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PRZEDMOWA.

Wykłady angielskie mechaniki różnią się pod pewnym 
względem bardzo wyraźnie od innych. Dla autora niemieckie­
go lub francuskiego nauka ta jest przedewszystkiem gałęzią 
matematyki, w której chodzi głównie o ścisłość rozumowania 
i ogólność twierdzeń, a konkretne zjawisko mechaniczne scho­
dzi jakby na plan dalszy; anglik natomiast uważa mechanikę 
za część fizyki, a więc za naukę przyrodniczą, która ma głów­
nie na celu opis i przewidywanie zjawisk, zachodzących w na­
turze. Najwybitniejszymi przedstawicielami tego kierunku przy­
rodniczego byli Thomson (późniejszy lord Kelvin) i Tait oraz 
Edward John Routh. Ale znakomite dzieło dwóch pierwszych 
(Treatise on Natural Philosophy), wbrew może intencyom auto­
rów, jest dostępne tylko dla ludzi, posiadających już rozległe 
wykształcenie matematyczno-przyrodnicze, i wcale nie nadaje 
się do nauki początkowej, natomiast prace Routha odznaczają 
się właśnie pierwszorzędnemi zaletami dydaktycznemi i „stano­
wią w Anglii oraz w krajach angielskiej mowy normalny pod­
ręcznik do nauki mechaniki “*).

*) F. Klein w przedmowie do tłomaczenia niemieckiego Dyna­
miki ciał sztywnych.

Dzieło Routha składa się z pięciu tomów; z tych dwa są 
poświęcone statyce i trzy dynamice, ale każdy z tych tomów 
stanowi pewną zaokrągloną całość. Pierwszy tom statyki 
(A treatise on analytical statics), który wychodzi obecnie w prze­
kładzie polskim, zawiera to wszystko, co zwykle obejmują wy­
kłady statyki; treść tomu drugiego możnaby raczej zaliczyć 
do fizyki i do nauki o sprężystości. |
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W statyce Routha znajdujemy wszystkie zalety pióra tego 
znakomitego pisarza: nieporównaną prostotę, jasność, ścisłość, 
daleką od pedanteryi, i ogromne bogactwo treści. Książka jest 
może za obszerna dla tych czytelników, dla których mechani­
ka jest tylko nauką pomocniczą, ale dzięki przejrzystości ukła­
du każdy z łatwością odróżni rzeczy zasadnicze od szczegółów 
drugorzędnych, które można pominąć.

Prawdziwą ozdobę książki stanowią zadania, rozrzucone 
obficie we wszystkich rozdziałach tak, że czytelnik po każdym 
ważniejszym ustępie znajduje niezwłocznie sposobność do wy­
próbowania swych sił i nabycia wprawy w posługiwaniu się 
poznaną metodą. Zadania te, po większej części zaczerpnięte 
z aktów egzaminacyjnych uniwersytetu w Cambridge, odzna­
czają się zwykle wielką pomysłowością i interesującą treścią. 
Mogą one same przez się wzbudzić w dużym stopniu zaintere­
sowanie do przedmiotu. Niektóre z nich ważniejsze lub tru­
dniejsze są rozwiązane całkowicie, w innych autor wskazuje je­
dynie drogę, na której szukać należy rozwiązania, w pozosta­
łych są podane tylko odpowiedzi.

Do zrozumienia statyki Routha wystarcza znajomość ele­
mentów rachunku różniczkowego i całkowego oraz geometryi 
analitycznej. W kilku tylko miejscach wykład wybiega po za 
te granice, ale miejsca te mogą być bez szkody pominięte, gdy­
by zrozumienie ich nastręczało większe trudności.

TŁUMACZ
Warszawa w kwietniu 1916 r.
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ROZDZIAŁ L

RÓWNOLEGŁOBOK SIŁ.

1. Przedmiotem nauki, zwanej mechaniką, jest działanie 
sił na ciała. Ciała, podlegające działaniu sił, mogą się poru­
szać, ale mogą także pozostawać w spoczynku. Ta część me­
chaniki, w której rozważany jest ruch ciał, nazywa się dyna­
miką, inna zaś część, rozważająca ciała w stanie spokoju, zo­
wie się statyką.

Taki podział przedmiotu na dwie części nie przynosiłby 
wyraźnych korzyści, gdyby ruch ciał pod działaniem sił da­
nych dawał się łatwo i całkowicie wyznaczać, gdyż jest rzeczą 
oczywistą, że statyka stanowi tylko szczególny przypadek w dy­
namice, mianowicie ten przypadek, w którym ruchy ciał są 
przyrównane do zera. Ale ten przypadek szczególny, w którym 
ruch jest zerem, stanowi zagadnienie bez porównania łatwiej­
sze od zagadnienia ogólnego. Z drugiej strony posiada on sam 
przez się doniosłe znaczenie nietylko ze względu na wyniki 
bezpośrednie, ale i dlatego, że z wyników owych można korzy­
stać przy rozwiązywaniu zagadnienia ogólnego, dzięki twierdze­
niu, które zawdzięczamy D’Alembertowi. Z tych względów 
uznano powszechnie za dogodne rozważać ów szczególny przy­
padek statyki na wstępie do ogólnego zagadnienia dynamiki.

2. Ponieważ statyka jest szczególnym przypadkiem dyna­
miki, możnaby więc rozpocząć od wykładu podstaw nauki ogól­
niejszej. Rozważamy w takim razie, jak się mierzy masa cia­
ła, oraz jaki wpływ wywierają siły na szybkość i przyśpieszenie 
każdej cząsteczki. Zdobywszy zasadnicze prawdy ogólne, prze­
chodzimy do przypadku szczególnego, zakładając, że owe szyb­
kości są równe zeru. Przy takiem prowadzeniu rzeczy wystę- 
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puje wyraźnie związek pomiędzy dwoma wielkimi działami me­
chaniki, a wyniki ich zostają ugruntowane na wspólnej pod­
stawie.

3. Jest inny sposób wykładania statyki, który także po- 
\ siada właściwe sobie zalety. Rozpoczynamy od pewnych pro­

stych aksyomatów, dotyczących działania sił na ciała, nie 
wprowadzając żadnych właściwości ruchu. Tym sposobem ma­
my do czynienia jedynie z temi pojęciami i zasadami, które 
są w ciągiem użyciu w statyce, pozostawiając dynamice rozwa­
żanie pojęć, stanowiących właściwość tej nauki.

Czy ten sposób postępowania jest korzystny czy nie, to za­
leży od wyboru owych aksyomatów zasadniczych. Przede- 
wszystkiem aksyomaty te powinny być proste, powtóre powin­
ny dawać się łatwo sprawdzić zapomocą doświadczenia. Można 
naprzykład przyjąć za pewnik twierdzenie, zwane zazwyczaj 
równoległobokiem sił, albo wzorem Lagrange’a wyjść z zasady 
pracy. Ale żadna z tych zasad nie czyni zadość wzmiankowa­
nym warunkom, gdyż żadna z nich nie wydaje się całkowicie 
oczywistą przy pierwszem poznaniu i zatem nie nakazuje bez­
względnej zgody.

Jeżeli budujemy obydwie części mechaniki na wspólnej 
podstawie, to podstawa ta musi być z konieczności szersza, niż­
by tego wymagały same zasady statyki. Musimy odrazu przy­
jąć wszystkie wyniki doświadczeń, potrzebne w mechanice, a nie 
tylko te, które są niezbędne w statyce. Z drugiej strony ko­
rzystną jest rzeczą wprowadzać zasadnicze doświadczenia w mia­
rę tego, jak stają się potrzebne; w ten sposób możemy ła­
twiej pojąć niezbędność każdego z nich oraz wyróżnić wnioski, 
które z każdego wynikają. Przy tym trybie rozpoczynamy od 
pewnych elementarnych aksyomatów, które pozwalają zbadać 
składanie i rozkładanie sił. Następnie w miarę potrzeby wpro­
wadzamy inne wyniki doświadczeń, i gdy wreszcie doszliśmy 
do ogólnego zagadnienia dynamiki, zestawiamy i utrwalamy 
całokształt pewników zasadniczych.
' W dziele, poświęconem statyce, jest rzeczą niezbędną ro­

zważyć te obydwie metody. Zobaczymy więc naprzód, jaki 
związek zachodzi pomiędzy zasadami statyki i aksyomatami, 
których wymaga ogólniejsze zagadnienie dynamiki, następnie 
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zbadamy, jak można ugruntować statykę na podwalinach, na­
leżących do niej wyłącznie.

4. W mechanice rozważamy działanie sił na ciała. Wy­
raz siła został zdefiniowany przez Newtona w sposób nastę- 
pujący:

Siła jest to działanie, wywierane na ciało, celem wypro­
wadzenia go ze stanu spoczynku, albo ze stanu ruchu jedno­
stajnego na linii prostej.

5. Znamiona siły. Gdy siła działa na ciało, to działanie 
jej posiada 1) punkt przyłożenia, 2) kierunek w przestrzeni 
i 3) wielkość.

Mówimy, że dwie siły są równe pod względem wielkości, 
jeżeli się równoważą, gdy je przyłożymy do jednej cząsteczki 
w kierunkach odwrotnych. Ażeby mierzyć wielkości sił, obie­
ramy jedną z nich za jednostkę; siłę, która równoważy dwie 
siły jednostkowe, wyrażamy przez dwie jedności i t. d.

6. Proste odwołanie się do codziennego doświadczenia 
przekonywa, że przynajmniej niektóre ze zwykłych sił natury 
posiadają wyżej wskazane znamiona charakterystyczne. Gdy 
wywieramy na ciało siłę, ciągnąc za przymocowany doń sznur, 
to punkt, w którym sznur jest przymocowany, stanowi punkt 
przyłożenia siły, zaś kierunek sznura wskazuje kierunek siły. 
Istnienie trzeciego elementu siły wynika z faktu, że możemy 
ciągnąć za sznur z wysiłkiem większym lub mniejszym.

Nie znamy wszystkich czynników, które wywołują lub usi­
łują wywołać ruch ciał, ale wszystkie czynniki znane dadzą 
się rozłożyć na czynniki prostsze, posiadające owe trzy znamio­
na charakterystyczne siły. Jeżeli istnieją jakieś przyczyny ru­
chu, do których analiza tego rodzaju nie dałaby się zastoso­
wać, to przyczyn takich nie zaliczalibyśmy do rzędu sił, stano­
wiących przedmiot statyki.

7. Owe trzy znamiona charakterystyczne są właściwe 
i innym rzeczom, i te inne rzeczy mogą nam przyjść z pomo­
cą w rozważaniach naszych, o ile mają i inne właściwości 
wspólne z siłami.

Najważniejszą analogią tego rodzaju mamy w odcinku linii 
prostej. Niech będzie odcinek taki AB. Jeden koniec, np. A, 
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reprezentuje punkt przyłożenia, kierunek odcinka w przestrze­
ni odpowiada kierunkowi siły i wreszcie długość odcinka wiel­
kości siły.

Poza siłami można i inne rzeczy wyobrażać zapomocą 
odcinków linii prostej. Tak np., jak wiadomo z dynamiki, za­
równo szybkość, jak i ilość ruchu cząsteczki posiadają kieru­
nek oraz wielkość, a więc dają się w ten sam sposób wyobra - 
żać zapomocą odcinków. Jeden koniec A umieszcza się w da­
nej cząsteczce, kierunek odcinka wskazuje kierunek szybkości, 
a długość odcinka określa szybkość pod względem wielkości. 
Wogóle analogia ta jest użyteczna, jeżeli wielkości rozważane 
podlegają tak zwanemu prawu równoległoboku.

8. Aby odcinek AB wskazywał niedwuznacznie kierunek 
siły, niezbędna jest pewna umowa, pozwalająca odróżnić przy­
padek, gdy siła odciąga B od A, od przypadku, gdy siła popy­
cha B do A. Umowa taka opiera się na zastosowaniu termi­
nów dodatni i ujemny. Gdy określiliśmy zapomocą jakiegoś 
prawidła kierunki dodatnie na liniach prostych, to siły, dzia­
łające w kierunkach dodatnich swych prostych działania, na • 
zywamy dodatniemi, a działające w kierunkach odwrotnych 
ujemnemi. Prawidła te są nieraz wskazane przez same warun­
ki rozważanego zagadnienia, ale zazwyczaj są zgodne z pra­
widłami, przyjętemi ogólnie w rachunku różniczkowym. Tak 
np. kierunek promienia wodzącego, wyprowadzonego z począt­
ku współrzędnych, uważamy zwykle za dodatni, i t. d.

Niekiedy wskazujemy, w którą stronę siła jest zwrócona, 
zapomocą odpowiedniego porządku liter; tak np. „siła ABa jest 
to siła, zwrócona od A do B, zaś BA oznacza siłę, zwróconą 
od B do A.

9. Trzecim elementem siły jest jej wielkość. Wyrażamy 
ją długością odcinka, który ma'reprezentować siłę. Jednostce 
siły odpowiada jednostka długości w dowolnie obranej skali; 
siła, zawierająca n jednostek, wyrazi się odcinkiem, którego 
długość wynosi n jednostek długości.

10. Mierzenie siły. Siłę musimy mierzyć zapomocą skut­
ków, które wywiera, a ponieważ siła może wywierać skutki 
rozmaite, przeto i rozmaite metody mierzenia stoją dla nas
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otworem. Jeżeli pragniemy, aby miara dwuch sił równych, 
działających razem, była dwa razy większa od miary jednej 
z nich, to musimy odpowiednio dobrać skutek, którym mamy 
mierzyć siły.

Można mierzyć siłę ciężarem masy, którą siła ta zdoła 
utrzymać w zawieszeniu. Dwie masy jednakowe, położone w po­
bliżu, utrzymujemy w zawieszeniu zapomocą sił jednakowych. 
Połączywszy te masy, przekonamy się, że podwójna siła pod­
trzymuje podwójną masę. Tak więc skutek jest proporcyonal- 
ny do wielkości przyczyny.

Możemy również mierzyć siłę ruchem, który ta wytwarza 
w danem ciele i w danym czasie. Jeżeli przez ruch rozumie­
my tu szybkość, to można okazać, że podwójna siła wytwarza 
podwójną szybkość; czynimy to zapomocą doświadczeń, do któ­
rych odwołujemy się zwykle, uzasadniając drugie prawo ruchu. 
Tutaj również skutek, na którym oparliśmy pomiary, jest pro- 
porcyonalny do wielkości przyczyny. Ten sposób mierzenia 
siły jest oparty na pewnych wynikach doświadczenia, niezbęd­
nych w dynamice, ale niestosowanych w dalszych częściach 
statyki.

Jeżeli zgodzimy się mierzyć siłę ciężarem, utrzymywanym 
przez nią w zawieszeniu, to jednostka będzie zależna od siły 
ciążenia, działającej w miejscu, w którem prowadzone są do­
świadczenia. Z tego względu taka jednostka jest w pewnych 
razach niedogodna. Jeżeli mamy mierzyć siłę szybkością, udzie­
laną masie jednostkowej w jednostce czasu, to musimy naprzód 
rozważyć, jak obrać jednostki masy i czasu.

Niema potrzeby już tutaj rozstrzygać, która metoda mierzenia 
siły jest najlepsza. Okaże się wkrótce, że równania nasze dotyczą po 
większej części raczej stosunków sił niż samych sił. Stąd wynika, że 
tymczasem wybór jednostki nie ma znaczenia, i możemy odłożyć ten 
wybór do sposobniejszej pory.

Gdy więc będzie mowa o pewnej liczbie sił, działających na cia­
ło i równych odpowiednio ciężarowi jednego, dwóch, trzech i t. d. ki­
logramów, i jeżeli wyznaczymy warunki równowagi, to zobaczymy, że 
warunki te mają moc i wtedy, gdy siły są odpowiednio równe cięża­
rowi jednego, dwóch, trzech i t. d. funtów, i wogóle zawsze, gdy po­
między siłami zachodzą te same stosunki.

11. Pewien układ jednostek jest oparty na centymetrze, 
gramie i sekundzie, jako na zasadniczych jednostkach długo-
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ści, masy i czasu. Układ ten będziemy nazywali C.G.S., gdyż 
to są początkowe litery nazw owych trzech jednostek. W ukła­
dzie C.G.S. jednostka siły zowie się dyną. Jest to siła, która, 
działając w ciągu sekundy na masę gram, nadaje jej szybkość 
jednego centymetra na sekundę.

Znaleziono zapomocą odpowiednich doświadczeń, że ciało, 
dajmy na to, o masie jednostkowej, spadając w próżni w cią­
gu sekundy, przybiera szybkość blizko 981,2 centymetrów na 
sekundę. Stąd wynika, że dyna jest równa 1/981. części ciężaru 
jednego grama. Liczby te są jednak ścisłe jedynie w miejscu 
obserwacyi, gdyż siła ciążenia nie jest jednakowa we wszystkich 
miejscach kuli ziemskiej. Różnica pomiędzy największą i naj­
mniejszą wartością siły ciążenia wynosi około 1/196 jej wartości 
przeciętnej.

Związki, zachodzące pomiędzy różnymi układami jednostek, 
są podane w sposób wyczerpujący w książce Everetta „Jedno­
stki i stałe fizyczne“, a także w Tablicach Liczbowych Luptona.

12. Równoległobok szybkości. Twierdzenie, o którem 
ma być mowa, stanowi wstęp do praw ruchu Newtona.

Jeżeli szybkość cząsteczki jest jednostajna, to mierzymy ją
długością drogi, odbytej w danym czasie; odcinek o takiej dłu­
gości wyobrazi nam tę szybkość pod względem wielkości i kie­

runku (par. 8). Dajmy na to, że cząstecz­
ka została przeciągnięta w sposób jedno­
stajny w danym czasie od 0 do C; w ta­
kim razie odcinek OC wyraża szybkość 
cząsteczki. Tę zmianę położenia można 
uskutecznić i w inny sposób. W tym celu 
posuwamy cząsteczkę od 0 do A, i jedno­

cześnie przesuwamy równolegle odcinek OA z biegnącą po nim 
cząsteczką do położenia BC. Aby zaznaczyć jednostajny ruch 
cząsteczki od 0 do A, mówimy, że posiada ona szybkość OA, 
aby zaś zaznaczyć przesunięcie, którego doznaje cząsteczka dzię­
ki jednostajnemu ruchowi odcinka, mówimy, że posiada ona 
szybkość OB lub AC. Z własności figur podobnych wynika, 
że drogą cząsteczki w przestrzeni będzie odcinek OC.

Stąd widać, że, jeżeli cząsteczka posiada jednocześnie dwie 
szybkości, odpowiadające pod względem wielkości i kierunków od­
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cinkom O A i OB^ to ruch jej jest taki, jak gdyby posiadała jed­
ną szybkość, odpowiadającą przekątni równoległoboku, zbudowa­
nego na bokach OA i OB. Twierdzenie to nazywa się zwykle 
równoległobokiem szybkości.

Dajmy na to, że cząsteczka posiada jednocześnie trzy szyb­
kości, odpowiadające odcinkom 0Ar, 0A2, OA^. Możemy za­
stąpić szybkości 0Ar i 0A2 przez jedną szybkość, odpowiadają­
cą pod względem wielkości i kierunku przekątni 0B1 równo­
ległoboku, zbudowanego na bokach 0At i 0A2. Teraz już czą­
steczka posiada tylko dwie szybkości 0Bx i 0A3. Stosujemy 
raz jeszcze toż samo działanie. Zastępujemy owe dwie pozo­
stałe szybkości jedną, odpowiadającą pod względem wielkości 
i kierunku przekątni 0B2 równoległoboku, zbudowanego na 
bokach 0B1 i 0As . Tym sposobem zastąpiliśmy trzy dane 
szybkości jednoczesne jedną.

Zupełnie tak samo można zastąpić jedną szybkością do­
wolną liczbę szybkości jednoczesnych.

Jeżeli jednoczesne szybkości 0Ar, OA, ... zmienią się wszy­
stkie w tym samym stosunku, to i owa szybkość wypadkowa 
zmieni się w tym samym stosunku; wynika to w sposób oczy­
wisty z własności figur podobnych.

Przypuśćmy, że szybkość wypadkowa szybkości jednocze­
snych 0At, 0A2... jest równa zeru. Z poprzedniego wynika, że 
jeżeli wszystkie szybkości 0At, 0A2... zmienią się w jednako­
wym stosunku, to szybkość wypadkowa pozostanie zerem.

13. Newtonowskie prawa ruchu. Są one wymienione 
we wstępie do dzieła „Philosophiae naturalis principia mathe- 
matica".

1. Każde ciało pozostaje w stanie spoczynku lub ruchu 
jednostajnego i prostoliniowego, dopóki siła nie zmusi go do 
zmiany tego stanu.

2. Zmiana ruchu jest proporcyonalna do siły działają­
cej i zachodzi w kierunku linii prostej, na której działa siła.

3. Każdemu działaniu odpowiada zawsze równe i odwrot­
ne przeciwdziałanie; innemi słowy działania dwóch ciał jedne­
go na drugie są zawsze równe i skierowane odwrotnie.

Znaczenie tych praw ujawnia się w całej pełni dopiero 
wtedy, gdy przechodzimy do dynamiki. Dlatego też lepiej jest 
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zapoznawać się z doświadczeniami, które naprowadzają umysł 
na te prawa, i z ich następnem sprawdzaniem w związku z tą 
gałęzią wiedzy. Rzeczy te można znaleźć w elementarnych pod­
ręcznikach dynamiki. Jeżeli czytelnik nie zna żadnego z tych 
podręczników, to radzimy mu, aby tymczasem uznał prawdzi­
wość praw Newtonowskich bez dalszych uzasadnień; nie będzie­
my też podawali tutaj ich całkowitej dyskusyi, ograniczając 
uwagi nasze do szczegółów, potrzebnych w zagadnieniach sta­
tyki.

14. Pierwsze prawo głosi bezwładność materyi. Ciało nie­
ruchome będzie pozostawało w spokoju, dopóki nie zacznie nań 
działać jakaś siła zewnętrzna. Na pierwszy rzut oka prawo to 
wydaje się tylko parafrazą definicyi siły, gdyż każdą przyczy­
nę, która usiłuje wyprowadzić ciało ze stanu spoczynku, nazy­
wamy siłą. Tak jednak nie jest. Pierwsze prawo stwierdza na 
zasadzie obserwacyi i doświadczenia bezwładność każdej czą­
steczki materyi. Cząsteczka nie wykazuje sama przez się żadnej 
skłonności do ruchu i może być wprawiona w ruch jedynie 
przez jakiś czynnik z zewnątrz niej pochodzący.

15. Drugie prawo ruchu głosi niezależność siły, działającej 
na cząsteczkę. Mówiąc, że skutek działania siły jest zawsze pro- 
porcyonalny do tej siły, miano wyraźnie na myśli, że każda 
siła musi zawsze wywołać właściwy sobie skutek zarówno pod 
względem kierunku jak i wielkości, tak jak gdyby sama jedna 
działała na cząsteczkę w spokoju.

Rozważmy twierdzenie to nieco obszerniej. Przypuśćmy, 
że siła zaczęła działać na daną cząsteczkę, która dotychczas 
pozostawała w spokoju w punkcie 0; w danym czasie siła ta 
wytwarza szybkość, którą wyobrazimy zapomocą odcinka OA. 
Przypuśćmy dalej, że inna siła, działając na tę samą cząstecz­
kę, pozostającą w spokoju w punkcie 0, nadałaby jej w tym 
samym czasie szybkość OB. Jeżeli obydwie siły działają na 
cząsteczkę jednocześnie, to powstaną obydwie szybkości. Istotna 
szybkość cząsteczki wyrazi się w takim razie przekątnią OC 
równoległoboku, zbudowanego na bokach OA i OB, jak wi­
dzieliśmy w paragrafie 12. Zupełnie tak samo, gdy dowolna 
liczba sił zacznie działać na cząsteczkę, pozostającą w spoczyn­
ku, to w myśl drugiego prawa wyznaczamy szybkość, wy­
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tworzoną przez każdą z nich, jak gdyby ona jedna działała 
w ciągu danego czasu. Te oddzielne szybkości sprowadzamy 
następnie do jednej szybkości wypadkowej w sposób, wskaza­
ny w par. 12. Ta szybkość wypadkowa jest w myśl drugiego 
prawa wynikiem jednoczesnego działania wszystkich sił danych.

Wyobraźmy sobie układ sił, posiadający właściwość taką: 
gdy wszystkie siły układu zaczną działać jednocześnie na czą­
steczkę, która pozostawała w spoczynku, to wytworzona szyb­
kość wypadkowa cząsteczki jest równa zeru. W tym razie siły 
są w równowadze. Niech będzie i inny układ sił, posiadający 
taką samą właściwość, t. j. gdy siły tego drugiego układu zaczną 
działać na cząsteczkę dotychczas nieruchomą, to znowu wypad­
kowa szybkość będzie równa zeru. Tak więc i ten drugi układ 
jest w równowadze. Przypuśćmy wreszcie, że obydwa te ukła­
dy zaczęły działać jednocześnie; ponieważ siły są niezależne 
jedna od drugiej, przeto szybkość wypadkowa cząsteczki i te­
raz będzie równa zeru. Tym sposobem dochodzimy do nastę­
pującego ważnego twierdzenia.

Jeżeli każdy z diouch danych układów sił równoważy się, 
działając sam jeden na cząsteczkę, to równowaga nie zostanie za­
chwiana i wówczas, gdy obydwa układy zaczną działać jedno­
cześnie.

Twierdzenie to zowie się niekiedy zasadą superpozycyi sił 
w równowadze. Zasada ta pozwala nam nieraz ułatwić sobie 
zadanie, gdy pragniemy określić warunki równowagi pewnego 
układu sił; w myśl jej mamy prawo dołączyć do badanego 
układu lub usunąć pewną liczbę sił, które same przez się po- 
zostają w równowadze.

Dajmy na to, że siły P1, P2..., działając na pewną czą­
steczkę, wytwarzają w pewnym czasie odpowiednio szybkości 
U,, v2.... Jeżeli te same siły, albo siły im równe, zaczną dzia­
łać na inną cząsteczkę, to szybkości, wytworzone w takim sa­
mym czasie, mogą być odmienne; ale skutek każdej siły jest 
proporcyonalny do jej wielkości, przeto owe szybkości drugiej 
cząsteczki będą się miały do siebie, jak V1 do V, do V3 i t. d. 
Stąd widać, że jeżeli układ sił jest w równowadze, gdy działa 
na jedną cząsteczkę, to pozostanie w równowadze i wówczas, 
gdy pozwolimy mu działać na jakąkolwiek inną cząsteczkę 
(par. 12).
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16. Wypada tu jeszcze zaznaczyć, że wynikiem działania siły 
jest zawsze zmiana ruchu. Dana siła wywoła taką samą zmianę ruchu 
cząsteczki w każdym razie bez względu na to, czy cząsteczka ta jest 
w ruchu czy w spokoju.

Dzięki temu możemy poznać, czy jaka siła zewnętrzna działa na 
cząsteczkę, pozostającą w ruchu, czy też nie. Jeżeli szybkość jest sta­
ła i droga prostoliniowa, to żadna siła na cząsteczkę nie działa. Jeżeli 
natomiast szybkość zmienia się pod względem wielkości, albo droga 
nie jest prosta, to musi istnieć jakaś siła, wywołująca te zmiany.

Dajmy na to, że dwie równe siły, działając na dwie cząsteczki, 
wywołują w tym samym czasie jednakowe zmiany szybkości. Mówi­
my, że owe dwie cząsteczki posiadają równe masy. Przypuśćmy zno­
wu, że siła, działająca na jedną z cząsteczek, jest n razy większa od 
siły, działającej na drugą, i że przytem zmiany szybkości, wywołane 
przez obydwie siły w tym samym czasie, są jednakowe; w takim razie 
powiemy, że masa pierwszej cząsteczki jest n razy większa od masy 
drugiej. Z tego wynika, że masa cząsteczki jest proporcyonalna do 
siły, potrzebnej do wywołania danej zmiany szybkości w danym czasie. 
Wiadomo, że wszystkie ciała, wyszedłszy ze stanu spoczynku i spada­
jąc w próżni pod działaniem przyciągania ziemi, posiadają w końcu 
pierwszej sekundy spadania jednakowe szybkości (par. 11). Stąd wnio­
skujemy, że masy ciał są proporcyonalne do ciężarów.

