posądzenie jest niesłuszne, Galileusz wskazywał jedynie na podobieństwo dwóch krzywych.

5

 Cosh jest symbolem funkcyi, zwanej cosinus hyperbolicus. e +e                      e —e                1

Cosho=--, podobnież sinha=—---, cosech x=—--.

2                            2                sinh x

Przyp. tłom.


—=T(y—c).

Widzimy, że łańcuch DCE tworzy parabolę.

Wynik powyższy jest ważny pod tym względem, że łańcuch AOB można zastąpić jednorodną ciężką sztabą, stanowiącą jedną z belek mostowych. Naprężenia łańcuchów, które wywołuje ciężar mostu, nie mają tendencyi do złamania lub zgięcia belek. Potrzeba tylko, aby belki były dostatecznie wytrzymałe i nie zginały się pod działaniem ciężarów dodatkowych, t. j. pod ciężarów wozów. Nie byłoby tak, gdyby lekki łańcuch DCE miał postać, różniącą się od parabolicznej.

Sprawa jest bardziej zawiła, gdy bierzemy w rachubę ciężar łańcucha DCE, a także gdy sznury podtrzymujące są nie pionowe, lecz mają jakieś inne urządzenie.

Zagadnienie powyższe pierwszy rozważał Mikołaj Fuss w Nova Acta Petropolilanae, t. 12, 1794. Zamierzano podówczas zbudować most na Newie, zawieszony zapomocą łańcuchów pionowych u czterech łańcuchów poprzecznych, rozpiętych nad rzeką. Fuss doszedł do wniosku, że łańcuchy ówczesne nie zniosłyby niezbędnych naprężeń.

Prz. 1. Dowieść, że w łańcuchowej parabolicznej naprężenie T

w dowolnym punkcie P wynosi — razy długość normalnej pomiędzy

P i osią paraboli; 2a oznacza tu połowę latus rectum. Dowieść prócz tego, że gęstość liniowa w w P jest równa stosunkowi To do tej normalnej.

Prz. 2. Okazać, że ciężar części łańcucha OP, mierzonej od naj-

T

niższego punktu O krzywej, wynosi — razy odległość punktu P od osi 20

paraboli; okazać prócz tego, że T0=2am.

Prz. 3. Środek ciężkości G dowolnego łuku leży na średnicy,

PN przechodzącej przez środek cięciwy tego luku, i PG=—; średnica ta

przecina parabolę w punkcie P, a cięciwę w N.

‘ Prz. 4. Naprężenia w C i P podtrzymują część mostu OM (fig. 126), a zatem styczne w G i P muszą przecinać się na pionie, przechodzącym przez środek ciężkości tej części. Wywnioskować stąd, że krzywa CP jest parabolą.

Prz. 5. Ciężar elementu ds sznura DCPE wynosi w(ds-\-ndx); , , ,                             ,                        . r cdz okazać, że krzywą sznura określa równanie X= I ----7--, gdzie z J n+ V 1+z2

oznacza tan nachylenia stycznej do poziomu, a c jest wielkością stałą.

(Fuss.)

Prz. 6. Sznury, utrzymujące most wiszący, są pionowe, i odległości pomiędzy nimi są równe; bierzemy w rachubę tylko ciężar tych sznurów, pomijając ciężary pozostałych części mostu. Dowieść, że krzywa DCE jest w tym razie rzutem prostokątnym katenoidy.

(Math. Tripos, 1880.)

	
453.    Łańcuchowa o wytrzymałości stałej. Ciężka lina, umocowana w dwóch punktach, ma taką budowę, że pole przekroju jest proporcyonalne do naprężenia. Wyznaczyć kształt linii, którą tworzy lina.



Z warunków zagadnienia wynika, że T^cw, gdzie c jest pewną stałą, a wds ciężarem elementu ds. Równania (1) i (2) paragrafu 450 przybierają postać

Tcos!=T,     Tsint=— / Tds.

Wprowadzając do drugiego równania wartość T, wziętą z pierwszego /ds                              c 1 ds ---, a różniczkując znajdziemy ----=---, COS •                            COS24 COS 4^4 skąd pcos4=c.

To samo wypada od razu z ogólnego równania równowagi, które Tds

poznamy w par. 454. Mamy tam ---=ivds cos O. Jeżeli lina ma mieć

P

stałą wytrzymałość, to T=cw, a zatem pcosy=c.

Widzimy, że rzut promienia krzywizny na kierunek pionowy jest stały i równy c.

Zamiast p i cos 4 wprowadzamy wyrażenia ich we współrzędnych Kartezyusza. Wypadnie


14(dy)2-1d2y

\ dx/ J dx2



1 dy x = — skąd aretan — — — —A. c              dx   c

Jeżeli obierzemy najniższy punkt za początek, to A=0, i wówczas

, x y— - clog cos—.

Wykreślając krzywą, zobaczymy, że y wzrasta, poczynając od zera, gdy x wzrasta od zera w stronę dodatnią lub ujemną, i że krzy-

TC

wa posiada dwie asymptoty pionowe X==. Gdy X zawiera się po-

Większym wartościom odciętej odpowiada znowu rzędna urojona, i t. d. Krzywa składa się z nieskończonej liczby gałęzi takich, jak po-między x=±—, a więc dostatecznem będzie zbadać tę jedną gałąź. 2

Ponieważ rzędna liny musi być skończona, przeto wartość odciętej x

TC musi byc zawarta pomiędzy ± —, a rozpiętość liny nie może docho-dzić do Tc.

Niechaj 0 będzie najniższym punktem krzywej, G środkiem krzywizny w jakimś punkcie P i PH prostopadłą do pionu przez C. W takim razie CH~c. Boki trójkąta PCH są odpowiednio prostopadłe i pro-porcyonalne do sił, działających na łuk OP, a mianowicie do naprężenia w P, ciężaru części OP i naprężenia poziomego To w 0. Możemy stąd T

wyciągnąć wnioski następujące: (1) naprężenie w P jest równe — razy

T wziętemu promieniowi krzywizny, (2) ciężar łuku OP jest równy — razy c wziętemu rzutowi promienia krzywizny na kierunek poziomy.

Krzywą tę wynalazł Davies Gilbert z okazyi budowy mostu wiszącego przez cieśninę Menai pomiędzy wyspą Anglesey i Walią (Phil. Trans. 1826.). Lioiwille’s Journal z r. 1836 (tom I) zawiera notatkę Co-riolisa o „chainette" stałej wytrzymałości. Zdaje się, że Coriolis nie wiedział o tern, że ta postać łańcucha już została zbadana dziesięć lat temu.


Prz.



n+21

	
	
1.    Okazać, że (1) x=c^, (2) S= dog tan—4


Prz. łuku pod




	
2.    Dowieść, że głębokość środka ciężkości jakiegokolwiek punktem przecięcia normalnych w końcach tego luku jest stała i równa c. Dowieść prócz tego, że jego odcięta jest równa odciętej przecięcia stycznych w tych samych punktach.





Prz. 3. Odległość pomiędzy punktami łańcuchowej stałej wytrzymałości jest równa a, a długość łańcucha l. Okazać, że parametr c l           a wyznacza się z równania tanh— = tan—. Okazać dalej, że równanie to 4c      4c daje dodatnią wartość c, większą od —.

T

Prz. 4. Okazać, że rzut poziomy rozpiętości jest w każdym razie mniejszy od T razy wziętej największej długości liny jednorodnej z tego samego materyału, którą można zawiesić za jeden koniec. Należy tu uważać, że wytrzymałość w każdej części liny jest proporcyonalna do masy na jednostkę długości.           (Kelvin, Math. Tripos, 1874.)

Jeżeli długość wzmiankowanej liny jednorodnej wynosi L, to naprężenie w punkcie zawieszenia jest równe ciężarowi liny, czyli wL. Z drugiej strony naprężenie w każdym punkcie liny niejednorodnej wynosi cw, a zatem c musi być mniejsze od L, a rozpiętość będzie mniejsza od TL.

	
454.    Sznur pod działaniem sił jakichkolwiek. Utworzyć ogólne równania równowagi sznura, na który działają siły jakiekolwiek. Obierzmy na sznurze pewien stały punkt A, i niech będzie AP~s^ i AQ = s + ds. Naprężenie w P oznaczymy przez T; ponieważ T jest funkcyą luku s, przeto w Q naprężenie wynosi T+dT1).



Utwórzmy rzuty sił zewnętrznych, działających na element PQ na trzy kierunki, a mianowicie, na styczną w P, promień krzywizny i binormalną w tym samym punkcie. Na pierwszej z tych prostych za dodatni obierzemy ten kierunek, w którym mierzymy s, na drugiej ten, w którym mierzymy p, t. j. wewnątrz, na trzeciej kierunek dodatni możemy obrać dowolnie. Te trzy kierunki zowią się kierunkami głównymi lub osiami głównemi krzywej w punkcie P. Dajmy na to, że suma rzu-


tów

Fds,



sił zewnętrznych, działających na ds, na styczną wynosi na promień krzywizny Gds i na binormalną P[ds.

Niech kąt pomiędzy stycznemi w P i Q będzie równy d^-, w takim razie i kąt PCQ = dĄ>. Element ds pozostaje w równowadze pod działaniem sił T, T+dT, działających na stycznych w P, Q, oraz sił Fds, Gds, Hds. Biorąc rzuty na styczną w P, otrzymamy
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(T+dT) cos d^>- T+Fds - 0.

Równanie to sprowadza się do

dT+Fds = 0 . . . (1).

Bierzemy następnie rzuty na


promień krzywizny:



(T+dT) sin d^ + Gds^ O,

czyli                 T~~Gds^0(2).

P

Pozostaje wziąć rzuty na binormalną, czyli na prostopadłą do płaszczyzny ściśle stycznej do krzywej w P. W płaszczyźnie lej leżą obydwie styczne w następujących po sobie punktach krzywej, a zatem rzuty naprężeń na kierunek prostopadły są zerami. Wypadnie więc

Hds = 0........(3).

Te trzy równania (1), (2) i (3) są ogólnemi równaniami równowagi.

Uważamy, że gęstość sznura jest uwzględniona w wyrażeniach Fds^ Gds, Hds^ a zatem powyższe równania równowagi są ważne zarówno w przypadku sznura jednorodnego, jak i wtedy, gdy gęstość jest zmienna.

Z równań tych wyciągamy wniosek, że naprężenia T i T+dTy działające na końce elementu, są równoważne z dwie-ds

ma innemi siłami, a mianowicie dT i T—5 z tych pierwsza działa na stycznej, a druga na promieniu krzywizny w jednym z końców elementu. Często w zagadnieniach, dotyczących sznurów, dogodnie bywa zastąpić naprężenia przez te dwie siły. Zamiana daje nam tę korzyść, że kosynusy kierunkowe stycznej i promienia krzywizny są znane z rachunku różniczkowego, tworząc więc równania statyczne, z łatwością znajdziemy rzuty tych dwóch sił, jak i sił zewnętrznych, na kierunki, które uznamy za dogodne.

Prz. Okazać, że kształt sznura czyni zadość warunkowi następującemu: w każdym punkcie wypadkowa sił zewnętrznych leży w płaszczyźnie ściśle stycznej i tworzy z główną normalną do sznura , d(log T) kąt aretan--.

d

	
455.    Utworzyć ogólne równania równowagi sznura we współrzędnych Kartezyusza 2).



Niechaj ds będzie długością elementu PQ sznura. Siły ze-wnętrzne, działające na ten element, rozkładamy równolegle do dodatnich kierunków osi; niech składowe te będą Xds, Yds, Zds. Element ds pozostaje w równowadze pod działaniem tych trzech sił zewnętrznych oraz naprężeń w P i Q.

Bierzemy rzuty tych wszystkich sił na oś x. Rzut naprę-
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Q3

żenią w P wynosi i jest zwró

cony w lewo. W Q zmienna s przybiera wartość s + ds, a zatem naprężenie poziome w Q wynosi


dx




,dx



i jest zwrócone w prawo. Dodając te obydwa rzuty oraz Xds, otrzymamy

T— \ds + Xds^0.

ds /

Tak samo postępujemy z rzutami na osi pozostałe; wypadną więc równania

+ Z =0

	
456.    Prz. 1. Na element sznura, pozostającego w płaszczyźnie, działają siły Pds i Qds, z których pierwsza ma kierunek promienia wodzącego, a druga jest prostopadła do tegoż. Okazać, że równania równowagi we współrzędnych biegunowych są wagi sznura w przestrzeni trójwymiarowej we współrzędnych cylindrycznych.








dr

gdzie cos<p=—




sin©=




rdo ds




Następnie wyprowadzić równania równo-





Prz. 2. Sznur w stanie równowagi ma postać linii śrubowej, a naprężenie jest stałe na całej długości. Dowieść, że oś odpycha każdy element z siłą do niej prostopadłą.

Prz. 3. Końce sznura danej długości są umocowane w dwóch punktach danych, a oś z odpycha każdy element ds z siłą prostopadłą do tej osi i równą 2[irds. Oznaczając przez (r, 3, z) współrzędne bieżące cylindryczne dowieść, że

T^A— pr,

dd-    B       fdr\2    / p. \2 B2

— = —, (—=C 1—12)---1.

dz  r2   \dz/  A/I” Wyjaśnić, jak wyznacza się pięć stałych dowolnych, i okazać, że w pewnych razach śrubowa stanowi rozwiązanie.

Prz. 4. Ciężki łańcuch wisi u dwóch punktów i część jego jest zanurzona w płynie. Okazać, że krzywizny w dwóch punktach, z których jeden leży tuż pod powierzchnią płynu, a drugi tuż nad powierzchnią, mają się do siebie, jak D—D' do D, gdzie D i D' oznaczają gęstości łańcucha i płynu.                                (St. John’s Coli.)

Ciężary elementów nad powierzchnią są proporcyonalne do Dds, a pod powierzchnią do {D—D')ds. Jeżeli naprężenie na granicy jest równe T, to składowe ciężarów elementów skrajnych w kierunku nor-

Prz. 5. Ciężki sznur umocowano w punktach A i B; gęstość jego jest taka, że przybrał on postać spiralnej logarytmicznej. Okazać, że gęstość w każdym punkcie P jest odwrotnie proporcyonalna do rcos21, gdzie r oznacza odległość punktu P od bieguna, a • kąt, który styczna w P tworzy z poziomem.                           (Trin. Coli., 1881.)

	
457.    Sznur krępowany. Sznur leży na krzywej płaskiej dowolnej postaci, a na końce jego działają siły. Mamy zbadać warunki równowagi oraz naprężenie w każdym punkcie.



Cztery przypadki posiadają tu ważniejsze znaczenie; zbadamy je po kolei.

Założymy naprzód, że ciężar sznura jest bardzo mały w porównaniu z siłami, przyłożonemi w końcach, i możemy się z nim nie liczyć. Będziemy uważali prócz tego, że krzywa jest zupełnie gładka. Na element ds działają tu jedynie naprężenia oraz reakcya lub ciśnienie krzywej. Niech ciśnienie to będzie równe Rds-, w takim razie R jest ciśnieniem na jednostkę długości sznura. Mówi się zwykle dla krótkości, że R jest ciśnieniem w danym

Statyka. 24 elemencie. Ciśnienie uważamy za dodatnie, gdy działa w stronę odwrotną do tej, w którą mierzymy promień krzywizny.

Biorąc rzuty na styczną i normalną do sznura, otrzymamy według par. 454

dT=0, I— -Hds = 0.

P

Z równań tych wnioskujemy, że, gdy sznur leży na krzywej gładkiej, to naprężenie jest stałe, a ciśnienie zmienia się pro-porcyonalnie do krzywizny.

	
458.    Doniosłość twierdzenia powyższego jest większa, niż się wydaje na pierwszy rzut oka. Krzywa może mieć postać dowolną, a zatem twierdzenie obejmuje i ten przypadek, gdy sznur pozostaje w równowadze pod działaniem sił w każdym punkcie normalnych do krzywej. Jeżeli owe siły normalne są dane, to można określić formę krzywej, posługując się otrzymanem twierdzeniem, że krzywizna w każdym punkcie jest proporcyonalna do siły normalnej.



Jako przykład rozważymy zagadnienie Bernoullego: wyznaczyć kształt żagla prostokątnego, którego dwa boki przeciwległe są umocowane nieruchomo, prostopadle do kierunku wiatru. Będziemy uważali, że ciężar żagla jest nieznaczny w porównaniu z ciśnieniem wiatru, i zbadamy, jaka krzywa wypada w przekroju płaskim żagla, prostopadłym do boków nieruchomych.

Można otrzymać dwie odpowiedzi stosownie do tego, czy wiatr po uderzeniu o żagiel znajduje natychmiast wyjście, czy też pozostaje we wklęsłości żagla i ciśnie nań, jak gaz w równowadze. Stojąc na gruncie hipotezy pierwszej, przyjmiemy jako prawo oporu, że wiatr wywiera na każdy element żagla ciśnienie w kierunku normalnej do tego elementu, i że ciśnienie to jest proporcyonalne do kwadratu składowej szybkości wiatru w kierunku tej normalnej. Mamy więc

R=wcos21, gdzie 1 oznacza kąt pomiędzy normalną do przekroju żagla i kierunkiem wiatru, a w jest wielkością stałą. Z tego wynika

c

—=cos21; zatem w myśl par. 444 krzywa jest łańcuchową, której os P

idzie równolegle do kierunku wiatru, a kierownica jest pionowa.

Jeżeli powietrze ciśnie na żagiel, jak gaz w stanie równowagi, to ciśnienie po jednej stronie żagla jest według praw hydrostatyki we wszystkich kierunkach jednakowe, ale po jednej stronie większe, niż po drugiej. Widać z tego, że R jest równe tej różnicy stałej, a zatem p jest stałe, i szukana krzywa jest kołem.

Prz. 1. Żagiel kwadratowy łączy się z masztem zapomocą dwóch rejów; gdy żagiel jest wydęty, to każdy jego przekrój poziomy stanowi prostą, równoległą do rejów. Przyjmując zwykłe prawo oporu, okazać, że żagiel najskuteczniej działa na bieg okrętu, gdy 3 sin (a— 2) — —sin a=0; a oznacza tu kąt pomiędzy kierunkiem wiatru a sztabą (albo osią) okrętu, a P kąt pomiędzy rejami i sztabą.

Prz. 2. Koniec lekkiego sznura jest umocowany w wierzchołku gładkiej cyklojdy; nawijamy sznur na cykloidę, utrzymując go wciąż w naprężeniu. Dowieść, że obwiednią ciśnienia wypadkowego na cykloidę jest inna cykloida o parametrze podwójnym. (Coli. Ex., 1890.)

Ciśnienie wypadkowe krzywej na łuk sznura równoważy naprężenia w końcach luku, a zatem przechodzi przez punkt przecięcia stycznych w tych punktach i działa na dwusiecznej kąta pomiędzy niemi.

	
459.    Ciężki sznur gładki. Przypuśćmy teraz, że wypada uwzględnić ciężar sznura. Niech wds będzie ciężarem elementu ds, a • kątem, który styczna PK w punkcie P tworzy z poziomem.



Element PQ pozostaje w równowadze pod działaniem wds oraz naprężeń w P i Q.


na rzędnej LLV, Kas na normalnej 1 Biorąc rzuty na styczną i normalną w P, otrzymamy

dT- wdssin^ = 0 . . (1)

T — — wds cos 1 - R ds = 0 . (2). P

dy

Ponieważ sin?=d9 przeto, całkując pierwsze z tych równań, otrzymamy
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........(3). Jeżeli Tr i T2 są naprężeniami w punktach, których rzędne wynoszą Ji i y2, to

T-T=w(J2-yi).

Ten ważny wynik da się wypowiedzieć tak: gdy ciężki sznur spoczywa na gładkiej krzywej, to różnica naprężeń w dwóch dowolnych punktach jest równa ciężarowi sznura o długości równej odległości pionowej pomiędzy owymi punktami.

	
460.    Twierdzenie powyższe otrzymaliśmy, biorąc jedynie rzuty na styczną do sznura, a więc nie zależy ono od prawdziwości równania drugiego. Twierdzenie jest przeto słuszne i w tym razie, gdy sznur nie przylega do krzywej na całej długości; część jego może być swobodna, albo może obiegać inne krzywe. Tak np. na fig. 130 sznur ABCD obiega gładkie krzywe L, M i N; naprężenie w każdym punkcie, np. B lub C, przewyższa naprężenie w A o ciężar sznura, którego długość jest równa pionowej odległości od A do B lub C.



Naprężenia w A i D są równe zeru, a zatem swobodne końce ciężkiego łańcucha leżą na jednym poziomie. Naprężenie osiąga maksymum w punkcie najwyższym, i żaden punkt sznura, taki np. jak C lub C\ nie może leżeć poniżej prostej poziomej, łączącej końce swobodne.
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Aby wyznaczyć ciśnienie w dowolnym punkcie P (fig. 129), napiszemy równanie (2) paragrafu poprzedzającego w postaci

Rp — T— wp cost,

gdzie ciśnienie R, które krzywa wywiera na sznur, działa (jeżeli jest dodatnie) na zewnątrz, czyli w kierunku odwrotnym do tego, w którym mierzymy promień krzywizny p (par. 457). Jeżeli w określonym punkcie A panuje naprężenie T, a z jest wysokością jakiegoś punktu P ponad A, to według (3) T=T+wz. Z tego wynika, że

Rp= Tx + iv (z — pcos •).

Odmierzmy na normalnej punktu P na zewnątrz długość PS=p; punkt S można nazwać przeciivśrodkiem krzywizny. Jest rzeczą oczywistą, że z — pcos 1 wyraża wysokość punktu S nad A. Tak więc gdy ciężki sznur leży na krzywej gładkiej, to wartość Rp w dowolnym punkcie P przewyższa naprężenie w A o wagę sznura, którego długość jest równa wzniesieniu przeciwśrodka punktu P ponad A.

Gdy koniec A jest swobodny, jak na fig. 130, to Rp w jakimś punkcie B jest równe iloczynowi z w przez wysokość prze-ciwśrodka punktu B nad A. W częściach swobodnych sznura, np. w C lub C\ ciśnienie R jest równe zeru, a stąd wynika, że wszystkie przeciwśrodki krzywizny leżą na prostej, łączącej swobodne końce A i D. Jest to wspólna kierownica wszystkich łańcuchowych.

W równaniach powyższych Rds jest ciśnieniem, skierowa-nem na zewnątrz linii sznura. Gdyby Ił wypadło ujemne, i sznur leżał na wypukłości, to oczywiście odstał by on od krzywej, i równowaga byłaby niemożliwa. W punktach takich, jak np. B, przeciwśrodek leży nad B, i R jest oczywiście dodatnie; ale w punktach takich, jak E, przeciwśrodek leży niżej od E^ a gdyby leżał jeszcze i pod prostą AD^ to ciśnienie w E byłoby ujemne. Gdy sznur leży we wklęsłości krzywej, to warunki te zmieniają się na odwrotne. Wogóle mówiąc do równowagi jest niezbędnem, aby Bp było dodatnie lub ujemne stosownie do tego, czy sznur leży na wypukłej, czy na wklęsłej stronie krzywej.

Streszczając rozważania paragrafu niniejszego, widzimy, że można poprowadzić prostą poziomą, posiadającą właściwość następującą: naprężenie w każdym punkcie P sznura wynosi wy, gdzie y oznacza wysokość punktu P nad ową prostą. Nazwijmy tę prostą kierownicą statyczną sznura. Na kierownicy statycznej leżą swobodne punkty sznura, jeśli istnieją, a żadna część sznura nie może leżeć niżej od tej prostej. Jeżeli R jest ciśnieniem krzywej na sznur, skierowanem na zewnątrz, to Rp jest równe wy\ gdzie y' oznacza wzniesienie przeciwśrodka punktu P nad kierownicą. Niezbędną więc jest rzeczą, aby przeciwśrodek każdego punktu leżał nad kierownicą, albo pod kierownicą, stosow-nie do tego, czy sznur leży na wypukłości, czy we wklęsłości krzywej.

Prz. 1. Okazać, że miejscem geometrycznem przeciwśrodka w kole jest inne koło.

Prz. 2. Okazać, że współrzędne przeciwśrodka dowolnego punktu P elipsy w odniesieniu do jej osi czynią zadość równaniom ax— 2aa cos «— c2 cos3ę, by=2b‘sin +c2sin3«, gdzie c2=a2 — b2, a « jest anomalią ekcentryczną punktu P.

Prz. 3. Punkt S jest przeciwśrodkiem punktu P pewnej krzywej; okazać, że normalna do miejsca geometrycznego punktu S tworzy z PS 1 dp

taki kąt 3, że tan I==--.

	
2 ds


	
-    461. Wypada zaznaczyć, że w punktach, w których sznur opuszcza krzywą, może nastąpić gwałtowny przeskok zarówno iv krzywi-źnie sznura, jak i w ciśnieniu R. Tak np. w punkcie, położonym bezpośrednio pod F (fig. 130), promień krzywizny sznura jest nieskończenie wielki, a li jest równe zeru, natomiast w punkcie zaraz nad F krzywizna sznura jest taka sama, jak krzywizna ciała N, a ciśnienie R jest T





równe —. W takim punkcie, jak E, przeskok w wartości iloczynu Rp, P

o ile istnieje, jest w myśl prawidła paragrafu 460 równy ciężarowi sznura tak długiego, jak odległość pionowa pomiędzy przeciwśrodkami po obydwóch stronach owego punktu.

Jeżeli siły zewnętrzne, działające na sznur, są tego rodzaju, że wielkość ich na jednostkę długości jest skończona, to iv naprężeniu nie mogą zachodzić gwałtowne przeskoki. Istotnie, przypuśćmy na chwilę, że naprężenia po dwóch stronach pewnego punktu różnią się o wielkość skończoną; w takim razie element sznura, zawierający ów punkt, byłby w równowadze pod działaniem dwóch sił nierównych, działających w kierunkach odwrotnych. Nie może również nastąpić przeskok gwałtowny kierunku stycznej ('wyjątek stanowi tu punkt, w którym naprężenie jest równe zeru); gdyby styczne po obydwóch stronach pewnego punktu tworzyły kąt skończony, to element z takim punktem byłby w równowadze pod działaniem dwóch naprężeń skończonych, których kierunki nie są wprost odwrotne.

	
	
462.    Prz. 1. Ciężki sznur o długości 2Z owija kompletnie gładki poziomy cylinder o promieniu a, końce zaś zwisają swobodnie po obydwóch stronach. Obydwa zwoje na półkolu górnem leżą tuż jeden przy
[image: ]





drugim, możemy więc uważać, że cały sznur mieści się w płaszczyźnie pionowej, prostopadłej do osi cylindra. Wyznaczyć położenie spoczynku i najmniejszą długość sznura, przy której jeszcze równowaga jest możliwa.

Naprzód przypuśćmy, że sznur pozostaje w zetknięciu z kołem zarówno na półkolu dolnem, jak i górnem. W takim razie po każdej

3xa -

stronie zwisa pionowo długość l——. Przeciwsrodek najniższego punk-tu D koła leży o 2a niżej od środka koła O. Stąd wynika, że sznur nie pozostanie w zetknięciu z kołem, jeżeli nie jest spełniony warunek

3xa

Z-->2a.

2

Przypuśćmy teraz, że część sznura zwisa swobodnie w postaci katenoidy. Niech P' będzie jednym z punktów zetknięcia tej krzywej z kołem. Na figurze wyróżniono jeszcze punkt P; uczyniono to jedynie w tym celu, aby uwidocznić trójkąt PLN (444). Oznaczmy kąt P'OD przez V (a zatem V będzie także nachyleniem stycznej w P' do poziomu), łuk CP' przez s i współrzędne punktu P' przez x, y. Mając na uwa-c

dze trójkąt PLN, napiszemy y=----, s=ctan, a ponieważ x=asin • COS!

przeto przy pomocy równań (5) par. 443 otrzymamy

a sin •

--+tanJ=e c


(1).