Iloczyn z masy cząsteczki przez szybkość zowie się ilością ruchu. 
Z tego, co było powiedziane, wynika, że, wyrażenie „zmiana ruchu“ 
znaczy zmiana ilości ruchu, wywołana w danym czasie.

Wyniki te posiadają doniosłe znaczenie w dynamice; nie tak jest 
w statyce, gdzie wszystkie cząsteczki, podlegające działaniu sił, pozo­
stawały początkowo w spokoju i pozostają w tym stanie i nadal.

17. W trzeciem prawie zawiera się zasada przenoszenia siły. 
Zasada ta jest wyłożona jaśniej w uwagach, któremi Newton 
opatrzył swe prawa ruchu. Trzecie prawo głosi, że działanie 
i przeciwdziałanie są równe. Przypuśćmy, że siła działa na 
punkt A ciała nieruchomego, którego inny punkt B jest umo­
cowany. Z trzeciego prawa wynika, że przeciwdziałanie czyli 
reakcya w punkcie B musi być równa owej sile i do niej od­
wrotna. Wogóle, jeżeli dwie siły działają na różne punkty cia­
ła, to równowaga zachodzi w tym razie, gdy linie działania sił 
leżą na jednej prostej, siły są zwrócone w strony odwrotne 
i są równe co do wielkości.

Możemy stąd wyciągnąć wniosek, że jeżeli siła działa na 
ciało, to skutek jest niezależny od tego, który z punktów linii dzia­
łania został obrany za punkt przyłożenia, jeżeli tylko punkt ten 
jest połączony z ciałem w sposób niezmienny.
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Prowadzi do tego następujące proste rozumowanie. Przy­
puśćmy, że siła P działa na pewien punkt A, zaś B jest ja­
kimś innym punktem jej linii działania. Tylko co widzieliśmy, 
że można zrównoważyć siłę P, działającą na punkt A, równą 
jej siłą Q, działającą na B w kierunku odwrotnym. Ale siłę Q, 
działającą na B, można także zrównoważyć równą jej siłą P', 
działającą na B w tym samym kierunku co P (par. 15). Tak 
więc każda z dwóch równych sił P i P', działających odpo­
wiednio na punkty A i B w tym samym kierunku, daje się 
zrównoważyć tą samą siłą Q. Stąd widać, że siła P, działają­
ca na A, jest równoważna sile P', działającej na B.

18. Aksyomaty statyczne. Jeżeli nauka statyki ma być 
oparta na podstawie niezależnej od pojęcia ruchu, to do tego 
są potrzebne pewne aksyomaty elementarne, dotyczące materyi 
i siły.

Przedewszystkiem musimy przyjąć, jak poprzednio, zasadę 
bezwładności materyi.

Dalej potrzebne są zasady niezależności sił i przenosze­
nia siły.

Pierwszą z tych zasad uważamy, jako wynik codziennego 
doświadczenia. Gdy tylko uwaga nasza zostanie zwrócona na 
tę sprawę, to stwierdzamy natychmiast, że ciało, pozostające 
w spoczynku, nie zacznie się poruszać, jeżeli nie zmusi go do 
tego jakaś przyczyna zewnętrzna.

Dwie pozostałe zasady wymagają pewnych prostych do­
świadczeń.

Przypuśćmy, że na ciało działają dwie równe siły P i P', 
przyłożone w punktach A i A'. Wyo- — 
brażmy sobie np., że siły te działają za A B) % 
pośrednictwem sznurów, umocowanych P‘ A \ / A) P 
w punktach A i A'. Przypuśćmy dalej, ,B‘ / 
że ciało to zostało usunięte z pod dzia- 2 E 
łania siły ciążenia oraz wszelkich in- Fig. 2. 
nych sił. Można to do pewnego stopnia 
osiągnąć, poddając doświadczeniu płytę, leżącą na gładkim sto­
le, albo ciało, zawieszone w stosownym punkcie, można ró- 
wnież zastosować ciało, pływające w naczyniu z wodą.

Każdy wie z doświadczenia codziennego, że ciało takie 
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nie pozostanie w równowadze, jeżeli sznury, na które działa­
ją siły, nie leżą na jednej prostej, a mianowicie prostej AA'. 
Ciało będzie się poruszało, jeżeli tylko linie działania sił nie 
schodzą się dokładnie.

Na rysunku naszym punkty przyłożenia A i A' są prze­
dzielone przestrzenią, której ciało nie wypełnia, siły zatem rów­
noważą się, działając, jeżeli tak wolno powiedzieć, drogą okól­
ną przez E. Ponieważ w tej części statyki nie rozważamy, 
w jaki sposób działanie siły przenosi się w ciele, przeto jest 
rzeczą niezbędną oprzeć się i w tym względzie na wynikach 
doświadczenia.

Przypuśćmy teraz, że dwie inne siły, z których każda jest 
równa Q, są przyłożone w punktach B i B\ a ich linie dzia­
łania leżą na prostej BB'. Gdyby te siły same działały na cia­
ło bez Pi P\ to zachodziła by równowaga. Doświadczenie 
wykaże, że równowaga zostaje zachowana i wtedy, gdy działa­
ją obydwa układy. Stąd wynika, że wprowadzając siły Q i Q‘ 
nie zakłócamy działania sił PiPi nie rozstrajamy równo­
wagi.

Z tych doświadczeń daje się wyprowadzić zasada przeno­
szenia siły zupełnie tak samo, jak w par. 17.

19. Ciała sztywne. Niech będą dwa lub więcej ciał, 
które działają jedne na drugie z pewnemi siłami czyli reakcya- 
mi i pozostają w równowadze pod działaniem pewnego układu 
sił zewnętrznych. W myśl zasady przenoszenia siły, każda 
z tych sił zewnętrznych może być przyłożona w dowolnym 
punkcie swej linii działania. Stąd jednak nie wynika, aby rów­
nowaga została zachowana, gdy przeniesiemy siłę z punktu 
jednego ciała do punktu drugiego, jeżeli jej linia działania to 
drugie ciało przecina.

Gdy przenosimy punkt przyłożenia siły z jednego punktu 
jej linii działania do drugiego, to należy uważać, że punkty te 
są połączone ze sobą sztywno. Jeżeli wszystkie punkty przyło­
żenia sił, działających na pewne ciało, są połączone ze sobą 
w jakiś niezmienny sposób, tó mówimy, że ciało jest sztywne. 
Takiemi są właśnie ciała, o których będzie przeważnie mowa 
w dalszym ciągu, dla tego też mówiąc o nich, będziemy je nie­
raz, dla uniknięcia rozwlekłości, nazywali wprost ciałami.
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20. Bywa niekiedy dogodnie określać warunki równowa­
gi układu, złożonego z pewnej liczby ciał, tak, jak gdyby ten 
cały układ stanowił jedno ciało. Jest to oczywiście możliwe, 
gdyż działanie i przeciwdziałanie dwóch ciał układu są równe 
i odwrotne. Można rozumować i inaczej. Wyobraźmy sobie, 
że, gdy układ znajdował się w położeniu równowagi, połączo­
no w pewien niezmienny sposób punkty przyłożenia sił. Oczy­
wiście wypadek taki nie zakłóci równowagi. Ponieważ układ 
stał się sztywnym, możemy przeto tworzyć dlań warunki równo­
wagi, jakby dla ciała sztywnego. Warunki te będą konieczne 
i dostateczne do równowagi układu, o ile ten jest sztywny; bę­
dą one również konieczne do równowagi układu, jeżeli ten jest 
złożony z pewnej liczby ciał, ale wogóle nie są one w tym 
przypadku dostateczne.

21. W myśl zasady przenoszenia siły w ciele sztywnem działa­
nie siły może przenosić się z jednego punktu przyłożenia do drugie­
go, ale wielkość siły nie ulega przytem zmianie. O ile przeto jest waż­
na ta zasada oraz zasada niezależności siły, to warunki równowagi za­
leżą od sił a nie od ciała.

Jeżeli pewien układ sił się równoważy, działając na pewne cia­
ło, to pozostanie on w równowadze i wówczas, gdy przeniesiemy go 
na inne ciało, pod warunkiem jednak, że w obydwóch razach pomię­
dzy punktami przyłożenia istnieją połączenia niezmienne.

Z powyższego wynika, że gdy dane są siły w równowadze, to 
nie jest rzeczą konieczną przytaczać, na jakie ciało siły te działają. 
Siły na cóś muszą działać, ale co do tego cóś robimy tylko jedno za­
łożenie, a mianowicie, że przenosi ono siły w taki sposób, aby wyżej 
wygłoszone aksyomaty mogły być uważane. za ważne. Z tego względu 
mówi się nieraz, że statyka jest to nauka, badająca równowagę i dzia­
łanie sił w oderwaniu od materyi, która temu działaniu podlega.

22. Siła wypadkowa. Gdy dwie siły działają na czą­
steczkę i nie są w równowadze, to usiłują one poruszyć tę czą­
steczkę. Wnioskujemy, że można zawsze utrzymać cząsteczkę 
w stanie spoczynku zapomocą pewnej trzeciej siły.

Siła równa i odwrotnie skierowana do tej siły trzeciej na­
zywa się wypadkową dwóch pierwszych sił i jest im równo­
ważna. Jest rzeczą oczywistą, że wypadkowa dwóch sił, dzia­
łających na pewną cząsteczkę, musi działać na tę samą czą­
steczkę, i że jej linia działania zajmuje położenie pośrednie po­
między liniami działania tamtych.
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Przypuśćmy, że siły P1, P2 ... Pn działają na pewną czą­
steczkę. Dwie z nich P i P, posiadają wypadkową Qv. Mo­
żemy usunąć Pi i P2 i zastąpić je przez Q1: Następnie Q1 i P3 
można zastąpić przez ich wypadkowę Q, i t. d. W ten sposób 
ostatecznie zastąpimy wszystkie siły jedną siłą. Ta jedna siła 
zowie się wypadkową tamtych.

Jeżeli nie wszystkie siły układu działają na ten sam punkt, 
to może się zdarzyć, że układ taki nie da się zrównoważyć je­
dną siłą. W takim razie układ nie jest równoważny żadnej po- 
jedyńczej sile wypadkowej.

23. Wyznaczyć wypadkową dowolnej liczby sił^ które dzia­
łają na jeden punkt, i których linie działania leżą na jednej 
prostej.

Niech O będzie punktem przyłożenia, i załóżmy naprzód, 
że wszystkie siły są zwrócone w jedną stronę Ox. Ponieważ 
każda siła działa niezależnie od innych, przeto wypadkowa jest 
oczywiście równa sumie wszystkich sił poszczególnych i jest 
także zwrócona w stronę 0x.

Jeżeli niektóre siły są zwrócone w stronę Ox, a inne w od­
wrotną stronę Ox', to sumujemy każdy z tych układów sił od­
dzielnie. Oznaczmy te sumy przez X i X' i przypuśćmy, że 
pierwsza z nich jest większa. Na zasadzie par. 15 mamy pra­
wo z każdego układu usunąć X', a zatem układ całkowity jest 
równoważny jednej sile X—X‘, zwróconej w tę samą stronę, 
co X.

Zgodnie z regułą znaków dany układ jest także równo­
ważny jednej sile, określonej przez wielkość ujemną X' -X, 
i działającej w kierunku odwrotnym, to jest w kierunku X'.

Jeżeli wszystkie siły układu działają na jeden punkt i ma­
ją linie działania na jednej prostej, to koniecznym i dostatecz­
nym warunkiem równowagi jest, aby suma algebraiczna sił by­
ła równa zeru.

24. Równoległobok sił. Mamy wyznaczyć wypadkową 
dwóch sił, działających na jeden punkt i nachylonych jedna do 
drugiej pod kątem dowolnym. Przypuśćmy, że owe siły działają 
na punkt O i są określone pod względem wielkości i kierunków 
zapomocą odcinków OA i OB, wychodzących z punktu O (par. 7). 
Budujemy równoległobok, w którym odcinki O A i OB są bokami 
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przyległymi, i niech OC będzie przekątnią, przechodzącą przez 
wierzchołek O. W takim razie owa przekątnia określa wypad­
kową danych sił zarówno pod względem wielkością jak i kie­
runku.

Podano rozmaite dowody tego doniosłego twierdzenia, 
a ponieważ prawo równoległoboku stanowi podstawę całej teoryi 
składania i rozkładania sił, nie będzie przeto bez pożytku roz­
ważyć parę z tych dowodów, ale przy pierwszem czytaniu do- 
statecznem będzie poprzestać na jednym.

25. Dowód Newtona równoległoboku sił. Dowód ten 
jest oparty na dynamicznej mierze sił. Zasadę jego wyjaśni­
liśmy już w par. 15; powtarzamy ją na tern miejscu ze wzglę- 
du na doniosłość twierdzenia, powołując się przytem na fig. 1.

26. Przypuśćmy, że dwie siły działają na cząsteczkę, po­
łożoną w punkcie O, w kierunkach OA i OB, przypuśćmy da­
lej, że odcinki OA i OB wyrażają szybkości, które te siły, ka­
żda z osobna, nadałyby cząsteczce, działając w danym przecią­
gu czasu. Ponieważ każda siła działa niezależnie od drugiej, 
przeto wytworzy ona w każdym razie tęż samą szybkość bez 
względu na to, czy ta druga działa czy nie działa. Jeżeli dzia­
łają obydwie, to cząsteczka będzie miała w końcu danego cza­
su obydwie szybkości OA i OB. Są one razem równoważne 
jednej szybkości OC. Lecz szybkość ta jest także miarą siły, 
która ją może wytworzyć w danym czasie. Stąd wynika, że 
dwie siły, których miarami są odcinki OA i OB, razem są rów­
noważne jednej sile, której miarą jest odcinek OC.

27. Dowód Duchayli równoległoboku sił. Dowód ten 
opiera się na zasadzie przenoszenia siły (par. 17). Widzieliśmy 
w par. 18, że można oprzeć tę zasadę na samych aksyornatach 
statycznych.

Zastosujemy dowód indukcyjny. Założymy, że twierdzenie 
jest słuszne dla dwóch sił, zawierających odpowiednio p i m 
jednostek siły i tworzących dowolny kąt, i że jest również 
słuszne dla dwóch sił, zawierających p i n jednostek i tworzą­
cych taki sam kąt. Dowiedziemy, że twierdzenie musi być 
słuszne i dla dwóch sił o p i m + n jednostkach, nachylonych 
do siebie pod tym samym kątem.
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Przypuśćmy, że siły p i m działają na punkt O i są okre­
ślone pod względem wielkości i kierunku zapomocą odcinków 
O A i OB, i że odcinek BD wyobraża w tej samej skali siłę n 
również co do wielkości i kierunku. W takim razie odcinek 
OD wyobraża siłę m + n zarówno pod względem wielkości, jak 
i kierunku (par. 23). Wykreślmy równoległoboki OBCA i BDFC 
i przeprowadźmy przekątnie OC, OF i BF.

Według założenia wypadkowa sił p i m działa na pro­
stej OC. Na zasadzie 

/-------------- -- 7D par. 18 przenosimy jej 
/ Y / \--/ punkt przyłożenia do 

/-\ X \-------/ punktu C i zastępujemy 
/-------\-----------) / ją z powrotem przez jej 

A--------------- c----------------F--------------- dwie składowe p i m. 
. .--Pierwsza z nich będzie Fig. 3.------------------------------- ‘ 

oczywiście działała na 
przedłużeniu odcinka BC, a druga na prostej CF. Przenosimy 
następnie punkt przyłożenia siły p do B, a siły m do F.

Odcinek BC jest równy i równoległy do OA, a zatem si­
ła p, przyłożona w B, wyraża się odcinkiem BC. Lecz siła n 
działa również na punkt B i wyraża się odcinkiem BD, a więc 
według założenia wypadkowa tych dwóch sił działa na pro­
stej BF; przenieśmy punkt przyłożenia tej wypadkowej do 
punktu F.

Z poprzedniego widać, że siły p i m + n są równoważne 
dwom siłom, przyłożonym w punkcie F, a zatem ich wypad­
kowa musi przechodzić przez ten punkt F (22). Z tego same­
go powodu wypadkowa ta musi przechodzić przez punkt 0 
gdyż siły posiadają tylko jedną wypadkową (22). Tym sposo­
bem dochodzimy do wniosku, że wypadkowa ta działa na pro­
stej OF, a prosta OF jest przekątnią równoległoboku, zbu­
dowanego na odcinkach OA i OD, wyobrażających siły p 
i m + n.

Jest rzeczą oczywistą, że wypadkowa dwóch sił równych 
tworzy z temi siłami kąty równe, a zatem działa na wy­
padkowej równoległoboku, zbudowanego na tych siłach w spo­
sób już opisany. Tak więc w przypadku dwóch równych sił 
p i p założenie, uczynione na początku, jest zgodne z prawdą, 
a zatem w myśl tylko co dowiedzionego twierdzenia jest ono
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słuszne i dla sił p i 2p, stąd zaś wynika prawdziwość jego dla 
sił p i 3p i t. d. Jednem słowem założenie owo jest zgodne 
z prawdą dla sił p i rp^ gdzie r oznacza dowolną liczbę cał­
kowitą.

Dowiedliśmy, że założenie było słuszne dla sił rp i p, a za­
tem jest ono słuszne dla sił rp i 2p i t. d. Ostatecznie docho­
dzimy do wniosku, że założenie jest zgodne z prawdą dla sił 
rp i sp, gdzie r i s oznaczają * dowolne liczby całkowite. Do­
wiedliśmy więc twierdzenie równoległoboku, o- ile dotyczy ono 
kierunku, dla sił współmiernych.

28. Mamy teraz wyznaczyć kierunek wypadkowej w przy­
padku, gdy siły składowe są niewspółmierne. Niech odcinki OA 
i OB wyobrażają pod względem wielkości i kierunku dwie siły 
niewspółmierne p i q. Jeżeli wypadkowa działa nie na prze­
kątni OC, to jej linią działania będzie jakaś inna prosta OG, 
leżąca wewnątrz kąta AOB i przecinająca albo prostą BC po­
między B i C, albo prostą AC pomiędzy A i C (22). Przypuść­
my, że zachodzi pierwszy z tych przypadków, t. j. że linia dzia­
łania wypadkowej przecina prostą BC w punkcie G, położonym 
pomiędzy B i C.

Dzielimy odcinek OB na pewną liczbę równych odcin
ków, z których każdy po­
winien być krótszy od GC, 
i odmierzamy takie odcin­
ki na OA, poczynając od O, 
dopóki nie dojdziemy do 
takiego punktu K, że AK 
będzie krótsze od GC. Na­
stępnie prowadzimy proste 
GH i KL równolegle do A C. 
Odcinki OB i OK są współmierne, a zatem wypadkowa sił, 
które im odpowiadają, działa na przekątni OL. Stąd widać, 
że siły p i q, przyłożone w 0, są równoważne dwóm siłom, 
z których jedna działa na prostej OL, druga zaś odpowiada 
odcinkowi KA, zatem wypadkowa ich powinna działać na punkt 
0 w kierunku, zawartym pomiędzy OL i OA. Lecz OG leży 
nazewnątrz kąta AOL, zatem przypuszczenie, że kierunkiem

Statyka. 2 
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wypadkowej jest OG, było niesłuszne. Z drugiej strony OG 
reprezentuje jakikolwiek kierunek odmienny od OC, bo jedy­
nie w tym razie, gdy punkt G leży w wierzchołku C, nie mo­
żemy podzielić odcinka OB na części równe, mniejsze od CG. 
Tak więc wypadkowa musi działać na przekątni bez wzglę­
du na to, czy siły składowe są współmierne czy niewspół­
mierne.

Podaliśmy tu oddzielny dowód dla sił niewspółmiernych, 
ale nie było to konieczne. Poprzednio dowiedliśmy to twier­
dzenie dla wszelkich sił, których stosunek daje się wyrazić, 
ułamkiem. W przypadku sił niewspółmiernych możemy zawsze 
znaleźć ułamek, różniący się od ich prawdziwego stosunku 
o wielkość mniejszą od wszelkiej z góry przepisanej różnicy. 
W granicy twierdzenie musi być ważne i dla sił niewspół­
miernych.

29. Mamy teraz okazać, że przekątnia określa wypadkową 
nietylko co do kierunku, ale i co do wielkości.

Przypuśćmy, że OA i OB wyobrażają dwie siły, i że 00 
jest przekątnią równoległoboku 00. Odmierzamy na przedłu­

żeniu odcinka CO odcinek OD, 
odpowiadający wypadkowej pod 
względem wielkości. W takim ra­
zie trzy siły OA, OB i OD pozo­
staną w równowadze, i każda z nich 
jest równa i odwrotna do wypad­
kowej dwóch pozostałych.

Budujemy teraz na bokach OB 
i OD równoległobok OBED. Po­

nieważ siła OA jest równa i odwrotna do wypadkowej sił OB 
i OD, przeto odcinki OA i OE muszą leżeć na jednej prostej, 
i odcinek OE jest równoległy do CB. Z drugiej strony prosta 
OC, jako przedłużenie odcinka OD, jest równoległa do EB. 
Stąd wynika, że czworobok OEBC jest równoległobokiem i od­
cinek OC, jako równy BE, jest także równy DO.

Tak więc przekątnia OC określa wypadkową sił OA i OB 
nietylko pod względem kierunku, ale i pod względem wielkości.

30. Przykład. Założywszy, że przekątnia określa wielkość wy­
padkowej, dowieść, że określa ona także kierunek wypadkowej.
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Przypuśćmy, jak poprzednio, że odcinki OA, OB i OD (fig. 5) 
wyobrażają siły, pozostające w równowadze. W myśl założenia OA—OB 
i 00= OD, a mamy dowieść, że AOE i DOG są liniami prostemi. Po­
nieważ AB i BD są równoległobokami, przeto OA=BC oraz OD=BE. 
Stąd wynika, że w czworoboku EOCB długości przeciwległych boków 
sa równe, i czworobok ten jest równoległobokiem (gdyż odpowiednie 
boki trójkątów OEB i BGO są równe), a zatem odcinek OE, jako rów­
noległy do BG, leży na jednej prostej z odcinkiem OA.

31. Zestawienie historyczne. Zasady, na których w czasach 
ubiegłych opierano statykę, dadzą się sprowadzić do trzech.

Pierwszą była zasada dźwigni, użyta przez Archimedesa. Przyj­
mowano w niej za prawdy oczywiste lub też za wyniki doświadczeń 
codziennych 1), że prosta pozioma dźwignia, obciążona na końcach 
jednakowymi ciężarami i oparta w punkcie środkowym, pozostaje 
w równowadze, 2) że reakcya na podporę jest równa sumie owych 
równych ciężarów. Wychodząc z tych elementarnych założeń i mie­
rząc siłę ciężarem, który ta zdoła utrzymać w zawieszeniu, wypro­
wadzano warunki równowagi prostej dźwigni pod działaniem sił nie­
równych. Z tego i z pewnych prostych aksyomatów dodatkowych 
można wyprowadzić dalsze twierdzenia statyki. Prawdziwość pierw­
szego z wyżej wymienionych pewników narzuca się nam niewątpliwie 
ze względu na symetryę urządzenia, ale Lagrange wskazał, że drugi 
pewnik nie jest w równej mierze oczywisty.

Zasada równoległoboku zajmuje drugie miejsce w szeregu zasad, 
na których opierano statykę. W r. 1586 Stevinus wygłosił twierdzenie 
o trójkącie sił. Do owego czasu nauka statyki opierała się na teoryi 
dźwigni, odtąd stał się możliwy inny punkt wyjścia. Nowa zasada 
przyjęła się ogólnie dzięki swej prostocie i łatwości, z jaką dawała 
się stosować do zagadnień mechanicznych; ostatecznie stała się ona 
podstawą statyki nowożytnej. Historyę jej stopniowego rozwoju 
można znaleźć w książce W. W. R. Balia, A Short History of Mathe- 
matics.

Rozmaici autorowie dowodzili, lub usiłowali dowodzić, zasadę 
równoległoboku niezależnie od pojęcia ruchu. Wyżej podaliśmy tego 
rodzaju dowód Duchayli, jeden z tych, które, jak się zdaje, doznały 
najlepszego przyjęcia. Prócz tego wiele zajęcia wzbudził swego czasu 
dowód Laplace’a. Opiera się on na podstawach podobnych do tych, 
na których są oparte dowody Bernoullego i D’Alemberta. Przyjmuje 
się tam, jako prawdę oczywistą, że gdy powiększymy dwie siły w do­
wolnym lecz jednakowym stosunku, to ich wypadkowa powiększy się 
w tym samym stosunku, nie zmieniając przytem kierunku.

Porównywając te dowody z dowodem, opartym na pojęciu ru­
chu, musimy uznać słuszność uwagi Lagrange’a. Powiada on, że od­
dzielając zasadę składania sił od zasady składania ruchów, pozbawia­
my pierwszą jednej z jej głównych zalet. Traci ona prostotę oraz 
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oczywistość i staje się jedynie wynikiem pewnych konstrukcyi geo­
metrycznych lub analitycznych.

Trzecią z kolei była zasada szybkości przygotowanych. Znajdu­
jemy ją już u pisarzów dawniejszych, ale Lagrange dowiódł ją, lub 
usiłował dowieść, w sposób elementarny i uczynił podstawą całej me­
chaniki. Dowód ten nie zdobył sobie uznania ogólnego; zarzucano 
mu, że nie posiada tej prostoty i oczywistości, które sam Lagrange 
podziwiał w zasadzie składania sił.



ROZDZIAŁ II.

SIŁY DZIAŁAJĄCE NA PUNKT.

Trójkąt sił.

32. W rozdziale poprzedzającym doszliśmy do zasadni­
czego twierdzenia, zwanego równoległobokiem sił; będziemy 
posługiwali się niem ustawicznie. Doświadczenie uczy, że nie 
zawsze jest rzeczą dogodną wykreślać równoległobok, gdyż to 
komplikuje rysunek i czyni rozwiązanie nieprzejrzystem. Dla 
tego też wynaleziono różne sposoby, ułatwiające i skracające 
działania; rozważymy je tutaj z kolei.

33. Jeżeli odcinki OA i OB wyobrażają siły P i Q, dzia­
łające na punkt 0, to, jak wiemy, przekątnia 00 równoległo- 
boku, zbudowanego na tych odcinkach, określa wypadkową.

Lecz jest rzeczą oczywistą, że odcinek AC, równie dobrze jak 
OB^ określa siłę Q zarówno co do wielkości, jak i kierunku, 
chociaż nieokreśla on punktu przyłożenia. Jeżeli wszakże punkt 
przyłożenia jest wskazany w jakiś inny sposób, to okoliczność 
powyższa nie ma znaczenia, i trójkąt OAC może zastąpić rów­
noległobok OACB.
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Jeżeli punkty przyłożenia są wskazywane niezależnie od 
sił, to niema koniecznej potrzeby wyobrażać sił zapomocą od­
cinków, wychodzących z 0. Tym sposobem możemy określić 
siły P, Q i R, działające na punkt 0 pod względem kierunku 
i wielkości bokami trójkąta DEF] boki te powinny tylko 
być równoległe do sił i proporcyonalne do nich co do dłu­
gości.

Oczywistą jest rzeczą, że na trójkąt sił można przenieść 
bezpośrednio wszystkie twierdzenia o równoległoboku, a zatem:

Jeżeli dwie siły, działające na punkt, są wyobrażone pod 
względem kierunku i wielkości zapomocą boków DE i EF pew­
nego trójkąta, to trzeci bok DF określa ich wypadkową.

Jeżeli trzy siły, działające na punkt, są wyobrażone przez 
trzy boki trójkąta, obiegane w tę samą stronę, t. j. DE, EF, FD, 
to siły te są w równowadze.

34. Niech będą dane w płaszczyźnie trzy siły; pragniemy 
rozpoznać, czy siły te są w równowadze. Łatwo dostrzedz, że do 
tego muszą być spełnione dwa warunki:

1. Jeżeli siły nie są równoległe, to dwie z nich mu­
szą się przecinać w pewnym punkcie 0, i wypadkowa ich 
przechodzi także przez ten punkt. Trzecia siła powinna być 
równa i odwrotna do tej wypadkowej, a zatem musi ona ró­
wnież przechodzić przez ten sam punkt. Stąd widać, że linie 
działania tych trzech sił muszą przechodzić przez jeden punkt, 
albo też muszą być równoległe.

2. Jeżeli siły nie są równoległe, to można poprowadzić 
równolegle do nich trzy proste tak, aby utworzył się trójkąt, 
i wielkości sił muszą być proporcyonalne do odpowiednich 
boków tego trójkąta.

Przypadek, w którym siły są równoległe, rozważymy 
w rozdziale następnym.

35. Możemy twierdzenie to uogólnić w sposób następu­
jący. Wyobraźmy sobie, że trójkąt DEF został obrócony o 90° 
i zajął położenie D'E'F'. Boki jego będą wówczas nie równo­
ległe, lecz prostopadłe do sił. Jeżeli siły działają w kierunkach 
DE, EF, FD, to są one wszystkie zwrócone na zewnątrz trój­
kąta D'E'F'-, gdyby odwrócić ich kierunki, to wszystkie dzia- 
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•łałyby na wewnątrz. Możemy przeto wypowiedzieć twierdzenie 
następujące:

Jeżeli trzy siły, działające na jeden punkt, są określone pod 
względem wielkości przez boki trójkąta, kierunki zaś ich są pro­
stopadłe do tych boków, przyczem wszystkie siły są zwrócone we­
wnątrz lub wszystkie na zewnątrz, to siły te są w równowadze.

Możemy obrócić trójkąt DEF nie o kąt prosty, lecz o ja­
kiś kąt mniejszy. Otrzymamy wówczas inne twierdzenie. Jeżeli 
trzy siły, działające na jeden punkt,'są pod względem wielko­
ści określone przez boki trójkąta, i jeżeli ich kierunki tworzą 
z odpowiednimi bokami, wziętymi w porządku kołowym, kąty 
jednakowe, to te trzy siły są w równowadze.

W pewnych razach wykreślanie trójkąta byłoby niedo­
godne, dla tego też nadajemy twierdzeniu jeszcze inną postać. 
Boki trójkąta są proporcyonalne do synusów przeciwległych 
kątów; związek taki musi oczywiście zachodzić i dla sił.

Trzy siły, działające na ciało w jednej płaszczyźnie, są 
w równowadze, jeżeli 1) ich linie działania zbiegają się w jednym 
punkcie, 2) wszystkie są zwrócone do tego punktu lub od niego 
odwrócone, i 3) każda z nich pod względem wielkości jest propor- 
cyonalna do synusa kąta, zawartego pomiędzy dwiema pozostałemi.

36. Wielobok sił. Jeżeli pewna liczba 
punkt O, to możemy je wyobrazić zapomocą 
mkniętego wieloboku DE, EF, FG-, GH i t. d., 
obieganych w jedną stronę. Wypadkowej sił 
DE i EF odpowiada odcinek DF, wypadko­
wej DF i FG odpowiada odcinek DG i t. d. 
Wypadkową wszystkich sił określa odcinek, za­
mykający wielobok. Oczywiście nie jest wcale 
rzeczą konieczną, aby wszystkie boki wielobo­
ku leżały w jednej płaszczyźnie.

sił działa na 
boków nieza-

Jeżeli pewna liczba sił, działających na punkt, odpowiada 
bokom zamkniętego wieloboku, obieganych w jedną stronę, to siły 
te są w równowadze.

37. Przykład 1. Siły, położone w jednej płaszczyźnie, a pod 
względem wielkości proporcyonalne do boków zamkniętego wielo­
boku, działają na środki tych boków prostopadle do nich i są wszyst­
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kie zwrócone na wewnątrz lub na zewnątrz wieloboku. Dowieść, że 
siły te są w równowadze. .

Niech AB CD... będzie danym wielobokiem. Łączymy wierzcho­
łek A z pozostałymi wierzchołkami C, D.... Zwróćmy teraz uwagę na 
trójkąt ABC. Siły, przyłożone w środkach boków AB i BC spotykają 
się w środku koła opisanego, a zatem ich wypadkowa jest propor- 
cyonalna do AC i działa prostopadle do tego boku na środek jego. 
Rozważając z kolei trójkąty ACD, ADE i t. d., dojdziemy łatwo do 
wniosku, że ostateczna wypadkowa jest równa zeru.

Prz. 2. Siły, położone w jednej płaszczyźnie, są pod względem 
wielkości proporcyonalne do kosynusów połów kątów wewnętrznych 
zamkniętego wieloboku; działają one na odpowiednie wierzchołki na 
dwusiecznych kątów i są zwrócone na wewnątrz. Okazać, że siły 
takie się równoważą.

Dajmy na to, że na każdym boku wieloboku działają dwie siły, 
przyłożone w wierzchołkach, równe i odwrotne; każda z nich niech 
będzie równa F. Dwie siły, przyłożone w wierzchołku A, posiadają

A
wypadkową 2Fcos, działającą na dwusiecznej kąta. Wszystkie takie 

wypadkowe muszą być oczywiście w równowadze.
38. Prz. 1. Siły 4, 5 i 6 są w równowadze; wyznaczyć tangensy 

połów kątów, utworzonych przez te siły.
Prowadząc proste, równoległe do sił, zbudujemy trójkąt sił; kąty 

jego dadzą się wyznaczyć zapomocą zwykłych metod trygonometryi.
Prz. 2. Siły 6, 8 i 10 są w równowadze; wyznaczyć kąt, który 

tworzą dwie mniejsze. Jak należy zmienić trzecią siłę, aby kąt pomię­
dzy dwiema pierwszemi zmniejszył się do połowy?

Prz. 3. Okazać, że wypadkowa sił OA i OB odpowiada podwój­
nemu odcinkowi OM, gdzie M oznacza środek odcinka AB.

Prz. 4. Dwie stałe i równe siły działają na środek elipsy rów­
nolegle do SP i PH, gdzie S i H oznaczają ogniska, a P dowolny 
punkt krzywej. Okazać, że koniec odcinka, wyrażającego wypadkową, 
leży na pewnym okręgu. (Math. Tripos, 1883).

Prz. 5. Siły P i Q działają na punkt O, — a wypadkową ich 
jest R. Pewna prosta przecina linie działania tych sił odpowiednio 
w punktach L, M i N. Okazać, że

P_I_R
OL^OM ON (Math. Tripos, 1881).

Gdy uwolnimy równanie od mianowników, to wypadnie, że 
pole LOM jest sumą pól LON i MON.

Prz. 6. Cząsteczka O pozostaje w równowadze pod działaniem 
trzech sił, z których F jest dana co do wielkości, F' co do kierunku, 
a P co do wielkości i kierunku. Wyznaczyć wykreślnie linię działania 
siły F.
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Jeżeli O A wyobraża P, to prowadzimy AB równolegle do F' 
i zataczamy koło z O promieniem równym F.

Prz. 7. W czworościanie ABCD P jest jakimkolwiek punktem 
na BC, a Q jakimkolwiek punktem na AD. Okazać, że siłę, wyobra­
żoną co do wielkości, kierunku i położenia przez odcinek PQ, można 
zastąpić jednoznacznie składowemi, działającemi na AB, BD, DC, CA, 
i wyznaczyć stosunki tych składowych. (St John’s Coli., 1887).

Prz. 8. Odcinki BD, CE, AF proporcyonalne do boków BC, 
CA, AB trójkąta ABC odmierzono na tych bokach. Okazać, że siły, 
odpowiadające pod względem wielkości i kierunku odcinkom AD, 
BE i CF, działając na punkt, są w równowadze. Odwrotnie, jeżeli 
siły AD, BE i CF równoważą się, działając na punkt, to odcinki BD, 
CE i_AF są proporcyonalne do boków.

39. Równoległościan sił. Trzy siły, działające na punkt 0, 
odpowiadają pod względem kierunku i wielkości odcinkom OA, 
OB i OC, nie leżącym w jednej płaszczyźnie. Okazać, że wypad­
kowa odpowiada co do kierunku i wielkości przekątni równole- 
głościanu, w którym owe odcinki są krawędziami.

W równoległoboku, którego bokami są 
OA i OB, przekątnia OD odpowiada wypad­
kowej tych dwóch sił. Jeżeli CE oznacza 
przekątnię ściany przeciwległej, to, jak wie­
my z geometryi, czworobok OCED jest rów- 
noległobokiem. Stąd wynika, że wypadkową 
sił OC i OD jest odcinek OE, t. j. przekąt- Fig. 8. 
nia równoległościanu.

Moglibyśmy również dowieść to twierdzenie, opierając się na 
paragrafie 36. Wypadkowa trzech sił, odpowiadających OA, AD i DE, 
odpowiada odcinkowi, zamykającemu wielobok OADE, czyli znowu 
odcinkowi OE.

40. Trzy metody rozkładania skośnego.
1) Dane są trzy kierunki nie w jednej płaszczyźnie; za­

stępujemy siłę R, odpowiadającą odcinkowi OE, przez siły 
X, Y i Z, działające w danych kierunkach. Mówimy, że siła R 
została rozłożona w tych kierunkach, a siły X, Y i Z nazy­
wamy jej składowemi. Można wyznaczyć składowe pod wzglę­
dem wielkości, budując równoległościan, w którym przekątnią 
jest R, a krawędzie OA, OB i OC mają kierunki dane.

2) Gdy dana jest wypadkowa OE, to można wyznaczyć 
każdą ze składowych w sposób następujący. Dajmy na to, że 
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ta wypadkowa OE i jedna ze składowych, np. OC^ tworzą 
z płaszczyzną AOB^ zawierającą dwie inne składowe, odpo­
wiednio kąty 7 i 8. Odległości punktów C i E od owej pła­
szczyzny są równe, czyli OCsin 3 = OEsin . Zatem składową Z, 
działającą na 00, określa równanie Zsin 3 = Rsin .

3) Trzecią metodę rozkładania skośnego podamy w pa­
ragrafach 51 i 53.

Prz. 1. Jeżeli na cząsteczkę działa sześć sił, odpowiadających 
co do wielkości i kierunku krawędziom czworościanu, to cząsteczka 
ta nie może pozostać w spoczynku. (Math. Tripos, 1859).

Prz. 2. Cztery siły, działające na punkt 0, są w równowadze, 
i na ich liniach działania od punktu 0 odmierzono jednakowe długo­
ści. Okazać, że każda z sił jest proporcyonalna do objętości czworo­
ścianu, zbudowanego na owych odcinkach linii działania trzech sił 
pozostałych.

Metoda analityczna.

41. Widzieliśmy, że każdą siłę można zastąpić dwiema 
innemi, które nazywają się składowemi, i te składowe mogą 
być nachylone do siebie pod dowolnym kątem. Doświadczenie 
jednak wskazuje, że najużyteczniej jest rozkładać siłę na skła­
dowe prostopadłe jedna do drugiej. Jeżeli przeto jest mowa 
wprost o składowej siły, to rozumiemy, że druga składowa 
tworzy z pierwszą kąt prosty, o ile nie zaznaczono wyraźnie, 
że jest inaczej. Z fig. 6 widać, że w takim razie równoległo- 
bok przechodzi w prostokąt, i dwie składowe siły 00 są od­
powiednio równe OCcos COA i OCsin COA. Temuż samemu 
są równe rzuty siły 00 na proste OA i OB.

Możemy wypowiedzieć to w postaci prawidła. Gdy siła R 
działa na punkt O w kierunku OC, to jej składowa w dowol­
nym kierunku 0x jest równa RcosCOx, składowa zaś w kie­
runku odwrotnym Ox' jest równa R cos, 00x'. Składowa siły R 
w kierunku prostopadłym do 0x wynosi Rsin COx.

42. Dwie siły Pt i P2 działają na punkt O. Wyznaczyć 
położenie i wielkość wypadkowej.

Niech będą dwie dowolne osi prostokątne 0x, Oy, i niech 
&,, 0.2 oznaczają kąty, które siły Pi i P2 tworzą z osią x. Sumy 
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składowych danych sił, równoległych do odpowiednich osi, 
albo sumy rzutów na te osi, będą

X=P cos a, + P, cos a2
Y= P1 sin 01 + P, sin a, .

Jeżeli takie są składowe siły R, która tworzy z osią x kąt a, to
X=Rcosa, Y— R sin a.

Dodając kwadraty składowych X i Y, otrzymamy łatwo
R2 = P^ + P,2 + 2P,P2 cos 9, 

gdzie 3= A1 - A,, czyli 3 jest to kąt pomiędzy kierunkami sił 
P1 i P2. Związek ostatni wynika także z równoległoboku sił, 
gdyż prawa strona jest to oczywiście kwadrat przekątni rów­
noległoboku, którego bokami są Pr i P2.

Równie łatwo wyznaczymy kierunek wypadkowej, gdyż
Y Psino.—P,sin a, tan a = — = —------ -—------ 4. A 1 cos &1+ P2 cos a2

43. Prz. 1. Dwie siły P i Q tworzą kąt a i posiadają wypad­
kową R. Powiększamy każdą z nich o R; okazać, że nowa wypadko- 

(P— Q) sin a 
wa tworzy z R kąt, którego tan wynosi------------------------------- 

P+Q+R+(P+Q) coso
(St John’s Coli., 1880).

Należy obrać linię działania wypadkowej R za oś x.
Prz. 2. Trzy siły F działają na punkt równolegle do boków 

trójkąta ABC; wypadkową ich oznaczamy przez R. Okazać, że
R^~ F2(3- 2 cos A—2 cos B—2 cos C).

Prz. 3. Wypadkowa sił Pi Q jest równa R; gdy podwoimy Q, 
to R się podwoi, gdy odwrócimy Q, to R się również podwoi. Oka­
zać, że P'.Q\ R=v2: V3: v2. (St John’s Coli.).

44. Pewna liczba sił działa na punkt O w jakichkolwiek 
kierunkach; mamy wyznaczyć ich wypadkową.

Obieramy prostokątne osi Ox, Oy, Oz, i niech P, P^, Pz... 
oznaczają siły, a (0,311), («,32Y2) ••• ich kąty kierunkowe. Su­
my składowych równoległych do osi, albo rzutów sił na osi, 
będą

X=Pcos M1 + P, cos &,+...= ZPcos a
Y= P cos 3,+P, cos 32+ ... = SPcosp
Z=Pcos Y1+P2 cos Y2+ ••• = SPcosy



— 28 —

Jeżeli takie są składowe siły R, której kąty kierunkowe 
niech będą (a), to

Rcosa= X, Rcosp= Y, R cos”=Z.

Wiemy z geometryi, że

cos 2a + cos 23 + cos 27=1.
zatem R^X2+Y^ + Z\

cos a cos 3 cos ¥ 1 oraz  = — =   = —.
X Y Z {X^+Y2 + Z^k

Tym sposobem zarówno siła R, jak i jej kąty kierunko- 
. we zostały wyznaczone.

Do równowagi jest koniecznem i dostatecznem, aby R było 
zerem. Wynikają stąd trzy warunki

X=XPcosa=0, Y=XPcos}=0, Z—SPcos7 = 0.
45. Jeżeli sumy rzutów (prostokątnych) sił P, P2 ... na trzy kie­

runki OA, OB, 00, nie leżące w jednej płaszczyźnie, są równe zeru, to 
siły są w równowadze.

Obierzmy oś Oz na 00, a płaszczyznę xOz poprowadźmy przez 
OA. Ponieważ suma rzutów na Oz jest równa zeru, przeto Z=0. Po­
nieważ suma rzutów na OA jest równa, zeru, przeto Xcosx0A=0; lecz 
kąt xOA nie jest prosty, gdyż OA i 00 nie leżą razem, zatem X=0. 
Mamy wreszcie YcosyOB^O, gdyż suma rzutów na OB jest równa 
zeru, a stąd wynika Y=0.

46. Można wyrazić wielkość i kierunek siły R w postaci 
niezależnej od układu współrzędnych w sposób następujący:

Jeżeli 312 oznacza kąt pomiędzy dwiema prostemi, których 
kąty kierunkowe są (0.,31Y1) i (0.23212), to, jak wiadomo z geo­
metryi, przy znanej umowie co do znaków

cos $12 = cos A, cos a2 + cos 31 cos 32 + cos Y1 cos Y2 .
Dodając kwadraty wyrażeń na X, Y, Z^ otrzymamy 

R2 =P^ (cos2a, + cos 28, + cos21) +...
+ 2P1P2(cos 01 cos 0.2 + cos 31 cos 32 + COs Y, COs2)+... 

lub R2 P2 + P,2 +..+ 2P,P, cos 9,7+ ...
Daje to nam wielkość siły R.

Aby znaleźć kierunek siły R, wyznaczymy kąty “1, “2..., 
które kierunek ten tworzy z kierunkami sił P1, P2 •••• Ponieważ 
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osie współrzędnych są całkowicie dowolne, obierzmy przeto 
oś x na linii działania siły P1. Wówczas 0 = ®1, 01=0, 02==$12 
i 1. d., a zatem równanie

R cos a = X= EPcos a 
przekształci się na

Rcos@,=P + P, COS 812 + Ps COS 313+ ....
Zupełnie tak samo, obierając oś x na linii działania siły 

P2, otrzymamy
R cos @2 = P1 cos 312 + P, + P3 cos 323 + ...

i t. d. Tym sposobem kierunek siły R został wyznaczony.

47. Wielościan sił. Równaniom paragrafu 44 można przypisać 
pewną treść geometryczną, i bywa to nieraz użyteczne. Wyobraźmy 
sobie zamknięty wielościan, i niech A1, A2... oznaczają pola ścian 
jego. Poprowadźmy do każdej ściany normalną z punktu, położonego 
na tej ścianie, przyczem wszystkie normalne powinny być zwrócone 
na zewnątrz albo wszystkie na wewnątrz wielościanu, i niech 8, , 32 ... 
oznaczają kąty, które te normalne tworzą z prostą, obraną przez nas 
za oś z. Tworzymy teraz rzuty wszystkich ścian na płaszczyznę xy. 
Pola tych rzutów będą A, COS 81, A2 cos 82.... Ponieważ wielościan jest 
zamknięty, przeto suma wszystkich rzutów dodatnich będzie równa 
sumie wszystkich rzutów ujemnych, i wypadnie

A, cos 31+A2 cos 32+. ..=0.
Analogiczne równania otrzymamy dla pozostałych płaszczyzn współ­
rzędnych. Trzy te równania różnią się tylko tem od równań równo­
wagi, że tam zamiast A1, A2 ... stoi P1, P2 .... Stąd wynika twierdzenie 
następujące: Jeżeli siły, działające na punkt, odpowiadają pod względem 
wielkości polom ścian zamkniętego wielościanu, jeżeli prócz tego są one 
prostopadłe do odpowiednich ścian i wszystkie zwrócone na zewnątrz lub 
na wewnątrz, to siły te są w równowadze.

48. Posługując się teoryą wyznaczników, możemy nadać wynikom, 
do których doszliśmy w par. 46, postać dogodniejszą. Przypuśćmy, że 
chodzi o wyznaczenie wypadkowej trzech sił, działających na punkt. 
Aby otrzymać rezultat symetryczny, odwrócimy wypadkową i będzie­
my mówili o czterech siłach w równowadze.

Niech więc będą cztery siły P, P2, P3, P w równowadze. Za­
kładając R=0, otrzymamy z par. 46 cztery wiążące je równania linio­
we, a rugując siły, dojdziemy do równania wyznacznikowego

1 COS 312 COS 313 COS 314 

COS 321 1 COS 823 COS 324 _Q
COS 331 cos $32 1 cos 834
COS $41 COS $42 COS $43 1
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Jest to związek, który zachodzi pomiędzy wzajemnemi nachyleniami 
czterech dowolnych prostych przestrzeni *).  Jeżeli wszystkie te kąty 
z wyjątkiem jednego (np. 312) są dane, to mamy równanie kwadrato­
we, określające dwie możliwe wartości, które może mieć COS 312. Je­
żeli trzy z tych kątów np. 312, 323, 331 są proste, to wyznacznik spro­
wadza się do znanej postaci

*) Inny dowód znajdujemy w Solid Geometry Salmona wyd. IV, 
par. 54.

COS 2 814+ COS 2 324+cos 2 8,4=1.

Jeżeli znamy kąty pomiędzy czterema kierunkami sił, to może­
my wyznaczyć stosunki pomiędzy siłami z którejkolwiek trójki z czte­
rech wspomnianych równań liniowych. Wynika stąd, że stosunki po­
między siłami są równe stosunkom pomiędzy minorami (podwyznacz- 
nikami) wyrazów któregokolwiek wiersza wyznacznika.

49. Prz. Okazać, że kwadraty sił mają się do siebie, jak minory 
wyrazów głównej przekątni.

Niech Irs oznacza minor wyrazu wiersza r i kolumny s; w ta­
kim razie, jak wiadomo, 111122== 1122. Ale widzieliśmy poprzednio, że

P,: P=I, : 1,2 , 
stąd zaś wynika odrazu, że

P2:P,2-In:I2.
Podajemy tu rozwinięty minor naczelnego wyrazu:

I1=1—cos2323—cos? 334—cos2 8,2+2 cos 323 COS 334 COS $42 .

Wyrażenie to spotykamy w różnych wzorach trygonometryi sfe­
rycznej. Jeżeli naprzykład wyprowadzimy z punktu O równolegle do 
którychkolwiek trzech sił (np. P2, Pa, P) trzy odcinki każdy o dłu­
gości jednostkowej, to objętość powstałego czworościanu będzie równa 
szóstej części pierwiastka kwadratowego odpowiedniego minora (w da­
nym razie In).

50. Potrzeba niekiedy odnosić siły do układu ukośnokątnego. 
W takim razie zastępujemy kosynusy kierunkowe każdej siły przez jej 
stosunki kierunkowe. Przypuśćmy, że stosunki kierunkowe sił P, P2... 
są (a,b,C1), (a^bzC^..., to sumy składowych sił, równoległych do osi 
będą

X^Pa, Y^Pb, Z=^Pc.

Jeżeli takie są składowe siły R, posiadającej stosunki kierunkowe 
(1, m, n), to

Kl=X, Rm^Y, Rn^Z.

Związki pomiędzy stosunkami kierunkowymi linii prostej a ką­
tami, które ta prosta tworzy z osiami, mamy w podręcznikach geo­
metry i przestrzeni lub trygonometryi. Związki te są bez porównania 
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mniej proste niż w układzie prostokątnym. Z tego względu układy 
ukośnokątne są używane rzadko.

Centroid.

51. Wielkość i kierunek wypadkowej dowolnej liczby 
sił, działających na punkt, można jeszcze wyrażać przy po­
mocy innej metody, która bywa nieraz wielce użyteczna za­
równo w rozważaniach geometrycznych, jak i analitycznych.

Dajmy na to, że odcinki OA1, 0A, ... określają siły P1, P2 ... 
pod względem kierunku. Wielkości sił są określone zapomocą 
pewnych długości, odmierzonych na prostych 0A±^ 0A2... , 
a mianowicie wielkość pierwszej przez 21.OA, drugiej przez 
22.0A2 i t. d. Wprowadzenie współczynników liczbowych 
Pi, P2 ... jest użyteczne pod tym względem, że przy tern można 
obrać końce A1, A, ... owych odcinków w sposób dla danego 
zadania szczególnie dogodny. Jest to oczywiście to samo, co 
wyrażać siły odcinkami w rozmaitych skalach; tak np. w da­
nym przypadku jednostka długości na prostych 0At, 0A2... 
reprezentuje odpowiednio siły P1, p2...

Obieramy punkt 0 za początek układu, i niech współ­
rzędne punktów At, A2... będą odpowiednio (x1Y1Z1), (x,y2Z2) ... 
Dowiedliśmy już, że składowe wypadkowej są

X = ZP cos a = Zp . O A . cos a = ^px
Y—^Pcos^ =^py
Z=^>P cos T —^pz

(1)

Niech będzie punkt G, którego współrzędne (xyz) są okre­
ślone zapomocą równań

Stąd bezpośrednio wynika, że
X=xEp, Y=y^p^ Z—zYp.

Z równań tych widać, że wypadkowa posiada kierunek OG 
i jest równa OGl^p.

Punkt G jest znany pod' różnemi nazwami. Zowią go 
środkiem ciężkości, centroidem lub punktem przeciętnym układu 
cząsteczek, położonych w At, A, ... i posiadających masy lub 
ciężary proporcyonalne do P1, p2...
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Tak więc, jeżeli siły, działające na punkt O, posiadają kie­
runki odcinków 0Ar, 0A2..., wielkości zaś ich są równe p1.OA1, 
p2.0A2, to wypadkowa ich działa w kierunku OG- i jest równa 
Zp . OG, gdzie G oznacza centroid mas proporcyonalnych do p±, p2... 
i położonych w A1, A2.... Twierdzenie to bywa powszechnie 
przypisywane Leibnizowi.

Odwrotnie siłę R, działającą na prostej OG, można rozłożyć 
na trzy siły, działające na trzech danych prostych, poprowadzonych 
przez O; w tym celu należy uczynić punkt G centroidem mas, 
umieszczonych w punktach A1, A2, As, odpowiednio dobranych 
na owych prostych. Składowe P1, P2, P3 otrzymamy z równań

P, _ __ P, _ _ P, _ ______ R ____
pr. OA~p2. OA2~p3. OAs~(p1+p2 + p3)OG, 

gdzie pt, p2, p3 oznaczają owe masy.
Niektóre z odcinków OAt, OA2... albo nawet i wszystkie 

mogły być obrane w kierunkach, odwrotnych do sił; w ta­
kim razie uważamy poprostu odpowiednie współczynniki p za 
ujemne.

Jeżeli pomiędzy współczynnikami p są ujemne, to może 
się zdarzyć, że Zp=0. W przypadku takim centroid leży w nie­
skończoności, i wypadkowa wyraża się w sposób niedogodny, 
jakkolwiek poprawny, natomiast składowe wdzłuż osi i teraz 
wyznaczamy z równań X—hpx, Y=^py, Z—^pz, niezawierają- 
cych żadnych wielkości nieskończenie wielkich.

52. Użyteczność powyższej metody zależy od tego, czy punkt G 
daje się wyznaczyć łatwo, gdy znamy A1, A2-- Prawidło robocze po­
lega na tern, że odległość punktu G od dowolnej płaszczyzny odniesie-

^pz
nia, obranej za płaszczyznę xy, wynosi —. Własności tego punktu oraz 

położenie jego w różnych przypadkach rozważymy w rozdziale o środ­
ku ciężkości.

53. Prz. 1. Centroid G dwóch cząsteczek Pi i p2, umieszczonych 
w dwóch danych punktach Ax, A2, leży na prostej A1 A2 i dzieli od­
cinek ArA2 w taki sposób, że Pi .ArG=p2. A,G.

Obieramy prostą A1A2 za oś x, Ai za początek, i niech będzie 
AiA2 = a. W takim razie x,=0, x2=a, y^O, y2=0. Stosując prawidło 
robocze, znajdziemy

P1X1—P2X2 P^a0 —=---------------------—------------
P1+P2 P1+P2’

_ PiUi+p2y2 - y=---------- =0.
P1+P2
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Stąd wynika, że G leży na A1A2, a ponieważ T=A1G, przeto
Pi . A1 G=p2 (A,A, — A G) =P2. A, G.

Dzięki twierdzeniu temu można rozłożyć siłę P, działającą na 
prostej OGr, w dwóch kierunkach niekoniecznie prostopadłych jeden 
do drugiego. Składowe P i P2 wyznaczamy z równań

P _ _P _ P
pi. OAi p2.0A2 (Pi+Pz) OG ’ 

gdzie Pi i p2 są to odległości punktu G- od Ag i Ag; uważamy je za 
dodatnie, jeżeli są mierzone wewnątrz.