COS •

Wiemy, że swobodne końce sznura A i B leżą na kierownicy (par. 460), / T \ a zatem BF=y+a CosY dalej łuk FE— xa, EP'={^——‘)a i P'C=s. Suma tych czterech wielkości jest równa. Z, a więc

/ 1 A , 3xa


cl




. • (2)



I----tan • J+dCOS!—a‘+ ——I


Zakładając, że




asind

c—--

V




Drugie z tych



równań określa długość sznura, odpowiadającą danemu położeniu równowagi.

Wypada teraz wyznaczyć najmniejszą długość l, przy której jeszcze równowaga jest możliwa. W tym celu przyrównywamy do zera dl

—. Wymaga to dość rozwlekłych rachunków; podajemy tu już wynik dy _

dv 1 ostateczny Wobec tego, że — ==--, otrzymamy

cos •

1 dl   (1— v) (v cos2Y—sin ) 0

a dy u2(l—sin V)

Rozwijając v według potęg sin 1, przekonamy się, że (v cos21—sin () jest ujemne i nie znika, gdy sin • zawiera się pomiędzy zerem i jednostką. Założywszy, że czynnik (1 — v) jest równy zeru, otrzymamy

e2—1             dl

sin J=----. Pochodna — zmienia znak z — na +, gdy sino wzrasta, €2+1             dy

a zatem l osiąga minimum. Wykonawszy rachunki liczbowe, znajdzie-3xa

my, że ^=0,86, a Z--9=(e- Y) a=l,85 a.

Każdej wartości l większej od tego minimum odpowiadają dwa położenia równowagi. W jednem z nich część sznura zwisa swobodnie w postaci łańcuchowej, w drugiem sznur opasuje ściśle cylinder, albo 3xa zwisa swobodnie stosownie do tego, czy l--2 jest większe, czy mniejsze od 2a.

Prz. 2. Jednorodny łańcuch bez końca jest zawieszony na obwodzie koła pionowego; a oznacza promień koła, 2ay łuk, który łańcuch okala, i l całkowitą długość łańcucha. Dowieść, że

20 sin2 ~

(l— 2ay) {log (— cos )— log (1+sin )}=--.

COS Y

(May Exam.)

Prz. 3. Końce sznura jednorodnego o danej długości umocowano w punktach nieruchomych, następnie po ustaleniu równowagi zamknięto sznur całkowicie w cienkiej nieruchomej rurce, która nigdzie go nie dotykała, i wreszcie przecięto go w punkcie, w którym styczna tworzyła z poziomem kąt . Okazać, że w punkcie, w którym styczna tworzy z poziomem kąt 1, stosunek ciśnienia na rurkę do ciężaru je-

,                   cos2^ dnostki długości sznura wynosi----, cos Y


(Math. Tripos, 1886.)



	
	
463.    Krzywa chropowata, sznur lekki. Rozważymy teraz przypadek, w którym ciężar sznura jest nieznaczny, a krzywa chropowata. Powracając do figury 129, przypuścimy, że na końce A i B działają siły nierówne F, F'. Chodzi o wyznaczenie równowagi granicznej, założymy przeto, że sznur ma właśnie zacząć się przesuwać w kierunku AB. Na każdy element PQ działa tarcie [iJRds, gdzie p. oznacza współczynnik tarcia. Siła ta działa w kierunku odwrotnym do kierunku ruchu, a więc od B do A.





Siłę tę wprowadzamy do równań, które otrzymaliśmy w par. 459, biorąc rzuty na styczną i normalną, a natomiast odrzucamy wyrazy, zawierające ciężar elementu; wypadnie


dT — p.Rds=0 . . (1),




dT

Po wyrugowaniu R znajdziemy 7 =!




ds

T~-Rds = h . . (2),

P

ds

— =Ud, a stąd



log T=w+A i T=Be^^ gdzie A i B są stałemi nieokreślonemi. Oznaczmy przez T1 i T2 naprężenia w punktach, w których styczne tworzą z osią a kąty P1 i $2; w takim razie z równania ostatniego wypadnie

T,=T,et—h) .               (3).

Dobrze będzie ująć ten wynik w formę prawidła. Gdy lekki sznur leży na krzymej chropoioatej w stanie graniczącym z ruchem, to stosunek naprężeń w dwóch dowolnych punktach jest równy e w potędze p. razy większej od kąta pomiędzy stycznemi lub normalnemi w owych punktach.

Znak, który trzeba postawić przed p, zależy od kierunku, w którym działa tarcie. Stosując powyższe prawidło, nie napotkamy pod tym względem żadnych trudności, gdyż (1) jest rzeczą oczywistą, że to z dwóch naprężeń jest większe, które ma kierunek odwrotny do tarcia, i (2) funkcyi wykładniczej ze współczynnikiem dodatnim może być równy tylko stosunek naprężenia większego do mniejszego, a nie odwrotnie.

Aby wyznaczyć kąt pomiędzy stycznemi wyobrażamy sobie, że prosta, która początkowo przystawała do pierwszej stycznej, toczy się po sznurze, dopóki nie przystanie do drugiej; kąt, o który obróci się przytem owa prosta ruchoma, jest kątem szukanym.

Równanie (2) określa ciśnienie w każdym punkcie sznura; widzimy, że Rp w jakimkolwiek punkcie jest równe naprężeniu w tym punkcie.

	
	
464.    Gdy dane są siły F, F', działające na końce A, B, a także długość sznura l, to możemy wyznaczyć położenie graniczne równowagi w sposób następujący. Nadajemy równaniu krzywej postać $=f(s), i niechaj s będzie współrzędną łukową punktu A; wówczas s + l będzie współrzędną punktu B, a kąty • w punktach A i B będą f^s) i f(s + l). Logarytmując równanie (3), otrzymamy





log F, - log F=vl/s+1- /s) .

Z równania tego wyznacza się s. Znajdziemy inne położenie graniczne, pisząc—M zamiast M.

	
	
465.    Zauważymy, że równanie (3) paragrafu 463 jest niezależne od rozmiarów krzywej. Przypuśćmy, że ciężki sznur przechodzi przez małą chropowatą obrączkę, albo przez kołek, i znajduje się w stanie, graniczącym z ruchem. Można niekiedy pominąć ciężar części sznura, pozostającej w zetknięciu z kołkiem, jako znikomy w porównaniu z naprężeniami po obydwóch stronach. Jeżeli sznury po obydwóch stronach kołka tworzą kąt skończony, to ciśnienia a więc i tarcia nie będą małe, i nie-wolno ich pomijać. Wyciągamy stąd wniosek, że gdy ciężki wyprężony sznur przechodzi przez chropowatą obrączkę, albo przez kołek, to stosunek naprężeń po obydwóch stronach wyznacza się tak samo, jak dla sznura lekkiego.


	
466.    Prz. 1. Lina tworzy dwa zwoje na chropowatym palu, a na jej końce działają siły F, F’. Wyznaczyć stosunek F: F' dla chwili, gdy właśnie my nastąpić poślizg.





W tym razie kąt pomiędzy stycznemi jest równy 4m, a zatem stosunek większej siły do mniejszej wynosi e4TH.

Prz. 2. Okrągła tarcza, ważąca W i pozostająca w płaszczyźnie pionowej, opiera się w jednym punkcie o ścianę pionową, zupełnie chropowatą; do ściany przyciska ją sznur, którego jeden koniec jest przymocowany do ściany nad tarczą, a na drugim wisi ciężar P. Sznur tworzy ze ścianą kąt 3, a jego współczynnik tarcia o tarczę jest równy p. Dowieść, że gdy tarcza ma zacząć się osuwać, to P(1+cos%)e= W+2P.                            (Coli. Exam.)

Prz. 3. Zarzucono lekki sznur na chropowatą, nieruchomą tarczę .pionową, a do jego końców przywiązano końce ciężkiej sztaby, której długość jest równa średnicy tarczy, i która pozostaje w położeniu poziomem. Pomiędzy jakimi punktami sztaby można na niej zawiesić dany ciężar, nie naruszając równowagi? Okazać następnie, że ciężar można zawiesić w każdym punkcie, jeżeli stosunek jego do ciężaru


sztaby nie przewyższa




e“—1




, gdzie p. jest współczynnikiem tarcia sznura



o tarczę.                                                 (Coli. Exam., 1880.)

Prz. 4. Lekki sznur przechodzi przez poziomy i nieruchomy cylinder chropowaty. Do jednego końca sznura jest przywiązany ciężar W; ciężar P, przywiązany do drugiego końca, wystarczyłby do podniesienia ciężaru W, a ciężar P' wystarczyłby do utrzymania W w zawieszeniu, wreszcie R i R' oznaczają odpowiednio ciśnienia wypadkowe sznura na cylinder. Okazać, że P: P'=R2 \ R'2.           (Math. T., 1880.)

Prz. 5. Lekka wstęga opasuje ściśle dwa nierówne koła chropowate. Jedno z nich jest nieruchome, a drugie zaczyna się zwolna obracać około środka. Dowieść, że poślizg wstęgi rozpocznie się na mniej-szem kole.

Prz. 6. Na szczycie chropowatej kuli nieruchomej o promieniu c leży ciężka cząsteczka; do niej są przywiązane dwie inne takie same cząsteczki lekkiemi nićmi, każda o długości co. Dwie ostatnie cząsteczki leżą jaknajbliżej jedna od drugiej, a płaszczyzny nici tworzą kąt «p. Okazać, że 2 sin (—) cos 3= sin X. e" tan ", gdzie X oznacza kąt tarcia cząsteczek o kulę a także nici o kulę. (Coli. Exam. 1887.)

Prz. 7. Ciężki sznur jednorodny, 2/ długi, przechodzi przez dwie nieruchome obrączki A, B, położone na jednym poziomie, i ma właśnie zacząć się przesuwać wewnątrz w obydwóch. Wyznaczyć położenie równowagi.

Oznaczmy przez 2s długość części sznura, zawartej pomiędzy obrączkami, i przez y rzędną łańcuchowej przy każdej obrączce; naprężenia po dwóch stronach obrączki są proporcyonalne do y i L — s. Przywołując na pomoc trójkąt PLN na fig. 123, przekonamy się, że sznur jest wygięty o kąt, stanowiący spełnienie do a najmniejszego c

kąta, którego sin jest równy —, a zatem według (3), par. 463, będzie J

y /          c\

log [---= arcsin —J! Znana odległość pomiędzy obrączkami niech

będzie 2a; w takim razie x—a. Podstawiając na miejsce y i s ich wartości w funkcyach x lub a, znane z par. 443, otrzymamy równanie do wyznaczenia c. Następnie można będzie wyznaczyć y i s.

Prz. 8. A, B, C oznaczają trzy chropowate kołki, osadzone w płaszczyźnie pionowej, P, Q, R największe ciężary, które mógłby zrównoważyć ciężar W, połączony z jednym z nich sznurem, przechodzącym odpowiednio przez A, B, C, przez A, B i przez B, C. Dowieść, że współ-

. 1 , QR czynnik tarcia o B wynosi — log ----. T PW


(Math. Tripos, 1851.)



Niech a, 3, Y oznaczają kąty, o które sznur jest zgięty, gdy przechodzi przez ABC', suma tych kątów jest równa T. Według par. 463

POR

10g w="ot"BH"Y, 108 w=+P(B+T), log w =M(o+B)P"T

Otrzymamy pożądany rezultat, rugując niewiadome pomocnicze. Przyj-mujemytu, żekołek Bieży pomiędzy pionami, przechodzącymi przez Ai C.

Prz. 9. Sznur o długości l zarzucono na dwa chropowate kołki, położone w odległości a na jednym poziomie, a różnica poziomów końców sznura iest jak największa. Dowieść, że styczna do sznura u kołka tworzy z pionem kąt, czyniący zadość równaniu

l sin 3             9                ,


(St. John‘s Coli., 1881.)



—-—. log cot 2—cos—fcosher—3)

Prz. 10. Ciężki łańcuch bez końca przechodzi przez dwa kołki chropowate, położone na jednym poziomie, oraz przez trzeci kołek gładki, położony w środku pomiędzy dwoma pierwszymi. Tym sposobem łańcuch zwisa w postaci trzech katenoid. Styczne do sznura u kołka chropowatego tworzą z pionem kąty •, 3, a p oznacza współczynnik tarcia. Dowieść, że wartości graniczne kątów a i 3 czynią zadość ró-a


+ u(n-—»•+ 3)

wnaniu e 1=



	
2    sin a log cot 9



3

sin 3 log cot 2


(Math. Tripos, 1879.)



	
	
467.    Krzywa chropowata, sznur ciężki. Rozważymy teraz przypadek najogólniejszy, w którym potrzeba się liczyć zarówno z ciężarem sznura^ jak i z chropowatością krzywej.





Powrócimy znowu do figury 129. Wprowadzając do równań (1) i (2) par. 459 tarcie, otrzymamy

dT — wds sin P — \iJRds — 0 . . .           (1)

--wds cos P - Rds ........(2).

Stosując te równania do odmiennych postaci sznura, należy mieć na uwadze, że tarcie jest M. razy większe od ciśnienia, uważanego za dodatnie. Tak np. ponieważ sznur jest ciężki, to może on leżeć we wklęsłości krzywej. W przypadku takim należy zmienić znak u R w równaniu drugiem, lecz nie w pier-wszem.

ds

Wypadnie w dalszym ciągu napisać p= dĘ jest taka, że s i • nie wzrastają jednocześnie, to ,               ds życ, że p= - —.


Jeżeli figura




należy zało-



Aby rozwiązać równania powyższe, rugujemy dT

Jest to jedna z postaci typowych w teoryi równań różniczkowych. Zgodnie z prawidłem mnożymy przez e—P i całkujemy.

Te~^ —fiup (sin • - p. cosq)e—Płdp + C . . . (4).

Możemy uskutecznić całkowanie dopiero wtedy, gdy jest dana postać krzywej. Przedewszystkiem wyrażamy p według reguł rachunku różniczkowego w funkcyi $. Podstawiając i całkując, otrzymamy

Te-^=f^)+C.......(5).

Wyznaczywszy tym sposobem T, otrzymamy R z (1) lub (2). Należy zaznaczyć, że w tein wszystkiem nie zakładaliśmy jednorodności sznura.

Ciśnienie w punkcie dowolnym czyni zadość równaniu

Rp — T— wp cos O.

Takie samo równanie mieliśmy w par. 460 dla ciężkiego sznura na krzywej gładkiej.

Jeżeli tarcie nie jest graniczne, to zastępujemy w (1) — [tRds przez — Fds, gdzie F oznacza tarcie na jednostkę dłu-gości.

Prz. Sznur jest jednorodny długości skończonej, i na końce jego działają siły Pi, P2. Okazać, że całkowite wywołane tarcie fFds — =P2 — Pi~wz, gdzie z=Y2—Y; tak więc z jest to odległość pionowa pomiędzy końcami sznura.

	
	
468.    Widzieliśmy w par. poprzedzającym, że do badania równowagi ciężkiego sznura na krzywej chropowatej potrzebna jest całka





I=fwpe—P(siny—ucos@) d).

W wielu przypadkach całka ta daje się wyznaczyć.

Gdy krzywa jest kołem, a sznur jednorodny, to p = a. Znajdziemy bez trudności

wa                   _ I—~—{(u.2—1) cost — 2u sino} e

M"+1

Jeżeli krzywa jest spiralną logarytmiczną, i sznur jednorodny, to r=ae" coto. Ponieważ psina=r i (=9+o, można więc otrzymać ae-acoto

całkę z poprzedzającej, pisząc u.—cola zamiast u i----zamiast a.

sin a

Jeżeli krzywa jest cykloidą z podstawą nachyloną do poziomu pod kątem jakimkolwiek, to p=4ucos(4—a), gdzie a oznacza promień koła tworzącego. Wogóle jeżeli krzywa jest tego rodzaju, że wp daje się wyrazić w postaci sumy potęg dodatnich całkowitych siny i cosy, to można wyrazić wp(sin—ucosy) w postaci sumy kosynusów i synu-nusów kątów wielokrotnych. W tych razach można wyznaczyć całkę w sposób podobny, jak dla koła.

IVCC -

Jeżeli krzywa jest łańcuchową, to pcos24=c i I—--—.Wogóle COS •

jeżeli krzywa jest tego rodzaju, że p=acos"!, gdzie n jest liczbą całkowitą dodatnią lub ujemną, to można wyznaczyć I zapomocą wzoru redukcyi. Znajdziemy łatwo, że l2+(n+1)2I,—(n-1)(n+2)1,-=

	
	
= wa (cos !)" - le - P {n + 2 - p(n + 2) sin + cos + - (n +1 - p?) cos 2/ I. 469.    Prz. 1. Ciężki sznur zajmuje jedną ćwiartkę obwodu na górnej połowie chropowatego koła pionowego i znajduje się w stanie, graniczącym z ruchem. Dowieść, że promień, przechodzący przez niższy koniec, tworzy z pionem kąt a, czyniący zadość równaniu un





tan (a—2:)= e   2 , gdzie tane—p.

Prz. 2. Ciężki sznur spoczywa na obwodzie chropowatego koła pionowego; długość sznura jest równa ćwiartce obwodu, jeden koniec leży w najwyższym punkcie koła, i tarcie jest graniczne. Okazać, że

—tane=log tan 2$.                                        (Coli. Ex., 1881.)

Prz. 3. Jeden koniec sznura jest umocowany w punkcie nieruchomym; sznur przechodzi pod ruchomym krążkiem, ważącym W, a na drugi koniec jego działa siła P, ściśle wystarczająca do utrzymania krążka w zawieszeniu. Na krążku sznur okala luk, któremu odpowiada kąt centralny «. Okazać, że kąt len czyni zadość równaniu

P(1—2e*? cos p+e)‘= w.

(Coli. Ex„ 1882.)

Prz. 4. Sznur leży na chropowatej katenoidzie, której oś jest pionowa a wierzchołek zwrócony do góry. Długość sznura jest równa parametrowi, jeden koniec jego znajduje się w wierzchołku katenoi-dy, i tarcie jest graniczne. Okazać, że współczynnik tarcia wynosi 21092 ---—.                                                      (Coli. Ex., 1885.)

T

Prz. 5. Ciężki sznur leży we wklęsłości chropowatej cykloidy, której podstawa tworzy z poziomem kąt a; koniec A znajduje się w najniższym punkcie cykloidy, a koniec B w wierzchołku. Okazać, że stan sznura graniczy z ruchem, jeżeli

tan E—2 tan a

________ tan e tan s + (1—3 cos 2e) tan a

gdzie tan s jest współczynnikiem tarcia.

Prz. 6. Ciężki sznur spoczywa na chropowatej cykloidzie, położonej w płaszczyźnie pionowej i posiadającej podstawę poziomą. Normalne w końcach sznura tworzą z pionem jednakowe kąty a, i a jest również kątem tarcia sznura o cykloidę. Obracamy zwolna cykloidę około jednego z końców o kąt a. Dowieść, że tarcie stanie się grani-cznem, jeżeli

,    2     — 20 tan a

	
3--—==€



COS2a

(Przyjmujemy tu, że żadna część sznura nie zwisa swobodnie).

(Coli. Ex., 1883.)

Prz. 7. Ciężki sznur jednorodny spoczywa na gładkiej cykloidzie, której oś jest pionowa, a wierzchołek zwrócony ku górze; sznur okala dokładnie jedną gałęź krzywej, i końce jego leżą w ostrzach. Dowieść, że -ciśnienie w każdym punkcie cykloidy jest odwrotnie proporcyonalne do krzywizny.                   (Math. Tripos, 1865.)

Prz. 8. Położono ciężki sznur AB na wypukłości krzywej chropowatej w płasżczyźnie pionowej, i tarcie we wszystkich punktach jest zwrócone na krzywej w jedną stronę. Okazać, że sznur pozostanie w spokoju, jeżeli nachylenie cięciwy AB do poziomu jest mniejsze od arctan u, gdzie p. oznacza współczynnik tarcia.

(June Ex., 1878.)

	
	
470.    Twierdzenie następujące obejmuje sporo zagadnień, prowadzących do całek znanych.





Przypuśćmy, że znana jest forma, w której niejednorodny sznur swobodny, umocowany tylko w końcach, pozostaje w równowadze w płaszczyźnie pod działaniem pewnych sił. Niech y=f{x) będzie tą znaną krzywą. Przypuśćmy dalej, że ten sam sznur ułożono w tem amem położeniu na nieruchomej krzywej chropowatej, która również posiada równanie ij=f(x~). Jeżeli teraz na końce działają siły takie, że sznur ma właśnie zacząć się posuwać, to

(T+Gp^^^C, Rpe~^^C.....(1)

0 jest tu stałe na całej długości sznura, Gds podobnie, jak w par. 454, jest składową normalną siły, działającej na element ds, zwróconą wewnątrz. Przypadek typowy jest tu ten sam, co w par. 467. Poślizg ma się rozpocząć w tym kierunku, w którym V wzrasta, a ciśnienie R krzywej na sznur działa na zewnątrz, jeżeli jest dodatnie. Gdy odwrócimy którekolwiek z tych założeń, to wypadnie zmienić znak przed p.. Aby sznur nie odstał od krzywej, to C powinno mieć znak taki, przy którym R działa od krzywej w stronę sznura.

Aby udowodnić wzory powyższe, powracamy do równań (1) i (2) par. 454. Wprowadzając do tych równań ciśnienie R, otrzymamy

Tds dT]-Fds — [tRds—O, ---\-Gds—Rds—0- . . . . (2).

P

Rugujemy R, jak w par. 467; wypadnie

Te M=-J(F_pG)pe-Md+c.......(3).

Gdy sznur wisi swobodnie, to R=0; rugując w tem przypuszczeniu T


wzdłuż krzywej.



z rownan (2), znajdziemy, że Fp—---jest słuszne dy

Gdy sznur leży na krzywej, posiadającej wspomnianą własność, to możemy podstawić powyższą wartość Fp w równaniu (3). Wówczas wypadnie Te Mł=-e ^GpFC. Pierwszy z wzorów, które mieliśmy udowodnić, wynika stąd bezpośrednio, drugi otrzymamy, podstawiając ostatnią wartość T w drugiem z równań (2).

	
	
471.    Prz. 1. Ciężki jednorodny sznur AB leży na górnej stronie chropowatej katenoidy, której kierownica jest pozioma, przyczem koniec dolny sznura znajduje się w wierzchołku. Wyznaczyć najmniejszą siłę, która poruszy sznur, działając na koniec górny.





W górnym końcu sznura T=F, G=-gcost; w końcu dolnym T=0, G=-g, 1=0. Według paragrafu poprzedzającego będzie (F— gp cos@)e"M=- gc, a zatem F= g{y — ce TM). Znakowi górnemu przed p. odpowiada większa wartość F, będzie to siła ściśle wystarczająca do posunięcia sznura w górę; znakowi dolnemu odpowiada siła dostateczna do utrzymania sznura w spoczynku. Wyprowadzić te wyniki bezpośrednio z warunków równowagi.

Prz. 2. Sznur jednorodny AB leży na obwodzie chropowatego koła pod działaniem siły centralnej; środkiem tej siły jest punkt O, położony na przeciwległym końcu średnicy, przechodzącej przez A, a natężenie jej zmienia się, jak odwrotność sześcianu odległości. Dowieść, że do utrzymania sznura w spokoju wystarczy, aby na koniec

/e- 2gp   \                              21

A działała siła F—k(----—1), gdzie 3 oznacza kąt AOB, — siłę \ cos2^    /                                   a3 centralną w A, i a średnicę.

	
	
472.    Sznury bez końców i inne. Gdy ciężki sznur nierozcią-galny pozostaje w równowadze w płaszczyźnie pionowej na gładkiej krzywej, nie posiadającej punktów osobliwych, to można wyznaczyć ciśnienie i naprężenie, jak w par. 459, z jedną stałą nieokreśloną. Stałą tę wyznaczamy zazwyczaj, przyrównywając do zera naprężenie w jednym z końców swobodnych. Gdy jednak sznur jest bez końca, albo gdy obydwa końce są przymocowane do krzywej, przyczem sznur mógł być wyprężony dowolnie, to niema danych do wyznaczenia owej stałej.





Dajmy na to, że sznur styka się z dolną stroną krzywej; rozluźniamy go stopniowo, dopóki długość jego nie przewyższy nieskończenie mało długości łuku, z którym pozostaje w zetknięciu. W tym stanie sznur ma właśnie odstać od krzywej w pewnym nieznanym punkcie Q; mówimy, że opasuje on krzywą ściśle. Jeżeli sznur będzie wydłużał się w dalszym ciągu, to ostatecznie skończona część jego odstanie od krzywej i zwiśnie w postaci łańcuchowej. Taksamo, gdy górna wklęsła strona krzywej podtrzymuje ciężar rozważanego sznura, to można wyprężać go, dopóki nie odstanie od krzywej w pewnym punkcie Q. Gdy będziemy wyprężali albo skracali sznur w dalszym ciągu, to skończona część jego zawiśnie w postaci łańcuchowej, a reszta będzie wciąż leżała na krzywej.

Celem wyznaczenia punktu Q zauważymy, że ciśnienie krzywej na sznur, mierzone w stronę, po której sznur leży, musi być dodat-niem we wszystkich punktach i zerem w Q, a zatem ciśnienie, mierzone w taki sposób, osiąga w Q minimum.

Według par. 460 ciśnienie B, mierzone na zewnątrz, wyznacza się z równania

..................(2). ds

Równanie to określa punkt, w którym Rp osiąga maksymum, lub dR minimum, albo słoi w mierze. Skoro zarowno R, jak i —, są zerami, to

d2R   d2RP      ,/2   d2p\


siny P




dP

ds



p--- —--- — cos U---

ds2     ds2           \ p    ds2 /

Znak wyrażenia tego rozstrzyga, czy R osiągnęło maksymum, czy minimum. Gdy długość sznura jest skończona, to odrzucimy niektóre z wyznaczonych punktów, jako leżące po za danemi granicami; należy jednak w tym razie liczyć się z końcami sznura, bo jest rzeczą oczywistą, że ciśnienie w końcu może być mniejsze, niż we wszystkich punktach pośrednich. Z takich wszystkich punktów ten będzie szukanym punktem Q, w którym ciśnienie, mierzone w stronę sznura, jest najmniejsze. Znajdziemy następnie stałą nieokreśloną To, zakładając, że w tym punkcie ciśnienie jest zerem.

Jeżeli sznur odstanie od krzywej w punkcie najniższym, to dp

—=0, a więc w tym punkcie promień krzywizny musi osiągać maksymum, lub minimum, albo pozostawać w mierze. Ponieważ Rp musi osiągać minimum albo maksymum stosownie do tego, czy sznur leży zewnątrz czy wewnątrz, przeto jest rzeczą niezbędną, aby w pierwszym

d2Rp

razie 192 było dodatnie, a w drugim ujemne.

Można tym warunkom nadać postać geometryczną. Weźmy pod uwagę część sznura, opasującą dolną wypukłą stronę krzywej; przypuśćmy, że rozluźnia się ona coraz bardziej i wreszcie zaczyna odsta-wać od krzywej. Niechaj Q będzie takim punktem, którego przeciwśro-dek leży najniżej; określamy stałą To, prowadząc przez ten przeciw-środek kierownicę statyczną (par. 460). Jeżeli R oznacza ciśnienie, skierowane na zewnątrz, to Rp będzie we wszystkich punktach dodatnie i równe zeru w Q. Z tego wynika, że właśnie w tym punkcie Q sznur odstanie od krzywej.

Statyka. 25

Dajmy teraz na to, że sznur spoczywa na górnej wklęsłej stronie krzywej. Gdy zaczniemy go wyprężać stopniowo, to zacznie on odstawać od krzywej w punkcie Q, którego przeciwśrodek leży najwyżej. W samej rzeczy, obierzmy stałą T w taki sposób, aby kierownica statyczna przeszła przez ten przeciwśrodek; przyjmując, że sznur leży całkowicie nad kierownicą (par. 460), dojdziemy do wniosku, że Bp jest we wszystkich punktach ujemne, a w punkcie Q równe zeru.

	
	
473.    Prz. 1. Sznur ciężki ściśle opasuje koło pionowe, okazać, że naprężenie w punkcie najwyższym jest trzy razy większe, niż w najniższym.