Prz. 2. Okazać, że centroid trzech mas pr, p2, p3, umieszczo­
nych w wierzchołkach trójkąta, leży w punkcie, którego współrzędne 
powierzchniowe są proporcyonalne do P1, p2, p3. Jeżeli masy są ró­
wne, to punkt ten zowie się krótko centroidem trójkąta.

Niech a, 3 i Y oznaczają odległości punktu G od boków BG, GA, AB 
trójkąta AB G; odległości te uważamy za dodatnie, gdy są mierzone we­
wnątrz. Niech prócz tego p, q, r oznaczają odległości wierzchołków 

od tych samych boków. Stosunki “=p‘ ^~q, z~r zowia sie współ- 

rzędnemi powierzchniowemi punktu G. Łatwo okazać, że x, y, z są 
proporcyonalne do pól trójkątów BGG, GGA, AGB, i że x+y+z—1.

Obrawszy bok AB za oś odniesienia, otrzymamy odrazu na zasa- 

dzie prawidła roboczego (52), że odległość centroidu od tej osi 1=—, 
S 

gdzie s=p,+p,+p,. Podobnież q=PP, 3=221. Stąd wynika, źe a, y, z 
s s 

są proporcyonalne do px, p2, p3.
Prz. 3. Siła P, działająca na wierzchołek D czworościanu, prze­

bija przeciwległą ścianę ABC w punkcie G, którego współrzędne po­
wierzchniowe w odniesieniu do trójkąta ABC są (xyz). Okazać, że

P_P_P_P
x.DA y.DB z.DC DG’

gdzie Pi, P2, P3 oznaczają-składowe siły Pna krawędziach DA, DB, DC.
Prz. 4. Siły pewnego układu odpowiadają pod względem wiel­

kości i kierunku odcinkom A|A,', A2A2,... AnAn, i G, G' oznaczają 
odpowiednio centroidy grup punktów Ax, A2,... An oraz Aj, Aj,... A'n. 
Okazać, że, jeżeli przeniesiemy wszystkie siły równolegle tak, aby 
działały na jeden punkt, to wypadkowa ich będzie pod względem kie­
runku i wielkości odpowiadała odcinkowi n. GG'. (Goli. Ex., 1889).

Dany układ sił AA' jest równoważny trzem układom AG, GG', 
G'A' (36), z których pierwszy i ostatni równoważą się każdy oddziel­
nie (51).

Prz. 5. Trzy siły, działające w jednej płaszczyźnie i przyłożone 
w punktach A, B, C, odpowiadają odcinkom AD, BE, CE, gdzie D, Et F

Statyka. 3
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oznaczają ich punkty przecięcia z bokami trójkąta ABC. Dowieść, że 
siły te są równoważne trzem innym siłom, działającym na bokach 
AB, BO, CA i odpowiadającym odcinkom

(CD CE\ (AB AF\ / BF BD\1 
(----------— c, —---------- a, I —-- -------- b.
\ a D / \ b c / \ c a /

T . BD CE AF , _
Jeżeli — = —— — — = k, to owe trzy siły są równoważne 

a b c 
siłom (1 — 2k)c, (1—2k)a, (1 — 2k)b, działającym na bokach trójkąta. 
W takim razie centroid trzech jednakowych cząsteczek, położonych 
w D, E, F, leży w centroidzie trójkąta. Okazać jeszcze, że siły, odpo­
wiadające odcinkom OD, OE, OF, gdzie 0 jest punktem dowolnym, 
posiadają wypadkową, której wielkość oraz linia działania nie zależą 
od k.

Prz. 6. Na cząsteczkę, położoną w płaszczyźnie trójkąta, działają 
trzy siły, skierowane do środków boków; wielkości tych sił są wprost 
proporcyonalne do odległości od owych środków i odwrotnie .pro- 
porcyonalne do promieni odpowiednich kół zawpisanych. Wyznaczyć 
położenie, w którem cząsteczka będzie w równowadze.

(Math. Tripos, 1890).
Punktem szukanym jest środek koła wpisanego.

Prz. 7. Cienka pionowa płyta posiada cztery małe otworki 
A, B, C, D. Cztery sprężyste sznury, których długości naturalne wy­
noszą O A, OB, OC, OD, umocowano w punkcie 0 płyty, ich pozostałe 
końce przeciągnięto przez A, B, C, D i przywiązano do małego cięż­
kiego pierścionka P. Naprężenia sznurów są proporcyonalne do wy­
dłużeń. Okazać, że gdy płyta obróci się w swej płaszczyźnie około 
punktu O, to P zakreśli na płycie koło. (Coli. Ex., 1888).

Prz. 8. Trzy siły P, Q, R działają na trzech prostych DA, DB, 
DC, nie leżących w jednej płaszczyźnie, a ich wypadkowa jest ró­
wnoległa do płaszczyzny ABC. Okazać, że

• 4—— += 0. (St John’s Coli., 1882). 
DA DB DC

Prz. 9. Zakładamy, że wiatr działa na żagiel z siłą proporcyo- • 
nalną do pewnej potęgi różnicy składowych normalnych do żagla 
szybkości wiatru i łódki. Zbadać, czy łódka przy odpowiedniem usta­
wieniu żagla może płynąć prędzej od wiatru w kierunku, tworzącym 
dany kąt z kierunkiem wiatru. Wyznaczyć granice tego kąta.

Prz. 10. ABCDEF jest sześciobokiem foremnym, i na A dzia­
łają siły, które co do wielkości i kierunku odpowiadają odcinkom 
AB, 2AC, 3AD, 4AE, 5AF. Okazać, że długość odcinka, wyobrażającego 
wypadkową, wynosi V 351A B. (Math. Tripos, 1880).
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Równowaga cząsteczki nieswobodnej.

54. Ciała gładkie i chropowate. Dajmy na to, że czą­
steczka, na którą działają dowolne siły, pozostaje w pewnem 
połączeniu z nieskończenie cienkim nieruchomym drutem 
i może jedynie przesuwaj się po tym drucie. Drut wywiera 
na cząsteczkę pewną siłę czyli reakcyę i odwrotnie. Rozłóżmy 
tę siłę na dwie składowe, z których jedna niech działa na 
normalnej do linii drutu, a druga na stycznej. Ta druga skła­
dowa nazywa się tarciem. Doświadczenie wykazuje, że zależy 
ona od materyałów, z których składa się drut i cząsteczka. 
Jeżeli składowa ta jest równa zeru, albo tak mała, że bez wy­
raźnego błędu można jej nie uwzględniać, to mówimy, że ciała 
są gładkie. Jeżeli tarcie nie daje się pominąć, to warunki ró­
wnowagi są bardziej złożone; rozważymy je w innym rozdziale, 
a obecnie będzie jedynie mowa o ciałach gładkich.

Analogiczne uwagi dotyczą przypadku, gdy cząsteczka jest 
zniewolona pozostawać na pewnej powierzchni. Linię lub po­
wierzchnię nazywamy gładką^ jeżeli działanie pomiędzy nią i czą­
steczką zachodzi na normalnej do tej linii lub powierzchni.

55. Dajmy na to, że cząsteczka jest paciorką, nawleczoną 
na drut, a zatem może jedynie poruszać się w kierunku sty­
cznej, poprowadzonej do linii drutu w punkcie, który obe­
cnie zajmuje. W tym razie koniecznym i dostatecznym warun­
kiem równowagi będzie, aby składowa sił w kierunku stycznej 
była równa zeru.

Jeżeli cząsteczka pozostaje na jednej stronie linii, to linia 
zapobiega ruchowi na normalnej tylko w jedną stronę. W tym 
razie warunkiem koniecznym równowagi będzie, aby siły ze­
wnętrzne przyciskały cząsteczkę do linii.

Jeżeli cząsteczka pozostaje na gładkiej powierzchni, to 
składowa sił w kierunku każdej stycznej do powierzchni 
w punkcie, zajętym przez cząsteczkę, powinna być równa zeru.

Innemi słowy wypadkowa sił musi w położeniu równowagi 
działać normalnie do powierzchni i być tak zwrócona, aby przy­
ciskała cząsteczkę do powierzchni.
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56. Dane są równania linii, wyznaczyć na niej położenia, 
w których cząsteczka pozostanie w równowadze pod działaniem 
sił danych.

Dajmy na to, że równania krzywej są dane we współ­
rzędnych Kartezyusza w odniesieniu do układu prostokątnego. 
Niech x, y, z oznaczają współrzędne cząsteczki w położeniu 
równowagi, X, Y, Z składowe sił, równoległe do osi, wre­
szcie niech s oznacza łuk linii, mierzony od pewnego stałego 
punktu do punktu, zajętego przez cząsteczkę. Biorąc składową 
sił X, Y, Z w kierunku stycznej według par. 41, otrzymamy 

xdxl ydu.zdz=o.
ds ds ds

Jeżeli równania linii są dane w postaci

P(x, y, 2)= 0, P(x, y, z)=0,
to, stosując znane symbole pochodnych cząstkowych, otrzymamy

^Xdx + ^ydy + ^Zdz = 0, <^xdx + ^dy + ^Bdz = 0.
Gdy wyrugujemy stosunki dx:dy:dz, to będzie

wyznaczenia x, y, z. Może wypaść dwa lub więcej kompletów

X Y Z
I= Pa P P. = 0.

Y tu *=
Równanie to wraz z równaniami krzywej wogóle wystarcza do

wartości tych współrzędnych; każdemu z nich odpowiada po­
łożenie równowagi.

57. Dane jest równanie powierzchni; wyznaczyć na niej 
punkt lub punkty, w których cząsteczka pozostanie w równowa­
dze pod działaniem sił danych.

Przypuszczamy znowu, że równanie powierzchni f{x, y,z)^0 
mamy we współrzędnych Kartezyusza w odniesieniu do układu 
prostokątnego. W myśl par. 55 kosynusy kierunkowe siły wy­
padkowej muszą być proporcyonalne do kosynusów kierunko­
wych normalnych do powierzchni, a zatem

X _Y_Z 
fx fy Iz
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Dwa te równania łącznie z równaniem powierzchni określają
a, y, z.

58. Ciśnienie)  na linię lub powierzchnię. Ciśnienie to jest 
równe sile wypadkowej, która, jak wiemy, działa normalnie. 
Oznaczmy je przez R; otrzymamy, R2 = X2 + Y2+ Z2, a jego 

. - X Y Z

*

*) Wyraz ciśnienie (pressure) posiada u Routha znaczenie inne 
niż w fizyce, a mianowicie oznacza siłę lub reakcyę, którą jedno 
ciało wywiera na drugie. Przyp. tłumacza.

kosynusy kierunkowe są odpowiednio równe R, R‘ R*

59. Przypuszczaliśmy w  rozważaniach powyższych, że X, Y, Z 
są danemi funkcyami współrzędnych x, y, z. W wielu wypadkach 
współrzędne te są pochodnemi cząstko wemi względem x, y, z pewnej 
funkcyi V, zwanej potencyałem sił; zatem

*

OV dV dV
—, Y=—, Z= — 
0x dy dz

(1)

Poprzednio znaleźliśmy warunek równowagi cząsteczki, która pozo- 
staje na gładkiej krzywej, określonej zapomocą równań ©=0, 1=0; 
warunek ten jest równoważny z twierdzeniem, że w punktach ró­
wnowagi znika jakobian (V, «, •).

Zakładając, że potencyał V jest równy stałej dowolnej c, otrzy­
mamy układ powierzchni, zwanych powierzchniami jednakowego po- 
tencyału, albo powierzchniami ekwipotencyalnemi. Z równań (1) wy­
nika, że X, Y, Z są proporcyonalne do kosynusów kierunkowych nor­
malnej do powierzchni ekwipotencyalnej, a zatem siła wypadkowa 
w punkcie dowolnym jest skierowana według normalnej do takiej po­
wierzchni, przechodzącej przez ten punkt. Stąd zaś wynika, że, jeżeli 
cząsteczka jest zniewolona do pozostawania na pewnej gładkiej krzywej 
lub powierzchni, to położenia równowagi przypadają w tych punktach, 
w których ta krzywa lub powierzchnia styka się z powierzchnią ekwipo- 
tencyalną.

Możliwy jest wypadek, że każdy punkt krzywej lub powierzchni 
jest położeniem równowagi. W tym razie siła wypadkowa jest wszę­
dzie normalna do krzywej lub powierzchni. Krzywa taka leży na po­
wierzchni ekwipotencyalnej, powierzchnia zaś jest sama ekwipoten- 
cyalną.

60. Warunek równowagi

Xdx+ Ydy+Zdz—0
możemy interpretować w sposób inny. Gdy podstawimy X, Y, Z z (1), 
to ostatnie równanie przekształci się na dV=0; znaczy to, że w poło­
żeniu równowagi potencyał sił osiąga maksymum lub minimum.
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61. Prz. 1. Ciężka cząsteczka musi pozostawać na gładkim okrę­
gu koła, położonego w płaszczyźnie pionowej. Sznur, przywiązany do 
cząsteczki, przechodzi przez mały pierścień, umieszczony w najwyż­
szym punkcie okręgu, i w drugim końcu dźwiga ciężar równy cięża­
rowi cząsteczki. Okazać, że układ pozostaje w równowadze, gdy 
część sznura, zawarta pomiędzy pierścieniem a cząsteczką, tworzy 
z pionem kąt 60°.

Prz. 2. Końce sznura przywiązano do dwóch ciężkich pierścieni 
o masach m i m', a prócz tego na sznur nawleczono paciórkę o ma­
sie M. Pierścienie mogą się swobodnie przesuwać na dwóch gład­
kich, sztywnych i nieruchomych prętach, nachylonych do poziomu 
pod kątami a i 3. Okazać, że

cot«: cot B: cot a=M: M+2m': M+2m, 
gdzie © oznacza kąt, który każda z części sznura tworzy z pionem.

(St. John’s, 1890).
Prz. 3. Dwie małe, lekkie obrączki są nawleczone na gładki łuk 

koła, położonego w płaszczyźnie pionowej. Przez obrączki przechodzi 
sznur, do którego przywiązano trzy jednakowe ciężary, dwa na koń­
cach i jeden pośrodku pomiędzy obrączkami. Okazać, że w stanie 
równowagi odległość obrączek od najwyższego punktu okręgu wy­
nosi 30°. (Math. Tripos, 1853).

Prz. 4. Gładki drut w kształcie elipsy ustawiono w taki sposób, 
że duża oś jest pionowa. Na drut jest nawleczona paciorka, ważąca W; 
utrzymują ją w równowadze dwa sznury, przerzucone przez gładkie 
kołki w ogniskach i dźwigające na końcach ciężary, z których wyż-

W szy jest większy od niższego o —, gdzie e oznacza mimośród elipsy, 
e

Okazać, że paciorka wywiera na drut ciśnienie największe lub naj­
mniejsze, gdy jest położona na końcach dużej osi, lub gdy stosunek 
jej promieni wodzących jest równy stosunkowi ciężarów na końcach 
sznura. "(Christ’s Coli., 1865).

Prz. 5. Cztery jednakowe cząsteczki, przyciągające jedna drugą 
z siłą proporcyonalną do odległości, mogą się poruszać po elipsie. 
Równowaga zachodzi oczywiście tylko wtedy, gdy cząsteczki są poło­
żone na końcach obydwóch osi. Osadzamy piątą taką samą cząsteczkę 
nieruchomo w punkcie, którego odległości od małej i dużej osi są 
odpowiednio równe p i q. Okazać, że w tym razie nastąpi równo­
waga, gdy odległości czterech pierwszych cząsteczek od dużej osi będą 
pierwiastkami równania

/ b2q \2 a2b2p2 U*-bWtsa- 363) n(a-5bey"Ż

Prz. 6. Powierzchnia jest taka, że iloczyn odległości każdego 
jej punktu od dwóch punktów stałych A i B jest równy sumie tych 
odległości, pomnożonej przez pewną stałą. Cząsteczka musi pozostawać 
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na tej powierzchni, przyczem punkty A i B wywierają na nią siły 
odpychające, proporcyonalne do odwrotności kwadratów odległości. 
Okazać, że cząsteczka jest w równowadze we wszelkich położeniach.

Prz. 7. Ciężki gładki czworościan jest podparty w trzech pun­
ktach trzech ścian, a czwarta ściana jest pozioma; okazać, że ciśnienia 
w punktach oparcia są proporcyonalne do pól ścian odpowiednich.

(Math. Tripos, 1869).

* Praca.

62. Przypuśćmy, że siła P działa na punkt A pewnego 
ciała w kierunku AB^ i że ten punkt przesunął się do nowego 
bardzo blizkiego położenia A'. Niech « oznacza kąt, który kie­
runek AB siły tworzy z kierunkiem przesunięcia AA' punktu

Fig. 9.

przyłożenia siły. Iloczyn P. AA'. cós® zowie się pracą, wykonaną 
przez siłę. Jeżeli zamiast © stoi kąt, który kierunek AB tworzy 
z kierunkiem A'A, odwrotnym do przesunięcia, to iloczyn ów 
nazywa się pracą, wykonaną przeciw sile P lub nad siłą P. 
Poprowadźmy prostopadłą A'M do AB] praca siły jest także 
równa iloczynowi P. AM, przyczem odcinek AM uważamy za 
dodatni, jeżeli jest zwrócony w stronę siły. Niech P' oznacza 
składową siły w kierunku przesunięcia; w takim razie praca 
będzie jeszcze równa P'. AA'. Wszystkie te sposoby wyrażania 
pracy są oczywiście równoważne, i będziemy się nimi posługi­
wali ustawicznie.

63. Siły, działające na cząsteczkę, wogóle zależą od jej 
położenia; jeżeli zatem cząsteczka przesunie się o skończoną 
odległość AA', to siła P wogóle nie pozostanie bez zmiany ani 
pod względem kierunku ani pod względem wielkości. Z tego 
względu musimy założyć, że przesunięcie AA' jest dostatecznie 
małe, aby można było uważać siłę P za stałą zarówno co do 
wielkości, jak i kierunku. Posługując się językiem rachunku 
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różniczkowego, powiemy, że przesunięcie ĄA' jest nieskończe­
nie małą pierwszego rzędu.

Przypuśćmy, że przesunięcie punktu przyłożenia odbyło się 
po pewnej krzywej, prowadzącej od A do końcowego punktu C. 
Niech ds oznacza jeden z elementów tej krzywej, i przypuśćmy, 
że gdy cząsteczka doszła do tego elementu, to P' było rzutem 
siły na ds, wziętym w kierunku, w którym mierzymy s. W myśl 
definicyi powyższej fP'ds jest sumą poszczególnych prac, które 
wykonywa siła, gdy cząsteczka przebiega z kolei wszystkie ele­
menty krzywej. Sumę tę nazywamy pracą całkowitą przy prze­
sunięciu skończonem. Jeżeli mierzymy s od pewnego punktu O 
krzywej, to granicami całki powyższej będą oczywiście s=OA 
oraz s= OC.

64. Składowa AA‘cos® przesunięcia zowie się niekiedy szyb­
kością przygotowaną punktu przyłożenia, iloczyn zaś P. AA‘cos 
momentem przygotowanym lub pracą przygotowaną siły. Wszy- 
stkie te wyrażenia ściągają się jedynie do przesunięć nieskoń­
czenie małych. Jeżeli przesunięcie jest skończone, to całka 
pracy przygotowanej nazywa się pracą.

65. Niekiedy bywa dogodnie wykonywać zamierzone prze­
sunięcie nie odrazu lecz stopniowo. Tak np. możemy uskutecz­
nić przesunięcie AA', przesuwając A naprzód do D, a następ­
nie od D do A' (fig. 9). Dajmy na to, że AD i DA' są nie­
skończenie małe, a zatem siła P zachowuje przez cały czas 
niezmienną wielkość i kierunek. W takim razie łatwo okazać, 
że praca wykonana w całkowitem przesunięciu AA’ jest równa 
sumie prac, wykonanych w przesunięciach AD i DA’. Poprowadź­
my prostopadłe DN i A’M do kierunku siły; teraz owe prace 
z właściwymi znakami wyrażą się tak: P.AN i P.NM. Suma 
ich jest oczywiście równa P. AM, t. j. pracy, wykonanej w cał­
kowitem przesunięciu AA'.

Jeżeli przesunięcie AA' jest skończone, lecz pomimo to 
siła P pozostaje bez zmiany co do kierunku i wielkości, to 
i w tym razie praca w wypadkowem przesunięciu jest równa 
sumie prac w przesunięciach cząstkowych AD i DA'.

66. Przypuśćmy teraz, że na punkt A działa pewna licz­
ba sił. Gdy punkt ten przesuwa się do A', to każda z nich 
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wykonywa pracę. Sumę tych prac definiujemy, jako pracę wy­
konaną zbiorowo przez wszystkie siły.

Jeżeli pewna liczba sił działa na punkt A, to suma prac 
na każdem małem przesunięciu AA' jest równa pracy, wykonanej 
przez wypadkową.

Praca, wykonana przez jedną z owych sił, jest w myśl 
definicyi równa iloczynowi z AA' przez składową tej siły w kie­
runku AA\ a zatem praca, wykonana przez wszystkie siły, bę­
dzie równa iloczynowi z AA! przez sumę ich składowych; we­
dług par. 44 jest to to samo, co iloczyn z AA' przez składową 
wypadkowej, czyli jest to praca, wykonana przez wypadkową.

67. Dzięki twierdzeniu powyższemu możemy w inny spo­
sób wypowiedzieć warunki równowagi sił P1, P..., działają­
cych na punkt A.

Przypadek 1. Jeżeli cząsteczka A jest swobodna, t, j. ma 
możność poruszać się w każdym kierunku, to do równowagi 
jest niezbędnem, aby wypadkowa była równa zeru. Stąd wy­
nika, że przy przesunięciu cząsteczki w jakimkolwiek kierunku 
praca zbiorowa sił P1, P,... musi być równa zeru.

Odwrotnie, jeżeli praca przygotowana przy pewnem prze­
sunięciu jest zerem, to rzut wypadkowej na kierunek przesu­
nięcia jest także zerem. Jeżeli prace przygotowane sił P1, P2 ... 
przy trzech przesunięciach, nie leżących w jednej płaszczyźnie 
są zerami, to rzuty wypadkowej na te kierunki są również ze­
rami, a zatem cząsteczka jest w równowadze.

68. Przypadek 2. Dajmy na to, że cząsteczka jest znie­
wolona do pozostawania na pewnej linii lub powierzchni; 
w tym razie na cząsteczkę działa jeszcze ciśnienie R, norma­
lne do linii lub powierzchni, i równowaga zachodzi pomiędzy 
siłami P1, P2... oraz R. Zatem w myśl przypadku 1 przy ka­
żdem nieskończenie małem przesunięciu praca przygotowana 
tych wszystkich sił jest równa zeru.

Jeżeli przesunięcie punktu A nastąpiło na stycznej do 
linii albo w płaszczyźnie stycznej do powierzchni, to reakcya 
R tworzy z przesunięciem kąt prosty, a zatem praca przygoto­
wana tej siły jest zerem. Stąd wynika bezpośrednio, że również 
jest zerem praca przygotowana sił P1, P2 ... przy wszelkich 
przesunięciach tego rodzaju.
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Przypuśćmy teraz, że cząsteczka musi pozostawać na pe­
wnej linii, i że praca przygotowana przy przesunięciu na sty­
cznej jest równa zeru. Stąd wynika, że rzut wypadkowej na 
styczną jest równy zeru, a zatem cząsteczka pozostaje w ró­
wnowadze.

Przypuśćmy następnie, że cząsteczka musi pozostawać na 
pewnej powierzchni, i że prace przygotowane przy dwóch prze­
sunięciach, położonych w płaszczyźnie stycznej, lecz nie na 
jednej prostej, są zerami; w takim razie rzuty wypadkowej na 
te kierunki są zerami, i cząsteczka jest w równowadze.

69. Prz. 1. Z zasady szybkości przygotowanych wyprowadzić 
warunki równowagi cząsteczki, zniewolonej do pozostawania na krzy­
wej (56).

Na cząsteczkę działają siły X, Y, Z, a rzuty przesunięcia ds na 
kierunki sił są dx, dy, dz. Mnożąc każdą siłę przez odpowiedni rzut, 
otrzymamy odrazu warunek równowagi Xdx+ Ydy+Zdz—Q.

Prz. 2. Dwa małe pierścionki o jednakowych ciężarach są na­
wleczone na gładki nieruchomy drut w kształcie elipsy, której duża 
oś jest pionowa. Pierścionki łączy sznur, przechodzący przez gładki 
kołek w górnem ognisku elipsy. Okazać, że pierścionki pozostaną 
w równowadze we wszelkich położeniach.

Niech W oznacza ciężar każdego pierścionka, T — naprężenie 
sznura, l jego długość, a i x‘ odcięte pierścionków, mierzone piono­
wo nadół od kołka, wreszcie r i r' promienie wodzące pierścieni, 
czyli ich odległości od kołka. Oczywiście r+r'=l. Ponieważ pierwszy 
pierścień jest w równowadze, przeto w myśl zasady pracy przygoto­
wanej Wdx—Tdr=0. Wyrazowi pierwszemu nadano tu znak dodatni, 
bo x mierzymy w tym samym kierunku, w którym działa siła W; 
drugi wyraz otrzymał znak ujemny, bo T działa w kierunku odwro­
tnym do tego, w którym mierzymy r. W ten sam sposób dla drugiego 
pierścienia otrzymamy Wdx'—Tdr'=Q. Stąd wynika równanie równo­
wagi Wdx + Wdx' = 0, gdyż dr—— dr1. Dotychczas nie uwzględniliśmy 
jeszcze okoliczności, że drut ma kształt elipsy. Niech 2c oznacza lotus 
rectum*),  i e mimośród liczbowy; w takim razie r=c+ex, r'=c+ex', 
i dx+dx'=0, a zatem warunek równowagi będzie spełniony zawsze, 
jakiekolwiek położenie nadamy pierścieniom.

*) Latus rectura jest to cięciwa stożkowej, przechodząca przez 
ognisko i prostopadła do osi. Przyp. tłómacza.

Prz. 3. Cząsteczkę, która może się przesuwać po elipsie, przy­
ciąga dany punkt z siłą proporcyonalną do odległości. Dowieść, że 
położenia równowagi cząsteczki znajdują się na hiperboli, której asym- 
ptoty są równoległe do osi elipsy. (Math. Tripos, 1865).
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Prz. 4. Dwa pierścionki o jednakowych ciężarach przyciągają 
się nawzajem wprost proporcyonalnie do odległości. Nawleczono je 
na gładki drut w kształcie paraboli, której oś jest pionowa, a wierz­
chołek zwrócony ku górze. Okazać, że, jeżeli zachodzi równowaga 
w jednem położeniu synietrycznem, to zachodzi i we wszystkich.

(Coli. Ex. 1887).
Prz. 5, W parabolicznym rowku znajdują się dwie cząsteczki, 

pomiędzy któremi zachodzi przyciąganie lub odpychanie; łączy je nić, 
przechodząca przez małą obrączkę w ognisku. Okazać, że gdy czą­
steczki są w spokoju, to odległość od wierzchołka do ogniska jest 
średnią proporcyonalną pomiędzy ich odciętemi, mierzonemi od wierz­
chołka.

Prz. 6. Tworzące stożkowego wzgórza o wysokości h są nachy­
lone do poziomu pod kątem a. Na jego wierzchołek wciągnięto ciężar 
W drogą, przecinającą wszystkie tworzące pod kątem 3. Powierzchnia 
wzgórza jest nierówna, i tarcie p. razy przewyższa ciśnienie normalne.

u. COt a\
Okazać, że wykonana praca wynosi

(St John’s Goli. 1887).

Równoiuaga astatyczna.
70. Przypuśćmy, że trzy siły P, Q, R, działające na je- 

den punkt, są w równowadze. Obróćmy je około tego punktu 
o dowolny kąt; jeżeli przytem wielkości sił a także kąty po­
między niemi zawarte pozostaną bez zmiany, to oczywiście 
równowaga nie dozna zakłócenia. Możemy uważać, że siła jest 
przyłożona w którymkolwiek punkcie jej linii działania, uwa­
żajmy więc za punkty przyłożenia sił P, Q, R punkty A, B, C 
odnośnych linii działania. Obróćmy znowu każdą z sił około 
nowego punktu przyłożenia o jeden i ten sam kąt. Oczywiście 
równowaga zostanie rozstrojona, jeżeli punkty A, B^ C nie są 
obrane w taki sposób, aby i nadal linie działania sił przecho­
dziły przez jeden punkt (34).

Zamiast obracać siły około punktów przyłożenia możemy 
obrócić ciało o pewien kąt około pewnego punktu. W tym 
razie siły zachowają swe wielkości i kierunki bez zmiany, lecz 
ich punkty przyłożenia, jako należące do ciała, poruszają się 
wraz z niem. Jeżeli ten ruch obrotowy nie zakłóca równowagi, 
to równowaga nazywa się astatyczną.

71. Przypuśćmy, że siły P i Q są przyłożone w pun­
ktach A i B, a ich linie działania przecinają się w punkcie O.



— 44 —

Gdy siły obracają się około A i B w płaszczyźnie AOB, to kąt 
pomiędzy niemi powinien pozostać bez zmiany. Stąd widać, że 

P . punkt 0 zatacza okręg koła, przechodzący 
przez A i B. Wypadkowa tych sił przecho­
dzi przez 0 i tworzy kąty stałe z OA i OB^ 
a zatem przecina okręg w stałym punkcie C.

3 Wypadkowa ta jest równa i odwrotna do 
trzeciej siły R.

c c Jeżeli zatem trzy siły P^ Q, R, przyłożone
Fig. 10. w punktach A, B, C, przecinają się na okręgu, 

opisanym na ABC, i są w równowadze, to ró­
wnowaga nie zostanie zakłócona, gdy obrócimy je o dowolny kąt 
w płaszczyźnie ABC około punktów przyłożenia. Dowód powyż­
szy znajdujemy w Statyce Moigno str. 228.

Synusy kątów AOG i BOC są proporcyonalne do AC i GB, a stąd 
wynika, że odcinki AG i GB są odwrotnie proporcyonalne do sił, 
przyłożonych w A i B. Jeżeli siły P i Q są równoległe, to okręg prze­
chodzi w prostą AB, i na tejże prostej leży punkt G. Jeżeli prócz tego 
siły P i Q są równe i odwrotne, to siła R działa na nieskończenie 
odległy punkt prostej AB.

72. Przypuśćmy, że dwie siły P1, P2 działają na dane 
punkty A, B; punkt, na który zawsze działa wypadkowa, jak­
kolwiek obrócimy siły, zowie się środkiem sił. Przypuśćmy, że 
na trzeci dany punkt C działa trzecia siła P3; możemy ją po­
łączyć z wypadkową dwuch pierwszych i otrzymać nową wy­
padkową, działającą na inny stały punkt ciała. Będzie to śro­
dek trzech sił. Działanie to można rozciągnąć do dowolnej 
liczby sił. Możemy zatem otrzymać jedną siłę, działającą na 
stały punkt ciała, jako wypadkową dowolnej liczby sił, dzia­
łających na jakiekolwiek stałe punkty w płaszczyźnie. Ta po- 
jedyńcza siła pozostaje wciąż wypadkową i działa wciąż na 
ten sam punkt, gdy siły składowe obracają się około swych 
punktów przyłożenia. Siła ta zowie się wypadkową astatyczną.

73. Astatyczny trójkąt sil. Twierdzenie powyższe prowadzi 
do nowej metody stosowania trójkąta sił. Z fig. 10 widać, że kąty 
ABC i AOG, jako oparte na tym samym łuku, są równe. Toż samo 
dotyczy kątów BAG i BOG. Jeżeli przeto siły P, Q, R się równoważą 
to są proporcyonalne do synusów kątów trójkąta ABC, a zatem i do 
jego boków. Mamy więc

P:BG- = Q: CA=R-.AB.



— 45 —

Punkty A, B, C dzielą okręg na trzy luki AB, BC, CA. Jeżeli 
punkt 0 leży na AB, to siły, których linie działania przechodzą przez 
A i B, muszą być obydwie zwrócone do A i B lub obydwie odwró­
cone od A i B. W pierwszym przypadku siła trzecia będzie odwró­
cona od C, w drugim zaś będzie zwrócona do 0. Doszliśmy zatem do 
twierdzenia następującego:

Trzy siły, działające na wierzchołki trójkąta A, B, C, są w równo­
wadze, jeżeli 1) wielkości ich są proporcyonalne do przeciwległych bo­
ków, 2) ich linie działania sphodzą się w jakimkolwiek punkcie O okręgu 
opisanego, 3) kierunki ich podlegają wyżej wymienionej regule. Równo­
waga nie zostanie zakłócona, gdy obrócimy wszystkie siły około pun­
któw przyłożenia o kąt dowolny, lecz dla wszystkich jednakowy, nie zmie­
niając przytem ich wielkości. Uważamy tu, że wszystkie siły działają 
w płaszczyźnie trójkąta ABC.

74. Prz. 1. Siły P, Q, R, S..., działają w jednej płaszczyźnie, są 
w równowadze, i ich linie działania schodzą się w punkcie 0. Za- 
toczmy przez punkt 0 dowolne koło; przetnie ono linie działania sił 
w punktach A, B, C, D.... Dowieść, że równowaga jest astatyczna, je­
żeli uważamy te punkty za punkty przyłożenia sił.

Prz. 2. Na fig. 10 prowadzimy prostą CC' równolegle do AB; 
przetnie ona koło w punkcie C'. Okazać, że siły P, Q, R tworzą równe 
kąty z bokami BC’, CA, AB trójkąta BCA. Wyprowadzić następnie 
na zasadzie par. 35 warunki równowagi.

Prz. 3. Niech a i' 3 oznaczają kąty, które siły P i Q tworzą z wy­
padkową R. Okazać, że środek sił jest określony przez

AB BE AB 
CE=  =  = , *

COt^ COta COta + COt^ 

gdzie CED jest prostopadłą z C do AB (fig. 10).

Równowaga trwała i chwiejna.

75. Dajmy na to, że ciało, podlegające działaniu pewnych 
sił, pozostaje w równowadze w położeniu, które nazwiemy po­
łożeniem A. Przesuńmy to ciało do jakiegoś sąsiedniego poło­
żenia B i pozostawmy je tam w spokoju. Nastąpi jedno z dwoj­
ga: albo ciało pozostanie w równowadze i w tem nowem po­
łożeniu, albo zacznie się poruszać pod działaniem sił. W przy­
padku pierwszym A nazywa się położeniem równowagi obojęt­
nej. W przypadku drugim równowaga w położeniu A zowie się 
chwiejną lub trwałą zależnie od tego, czy w ciągu następnego 
ruchu odchylenia ciała od owego położenia przekraczają pe­
wne określone granice, lub ich nie przekraczają. Rozległość 
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tych granic zależy od różnych okoliczności. Niekiedy granice 
są bardzo ciasne, i odchylenia dozwolone są nieskończenie 
małe, w innych razach bywa dopuszczalna większa rozległość.

Określanie trwałości równowagi należy do zagadnień dy- 
namicznych. W myśl definicyi musimy zbadać cały ruch na­
stępny, aby wyznaczyć rozległość odchyleń ciała od położenia 
równowagi. Niekiedy jednak sprawa daje się rozstrzygnąć za- 
pomocą rozważań statycznych. Jeżeli okoliczności są tego ro­
dzaju, że przy wszelkich odchyleniach ciała od położenia A, 
zawartych w określonych granicach, siły usiłują przywrócić 
ciału owo położenie, to możemy uważać równowagę za trwałą 
dla odchyleń w obrębie tych granic. Jeżeli natomiast siły usi­
łują jeszcze bardziej oddalić ciało od położenia A, to równo­
wagę możemy uważać za chwiejną. Nie daje się jednak ściśle 
dowieść, że są to warunki dostateczne, jeżeli nie rozporządza­
my pewnemi równaniami dynamicznemi. Dla tego też należa­
łoby oznakę powyższą nazywać tymczasem dla ścisłości oznaką 
statycznej trwałości lub chwiejności równowagi, dla krótkości 
jednak nie będziemy czynili tych rozróżnień, chyba że wypa- 
dnie zwrócić na nie uwagę szczególną.

76. Dwie równe siły P i Q, przyłożone do ciała w punktach 
A i B, są w równowadze; oczywiście działają one na prostej AB. 
Dajmy na to, że ciało obróciło się o pewien kąt, mniejszy od dwóch 
kątów prostych, przyczem siły działają wciąż na te same punkty ciała 
i nie zmieniają kierunku w przestrzeni. Pragniemy zbadać warunki 
trwałości równowagi.

Widać z figury, że siły usiłują przywrócić ciału położenie pier­
wotne, jeżeli każda z nich jest odwrócona od punktu przyłożenia dru­
giej, usiłują one natomiast jeszcze dalej odchylić ciało od położenia 
pierwotnego, jeżeli każda z nich działa w stronę punktu przyłożenia 
drugiej.
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Jeżeli ciało obróci się o dwa kąty proste, to znowu nastąpi ró­
wnowaga; równowaga ta będzie chwiejna, jeżeli poprzednio była 
trwała i odwrotnie.

77. Prz. 1. Gładką okrągłą obręcz ustawiono w położeniu po­
ziomem, a na obręcz nawleczono pierścionek, pozostający w równo­
wadze, gdy działają nań dwie siły w kierunkach cięciw PA i PB. 
Okazać, że stosunek tych sił jest równy stosunkowi BC do AC, gdzie 
C oznacza drugi koniec średnicy, przechodzącej przez P. Okazać ró­
wnież, że równowaga jest chwiejna, jeżeli punkty A, B są stałe, i wiel­
kości sił nie ulegają zmianie. (Math. Tripos, 1854).

Prz. 2. Trzy dane siły P, Q, B, działające na ciało w jednej 
płaszczyźnie i przyłożone w punktach A, B, C, są w równowadze. 
Gdy poruszymy ciało, to siły nie przestają działać na te same punkty 
w tych samych kierunkach, i wielkości ich nie ulegają zmianom. 
Zbadać warunki trwałości równowagi. (Zobacz także par. 221).

W położeniu równowagi linie działania sił muszą się spotykać 
w pewnym punkcie O. Jeżeli ten punkt leży na okręgu koła, opisa­
nego na ABC, to, jak wiemy z paragrafu 
71, równowaga jest obojętna.

Przypuśćmy teraz, że punkt 0 le­
ży wewnątrz kołowego odcinka, na któ­
rym jest oparty kąt ACB, przyczem siły 
P i Q są zwrócone w strony punktów 
A i B, R zaś działa od C do 0. Zatoczmy 
koło, przechodzące przez 0, A, B; prze- 
tnie ono OC w punkcie C. Wobec tego, 
że 0 leży wewnątrz koła ABC, punkt C 
musi leżeć nazewnątrz. W myśl par. 71 siły P i Q są astatycznie ró­
wnoważne sile równej i odwrotnej do R, lecz przyłożonej w C'. Wi­
dzimy, że cały układ jest równoważny dwóm siłom, przyłożonym 
w C i C, przyczem każda z nich jest odwrócona od punktu przyło­
żenia drugiej. Stąd wynika, że równowaga jest trwała dla wszelkich 
odchyleń mniejszych od dwóch kątów prostych. Jeżeli P i Q działają 
od A i B w stronę O, to równowaga jest chwiejna.

Jeżeli punkt O leży nazewnątrz koła ABC, lecz wewnątrz kąta 
ACB, to C leży wewnątrz owego koła. Warunki zostały tu odwrócone, 
a zatem równowaga jest chwiejna, jeżeli siły P i Q są zwrócone od O 
do A i B.

Jeżeli punkt O leży wewnątrz trójkąta ABC, to wszystkie trzy 
siły muszą być zwrócone do 0 lub wszystkie odwrócone od tego 
punktu. Rozumując jak poprzednio, dojdziemy, że w przypadku pier­
wszym równowaga jest chwiejna, w drugim trwała.

Streszczając się, otrzymamy wyniki następujące: W przypadku, 
gdy w stanie równowagi przynajmniej dwie siły działają od wspólnego 
punktu 0 do punktów przyłożenia, równowaga jest trwała, jeżeli 0 
leży wewnątrz koła ABC, i chwiejna, jeżeli 0 leży nazewnątrz. W przy­
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padku, gdy przynajmniej dwie siły działają od punktów przyłożenia 
do O, warunki powyższe zmieniają się na odwrotne.

Prz. 3. Cząsteczka, która musi pozostawać na danej gładkiej po­
wierzchni, jest w równowadze w punkcie 0 pod działaniem sił, po­
siadających potencyał, i Oz oznacza wspólną normalną do owej po­
wierzchni i do powierzchni ekwipotencyalnej, przechodzącej przez O. 
Przesuwamy cząsteczkę o mały łuk OP=ds, i niech F oznacza składo­
wą siły, działającej na cząsteczkę w kierunku stycznej do OP w pun­
kcie P. Okazać, że F— (1----- ^Zds, gdzie Z oznacza ciśnienie w po-

\P P
łożeniu równowagi, a p i p‘ promienie krzywizny przecięć normalnych 
obydwóch powierzchni z płaszczyzną zOP.

Niech z oznacza odległość PN punktu P od “płaszczyzny xy, 
X’, Y', Z' składowe siły, działającej na cząsteczkę w punkcie P, wre- 
szcie « kąt xON. Kąt, który styczna [w P do przekroju normalnego 

ds
4zOP tworzy z ON, jest równy —, a zatem, odrzucając kwadraty 

P
wielkości małych, otrzymamy

ds
F-— X‘COS t — Y‘sin p — Z’— .

P
Można tu zamiast Z’ napisać wartość tej składowej w położeniu ró­
wnowagi, a ponieważ z jest nieskończenie małą drugiego rzędu, przeto 
X’, Y' mają w P te same wartości, co i w N. Stąd wynika, że dwa 
pierwsze wyrazy posiadają jednakowe wartości dla wszystkich po­
wierzchni, stykających się z płaszczyzną xy w punkcie 0; lecz dla 
powierzchni ekwipotencyalnej F=0, a zatem dwa pierwsze wyrazy =

Z dowiedzionego wzoru wynika, że równowaga cząsteczki w pun­
kcie 0 danej powierzchni jest trwała dla niektórych przesunięć i chwiej­
na dla innych; granicę stanowi linia przecięcia danej powierzchni z po­
wierzchnią ekwipotencyalną, przechodzącą przez 0. Jeżeli powierzchnia 
ekwipotencyalna przebiega całkowicie po jednej stronie powierzchni 
danej, to równowaga jest dla wszystkich przesunięć trwała lub dla 
wszystkich chwiejna.



* ROZDZIAŁ III.

SIŁY RÓWNOLEGŁE.

78. Wyznaczyć wypadkową dwóch sił równoległych.
Niech będą dwie siły równoległe P i Q, działające na 

punkty A i B; punkty te są zresztą dowolnymi punktami na 
liniach działania. Aby otrzymać punkt przecięcia sił w odle­
głości skończonej, przyłóżmy w punktach A i B dwie jakiekol-

Fig. 13.

wiek równe siły F^ działające w kierunkach odwrotnych. Wy­
padkowa sił P i F działa na prostej A O, wypadkowa zaś sił 
Q i F na prostej BO; proste te przecinają się w punkcie 0.

Tym sposobem zastąpiliśmy dwie siły dane przez dwie in­
ne i możemy uważać, że te ostatnie działają na punkt 0. Po­
prowadźmy teraz prostą 00 równolegle do AP i BQ; przetnie 
ona AB w punkcie C. Zwróćmy uwagę na siłę, działającą na 
0 wzdłuż OA. Możemy rozłożyć ją (jak w dowodzie równole- 
głoboku sił Duchayli) na dwie siły, jedną równą P i działają­
cą w kierunku OC i drugą równą F^ działającą równolegle do 
CA. Również druga siła, działająca na 0 wzdłuż OB, jest 
równoważna sile Q, działającej wzdłuż OC, oraz sile F, działa­
jącej na 0 równolegle do CB.

Siły F oczywiście równoważą się, i możemy je usunąć.
Statyka. 4
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Tym sposobem cały układ sprowadza się do jednej siły P+ Q, 
działającej na prostej OC.

Boki trójkąta OCA są odpowiednio równoległe do P, F 
.. . . OC P . . . OC Qi ich wypadkowej. Stąd wynika---- = — ; również — == —,

CA F CB F

a zatem ^■O BC_ AB 
Q ~ P~P+Q'

Wypadkowa dwóch sił równoległych P i Q jest równa P + Q, 
a jej linia działania dzieli każdy odcinek AB, zawarty pomiędzy 
liniami działania składowych, w stosunku odwrotnym tych sił.

Ten sam dowód daje się zastosować i w tym razie, gdy 
siły P i Q posiadają kierunki odwrotne; jedynie figura będzie 
nieco odmienna. Jeżeli siła Q jest większa od P, to BO two­
rzy mniejszy kąt z Q, niż OA z P, a zatem O leży wewnątrz 
kąta Q,BC. W tym przypadku wypadkowa wynosi Q- P, a jej 
linia działania dzieli AB zewnętrznie w stosunku odwrotnym 
do stosunku sił.

Warto zauważyć, że punkt C, w którym wypadkowa przecina 
prostą AB, jest centroidem dwóch cząsteczek, położonych w A i B; 
masy tych cząsteczek są proporcyonalne do sił, działających na owe 
punkty (53).

79. Odwracając działanie powyższe, możemy daną siłę R, 
działającą na dany punkt C, zastąpić przez dwie równoległe siły 
P i Q, przyłożone w dwóch punktach A i B, obranych dowolnie 
na jakiejkolwiek prostej, przechodzącej przez C.

Oznaczmy CA przez a i CB przez b, uważając a, b za do­
datnie, gdy są mierzone od C w tym samym kierunku. Znaj- 
dziemy

b aP+Q^R, P=--—P, b—a a—b
Jeżeli A i B leżą po tej samej stronie punktu C^ to a i b są 
dodatnie; w tym razie składowa bliższa R jest zwrócona w tę 
samą stronę, co i R; druga składowa działa w kierunku od­
wrotnym, i uważamy ją za ujemną. Jeżeli C leży pomiędzy 
A i P, to jedna z odległości a, b jest ujemna. W tym razie 
obydwie składowe są zwrócone zgodnie z R.

80. Wyznaczyć wypadkową jakiejkolwiek liczby sił równo­
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ległych Pv P2--, działających na punkty A,, A2..., odniesione do 
jakiegokolwiek układu współrzędnych.

Niech (x1Y121), (x2U2zz)--- oznaczają współrzędne Kartezyu- 
sza punktów A,, A2... Siły P i P2, działające na A, i A2, są 
równoważne jednej sile P1+P2; ostatnia działa na punkt C1 , 
położony na A,A, tak, że P.A,C1= P2.A2C2 (par. 78). Współ­
rzędne punktu C1 oznaczamy przez (6,151). Odcinki A1C1 i A2C1 
są w tym samym stosunku, co ich rzuty na osi x, a zatem

P(61 - x,) = P2(x, - 6,) ,
lub (P,+P,)6,= Pa,+P,x,

Dla innych współrzędnych punktu C1 otrzymamy wzory 
analogiczne.

Siła P1+P2, działająca na C1, oraz trzecia siła P3, dzia­
łająca na As, są znowu równoważne sile P1+P2+P,, działa­
jącej na punkt C2, którego współrzędne (§27252) wyznaczymy z

(P, +P,+P,),= (P, + P,)6, +P,X>
= Pix1 + P,x, + I 323 

oraz z wzorów analogicznych na 72, 52.
Postępując dalej w ten sam sposób, zobaczymy, że wy­

padkowa wszystkich sił jest równa ................... , a jeżeli (§n%) 
oznaczają współrzędne jej punktu przyłożenia, to

(P + P2 + .)= Px, +1 2x2 + ...
(P + P2 + .) = Ply1 + P2y2 + • • •
(P + P,+ ..) : = P51 + P,E, +.

Równania te zwykle piszemy w postaci takiej:

. l^Px ^Py , ŁPz

81. Może się wydać, że dowód powyższy jest nieważny lub 
wymaga pewnych modyfikacyi, gdy niektóre z wypadkowych P+P2, 
P1+P2+P3,... są równe zeru, bo wówczas odpowiednie 61, 62,... są nie­
skończenie wielkie. Wydaje się również, że wyniki powyższe zawo­
dzą, gdy 2 P=0. Ale każde twierdzenie, dowiedzione dla ogólnych war­
tości sił, musi mieć moc i w owych wypadkach granicznych, jakkol­
wiek ihterpretacya jego będzie niejasna, dopóki nie dojdziemy do te- 
oryi par.

Możemy uniknąć tej pozornej trudności, wprowadzając małą 
zmianę do rozumowania powyższego. Podzielmy siły na dwie grupy: 
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do pierwszej zaliczymy wszystkie siły, zwrócone w tę samą stronę, do 
drugiej wszystkie siły, zwrócone przeciwnie. Przypuśćmy, że sumy 
sił w tych dwóch grupach są nierówne. Składamy przedewszystkiem 
siły tej grupy, której suma jest większa, a następnie dołączamy po je­
dnej sile drugiej grupy. Oczywiście przy postępowaniu takiem żadna 
ze składowych cząstkowych nie będzie równa zeru, i żaden punkt 
przyłożenia nie wypadnie w nieskończoności. Jeżeli sumy sił w oby­
dwóch grupach są równe, to środek sił równoległych jest nieskończe­
nie odległy.

82. Wyrażenia na współrzędne (En$) są takie same, jak 
wyrażenia na współrzędne centroidu, które znaleźliśmy w pa­
ragrafie 51; wyciągamy stąd prawidło następujące: .

Aby wyznaczyć wypadkową sił równoległych P1, P2, ... obie­
ramy na ich liniach działania punkty • A 1, A,, ... i umieszczamy 
w tych punktach cząsteczki o masach proporcyonalnych do P1, 
P, ... Linia działania wypadkowej przechodzi przez centroid tych 
cząsteczek i idzie równolegle do sił; wypadkowa wynosi ^P.

Odwrotnie można każdą siłę zastąpić układem sił równoległych, 
działających na dowolne punkty A,, A2...; owe siły powinny być ta­
kie, aby centroid leżał na sile danej.

Twierdzenie powyższe jest w rzeczywistości przypadkiem gra­
nicznym twierdzenia Leibniza. Jeżeli siły działają na prostych OA1, 
OA2..., przechodzących przez jeden punkt, to można wyznaczyć wy­
padkową przy pomocy jednej z metod, które rozważaliśmy w rozdzia­
le poprzedzającym. Założywszy, że punkt O jest bardzo odległy, mo­
żemy uważać siły, działające na OA, , OA2..., za równoległe, i odrazu 
otrzymamy twierdzenie, odpowiednie. Tak np. w par. 51 mieliśmy, 
że wypadkowa sił, proporcyonalnych do Pi . OAX, P2.OA2..., jest pro- 
porcyonalna do ^P.OC i działa na prostej OC, gdzie C oznacza cen­
troid cząsteczek Pi, P2..., położonych w A, , A2... W granicy odcinki 
OA, , OA2... OC są wszystkie równe, a zatem wypadkowa sił równole­
głych, proporcyonalnych do Pi, P2... jest proporcyonalna do ZP i dzia­
ła na C.

83. Punkt (§n£), określony w równaniach paragrafu 80, 
posiada pewną doniosłą właściwość. Położenie jego nie zależy 
od kątów, które siły tworzą i osiami współrzędnych. Jeżeli uwa­
żamy punkty, na które działają dane siły równoległe za niezmien­
ne w ciele, to i punkt przyłożenia wypadkowej zachowuje w ciele 
położenie niezmienne, jakkolwiek obrócimy owe siły około ich pun­
któw przyłożenia; powinny one przytem pozostawać równ\ - q 
i nie zmieniać się pod względem wielkości.
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Ów punkt przyłożenia wypadkowej zowie się „środkiem 
sił rówmległych1''.

84. Prz. 1. Cztery siły równoległe, z których każda jest równa 
P, działają na wierzchołki A, B, C, D płaskiego czworoboku, w któ­
rym kąt C przewyższa 1800, a piąta siła — P równoległa do tamtych, 
działa na punkt przecięcia H przekątni HCA i BHD. Okazać, że, je­
żeli środek wszystkich pięciu sił leży w wierzchołku C, to HC—CA.

Prz. 2. Wysokości*AD, BE, CE trójkąta ABC przecinają się 
w punkcie P, i sześć równych sił równoległych działa na punkty środ­
kowe boków i odcinków PA, PB, PC. Okazać, że wypadkowa jest 
przyłożona w środku koła, które przechodzi przez te wszystkie punkty 
środkowe. (Math. Tripos, 1877.)

Prz. 3. Przekątnie czworoboku AB CD przecinają się w punkcie 
O. Na środki boków AB, BC, CD, DA działają siły równoległe, odpo­
wiednio proporcyonalne do pól trójkątów AOB, BOC, COD, DOA. Do­
wieść, że środek tych sił leży w czwartym wierzchołku G równole- 
głoboku, zbudowanego na bokach OE i OE, gdzie E i F oznaczają 
punkty środkowe przekątni AC i BD. (Coli. Ex. 1885.)

Obrawszy BD za oś x, znajdziemy =2(p— p'), gdzie pip1 ozna- 
czają odległości wierzchołków A i C od BD. Stąd wynika, że środek 
sił równoległych leży na EG-. W podobny sposób dojdziemy, że leży 
on również na EG.

85. Wyznaczyć warunki równowagi układu sił równoległych.
Oznaczmy te siły przez Pt^ ... Pn-, w myśl par. 80 posia­

dają one wypadkową, jeżeli nie jest spełnione równanie ZP=0. 
Równanie to stanowi niezbędny warunek równowagi ale nie­
wystarczający.

Możemy wyznaczyć wypadkową n — 1 sił, nie wprowadza- 
jąc żadnych sił, posiadających linie działania w nieskończono­
ści (80); wynika to stąd, że suma owych n — 1 sił jest równa 
—Pn, a więc różni się od zera. Do równowagi wystarczy, aby 
punkt przyłożenia tej wypadkowej leżał na linii działania 
siły Pn.

Oznaczmy współrzędne punktu przyłożenia tej wypadko- 
wej przez (§n%). Wyznaczyliśmy je w par. 80. Mamy więc

. -.... — P,-1 2,-1 
P+-+P,-)" 

oraz analogiczne wyrażenia na n i C.
Niech (c3Y) oznaczają kąty kierunkowe sił danych. Rzu­

ty odcinka, łączącego punkt (§n£) z punktem przyłożenia siły PK, 



— 54 —

czyli z (AnJnZn), na osi współrzędnych są odpowiednio równe 
6-Xn, -Yn, Z-zn, a zatem

6 En 1 Un C zn 
cos a cos 3 cos 1

Podstawiając wartości współrzędnych (475) i uwzględnia­
jąc, że mianownik wyrażenia na § jest równy -Pn^ otrzymamy

2 Px x Py 2 P z.
cos o cos 3 cos 7

Równania te wraz z ZP=0 stanowią trzy niezbędne i wy­
starczające warunki równowagi.

Jeżeli równowaga ma zachodzić, jakkolwiek obrócimy si­
ły około ich punktów przyłożenia, to punkt przyłożenia wypa­
dkowej pierwszych n— 1 sił, wyznaczony według par. 80, po­
winien przypaść w danym punkcie przyłożenia siły Pn, czyli

6 En , 7 IJn, $ — Zn •
Stąd wynika

2 Pa =0, X Py=0, ^Pz = 0........................(2)
Łącząc te równania z SP = 0, mamy cztery warunki niezbędne 
i dostateczne równowagi astatycznej układu sił równoległych.

86. Prz. 1. Okazać, że każdy układ sił równoległych daje się 
zastąpić przez trzy siły równoległe, przyłożone w wierzchołkach do­
wolnego trójkąta ABC.