Niech a oznacza promień koła, a TQ, Ti naprężenia w punktach najniższym i najwyższym. W takim razie Ti— T0—2wa. Ponieważ p jest stałe, przeto jedyne rozwiązanie równania (2) będzie 1=0, i dla tej wartości • ciśnienie R, mierzone na zewnątrz, osiąga minimum. Tak więc ciśnienie w punkcie najniższym jest równe zeru, a zatem ciężar wds elementu najniższego podtrzymują naprężenia na końcach tego elemen-

ds

tu, i ivds—T0—. Z tego wynika T0=iva i Ty—^wu.

a

Można dojść do tego samego w sposób prostszy, stosując prawidło geometryczne, podane w paragrafie poprzedzającym. Miejscem ge-ometrycznem przeciwśrodków jest oczywiście inne koło o promieniu 2a współśrodkowe z kołem danem. Gdy obierzemy styczną w punkcie najniższym tego miejsca za kierownicę statyczną, to stosunek wysokości punktów najwyższego i najniższego na kole danem będzie 3:1; tyleż wyniesie i stosunek naprężeń w tych punktach (par. 460), Gdy nieco rozluźnimy sznur, to zacznie on odstawać w punkcie najniższym.

Prz. 2. Część ciężkiego sznura, którego całkowita długość jest równa 21, leży wewnątrz gładkiego naczynia kulistego, a dwie inne części przewisają symetrycznie po obydwóch stronach przez gładki brzeg, leżący w płaszczyźnie poziomej. Promień kuli=a, kąt centralny naczynia—23. Znaleźć warunki równowagi.

Wszystkie punkty sznura muszą leżeć nad kierownicą statyczną, i wykreśliwszy figurę, dojdziemy, że l> a(^ + l — cos 3). Sznur leży we wklęsłości, a zatem ciśnienie R musi być ujemne, i wszystkie punkty linii przeciwśrodków powinny leżeć pod kierownicą statyczną. Z tego wynika, że l< a (3+cos 3). Te dwa warunki wymagają, aby kąt 3 był

T mniejszy od —.

Prz. 3. Ciężki sznur opasuje od dołu katenoidę o osi pionowej, a końce jego są przymocowane do tej krzywej. Dowieść, że sznur odstanie od krzywej jednocześnie we wszystkich punktach, gdy będziemy go rozluźniali stopniowo.

Prz. 4. Jeden koniec ciężkiego sznura jest przymocowany do najniższego punktu cykloidy, której oś jest pionowa, a wierzchołek leży w owym punkcie najniższym. Sznur opasuje cykloidę od dołu aż do ostrza, przechodzi tam przez gładki bloczek, a koniec zwisa swobodnie. Okazać, że najmiejsza długość zwisającej części sznura, przy której jeszcze zachodzi równowaga, jest równa sześciokrotnemu promieniowi koła tworzącego. Wyznaczyć w tym przypadku granicznym ciśnienie wypadkowe na cykloidę.                           (Queen’s Coli.)

Prz. 5. Ciężki sznur ściśle opasuje od dołu cykloidę, a końce jego są przywiązane w ostrzach. Okazać, że ciśnienie jest zerem w punkcie Q, który określa ujemny pierwiastek równania 3 sin (2+a)==-sin a, gdzie « oznacza kąt, który normalna w Q tworzy z osią cykloidy, a a nachylenie osi do pionu. Wyznaczyć prócz tego naprężenie w wierzchołku.

Prz. 6. Ciężki sznur bez końca jest zawieszony na krzywej owalnej tak, że część jego zwisa w postaci łańcuchowej. Skracamy sznur stopniowo, dopóki łuk łańcuchowej nie stanie się nieskończenie krótkim. Okazać (1), że krzywa i łańcuchowa posiadają cztery kolejne punkty wspólne, i (2) że ten nieskończenie krótki łuk łańcuchowej leży

dp

w punkcie krzywej, dla którego 2 tan J==—.

ds

Prz. 7. Sznur opasuje mocno gładką elipsę; działa nań odpychająca siła centralna, wychodząca z ogniska i proporcyonalna do kwadratu odległości. Wyznaczyć prawo, według którego zmienia się naprężenie, i dowieść, że gdy rozluźnimy sznur cokolwiek, to odstanie on od krzywej w punkcie, którego odległość od ogniska wynosi 7/4 połowy dużej osi, jeżeli mimośrod jest większy od 3/4. W którem miejscu sznur odstanie od krzywej, gdy mimośrod jest mniejszy od 3/i?

(Coli. Ex., 1887.)

	
	
474.    Siły centralne. Sznur o danej długości, przymocoma-ny iv dtoóch punktach nieruchomych, podlega działaniu siły centralnej. Wyznaczyć związek pomiędzy kształtem krzywej i prawem, według którego działa siła. Będziemy mierzyli łuki, poczynając od pewnego punktu A, obranego na sznurze, w kierunku AB, i niech będzie s=AP. Środkiem                     g siły jest, dajmy na to, punkt O, i na element ds — PQ działa siła Fds, którą uważamy za dodatnią, gdy jest zwró- eona w stronę dodatnią promienia wo- — dzącego, t. j. gdy siła jest odpycha- o jąca.                                                     Fig. 132.





Element PQ pozostaje w równowadze pod działaniem naprężeń TiT+dT oraz siły centralnej Fds. Biorąc rzuty na styczną w P, otrzymamy

dT+ Fds cos =0, gdzie « oznacza kąt pomiędzy elementem ds i promieniem wo-

dr dzacym, czyli kąt OPA. Ponieważ Cos =ds» powyższe sprowadza się do dT —


przeto równanie

.....(1).



—+F‘=0 . . .

dr

Moglibyśmy otrzymać drugie równanie, biorąc rzuty tych samych sił na normalną w P, ale dojdziemy do tego samego łatwiej, biorąc momenty wszystkich sił, działających na skończoną część sznura AP. Część ta pozostaje w równowadze pod działaniem naprężeń To, T oraz sił, z któremi O odpycha każdy element. Gdy weźmiemy momenty względem O, to te ostatnie nie wejdą do równania, i wypadnie

Tp = A.........(2), gdzie p oznacza prostopadłą z 0 do stycznej w P, A zaś jest momentem naprężenia To względem 0.

Dajmy na to, że styczne w dwóch jakichkolwiek punktach A, B do krzywej spotykają się w C. Łuk AB pozostaje w równowadze pod działaniem naprężeń w A i B oraz wypadkowej R sił centralnych, działających na wszystkie elementy. Wynika stąd, że linią działania tej wypadkowej będzie prosta, łącząca środek siły centralnej 0, z punktem przecięcia C stycznych w A i B. Jeżeli OY i OZ są prostopadłemi z 0 do stycznych w A i B, to składając naprężenia, zobaczymy, że

YZ

B=A • ~oy7oz'

Gdy punkt P obiega sznur od A do B, to spodek prostopadłej z 0 do stycznej w P zakreśla krzywą spodkową. Gdybyśmy wykreślili tę krzywą, to mielibyśmy obraz naprężeń we wszystkich punktach sznura.

	
	
475.    Mamy rozważyć teraz dwa przypadki.





Pierwszy. Postać krzywej jest dana, chodzi o wyznaczenie siły. Przy pomocy znanych twierdzeń rachunku różniczkowego możemy wyrazić równanie krzywej w postaci p=!(r). Wówczas z równań (1) i (2) otrzymamy

— A t=A-^          9 [9(r)]2

Stała A pozostaje nieokreśloną, bo jest rzeczą oczywistą, że równowaga nie dozna zakłócenia, gdy siła centralna wzrośnie w pewnym stosunku. Naprężenie w sznurze oraz reakcye w punktach zawieszenia wzrosną w tym samym stosunku.

Przypadek drugi. Przypuśćmy teraz, że siła jest dana, a mamy wyznaczyć postać krzywej. Rugując T z (1) i (2), znaj-dziemy

Wykonawszy całkowanie, znajdziemy równanie biegunowe krzywej.

W równaniu ostatniem wchodzą trzy stałe nieokreślone, a mianowicie A, B i C. Do wyznaczenia ich mamy dane współrzędne biegunowe (u,30), (u,9.) punktów zawieszenia. Scałko-wawszy (6), podstawiamy zamiast u, 3 te wartości skrajne i tym sposobem otrzymamy dwa równania pomiędzy owemi trzema stałemi. Prócz tego mamy daną długość sznura. Aby skorzystać z tej danej, musimy naprzód wyznaczyć długość łuku. Znajdziemy z łatwością

,             du?+(ud8)2

ds2 = dr2 + {rd^y =-----,4--—,

i z pomocą (5) otrzymamy

J u2\[_B-f{uyy-A2u2\^7

Całkujemy w danych granicach zmiennej u i przyrównywamy rezultat do danej długości sznura; tym sposobem powstanie równanie trzecie do wyznaczenia trzech stałych.

Równanie (6) jest zgodne z tem, które podał Jan Bernoulli, Opera Omnia, Tomas Qaartus, p. 238. Stosuje on swe równanie do przypadku, w którym siła zmienia się, jak odwrotność n—tej potęgi odległości, i przeprowadza krótką dyskusyę krzywych, gdy n=0 i n—2.

	
	
476.    Prz. 1. Sznur jednorodny pozostaje w równowadze w postaci łuku koła pod działaniem środka sił, położonego w jakimkolwiek punkcie 0 Wyznaczyć prawo siły. Niech C będzie środkiem koła, OC^c, CP—a. W takim razie 2ap~r2+a2—c2, i





1

 Wypada zaznaczyć, że gdybyśmy mierzyli s od B w stronę A, a więc gdyby było BQ—s, to T oznaczałoby naprężenie w Q, a T+dT w P.

2

 Równania równowagi sznura pod działaniem sił jakichkolwiek w dwóch wymiarach podał w postaci Kartezyańskiej Mikołaj Fuss w Noua Acta Petropolilanae, 1796. Otrzymał on dwa rozwiązania, jedno

zapomocą momentów i drugie zapomocą rozważania naprężeń. W rozwiązaniu drugiem Fuss bierze rzuty na osi, następnie wyprowadza algebraicznie równania równoważne z temi, które otrzymujemy z rzutów na styczną i normalną, i wreszcie stosuje swe równania do kate-noidy i do innych zagadnień podobnych.


a(1)

F=-AL=Ar.

dr (r2+a2-c2)2

A                        Jeżeli środek sił leży w jakimkolwiek punkcie okręgu, niezajętym przez sznur, to siła jest odwrotnie proporcyonalna do sześcianu odległości.

Ponieważ Tp=A, przeto A jest doda-x tnie, i Fjest dodatnie; to znaczy, że siła musi być odpychająca. Jeżeli O leży na zewnątrz koła to dla części sznura, położonej pomiędzy biegunową punktu O i punktem O, p jest ujemne; jeżeli więc sznur zajmuje tę część okręgu, to A jest ujemne, i siła F musi być Fig. 133.          przyciągająca.

Za zmienną niezależną obraliśmy r lub u; jeśli środek sił leży w środku koła, to założenie takie jest niemożliwe, i przypadek ten wymaga traktowania odrębnego. Jest tu jednak rzeczą oczywistą, że sznur pozostanie w równowadze przy każdem prawie siły, jeżeli tylko siła ta jest odpychająca.

Prz. 2. Sznur jednorodny pozostaje w równowadze w postaci krzywej rn=an cos n8 pod działaniem siły centralnej F, wychodzącej z bieguna; okazać, że F— uun+2.

Prz. 3. Koniec sznura o długości nieskończonej jest umocowany w nieruchomym punkcie A; następnie sznur przechodzi przez gładką nieruchomą obrączkę B i dalej biegnie w nieskończoność w postaci linii prostej, pozostając na całej długości pod działaniem odpychającej siły centralnej =pun, gdzie n>l. Okazać, że pomiędzy punktami A i B sznur tworzy krzywą 12=b"2cos(n— 2)8. Jeżeli n—2, to krzywa jest spiralną logarytmiczną.

Prz. 4. Sznur bez końca okala środek siły=pu", gdzie 2 > n > 1. Długość sznura nieograniczenie wzrasta tak, że jeden z apsydów1) oddala się nieskończenie od środka sił; okazać, że postać równowagi 3

sznura dąży do rn~ =b"2 cos (n—2)9. Jeżeli 1=9, to krzywa jest parabolą.

Prz. 5. Końce sznura jednorodnego o długości 21 są umocowane w nieruchomych punktach A, B w jednakowych odległościach od środka siły odpychającej—pu2. Kąt A0B—2<^, i OA=BB=b. Dowieść, że sznur tworzy krzywą

M cos (3 sin a)

r         cos a gdzie wartości rzeczywiste i urojone M i a wynikają z równań


M cos (Psin a)

— 1 -------:

b         COS a



b

sin a= ± — sin (p sin a).

Równania (1) i (2) par. 474 będą w tym razie dT=[idu i Tp—A. Postępując zgodnie ze wskazówkami paragrafu 475, otrzymamy

r Adu

± |---—,=9+ C.

Jest to jedna z całek typowych w rachunku całkowym i przybiera różne postaci stosownie do tego, czy A2 — p.2 jest dodatnie, ujemne, czy też równe zeru. Czyniąc pierwsze z tych założeń, /.najdziemy po niewielkich przeróbkach


(A2-^u

--—= u-Acos




/ u.2 \1/2

(1-7) P+C).



Wzór ten zawiera właściwie wszystkie przypadki, bo gdy A2—p.2 jest ujemne, to możemy po prawej stronie zamiast kosynusa kąta urojonego napisać wartość jego w postaci wykładniczej.

Wyznaczając łuk w sposób, który poznaliśmy poprzednio, otrzymamy z łatwością

Bs^=±{(Br+ii)2-A2\^+D, gdzie pierwiastek powinien mieć po odwrotnych stronach apsydu znaki odwrotne.

Z warunków zadania wynika, że sznur musi być symetryczny względem prostej, dla której 0=0, a zatem C=0 i D=0. Zakładamy U.

A—--; wówczas równanie krzywej sprowadzi się do COS a


p. tan2 a

Bi



1cos (sin a)

——1 ±------

r          cos Q


Prócz tego mamy




B2l2=(Bb+p.)2--—

COS^a



Rugujemy z tych równań B; wypadnie l sin a=±ń sin (3 sin a). Gdy teraz oznaczymy współczynnik zmiennej — przez M, włączymy podwójny znak do wartości a i uwzględnimy, że r=b, gdy J==±3, to otrzymamy wyniki wskazane.

Prz. 6. Sznur jest w równowadze w postaci krzywej zamkniętej dookoła siły odpychającej=pu2. Okazać, że krzywa jest kołem.

Powołując się na przykład poprzedzający, zauważymy, że r pozostanie bez zmiany, gdy 8 wrośnie o 2i, a zatem r musi być funkcyą trygonometryczną 8. Z tego wynika, że sin a—1, albo sin a=0. Gdy założymy Mcose=M‘, to w przypadku pierwszym będzie —=cos3, co nie jest krzywą zamkniętą; w przypadku drugim wypada M= r, czyli koło.

Prz. 7. Sznur tworzy parabolę, środek siły leży w ognisku, i równowagę można utrzymać, umocowawszy dwa punkty sznura. Znaleźć prawo, według którego działa siła i dowieść, że naprężenie w dowolnym punkcie P wynosi 2fr, gdzie f oznacza siłę w P na jednostkę dłu-

gości i r promień wodzący z ogniska


(St John’s Coli., 1883.)



Prz. 8. Sznur nieskończenie długi przechodzi przez dwie gładkie


obrączki i pozostaje pod wrotnie proporcyonalnej Okazać, że część sznura koła.

Prz. 9. Cząsteczki



działaniem siły centralnej odpychającej, od-do sześcianu odległości od danego środka, pomiędzy obrączkami posiada kształt łuku (Coli. Ex., 1884.) sznura, umocowanego w dwóch punktach, odpychają się z siłą proporcyonalną do odległości. Dowieść, że w stanie równowagi naprężenie w każdym punkcie jest proporcyonalne do pierwiastka kwadratowego z promienia krzywizny. (Math. Tripos, 1860.)

Prz. 10. Dowieść, że dla siły centralnej, zmieniającej się, jak odwrotność odległości, łańcuchową jednakowej wytrzymałości jest krzywa r" cos n$= an, gdzie 1—n jest stosunkiem gęstości do naprężenia. Okazać, prócz tego, że ten układ krzywych obejmuje koło, hiperbolę równoramienną, lemniskatę, a także spiralną logarytmiczną dla


n=0.



(O. Bonnet, Liouville’s J., 1844.)

Prz. 11. Sznur, opasujący gładką krzywą płaską, jest przyciągany z siłą F do pewnego punktu, położonego w płaszczyźnie tej krzywej. Krzywa jest taka, że mogłaby ją obiegać swobodnie cząsteczka, pozostająca pod działaniem tejże siły. Okazać, że ciśnienie sznura na krzy-,              Fsin © c wą, rachowane na jednostkę długości, wynosi —-—  --,gdzie ozna-

2 p cza kąt, który promień wodzący ze środka siły tworzy ze styczną, p jest promieniem krzywizny, i c stałą dowolną.

Jeżeli krzywa jest spiralną logarytmiczną, środek siły znajduje się w biegunie, i jeden koniec sznura leży swobodnie na krzywej ,                    ,             u. sin ©/1   1 \ w odległości a od bieguna, to ciśnienie wynosi —2--—2/

(Math. Tripos, 1860.)

Prz. 12. Swobodny sznur jednorodny, pozostający pod działaniem odpychającej siły centralnej F, tworzy w stanie równowagi pewną krzywą; krzywą tą mogłaby swobodnie obiegać cząsteczka pod działaniem siły F', skierowanej do tego samego środka. Okazać, że F—kpF', gdzie k jest wielkością stałą; okazać dalej, że T—kpv2, gdzie u jest szybkością cząsteczki, a T naprężeniem sznura.

Prz. 13. Wiadomo, że cząsteczka może pod działaniem siły centralnej, odpychającej i proporcyonalnej do odległości, obiegać hiperbolę równoramienną, której środek leży w środku siły. Opierając się na tem, dowieść, że sznur, tworzący hiperbolę równoramienną, może pozostawać w równowadze pod działaniem siły przyciągającej, stałej pod względem wielkości i skierowanej do środka krzywej. Dowieść jeszcze, że naprężenie zmienia się, jak odległość od środka.

	
	
477.    Gdy istnieją dwa środki siły, to najłatwiej będzie otrzymać równania równowagi, biorąc rzuty na styczną i normalną. Niechaj r, r' oznaczają odległości jakiegoś punku P sznura od środków siły, F, F' siły centralne, które uważać należy odpowiednio za funkcye r i r', wreszcie p, p' prostopadłe ze środków siły do stycznej w P. Wypadnie





T   p

dT+Fdr+F'dr'=Q. . (1),       --F—F‘=0 . . (2).

p      T r

Z pierwszego z tych równań otrzymamy

T=B—JFdr—fF'dF .........(3).

Możemy założyć, że granica niższa tych całek odpowiada punktowi Po, danemu na sznurze, i w takim razie B będzie naprężeniem w Po. Podstawiamy w (2) wartość T, którą otrzymaliśmy z (1), pamiętając przy-rdr — , . tem, że p =---. Wypadnie

dp


Z drugiej strony, gdy wyznaczymy T z (2) i podstawimy w (1), to znaj-dziemy
[image: ]




W zagadnieniu wchodzą cztery elementy, a mianowicie: (1) siła F, (2) siła F, (3) naprężenie T^ (4) równanie krzywej. Gdy dwa z nich są dane, to mamy już dostateczną liczbę równań do wykrycia dwóch pozostałych.

Prz. 1. Sznur, tworzący daną linię, byłby w równowadze pod działaniem każdego z dwóch różnych środków siły. Okazać, że pozostanie on w równowadze i pod łącznem działaniem obydwóch środków, oraz że naprężenie w każdym punkcie jest równe sumie naprężeń, pochodzących od sił, działających z osobna.

Prz. 2. Dowieść, że sznur jednorodny pozostanie w równowadze w postaci krzywej F=2d2 cos 20 pod działaniem dwóch odpychających sił centralnych, wychodzących z punktów (a, 0), (—a, 0), przy-

U. czem każda z sił w odległości R wynosi na jednostkę długości—. Do-R

wieść także, że naprężenie we wszystkich punktach jest stałe i ró


4p

3




wne



(Coli. Ex., 1891.)

	
	
478.    Sznur na powierzchni. Sznur pozostaje na powierzchni gładkiej pod działaniem sił jakichkolwiek. Wyznaczyć położenie równowagi.





Niech będzie f(cc, y, z) = 0 równaniem powierzchni, Rds ci-śnieniem powierzchni na sznur, skierowanem na zewnątrz, i (Z, m, n) kosynusami kierunkowemi normalnej, skierowanej wewnątrz. Z geometryi wiadomo, że Z, m, n są odpowiednio proporcyonalne do pochodnych cząstkowych f(x, y^ z) względem x, y, z.

Jeżeli chodzi o równanie we współrzędnych Kartezyusza, to otrzymamy je od razu z równań paragrafu 455, dołączając tylko R do sił zewnętrznych. Będzie wówczas

d(74+x-R/=0

ds \ dsI

—    + Y -Rm= 0

ds \ ds/

d(rdz)+z-Rn=o.

ds \ dsI

Wchodzi tu więcej niewiadomych, niż w równaniach par. 455, a mianowicie przybyła nowa niewiadoma R^ ale za to mamy o jedno równanie więcej, a mianowicie równanie powierzchni.

	
	
479.    Weżmy dowolny element sznura PQ. Poprowadźmy styczną PA do sznura w P, prostopadłą do niej PB, położoną w płaszczyźnie stycznej do powierzchni, i normalną PN do powierzchni. Oczywiście promień krzywizny sznura PC leży w płaszczyźnie BPN. Oznaczmy przez X kąt CPN’, płaszczyzna CPA, ściśle styczna do sznura, tworzy także kąt X z normalną PN do powierzchni.





Element PQ pozostaje w równowadze pod działaniem sił następujących: (1) sił Xds, Yds, Zds, równoległych do osi współrzędnych, które pominięto na figurze, (2) reakcyi Rds w kierunku NP, i (3) naprężeń w P i Q; w paragrafie 454 dowiedliśmy, że naprężenia te są równoważne z dT w kierunku PQ oraz Tds 1 •

—— w kierunku PC.

P

Biorąc rzuty tych sił na styczną PA, otrzymamy

, . , dx — , dij dz -dT+ Xds — + Yds — + Zds — == O, ds ds ds


skąd



T-[-f (Xdx + Ydy + Zdz) = A

Nazywamy siły konserwa-tywnemi^ jeżeli ich składowe X, Y, Z są odpowiednio pochodne-mi cząstkowemi pewnej funkcyi W względem x^ y, z; funkcyę tę nazwijmy funkcyą sił (209). Dajmy na to, że zachodzi właśnie ten przypadek; w takim razie całka w równaniu (1) jest równa pracy sił. Z równania tego widać, że suma naprężenia i pracy sił jest dla wszystkich punktów sznura wielkością stałą. Weźmy całkę w granicach dla dwóch punktów sznura P, P‘; znajdziemy, że różnica naprężeń w tych punktach jest niezależna od długości i kształtu sznura, zawartego pomiędzy nimi; jest ona równa różnicy prac w punktach P', P, wziętych w porządku odwrotnym.

[image: ]



Przyjmiemy, że p jest mierzone wewnątrz według PC, n ciśnienie powierzchni na sznur na zewnątrz według NP (457). Przyjmiemy dalej, że (l, m, n) są kosynusami kierunkowymi normalnej PN, mierzonej wewnątrz. Trzymając się takiej umowy, weźmiemy rzuty sił na normalną PN do powierzchni. Wy-padnie

Tds

---cos X + Xds . I + Yds . m + Zds . n - Rds = 0.

Niech p‘ oznacza promień krzywizny przekroju powierzchni płaszczyzną NPA, czyli płaszczyzną, zawierającą normalną do powierzchni oraz styczną do sznura; z geometryi wiadomo, że p‘cosx=p. Uwzględniając to, znajdziemy


1 + XI + Ym + Zn = R P




(2).



Z równania tego wynika, że ciśnienie wypadkowe na powierzchnię jest równe ciśnienia normalnemu, pochodzącemu z naprężenia, łącznie z ciśnieniem, które wywołują składowe sił zewnętrznych. Gdy wyznaczymy przy pomocy (1) naprężenie w jakimś punkcie P, to ciśnienie na powierzchnię wyniknie z (2), jeżeli znamy kierunek stycznej PA do sznura. To ostatnie jest niezbędnę do wyznaczenia p‘.

Wreszcie weźmiemy rzuty sił na styczną PB do powierzchni. Oznaczmy kosynusy kierunkowe tej prostej PB przez X, M, v. Ponieważ prosta PB tworzy kąty proste z PN i PA, przeto kosynusy te można wyznaczyć z równań

. , p    .da  dy dz

Xf,+uf,,+vf,=0, X —+u-v—=0.

*            ds    as    ds

Biorąc rzuty, otrzymamy

T

psinx+XA+Y .........(3).

Prz. Sznur bez końca spoczywa na gładkiej elipsoidzie, biegnąc wzdłuż przecięcia kołowego przez środek. Okazać, że biF2=T2(b2—p2), gdzie F oznacza siłę na jednostkę długości; siła ta działa w płaszczyźnie stycznej i utrzymuje sznur w położeniu wskazanem. Dalej p jest odległością płaszczyzny stycznej od środka, a b połową osi średniej.

, (Trin. Coli., 1890.)

	
	
480.    Linie geodezyjne. Dajmy na to, że na pewną część sznura siły zewnętrzne nie działają. W takim razie dla tej części X=0, Y=0, Z=0. Z równania (1) wynika, że naprężenie jest stałe, a z równania (2), że ciśnienie jest proporcjonalne do krzywizny powierzchni wzdłuż sznura. Równanie (3) wskazuje (w przypuszczeniu, że linia sznura nie jest prostą), że X=0, czyli, że w każdym punkcie płaszczyzna ściśle styczna do krzywej zawiera normalną do powierzchni. Krzywa taka zowie się w geometryi geodezyjną.





Odwrotnie, jeżeli sznur pod działaniem sił tworzy na powierzchni linię geodezyjną, to z równania (3) wynika, że suma ich rzutów na kierunek prostopadły do płaszczyzny ściśle stycznej musi być w każdym punkcie sznura równa zeru.

	
	
481.    Sznur na powierzchni obrotu. W przypadku, gdy sznur leży na powierzchni obrotu, można zastąpić równanie (3) paragrafu 479 równaniem prostszem, które otrzymamy, biorąc momenty względem osi obrotu. Jeżeli wypadkowa sił, działających na każdy element, przecina oś albo jest do niej równoległa, to osiągniemy uproszczenie dalsze. Należy tu ten często spotykany przypadek, gdy na sznur działa jedynie siła ciążenia, a oś powierzchni jest pionowa.





Obierzmy oś obrotu za oś z, i niech (r, 3, «) będą współ-rzędnemi biegunowemi, a (/, «, z) współrzędnemi cylindrycz-nemi jakiegokolwiek punktu sznura. Na figurze r'= ON, z —PN i © = kątowi NOx. Z równania powierzchni otrzymamy z = f(y'\ i przypuśćmy, że siły, działające na element ds, posiadają w kierunkach r\ r'd^, z odpowiednio składowe Pds, Qds, Zds.

Bierzemy teraz momenty względem osi obrotu. Moment reakcyi R jest oczywiście zerem. Aby wyznaczyć moment naprężenia T, rozkładamy je równolegle i prostopadle do osi, a następnie mnożymy tę drugą składową przez ramię r'. Tym sposobem znajdziemy, że szukany moment jest równy Tr' sin $, gdzie 1 jest kątem, ze styczną do krzywej tworzącej; innemi słowy $ jest krzywoliniowym kątem OPA. Tak więc równanie momentów będzie d(Tr‘sin()+ Qr'ds = 0......(4).
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Biorąc rzuty na styczną, jak w par. 479, otrzymamy

dT + Pdr' + Qr'd^ + Zdz — 0.....(5).

Mamy prócz tego równanie geometryczne, wyrażające związek pomiędzy sin $ i różniczkami współrzędnych punktu P. Dajmy na to, że krzywa tworząca OP obróciła się około Oz o kąt d^-, przecina wówczas ona sznur w P', a płaszczyznę, przechodzącą przez MP i równoległą do xy, w Q. W takim razie PQ = PP' An^, czyli r'd^> = ds . sin 1, a stąd

(r'd^2— {dr‘2+(r‘dę)2+dz2]sin?p .... (6).

Rugując T i sin P z (4), (5) i (6), otrzymamy równanie, z którego można będzie wywnioskować postać krzywej.

Gdy na sznur działa tylko siła ciążenia, i oś powierzchni jest pionowa, to równania przybierają postać prostszą, a mianowicie

Tr‘sin •=wB, T—wO+A).......(7).

Rugując T i sin ! przy pomocy (6), otrzymamy

(    / dP \2 / dz \2,

(2+A)2r‘2=B2 ............(8).

Gdy w równaniu tem podstawimy z równania powierzchni z=f{r'\ to wypadnie równanie biegunowe różniczkowe rzutu sznura na płaszczyznę poziomą. Ciśnienie powierzchni na sznur, zwrócone na zewnątrz, można wyznaczyć z równania (2) paragrafu 479.


482. Ciężki sznur na kuli, obierając za początek środek kuli przybierają postać prostą

Tsin 8 sin !=wB‘,




Stosujemy współrzędne bieguno we 0. W tym razie równania zasadnicze




T=w(acos 3+A),




(sin 0dp)2=(sin 3dę)2 + d02} sin21.




Ra= w (2a cos 9 + A);



	
• oznacza tu kąt, który sznur tworzy z łukiem południka, przechodzącego przez punkt szczytowy, i B=^ctB'. Stąd otrzymamy równanie różniczkowe sznura2)



d8\2


a COS 3 + A\2



—) +sin2J=sin2 0 d /

W jakimkolwiek punkcie P panuje naprężenie wz, gdzie z oznacza wysokość punktu P nad pewną płaszczyzną poziomą, zwaną kierowniczą. Wszystkie punkty sznura muszą leżeć nad płaszczyzną kierowniczą, ta zaś leży o A niżej od środka kuli. Przypuśćmy, że normalna OP przecina w punkcie S kulę współśrodkową o promieniu dwa razy większym od promienia kuli danej. Punkt S jest przeciwśrodkiem ,                                                                                                   . wz‘ , . punktu P, a ciśnienie na sznur, zwrócone na zewnątrz, wynosi —, gdzie z' oznacza wysokość punktu S nad płaszczyzną kierowniczą. Przeciw-środek każdego punktu musi leżeć nad płaszczyzną kierowniczą albo niżej od niej stosownie do tego, czy sznur leży na wypukłej czy na wklęsłej stronie powierzchni kulistej (460).

Wartości stałych A i B zależą od warunków, które istnieją na końcach sznura. Widzimy, że B'=0, (1) jeżeli jeden z końców jest swobodny, gdyż dla niego T=0, (2) jeżeli sznur przechodzi przez punkt szczytowy kuli, bo w takim razie znika sin 3, (3) jeżeli można przeprowadzić przez punkt szczytowy południk, styczny do sznura, bo w punkcie zetknięcia sin^O. We wszystkich tych przypadkach siny znika na całej długości sznura, a zatem sznur leży w płaszczyźnie pionowej.

Gdy sznur tworzy linię zamkniętą, to wielkości T, sin 3 i sin nie mogą znikać albo zmieniać znaku w żadnym punkcie jego, a zatem Równaniom tym czynią zadość tylko dwie dopuszczalne wartości cos 3. W samej rzeczy, wykreślmy dwie krzywe dla wspólnej odciętej (==cos 0, a rzędnemi niech będą odwrotności dwóch wartości T; otrzymamy elipsę i hiperbolę równoramienną, a ponieważ T musi być dodatnie, zatem wypadną tylko dwa przecięcia. Niech dla najwyższego i najniższego punktu sznura będzie J==o i 8=3; obydwa te kąty są dodatnie. W takim razie


w najwyższym i najniższym




punkcie ł=y




Dla tych punktów będzie




skąd




Tsin 3=w B‘,




T—w(a cos 3+ A),




sin 3 (a cos 3+A)=B‘.




2A sin 20 — sin 2




a sina— sin 3

Z tego wynika, że płaszczyzna kuli, jeżeli a i 3 spełniają się



	
	
B          cos a — cos^ --=sina sin 3 —----.—. a             sin a — sin 3





kierownicza przechodzi przez środek

T                                   • do 2. Wogole naprężenia, a więc i odległości płaszczyzny kierowniczej od punktów najwyższego i najniższego są odwrotnie proporcyonalne do odległości tych punktów od średnicy pionowej.

Jeżeli sznur tworzy koło, to płaszczyzna jego musi być pozioma lub pionowa; w przypadku ostatnim musi ona przechodzić przez środek kuli. Aby to udowodnić nadajemy sznurowi przesunięcie przygotowane, nie zmieniając jego postaci. Łatwo jest dojść, że wysokość środka ciężkości osiąga maksymum lub minimum tylko w przypadkach wzmiankowanych. Jeżeli sznur leży na kuli, to w obydwóch przypadkach środek ciężkości zajmuje położenie najwyższe, a więc równowaga jest nietrwała (218). Tak samo można okazać, że każde położenie równowagi ciężkiego sznura na gładkiej kuli jest nietrwałe.

Prz. 1. Ciężki łańcuch jednorodny, przymocowany w dwóch punktach do gładkiej kuli, jest wyprężony tylko o tyle, aby punkt najniższy wszedł w zetknięcie z kulą. Okazać, że ciśnienie jest w każdym punkcie proporcyonalne do wysokości tegoż nad punktem najniższym sznura.                                                (Coli. Exam., 1892.)

Prz. 2. Sznur na gładkiej kuli przecina pod stałym kątem wszystkie przekroje, uczynione przez pewną średnicę. Okazać, że sznur pozostanie w tern położeniu, jeżeli działa nań siła, proporcyonalna do odwrotności kwadratu odległości od owej średnicy, i że naprężenie zmienia się, jak odwrotność odległości.             (Coli. Exam., 1884.)

Prz. 3. Sznur pozostaje w równowadze pod działaniem siły ciążenia w gładkim falistym rowku, wyżłobionym na powierzchni kuli. Rowek leży pomiędzy dwoma małemi kołami, których odległości kątowe od punktu szczytowego kuli są spełniające, i sznur nie wywiera żadnego ciśnienia na jego boki. Oznaczamy przez 1 ostry kąt, pod którym sznur przecina południk pionowy. Dowieść, że punkty, w których • osiąga minimum, leżą w odległości kątowej — od punktu szczy

towego i wyznaczyć wartość V w tych punktach.


(Math. T., 1889.)



	
	
	
483.    Sznur na powierzchni cylindrycznej. Prz. 1. Końce ciężkiego sznura są umocowane w dwóch punktach na powierzchni cylindrycznej, której tworzące mają położenie pionowe. Zbadać okoliczności równowagi.







Niech PQ—ds będzie elementem sznura, ivds ciężarem tego elementu. Oś z obieramy równolegle

[image: ]

NX

Fig. 136.




do tworzących, w kierunku odwrotnym do kierunku siły ciążenia. Bio-rąc rzuty na styczną do sznura, znaj-dziemy podobnie, jak w (1) par. 479, T— wz—A. Bierzemy następnie rzuty na kierunek pionowy; według par. 478 będzie — (T—} — w=0. Takie ds ds/

same równania określają równowagę ciężkiego sznura w płaszczyźnie pionowej. Również i stałe całkowania wyznaczają się w obydwóch przypadkach z takich samych warunków. Stąd wynika, że gdybyśmy roziuinęli cylinder w płaszczyźnie pionowej, to skutkiem tego równowaga sznura nie doznałaby zakłócenia. A zatem okoliczności równowagi dadzą się wywnioskować z właściwości katenoidy pospolitej.

Aby wyznaczyć ciśnienie na cylinder, bierzemy rzuty na normalną do powierzchni w punkcie P, albo też korzystamy ze wzoru ogól-

T

nego, znalezionego w par. 479. Otrzymamy R=—, a według twierdze-P

1    cos24   sin2 4   cos2^ nia Eulera o krzywiźnie — =---1--=--, gdzie Pi, jest pro-

P‘        Pi 00          Pi mieniem krzywizny przekroju poziomego cylindra w punkcie M, a • kątem, który styczna do sznura w P tworzy z płaszczyzną poziomą.

Prz. 2. Sznur wisi na kołowym cylindrze pionowym, tworząc dwa symetryczne układy zwojów, i Z, , z2, z3... są wysokościami punktów skrzyżowania sznura nad jego punktem najniższym. Dowieść, że z, 22,+1= (zn+1z,)2.                              (Math. Tripos, 1859.)

Prz. 3. Łańcuch bez końca, umieszczony na chropowatym cylindrze kołowym, ma właśnie zacząć się przesuwać pod działaniem siły, przyłożonej do jednego z jego punktów i równoległej do osi cylindra. Dowieść, że linia, którą łańcuch tworzy na Cylindrze, będzie po rozwinięciu parabolą; prócz tego znaleźć, jaką długość posiada łańcuch, gdy taki przypadek zachodzi.                    (Math. Tripos.)

Prz. 4. Ciężki sznur jednorodny spoczywa na powierzchni gładkiego, poziomego cylindra kołowego, którego promień jest równy a. Oznaczamy przez (a, 3, z) współrzędne cylindryczne dowolnego punktu sznura, mierząc 8- od pionu. Dowieść, że T—w(b + acos^ i

r acd^             .    .....

z= I —----,, gdzie b i c są wielkościami stałemi.

j l(b—a cos 8)2 — c2} /a

Jest rzeczą jasną, że rzut naprężenia na oś z jest wielkością stałą, a mianowicie T—=ivc. Łącząc to z wzorem na T z przykładu 1, otrzy-ds

mamy drugi z wzorów żądanych.

Prz. 5. Końce ciężkiego sznura są zaopatrzone w obrączki, które mogą się swobodnie przesuwać na pręcie, zajmującym położenie najwyższej tworzącej prostego kołowego cylindra o osi poziomej. Obrączki utrzymują w odosobnieniu dwie siły, z których każda jest równa wa, a najniższy punkt sznura leży na poziomie osi cylindra. Dowieść, że


D _( dł

4a J V3+sin?4




gdy granice całek są 0 i —;



L_( dł 1

8a J V3+sinay‘1+sin? 4‘

D oznacza tu odległość pomiędzy obrączkami, a L długość sznura.

Wynika to z przykładu poprzedniego; według warunków zadania a—b=c. Całki można uprościć, zakładając tan—=sin4.

Prz. 6. Sznur jednorodny leży na poziomym cylindrze kołowym o promieniu a; końce jego są przymocowane na najwyższej tworzącej, a punkt najniższy leży o a niżej. Dowieść, że krzywizna w punkcie 1

najniższym jest równa —. Jeżeli sznur przecina najwyższą tworzącą

pod kątem 60°, to w każdym punkcie tworzy on z osią kąt równy / z \

• arcseci H— ), gdzie z jest wysokością punktu nad osią. a /

Prz. 7. Końce ciężkiego sznura jednorodnego są umocowane w dwóch punktach najwyższej tworzącej gładkiego poziomego cylindra o promieniu a, długość zaś sznura jest taka, że jego punkt najniższy zaledwie dotyka cylindra. Okazać, że po rozwinięciu cylindra krzywa, ,                                              / dy\2           y           y którą tworzy sznur, przybierze postać c2--) = a‘cos---2acCOS—, \dx/           a           a gdy początek układu obierzemy w jednym z punktów umocowania.

(Math. T., 1883.)

	
	
	
484.    Sznur na stożku prostym. Prz. 1. Sznur jest przymocowany w końcach do dwóch punktów powierzchni prostego stożka i pozostaje w równowadze pod działaniem środka siły odpychającej F, położonego w wierzchołku. Okazać, że równowaga nie zostanie naruszona, gdy rozwiniemy stożek i sznur w płaszczyźnie, przechodzącej przez środek siły.







Obieramy wierzchołek O za początek, i niechaj (P, J‘, z) będą współrzędnemi cylindrycznemi punktu P sznura, a OP—r. Biorąc momenty względem osi i rzuty na styczną, otrzymamy, jak w par. 481

Tr‘siny= B, TFSFdr=C......(1).

Wyobraźmy sobie, że powierzchnia stożka została rozcięta według

Statyka. 26

tworzącej i rozwinięta wraz ze sznurem na płaszczyźnie. Niech w tein nowem położeniu (r, 3) będą współrzędnemi biegunowemi punktu P, a p odległością punktu O od stycznej do sznura w P. W takim razie p=rsiny, i równania (1) przybiorą postać

Tp=B', T+fFdr=C.......(2).

Takie same równania warunkują równowagę sznura w płaszczyźnie pod działaniem siły centralnej, i stałe całkowania wyznaczają się w obydwóch przypadkach na podstawie tych samych warunków. Możemy więc przenieść wyniki, do których doszliśmy w paragrafie 474, na przypadek sznura, leżącego na stożku. Zaznaczamy przytem, że punktowi (r, 3) w płaszczyźnie odpowiada punkt (r\ 8‘ z) na stożku, i pomiędzy współrzędnemi zachodzą związki r‘=rsin a, 8‘ sin o=%, z=rcos a.

,          T sin © Bcoso

Ciśnienie R=-= —   —-—, gdyż według twierdzenia Eulera p I*     sin2 a

,      . . 1 cos2© , sin2©cosa

o krzywizme — =---1---(479).

p‘ co               r'

Prz. 2. Obydwa końce sznura o długości 2Z są umocowane w tym samym punkcie A na powierzchni prostego stożka, i rzut sznura na płaszczyznę prostopadłą do osi ma równanie nr'—l cos (8‘ sin a), przy-czem dla punktu A S‘=x. Okazać, że sznur pozostanie w równowadze pod działaniem siły centralnej, posiadającej środek w wierzchołku stożka i odwrotnie proporcyonalnej do sześcianu odległości.

Prz. 3. Końce ciężkiego sznura są umocowane na powierzchni prostego kołowego stożka, którego oś jest pionowa, a wierzchołek u góry; sznur leży na powierzchni stożka. Dowieść, że gdy rozwiniemy stożek na płaszczyźnie, to linia sznura będzie miała równanie p(a+br)=1; początek leży tu w wierzchołku, p jest odległością stycznej od początku, i a, b są stałemi.                                             (Coli. Ex., 1890.)

	
	
	
485.    Sznur na powierzchni chropowatej. Sznur leży na pomierzchni chropowatej pod działaniem sił jakichkolwiek, i stan każdego elementu graniczy ze stanem ruchu; wyznaczyć warunki równowagi.







Można otrzymać żądane warunki z równań równowagi dla powierzchni gładkiej, wprowadzając tylko tarcie graniczne. Powierzchnia wywiera na element ds ciśnienie dłds, a więc tarcie graniczne wynosi \xRds. Siła ta działa w jakimś kierunku PS, w płaszczyźnie stycznej do powierzchni (fig. 134). Kąt SPA oznaczymy przez $. Biorąc rzuty na osi główne jakiegoś punktu sznura, zupełnie jak w par. 479 otrzymamy

dT + Xdx + Ydy + Zdz + ]xRds cos 1=0

Ę + Xl+ Ym + Zn-R       =0

P

T

—, tanx+XA+ Yy+Zv+ Rsin!=0 3).

Trzy te równania wyrażają warunki równowagi.

	
	
	
486.    Najprostszy przypadek zachodzi wtedy, gdy siły zewnętrzne są znikome wobec naprężenia. Podstawiając w tym razie na miejsce X, Y, Z zera, otrzymamy







—+ y.Rcost ds

— tan / + Rsiny =0

Z równań tych daje się wyprowadzić łatwo, że tanx+ psin=0. Do tego potrzeba, aby tan/ był mniejszy od M.; jeżeli przeto umieścimy sznur na powierzchni w taki sposób, aby płaszczyzna ściśle styczna do niego w którymkolwiek punkcie utworzyła z normalną kąt większy od arctan p, to równowaga będzie niemożliwa.

Rugując z równań powyższych $ i R, otrzymamy "5+, (3-tan3z)"=O

— (p2 — tan2x)"e.

Tak więc, gdy sznur tworzy na powierzchni daną linię i znajduje się w stanie, graniczącym z ruchem, to można wyznaczyć naprężenie w każdym punkcie.

Z równań powyższych wynika dalej, że gdy x=0, to i 1=0, czyli gdy sznur tworzy na powierzchni linię geodezyjną, to tarcie działa w kierunku stycznej do niego. Zakładając 1=0, znaj-dziemy z dwóch pierwszych równań


logT= C-M




ds p”



Na linii geodezyjnej p‘ = p, możemy przeto z równania ostatniego wyprowadzić następujące uogólnienie twierdzenia z par. 463. Gdy lekki sznur na powierzchni chropowatej znajduje się w stanie, graniczącym z ruchem, i tworzy linię geodezyjną, to (1) taęcie w każdym punkcie działa na stycznej do sznura, i (2) stosunek naprężeń w dwóch jakichkolwiek punktach jest równy podstawie logarytmów naturalnych w potędze — p. razy większej od sumy kątów nieskończenie małych, które zatoczyła styczna w ruchu od jednego z tych punktów do drugiego.

Warunki równowagi sznura na powierzchni chropowatej podał Jellett w Theory of Friclion, i z nich wyprowadził równania artykułu niniejszego.

	
	
	
487.    Prz. 1. Lekki sznur owija prosty cylinder kołowy w postaci śrubowej, a na końce jego działają siły F, F'. Okazać, że gdy stan F'     cos2a







sznura graniczy z ruchem, to log—= ±——s, gdzie s jest długością F a

sznura, pozostającą w zetknięciu z cylindrem, a kątem śrubowej i a promieniem cylindra.

Śrubowa jest linią geodezyjną, a zatem związek powyższy wynika wprost z równań paragrafu poprzedniego; należy tylko zamiast — na-2                                                                                                          P‘

COS2a

pisać —— na zasadzie twierdzenia Eulera o krzywiźnie.

Prz. 2. Ciężki sznur AB, pierwotnie niewyprężony, leży na chropowatej płaszczyźnie poziomej w postaci łuku koła. Wyznaczyć najmniejszą siłę F, która, działając na koniec B w kierunku stycznej, wystarczy do poruszenia sznura.

o                    ,         Niech punkt 0 będzie środkiem koła,

N.........            I   kąt AOP =%, a łuk AP — s. Przypuśćmy, : \       ............... że element sznura PQ ma zacząć się po-•   \             /)   ruszać w kierunku PP1, i oznaczmy kąt P'PQ pi // przez y. Z natury tarcia wynika, że ten kąt 4 , ;      \    / / musi być mniejszy od prostego. Tarcie w P :       \ /.      działa w kierunku odwrotnym, t. j. w kie-runku P'P, i jest równe piods. Równania ró-

P       wnowagi będą

A                                dT—pwds cos! =0)         (1)

Fig 137                       Td^—\i.wds sin • = 01

Podstawiamy w pierwszem z tych równań wartość T, otrzymaną z drugiego. Uwzględniając przytem, że ds—ad^, otrzymamy dł=ds, a zatem

=9+ O...........(2)

Gdy podstawimy to w (1), to wypadnie T=pwa sin (3+C).

Jeżeli każdy element sznura jest już na granicy ruchu, to równania (1) są ważne na całej długości. Ponieważ T musi być zerem, gdy 3=0, przeto C=0. Jeżeli więc długość sznura wynosi aa, to do poruszenia wystarczy siła F=^wa sin a. Gdy długość sznura przekracza ćwiartkę okręgu, to wynik ten przestaje być słusznym, bo wówczas dla elementów, położonych w pobliżu B, kąt V byłby większy od prostego.

Przypuśćmy teraz, że łuk AB jest większy od ćwiartki okręgu, i że siła F, przyłożona w B, wzrasta stopniowo, poczynając od zera. W pewnej

T

chwili siła F przybierze wartość uwasin o, gdzie &<—. Z poprzednie-2

go wynika, że wówczas skończony łuk EB, kończący się w B i odpowiadający kątowi centralnemu EOB—a, doszedł do stanu, graniczącego z ruchem, i że naprężenie w E jest zerem. Gdy F=\twa, to składowa naprężenia w B w kierunku normalnej wynosi p.ivad^, i tarcie jest ściśle wystarczające do jej zrównoważenia. Gdy F przekroczy wartość [j.wa, to tarcie przestaje wystarczać do zrównoważenia siły normalnej.

Wynik więc ostateczny jest taki: do poruszenia sznura wystarcza siła F=paw sin a, jeżeli długość jego jest mniejśza od ćwiartki okręgu; jeżeli długość przewyższa ćwiartkę, a siła dojdzie do paw, to sznur zacznie się poruszać w tym końcu, na który działa siła (zob. par. 190).

Prz. 3. Lekki sznur, dźwigający na końcach ciężary, jest przewieszony w jednej płaszczyźnie przez chropowatą kulę o promieniu a. Okazać, że odległość płaszczyzny sznura od środka nie może przekraczać a sin s, gdzie e oznacza kąt tarcia.           (St. John‘s Coli., 1889.)

	
	
	
488.    Praca przygotowana. Równania równowagi sznura można wyprowadzić z zasady pracy przygotowanej; w tym celu stosujemy do każdego elementu metodę, wskazaną w par. 203. W samej rzeczy, lewa strona równania, dotyczącego współrzędnej x, w par. 455 po pomnożeniu przez ds. dx będzie pracą przygotowaną, wynikającą z przesunięcia o dx. W myśl tej metody należy naprężenia na końcach elementu zaliczyć do sił zewnętrznych. Można również wyrazić ową zasadę, jako warunek maksymum lub minimum (212), przyczem wejdą tylko siły zewnętrzne dane. Rozważymy jako przykład zagadnienie następujące.







Końce A, B sznura niejednorodnego o długości l są umocowane nieruchomo w polu sił, którego potencyał—V, i sznur pozostaje w równowadze w jednej płaszczyźnie. Chodzi o wyznaczenie formy sznura.

Dajmy na to, że w punkcie, którego odległość łukowa od A wy-nosi s, gęstość liniowa jest m=f(sf Funkcya sił dla całego sznura będzie fVmds w granicach od 0 do l. Za zmienną niezależną obierzemy łuk s i będziemy uważali x, y za dwie funkcye tej zmiennej, pozostające w związku

dx\2 (dy\2

—) +(—) =1

ds/ \ds/

W myśl prawidła Lagrange’a pomijamy to ograniczenie i czynimy ((        /dx\2 / dy\2

u=J{Vm+(as)+(7)—1}ds


(2)



maks. — min. dla wszelkich waryacyi współrzędnych x i y; X jest tu funkcyą dowolną zmiennej S; obierzemy ją następnie w taki sposób, aby uczynić zadość warunkowi (1)4).

Granice są utrwalone, a skutkiem tego nie osiągnęlibyśmy wyraźnych korzyści, zmieniając wszystkie współrzędne; wyznaczymy więc waryacyę funkcyi u, uważając tylko a iy z zmienne a s za wielkość stałą. Wypadnie
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0 V ax+—




dx dlx   dy day

— --—---- ds ds    ds ds




ds.



Całkujemy przez części wyrazy trzeci i czwarty, nie zapominając o tem, że x, by znikają dla umocowanych końców sznura. Otrzymamy


3n= “{[m°V

J ( dx



d / dx\ OV d / dy )

2 — ( X— ) 3x+ m~--2 — X— ) 8y - ds. ds\ ds / J L dy ds \ ds //

W maks. — min. bu musi być zerem dla wszelkich wartości bx i by,

a zatem


dV    d f dx

---2 — X— dx     ds \ ds




=0,




OV    d

---2 —

oy     ds




dU)=o ■ • • (3).

ds /



Przywracając warunek (1), będziemy mieli trzy równania, z których x y i X dadzą się wyznaczyć w funkcyi s. Jest to zgodne z równaniami, które znaleźliśmy w par. 455, jeżeli napiszemy —2X zamiast T, Można dx dy także wyznaczyć A, mnożąc równania (3) odpowiednio przez —, — i do-ds ds

dając; wypadnie

[image: ]



Jest to zgodne z równaniem w par. 479 do wyznaczenia naprężenia.

Jeżeli sznur mieści się w trzech wymiarach na gładkiej powierzchni, to maks.—min. funkcyi fVmds poddajemy dwóm warunkom x‘2+y‘2+z‘2—1=0, F{x, y, z)^=Q......(I), gdzie kreski oznaczają różniczkowanie względem s. Postępując według metody poprzedniej, czynimy

u= J{ Vm+)(x‘2+y2+2”— 1)+pF(x, y, z)]ds

maks.—min. Uważamy jedynie x, y, z za zmienne, całkujemy przez części zupełnie tak samo, jak poprzednio, i przyrównywamy do zera współczynniki waryacyi 8®, ^y, ^z, Wypadnie


V_2d

Ox ds




dF o

+ p—=0

dx




(II).



Dwa następne równania otrzymamy z pierwszego, pisząc tylko odpowiednio y i z zamiast x. Trzy te równania łącznie z I określają x, y, z. X, p w funkcyi s. Będą one zgodne z równaniami paragrafu 478, gdy napiszemy —2X i —p. (F,?+F,2+F,2)‘a zamiast T i R.

	
	
	
489.    Sznury sprężyste. Teorya sznurów sprężystych opiera się na twierdzeniu, zwanem zazwyczaj prawem Hookea. Można je w krótkości wypowiedzieć w sposób następujący. Sznur rozciągalny i wzdłuż jednorodny miał, dajmy na to, naturalną długość 11, a dwie siły T, przyłożone w końcach, rozciągnęły go do długości l. Stwierdzono doświadczalnie, że wydłużenie l — 11 pozostaje dla danego sznura w stałym stosunku do siły T.







Gdyby długość naturalna, t. j. długość sznura nierozcią-gniętego, była dwa razy większa, a więc 211, a działały takie same, jak poprzednio, siły T, to oczywiście każda z długości 11 rozciągnęłaby się dokładnie tak, jak poprzednio, t. j. do długości l. Tym sposobem wydłużenie takiego sznura o podwójnej długości byłoby dwa razy większe od wydłużenia sznura po-jedyńczego. Wogóle wydłużenie musi być proporcyonalne do długości naturalnej, gdy siła wydłużająca pozostaje bez zmiany.

Łącząc te dwa twierdzenia, widzimy, że gdzie E oznacza wielkość stałą, niezależną od długości naturalnej sznura, jak również i od siły wydłużającej. Stała ta zowie się współczynnikiem sprężystości.

Umieśćmy dwa sznury podobne i równe jeden obok drugiego. Oczywiście, pragnąc wywołać pewne wydłużenie takiego sznura podwójnego, trzeba będzie zastosować siłę dwa razy większą od tej, która wywołuje takie same wydłużenie w sznurze pojedyńczym. Z tego widać, że siła, wywołująca dane wydłużenie, jest proporcyonalna do pola przekroju sznura nieroz-ciągniętego, a zatem i współczynnik E jest proporcyonalny do przekroju sznura nierozciągniętego. Wartość współczynnika E, odniesiona do przekroju o polu jednostkowem, zowie się modułem Younga.

Zobaczymy, co znaczy ta stała E. Dajmy na to, że bez pogwałcenia prawa Hooke’a można rozciągnąć sznur do długości dwa razy większej od naturalnej. W takim razie l=21 v, i E— T. Tak więc E jest siłą; siła ta teoretycznie rozciągnęłaby sznur do długości dwa razy większej od naturalnej.

	
	
	
490.    Prawu Hooke‘a podlega także rozciąganie i ściskanie innych ciał, np. prętów sprężystych. Stanowi ono podstawę teoryi matematycznej stałych ciał sprężystych, obecnie jednak chodzi nam jedynie o zastosowania do takich ciał, jak sznury, druty i t. d.







Prawo Hooke a jest słuszne tylko dopóty, dopóki wydłużenie nie przekracza pewnych granic, zwanych granicami sprężystości. Jeżeli wyciąganie jest nadmierne, to albo ciało się zrywa, albo w wewnętrznej budowie jego zachodzą pewne zmiany trwałe, skutkiem czego nie powróci ono do długości pierwotnej, gdy usuniemy siły rozciągające. W rozważaniach następnych zakładamy wszędzie, że granice sprężystości nie zostały przekroczone.