Dajmy na to, że P, jedna z sił danych, przecina płaszczyznę trój­
kąta w punkcie, którego współrzędne powierzchniowe są x, y, z (par. 53, 
prz. 2). Możemy zastąpić siłę P przez trzy siły równoległe Px, Py, Pz, 
działające na wierzchołki (82), a wszystkie siły dane są równoważne 
trzem siłom 2 Px, ^Py^ ^Pz, działającym odpowiednio na A, B, C.

Prz. 2. Przecinamy dowolną płaszczyzną linie działania czte­
rech sił równoległych, pozostających w równowadze. Przez cztery 
punkty przecięcia przechodzi sześć prostych, tworzących cztery trój­
kąty. Dowieść, że każda siła jest proporcyonalna do pola trójkąta, 
którego wierzchołki leżą na liniach działania trzech sił pozostałych.

(Ap/)lied Mathematics Rankina, par. 143).

87. Ciężkie ciało jest zawieszone w nieruchomym punkcie, 
nie podlegając żadnym innym ograniczeniom swobody ruchu, ma­
my wyznaczyć położenie równowagi.

Ciało jest w równowadze pod działaniem ciężarów wszy­
stkich swych elementów oraz reakcyi w punkcie zawieszenia. 
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Ciężary elementów tworzą układ sił równoległych i są równo­
ważne całkowitemu ciężarowi ciała, działającemu pionowo na 
dół na środek ciężkości. Wywnioskujemy stąd łatwo, że w sta­
nie równowagi środek ciężkości musi leżeć pionowo pod pun­
ktem zawieszenia. Jest również rzeczą oczywistą, że reakcya 
w punkcie zawieszenia jest równa ciężarowi ciała.

Przy stosowaniu zasady powyższej trzeba znać położenia śro­
dków ciężkości ciał, wskazujemy też je w przykładach następujących 
w miarę potrzeby. Jeżeli przedmiot ten jest jeszcze czytelnikowi cał­
kowicie obcy, to radzimy mu przyjąć tymczasem podane wskazówki 
na wiarę, albo zajrzeć do rozdziału, poświęconego środkowi ciężkości, 
gdzie można znaleźć odnośne dowody.

Prz. 1. Jednorodną cienką płytę trójkątną A.BC zawieszono u nie­
ruchomego punktu 0 na trzech sznurach, uczepionych w wierzchoł­
kach. Okazać, że naprężenia sznurów są proporcyonalne do długości.

W trójkącie ABC przeprowadzamy ośrod­
kową AM; przetnie ona BC w punkcie M. Sro- O 
dek ciężkości G płyty leży na AM tak, że N 
AG=lAM..

3 • A —-------——+ VTrzy naprężenia sznurów, działające Pqi L \ / 
wzdłuż AO, BO, CO, i ciężar płyty, działający . UXM 
wzdłuż 0G-, są w równowadze, a zatem wypa- V | 
dkowa naprężenia AO i ciężaru jest równa i od- B V 
wrotna do wypadkowej naprężeń BO i CO; pro- Np 
sta OAI jest wspólną linią działania tych wy­
padkowych, gdyż każda z nich działa w pła- Fig. 14. 
szczyźnie swych składowych.

Poprowadźmy przez B i C proste równoległe do OC i OB, i niech 
D będzie ich punktem przecięcia. Prosta OM przechodzi przez środek 
przekątni BC, a zatem przechodzi i przez punkt D. Widzimy, źe bo­
ki trójkąta O CD są odpowiednio równoległe do naprężeń CO, BO i do 
ich wypadkowej, a stąd wynika, że owe naprężenia są proporcyonal­
ne do OC, CD lub do OC, OB

Inny dowód wynika z par. 51. Środek ciężkości trójkątnego po­
la przypada w środku ciężkości trzech równych ciężarów, położonych 
w wierzchołkach, a zatem, gdy rozłożymy siłę, odpowiadającą 3.OG, 
w kierunkach sznurów, to składowe te będą odpowiadały odcinkom 
OA, OB, OC.

Prz. 2. Ciężki trójkąt ABC jest zawieszony za wierzchołek A, 
i przeciwległy bok tworzy z poziomem kąt a. Okazać, że 2 tan= 
=cot B—cot C. (Math. Tripos, 1865).

Prz. 3. Dwa jednorodne ciężkie pręty A B, BC łączymy. sztywno 
w B i zawieszamy za koniec A. Okazać, że pręt BC zajmie położenie po- B
ziome, jeżeli sin C= V 2sin —, gdzie Bi C oznaczają kąty trójkąta AB C.

2 (Coli. Ex., 1883).
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Prz. 4. Ciężki trójkąt równoboczny zawieszono na gładkim koł­
ku zapomocą sznura, umocowanego w dwóch wierzchołkach, przyczem 
jeden z boków zajął położenie pionowe. Okazać że sznur jest dwa ra­
zy dłuższy od wysokości trójkąta. (Math. Tripos, 1857).

Prz. 5. Jednorodny drut tworzy trzy boki kwadratu ABCD, 
w którym AD oznacza bok brakujący. Drut ten zawieszamy pierwo­
tnie za wierzchołek A a następnie za B. Dowieść, że kąt pomiędzy 
dwoma położeniami boku BC wynosi arctanl8.

Łatwo okazać, że odległość środka ciężkości G od boku BC jest 
równa trzeciej części boku AB. Gdy zawiesimy drut za A, to AD zaj- 
mie położenie pionowe, a gdy zawiesimy za B, to pionem będzie BD. 
Stąd wynika, że szukany kąt jest równy ADB. (Math. Tripos, 1854).

Prz. 6. Trójkąt ABC zawieszono z kolei za wierzchołki A i B, 
przyczem dwa położenia każdego boku utworzyły kąt prosty; okazać, 
że 5c2=a2+b2. (Coli. Ex.).

Prz. 7. Na obwodzie okrągłej tarczy, ważącej n W, jest umocowa­
na cząsteczka, ważąca W. Gdy zawiesimy tarczę za punkt A obwodu, 
to B zajmie położenie najniższe, a gdy zawiesimy tarczę za B, to A 
będzie punktem najniższym. Okazać, że kąt środkowy, oparty na AB, 
wynosi 2 arc sec 2(n+1). • (Math. Tripos, 1883).

Prz. 8. Wysokość prostego stożka wynosi h, a promień podsta­
wy r. Stożek ten zawieszono na sznurze, założonym na gładki kołek; 
jeden koniec sznura jest przymocowany do wierzchołka stożka, a dru­
gi do punktu obwodu podstawy, przyczem oś stożka pozostaje po­
ziomą. Dowieść, że długość sznura wynosi Vh2+4r2.

(Math. Tripos, 1865).
Jeżeli V oznacza wierzchołek, a C środek ciężkości podstawy 

stożka (prostego lub skośnego), to środek ciężkości bryły stożkowej 
leży na VC, i VG=łvo.

Prz. 9. Gładka, ciężka sztaba 2 stopy długa, wisi na sznurze 9 
stóp długim. Sznur jest założony na gładki kołek; jeden jego koniec 
jest przywiązany do końca sztaby, a drugi do lekkiej obrączki, nasu­
niętej na sztabę. Sztaba tworzy z poziomem kąt 3. Dowieść, że 
tan $ =3 —- 3". (Math. Tripos, 1852.)

Prz. 10. Jednorodna ciężka sztaba 2a długa jest w jednym ze 
swych punktów osadzona na poziomej osi, około której może się swo­
bodnie obracać. Do końców sztaby są przywiązane końce sznura o dłu­
gości l, a na sznur jest nawleczona paciorka, ważąca tyleż co i sztaba. 
Okazać, że sztaba może zachować położenie pochyłe tylko w takim ra­
zie, gdy odległość środka od osi jest mniejsza niż a2/l.

(Math. Tripos, 1882.)
Prz. 11. Dwie jednakowe sztaby AB i BC, każda o długości 2a, 

są połączone w B zapomocą swobodnego przegubu, końce zaś A i C 
łączy sznur nierozciągalny o długości l. Cały ten układ zawieszamy
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za koniec A. Dowieść, że kąt prostej AB z pionem będzie największy, 
, 4a

gdy l=
(St John’s Coli., 1883.)

Gdy Z się zmienia, to środek ciężkości G układu obiega koło 
o średnicy BE, gdzie E oznacza środek sztaby AB. Stąd wynika, że 
kąt GrAB jest największy, gdy AG- styka się z owem kołem.

Prz. 12. W wierzchołkach A, B, C lekkiej i sztywnej ramy trój­
kątnej są osadzone trzy ciężary WA, Ws, Wc, i cały ten układ wisi 
u punktu O na trzech sznurach O A, OB, OC. Oznaczywszy naprężenia

sznurów odpowiednio przez TA, TB, Tc, okazać, że
TbT,

— C00 w' a następnie wyznaczyć TA, TB, Tc.
OA.Wa ob.w£

(St John’s Coli., 1886.)
Prz. 13. Ciężką trójkątną płytę zawieszono u nieruchomego pun­

ktu na trzech sprężystych sznurach, umocowanych w wierzchołkach. 
Naturalne długości sznurów (t. j. długości sznurów nierozciągniętych) 
są równe, ale współczynniki sprężystości są niejednakowe. Przyjmuje­
my, że naprężenie sznura jest równe współczynnikowi sprężystości, po­
mnożonemu przez stosunek wydłużenia do długości naturalnej. Okazać, 
że sznury będą miały długości jednakowe, gdy umieścimy w stoso- 
wnem miejscu płyty ciężar, który nie powinien przekraczać pewnego 
minimum. Okazać również, że miejscem geometrycznem położeń cię­
żaru na płycie przy różnych jego wielkościach jest linia prosta.

(Coli. Ex., 1887.)
Prz. 14. Tarcza okrągła i jednorodna o promieniu a i wadze w 

wisi na trzech pionowych sznurach, umocowanych w trzech punktach 
obwodu w jednakowych odstępach. Kładziemy na tarczę ciężar W 
gdziekolwiek wewnątrz współśrodkowego koła o promieniu ma; oka­
zać, że sznury się nie zerwą, jeżeli tylko mogą znieść naprężenie 
}(2mW+W+w). (Trin. Coli. 1886.)

Prz. 15. Prosty stożek kołowy spoczywa eliptyczną podstawą 
na gładkim poziomym stole. Do wierzchołka i drugiego końca naj­
dłuższej tworzącej są przyczepione końce sznura, który przechodzi 
przez gładki blok, umieszczony nad stożkiem, przyczem wszystkie czę­
ści sznura z wyjątkiem leżących na bloku przebiegają pionowo. Skut­
kiem wilgoci lub z jakiejś innej przyczyny sznur stopniowo się kur­
czy, usiłując podnieść stożek. Dowieść, że koniec najkrótszej tworzą­
cej pozostanie w zetknięciu ze stołem, jeżeli średnica bloka jest mniejsza 
od potrójnej dużej półosi podstawy eliptycznej. (Math. Tripos, 1878.)

88. Ustawiamy ciężkie ciało na gładkiej płaszczyźnie po­
ziomej, lub na chropowatej płaszczyźnie pochyłej. Przypuśćmy, 
że podstawą jest jakikolwiek wielobok. Pragniemy zbadać, czy 
ciało przewróci się przez jeden z boków podstawy, czy też po­
zostanie w równowadze.
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Ciężary cząsteczek ciała tworzą układ sił równoległych, 
którego wypadkową pod względem wielkości i położenia mo­
żemy wyznaczyć przy pomocy twierdzenia z paragrafu 80, je­
żeli znamy ciężary cząsteczek. Działa ona pionowo na dół 
i przechodzi przez punkt ciała, zwany jego środkiem ciężkości. 
Gdy istnieje równowaga, to wypadkową muszą równoważyć ci­
śnienia płaszczyzny na ciało. Ciśnienia te zachodzą na całem 
polu podstawy i muszą posiadać wypadkową, działającą na pe­
wien punkt, położony wewnątrz tego pola. Stąd wynika, że ró­
wnowaga jest niemożliwa, jeżeli pion, przechodzący przez środek 
ciężkości ciała, nie przecina płaszczyzny oparcia wewnątrz wie- 
loboku podstawy.

Prz. 1. Odległość pomiędzy piętami =2b, a długość każdej stopy 
=a. Gdy ciało człowieka się przechyla, to pion, przechodzący przez 
środek ciężkości, musi wciąż przecinać pole, zawarte pomiędzy stopa­
mi, a zatem stopy powinny tworzyć kąt taki, aby pole to było jaknaj- 
większe. Okazać, (1) że można opisać na stopach koło, którego śro­
dek leży na prostej, łączącej wielkie palce, (2) że średnica tego koła 
wynosi b + Vb2+2a2.

Prz. 2. Ciężki stożek prosty, którego wysokość =h, a kąt wierz­
chołkowy =2a, ustawiono podstawą na zupełnie chropowatej pła­
szczyźnie pochyłej *).  Okazać, że stożek się przewróci, jeżeli płaszczyzna 
jest nachylona do poziomu pod kątem większym od 3, a tan^=4tana.

*) Na powierzchni zupełnie chropowatej poślizg jest wyłączony.
Przyp. tłom.

Prz. 3. Półkulistą czaszę, ważącą W, obciążają ciężary w i w1, 
przymocowane do brzegu; czasza stoi na gładkiej płaszczyźnie pozio­
mej, i jej promień główny tworzy z pionem kat 3. Okazać, że

W tan $=2 (w- w‘)2+4ww‘cos2,ł,
gdzie 23 oznacza kąt pomiędzy promieniami, przechodzącymi przez w 
i w’; należy uważać przytem, że środek ciężkości czaszy leży w pun­
kcie środkowym promienia głównego. (King’s Coli., 1889.)

Prz. 4. Dwie jednakowe cząsteczki ciężkie przymocowano do 
końców latus rectum lekkiego drutu parabolicznego, a drut ustawiono 
wierzchołkiem na wierzchołku takiej samej paraboli, której oś jest 
pionowa, a wierzchołek zwrócony ku górze. Okazać, że drut można 
potoczyć na dowolny kąt po owej paraboli, i pomimo to równowaga 
nie zostanie zakłócona, jeżeli poślizg pomiędzy krzywemi jest wyłą­
czony. (Watson’s Problem, Math. Tripos, 1860.)
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Teorya par.

89. W pewnym przypadku szczególnym twierdzenie, wy­
łożone w par. 80, prowadzi do wniosku, zasługującego na bliż­
szą uwagę. Przypuśćmy, że siły równoległe P i Q są równe 
i działają w kierunkach odwrotnych. W myśl owego twierdze­
nia wypadkowa jest równa zeru, a jej punkt przyłożenia jest 
nieskończenie odległy.

Dwie siły równe i równoległe, działające na punkty A i B, 
nie mogą się równoważyć, jeżeli owe punkty przyłożenia nie 
leżą na jednej prostej wraz z siłami. Z drugiej strony, jak 
tylko co widzieliśmy, siły takie nie są równoważne sile poje- 
dyńczej w odległości skończonej. Umożliwiają one nową me­
todę badania układów sił. Upraszczamy układ sił, działają­
cych na ciało, sprowadzając go do tak małej liczby sił, jak 
tylko można. Niekiedy układ daje się sprowadzić do jednej 
siły, w innych razach (jak np. w przypadku, rozważanym obec­
nie) punkt przyłożenia jest nieskończenie odległy, i taka re- 
dukcya do jednej wypadkowej staje się niedogodną. Wprowa­
dzając parę sił równych, jako nowy twór elementarny, zysku­
jemy prostą metodę wyrażania takiej siły nieskończenie odle­
głej. Mamy więc teraz dwie wielkości elementarne, a miano­
wicie siłę i parę, i możemy sprowadzić dany układ sił do je­
dnego z tych składników, albo do obydwóch. Przy pomocy 
tych dwóch elementów analiza danego układu sił daje się prze­
prowadzić w sposób kompletniejszy niż przy pomocy jednego.

Skoro para sił ma być nowym elementem w analizie, to 
wypada rozważyć jej właściwości oddzielnie od właściwości 
wszelkich innych układów sił. Nowy aksyomat jest tu zby­
teczny, gdyż para rozkłada się na dwie siły, a zatem twierdze­
nia, dotyczące par, wynikają z ogólnych twierdzeń o siłach.

Teoryę par zawdzięczamy Poinsotowi. W książce Elemeats 
de. Siatiąue, wydanej w r. 1803, rożważa on składanie sił równoległych 
i stąd wyprowadza nową teoryę par, opierając na niej ogólne prawa 
równowagi.

90. Definicye. Układ dwóch sił równych, równoległych 
i działających w strony odwrotne nazywamy parą.

Prostopadła odległość od jednej z sił pary do drugiej zo­
wie się ramieniem pary. Wypada zaznaczyć, że ramię posiada 
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długość, lecz nie posiada określonego położenia w przestrze­
ni. Z jakiegokolwiek punktu A, położonego na linii dzia­
łania jednej z sił, możemy poprowadzić prostopadłą AB do 
drugiej siły. W takim razie AB będzie ramieniem. Jeżeli w ja­
kimś przypadku dogodnie jest przyjmować, że siły pary dzia­
łają na A i B, a przytem AB jest prostopadłe do sił, to może­
my uważać, że odcinek AB określa ramię zarówno pod wzglę­
dem wielkości jak i położenia.

Iloczyn z wielkości jednej z sił pary przez długość ramie­
nia nazywa się momentem pary.

91. Skutek działania pary nie ulegnie zmianie, gdy prze­
niesiemy ją równolegle do innego położenia w jej własnej płaszczy­
źnie lub w płaszczyźnie równoległej, przyczem ramię pozostaje ró-

Niech P i Q oznaczają siły
wnoległem do położenia pierwotnego.

danej pary, a AB ramię. 
Przypuśćmy, że AB' jest 
równe i równoległe do AB’, 
mamy dowieść, że para da- 
je się przesunąć w taki spo­
sób, aby te same siły dzia­
łały na A' i B'.

Przyłóżmy w pun­
ktach A i B' po dwie siły 
równe i odwrotne, z któ­

rych każda ma być równa sile P i równoległa do niej. Na fi­
gurze oznaczono te siły przez P', P", Q', Q". Skoro odcinek 
AB jest równy i równoległy do AB', to czworobok AAB'B 
jest równoległobokiem; jego przekątnie AB' i AB przecinają 
się w pewnym punkcie O, stanowiącym środek każdej z nich. 
Wypadkowa sił P i Q" jest równa 2P i działa na punkt O, 
również wypadkowa P" i Q wynosi 2P i działa na O, lecz 
w kierunku odwrotnym. Dwie te wypadkowe się równoważą; 
gdy je usuniemy, to układ sprowadzi się do pary sił, działają­
cych na A i B'.

92. Skutek działania pary nie ulegnie zmianie, gdy obróci­
my ją w jej płaszczyźnie o dowolny kąt około środka którego­
kolwiek ramienia.
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Obróćmy ramię AB około środka 0 do położenia A'B'. 
W każdym z tych punktów A’, B' przyłóżmy, jak poprzednio, 
po dwie siły równe i odwrotne P', P", Q‘, Q", z których ka­
żda ma być równa sile P. Równe siły P i P", przyłożone

w A i A’, posiadają wypadkową, która działa na dwusiecznej 
CE kąta ACA’. Siły Q i Q" mają taką samą wypadkową, 
działającą na dwusiecznej CE kąta BCB'. Dwie te wypadko­
we równoważą się, i możemy je usunąć. Pozostaną równe si- 
ły P\ Q', przyłożone w A!, B'. Tworzą one parę taką samą 
jak para dana, obrócona około punktu C o kąt ACA'.

93. Skutek nie ulegnie zmianie, gdy zastąpimy parę daną 
przez inną o takim samym momencie i działającą w tej samej 
płaszczyźnie, przyczem ramiona powinny leżeć na jednej prostej 
i posiadać środki w tym samym punkcie.

Niech P, Q oznaczają siły i AB ramię pary danej; Pj Q' 
mają oznaczać siły i A'B' ramię pary nowej. Przyłóżmy w pun-

Fig. 17.

ktach A', B' po dwie siły równe i odwrotne, z których każda 
niech będzie równa P'. W myśl założenia, zawartego w twier­
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dzeniu, P.AB=P'.A'B\ jeżeli zatem G oznacza wspólny środek 
odcinków AB i A'B\ to P. AC^ P'. A'G.

Siły P i P" posiadają wypadkową P — P", która według 
par. 78 działa na punkt G. Również siły Q i Q‘ posiadają 
taką samą wypadkową, działającą na C w kierunku odwro­
tnym. Usuwając te dwie wypadkowe, znajdziemy, że para da­
na jest równoważna parze sił + P\ działających na A' i B'.

94. Z paragrafów 91 i 92 wynika, że parę można prze­
nieść z danego położenia do jakiegokolwiek innego w płaszczy­
źnie równoległej, przyczem skutek działania nie ulegnie zmia­
nie. Istotnie według 92 możemy parę daną tak obrócić około 
środka ramienia, aby siły stały się równoległemi do sił w po­
łożeniu nowem, następnie zaś według 91 możemy przesunąć 
parę równolegle do położenia nowego.

Z 93 wynika, że można także zmieniać wielkości sił i ra­
mię; nie wywoła to żadnej zmiany w skutkach działania, jeżeli 
tylko nie zmieni się moment.

Zestawiając wywody powyższe, widzimy, że para jest cał­
kowicie określona, gdy znamy U jakąkolwiek płaszczyznę, ró­
wnoległą do płaszczyzny pary, 2) kierunek obrotu pary w jej pła­
szczyźnie i 3) moment pary.

95. Wyznaczyć wypadkową pewnej liczby par, działających 
w płaszczyznach równoległych.

Niech P1, P^- - oznaczają siły, i a±1 a2... ramiona par; 
dajmy na to, że wszystkie pary usiłują wywołać obrót w tym 
samym kierunku.

Według par. 94 możemy przenieść wszystkie pary do je­
dnej płaszczyzny i obrócić je tak, aby wszystkie ramiona zna­
lazły się na jednej prostej; zmieńmy następnie siły i ramiona 
par w taki sposób, aby wszystkie otrzymały jedno i to samo 
ramię AB. Długość tego wspólnego ramienia oznaczmy przez b. 
Siły par działają teraz na końce odcinka AB^ a wielkości ich

□ • j Pa, P 9 a2 — x są odpowiednio —p , 6 ... Wszystko to razem tworzy je­

dną parę, której ramię jest równe b, a każda z sił wynosi 
P1a1 + P2a2 +  ., . i • i • •---- B-. Para ta jest równoważna każdej innej parze, 

położonej w tej samej płaszczyźnie, obracającej w tym samym 
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kierunku i posiadającej moment P1ai + P2a2 +... Moment ten 
stanowi oczywiście sumę momentów par danych.

Jeżeli niektóre z par danych usiłują wywołać obrót w kie­
runku innym niż pozostałe, to możemy uwzględnić tę okolicz­
ność, uważając siły tych par za ujemne. Otrzymamy taki sam 
wynik, jak poprzednio.

Z powyższego wynika twierdzenie następujące. Wypadko- 
wą doiuolnej liczby par, których płaszczyzny są równoległe, jest 
para o momencie równym samie algebraicznej momentów par po­
szczególnych, działająca w płaszczyźnie równoległej do płaszczyzny 
par danych.

96. Miara pary. Korzystając z powyższego twierdzenia, 
możemy okazać, że właściwą miarę pary, uważanej za prosty 
element, stanowi jej moment. W tym celu obierzmy za je­
dnostkę taką parę, którą tworzą siły jednostkowe, i której ra­
mię wynosi jednostkę długości. Moment takiej pary jest ró­
wny jedności. Z twierdzenia powyższego wynika, że para, po­
siadająca moment n razy większy, jest równoważna takim n 
parom jednostkowym, a zatem będzie rzeczą właściwą wyrażać 
ją symbolem n.

97. Oś pary. Para usiłuje wywołać ruch obrotowy w je­
dnym lub w drugim kierunku. Jeden z tych kierunków na­
zywamy zwykle dodatnim, drugi ujemnym. Obiór kierun­
ku dodatniego nie zawsze bywa jednakowy, podobnie jak i obiór 
kierunków dodatnich na osiach współrzędnych. W trygono- 
metryi uważamy za kierunek dodatni obrotu kierunek odwro­
tny do ruchu wskazówki zegara; ten sam wybór uczyniono 
w większej części dzieł o przecięciach stożkowych. W geome- 
tryi trójwymiarowej zwykle kierunek odwrotny obiera się za 
dodatni. Gdy jednak już uczyniono stosowny wybór, to kieru­
nek obrotu danej pary wskazuje się zazwyczaj w sposób na­
stępujący:

Z jakiegokolwiek punktu C, obranego w płaszczyźnie pa­
ry, prowadzimy prostopadle do tej płaszczyzny po jednej stro­
nie prostą CD. Stronę ową obiera się w sposób taki: obser­
wator stojący na płaszczyźnie w punkcie C i oparty plecami 
o CD powinien widzieć, że para obraca w kierunku, obranym 
za dodatni.
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Aby określić kierunek obrotu pary dostateczną jest rzeczą 
wskazać w przestrzeni kierunek ■ CD, odróżniając go od DC. 
Czynimy to przy pomocy umowy, używanej zazwyczaj w geo- 
metryi trójwymiarowej. Prowadzimy z początku układu współ­
rzędnych odcinek równoległy do CD; położenie jego określają 
kąty, które tworzy z dodatnimi kierunkami osi.

Prosta CD wskazuje jednocześnie położenie płaszczyzny 
pary i kierunek obrotu. Zapomocą odcinka tej prostej może­
my zupełnie tak samo wyrazić wielkość momentu pary, jak 
w par. 7 wyraziliśmy zapomocą odcinka wielkość siły.

Widzimy przeto, że para daje się pod wszelkimi względa­
mi określić odcinkiem, poprowadzonym od pewnego stałego 
punktu w kierunku prostopadłym do płaszczyzny pary. Odci­
nek taki zowie się osią pary.

98. Wyznaczyć wypadkową dwóch par, których płaszczyzny 
są nachylone jedna do drugiej.

Przenosimy obydwie pary w ich płaszczyznach w taki

sposób, aby ramiona przystały do siebie, i niech AB bę­
dzie wspólnem ramieniem; naturalnie leży ono na prostej prze­
cięcia płaszczyzn par. Przy przekształcaniu ramion wypadnie 
zapewne zmienić i wielkości sił, ale momenty par powinny po­
zostać bez zmiany. Oznaczmy siły już po przekształceniu 
przez P i Q.

Na punkt A działają dwie siły P i Q; są one równoważne 
wypadkowej R^ którą można wyznaczyć zapomocą równoległo- 
boku. Na punkt B działają dwie inne siły równe i odwrotne 
do tamtych; wypadkowa ich jest równa, równoległa i odwro­
tna do R. Tak więc dwie pary są równoważne jednej parze, 
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złożonej z sił R i posiadającej ramię AB. Długość tego ramie­
nia oznaczmy przez b.

Z jakiegokolwiek punktu 0^ który możemy obrać na 
AB, prowadzimy proste Cp i Cq w kierunkach osi par da­
nych i odmierzamy na nich długości, proporcyonalne do mo­
mentów, czyli do Pb i Qb. Osi te są prostopadłe do płaszczyzn 
par, a ich długości są proporcyonalne do P i Q. Składamy 
następnie te dwie osi według prawa równoległoboku; łatwo 
zrozumieć, że otrzymamy oś, prostopadłą do płaszczyzny sił —R 
i proporcyonalną do R pod względem wielkości. Mianowicie 
równoległobok Cpqr jest podobny do równoległoboku, utworzo­
nego przez P, Q, a boki jednego są odpowiednio prostopadłe 
do boków drugiego.

Wynika stąd następująca konstrukcya wypadkowej dwóch 
par. Z dowolnego punktu C prowadzimy odcinki, wyobrażają­
ce osi par co do wielkości i kierunku. Wypadkowa tych osi, 
zbudowana według prawa równoległoboku, odpowiada co do 
wielkości i kierunku osi pary wypadkowej.