	
	
	
491.    Prz. 1. Pręt jednorodny AB wisi na dwóch jednakowych niciach sprężystych; nici idą pionowo, a pręt jest poziomy. W samym środku C pręta usiadła mucha, skutkiem czego pręt opadł o h; następnie mucha, wędrując po pręcie, doszła do punktu P. Dowieść, że







2h{AP2+BP^ .    _ punkt P zejdzie o ----AB2--niżejodpołożeniapierwotnego,aobni-2h(AP.AQ+BP.BQ) źenie jakiegokolwiek innego punktu pręta I będzie---B2---—.

(St John’s Coli., 1887.)

Prz. 2. Ciężka płyta wisi na trzech nieco sprężystych sznurach, których długości naturalne są równe; sznury są przywiązane do płyty w trzech punktach, tworzących trójkąt ABC. Oznaczamy przez E, F, G współczynniki sprężystości i przez Xo, Jo, Z współrzędne powierzchniowe środka ciężkości płyty w odniesieniu do trójkąta ABC. Dowieść,

XXCo    YJo    ZZo że w tych samych współrzędnych--1--- + —==0 jest równaniem

E   F   G


prostej przecięcia płyty w położeniu obecnem z płaszczyzną, w której leżałaby płyta, gdyby sznury były nierozciągalne.

(St John‘s Coli., 1885.)

	
	
492.    Sznur ciężki jednorodny i sprężysty jest umocowany iv jednym końcu, a iv drugim dźwiga ciężar W. Wyznaczyć położenie równowagi oraz naprężenie w każdym punkcie sznura.








Przypuśćmy, że OAt jest sznurem nierozciągnię-tym, a PtQt jednym z jego elementów; OA ma wyobrażać sznur rozciągnięty, a PQ ten sam element w nowem położeniu. Oznaczmy przez w ciężar jednostki długości sznura nierozciągniętego, i niech da-lej będzie l= OA,, xl~0Pl, l = OA, x—0P. Naprężenie T w punkcie P oczywiście równoważy ciężar części PA oraz W, a zatem

T=w(l1-xj)+ W.....(1)

Gdyby część PA była rozciągnięta jednakowo




Pt

Qt




A,




Fig. 138.




na całej




długości, to moglibyśmy zastosować prawo Hooke’a do tej długości skończonej, ponieważ jednak tak nie jest, możemy przeto stosować to prawo tylko do elementu PQ. Będzie więc




dx — dxr = dxr. eT .

gdzie s oznacza odwrotność współczynnika E. Rugując T, otrzymamy

dac ,  \ —

da, =1+ew(h-e+ W],

a po scałkowaniu będzie




(2),




IV




	
1-    + Wx, + C.






Stała całkowania C jest zerem, gdyż 21 i a znikają śnie. Dla x,=l wypadnie




jednocze-




l-l=




ewl,2




+e Wl.




wywołuje niema, to



Jeżeli sznur jest lekki, to wydłużenie, które W, wynosi e Wl Gdy ciężaru W w dolnym końcu wydłużenie =—Widzimy, ze własny ciężar sznura wywołuje takie same wydłużenie, jak połowa tego ciężaru, uwieszona w punkcie najniższym. Dalej widać, że wydłużenie całkowite, wywołane przez ciężar własny sznura oraz przez ciężar zawieszony, jest równe sumie inyclłużeń^ któreby wywołały te ciężary^ działając z osobna.

Prz. 1. Ciężki sznur sprężysty O A leży na linii największego spadku chropowatej płaszczyzny pochyłej. Jeden koniec jego O jest umocowany nieruchomo, a do drugiego A przywiązano ciężar W. Wyznaczyć największą długość, jaką może mieć sznur w stanie równowagi.

Gdy sznur jest już wyciągnięty tak silnie, jak tylko można, to tarcie działa na każdy element wzdłuż płaszczyzny na dół i jest całkowicie rozwinięte. Niech a będzie nachyleniem płaszczyzny do poziomu, a p, p‘ współczynnikami tarcia odpowiednio sznura i ciężaru o płaszczyznę. Załóżmy f=sin a+u cos a, to fw zastąpi iv we wzorach A wid

powyższych, i wydłużenie całkowite będzie l' — l—--\-zfWl; f ozna-

2

cza to, co otrzymamy, pisząc p' we wzorze na f zamiast p.

Prz. 2. Ciężki sznur sprężysty AA' leży na linii największego spadku płaszczyzny chropowatej, której nachylenie do poziomu jest mniejsze od arclanp. Wyznaczyć największą długość, którą może mieć sznur, pozostając w równowadze.

W punktach sznura, położonych bliżej dolnego końca A, tarcie będzie działało na dół, a w okolicach górnego końca A' do góry. W pewnym punkcie O sznur dzieli się na dwie części OA i OA', w których siły tarcia działają w kierunkach odwrotnych. Każdą z tych części można rozważać osobno, stosując metodę z przykładu poprzedzającego. Potrzebne tu będzie równanie dodatkowe, do wyznaczenia długości naturalnej z części OA; utworzymy je, przyrównywając naprężenia w O, które wywołują owe dwie części. Wypadnie

[image: ]
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tan2 a

1 p2 ,



Prz. 3. Powiązano końcami sprężyste sznury, których długości w stanie nierozciągniętym wynoszą I, l2, l3...., i zawieszono ten szereg za jeden koniec tak, że sznur l znalazł się najniżej. Okazać, że całkowite wydłużenie będzie

	
	
2 (-1 Wi l.2+82 W2l22+ ...)+W b (s2 la—83 la+ ...)+W2 l2 (83 la+ ....)+ ....;





wl7 W,... oznaczają tu ciężary sznurów nierozciągniętych na jednostkę długości, a 81, 82 ... są odwrotnościami współczynników sprężystości.

(Coli. Exam., 1888.)

	
	
	
493.    Praca sznura sprężystego. Gdy długość lekkiego, sprężystego sznura zmieniła się pod działaniem siły zewnętrznej, to praca naprężenia jest równa iloczynowi ze skurczenia sznura przez średnią arytmetyczną naprężeń początkowego i końcowego.







Przypuśćmy, że w przypadku typowym długość wzrosła od a do a', a więc a - a' będzie skurczeniem sznura. Długość w stanie nierozciągniętym oznaczymy, jak poprzednio, przez 11. W myśl paragrafu 197 szukana praca wynosi


Tdl =




L—idi= -E




gdyż granice całki są l^=a i l = a'. Można T + T

dać posiać (a-a).12—2, gdzie Tv i T2




2l1

wynikowi




oznaczają




temu na-




wartości,



które przybierze T, gdy zamiast l napiszemy a i a. wyraża prawidło, wypowiedziane na początku. (Ob. namics autora niniejszej książki).


Wzór ten

Regid Dy-



Prawidło to bywa często stosowane w dynamice, gdzie długość sznura może w ciągu ruchu podlegać różnym zmianom. Zaznaczamy, że prawidło nie przestaje być ważnem nawet w tym razie, gdy sznur w ciągu danego okresu staje się w pewnych chwilach luźnym, jeżeli tylko naprężenie istnieje w stanie początkowym i końcowym. Jeżeli sznur jest luźny w jednym ze stanów końcowych, to możemy i tu stosować to samo prawidło, przyjmując, że w tym stanie sznur ma długość naturalną.

Prz. 1. Okazać, że środek ciężkości sprężystego sznura, o którym była mowa w par. 492, leży na głębokości 9 +* I, (3+7) pod punktem zawieszenia O. S oznacza tu ciężar sznura. Okazać prócz tego, że siła


ciążenia wykonała pracę el.



S2 \

3 + SW J- W’), podczas gdy sznur i ciężar przeszły z położenia nierozciągniętego O^j do położenia rozciągniętego OA.

Prz. 2. Jeden koniec sprężystego sznura o długości a umocowano na obwodzie koła tak chropowatego, że poślizg jest niemożliwy, a do drugiego przywiązano masę M, leżącą na ziemi. W początku, gdy sznur jest zaledwo wyprostowany, położenie jego jest pionowe. Okazać, że aby nieco unieść masę z ziemi, obracając koło, trzeba wykonać

E

pracę Mga+Ealog—--, gdzie E oznacza naprężenie, które podwo-E+Mg ’

iłoby długość sznura. Ciężar sznura uważamy za znikomy.

(Math. Tripos.)

Prz. 3. Dwie jednakowe tarcze o promieniu r, z których jedna jest nieruchoma, połączono zapomocą n sznurów równych i równoległych; naturalna długość każdego z nich jest równa l. Do tego aby tarczę ruchomą, obróconą o kąt 8, utrzymać w odległości x od nie


ruchomej, [potrzebny jest skrętnik, złożony z siły X i pary L; dowieść, źe




X = nEx




/I

\7, 9




1)

Tg)




L=2n Er2 sin 9




1 1)

L,Ę)’




gdzie 62=x2+4r2sin2y

Odsuwamy jedną




(Coli. Exam., 1885.)

tarczę od drugiej o x, a następnie obracamy




o kąt 0. Naprzód należy okazać, że długość każdego sznura wzrośnie z l na §. Stosując prawidło, podane wyżej, znajdziemy, że funkcya sił




W=n.




T(^-ld nE^-l.y




2l,




dW  dW

W myśl paragrafu 208 Xdx+Ld^= —dxĄ---d^. Gdy wyko-dx     d^

. dW . dW

namy różniczkowanie A=dy i 1=9 to wypadnie rezultat żądany.

494. Ciężki sznur sprężysty na krzywej gładkiej. Prz. 1.

Ciężki sznur sprężysty opasuje krzywą gładką w płaszczyźnie piono-

7’2

wej. Okazać, że różnica pomiędzy wartościami wyrażenia T+--w ja-

21

kichkolwiek dwóch punktach sznura wynosi tyleż, co ciężar części sznura, której długość naturalna jest równa odległości pionowej owych punktów. Z twierdzenia tego wynika, że dwa punkty, w których naprężenia są równe, leżą na jednym poziomie.

Niech dsr będzie długością naturalną pewnego elementu sznura ds. E

ds; według prawa Hooke’a dst=--. Niech dalej W będzie ciężarem T-\-E

jednostki długości sznura nierozciągniątego', ciężar elementu ds sznura




rozciągniętego wyniesie w'ds, gdzie w‘=




w]




T+E




. Utwórzmy teraz równa-



nia równowagi, korzystając z figury 129 i rozumując tak samo, jak w par. 459, gdzie rozwiązywaliśmy zagadnienie analogiczne dla sznura nierozciągalnego. Oczywiście dojdziemy do takich samych równań, jak


(1) i (2) z tą wartość w' i wyniku.

Prz. 2.



jedynie różnicą, że zamiast w będzie w'. Podstawiając całkując, znajdziemy, że (1) prowadzi do wyżej podanego

Ciężki sznur sprężysty opasuje gładką krzywą w płaszczyźnie pionowej; okazać, że

7'2                       72

Tt2rF"»,   Re-2r""%‘ gdzie T oznacza naprężenie w jakimś punkcie P, a R ciśnienie, które krzywa wywiera na sznur; rachujemy je na jednostkę długości sznura nierozciągniętego i uważamy, że jest skierowane na zewnątrz. Dalej y i y' są wysokościami punktu P i przeciwśrodka nad pewną stałą prostą poziomą, którą nazywamy kierownicą statyczną sznura (460). Dowieść prócz tego, źe żadna część sznura nie może leżeć poniżej kie-równicy, i że punkty swobodne, o ile istnieją, muszą leżeć na kierownicy.

Prz. 3. Ciężki sznur sprężysty leży na gładkiej cykloidzie zwróconej ostrzami do góry; jeden koniec jego jest przymocowany do krzywej, a drugi swobodny znajduje się w wierzchołku. Pewna część sznura, zmierzona od końca swobodnego, posiada obecnie długość s, a w stanie nierozciągniętym Si; okazać, że 7s=sinh YS1, gdzie 4aE2=w, a zaś jest promieniem koła tworzącego

Prz. 4. Sznur sprężysty spoczywa na gładkiej krzywej w płaszczyźnie pionowej, a końce jego zwisają swobodnie. Okazać, że mo-


do 2 ds/




żna wyznaczyć długość naturalną a z równania




2y+b



, gdzie y

oznacza wysokość punktu nad końcami swobodnymi, a b długość naturalną części sznura, której ciężar jest równy współczynnikowi sprężystości. Jeżeli długość naturalna każdej części zwisającej pionowo wynosi l, a przytem (l+b)2 — 2ab, i krzywa jest kołem o promieniu a, to długość naturalna części, pozostającej w zetknięciu z krzywą, wynosi 2 \/ab log ( V2+1).                              (June Exam.. 1877.

Prz. 5. Sznur sprężysty leży wewnątrz gładkiej rurki kołowej i podlega działaniu siły przyciągającej ur, skierowanej do przeciwległego końca średnicy, przechodzącej przez środek sznura, który zajmuje całe półkole. Dowieść, że największe naprężenie wynosi {A (A+2upa2)}‘a— X, gdzie X oznacza współczynnik sprężystości, a promień koła, i p masę jednostki długości sznura nierozciągniętego.

(Trinity Coli., 1878.)

Prz. 6. Sznur sprężysty o nieograniczonej długości leżał na stole chropowatym, tworząc linię prostą prostopadłą do gładkiego brzegu stołu tak, że koniec dotykał brzegu. Jednostka długości sznura nieroz-ciągniętego waży m, a dowolna część sznura na gładkim stole wyciągnęłaby się do długości podwójnej przy naprężeniu ma; współczynnik .         . mau. .

tarcia=p.. Do końca sznura przyczepiono ciężar --- i pozwolono mu

2

zawisnąć spokojnie po za brzegiem, przyczem żadna część sznura rozciągnięta podczas opadania ciężaru nie skurczyła się z powrotem. Do-.     .       .. ag (3p.—4)

wiesc, ze ciężar wisi o -------- niżej od brzegu, a części sznura po-

8

ł                                             a(u+2)

łożone na stole w odległości, przewyższającej--, od brzegu, są

2

nierozciągnięte.                                            (Trinity Coli.)

	
495.    Lekki sznur sprężysty na krzywej chropowatej. Prz. 1. Sznur sprężysty rozpięto na krzywej chropowatej tak, że wszystkie elementy są w stanie, graniczącym z ruchem. Naprężenia na końcach wynoszą F, F', a pozatem żadne siły zewnętrzne nie działają. Okazać, że *=ekr, gdzie • oznacza kąt pomiędzy normalnemi do krzywej w końcach.



Wynika to z takich samych rozważań, jak w par. 463.

Prz. 2. Sznur, którego współczynnik sprężystości—X, rozpięto na chropowatym łuku kołowym tak, że tarcie na całej długości jest graniczne, a naprężenia na końcach wynoszą T i T'. Dowieść, że stosunek długości sznura rozciągniętego i nierozciągniętego jest równy


T(T+))

T^r^s




T' log 7 : log



(St. John’s Coli., 1884.)

Prz. 3. Taśma sprężysta, której długość naturalna = 2a, opasuje cztery kołki chropowate A, B, C, D, umieszczone w wierzchołkach kwadratu o boku a. Ujmujemy taśmę w punkcie P pomiędzy A i B i ciągniemy w kierunku AB; okazać, że poślizg rozpocznie się jednocześnie na A i B, jeżeli AP—--.                     (May Exam.)

M.T

e2 +1

Prz. 4. Słabo rozciągalny pas bez końca założono na dwa jednakowe koła pasowe. Okazać, że moment największej pary, jaką pas mo-2a (c+ra) T że wywierać na każde koło, wynosi-----, gdzie a jest pro-Mi 2d ccoth--1--

2 p mieniem każdego z kół, c odległością pomiędzy środkami, p. współczynnikiem tarcia i T naprężeniem, które pas otrzymał przy zakładaniu.                                                (Math. Tripos, 1879.)

Prz. 5. Chropowaty cylinder kołowy o promieniu a jest osadzony na osi poziomej; do niego w punkcie Q najwyższej tworzącej przymocowano koniec sprężystego sznura, którego długość naturalna = l. Drugi koniec umocowano w punkcie P, leżącym na zewnątrz cylindra w odległości l od Q, a prosta PQ jest pozioma i prostopadła do osi cylindra. Następnie zaczęto cylinder zwolna obracać około osi w kierunku od P; okazać, że sznur będzie się ślizgał na całej długości, na której styka się z cylindrem, dopóki S, długość naturalna części nawiniętej, nie dojdzie do —. Od tej chwili wszelki poślizg ustanie, i związek pomiędzy S i kątem 3, o który cylinder się obrócił, będzie le^—(l— ap) el +ap, gdzie S=ap.                  (Coli. Exam., 1880.)

	
496.    Sznur sprężysty pod działaniem sił jakichkolwiek. Utiuorzyć równania równowagi sznura sprężystego^ na który działają siły jakiekolwiek. Niech dsx będzie długością naturalną ele-



T+E .    . mentu ds. W myśl prawa Hooka ds = dsv  —. Siły, działające na ten element i pochodzące z przyciągania ciał innych, są proporcyonalne do długości nierozciągniętej; dajmy na to, że ich rzuty na osie główne wynoszą, jak w par. 454, Fds±1 Gdsl3 Hds^. W paragrafie wzmiankowanym otrzymaliśmy równania równowagi (1), (2) i (3), przyrównywając do zera sumy rzutów sił na osie główne krzywej; równania te dadzą się zastosować i do sznura sprężystego, gdy zastąpimy Fds^ Gds^ Hds odpowiednio przez Fdsr, Gdst, Hdsl^ innemi słowy, można otrzymać równania równowagi sznura sprężystego z równań, dotyczących sznura nierozciągalnego, uważając tylko, że działają siły

E        E        E

‘ T+E'        T + E'        T+E'

t. j. redukując siły zewnętrzne w stosunku E:{I + E).

	
497.    Przypuśćmy dla przykładu, że sznur pozostaje na pewnej powierzchni gładkiej. Biorąc rzuty na styczną do sznura, jak w par. 479,


otrzymamy





7‘\                                                  T‘2


J (Xdx+ Ydy+ Zdz^ c.



1+—) dT+Xdx+ Ydy + Zdz—0, skąd T+—+

7’2

Widzimy, że T +---+ funkcya sił jest wielkością stałą na całej długości sznura (479).

Prz. Na sznur działa jedynie siła ciążenia; okazać, że równania równowagi, odpowiadające równaniom (1), (2) i (3) par. 479, przybierają w tym razie postaci prostsze

T‘2                       T‘ 2


T2 \

wz+—) tan X=wp‘ sin 8,



T+--—wz, Rp‘ ———wz', 2E         ‘ 2E gdzie T oznacza naprężenie w dowolnym punkcie P, R ciśnienie powierzchni na sznur, skierowane na zewnątrz, na jednostkę długości sznura nierozciągniętego, X kąt pomiędzy promieniem krzywizny sznura i normalną do powierzchni, z i z' wysokości punktu P i jego przeciw-środka S nad pewną płaszczyzną poziomą, 8 kąt pomiędzy pionem i płaszczyzną, przechodzącą przez normalną do powierzchni i styczną do sznura, i wreszcie w ciężar jednostki długości sznura nierozciągniętego. Jeżeli długość PS, odmierzona na normalnej do powierzchni na zewnątrz, jest równa promieniowi krzywizny przekroju normalnego powierzchni, poprowadzonego przez styczną do sznura w punkcie P, to S jest przeciwśrodkiem punktu P.

Jeżeli sznur leży na powierzchni obrotu o osi pionowej, to równanie trzecie zastąpimy przez Tr‘sin • = B, gdzie r' jest odległością punktu P od osi powierzchni, • kątem pomiędzy styczną do sznura a południkiem i B wielkością stałą (481).

	
498.    Jako drugi przykład weżmy sznur sprężysty pod działaniem siły centralnej. Biorąc momenty względem środka siły oraz rzuty na styczną do sznura, po scałkowaniu otrzymamy


Tp—A,




72

T+— +

2E




/ Fdr^ C.




Równania te rozciągałnego.





można spożytkować, jak w przypadku sznura nie-

	
499.    Prz. 1. Sznur sprężysty pozostaje w równowadze pod działaniem siły centralnej, tworząc łuk koła, a środek siły leży w jednym z niezajętych punktów tegoż okręgu. Okazać, że siła F— P (1+M — Y



13 \ 2E 12/

Prz. 2. Elementy sznura sprężystego odpychają się nawzajem z siłą proporcyonalną do iloczynu z mas i kwadratu odległości. Sznur ten spoczywa w równowadze na gładkiej płaszczyźnie poziomej. Do-d             c2 wieść, że dyT+“7+E=O gdzie T jest naprężeniem w punkcie, którego odległość od końca wynosi y, a c jest stałą zależną od właściwości sznura. Wyjaśnić prócz tego, jak wyznaczają się stałe całko

wania.

Prz. 3. Elementy sznura sprężystego odpychają się nawzajem z siłą wprost proporcyonalną do odległości; sznur ten leży na gładkiej płaszczyźnie poziomej, jego długość naturalna wynosi 2lt, a długość obecna 21. Okazać, że cl=tan cl,, gdzie Ec"idx jest siłą, którą cały sznur wywiera na element o długości naturalnej dx, umieszczony w odległości jednostkowej od punktu środkowego sznura.

Prz. 4. Sznur sprężysty spoczywa na chropowatej płaszczyźnie poziomej, do której są przymocowane końce jego, i tworzy krzywą, której każda część jest w stanie, graniczącym z ruchem; dowieść, / tyfjdty ) że naprężenie t czyni zadość równaniu (1-4—) s — ) + t2} = u‘w‘p2, \ A/d!/

gdzie iv jest ciężarem jednostki długości sznura nierozciągniętego, g współczynnikiem tarcia i p promieniem krzywizny. (Math. Tripos, 1881.)

Prz. 5. Końce sznura sprężystego są przymocowane w dwóch punktach do gładkiej powierzchni gładkiego pionowego, kołowego cylindra, i sznur pozostaje w równowadze na tej powierzchni. Okazać, że gęstość sznura w każdym punkcie jest proporcyonalną do tangensa kąta, który płaszczyzna ściślestyczna w tym punkcie tworzy z przekrojem normalnym cylindra, poprowadzonym przez kierunek sznura.

(Math. T., 1886.)

1

 Punkt, w którym styczna jest prostopadła do promienia wodzącego.                                                    Przyp. tłom.

2

 Całkę, dającą « w funkcyi 3, sprowadził do funkcyi eliptycznych Clebsch w Crelle’s J., t. 57. Greenhill i Dewar wystawili w Czerwcu 1895 r. w Royal Society model sferycznej łańcuchowej algebraicznej. Przy odpowiednim doborze stałych rzut sznura na płaszczyznę poziomą jest algebraiczną krzywą zamkniętą dziesiątego stopnia.

3

 Litera p. została użyta w tem równaniu w dwóch różnych znaczeniach, jako cos kierunkowy i jako współczynnik tarcia, co jednak nie może wywołać nieporozumienia.               Przyp. tłom.

4

 Uważamy s za odciętą, a x i y za dwie rzędne pewnej krzywej nieznanej; krzywa ta powinna być taka, aby u osiągało maks. — min. dla wszelkich waryacyi zmiennych x i y. Możemy utworzyć równania, potrzebne do wyznaczenia tej krzywej, przy pomocy prawideł rachunku waryacyjnego. Równanie jej zawiera X; uczyni ono zadość warunkowi (1), gdy stosownie obierzemy tę wielkość. Ponieważ (2) osiąga maks.— min. dla wszelkich waryacyi zmiennych x, y, przeto fVmdx osiąga maks.—min. dla tych waryacyi xiy, które czynią zadość warunkowi (1).


	
500.    Cięiki sznur sprężysty^ umocowany w dwóch punktach, pozostaje w równowadze w płaszczyźnie pionowej. Wyznaczyć równanie jego.



Zastosujemy tę samą metodę, która w par. 443 doprowadziła do równania sznura niesprężystego. Powracając do fig. 123, oznaczymy długość naturalną łuku CP, t. j. łuku, mierzonego, od najniższego punktu do jakiegokolwiek punktu P, przez S1; reszta oznaczeń pozostanie bez zmiany, skończonej części CP^ otrzymamy

Tcost=T, . . (1),


Rozważając równowagę




Psin $ =WS, . . (2),




a stąd




dii , ivs.

—= tan!=-1

dx         To




81 c




• • (3).



Z równań tych można otrzymać a i y w funkcyach jakiejś zmiennej pomocniczej. Z (3) wynika, że si=ctan , a przeto będzie dogodnie obrać za tę zmienną pomocniczą S1 lub $. Gdy dodamy kwadraty (1) i (2), to wypadnie

T2 =^ w2(c1 + S]2) dcc              dii

Ponieważ — = cos $ i —=sin $, przeto (o             as


(4)-




z (1) i (2) otrzymamy




SC=




ivc




clog




c2 +s^

c



y=

Stałe całkowania obrano tu w taki sposób, aby w najniższym - .                                c^iv punkcie łańcuchowej sprężystej było x = o i J=c+%=. W ta-kim razie oś x jest kierownicą statyczną (494, prz. 2).

	
501.    Prz. 1. Udowodnić następujące właściwości geometryczne łańcuchowej sprężystej:


T2

1) wy=T+2E‘




c2+s,2

2) p==




3) s=s-—(s V c2+82+c2log




Si




Gdy uczynimy E nieskończenie wielkiem, to otrzymamy stąd znane właściwości katenoidy pospolitej.

Prz. 2. Rzędna PN przecina kierownicę statyczną w punkcie N; odmierzamy na tej rzędnej po obydwóch stronach N odcinki NM i NM\




z których każdy=




T2




2 Ew ‘




i z punktu M, położonego nad kierownicą, pro-





Statyka. 27

wadzimy prostopadłą ML do stycznej w P. Okazać, że T— w. PM, 72

st=PL, c—ML, w. MN = —, i że M' jest rzutem przeciwśrodka na rzędną.

Prz. 3. Ciężki sznur sprężysty jest zawieszony w dwóch punktach; dowieść, że

, c2 (tan t (T 0\) s=ctano---<----—logtan (--1--

2klcos4 8    \4   2/)’

s mierzymy od punktu najniższego, c oznacza naturalną długość sznura, którego ciężar jest równy naprężeniu w punkcie najniższym, a X naturalną długość sznura, którego ciężar jest równy współczynnikowi sprężystości.                                          (Coli. Exam., 1880.)

ROZDZIAŁ XI.

MASZYNY.

	
502.    Mechanizmy składają się zwykle z pewnych prostych kombinacyi lin, prętów i płaszczyzn, czyli z tak zwanych maszyn prostych. Różni autorowie określają rozmaicie liczbę tych maszyn prostych, najczęściej jednak podawana bywa liczba sześć; składają się na nią dźwignia, blok, kołowrot, równia pochyła, klin i śruba1).



Zyskowność mechaniczna. W przypadkach najprostszych uważamy, że na maszynę prostą działają dwie siły. Jedna z nich, która ma wprawiać maszynę w ruch, nazywa się siłą poruszającą^ drugą, którą maszyna ma przezwyciężać, nazywamy ciężarem. Stosunek ciężaru do siły poruszającej nazwiemy zysko-wnością mechaniczną maszyny.

	
503.    Uważamy w przybliżeniu pierwszem, że różne części maszyny są gładkie, że liny są zupełnie wiotkie, części stałe zupełnie sztywne i t. d. W niektórych maszynach założenia te są w przybliżeniu słuszne, ale w innych odbiegają daleko od prawdy. Dla tego też jest rzeczą niezbędną w przybliżeniu drugiem modyfikować te założenia. Liczymy się więc wedle możności z chropowatością powierzchni, wchodzących w zetknięcie, ze sztywnością lin, odkształcalnością ma-teryałów i t. d. Gdy wprowadzimy te poprawki, to wyniki będą wciąż jeszcze tylko przybliżeniem do prawdy, gdyż nie mamy możności poczynić poprawek zupełnie dokładnych. Tak np. wprowadzając do rachunku tarcie, zakładamy, że ciała, pozostające w zetknięciu, są wszędzie jednakowo chropowate, i że znamy dokładnie współczynniki tarcia. Pomimo to jednak wyniki, osiągnięte w drugiem przybliżeniu, będą znacznie bliższe prawdziwego stanu rzeczy, niż te, które otrzymaliśmy w przybliżeniu pierwszem.


	
504.    Skutek użyteczny. Wyobraźmy sobie maszynę, złożoną z dźwigni, bloków i t. d., i przypuśćmy, że każda z tych części działa na następującą po niej z kolei. Do jednego z końców tego szeregu jest przyłożona siła P, wytwarzająca na drugim końcu siłę, którą można zrównoważyć, działając na ten punkt z siłą Q. Możemy uważać tu P za siłę poruszającą, a Q za ciężar.



Puśćmy maszynę w ruch tak, aby każda z jej części uległa drobnemu przesunięciu, na jakie pozwalają istniejące związki geometryczne. Przesunięcie takie nazwiemy przesunięciem prawdziwem maszyny. Obierzmy je za przesunięcie przygotowane. Praca siły P będzie równa pracy siły Q wraz z pracą oporów, istniejących w maszynie. Oporami tymi są tarcie, sztywność lin i t. d. Pewna część pracy siły poruszającej wychodzi na przezwyciężenie oporów; mówimy, że część ta jest stracona. Praca siły Q zowie się pracą użyteczną maszyny. Skutkiem użytecznym nazywamy stosunek pracy użytecznej do pracy siły poruszającej podczas małego przesunięcia prawdziwego. Skutek użyteczny byłby oczywiście równy jedności, gdyby wszystkie powierzchnie były doskonale gładkie, wszystkie części stałe doskonale sztywne i t. d., ale w każdej maszynie prawdziwej skutek użyteczny jest z konieczności mniejszy od jedności.

	
505.    Prz. Maszyna jest przeznaczona do podnoszenia ciężarów, i podniesiony ciężar pozostaje w zawieszeniu dzięki tarciu, chociaż siła poruszająca przestała działać; okazać, że skutek użyteczny jest mniejszy od połowy. Jeżeli natomiast do podnoszenia ciężaru potrzebna jest siła P, a do utrzymania go w zawieszeniu wystarcza siła P', to



. P+P' skutek użyteczny wynosi ———


(St John’s Coli., 1884.)



Gdy ciężar Q ma właśnie zacząć się podnosić pod działaniem siły P, to tarcie przeciwdziała tej sile, natomiast pomaga ono sile P' w podtrzymywaniu ciężaru Q. W obydwóch przypadkach tarcie jest jednakowe pod względem wielkości, a mianowicie posiada wartość graniczną. Niech x, y będą przesunięciami przygotowanemi punktów przyłożenia sił P i Q, gdy maszyna jest w ruchu, i przypuśćmy, że w obydwóch przypadkach wymienionych przesunięcia są jednakowe. Oznaczmy jeszcze przez U pracę tarcia; w takim razie Px = Qy-\-U i p’x=Qy— U. Skutek użyteczny jest równy--. Rugując U, otrzymamy łatwo wzór, wskazany w zadaniu. Jeżeli w maszynie istnieją prócz tarcia jakieś inne opory, niemające górnej granicy, lecz wzrastające ustawicznie ze wzrostem siły poruszającej, to skutek użyteczny będzie mniejszy od wartości wyżej podanej; można się o tern łatwo przekonać w drodze takiego samego rozumowania.

	
506.    Dźwignia. Dźwignią nazywamy sztywną sztabę, ruchomą około osi stałej. Punkt przecięcia dźwigni z osią zowie się punktem oparcia. Części dźwigni, zawarte pomiędzy punktem oparcia a punktami przyłożenia siły poruszającej i ciężaru zo-wią się ramionami dźwigni. Uważa się zwykle, że siła poruszająca i ciężar działają w płaszczyźnie prostopadłej do osi.



Jeżeli siły działają na punkty ciała w kierunkach jakichkolwiek, to zagadnienie jest trójwymiarowe; rozwiązanie podaliśmy w par. 268. W rozważaniach dalszych pominiemy także tarcie w osi, gdyż przypadek ten rozważyliśmy już w par. 179.

	
507.    Znaleźć warunki równowagi dwóch sił, działających na dźwignię w płaszczyźnie prostopadłej do osi.



W pierwszem przybliżeniu możemy uważać oś dźwigni za linię; przypuśćmy, że przecina ona płaszczyznę sił w punkcie C. Siły oznaczymy przez P i Q; są one przyłożone, dajmy na to, w punktach A, B do ramion CA, CB i działają w kierunkach DA, DB. Gdy dźwignia pozostaje w równowadze, to siły P i Q oraz reakcya punktu oparcia tworzą układ sił w równowadze, a zatem wypadkowa sił P, Q działa na prostej DC i równoważy się z ową reakcyą.
[image: ]

Warunki równowagi wynikają bezpośrednio z zasad, wyłożonych w par. 111. Niech CAL, CN będą prostopadłemi z C do linii działania sił. Biorąc momenty względem C, otrzymamy P. CM - Q. CN^=0. Z tego wynika, że siła poruszająca i ciężar są w stosunku odwrotnym do stosunku odległości ich linii działania od punktu oparcia.

	
508.    Aby znaleźć reakcyę punktu oparcia wyznaczamy wypadkową sił P i Q. Możemy tu zastosować którąkolwiek z rozlicznych metod, używanych do składania sił. Przypuśćmy dla przykładu, że położenie punktu D jest znane, i że kąt ADB=^. W takim razie



R2= P2+Q2+2PQ cos ©, gdzie R oznacza szukaną reakeyę.

Przypuśćmy {dalej, że mamy inne dane, że CA = a, CB = b, że siły P, Q tworzą z ramionami CA, CB kąty a, 3, i kąt ACB = y. W takim razie możemy wyznaczyć reakeyę w inny sposób. Oznaczmy przez 3 kąt, który linia działania siły R tworzy z ramieniem CA, tak że kąt DCA—tz— 8. Bierzemy teraz rzuty na CA i na kierunek prostopadły.

Rcoss=Pcosa+Qcos (r— 3)

R sin 3=Psin a+Q sin (Y — 3).

Stąd można już łatwo wyznaczyć tan 8 i B.

Można otrzymać inne związki pomiędzy P, Q i R, biorąc momenty względem A lub B, albo względem jakiegoś innego punktu, na który wskazują dane zagadnienia. Również rzuty na inne kierunki mogą być w pewnych przypadkach dogodniejsze niż na te, które wskazaliśmy tu dla przykładu.

	
509.    Jeżeli na dźwignię działa większa liczba sił, to znajdziemy warunek równowagi, biorąc momenty względem punktu oparcia; czynimy tak, aby nie wprowadzać do równania reakcyi osi.



Gdy właśnie chodzi o tę reakeyę, to przenosimy wszystkie siły równolegle do punktu oparcia. Tym sposobem powstanie układ sił, przyłożonych w jednym punkcie, a mianowicie w punkcie przecięcia osi z płaszczyzną sił. Wypadkowa tego układu jest równa reakcyi szukanej.

	
510.    W rozważaniach powyższych przyjmowaliśmy, że własny ciężar dźwigni jest znikomy w porównaniu z siłami P i Q. Dajmy na to, że ciężaru tego pomijać nie wolno, i oznaczmy go przez W. Teraz więc na ciało działają nie dwie lecz trzy siły, a mianowicie P i Q, przyłożone w A i B, oraz W, przyłożona w środku ciężkości dźwigni G. Przypuśćmy, że oś jest pozioma, i że CL jest odległością pionu, przechodzącego przez G-, od punktu oparcia. Przypuśćmy prócz tego, że w przypadku typowym ciężar W i siła P usiłują obrócić dźwignię około C w tę samą stronę. Równanie momentów będzie teraz



P. CM— Q. CN+ W. CL—0. Gdy chodzi o reakeyę osi, to wyznaczamy wypadkową sił P, Q i W.

	
511.    Zwykle dzielimy dźwignie na trzy rodzaje stosownie do położenia siły poruszającej i ciężaru względem punktu oparcia. W dźwigni pierwszego rodzaju punkt oparcia leży pomiędzy siłą poruszającą i ciężarem. W rodzaju drugim ciężar działa pomiędzy punktem oparcia i siłą poruszającą, wreszcie w rodzaju trzecim siła poruszająca działa pomiędzy punktem oparcia i ciężarem. Rozważania paragrafu 507 dotyczą wszystkich trzech rodzajów; różnice zajdą tylko w znakach rzutów i momentów.


	
512.    Zyskowność mechaniczną dźwigni mierzymy stosunkiem Q:P, a widzieliśmy, że stosunek ten jest równy CN‘.CM. Przykładając siłę poruszającą w taki sposób, aby jej odległość od punktu oparcia była większa od odległości ciężaru, możemy zrównoważyć wielki ciężar małą siłą. Tak np. drążek, używany do podważania ciężarów, jest dźwignią drugiego rodzaju. Punkt oparcia leży na podłodze, ciężar działa tuż za punktem oparcia, a siła poruszająca jest przyłożona na samym końcu drążka.


	
513.    Udzielmy dźwigni małego przesunięcia, obracając ją o mały kąt około punktu oparcia. Punkty przyłożenia A, B sił P, Q zatoczą przytem małe łuki AA', BB', których, wspólny środek leży w punkcie oparcia, a więc przesunięcia punktów przyłożenia siły poruszającej i ciężaru są proporcyonalne do odległości tych punktów od punktu oparcia. Ale pośpiech pracy mierzymy składową przesunięcia AA' w kierunku siły P. Gdy np. wywieramy siłę P, ciągnąc za linkę, przyczepioną w A, to długość linki, którą potrzeba wyciągnąć, mierzymy składową przesunięcia AA' w kierunku linki. Składowe przesunięć AA', BB w kierunkach sił P, Q wynoszą oczywiście AA'. sin a, BB' .sin 3; są one proporcyonalne do CA sin a, CB sin 3, czyli do CM, CN (fig. 141).



Gdy więc odsuniemy siłę poruszającą dalej od punktu oparcia niż ciężar i tym sposobem osiągniemy pewną zyskowność mechaniczną, to w tym samym stosunku przesunięcie ciężaru stanie się mniejszem od przesunięcia siły; przesunięcia mierzymy tu w kierunkach sił. Można powiedzieć, że o ile zyskujemy na sile, o tyle tracimy na pośpiechu.

	
514.    Czytelnik z łatwością przypomni sobie liczne przykłady zastosowania dźwigni. Przykładami dźwigni pierwszego rodzaju mogą być wagi pospolite, nożyczki i t. d.



W taczkach, dziadkach do orzechów i t. d. mamy przykłady dźwigni drugiego rodzaju. Ciężar przewyższa tu siłę poruszającą. Stosujemy taką dźwignię, gdy chodzi o spotęgowanie siły rozporzą-dzalnej.

W dźwigni trzeciego rodzaju ciężar jest mniejszy od siły poruszającej, lecz zato przesunięcie pierwszego jest większe od przesunięcia drugiej. Dźwignie takie są używane w tych razach, gdy pośpiech w pracy jest ważniejszy niż oszczędność na sile.

	
515.    Najbardziej uderzające przykłady dźwigni trzeciego rodzaju spotykamy w organizmach zwierzęcych. Dźwigniami takiemi są kończyny zwierząt. Główka kości stanowi punkt oparcia, mięsień, przymocowany do kości w pobliżu główki, wywiera siłę poruszającą, a ciężar kończyny w połączeniu z każdym innym oporem, który przeciwdziała ruchowi, jest ciężarem dźwigni. ^Lekkie skurczenie mięśnia wywołuje już znaczny ruch kończyny, co zwłaszcza w rękach i nogach człowieka jest wielce uderzające. Tej właśnie okoliczności ciało ludzkie zawdzięcza swą ruchliwość.


	
516.    Do badania równowagi dźwigni bardzo dogodnie jest stosować zasadę pracy przygotowanej. Dajmy na to, że na dźwi
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gnię działają siły P, Q, a C jest punktem oparcia. Gdy dźwignia obróci się około G o mały kąt 89, i punkty przyłożenia sił zajmą położenia A', B\ to będzie

P . AA'sin a - Q. BB‘sin3 = 0; a i 3 znaczą tu to samo, co w par. 508. Z równania tego wynika od razu P. GM^Q. CN.

	
517.    Wagi Roberwala. W przyrządzie tym mamy doskonały przykład zastosowania zasady pracy przygotowanej. Składa się on z czterech prętów AA’, A'B', B'B, BA, połączonych w końcach przegubami i tworzących równoległobok. Boki AB, A'B' mogą obracać się około osi poziomych C, C, urządzonych na nieruchomej, pionowej prostej O CC. Ta prosta powinna być równoległa do AA i BB', ale może leżeć od nich w odległościach niejednakowych. Prócz tego mamy tu jeszcze pręty MM1, NN', połączone sztywno z AA, BB' pod kątami prostymi. Na nich zawieszone są w punktach H i K ciężary P i Q. Gdy całe urządzenie obraca się około C, C, to pręty AA, BB' zachowują wciąż położenie pionowe, a pręty MM', NN' poziome.
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Wagi Roberwala posiadają właściwość następującą: jeżeli ciężary P, Q równoważą się w jakiemś położeniu, to nie zakłócimy równowagi, przesuwając je na prętach MM', NN’. Można jeszcze dodać, że ciężary nie przestają się równoważyć, gdy przyrząd obróci się około C, C, i jeden z podtrzymujących prętów MM', NN' pójdzie w górę, a drugi opadnie.

Aby to udowodnić oznaczmy długości GA, G'A' przez a, długości CB, G'B' przez b i przypuśćmy, że pręty AB, A'B' tworzą z poziomem kąt 3. Gdy obrócimy przyrząd tak, że kąt 3 wzrośnie o d^, to pręt AA' opadnie w kierunku pionowym o acossdł, a pręt BB' wzniesie się o b cos 8d8. Jeżeli ciężary własne różnych części przyrządu są znikome w porównaniu z P i Q, to w myśl zasady pracy przygotowanej będzie Pa cos^d^=Qb cos 3d8. Z tego wynika Pa=Qb; a więc warunek równowagi jest niezależny od położenia punktów H, K na prętach podtrzymujących i od nachylenia 8 prętów AB, A'B' do poziomu.

Jeżeli konstrukcya przyrządu jest taka, że równoważą się ciężary równe, to możemy wykryć różnicę w ciężarach dwóch ciał, zawieszając je w dowolnych punktach prętów MM', NN'. Niepotrzeba tu dbać o to, aby ciężary były przyczepione w jednakowych odległościach od punktu oparcia, i na tern polega zaleta przyrządu.

Prz. 1. Pręty AB, A'B' ważą w, w', a ciała AA'M', BB'N' ważą W, W'; okazać, że

(w + w'A a—

(P+ W) a-{Q + W’) b+----2---- = 0 jest warunkiem równowagi. Następnie dowieść, że ciężary P, Q równoważą się we wszystkich położeniach, jeżeli równoważą się w jednem, i wreszcie wyznaczyć punkt przyłożenia ciśnienia wypadkowego podstawy EF na stół.

Prz. 2. Wagi są w spoczynku w położeniu poziomem; dowieść, że reakcya pozioma na czop 0 lub C tak się ma do jednego z ciężarów, jak różnica odległości środków ciężkości ciężarów od prostej CC' do CC.                                            (Math. Tripos, 1874.)

Niechaj X, Y; X’, Y1 będą składowemi poziomemi i pionowemi reakcyi w A i A’. Biorąc momenty względem A' dla układu AM'A', otrzymamy Xa=Ph, gdzie AA'=a, MET—h. Prócz tego będzie X+X'=O, Y+ Y'=P. Widzimy, że X, X1 można wyznaczyć, gdy poszczególne wartości Y, Y' są niewyznaczalne (268 i 148). Oznaczając odpowiednie składowe w B, B' przez X1, Y^ X’, Yt', znajdziemy w sposób podobny Xxa—Pk, gdzie k= NK. Na końce pręta AB działają siły X, Y, X,, Yi, a zatem składowa pozioma reakcyi na czop C będzie X— X1, co prowadzi od razu do pożądanego wyniku.

	
518.    Wagi pospolite. Wagi pospolite składają się z prostego pręta lub belki AB i z dwóch jednakowych szal E i F, zawieszonych na lekkich sznurach u końców belki. Belka może obracać się swobodnie około punktu oparcia O, z którym łączy ją krótki pręt OG, prostopadły do niej i przechodzący przez środek G. Środek ciężkości G-belki AB leży na prostej OC, a zatem, gdy belka i próżne szale są w równowadze, to prosta AB ma położenie poziome.



Ciała, które mają być zważone, kładziemy na szale; jeżeli ciężary ich są nierówne, to belka odchyla się od położenia poziomego. W położeniu równowagi środek ciężkości belki G nie leży już pionowo pod punktem oparcia, i nachylenie 8 prostej AB do poziomu jest takie, że moment ciężaru belki względem 0 jest równy sumie momentów ciężarów ciał ważonych oraz szal względem tegoż punktu. Z tego wynika, że punkt oparcia nie powinien leżeć w środku ciężkości belki.
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Fig. 143.




Oznaczmy przez P, Q ciężary, znajdujące się w szalach E, F, przez w ciężar każdej szali, przez W ciężar belki AOB, dalej niech będzie OG = h, OC = c, AB = 2a, wreszcie oznaczymy przez 8 nachylenie belki do poziomu w stanie równowagi układu. Biorąc momenty względem O, otrzymamy

(P+w) (a cos 8 + c sin 8) — (Q + w) (a cos 8 — c sin 8) + Wh sin 8=0.

W równaniu tern współczynnik sumy (P+w) jest odległością punktu O od pionu AE; wyznaczamy go z łatwością, biorąc rzut linii łamanej OCA na kierunek poziomy. W podobny sposób wyznaczają się inne współczynniki. Z równania powyższego wypada

(O—P)a tan J=--—--•----.

(P+@+2w) c+ Wh

	
519.    Dobre wagi czynią zadość trzem warunkom. Po pierwsze, belka AB posiada położenie poziome, gdy na szalach*leźą ciężary równe; do tego potrzeba, aby ramiona AC, CB były równe. Rozpoznanie położenia poziomego belki ułatwia lekki pręt, zwany języczkiem-, łączy się on z belką w środku C pod kątem prostym. Gdy belka przybiera położenie poziome, to języczek przechodzi przez punkt zawieszenia.



Drugim warunkiem jest czułość. Odchylenie^ nawet przy drobnej różnicy pomiędzy P i Q powinno być dostatecznie duże, aby je można było łatwo zauważyć. Dla danej różnicy Q — P czułość wzrasta, gdy tan 3 wzrasta, można zatem mierzyć czułość stosun-tan 0            a kiem ---- =---------—. Jeżeli wagi są tak zbudowane, że Wy-Q-P {P+Q+2w)c+Wh       8                  J rażenie po prawej stronie równania ma dużą wartość, to czułość będzie dobra.

Widzimy, że czułość wzrasta, (1) gdy wzrasta długość belki AB, (2) gdy zmniejsza się długość pręta OC, (3) gdy zmniejsza się ciężar belki. Jeżeli zbudujemy belkę w taki sposób, że h i c będą miały znaki odwrotne, to czułość wzrośnie w dużym stopniu. Do tego potrzeba, aby punkt oparcia 0 leżał pomiędzy G i C.

Warunek trzeci nazywa się zwykle statecznością. Wagi powinny po odchyleniu prędko powracać do położenia poziomego. Belka waha się około położenia równowagi, i oko tem łatwiej rozpozna, czy położenie to jest poziome, im wahanie jest szybsze. Badanie tego warunku stanowi przedmiot dynamiki; z punktu widzenia statycznego nie daje się ono przeprowadzić w sposób właściwy.

	
520.    Prz. 1. Jedno ramię belki wagowej jest dłuższe od drugiego, a ciężar belki jest znikomy. Dowieść, że ciężar prawdziwy ciała ważonego jest średnią geometryczną ciężarów pozornych, które otrzymujemy, ważąc je na jednej szali, a potem na drugiej. (Coli. Exam.)



Prz. 2. Ramiona belki są niejednakowe ani pod względem wagi ani długości. Pewne ciało waży pozornie Q1 i Q2 stosownie do tego, na którą szalę je położymy. Podobnież R| i R2 są ciężarami pozornymi innego ciała. Wyznaczyć prawdziwe ciężary obydwóch ciał i okazać, że ciało, którego ciężary pozorne są równe, waży w rzeczywistości

1R2—2R1


(Coli. Exam., 1885.)



Qi -- Q, -- R, + R,

Prz. 3. Na fałszywych wagach ciężar P waży pozornie Q, a ciężar P' waży Q'. Dowieść, że prawdziwy ciężar X ciała, którego ciężar pozorny wynosi Y, wyznacza się z równania X(Q— Q')= =Y(P-P)+PQ-PQ‘.                         (Math. Tripos, 1870.)

Prz. 4. Dobre wagi pozostają w równowadze, gdy w szalach leżą nierówne ciężary P i Q. Gdy do P dodamy mały ciężarek, to ciężar Q podniesie się pionowo o tyle, o ile podniósłby się ciężar P, gdybyśmy ten sam ciężarek dodali do Q.                     (Math. Tripos, 1878.)

Z wzoru na tan 3 w par. 518 widać, że przyrosty kąta 8 będą jednakowe co do wartości bezwzględnych, czy drobny dodatek otrzyma P czy Q, skutkiem więc powiększenia P lub Q belka obróci się w jedną lub drugą stronę o ten sam mały kąt, a zatem przesunięcia pionowe ciężarów będą w obydwóch przypadkach równe.

Prz. 5. Języczek wag jest osadzony cokolwiek niedokładnie; dowieść, że prawdziwy ciężar ważonego ciała jest prawie równy średniej arytmetycznej ciężarów pozornych, które wypadają przy ważeniu na obydwóch szalach.                              (Coli. Exam.)

Prz. 6. Punktem oparcia wag było ostrze noża, spoczywające na poziomej płytce agatowej. Z czasem nóż się stępił o e i powstałe ciało cylindryczne posiada krzywiznę —, a w płytce wytworzyło się zagłę

bienie o krzywiźnie —. Kładziemy na szale ciężary P i Q nieco różne; P

,                                           / rp \ 1 okazać, że odwrotność czułości wzrosła o (P-Q-W) s--—)—.

\ p—r/ia

Ciężary własne szal uważamy tu za znikome. (Coli, Exam., 1890.)

	
521.    Beźmiany. Beźmian pospolity jest to po prostu dźwignia



A CB o nierównych ramionach A C, GB. Punkt oparcia leży nieco nad C. Ważone ciało Q zawiesza się na końcu B ramienia krótszego. Na dru-giem ramieniu, można przesuwać znany ciężar P; ustawiamy go w takim punkcie H, aby zachodziła równowaga. Niech G będzie środkiem

ciężkości beźmianu, a w jego wagą. Trzy siły P, w i Q, przyłożone odpowiednio w H, G i B są w równowadze. Biorąc momenty względem C, otrzymamy


P.HG+w . GC=Q. CB




(1)



Obierzmy na krótszym ramieniu GB taki punkt D, aby było w . GG—P. GD; równanie (1) przekształci się na

P.HD=Q.CB..........

Tak więc do wyznaczenia ciężaru Q potrzeba zmierzyć HD. W tym celu odmierzamy od punktu D w stronę A szereg długości Dl, 12 23...., z których każda jest równa GB. Ciężar Q będzie odpowiednio

5 H 4     3     2     1
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B G C D K

Fig. 144.

równy P, 2P, 3P...., gdy P stoi na znaku 1, 2, 3...., i układ jest w równowadze. Odcinki 12, 23....są zwykle podzielone na części mniejsze, i tym sposobem długość HD daje się łatwo odczytać.

Przyrząd tej postaci był w użyciu jeszcze w starożytnym Rzymie, i z tego powodu bywa nazywany nieraz beźmianem rzymskim.

	
522,    W beźmianie duńskim ciężary P i Q działają na stałe punkty dźwigni; natomiast przesuwamy punkt oparcia na drążku AB, dopóki nie nastąpi równowaga. Możemy tu ciężar P, zajmujący stałe położenie na dźwigni, połączyć z ciężarem dźwigni. Niech P' będzie ciężarem całego przyrządu, czyli P' — p p w, i niech G będzie środkiem ciężkości. Biorąc momenty względem 0, otrzymamy P'. GG —Q. GB, a stąd



P' .BG

BG= —--.

P' + Q

[image: ]

Fig. 145.




Z tego wzoru można wyznaczyć BG, gdy Q=P, 2P‘, 3P‘..... Odpowiednie położenia punktu G oznaczamy na dźwigni cyframi 1, 2, 3..... Przy takiej podziałce można od razu odczytać ciężar ciała, zawieszonego w końcu B, gdy znaleziony został punkt oparcia G.

Zawieśmy z kolei w B ciężary Q i Q+S, i przypuśćmy, że G i G' będą odpowiednimi znakami podziałki. Znajdziemy bez trudności, że -----=--. Jeżeli S jest dane, to prawa strona jest stała BC BO P'.BG        1

	
	
i,    jak widzimy, odległości znaków podziałki od B tworzą postęp harmoniczny, gdy ciężary tworzą postęp arytmetyczny. Tak więc w beź-mianie pospolitym odległości podziałki od pewnego punktu idą w postępie arytmetycznym, a w beźmianie duńskim w postępie harmonicznym.



	
523.    Beźmian w porównaniu z wagami posiada zalety następujące: (1) wszystkie ważenia odbywają się przy pomocy jednego tylko znanego ciężaru P, (2) gdy ważone ciało jest cięższe od P, to ciśnienie na punkt oparcia jest mniejsze, niż w wagach. Z tego względu beźmian nadaje się lepiej do ważenia dużych ciężarów niż wagi. Z drugiej strony wagi posiadają tę wyższość, że przy użyciu dużej liczby małych gwichtów można wyznaczać ciężary ciał z większą dokładnością, niż odczytując długość ramienia beźmianu na po-działce.


	
524.    Prz. 1. Ciężar beźmianu pospolitego jest równy w, a gdy przyrząd jest dobrze wyregulowany, to odległość punktu oparcia od końca B, w którym wisi ważony ciężar, wynosi a. Punkt oparcia został przesunięty o a dalej od B, i wówczas ciężar pewnego ciała wypada W Dowieść, że otrzymamy ciężar prawdziwy, wprowadzając



a poprawkę (W+P+W) ---, gdzie P oznacza ciężar ruchomy,

d-o

(Math. Tripos, 1881.)

Prz. 2. Na beźmianie do ważenia w kg znaki podziałki robiono pilnikiem, a opiłki z każdego znaku ważą x kg. Gdy jeszcze nie było podziałki, to stawiając ruchomy ciężar P na końcu drążka, można było zważyć n+1 kg, a po wykonaniu podziałki tylko n. Okazać, że n(n+1) x = 2P, i znaleźć błąd, który popełnimy, ważąc m kg. Środek ciężkości beźmianu leżał początkowo pod punktem oparcia.

(Coli. Exam., 1885.)

Prz. 3. Czułość beźmianu, w którym ciężar danego drążka jest nieznaczny w porównaniu z ciężarem ruchomym, jest odwrotnie pro-porcyonalna do sumy ciężaru ruchomego i największego ciężaru, który daje się zważyć.                                   (Math. Tripos, 1854.)

Prz. 4. Beźmian pospolity wzorcowano w przypuszczeniu, że drążek waży Q, a ciężar ruchomy W, lecz obydwa te założenia są nieścisłe. Na beźmianie tym dwa ciała, których ciężary prawdziwe wynoszą PiR, ważą pozornie P+X i R+Y. Dowieść, że drążek i ciężar ,      ...... W(X-Y) .Q{X-Y) a{PY-RX) ruchomy wazą mniej, niz założono, o--D---1 "—D—- 1------------,

gdzie b^CG-, a^CB, i D=P-R+X-Y.          (Math. Tripos, 1887.)