Składanie par odbywa się według tego samego prawidła, 
które podaliśmy poprzednio dla sił. Z tego wynika, że może­
my stosować do par wszystkie twierdzenia, dotyczące składania 
sił i wynikające z prawa równoległoboku. Prawidło robocze 
jest takie: określając pary zapomocą osi, możemy je składać i roz­
kładać jak siły, działające na punkt.

99. Prz. 1. Układ par odpowiada co do wielkości i położenia 
polom ścian wielościanu, a wszystkie osi są zwrócone na zewnątrz 
lub na wewnątrz; okazać, że układ jest w równowadze (par. 47).

Móbius.
Prz. 2. Mamy dane w przestrzeni cztery proste; dowieść, że mo­

żna znaleźć cztery równoważące się pary, których osi mają kierunki 
tych prostych. Wyznaczyć momenty i rozważyć wypadek, w którym 
trzy z danych prostych są równoległe do jednej płaszczyzny (par. 40 i 48).

Prz. 3. Trzy pary odpowiadają pod względem wielkości i poło­
żenia polom ścian OBG, OGA, OA B czworościanu O ABC; osi dwóch 
pierwszych są zwrócone na wewnątrz, a trzeciej na zewnątrz. Okazać, 
że para wypadkowa działa w płaszczyźnie ODE, przechodzącej przez 
środki krawędzi BC, GA, i odpowiada pod względem wielkości po­
czwórnemu polu trójkąta ODE.

Zastępujemy każdą z par taką, której jedna siła przechodzi przez 
O, a druga działa na boku trójkąta ABC. Siły, odpowiadające BG, CA 
i BA, posiadają oczywiście wypadkową iDE.

Statyka. 5
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Fig. 19.

100. Siłę P, działającą na punkt A, można przenieść równo­
legle do innego punktu B, wprowadzając parę o momencie Pp, 
gdzie p oznacza odległość punktu B od linii działania AF siły P. 
Para ta usiłuje obrócić ciało w kierunku AFB.

Przykładamy w B dwie 
siły równe i odwrotne Pj 
P", z których każda jest ró­
wna P. Jedną z nich, a mia­
nowicie Pj możemy uwa­
żać za siłę P, przeniesioną 

równolegle do B; dwie pozostałe tworzą parę o momencie Pp.

101. Dotychczasowe twierdzenia o siłach i parach rozpa­
dają się na trzy klasy, które można streścić w sposób nastę- 
pujący:

1. Siły mogą się łączyć według prawa równoległoboku.
2. Pary mogą się łączyć według prawa równoległoboku.
3. Siła jest równoważna sile równoległej oraz parze.
W rozdziałach następnych będziemy poznawali nowe pra­

wdy, stosując ustawicznie te trzy klasy twierdzeń. Stąd wy­
nika, że te prawdy dotyczą i innych wektorów, dla których są 
ważne owe trzy klasy twierdzeń. Tak więc w dynamice znaj­
dujemy, że związki elementarne pomiędzy szybkościami linio- 
wemi i kątowemi podlegają tym trzem grupom twierdzeń, a za­
tem stosujemy do nich bez dalszych dowodów wszelkie na­
stępne twierdzenia, dowiedzione dla par i sił.

102. Początkowy ruch ciała. Gdy para sił zacznie działać na 
ciało, które dotychczas było w spoczynku, to oczywiście równowaga 
zostanie zachwiana. W dynamice znajdujemy dowód, że zacznie ono 
obracać się około pewnej osi. Położenie tej osi nie może zależeć od 
położenia pary w jej płaszczyźnie działania; widać to stąd, że parę mo­
żna przenosić w tej płaszczyźnie, nie zmieniając skutku. Z rozważań 
dynamicznych wynika, że początkowa oś obrotu (1) przechodzi przez 
środek ciężkości ciała, (2) wogóle nie jest prostopadła do płaszczyzny 
pary, jakkolwiek bywa i tak w pewnych razach.

Można okazać przy pomocy prostego doświadczenia, że oś obro­
tu jest niezależna od położenia pary w jej płaszczyźnie działania. 
W tym celu kładziemy do naczynia z wodą okrągłą tarczę drewnianą; 
będzie ona pływała na powierzchni wody blizko górnego otworu na­
czynia. Do tarczy w punktach A i B przyczepiamy dwie cienkie nici, 
które przerzucamy następnie przez dwie małe rolki C i D, osadzone 
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na brzegu naczynia; wreszcie w końcach nici zawieszamy jednakowe 
ciężary. Ustawiamy tarczę w taki sposób, aby nici AC i BD były ró­
wnoległe. W takim razie naprężenia nici tworzą parę, i pod jej dzia­
łaniem tarcza zacznie się obracać. Obrót rozpocznie się zawsze około 
środka ciężkości tarczy, jakkolwiek są położone punkty A i B. Możli- 
wem jest, że obrót nie będzie odbywał się w dalszym ciągu około tej 
samej osi, gdyż w miarę ruchu tarczy nici przestają być równoległe- 
mi. Z tej a także i z innych przyczyn ruch obrotowy dozna pewnych 
zmian.

103. Prz. 1. Siły P, 2P, 4P, 2P działają na bokach kwadratu, 
obieganych w koło. Wyznaczyć wypadkową pod względem wielkości 
i położenia. (St John’s, 1880).

Prz. 2. Trójkątna płyta ABC może się obracać w swej płaszczy­
źnie około pewnego nieruchomego punktu. Na płytę wzdłuż boków 
BC, CA, BA działają siły proporcyonalne do tych boków. Dowieść, że 
aby płyta pozostała w spokoju, to ów punkt nieruchomy musi leżeć 
na prostej, przechodzącej przez środki boków BC i CA.

(Math. Tripos, 1874).
Prz. 3. Boki trójkąta, obiegane w koło, wyobrażają siły pod 

względem wielkości, kierunku i położenia. Okazać, że siły te są ró­
wnoważne parze, której moment odpowiada podwójnemu polu trójkąta.

Okazać prócz tego, że równoważą się trzy pary, których osi 
odpowiadają bokom trójkąta, obieganym w koło.

Prz. 4. Na ciało działa sześć sił; trzy pierwsze odpowiadają cał­
kowicie bokom trójkąta ABC, obieganym w koło, trzy zaś pozostałe 
bokom trójkąta, który otrzymamy, łącząc środki boków trójkąta ABC. 
Trzy pierwsze siły są przedstawione w skali cztery razy większej niż 
trzy pozostałe, i siły równoległe są zwrócone jednakowo. Dowieść, że 
ciało pozostaje w równowadze. (Math. Tripos).

Prz. 5. Cztery siły u. AB, ^.BC, ^.CD, 2.DA działają na bokach 
AB, BC, CD, DA czworoboku skośnego ABCD. Okazać, że (1) siły te 
nie mogą się równoważyć, (2) jeżeli a==3=Y=8, to siły tworzą parę, 
działającą w płaszczyźnie równoległej do przekątni AC, BD, (3) je­
żeli a=38, to układ sprowadza się do jednej wypadkowej, której linia 
działania przecina przekątnie. Wyznaczyć także ową parę i siłę wy­
padkową pod względem wielkości. (Coli. Ex., 1892).

Siły, działające na wierzchołek B, posiadają wypadkową, której 
linia działania BE przecina przekątnię AC w punkcie E; również linia 
działania wypadkowej sił, działających na D, przecina AC w F. Skoro 
płaszczyzny ABC i ADC nie przystają do siebie, przeto te dwie wy­
padkowe cząstkowe działają nie na jednej prostej i nie mogą się ró­
wnoważyć.

Jeżeli siły mają być równoważne parze, to ich suma rzutów na 
prostopadłą z B do płaszczyzny ADC powinna być równa zeru, to zaś 
wymaga, aby prosta BE była równoległa do AC, zatem a = 3; po­
dobnież 3= i y=S. Wypadkowe cząstkowe, przyłożone w B i D są 
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±c.AC i działają równolegle do AC i CA; zatem płaszczyzna pary 
jest równoległa do AC, a również i do BD. Moment pary jest 40 razy 
większy od pola równoległoboku, którego wierzchołki leżą w środ­
kach boków czworoboku.

Jeżeli dane siły mają posiadać wypadkową, to punkty E i F na 
AC muszą leżeć razem; lecz E jest centroidem mas —a i 3, położo­
nych w A i C, F zaś jest centroidem § i — Y, położonych w tych sa­
mych punktach, a zatem a=33 (par. 51). W tym razie wypadkowe 
cząstkowe przecinają się w E na AC i wynoszą (o.—R)EB, (Y— o)ED. 
Wypadkowa ogólna przechodzi przez E i przez punkt H na drugiej 
przekątni BD; wynosi ona (a— 3+r— 3) . EH.

Jeżeli czworobok jest płaski, to cztery siły sprowadzają się do 
jednej wypadkowej, o ile a, 3, Y, 8 nie są równe. Równowaga zacho­
dzi, gdy wypadkowe cząstkowe są równe i odwrotne, czyli gdy

a7=33, a . AO+3 . OC=0, 3. BO+y. OD=0, 
gdzie O jest punktem przecięcia przekątni.

Prz. 6. Siły odpowiadają pod względem wielkości, położeń 
i kierunków bokom skośnego wieloboku, obieganym w koło; okazać, 
że są one równoważne parze sił.

Okazać dalej, że moment rzutu pary wypadkowej na dowolną 
płaszczyznę odpowiada podwójnemu polu rzutu wieloboku na tę pła­
szczyznę.

Prz. 7. AC i BD oznaczają dwa wichrowate odcinki o stałej dłu­
gości. Okazać, że skutek działania sił, odpowiadających pod wszelkimi 
względami odcinkom AB, BC, CD, DA, się nie zmienia, jeżeli AC, BD 
pozostają równoległymi do stałej płaszczyzny, i kąt pomiędzy rzutami 
ich na tę płaszczyznę pozostaje bez zmiany. (Coli. Ex., 1881).

Prz. 8. Na pewnej prostej odmierzamy w tę samą stronę dwie 
jednakowe długości Aa, Bb i na innej prostej tak samo odmierzamy 
dwie jednakowe długości Cc, Dd. Okazać, że siły, odpowiadające pod 
wszelkimi względami odcinkom AC, ca, CB, bc, BD, db, DA, ad, są 
w równowadze. (Trin. Coli.).

Prz. 9. Siły, proporcyonalne do boków aY,a2... zamkniętego 
wieloboku, są przyłożone w punktach, które dzielą boki, obiegane 

m, m2 . ,w koło, w stosunkach — , —..., i każda siła tworzy z odpowie- 

dnim bokiem w tę samą stronę kąt 3. Okazać, że równowaga zacho­
dzi, jeżeli e(I—-a2 )=4A cot 9, gdzie A oznacza pole wieloboku.

= m+n /
(Math. Tripos. 1869).

Rozkładamy każdą siłę w kierunku odpowiedniego boku i pro­
stopadle do niego, następnie zaś przenosimy każdą składową prosto­
padłą do środka odpowiedniego boku, wprowadzając odpowiednią 
parę (100). Pary zrównoważą składowe, działające na bokach (prz. 3), 
a pozostałe składowe równoważą się same (par. 37).



ROZDZIAŁ IV.

SIŁY W DWÓCH WYMIARACH.

104. Sprowadzić dowolną liczbę sił, działających na ciało 
w jednej płaszczyźnie, do jednej siły i jednej pary.

Przypuśćmy, że na ciało działają siły Pr, P2---, przyłożo­
ne w punktach A,, A,..., i niech O będzie punktem, dowolnie 
obranym w płaszczyźnie sił. Mamy zredukować wszystkie te 
siły do jednej, przyłożonej w O, i do pary.

Obierzmy punkt O za początek układu współrzędnych 
i oznaczmy współrzędne punktów A1, A,..., 
przez (xryj), (x,y2)..., a kąty, które kie­
runki sił tworzą z dodatnią stroną osi x, 

Fig. 20.

przez 01, 02...
Zgodnie z paragrafem 100 przenosi­

my każdą siłę P równolegle tak, aby jej 
punkt przyłożenia znalazł się O, i je­

dnocześnie wprowadzamy do układu parę o momencie Pp, gdzie 
p oznacza odległość punktu O od linii działania siły P. Tym 
sposobem możemy wszystkie siły przenieść do O, dołączając do 
układu odpowiednie pary.

Zgodnie z par. 44 łączymy wszystkie siły, działające obe­
cnie na punkt O; powstanie jedna siła wypadkowa. Dodając 
następnie wszystkie pary z uwzględnieniem znaków, otrzyma­
my jedną parę, której moment wynosi ^Pp.

Powyższą metodę łączenia sił podał Poinsot (Elements de Sta- 
tique, 1803).

105. Wypada zaznaczyć, że rozważania powyższe dotyczą nie- 
tylko sił, działających w płaszczyźnie. Gdy odniesiemy dany układ 
do trzech prostokątnych osi Ox, Oy, Oz, posiadających dowolny począ­
tek O, to możemy przenieść siły P , P2... do tego początku, wprowa­
dzając odpowiednie pary. Siły, działające na O, łączą się w jedną wy­
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padkową, którą oznaczmy przez R. Pary dadzą się także połączyć za- 
pomocą równoległoboku par w jedną parę, którą oznaczmy przez Gr. 
Zatem siły Pi, P2... dadzą się zawsze sprowadzić do jednej siły R, 
działającej na punkt obrany dowolnie, i do odpowiedniej pary G.

106. Pragnąc wyznaczyć wielkość siły wypadkowej i jej 
linię działania, posługujemy się prawidłami, podanemi w par. 44. 
Składowe wypadkowej równoległe do osi będą

X=XPcoso, Y= ZPsin a.
Oznaczmy wypadkową przez R^ a kąt, który jej linia dzia­

łania tworzy z osią x, przez 3. W takim razie
R2 = (LP cos 0)2 + CLP sin a)2, tan 3 = E(P sino) .

2 (P cos a)

107. Aby otrzymać moment pary wypadkowej, trzeba wy­
znaczyć wartość Pp. Biorąc sumę rzutów współrzędnych (x, y) 
punktu A na ON (fig. 20), znajdziemy

p= a cos N0x - y sin N0x 
= x sin a — y cos a .

Niech G oznacza parę wypadkową; będziemy uważali ją 
za dodatnią, gdy usiłuje obrócić ciało od dodatniego końca Ox 
do dodatniego końca Oy. W takim razie

G — LPp = L(xP sin a — yP cos a) 
= L(xP^-yPx), 

gdzie Px i Py oznaczają składowe siły P w kierunkach osi.

108. Dowolny punkt O, do którego przenosimy siły, na- 
zwiemy środkiem redukcyi. Nie jest rzeczą konieczną obierać 
w tym punkcie początek układu, jakkolwiek zwykle wybór ta­
ki bywa dogodny.

Obierzmy za środek redukcyi punkt O', posiadający współ­
rzędne (§n). Możemy otrzymać siłę wypadkową i parę wypa­
dkową dla tego nowego środka redukcyi z wzorów, wyprowa­
dzonych dla środka redukcyi O-, w tym celu należy tylko za­
stąpić x i y przez x— § i y— 7.

Wyrażenia na siłę wypadkową w par. 106 nie zawierają 
ani x, ani y. Stąd wynika, że siła wypadkowa jest jednakowa 
co do wielkości i kierunku dla wszystkich środków redukcyi.
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Wyrażenie na parę wypadkową będzie
G' = ZP{(x - 6) sin a - (J—) cos aj

= G-^Y+^X.
Widzimy, że wielkość pary jest wogóle różna dla różnych 

środków redukcyi.

109. Znaleźć tuarunki równowagi ciała sztywnego.
Obierzmy dowolnie środek redukcyi O i sprowadźmy da­

ny układ sił do siły R i do pary G. Według par. 89 wypad­
kowa pary G jest równa zeru i działa na linii nieskończenie 
odległej; stąd wynika, że skończona siła R nie może równowa­
żyć skończonej pary G. Gdyby wypadek taki był możliwy, to 
zachodziłaby równowaga dwóch sił, jakkolwiek nie są one ró­
wne i odwrotne. Jest więc niezbędnem do równowagi układu, 
aby siła R i para G znikały każda z osóbna.

110. Ponieważ w stanie równowagi R—0, przeto, jak 
w par. 44, otrzymamy

ZPcosa=0, ZPsin a= 0.

Równania te są konieczne i wystarczające, aby zniknęła siła R; 
możemy wynik powyższy wyrazić w sposób dogodniejszy:

Jeżeli wypadkowa R ma być zerem, to jest niezbędnem i wy- 
starczającem, aby sumy rzutów wszystkich sił na dwie proste nie- 
równoległe były zerami.

Widać odrazu, że warunki te są konieczne, bo każdą pro­
stą można obrać za oś x. Aby dowieść, że są one wystarcza­
jące, obierzmy jedną z owych prostych za oś x^ nazwijmy dru­
gą Ox' i oznaczmy kąt xOx' przez 3. Przyrównywając do ze­
ra rzuty sił na te proste, znajdziemy

IP cosa = 0, EPcos (a— 3)=0, 
czyli X=0, X’ = Xcos 3 + Ysin }= 0.

Jeżeli 3 nie jest zerem lub wielokrotnością T, to z równań 
tych wynika, że X=0 i Y=0, a zatem R = 0.

Nazywamy zwykle równaniami rzutów dwa równania ró­
wnowagi, które otrzymujemy, biorąc rzuty na dwa różne kie­
runki.



— 72 —

111. Prócz tego do równowagi jest koniecznem, aby G=0, 
lub aby ZPp=0. Iloczyn Pp zowiemy momentem siły P wzglę­
dem punktu O. Jeżeli para G ma być zerem, to jest niezbędnem 
i wystarczającem, aby suma momentów wszystkich sił (wziętych 
z odpowiednimi znakamij względem dowolnego punktu była ró­
wna zeru. Równanie równowagi, które stąd otrzymujemy, na­
zywa się krótko równaniem momentów.

112. Widzieliśmy, że dla sił, działających w płaszczyźnie, 
warunki równowagi są zawarte w trzech równaniach, a mia­
nowicie w dwóch równaniach rzutów i w jednem równaniu 
momentów. Stanie się to jaśniejszem, gdy rozważymy różne 
możliwe ruchy ciała. Daje się dowieść, że można uskutecznić 
każde przesunięcie ciała, kombinując ruchy następujące: Prze- 
dewszystkiem przesuwamy ciało bez obrotu o długość h równo- 
legie do osi x. Powtóre przesuwamy ciało także bez obrotu 
o długość k równolegle do osi y. Tym sposobem możemy prze­
nieść dowolny punkt ciała 0 do innego punktu Oj którego 
współrzędne w odniesieniu do 0 są równe jakimkolwiek da­
nym wielkościom h i k. Potrzecie obracamy ciało około owe­
go punktu o kąt dany. Dwa równania ruchu wyrażają fakt, 
że siły, pchające ciało w kierunku każdej osi, są równe zeru. 
Równanie momentów wyraża fakt, że siły nie posiadają dążno­
ści do obracania ciała około początku współrzędnych.

113. Momenty sił będą w ciągłem użyciu, należy więc 
dobrze zrozumieć znaczenie tego wyrazu. Przypuśćmy, że siła 
P działa na punkt A wzdłuż prostej AB^ i niech 0 będzie pun­
ktem względem którego pragniemy wziąć moment. W tym ce­
lu mnożymy siłę P przez odległość p punktu 0 od linii dzia­
łania siły, czyli od AB. Iloczyn zdefiniowaliśmy już jako mo­
ment.

Obecnie mówimy o siłach w jednej płaszczyźnie; w tejże 
płaszczyźnie leżą naturalnie prosta AB i punkt 0. Gdy będzie 
mowa o siłach w przestrzeni, to to, co zdefiniowaliśmy jako 
moment siły względem punktu, będziemy nazywali momentem 
siły względem prostej, poprowadzonej przez 0 prostopadle do 
płaszczyzny OAB.

Gdy na ciało działa kilka sił, i pragniemy wyznaczyć su­
mę ich momentów, to należy zwrócić szczególną uwagę na zna­
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ki tych momentów. Tak samo, jak w trygonometryi elemen­
tarnej, obieramy jeden z dwóch możliwach kierunków obrotu 
około punktu 0 za kierunek zasadniczy. Kierunek ten nazy­
wamy dodatnim. Już w par. 107 obraliśmy kierunek odwro­
tny do kierunku ruchu wskazówki zegara. Moment siły uwa­
żamy za dodatni lub ujemny stosownie do tego, czy usiłuje 
ona obrócić ciało około O w kierunku dodatnim, czy ujemnym.

114. Otrzymaliśmy równania równowagi w postaci X=0, 
Y=0, G=0, lecz można im nadawać i inne postaci. Tak np. 

równowaga zachodzi, gdy sumy momentów względom dwóch ró­
żnych punktów, np. O i C, są zerami, i prócz tego suma rzutów 
na dowolny kierunek, nieprostopadły do OC, jest także zerem. 
Aby to okazać, obierzmy O za początek układu, poprowadźmy 
oś x w kierunku, na który brano rzuty, i oznaczmy współ­
rzędne punktu C przez (§n). Dane warunki wyrażają się tak:

G=0, G‘=G-ĘY+1X=0, X=0.

Stąd wynika G =0, X=0, Y=0, jeżeli § nie jest zerem.
W ten sam sposób można dowieść, że równowaga zacho­

dzi, gdy są równe zeru sumy momentów względem trzech pun­
któw O, C, C, nie leżących na linii prostej.

115. Wypada jeszcze zaznaczyć, że nie otrzymamy więcej 
od trzech niezależnych równań równowagi, gdy będziemy brali 
rzuty na różne inne kierunki i momenty względem różnych in­
nych punktów. Równania, które w ten sposób powstaną, bę­
dą tylko następstwem pewnych trzech równań równowagi. Tak 
więc, jeżeli X, Y, G są zerami, to z paragrafów 108 i 110 wy­
nika, że G' i X' są także zerami.

116. Twierdzenie Varignona. Przypuśćmy, że pewien układ 
sił został przekształcony zgodnie z prawami statyki na inny układ ró­
wnoważny; w takim razie, (1) sumy rzutów sił obydwóch układów na 
każdy kierunek są równe, i (2) sumy momentów sił obydwóch ukła­
dów względem każdego punktu są równe.

Twierdzenie to wynika bezpośrednio z par. 110. Oznaczmy si­
ły owych dwóch układów przez P, P2— i Pj, P‘2..., i przypuśćmy, 
że mamy wziąć momenty względem punktu O oraz rzuty na kierunek 
Ox. Potrzeba dowieść, że (1) ZPcos =zP‘cosa’, i (2) G-—G-'. Układy 
są równoważne, a zatem gdy odwrócimy wszystkie siły jednego z nich, 
i obydwa układy po tej zmianie będą działały na ciało jednocześnie, 



— 74 —

to nastąpi równowaga. Biorąc rzuty na 0x i momenty względem 0, 
według paragrafów 110 i 111 otrzymamy

Z(Pcos a— P' cos a.‘)=0, G- Gr'^0.
Równania te zawierają dowód, o który chodziło.

117. Przytaczamy jeszcze elementarny dowód powyższego twier­
dzenia, oparty na zasadach początkowych.

Według prawideł statyki możemy przekształcić jeden układ sił 
na inny zapomocą trzech działań następujących: (1) przenoszenia pun­
ktu przyłożenia siły na jej linii działania, (2) dodawania lub usuwania 
sił równych i odwrotnych, jak w par. 78, (3) składania i rozkładania 
sił według prawa równoległoboku.

Jest rzeczą zupełnie oczywistą, że pierwsze dwa działania nie 
zmieniają ani sumy rzutów na żaden kierunek, ani sumy momentów 
sił względem żadnego punktu; potrzeba jeszcze udowodnić, że to samo 
dotyczy działania ostatniego.

Przypuśćmy, że siły P i Q, działające na punkt C, odpowiadają 
pod względem wielkości i kierunku od­
cinkom CA i CB, a ich wypadkowa R od­
cinkowi CD. (1) Oczywiście suma rzu­
tów odcinków CA i AD na dowolną pro­
stą, np. Cx jest równa rzutowi przekątni 
CD (par. 65), innemi słowy suma rzutów 
sił P i Q na Cx jest równa rzutowi wy­
padkowej R. (2) Niech O będzie pun­
ktem, względem którego mamy wziąć mo­
menty. Poprowadźmy OL, OM, ON pro­
stopadle do sił. Mamy dowieść, że

P.0L + Q.ÓM=R.0N..............(1) 
Gdyby punkt O leżał po drugiej stronie 

prostej CA, np. pomiędzy CD i CA, to znak wyrazu P.OL zmieniłby 
się na odwrotny. Zmiana ta wynika z zasady ciągłości, bo odległość 
punktu O od prostej CA zmienia znak, gdy O przechodzi przez tę pro­
stą; niema zatem potrzeby rozważać przypadków takich osobno.

Gdy podzielimy równanie (1) przez CO, to przekształci się ono na

Psin ACO+ Q sin BCO=R sin DCO................................. (2)
Równanie to wyraża jedynie, że suma rzutów sił P, Q na kierunek 
prostopadły do CO jest równa rzutowi siły R na ten sam kierunek. 
Dowiedliśmy to już poprzednio, gdyż mamy prawo poprowadzić pro­
stą Cx właśnie w tym kierunku.

118. Widzieliśmy, że każdy układ sił P1, P^- - daje się 
sprowadzić do jednej siły R, przyłożonej w dowolnym środku 
redukcyi, i do pary G. Okażemy obecnie, że można go w dal­
szym ciągu zredukować do jednej siły albo do jednej pary.
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Siła R jest zerem, jeżeli
X=LPcoso=0, Y=XPsino=0.

W przypadku takim dany układ sił sprowadza się do jednej 
pary. Oczywiście otrzymamy zawsze parę jednakową pod 
wszelkimi względami, jakkolwiek obierzemy środek redukcyi.

Przypuśćmy, że R nie jest zerem. Gdy obierzemy stoso­
wnie środek redukcyi, to para zniknie, i cały układ sprowadzi 
się do jednej siły R. Niech Ox, Oy będą osiami współrzędnych, 
i niech 0' będzie takim środkiem redukcyi, przy którym para 
G' jest zerem. Oznaczając przez (§n) współrzędne punktu O\ 
otrzymamy według par. 108

G‘=G-ĘY+1X=0 . ..........................(1).
Równaniu temu odpowiada linia prosta; gdy na niej leży śro­
dek redukcyi, to zawsze para wypadkowa jest zerem. Ta linia 
prosta jest równoległa do siły wypadkowej R, gdyż- obydwie

Y tworzą z Ox kąty, których tangensy wynoszą y Lecz R dzia­

ła na nowy środek redukcyi O', a zatem owa prosta jest linią 
działania siły R.

119. Streszczamy wywody poprzedzające: Dany jest układ 
sił, którego siłą wypadkową i parą wypadkową są odpowiednio 
R i G.

(1) Układ sprowadza się do jednej pary, jeżeli R=0. 
Układ sprowadza się do jednej siły, jeżeli R nie jest zerem.

(2) Jeżeli R nie jest zerem, to owa siła, do której spro­
wadza się układ, jest pod względem wielkości równa R, a jej 
linia działania odpowiada równaniu

G-kY+^X=0.
Stronę, w którą działa R, wskazują znaki składowych X i Y.

(3) Siła R musi być zawsze jednakowa co do wielkości 
i położenia, jakkolwiek obierzemy układ współrzędnych. Wnio­
skujemy stąd, że owa linia działania nie zależy od układu 
współrzędnych, czyli że jest niezmienna w przestrzeni.

120. Prz. 1. Okazać, że dany układ sił daje się sprowadzić do 
dwóch sił, działających na dane punkty A i B, przyczem pierwsza two­
rzy z AB kąt dany (różny od zera).
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Prz. 2. Dowieść, że układ sił w płaszczyźnie można sprowadzić 
do trzech sił, działających na bokach trójkąta, obranego dowolnie 
w tejże płaszczyźnie. Wskazać prócz tego, jak się te trzy siły wy­
znacza.