Prz. 5. Beźmian rzymski, którego ciężar całkowity jest równy 8, wzorcowano -przy punkcie oparcia 0, a następnie przesunięto ten punkt do 0' w stronę końca B, w którym zawiesza się ciężary ważone. Na

beźmianie takim pewne ciało waży pozornie W; dowieść, że cię


(8+ W) CC

BC' '



żar prawdziwy jest większy o


(Triu. Coli., 1889.)



Prz. 6. W beźmianie zwykłym powiększono ruchomy ciężar P w stosunku (1+k):1. Okazać, że teraz, ważąc ciężar Q, popełniamy błąd kY, gdzie Y oznacza ciężar, który trzeba odjąć od Q, aby utrzymać równowagę, gdy P zostanie przysunięte do samego punktu oparcia.

(Coli. Exam., 1885.)

Prz. 7. W beźmianie duńskim odległość punktu oparcia od końca 12 1

B wynosi a , gdy ważony ciężar ma nkg; okazać, że  ----1—— 0. an+2 An+1 @n

(Math. Tripos, 1859.)

Prz. 8. Beźmian duński, który ważył początkowo W i posiadał dokładną podziałkę, okrył się rdzą; znaleziono na nim, że wagi pozorne dwóch ciężarów znanych X i Y są odpowiednio X—x i Y—y. Dowieść, że środek ciężkości rdzy dzieli wzorcowane ramię w stosunku W(x—yy.Yx—Xy, i że waga rdzy w pierwszem przybliżeniu wy-

. W+Y W+X nosi-----x +—,--Ty.


(Math. Tripos, 1885.)



Prz. 9. Obwód tarczy mosiężnej, ważącej w, składa się z łuku koła BBC, większego od półkola, i dwóch stycznych AB, AC, tworzących kąt 2a. Tarcza ta stanowi część główną przyrządu do ważenia listów. Może ona obracać się w płaszczyźnie pionowej około środka koła O, a w punkcie A jest umocowany ciężarek P. List ważony zawiesza się w punkcie D, tak położonym na obwodzie koła, że kąt AOD jest prosty. Koło posiada podziałkę, a wskazówka wisi pionowo pod O. Gdy przyrząd nie jest obciążony, to punkt A leży pionowo pod O, i wskazówka stoi na zerze. Znaleźć wzór do wzorcowania koła i oka-

w

zać, że przyrząd wskaże —, gdy OA tworzy z pionem kąt

((x+2o) sin2o+2 sin acOS a)        - w sin2 a arctan-------—---—(, jeżeli P —---.

- (T—2a) sin‘a—2coso )               3

(Math. Tripos, 1878.)

	
525.    Blok. Blok pospolity składa się z kółka, które może obracać się swobodnie około osi. Linka leży w rowku, wyżłobionym na brzegu kółka, a na jej końce działają siły P i P'. Jeżeli blok jest gładki i ciężar linki znikomy, to naprężenie linki na całym łuku zetknięcia musi być jednakowe, a zatem siły P, P' są równe, i każda z nich jest równa naprężeniu (fig. 146). Toż samo będzie i wtedy, gdy blok chropowaty siedzi na gładkiej osi (197).


	
526.    Jeżeli oś bloka jest nieruchoma, to jedna z sił P, Q, działających na końce sznura, jest siłą poruszającą, a druga ciężarem. Oczywiście blok stały nie daje zysku mechanicznego; pomimo to jednak maszyna ta, pozwalająca nadawać sile poruszającej kierunek najdogodniejszy, bywa wielce użyteczna.


	
527.    Można jednak osiągnąć zysk mechaniczny przy pomocy bloka ruchomego. Dajmy na to, że koniec wiotkiej linki jest umocowany w nieruchomym punkcie A; linka obiega blok C, dźwigający ciężar Q, a na drugi jej koniec B działa siła P
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(fig. 147). W stanie równowagi linie linek po obydwóch stronach bloka muszą spotykać się na linii działania siły Q (34), a zatem muszą tworzyć z pionem kąty równe. Niech każdy z tych kątów będzie równy a. W takim razie

2Pcosa= Q.

Zyskowność mechaniczna jest więc równa 2 cos a. Jeżeli kąt a jest większy od 60°, to zyskowność jest mniejsza od jedności. Gdy linki idą równolegle, to 2P= Q.

	
528.    Prz. 1. Na bloku ruchomym, którego sznury idą pionowo, wisi ciężar W; utrzymuje go w równowadze inny ciężar P, przywiązany do swobodnego końca sznura, przerzuconego przez drugi blok stały. Okazać, że przy wszelkich położeniach ciężarów ich środek ciężkości zachowuje położenie niezmienne.           (Math. Tripos, 1854.)



Prz. 2. W środku ciężkiego ruchomego bloka o promieniu r jest umocowany koniec sznura. Sznur ten przechodzi przez gładki kołek, następnie idzie pod blokiem i wreszcie przechodzi przez drugi kołek, osadzony pionowo nad punktem, w którym sznur opuszcza blok; do jego końca swobodnego jest przywiązany ciężar W. Obydwa kołki leżą

5r

na jednym poziomie, a odległość pomiędzy nimi wynosi —. Dowieść, 5w

że blok waży —, i wyznaczyć odległość pierwszego kołka od środka


bloka.



(Coli. Exam., 1886.)

Prz. 3. Lekki sznur bez końca przechodzi przez dwa kołki, tworząc dwa łuki. Kołki leżą na jednym poziomie; w każdym łuku siedzi blok, i jeden z tych bloków jest dwa razy cięższy od drugiego. Okazać, że części sznura, styczne do górnego łuku tworzą kąt większy od 120°.                                         (Math. Tripos, 1857.)

	
529.    Przyrządy złożone z bloków, czyli wielokrążki, można podzielić na dwie klasy: przyrządy, należące do pierwszej, zawierają po jednej lince, gdy tymczasem w skład przyrządu klasy drugiej wchodzi większa liczba linek odrębnych. Zacznie-my od przyrządów klasy pierwszej.
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Fig. 148.






Dwie ramki, zawierające jednakowe liczby bloków, są ustawione jedna naprzeciwko drugiej. Na rysunku w każdej ramce widzimy trzy bloki. Sznur przechodzi przez bloki w porządku ADBECF, i jeden koniec jego jest przymocowany do jednej z ramek. Siła poruszająca P działa na drugi koniec sznura, a ciężar Q na ramkę.

Przypuśćmy, że każda ramka zawiera n bloków, i niech W oznacza ciężar ramki dolnej. Wypada, że 2n naprężeń sznurów równoważy ciężar Q+ W. Na całej długości sznura panuje naprężenie jednakowe i równe P, a zatem rzuty na kierunek pionowy dadzą 2nP^=Q+ W.

Gdyby wszystkie bloki były jednakowe, i środki ich leżały na jednym pionie, to sznury zachodziły by jedne na drugie. Z tego względu części sznura, idące pomiędzy blokami, nie są dokładnie równoległe. Uważając sznury za równoległe, popełniamy pewien błąd, który jednak bardzo niewiele znaczy wobec innych niedokładności przyrządu (503).

Związek pomiędzy siłą poruszającą i ciężarem daje się również wyznaczyć przy pomocy zasady pracy przygotowanej. Dajmy na to, że ramka dolna wraz z ciężarem Q otrzymała przesunięcie przygotowane q w górę. Oczywiście każdy sznur zluzuje się o długość q. Aby sznur się wyprężył, to ciężar P musi opaść o q na każdą poszczególną część sznura, czyli musi opaść o 2qn. Z zasady pracy wynika, że

P. 2nq = (Q + W)q.

Stąd otrzymamy bezpośrednio związek poprzedzający.

	
530.    Często przyrząd tego rodzaju posiada budowę odmienną; bloki, należące do jednej ramki, siedzą na jednej osi, lecz każdy z nich może obracać się niezależnie od pozostałych. I przy tej konstrukcyi znaleziony wyżej związek pomiędzy siłą poruszającą i ciężarem nie przestaje być słusznym. Jeżeli wszystkie bloki mają jednakowe średnice, to podczas pracy przyrządu ich szybkości kątowe nie będą równe. Można jednak i tak skonstruować przyrząd, aby szybkości te były jednakowe, do tego potrzeba tylko dobrać odpowiednio średnice bloków, a w takim razie wszystkie bloki jednej ramki mogą być połączone sztywno, albo wyrobione z jednej sztuki.



Aby urządzenie to zrozumieć przypuśćmy, że dolna ramka podniosła się o centymetr w górę. W takim razie każdy sznur pomiędzy ramkami zluzuje się o centymetr. Zwróćmy naprzód uwagę na sznur prawy pomiędzy blokami C i F; sznur ten się wypręży, gdy blok F obróci się tak, aby po nim przeszedł centymetr sznura. Gdy to nastąpi, to lewy sznur pomiędzy tymi samymi blokami zluzuje się o dwa centymetry, a zatem blok C powinien tak się obrócić, aby przeszły po nim dwa centymetry. Tak samo znajdziemy, że po bloku E powinny przejść trzy centymetry i t. d. Jeżeli średnice bloków górnych mają się do siebie, jak 2:4:6.... a średnice bloków dolnych, jak 1:3:5:..., to wszystkie bloki obracają się z jednakowemi szybkościami kąto-wemi.

Przyrząd taki działa dobrze, jeżeli budowa jego jest bardzo dokładna; przy bardzo nawet drobnych odchyleniach od podanych pro-porcyi, sznury wyprężają się niejednakowo. Należy nawet uwzględniać grubość linki. Wynalazcą tej modyfikacyi wielokrążka, dzisiaj nieużywanej, był White.

	
531.    Prz. Wielokrążek o jednej lince posiada n bloków. Znaleziono, że ze względu na sztywność linki i tarcie o oś do podniesienia ciężaru P potrzebna jest siła poruszająca aP + p, gdy linka przechodzi przez jeden blok. Dowieść, że siła poruszająca P utrzyma



a(an— 1)    a(an—1) — n (a— 1) w zawieszeniu ciężar Q~--1P+--(---1)2--Pr 1 znależe, ja-ki ciężar dodatkowy trzeba dorzucić do P, aby podnieść Q.

(Math. Tripos, 1884.)

Sztywność lin była przedmiotem badań doświadczalnych Cou-lomba (170). Rozważanie doświadczeń jego zajęłoby zbyt wiele miejsca, podamy więc tylko w krótkości same wyniki. Dajmy na to, że linka ABCD przechodzi przez blok o promieniu r, styka się z nim w B i C i porusza się w kierunku ABCD. Aby uwzględnić sztywność części AB, która ma właśnie wejść na blok, uważamy, że linka jest wiotka, lecz na blok działa para opóźniająca apbT, gdzie T oznacza naprężenie; a i b są wielkościami stałemi, zależnemi od natury i rozmiarów linki, ale niezależnemi wyraźnie od szybkości. Uwzględnimy sztywność części CD, która zeszła z bloka, wprowadzając parę a'+b'T', Statyka. 28 gdzie znowu T' jest naprężeniem w tej części linki. Stałe a' i b' są tak znacznie mniejsze od a i b, że drugą poprawkę zazwyczaj się pomija. ,                           a+bT Biorąc momenty względem środka bloka, otrzymamy T’— T-----•

	
532.    Przy użyciu kilku sznurów, można osiągnąć zysk mechaniczny zapomocą różnych kombinacyi bloków. Dwie z nich, podawane zazwyczaj w książkach elementarnych, mamy na figurach 149 i 150.
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W przyrządzie pierwszym każdy blok wisi na oddzielnej lince; jeden koniec tej linki jest przymocowany do punktu nieruchomego, a drugi do bloka następnego. W przyrządzie drugim linka, przechodząca przez blok, jest przymocowana w jednym końcu do ciężaru, a w drugim do bloku następnego. Dwa te przyrządy są podobne pod względem rozkładu bloków, ale jeden z nich stanowi jakby odwrotność drugiego.

Oznaczmy przez W,, W,, .... ciężary bloków M1, M2^.... i przez T1, T2,.... naprężenia linek, które przez nie przechodzą. Na figurach 149 i 150 poznaczono bloki tylko wskaźnikami liter M,, M... .

Zwróćmy naprzód uwagę na fig. 149. Naprężenie T= P. Naprężenia linek po obydwóch stronach bloka M1 równoważą ciężar tego bloka i naprężenie T2, a zatem będzie

T,=2T, - w,=2P- w,.

Tak samo znajdziemy dla bloków M2, M,,...

T,=2T2- W,=22P- 2W1 — iv ^

T, = 2T.- w, = 23 P—22w,—2w,—w,,

i t. d. dla wszystkich bloków pozostałych. Prawa strona każdego równania następnego jest oczywiście równa dwa razy wziętej prawej stronie poprzedzającego minus jedno iv. Ostatecznie znajdziemy

Q=2Tn—ivn — 2nP—21-1W,—2"—2w,— ... —2w,-1—wn.

Jeżeli wszystkie bloki ważą jednakowo, to

Q^2nP~(2J,— P)iv.

Można łatwo otrzymać związek pomiędzy siłą poruszającą i ciężarem przy pomocy zasady pracy przygotowanej. Przypuśćmy, że blok najniższy otrzymał przesunięcie q w górę. Każda z linek po obydwóch stronach jego zluzuje się o q, i trzeba podnieść o 2q blok następny, aby je wyprężyć na nowo. Tak samo znajdziemy, że przesunięcie trzeciego bloka będzie dwa razy większe, niż drugiego, a więc wyniesie 22q i t. d. Ostatecznie wypadnie, że punkt przyłożenia siły poruszającej pójdzie w górę o 2nq. Mnożymy ciężar każdego bloka przez przesunięcie jego; z zasady pracy wypadnie, że

(Q + wn)q + ivn_12q + wn^.2^q+ .... =P.2nq. Skróciwszy przez q, znajdziemy związek poprzedni.

	
533.    W przyrządzie, wyobrażonym na figurze 150, naprężenie Tr=P. Naprężenie linki po obydwóch stronach bloka M, wraz ciężarem jego równoważą się z naprężeniem T2, a zatem będzie T2=271+ wx — 2P+ W, . Prowadząc ten sam rachunek dla bloków następnych, będziemy otrzymywali takie same równania, jak w par. poprzedzającym, jedynie znaki przed w będą odwrotne. Tak więc



T, = 2 72 + w, =2P+2w,+ w,

T,=27,+w,=23P +22w,+2w,+w,,

i t. d. W tym razie wszystkie sznury podtrzymują ciężar Q, zatem T1+T2+ .... + Tn = Q+ W, gdzie W jest ciężarem sztaby.

Wprowadzając do ostatniego równania wartości naprężeń T^ 2, ..., znajdziemy

Q+ W=(2n— 1)P+(2"—— 1)W1+(2"-2— 1)W,+ .... + Wn-1

W przypadku, gdy ciężary wszystkich bloków są równe, wzór ostatni sprowadza się do

Q+ W=(2"—1)(P+w)—niv.

W przyrządzie pierwszym (fig. 149) zyskownośę mechaniczna się obniża, gdy wzrastają ciężary bloków, w przyrządzie drugim dzieje się odwrotnie; tutaj ciężary bloków pomagają sile poruszającej podtrzymywać ciężar Q.

Zastosujemy teraz zasadę pracy przygotowanej. Wyobraźmy sobie, że sztaba, podtrzymująca ciężar, pozostaje w spokoju, a blok najwyższy został przesunięty o q na dół. Każdy ze sznurów po obydwóch stronach jego zluzował się o q-, sznury te wyprężą się z powrotem, gdy blok następny przesunie się o 2q na dół i t. d. Punkt przyłożenia siły poruszającej opadnie o 2nq. Przypuśćmy teraz, że po tern wszystkiem cały układ został przesunięty o q w górę, skutkiem czego blok górny powrócił na dawne miejsce (65). Ostatecznie ciężar Q wraz ze sztabą ABC podniósł się o q\ bloki, poczynając od najwyższego, opadły odpowiednio o O, (2—1)q,(22—1)q,...., a punkt przyłożenia siły poruszającej o (2n—1)q. Z zasady pracy wynika

(Q+ W)q = wn^(2~\}q + wn_^—^q + ••••

.... + w,(2"-1—1)4+ P(2" — l)q.

Dzielimy przez q, i wypada to samo, co poprzednio.

	
534.    Sztaba ABC tylko w takim razie zachowa położenie poziome, jeżeli ciężar Q będzie uczepiony w stosownym punkcie. Działają na nią w punktach A, B,.... naprężenia Tx, T2,—., które równoważy ciężar Q, działający na pewien punkt H, oraz ciężar własny sztaby W w punkcie środkowym G. Przedziały AB, BC,.... zależą od promieni bloków, a mianowicie AB—2a2 — al, BC=2a3 — a2 i t. d.; a,, a2,.... ozna-czają właśnie te promienie. Bierzemy momenty względem A:



T2. AB+ T3. AC+...^Q . AR+ W. AG.

Równanie to określa położenie punktu H.

Jeżeli niemożna pominąć ciężarów linek lub sznurów, to włączamy ciężar części sznura, zawartej pomiędzy Mr i M2 do W,, ciężar sznura pomiędzy M2 i M, do W2 i t. d. Ciężary Sznurów, łączących punkty A, B, C... z blokami, są na fig. 149 podtrzymywane przez nieruchome punkty A, B, C..., a na fig. 150 mogą być dołączone do ciężaru belki ABC. Wreszcie ciężary sznurów, owijających bloki, przyłączamy do ciężarów tych bloków.

	
535.    Jeżeli ciężary bloków dają się pominąć, i każdy z nich wisi na oddzielnej lince, to można z łatwością wyznaczyć związek pomiędzy siłą poruszającą P a ciężarem Q i w tym przypadku, gdy sznury nie są równoległe.



Niech 201, 20.2, 20,, .... będą kątami, które tworzą proste części linek, owijających bloki M1} M2, Ma,.. , a 7, T2, T3,... niech oznaczają naprężenia. Rozumując, jak poprzednio, znajdziemy, że
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T^P, T,=2T coso, T,=2T, cos 0,, i t. d.

Jeżeli przyrząd składa się z n bloków, to wypadnie

Q=2"P • cos 01 . cos 0.2... COSO,

	
536.    Prz. 1. W wielokrążku, w którym wszystkie linki są przymocowane do ciężaru Q, ciężar najniższego bloka jest równy sile poruszającej P, następnego 3P i t. d., wreszcie najwyższego bloka ruchomego 3"—2P. Dowieść, że stosunek P : O jest równy 2:(3W —1).



(Math. Tripos, 1856.)

Prz. 2. W przyrządzie, wyobrażonym na fig. 149, ciężary bloków, poczynając od najwyższego, tworzyły postęp arytmetyczny, i siła poruszająca P równoważyła ciężar Q. Następnie bloki przestawiono w ten sposób, że blok najwyższy umieszczono najniżej, drugi od góry zajął drugie miejsce od dołu i t. d. Po tych zmianach będzie zachodziła równowaga, jeżeli siła P zajmie miejsce Q i odwrotnie. Okazać, że n(Q + P}=2W, gdzie W oznacza ciężar ogólny bloków, a n ich liczbę.

(Coli. Exam., 1882.)

Prz. 3. Na wielokrążku, fig. 150, złożonym z n bloków, zawieszono ciężar Q, a przytem przeprowadzono koniec sznura, przechodzącego przez blok najniższy, pod jeszcze jednym blokiem ruchomym, następnie przez blok stały i wreszcie przywiązano go do ciężaru Q. Przy takiem urządzeniu układ zachowuje równowagę bez żadnej siły poruszającej. Dowieść, że Q=(3.21—n—1)w, gdzie w oznacza wagę jednego bloka; prócz tego znaleźć punkt sztaby, w którym powinien być przyczepiony ciężar Q.                            (Math. Tripos, 1876.)

Prz. 4. Na wielokrążek, wyobrażony na fig. 150, działa siła poruszająca, równa ciężarowi najniższego bloka. W przyrządzie 1ym ciężar każdego bloka przewyższa trzykrotnie ciężar następnego niższego; okazać, że naprężenie każdego sznura jest równe ciężarowi bloka, który ten sznur opasuje.                                         (Coli. Exam.)

Prz. 5. Na przyrządzie, wyobrażonym na fig. 149, zawieszono ciężar Q; W,, iv2,—.wn oznaczają ciężary bloków. Dowieść, że przyrząd daje zysk mechaniczny tylko w takim razie, gdy

I-W„+2(I-W,-1) + 22(0- W,-2)+ ■■■■ +2"-1(-w)

jest dodatnie.                                        (Math. Tripos, 1869.)

Prz. 6. Przyrząd, wyobrażony na fig. 151, składa się z dwóch lekkich bloków; części sznurów, idące od punktów nieruchomych, są równoległe, a siła poruszająca działa poziomo. Dowieść, że zysko-wność mechaniczna wynosi V3.                (St John’s Coli., 1883.)

Prz. 7. W wielokrążku, fig. 150, siła poruszająca zeszła o centymetr na dół; o ile wzniesie się ciężar?             (Math. Tripos, 1859.)

Prz. 8. W przyrządzie, wyobrażonym na fig. 150, rozmiary bloków są małe w porównaniu z długościami sznurów; dowieść, że pragnąc uwzględnić w rachunku ciężary sznurów, należy do Q, W, W2 .... W,1 dodać odpowiednio to, co ważą długości sznura

1,+h,+..+1,—+h, 2(h- I), 2(h,- hi),.... 2(,-- hn_^.

W tern h, h2 .... hn oznaczają wysokości n bloków (ważących odpowiednio W,, w^^^Wn) nad poziomem, na którym końce sznurów są przyczepione do ciężaru Q, a h wysokość punktu przyłożenia siły poruszającej nad tym samym poziomem.           (Math. Tripos, 1877.)

Prz. 9. Wielokrążek, w którym wszystkie sznury są równoległe, i ciężary bloków pomagają sile poruszającej, składa się z n bloków; każdy z nich waży w i posiada średnicę 2a. Dowieść, że punkt zawieszenia ciężaru Q jest odległy o

2"+12+[(n—3)2"+n + 3]w

n 2 (2n-1)Q a

od linii działania siły poruszającej.                (Math. Tripos, 1883.)

Prz. 10. Wielokrążek, zbudowany według fig. 150, składa się z czterech bloków; do jednego końca sztaby, dźwigającej ciężar, jest przywiązany sznur, na który zwykle działa siła poruszającą, a do drugiego sznur czwarty, i wszystkie sznury idą równolegle. Każdy blok waży dwa razy więcej i posiada średnicę dwa razy większą niż następny blok niższy, a ciężar zawieszony na wielokrążku waży 33 razy więcej od najniższego bloka. Znaleźć, w którem miejscu sztaby jest przyczepiony ciężar.                             . (Trin. Coli., 1885.)

Prz. 11. Przyrząd, wyobrażony na fig. 149 składa się z n bloków, z których każdy waży w. Sznur r-owy, rachując od tego, który przechodzi przez blok najwyższy, może wytrzymać najwyżej naprężenie T. Okazać, że największy ciężar, jaki przyrząd taki może unieść, wynosi 2‘—*+1T-(2"—"+1-1)w.                         (Trin. Coli., 1890.)

Prz. 12. Znaleziono, że do podniesienia ciężaru P(l — 3) potrzebna jest conajmniej siła P, działająca na koniec sznura, przerzuconego przez blok. W przyrządzie, wyobrażonym na fig. 149, każdy blok waży aQ, a ciężar Q jest zaledwo zrównoważony. Okazać, że siłę poruszającą n^Q

bez zakłócenia równowagi można powiększyć o ——, jeżeli a i8 są tak małe, że ich kwadraty i iloczyny wolno pominąć.


(Coli. Exam., 1888.)



	
537.    Równia pochyła. Wyznaczyć związek pomiędzy siłą poruszającą i ciężarem na równi pochyłej.
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Cząsteczka C leży na płaszczyźnie AB, tworzącej z poziomem kąt a. Normalna CN do płaszczyzny tworzy także kąt a z pionem CV. Niech. Q będzie ciężarem cząsteczki C, i dajmy na to, że na O działa w kierunku CK siła P, a kąt NCK = «p. Przypuszczamy, że prosta CK leży w pionowej płaszczyźnie VCN.

Jeżeli płaszczyzna jest gładka, to wywiera ona na cząsteczkę reakcyę Rf działającą wzdłuż normalnej CN. W myśl paragrafu 35 będzie


sina sin« sin(« — a)




(1).



Reakcya R musi być dodatnia, bo w razie przeciwnym cząsteczka odeszłaby od płaszczyzny, a z tego oraz z równań powyższych wynika, że « musi być większe od a. Można się zresztą o tern przekonać wprost z figury 152. Oczywiście siła P tylko w takim razie może zrównoważyć Q i R, gdy jej linia działania idzie wewnątrz kąta, który tworzy CV z dalszym ciągiem NC.

W przypadku, gdy P działa w kierunku AB, P =

i P=Qsin a, R=Qcoso. Jeżeli P działa poziomo, to •=-+a, i wówczas P=Q tan a, R=-cos a

	
538.    W przypadku, gdy równia jest chropowata, niech p==tan e będzie współczynnikiem tarcia. Zatoczmy około normalnej CN, jako osi, prosty stożek o kącie wierzchołkowym 2e; będzie to stożek tarcia (173). Wewnątrz niego leży reakcya całkowita R', którą płaszczyzna wywiera na cząsteczkę. Dajmy na to, że linią działania tej reakcyi jest CH; kąt NCH—i zawiera się pomiędzy — e i +e. Za modłę uważamy ten przypadek, w którym a jest większe od e, a « większe od każdego z tych kątów. Przypadek ten wyobraża fig. 153. Będzie więc



_P__=__I___ R'


(2).



sin (a — i) sin‘( — i) sin («—a)

Jeżeli siła P jest tak duża, że cząsteczka ma właśnie zacząć posuwać

się w górę, to reakcya R‘ działa na CE, a kąt i= — e. Oznaczmy tę wartość siły P przez P; w takim razie

Pi _ Q _ R'

sin (a+s)    sin (P+e)    sin (p—a)

Gdy siła P jest tak mała, że cząsteczka zaledwo utrzymuje się na równi, to reakcya R1 działa na tworzącej CD, a i—s. Oznaczmy przez Pa taką wartość siły P; wówczas otrzymamy

P2 ___Q____R‘


(4).



sin (a—e) sin (P — e) sin (p—a)

Reakcya R' jest dodatnia tylko wtedy, gdy q> a, co wynika także z figury, bo linia działania siły P, równoważącej R' i Q, musi leżeć pomiędzy CV i dalszym ciągiem DC. Tak samo znajdziemy, że nie można posunąć cząsteczki w górę, nie odrywając jej od płaszczyzny, jeżeli kierunek siły, z którą działamy, nie leży pomiędzy CV i dalszym ciągiem EC.
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Gdy e> o (fig. 154), to cząsteczka pozostanie na równi w spoczynku, o ile stanu tego nie zakłóci jakaś siła P. Równanie (3) określa wielkość siły, która właśnie wystarcza do przesunięcia cząsteczki w górę; siła ta musi działać wewnątrz kąta,- który tworzy CV z dalszym ciągiem EC. Jeżeli siła ma być ściśle dostateczna do posunięcia cząsteczki na dół, to musi ona działać pomiędzy CV i przedłużeniem DC; określa ją pod względem wielkości równanie (4).

	
539.    Prz. 1. Siła P, działając równolegle do gładkiej równi po-chyłej, podtrzymuje ciężar Q i wywiera na równię reakcyę R. Dowieść, że ta sama siła, działająca poziomo, podtrzyma ciężar R i wywrze reakcyę Q.                                                    (Coli. Ex., 1881.)



Prz. 2. Wyznaczyć wielkość i kierunek najmniejszej siły, która przesunie cząsteczkę w górę na chropowatej równi pochyłej.

T

Z (3) widać, że P1 jest najmniejsze, gdy +8=2, t. j. gdy siła jest nachylona do równi pod kątem tarcia.

Prz. 3. Wyznaczyć wielkość i kierunek najmniejszej siły, która utrzyma cząsteczkę na chropowatej równi pochyłej.

Prz. 4. Dana cząsteczka 0 spoczywa na danej gładkiej równi pochyłej; podtrzymuje ją siła, działająca w kierunku danym. Równia jest nieważka, i jej bok AL może się przesuwać na gładkim poziomym stole. Jaką siłę poziomą przyłożyć należy do ściany pionowej BL, aby utrzymać równię w spokoju? Wyznaczyć także punkt przyłożenia ciśnienia wypadkowego, które równia wywiera na stół.

Prz. 5. Ciężka cząsteczka jest połączona lekkim drutem z punktem chropowatej równi pochyłej i może się obracać około tego punktu w płaszczyźnie równi, a równia tworzy z poziomem kąt

/ u \

arctan--g)° Wyznaczyć granice kąta 8, który tworzy drut z poziomą na równi w stanie równowagi.                     (Coli. Exam.)

Prz. 6. Dwie jednakowe cząsteczki leżą na dwóch równiach pochyłych; łączy je sznur, położony całkowicie w płaszczyźnie pionowej, prostopadłej do prostej przecięcia równi, i przechodzący przez gładki kołek, umocowany pionowo nad ową prostą. Cząsteczki są w stanie, graniczącym z ruchem, i części sznura tworzą z pionem kąty równe. Okazać, że różnica nachyleń równi do poziomu jest równa podwójnemu kątowi tarcia.                                  (Math. Tripos, 1878.)

	
540.    Kołowrót. Wyznaczyć zależność pomiędzy siłą poruszającą i ciężarem w kołomrocie.



Niech a będzie promieniem wału AB, i c promieniem koła. Siła poruszająca P działa na linkę, owijającą kilka razy koło
[image: ]

i przymocowaną na obwodzie; podobnież ciężar Q działa na linkę, nawiniętą na wał. Biorąc momenty względem osi wału,

C

otrzymamy Pc=Qa. Zyskowność mechaniczna wynosi —.

Przypuśćmy, ze punkty przyłożenia siły poruszającej i ciężaru przejdą odpowiednio drogi p, q, gdy koło obróci się o pewien kąt. Znajdziemy, że

P - c _ 0

q a P’

	
541.    Gdzie chodzi o dużą zyskowność mechaniczną, tam wypa-dłoby zastosować albo bardzo duże koło albo bardzo cienki wał-W pierwszym przypadku maszyna byłaby ciężka i niedogodna, w drugim wał byłby prawdopodobnie za słaby dla danego obciążenia. W takich razach można stosować urządzenie, wyobrażone na fig. 156. Wał składa się tu z dwóch części niejednakowo grubych, i linka jest nawinięta na obydwie. Gdy siła poruszająca opada, to linka podtrzymująca ciężar, nawija się na część grubszą wału i odwija z cieńszej. Oznaczmy przez a i b promienie tych części. Jeżeli na bloku wisi ciężar Q, to napręże-



Q

żenie linki jest równe 2 Biorąc momenty względem osi, otrzymamy


Q(a—b)

2




Pc=



. Zyskowność mechaniczna jest równa promieniowi koła podzielonemu przez połowę różnicy promieni wału. Możemy, dowolnie powiększać zyskowność, czyniąc promienie te dostatecznie blizkimi; wytrzymałość maszyny się skutkiem tego nie zmniejszy. Maszyna taka zowie się kołowrotem różnicowym.

	
542.    Prz. 1. Linka przechodzi pod blokiem, a końce jej są nawinięte w odwrotnych kierunkach na dwie części wału o niejednakowych średnicach. Obydwie części linki pomiędzy wałem i blokiem są równoległe. Jaki ciężar, przyczepiony dó bloku, podniesie człowiek, ciągnący pionowo jedną z części linki z siłą P?         (Coli. Exam.)



Prz, 2. W kołowrocie różnicowym końce sznura nie są przymocowane do wału, lecz połączone ze sobą; obejmują one drugi blok, dźwigający drugi ciężar. Wszystkie części sznura pomiędzy wałem i blokami idą pionowo. Wyznaczyć najmniejszą siłę, z którą trzeba działać na sznur, aby podnieść ciężar większy.         (Math. Tripos)

	
543.    Gdy zarówno siła poruszająca, jak i ciężar, działają na obwody kół, to koła te mogą siedzieć na jednym wale, ale są w użyciu i inne metody łączenia. Jeżeli odległość pomiędzy kołami jest znaczna, to łączymy je zapomocą pasa, założonego na obwody. W wielu razach jedno koło działa na drugie za pośrednictwem zębów, osadzonych na obwodach.


	
544.    Koła zębate. Wyznaczyć związek pomiędzy siłą poruszającą i ciężarem w układzie dwóch kół zębatych.



Dajmy na to, że siła poruszająca P i ciężar Q działają na obwody kół o promieniach a i b^ osadzonych na osiach A, B pary kół zębatych, i niech p, q będą przesunięciami przygo-towanemi punktów przyłożenia tych sił. W takim razie Pp— Qq. Lecz p = a8, i q = b^2^ gdzie 3, i 32 oznaczają kąty, o które obróciły się koła podczas udzielonego przesunięcia, - a zatem P_b8

a 9,


Niezbędny warunek spokojnego biegu całego mechanizmu polega na tem, aby stosunek szybkości kątowych kół zębatych był wielkością stałą. Można warunkowi temu uczynić zadość, nadając odpowiedni kształt zębom. Będziemy uważali, że warunek ten został spełniony. Stąd wynika, że i stosunek .2 jest stały.

Podzielmy odległość




środków na takie




kół zębatych A, B dwie części a, i b1.




aby było




A1432 b, 9,’




i wyobraźmy




sobie dwa koła, środków A, B




zatoczone ze promieniami
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a,, b1. Koła te, zwane podzia-łowemi, stykają się w punkcie C; szybkości punktów, położonych na ich obwodach, są równe, a zatem koła podziałowe podczas biegu kół zębatych toczą się jedno po drugiem bez poślizgu.

P a b

Z poprzednich związków wynika, że Q “ab. Pominęliśmy tu pracę, która wychodzi na przezwyciężenie tarcia pomiędzy zębami i w łożyskach.



	
545.    Przypuśćmy, że ząb jednego koła styka się z zębem drugiego w pewnym punkcie D, i niech EDF będzie wspólną normalną do stykających się powierzchni zębów. Punkt D został pominięty na figurze, ale oczywiście leży on w pobliżu punktu C- Rozłóżmy szybkość każdego z dwóch punktów, które obecnie są w zetknięciu w D, na dwie składowe w kierunku EDF i w kierunku prostopadłym. Oczywiście dwie pierwsze składowe, czyli rzuty szybkości na wspólną normalną, muszą być równe, bo inaczej zęby rozeszłyby się zaraz w następnej chwili. Jeżeli przeto h, k są odległościami środków A, B od EDF, to 0'1h—^2k, a więc stosunek — musi być stały. Często warun-k kowi temu czyni się zadość w sposób następujący. Zębom nadaje się kształt taki, aby normalna w każdym punkcie linii granicznej czyli profilu zęba była styczna do pewnego okręgu, zatoczonego ze środka koła zębatego. W takim razie podczas biegu kół prosta EDF będzie h wciąż wspólną styczną do takich dwóch okręgów, a stosunek — bę-dzie równy stosunkowi ich promieni.



Ta metoda kształtowania zębów jest przypisywana powszechnie Eulerowi.

Gdy dane są środki A, B kół zębatych i szybkości kątowe, z które-mi te mają pracować, to można wykreślać profile zębów w sposób następujący. Wyznaczamy na AB taki punkt C, aby było AC. 9, = BC.82; następnie prowadzimy przez C prostą EOF, która nie powinna odchylać się zbytnio od prostopadłej do AB, i ze środków A, B zataczamy koła, styczne do ECF. Profile zębów będą rozwijającemi tych kół, i prosta ECF będzie wspólną normalną do dwóch profili, stykających się w punkcie D. Gdy koła pracują, to punkt zetknięcia D przesuwa się na prostej ECF.

Przy takiej konstrukcyi zębów koła będą pracowały należycie nawet wtedy, gdy odległość pomiędzy środkami A i B ulegnie niewielkiej zmianie. Istotnie po takiem przesunięciu wspólna normalna do profili w punkcie zetknięcia pozostanie wciąż styczną do tych samych kół w ich nowem położeniu. Zmieni się nachylenie prostej ECF do AB, ale odległości h i k pozostaną te same, a z tego wynika, że i stosunek szybkości kątowych nie ulegnie zmianie.

Są w użyciu i inne formy zębów; wybór zależy od różnych względów praktycznych, których tu roztrząsać nie możemy.

	
546.    Prz. 1. Maszyna posiada n osi równoległych. Siła poruszająca i ciężar działają na koła o promieniach a, i bn, osadzone na osiach krańcowych, a każde dwie następujące po sobie osi są połączone zapomocą pary kół zębatych; promienie pierwszej pary wynoszą odpowiednio b, i a2, drugiej ba i a i t. d. Wyznaczyć stosunek ciężaru do siły poruszającej.



Prz. 2. Dwa koła równe i podobne, zaopatrzone w zęby proste i wązkie, w kierunkach promieni, ruszają z położenia, w którem dwa zęby stykają się według prostej. Dowieść, że zetknięcie pomiędzy zębami będzie istniało bez przerw, jeżeli odległość pomiędzy środkami

2i                                        TC

jest większa od 2acos— lecz mniejsza od 20 cos—, gdzie n oznacza liczbę zębów każdego koła, i a promień, mierzony aż do końca zęba.

(Math. T., 1872.)

Prz. 3. Znaleźć zależność pomiędzy siłą poruszającą i ciężarem dla jednej pary kół zębatych, nie uciekając się do zasady pracy przygotowanej.

Reakcya B, którą jeden ząb wywiera na drugi, działa na prostej EDF. Biorąc z kolei momenty względem A i B otrzymamy Pa = Bh, Qb—Bk. Stąd łatwo wyprowadzić szukaną zależność.

1

 W opisie tych maszyn autor posiłkował się w znacznym stopniu dziełami Treatise on Mechanics Katera, Mechanical Philosophy Pratta, Principles of Mechanism Willisa i in.


	
547.    Klin. Wyznaczyć związek pomiędzy siłą poruszającą i ciężarem dla klina.
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Mamy rozsunąć dwa ciała M i N, wciskając pomiędzy nie klin ABC. Na fig. 158 ciałami temi są dwie jednakowe paki, stojące na podłodze, ale oczywiście mogą to być ciała dowolne.

Przypuszczamy, że klin jest równoramienny, i że dwusieczna CN stoi pionowo. Oznaczmy przez 20 kąt ACB i przypuśćmy, że klin styka się z ciałami M^ N w punktach D, E nie naznaczonych na rysunku; niech dalej R^ R będą reakcyami nor-malnemi w tych punktach, a F. F siłami tarcia. Gdy klin ma właśnie zacząć się zagłębiać, to F= Rtane, gdzie tane jest współczynnikiem tarcia.'

Dajmy na to, że siła poruszająca P działa na punkt N pionowo na dół; siły tarcia działają w kierunkach CA, CB. Biorąc rzuty na kierunek pionowy otrzymamy


P=2R(sina+ tan e cos a)




2R sin (a + s) cos e



Reakcya całkowita Rr w punkcie D jest wypadkową sił R i ^R.

Jeżeli ciało M może się przesuwać jedynie w kierunku poziomym, to nie cała reakcya R' jest czynna w wytwarzaniu ruchu. Jej składowa pozioma X usiłuje poruszyć ciało M, ale składowa pionowa przyciska tylko pakę do podłogi, powiększając tarcie graniczne. Znajdziemy, że

	
>        . • Rcos (o.+£)


	

	
548.    Zyskowność mechaniczna jest tem większa, im mniejszy jest kąt a. Istnieje jednak pewna granica, której kąt ten przekraczać nie powinien; zbyt ostry klin mógłby być do zamierzonego celu nie dostatecznie wytrzymały.







Jako przykłady klina można wskazać noże, siekiery, dłóta, gwoździe i t. d. Wogóle mówiąc, klin używa się w tych razach, gdy chodzi o wywarcie wielkiej siły na małej przestrzeni. Siła poruszająca bywa najczęściej wytwarzana zapomocą uderzeń.

Nie uważaliśmy za potrzebne rozważać oddzielnie przypadku, gdy klin jest gładki; założenie takie tak dalece odbiega od rzeczywistości, że wyniki byłyby pozbawione wszelkiego znaczenia praktycznego.

	
	
	
549.    Gdy siła jest wywierana zapomocą uderzeń, które wpędzają klin co raz głębiej pomiędzy ciała, to wyznaczenie ruchu klina należy do zadań dynamiki. Tu chodzi tylko o zbadanie warunków równowagi ciała trójkątnego, które tkwi pomiędzy dwoma innemi ciałami chropowatemi, i na które działa siła P.







Jeżeli jednak klin otrzymuje szereg uderzeń, to możemy postawić pytanie, co się dzieje w przerwach pomiędzy temi uderzeniami. Jedno z dwojga, albo klin dzięki tarciu tkwi wówczas nieruchomo, albo zaczyna powracać do położenia pierwotnego, wypierany przez sprężystość materyałów. Załóżmy, że te siły, wypierające klin, dają się wyrazić przez dwie równe re-akcye R, R, działające na ściany boczne, i oznaczmy przez Pt siłę, niezbędną do utrzymania klina w zajętem położeniu. Tarcie współdziała teraz z siłą Pr\ aby ją wyznaczyć należy w równaniach równowagi napisać —€ zamiast s, a zatem wypadnie

p _ 2R sin (a — s)

1 cos £

Jeżeli a przewyższa s, to Pi jest dodatnie; znaczy to, że jakaś siła jest niezbędna do utrzymania klina w danem położeniu. Jeżeli kąt a jest mniejszy od s, to klin siedzi mocno, bo tarcie wystarcza aż nadto do utrzymania go na miejscu. Natomiast do wyciągnięcia klina niezbędna jest siła równa P1, lecz z odwrotnym znakiem. Tak więc klin będzie siedział mocno, albo zacznie wychodzić stosownie do tego, czy kąt ACB jest mniejszy czy większy od podwójnego kąta tarcia.

Prz. 1. Dowieść, że gdy kąt A lub B (fig. 158) jest mniejszy od kąta tarcia, to żadna siła P nie będzie w stanie rozsunąć ciał M, N.

T

Jeżeli kąt A jest mniejszy od e, to 0+8>, a zatem siła X jest ujemna. Również łatwo okazać, że gdy kąt A jest równy e, to całkowita reakcya klina na ciało ma kierunek pionowy. Klin wówczas tylko przyciska ciało do podłogi.

Prz. 2. Ciała M, N mają niejednakowe wysokości i są niejednakowo chropowate; w położeniu równowagi linie działania siły P i re-akcyi całkowitych R‘, R2‘ zbiegają się w jednym punkcie. Ciała posiadają, dajmy na to, takie kształty, że klin musi jednocześnie posuwać się po obydwóch; zakładamy dalej, że siła Pi działa prostopadle do AB i właśnie wystarcza do utrzymania klina w spokoju. Dowieść, że

_P___ R2‘ _ _ Ri‘

sin (2a — Si — e2)   cos (a —ej   COS (a— 82) Okazać prócz tego, że siły tarcia same utrzymują klin w zajętem położeniu, jeżeli kąt C jest mniejszy od £1+82.

Prz. 3. Wyprowadzić z zasady pracy przygotowanej związek pomiędzy siłą poziomą X i siłą poruszającą P dla równoramiennego klina gładkiego, fig. 158. Rozważyć dwa przypadki: (1) jedno z ciał M, N jest nieruchome, (2) obydwa przesuwają się jednakowo, gdy klin jest w ruchu.

	
	
	
550.    Śruba. Wyznaczyć zależność pomiędzy siłą poruszającą i ciężarem dla śruby.







Wyobraźmy sobie kołowy cylinder AB, którego powierzchnię obiega wypukły gwint, i styczne do gwintu tworzą z płaszczyzną prostopadłą do osi cylindra stały kąt a. Śruba taka jest dopasowana dokładnie do próżnego cylindra, na którego powierzchni wewnętrznej jest wycięty odpowiedni rowek; w rowek ten wchodzi gwint śruby. Na figurze nie naszkicowano rowków na próżnym cylindrze; są one zawarte w mutrze EF.

[image: ]

Fig. 159.





aby kąt, który podstawa LM



Można łatwo zdać sobie sprawę z położenia gwintu na cylindrze przy pomocy konstrukcyi następującej. Wycinamy z papieru taki trójkąt prostokątny LMN, aby wysokość jego MN była równa wysokości cylindra AB, tworzy z przeciwprostokątną LN, był równy a. Owijamy następnie ten trójkąt na cylindrze AB W miarę tego, jak podstawa trójkąta nawija się na podstawę cylindra, przeciwprostokątną wytwarza linię, według której biegnie gwint śruby.

Dajmy na to, że na koniec dźwigni CD, prostopadle do niej, działa siła poruszająca. Oznaczmy długość ramienia AC przez a i promień cylindra przez b. Zakładamy, że mutra EF jest nieruchoma; w takim razie punkt B będzie się stopniowo przesuwał w miarę tego, jak C obraca się koło AB. Przypuśćmy, że na B działa ciężar Q.

Niech G będzie małym łukiem gwintu, pozostającym w zetknięciu z łukiem rowka takiej samej długości, niech dalej Ba będzie reakcyą normalną pomiędzy tymi łukami, a [iBa siłą tarcia.

Często śruby posiadają gwinty prostokątne; można uważać, że gwint taki powstaje, gdy mały prostokąt porusza się naokoło cylindra, przyczem jeden bok jego pozostaje wciąż na powierzchni cylindra, a płaszczyzna przechodzi przez oś cylindra. Jeżeli gwint ma taką postać, to linia działania reakcyi B leży w płaszczyźnie stycznej do cylindra, a kierunek jej tworzy z osią cylindra kąt a. W innych śrubach przekrój gwintu bywa odmienny, np. trójkątny. W takim razie linia działania reakcyi B tworzy z płaszczyzną styczną do cylindra pewien kąt 3. Rozkładamy wówczas B na dwie składowe, z których jedna przecina oś cylindra pod kątem prostym, a druga leży w płaszczyźnie stycznej. Ta druga wynosi Rcoss, a kierunek jej tworzy z osią cylindra kąt a. Gwint jest wszędzie jednakowy, a zatem 3 jest stałe na całej długości.

Dajmy na to, że siła poruszająca ma właśnie przeważyć; w takim razie tarcie działa na przekor tej sile. Biorąc rzuty na oś cylindra oraz momenty względem tejże osi, otrzymamy.

Q = ^Bo . coss cos o - ZRo . usin o

Pa=XRs. bcosssin a + ZRs. p.b cos o.

Gdy podzielimy pierwsze z tych równań przez drugie, to wy-padnie

Q cos 9 cos a — M. sin a a

P cosSsina+ucoso b

	
	
	
551.    Gdy można pominąć tarcie i uważać śrubę za gładką, to zakładamy p==0. W takim razie wypadnie, że zyskowność mechaniczna







. acoto .         , ,,                    . . wynosi ---. Przypuśćmy, że punkt ruchomy, wędrujący po gwincie, b

odbył całkowity obrót naokoło cylindra; jednocześnie przebiegnie on w kierunku osi cylindra drogę h, równą odległości pomiędzy skrętami gwintu. Odległość ta zatem będzie h=2xbtano. Wyznaczamy stąd tana i podstawiamy we wzorze poprzedzającym. Znajdziemy, że zyskowność c mechaniczna w śrubie gładkiej wynosi —, gdzie c oznacza długość okręgu, który zatacza siła poruszająca.

	
	
	
552.    Można z łatwością otrzymać związek pomiędzy siłą poruszającą i ciężarem w śrubie gładkiej z zasady pracy przygotowanej. Gdy pod działaniem siły poruszającej ramię AC wy-kona obrót całkowity, to śruba oraz ciężar Q przejdą drogę h, równą odległości pomiędzy dwoma skrętami gwintu, mierzonej w kierunku osi. Jeżeli przeto pomijamy tarcie, i w maszynie żadne inne straty pracy nie zachodzą, to Pc=Qh, gdzie c ozna-cza długość okręgu, który zatacza P.







Gdy uwzględniamy tarcie pomiędzy gwintem i rowkiem, to z par. 550 wypadnie, że skutek użyteczny maszyny wynosi Qh cos 9—utana

Pc cos+pcota

Gdy gwint jest prostokątny, to kąt 3 jest zerem, i skutek .    .           .                Qh tana . użyteczny wyraża się w prostszej postaci p=.—7--3, gdzie &

L C tan (O. —F €) oznacza kąt tarcia.

Gdy ciężar Q właśnie bierze górę nad siłą poruszającą, to we wzorach powyższych M., lub s, zmienia znak na odwrotny.

	
	
	
553.    Prz. 1. Zakończenie gładkiej śruby przesuwa się o 2/3 cala, gdy śruba wykonywa 11 obrotów. Jaka siła powinna działać na koniec ramienia 18 cali długiego, aby zakończenie wywierało siłę 1000 funtów?







(Trin. Goli., 1884.)

Prz. 2. Mutra śruby z gwintem prostokątnym jest nieruchoma. Dowieść, że żadna siła, działająca w kierunku osi, nie obróci śruby jeżeli stromość gwintu nie jest większa od kąta tarcia e.

(Coli. Exam., 1878.)

Prz. 3. Gwint śruby chropowatej jest prostokątny; dowieść, że tarcie pochłonie najmniejszą ilość pracy, jeżeli stromość śruby będzie , I — 2e

równa —4                                  (St John’s Coli., 1889.)

Prz. 4. Gwint śruby jest kwadratowy o małym przekroju, odległość pionowa pomiędzy skrętami wynosi h, i siła poruszająca działa na ramię a. Okazać, że skutek użyteczny maszyny jest największy, jeżeli / tc 8

a=A tan 4 +2): gdzie b oznacza promień śruby, a e kąt tarcia.

(Math. Tripos, 1867.)

Prz. 5. Pionowa śruba chropowata o gwincie prostokątnym podtrzymuje ciężar bez pomocy siły poruszającej. Okazać, że gwint .    . . lcote

składa się conajmniej z ——— skrętów, gdzie l oznacza długość, a b pro-mień cylindra, na którym gwint jest nacięty.

PRZYPISEK DO PAR. 126 i 127.

Podajemy tu dowód twierdzeń, zastosowanych w wymienionych paragrafach; dowód ten jest oparty na rzeczach tak elementarnych, jak równanie normalnej do stożkowej i równanie prostej, łączącej dwa punkty.

Niech ©, «‘ będą anomaliami ekscentrycznemi punktów P, Q stożkowej. Obieramy osi stożkowej za osi współrzędnych; w takim razie równania normalnych w owych punktach będą
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Niech teraz p, p' i q oznaczają odpowiednio odległości cięciwy PQ od ognisk i środka stożkowej. Posługując się znanym wzorem na odległość punktu od prostej, otrzymamy
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a po prostem przekształceniu wypadnie
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Wyjaśniliśmy w tekście, że odpowiednie równanie dla 6 byłoby niedogodne, gdyż ogniska małej osi są urojone. Dajmy na to, że cięciwa PQ przecina osi współrzędnych w punktach L i M; z równania (3) znajdziemy, że -

(p—«‘                     ©p—cp'

CL _ Cos 12   CM^

a t +«‘ ‘ b . t + P' cos —o—        sin —o—

Z (2) wynika teraz bezpośrednio

b2 / \     CL2—a2 + 52 a2 / 6 \     CM2—b2+a2 -a2y- CL2 ’ baxh)- CM2 • ()

Drugi z tych związków otrzymujemy z pierwszego, zmieniając litery. To są wzory, które stosowaliśmy w par. 126, prz. 3. Wprowadzając CM po prawej stronie (1), znajdziemy

CM. 7 _ CL.^

— ab2 =sin Psin P, a2—62=cos COSP • • • (6).

Gdy P i Q się zejdą, to §, 7 staną się współrzędnemi środka krzywizny w P. Otrzymamy wówczas z (1) znane wzory

bn as ,                _

a—bassin"P‘ a3—ba=cos*® • • ■ (7)

Jeżeli współrzędne x, y środka G cięciwy są dane, to sama cięciwa jest określona; równanie jej będzie

(4—x)x _(— y)y a2         b2

Stąd znajdziemy łatwo odcinki CL i CM, a wówczas z (2) lub (5) otrzymamy


(8)



Niech X, Y będą współrzędnemi punktu przecięcia T stycznych w Pi Q; wówczas mamy

X_Y   XX yY. x y‘      a2 * b2 ‘ gdyż w G biegunowa punktu T przecina prostą, łączącą T ze środkiem stożkowej. Wyznaczymy łatwo x, y w funkcyi X, Y, i wówczas równania (7) przybiorą postać

1 (a2—b2)(X2—a2)     t_ (a2—b2)(Y2~b2)

Y = a2Y2 + b2X2 ‘ X~ a2Y2 + b2X2 * • (6)

Są to równania, które zużytkowaliśmy w par. 127.

Prz. 1. Końce jednorodnego pręta muszą pozostawać na gładkim drucie eliptycznym, i pręt jest w równowadze pod działaniem środka sił, położonego w środku elipsy; działanie to jest wprost pro-porcyonalne do odległości (par. 51). Okazać, że środek ciężkości G albo CR2 leży na jednej z osi, albo odległość jego od środka wynosi---, (a2 + b2)"a gdzie CR jest połową średnicy, przechodzącej przez G; w tym drugim CD2 przypadku połowa długości pręta wynosi--—, gdzie CD jest śre-(n2 + b2)

dnicą sprzężoną z CR. Okazać prócz tego, że styczne w końcach pręta tworzą kąt prosty.

Prz. 2. Sznur jest przywiązany w środku pręta, którego końce muszą pozostawać na gładkim drucie eliptycznym. Okazać, że jeżeli pręt nie jest równoległy do jednej z osi elipsy, i ciągniemy za sznur w kierunku prostopadłym do pręta, to równowaga jest niemożliwa.

Prz. 3. Okazać, że w przypadku paraboli równania (5), (8) i. (9) przybierają postaci prostsze

AR


--XY, m



n=2y.m

gdzie A oznacza wierzchołek, R punkt przecięcia cięciwy z osią, 2m latus rectum, a litery pozostałe mają te same znaczenia, co poprzednio.

Prz. 4. Okazać, że długość L cięciwy w funkcyi odległości ogniskowych p, p' wyraża się tak: gdzie R oznacza pół średnicy, równoległej do cięciwy.


_2R2/, pjL a V b2‘




a2b2_24(p-P)’

R2



Prz. 5. Dwie cięciwy stożkowej są równoległe do dwóch średnic sprzężonych i styczne do innej danej stożkowej współogniskowej dowieść, że suma długości tych cięciw jest stała.

Prz. 6. Normalne w czterech punktach stożkowej P, Q, R, S schodzą się w punkcie (§, ); dowieść, że środki sześciu cięciw, łączących punkty P, Q, R, S, leżą na stożkowej.

(a?- b2) (a2g2 — b2x2)+a2b2 (Er+y)=0.

Wynika to od razu z (8).

Prz. 7. Ciężki pręt jednorodny spoczywa w gładkiem naczyniu elipsoidalnem, którego jedna oś jest pionowa. Dowieść, że pręt musi leżeć w jednej z płaszczyzn głównych elipsoidy.

Obieramy osi elipsoidy za osi współrzędnych; w takim razie równania normalnych w końcach pręta będą a2          b2           c2           a2            b2           c2

—(-x)==(-y)=== (4—z), -0-x‘)==(-y‘)==(-z‘). x         J         z         x          J         z

Do równowagi jest rzeczą niezbędną, aby równaniom tym czyniły zadość wartości =U9 , =zft. Podstawiając znajdziemy, że — = —, 2      2                             y Z jeżeli y, y' lub z, z' nie są zerami. Zakładamy y'=py, z’=pz; wypadnie wówczas

— (L- x)=b2 (p — 1)=c2 (p- 1),    202 (t-*)=bal—- = c2 1—-.

x                             X e p p

Jeżeli b2 nie jest równe c2, to p = 1, a zatem y' — y, z' = z, x‘=x; to by znaczyło, że końce pręta leżą w jednym punkcie. Ponieważ jest to niemożliwe, przeto y, y' albo z, z’ muszą być zerami, i pręt leży w jednej z płaszczyzn głównych.
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