(1 ) Redukcya taka jest możliwa. Niech P będzie jedną z sił 
układu, i przypuśćmy, że przecina ona bok AB trójkąta ABC w pun­
kcie M. Przeniósłszy do M punkt przyłożenia siły P, rozkładamy ją 
na dwie składowe w kierunkach AB i CM. Ostatnią przenosimy do C 
i znowu rozkładamy na dwie składowe w kierunkach CA i CB. Po­
stępując w ten sam sposób z każda inną siłą, sprowadzimy cały układ 
do trzech sił Fx, F2, F, działających odpowiednio na BC, CA, AB.

(2 ) Wyznaczamy siły Fi, F2, Fs. Oznaczmy odpowiednio przez 
G1, G2, G^ sumy momentów sił danego układu względem wierzchoł­
ków A, B, C, a przez Pi, p2, p3 odległości tych wierzchołków od prze­
ciwległych boków. W takim razie otrzymamy

Fip,=G,, Fap,=G2, F3p3 = G3.
Prz. 3. Dwa układy, zawierające po trzy siły (P, Q, P) i (P‘, Q', R'), 

działają na bokach trójkąta ABC, obieganych w kółko. Dowieść, że 
wypadkowe ich są równoległe, jeżeli

{QR'~Q'R} s\nA+{RP'-R'P^ixi Bp(PQ'-P'Q)sin C=0.
(Math. Tripos, 1869.)

Prz. 4. Cztery siły w równowadze działają na stycznych do eli­
psy, przyczem siły, posiadające przyległe punkty zetknięcia, są na eli­
psie zwrócone odwrotnie. Dowieść, że moment każdej siły względem 
środka jest proporcyonalny do pola trójkąta, którego wierzchołki leżą 
w punktach zetknięcia sił pozostałych.

Prz. 5. Sztywny wielobok A1A2... przesunięto do nowego poło­
żenia A^A^..., i G, G' oznaczają odpowiednio położenia centroidów mas 
01 , 0.2..., osadzonych w wierzchołkach. Okazać, że siły, określone co 
do wielkości i kierunku przez 0. A^/, 0.2. A2A2..., są równoważne si­
le la.GG' wraz z parą sin 3 . Z(a. GA2), gdzie 9 oznacza kąt, który bok 
wieloboku A^... tworzy z odpowiednim bokiem A^A^...

Rozwiązywanie zagadnień.

121. Wypada teraz wyjaśnić, w jaki sposób przy pomo­
cy dotychczasowych twierdzeń dają się wyznaczać położenia 
równowagi ciał sztywnych w płaszczyźnie. Można to uczynić 
jedynie na przykładach, a zatem po pewnych uwagach ogól­
nych, o rozwiązywaniu zagadnień statycznych, przytoczymy sze­
reg przykładów, podzielonych na rozmaite kategorye. Chodzi­
ło o to, aby rozczłonkować trudności, napotykane w tych za­



— 77 —

stosowaniach, i dać możność czytelnikowi przezwyciężać je sto­
pniowo. Tu i owdzie dodane są uwagi, które mają ułatwić 
stosowanie zasad ogólnych do rozmaitych zagadnień.

122. Jeżeli na ciało działają trzy siły, albo jeżeli układ 
daje się łatwo sprowadzić do trzech sił, to możemy wyznaczyć 
położenie równowagi, posługując się zasadą, że trzy równowa­
żące się siły przechodzą przez jeden punkt, albo są równole­
głe. Dowiedliśmy to w par. 34.

Metoda ta posiada dwie zalety: (1) oznaka zbiegania 
się trzech prostych w jednym punkcie daje się nieraz dogodnie 
wyrazić w postaci pewnego warunku geometrycznego, (2) nie 
wprowadzamy tu wielkości sił, jeżeli więc te są nieznane, to 
dalsze rugowanie jest zbyteczne. Jeżeli wszakże pragniemy wy­
znaczyć i te wielkości, to możemy uczynić to potem, korzysta­
jąc z twierdzenia, że każda z nich jest proporcyonalna do sy- 
nusa kąta pomiędzy dwiema pozostałemi. Metoda taka zowie 
się zwykle geometryczną.

123. Jeżeli układ zawiera więcej od trzech sił, lub jeżeli 
przekładamy metodę analityczną nawet w przypadku trzech 
sił, to posługujemy się wynikami paragrafu 109. Aby wyrazić 
warunki równowagi, przyrównywamy do zera sumy rzutów sił 
na dwa stosowne kierunki i sumę momentów sił względem sto­
sownego punktu. Utworzywszy w ten sposób trzy równania, 
rugujemy z nich siły nieznane i ostatecznie otrzymamy jedno 
równanie, określające algebraicznie położenie równowagi.

Skoro mamy rugować siły nieznane, to będzie dogodnie 
brać rzuty na kierunek prostopadły do jednej z nich i brać 
momenty względem punktu, położonego na linii działania tej­
że. W takim razie siła ta wystąpi jedynie w równaniu . trze- 
ciem, które możemy całkowicie pominąć. Stąd widać, że sto­
sowny dobór kierunków, na które bierzemy rzuty, oraz pun­
któw, względem których bierzemy momenty, może nam oszczę­
dzić pracę rugowania.

124. Gdy mamy kilka ciał, tworzących układ, to musi- 
my uwzględnić działania jednych na drugie; w tym celu wpro­
wadzamy siły, zwane reakcyami, w punktach zetknięcia. Może­
my dalej uważać, że każde ciało istnieje osobno (lub że po­
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zostałe ciała zostały usunięte), i że działają na nie obok sił da­
nych jeszcze owe reakcye. Tworzymy następnie równania dla 
każdego ciała z osobna i wreszcie rugujemy owe reakcye, je­
żeli są nieznane. Równania pozostałe określą położenia równo­
wagi ciał.

Możemy niekiedy uniknąć tych rugowań, wyrażając wa­
runki równowagi dla dwóch ciał razem; zresztą w dalszym cią­
gu poznamy sposób tworzenia równań dla ciał poszczególnych 
bez wprowadzania reakcyi wzajemnych.

125. Ciężki pręt AB, cienki i jednorodny, spoczywa częściowo we­
wnątrz, a częściowo na zewnątrz pułkulistej czaszy gładkiej i nierucho­
mej. Wyznaczyć położenie równowagi.

Niech G oznacza punkt środkowy pręta; w takim razie w G jest 
przyłożona siła ciążenia W, czyli ciężar pręta. Powinno to być zrozu­
miałe z teoryi sił równoległych; dowód ścisły podamy w rozdziale 
o środku ciężkości.

Gdy stykają się dwie gładkie powierzchnie, to ciśnienie pomię­
dzy niemi działa na normalnej do wspólnej płaszczyzny stycznej 
w punkcie zetknięcia (par. 54). Pręt możemy uważać za bardzo cienki 
cylinder z zaokrąglonymi końcami. Wspólna płaszczyzna styczna do 
pręta i kuli w punkcie A jest naturalnie płaszczyzną styczną do kuli, 
i ciśnienie w tym punkcie działa na normalnej AO do kuli. Dojdziemy

do tego samego wniosku, uważając, że 
pręt dotyka kuli tylko jedną krańcową 
cząsteczką; w takim razie wprost wy- 
wynika z par. 54, że ciśnienie pomiędzy 
tą cząsteczką krańcową i kulą działa 
normalnie do kuli.

Zwróćmy teraz uwagę na punkt C, 
w którym pręt styka się z brzegiem 
czaszy. Wspólna płaszczyzna styczna do 
pręta i do linii brzegu przechodzi przez 
pręt i styczną do tej linii w punkcie C. 

Reakcya musi być prostopadła do tych obydwóch prostych, a zatem 
działa na prostej CI, prostopadłej do pręta w płaszczyźnie pionowej, 
przezeń przechodzącej.

Nie będzie bez pożytku ująć uwagi powyższe w prawidło robo­
cze. Płaszczyzna styczna do powierzchni w pewnym punkcie zawiera 
wszystkie proste, styczne w tym punkcie. Stąd wynika, że reakcya 
pomiędzy dwoma stykającemi się ciałami gładkiemi musi być no­
rmalna do każdej linii, położonej na powierzchni jednego z nich i prze­
chodzącej przez punkt zetknięcia, a przeto kierunek reakcyi wyzna­
czamy tak: obieramy dwie linie, położone na danych ciałach i przecho­
dzące przez punkt zetknięcia; szukany kierunek jest normalny do oby­
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dwóch. Tak np. zarówno pręt, jak i linia brzegu przechodzą przez 
punki C, a zatem reakcya w tym punkcie musi być normalna do 
obydwóch.

Niech a oznacza promień czaszy i 21 długość pręta. Położenie 
pręta określa kąt ACO=^~, który pręt tworzy z poziomem. Znajdziemy 
z łatwością, że GAO=^, i CA=2a cos 3.

Pręt ma pozostawać w równowadze pod działaniem trzech sił 
R, R1 i W, możemy więc z korzyścią uciec się do metody geometry­
cznej. Potrzeba tu wyrazić warunek, aby trzy siły spotykały się w pe­
wnym punkcie I. Zakładamy w tym celu, że rzuty odcinków AGr i Al 
na kierunek poziomy są równe. Kąt ICA jest prosty, a zatem punkt I 
leży na przedłużeniu okręgu, i przeto AI=2a. Równość rzutów wy­
razi się tak: Z cos ^=2a cos 23,
skąd cos 9—4 + 

8u 1/1+02V 2 64a2
Jeżeli przypiszemy pierwiastkowi znak minus, to cos 3 będzie 

ujemny, i kąt 3 większy od prostego. Przypadek taki wyłączają względy 
geometryczne, a zatem położenie równowagi określa wartość cos 3, 
którą otrzymamy, kładąc przed pierwiastkiem znak plus.

Są tu i inne ograniczenia natury geometrycznej. Jeżeli 21 nie 
jest dłuższe od 2a cos 3, to pręt nie dosięgnie brzegu i wpadnie do 
czaszy, jeżeli zaś l nie jest mniejsze od 2a cos 3, to punkt G-, na który 
działa siła ciążenia, znajdzie się Zabrzegiem, i pręt wypadnie z czaszy.

Warunki te są spełnione, jeżeli l zawiera się pomiędzy “V3 i 2a 

Jeżeli połowa długości pręta jest mniejsza od 2a, to cos 3 nie może 
przewyższać jedności, co daje się łatwo okazać.

Dla porównania rozwiążemy jeszcze lo samo zadanie metodą ana­
lityczną. Mamy wziąć rzuty na pewne kierunki i momenty względem 
pewnego punktu. Aby nie wprowadzać do równań reakcyi R', we- 
źmiemy rzuty na AG i momenty względem G. Równanie rzutów będzie

R cos 9= W sin 8

Odległość punktu C od AO wynosi a sin CO I, a GG=2a cos 0—l, zatem 
równanie momentów będzie Ra sin 20= W(2a cos 3—Z) cos 3.

Rugując R, otrzymamy do wyznaczenia cos 3- takie samo równa­
nie, jak poprzednio.

Należy zwrócić uwagę, że wartość cos 3, określona w równaniach 
równowagi, zależy jedynie od długości a i l, jest zaś niezależna od 
ciężaru pręta. Wszystkie jednorodne pręty tej samej długości zajmą 
w tej samej czaszy bez względu na ciężary jedno i toż samo położenie 
równowagi. Można to było przewidzieć z teoryi wymiarów. Oczywi­
ście cos 3 nie może być równy żadnej wielokrotności ciężaru, lecz je­
dynie stosunkowi dwóch ciężarów. W naszem zagadnieniu występuje 
tylko jeden ciężar W; nie istnieje żadna inna siła, któraby mogła utwo­
rzyć z nim stosunek, a zatem i ciężar W nie może występować w wy­
niku ostatecznym.
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Prz. 2. Okazać, że w przykładzie poprzedzającym można odrazu 
otrzymać równanie, określające cos 3 i nie zawierające sił nieznanych, 
biorąc momenty względem punktu I, w którym przecinają się reak- 
cye R i R'. Okazać prócz tego, że równowaga jest trwała.

Przesuńmy nieco pręt, powiększając kąt 3, czyli nachylenie 
pręta do poziomu. Koniec A zejdzie na dół, pręt wysunie się cokol­
wiek z czaszy, i punkt I znajdzie się po lewej stronie pionu, przecho­
dzącego przez nowe położenie punktu G. Pozostawmy teraz pręt sa­
memu sobie; biorąc momenty względem I, przekonamy się, że ciężar 
pręta, działający na punkt G, usiłuje zwrócić pręt do położenia ró­
wnowagi. Gdy przesuniemy pręt tak, aby 9 się zmniejszyło, to rozwa­
żania analogiczne doprowadzą do takiego samego wniosku. Widzimy 
więc, że równowaga jest trwała.

Prz. 3. Pręt AB jest wsparty w punkcie C o brzeg nieruchomego 
kielicha, a w końcu A o ścianę wewnętrzną. Kielich ma kształt pro­
stego stożka o osi pionowej. Okazać, że w położeniu równowagi 
l sin2(3+3) cos 3=2a sin23, gdzie 3 oznacza nachylenie pręta do pozio­
mu, a promień otworu kielicha, 3 spełnienie połowy kąta wierzchoł­
kowego, wreszcie 2l długość pręta.

Prz. 4. Otwarte wiadro cylindryczne, którego promień jest ró­
wny a, ciężar zaś nW, stoi na poziomej podłodze. Ciężki pręt o dłu­

gości 2l i wadze W spoczywa na 
brzegu wiadra, opierając się koń­
cem o wewnętrzną ścianę pio­
nową. Okazać, że (1) nachylenie 
pręta do poziomu 3 czyni w po­
łożeniu równowagi zadość ró­
wnaniu l cos8 3=2a, (2) pręt wy- 
padnie z wiadra, jeżeli nachyle­
nie będzie mniejsze od tej war­
tości, (3) wiadro się przewróci, 
jeżeli l cos 8> (n+2)a. Czy ró­

wnowaga jest trwała czy chwiejna?
Pręt wypadnie z wiadra, jeżeli G leży po prawej stronie pionu, 

przechodzącego przez punkt I na figurze. Wiadro się przewróci, jeżeli 
moment ciężaru pręta względem D jest większy od momentu ciężaru 
wiadra.

Prz. 5. Okazać, że największa długość pręta, pozostającego w ró­
wnowadze w położeniu wyżej opisanem (fig. 23), czyni zadość równa­
niu 212= a2(n+2)3.

Prz. 6. Ciężki pręt AB o długości 21 spoczywa na nieruchomym 
kołku C, a koniec jego A opiera się o gładką krzywą, położoną w tej 
samej płaszczyźnie pionowej; gdy biegun leży w C, a kąt 9 mierzymy 
od pionu, to równanie biegunowe tej krzywej jest r=f(8). Okazać, że 
wartość kąta 8, przy której zachodzi równowaga, czyni zadość równa­
niu (r—Z) tan 9= dr.
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Okazać dalej (całkując równanie powyższe), że, jeżeli równowaga 
ma zachodzić we wszystkich położeniach, to krzywa posiada postać 
(r— Z) cos J= a, że środek pręta leży przytem zawsze na pewnej prostej 
poziomej, i wreszcie, że krzywa jest konchoidą Nikomedesa.

Gdybyśmy zastosowali do tego zagadnienia zasadę pracy przygo­
towanej, to doszlibyśmy naprzód do wniosku, że gdy pręt wyrusza 
ze stanu równowagi, to środek jego zaczyna poruszać się poziomo. 
Z tego faktu geometrycznego należałoby następnie wyciągnąć wnioski 
powyższe.

126. Prz. 1. Ciężki pręt jednorodny PQ znajduje się wewnątrz 
gładkiego naczynia, utworzonego przez obrót elipsy około dużej osi, usta­
wionej pionowo. Okazać, że w stanie równowagi pręt posiada położenie 
poziome albo przechodzi przez ognisko.

Reakcye w P i Q działają na normalnych do naczynia. W poło­
żeniu równowagi normalne te muszą przecinać się w punkcie I, leżą­
cym pionowo nad środkiem G- pręta.

Następująca własność geometryczna stożkowych stanowi uogól­
nienie własności, podanej przez Salmona (Co- 
nics,rozd.XI). Przytaczamy jej dowód w przy- 
pisku na końcu książki. Obierzmy osi eli­
psy tworzącej CA, CB za osi współrzędnych, 
i niech (x g) oznaczają współrzędne środka G 
jakiejkolwiek cięciwy PQ, (4) współrzędne 
punktu I, w którym przecinają się normal­
ne w P i Q, wreszcie p, p', q odpowiednio 
odległości ognisk i środka elipsy od cięciwy. 
W takim razie

-0 b2_ PP'
y a2 q2

Uważamy tu, że p i pf mają znaki jednakowe, jeżeli obydwa 
ogniska leżą po tej samej stronie cięciwy.

W zadaniu naszem równowaga zachodzi, jeżeli ^=y, a zatem p 
(lub p') musi być zerem, albo y~0. W przypadku pierwszym pręt 
przechodzi przez ognisko, w drugim posiada położenie poziome.

Prz. 2. Okazać, że równowaga jest trwała, jeżeli pręt przecho­
dzi przez ognisko niższe.

W tym celu należy okazać, że po przesunięciu pręta moment 
siły ciążenia względem I usiłuje przywrócić położenie równowagi.

Prz. 3. Naczynie ma kształt bryły, powstałej skutkiem obrotu 
elipsy około małej osi, ustawionej pionowo; okazać, że pręt może być 
w równowadze tylko w położeniu poziomem.

W położeniu równowagi E==x. Ogniska osi małej są urojone, nie 
możemy więc otrzymać wzoru na § bezpośrednio z wzoru na , zmie­
niając a na b. Przypuśćmy, że cięciwa przecina osi w punktach L i M. 
Z trójkątów podobnych wypadu ie

Statyka. 6
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n-0b2__ CL2-a^ + b\ ^-xa2 _ CM2-b2 + a2
y a? CL2 ‘ x 62 CM2

Prawa strona nie może być zerem, a zatem 6=x tylko pod warun­
kiem, że x=o.

Prz. 4. Ciężki jednorodny pręt PQ znajduje się wewnątrz gła­
dkiego naczynia w kształcie bryły, powstałej skutkiem obrotu elipsy 
około dużej osi. Oś obrotu tworzy z pionem kąt a, a pręt w stanie 
równowagi przecina osi CA, CB elipsy tworzącej w Li M. Dowieść, że 
CM2+c2 , . CL2— c2
----------- • b‘sin 0—------- ----- a2 cos a, gdzie C2==(2—b2.CM CL 8

Prz. 5. Dwa gładkie druty wykrępowano według jednakowych 
katenoid (łańcuchowych) i ustawiono w taki sposób, że katenoidy 
mają wspólną oś i wspólną kierownicę pionową. Na druty nawle­
czono dwie obrączki, osadzone na końcach ciężkiej jednorodnej sztaby. 
Okazać, że sztaba może być w równowadze tylko w położeniu po­
ziomem.

Prz. 6. Pręt jednorodny jest zaopatrzony na końcach w gła­
dkie obrączki; jedną z nich nawleczono na prosty drut pionowy, a dru­
gą na drut, wykrępowany według paraboli. Oś tej paraboli leży na 
pierwszym drucie, a latus rectum jest równy podwójnej długości 
pręta. Okazać, że w stanie równowagi pręt tworzy z pionem kąt 60°

(Math. Tripos, 1869).
Prz. 7. Dwa równe jednorodne pręty AC, CB są połączone luźno 

w C, i zaopatrzone na końcach A, B w obrączki Obrączki nawleczono 
na gładki drut paraboliczny, którego oś jest pionowa, a wierzchołek 
zwrócony ku górze. Okazać, że w położeniu równowagi odległość G 
od' AB wynosi ćwierć latus rectum paraboli. (Math. Tripos, 1871.)

Prz. 8. Dwie ciężkie jednorodne sztaby AB i BC, ważące odpo­
wiednio P i Q, połączono w B zapomocą gładkiego przegubu, na koń­
cach A i C osadzano gładkie obrączki, które mogą się przesuwać na 
nieruchomych prętach, a każdy pręt tworzy z poziomem kąt a. Oka­
zać, że Pcot ©=Q cot 3=(P+Q) tan a, gdzie « i 3 oznaczają kąty nachy­
lenia sztab do poziomu. (Triu. Coli., 1882).

Bierzemy rzuty sił, działających na obydwie sztaby razem, na 
kierunki poziomy i pionowy oraz momenty sił, działających na każdą 
z osobna, względem punktu B.

127. Prz. 1. Diuie gładkie sztaby OM i ON, prostopadłe jedna do 
drugiej, są ustawione nieruchomo w płaszczyźnie pionowej. Na nich 
wspiera się jednorodna tarcza eliptyczna, położona w tej samej płaszczy­
źnie. Okazać, że albo osi elipsy są równoległe do sztab, albo oś duża two­
rzy z OM taki kąt 3, że

a2 tan2 a — b2
tan28=-----------------. 

a2—b2 tan2 a 
gdzie a oznacza kąt sztaby OM z pionem.
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Oznaczmy ‘środek elipsy przez C, punkty zetknięcia przez P, Q, 
a punkt przecięcia normalnych w P i Q przez I. W położeniu równo-

dowiedziemy w rozdziale

wagi musi zachodzić jedno z dwojga, albo 
M I i O leżą razem, albo prosta CI jest pio­

nowa.
W przypadku pierwszym styczne OM 

i ON są równoległe do osi.
Dajmy na to, że zachodzi przypadek 

drugi, i niech D oznacza środek cięciwy 
PQ. Prosta OD przechodzi przez 0, a po­
nieważ styczne tworzą kąt prosty, przeto 
OPIQ jest prostokątem, i OD przechodzi 
przez I. Stąd wynika, że OCI jest prostą 
pionową.

Obydwa wnioski powyższe dadzą się 
także łatwo wyciągnąć z zasady, którą 

o pracy przygotowanej. Z nauki o stożko­
wych wiemy, że gdy elipsa się porusza w swej płaszczyźnie, pozosta­
jąc wciąż w zetknięciu ze sztabami, to C zatacza łuk koła, którego śro­
dek leży w 0, a promień wynosi V a2+b2. Gdy środek C leży piono­
wo nad O, to położenie jego jest najwyższe; gdy osi są równoległe do 
sztab, to środek C leży w jednym z końców zataczanego luku i poło­
żenie jego jest najniższe. Z zasady pracy przygotowanej wynika bez­
pośrednio, że w pierwszem z tych położeń mamy równowagę chwiej­
ną, a w dwóch innych trwałą.

Potrzeba jeszcze wyznaczyć 8 w przypadku, gdy CI jest pionem. 
Prostopadła z C do OM tworzy z dużą osią kąt spełniający 3, zatem

a?sin2$+b?cos2}=OC?sin?=(a2+b2)sin2o .

Stąd można wyznaczyć od razu tan29.
Prz. 2. W płaszczyźnie pionowej tarcza eliptyczna wspiera się 

na dwóch sztabach OM i ON, tworzących kąt dowolny. Okazać, że 
y q2__X2

tan 3=------- -------- -, gdzie 3 oznacza kąt, który duża oś tworzy z pio- 
X b2— Y

nem, a (XY) współrzędne punktu 0 w odniesieniu do osi elipsy, jako 
do osi współrzędnych.

Wypada tu zastosować twierdzenie, które wynika z dwóch in­
nych, podanych przez Salmona (Conics, 180). Dajmy na to, że P i Q 
są punktami zetknięcia stycznych do stożkowej, poprowadzonych z pun­
ktu (lY). Normalne w P i Q przecinają się w punkcie I, którego 
współrzędne (xy) są dane przez

2 62 — Y 2 ii 
“= (a2—b2) , —— — (a2—ń2)
X’ cPY^b^N2 Y

a?—X2

a2 Y2+b2X2

Otrzymamy stąd żądany wynik, zakładając, że CI jest pionem.
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128. Prz. 1. Do punktu, położonego na obwodzie podstawy 
stożka, przywiązano sznur o długości równej średnicy podstawy. Drugi 
koniec sznura jest umocowany w punkcie gładkiej pionowej ściany, 
z którą styka się także obwód podstawy stożka. Okazać, że w położeniu 
równowagi tan a tan 0=1/12, gdzie 20. oznacza kąt wierzchołkowy stożka, 
a 3 nachylenie sznura do pionu. (Środek ciężkości stożka leży na osi 
w odległości ćwierci wysokości od podstawy.)

Prz. 2. Płytę kwadratową ustawiono w płaszczyźnie prostopa­
dłej do pionowej gładkiej ściany, przywiązawszy jeden z wierzchoł­
ków do ściany sznurem, którego długość jest równa bokowi kwadratu. 
Okazać, że odległości trzech pozostałych wierzchołków od ściany mają 
się do siebie, jak 1:3:4. (Math. Tripos, 1853.)

Biorąc rzuty na kierunek pionowy oraz momenty względem 
wierzchołka, opartego o ścianę, otrzymamy dwa równania, z których 
można wyznaczyć nachylenia boków do ściany i naprężenie sznura.

Prz. 3. Sztaba jednorodna AB posiada długość a. Do końca A 
jest przymocowany koniec sznura APBC, który przechodzi także przez 
gładki pierścień, osadzony w końcu B. Drugi koniec sznura jest przy­
wiązany do kołka O, a część A PB przechodzi przez gładki kołek P, 
położony na jednym poziomie z C w odległości 2b od tegoż (b<a). 
Wyznaczyć kąty, które części sznura PB i BC tworzą z pionem, gdy 
część AP ma kierunek pionowy, i dowieść, że przytem sznur musi

5b — ,------_ 
posiadać jedną z dwóch długości 3V3± Vd‘- b"

(King’s Coli., 1889.)
Prz. 4. Końce dwóch lekkich, sprężystych sznurów są umoco­

wane w nieruchomym punkcie, położonym na prostej poziomej, łączą­
cej dwa gładkie kołki; wolne końce sznurów nierozciągniętych właśnie 
sięgają do kołków. Sznury te przeciągnięto przez kołki i do ich koń­
ców przywiązano końce ciężkiej jednorodnej sztaby. Okazać, że na­
chylenie sztaby do poziomu jest niezależne od jej długości, a miano-

. “1—12 wicie wynosi arctan . 
la

gdzie "1 i "2 oznaczają odpowiednio wy­

dłużenia, którym podlegają sznury, gdy jeden dźwiga całą sztabę; 
a jest tu odległością pomiędzy kołkami. Okazać prócz tego, że sznury 
i sztaba są nachylone do poziomu pod kątami, których tangensy two­
rzą postęp arytmetyczny. Należy uważać, że naprężenie każdego sznura 
jest proporcyonalne do stosunku pomiędzy wydłużeniem a długością 
normalną. (Math. Tripos, 1887.)

129. Prz. 1. Kula spoczywa na sznurze, którego końce są umoco­
wane w dwóch punktach nieruchomych. Okazać, że gdy rozetniemy kulę 
płaszczyzną pionową, to równowaga nie zostanie zakłócona, jeżeli tylko 
łuk zetknięcia kuli ze sznurem jest nie mniejszy od Barcian 48/55.

(Math. Tripos, 1840.)
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Należy przyjąć, że środek ciężkości bryły półkulistej leży na 
promieniu środkowym w odległości 3/8 promienia kuli od środka.

Będziemy rozważali równowagę półkuli ABD wraz ze stykającą
się z nią częścią sznura AD, możemy więc po­
minąć reakcye, które te ciała wywierają jedno 
na drugie. Na takie ciało złożone działają siły 
następujące: (1) w punktach A i D naprężenia 
sznura, każde równe T, (2) ciężar półkuli W 
w jej środku ciężkości G-, (3) reakcya R półkuli 
drugiej. Reakcya R jest wypadkową wszystkich 
ciśnień poziomych, zachodzących pomiędzy ele­
mentami podstaw, i musi działać na pewien 
punkt pola zetknięcia. Podstawy się rozejdą, 
jeżeli wypadkowa sił pozostałych nie przecina również pola zetknię­
cia. Jeżeli łuk aD jest możliwie najmniejszy, to półkule zaczną się 
rozchodzić w B, gdyż ciśnienia pomiędzy niemi ograniczą się je­
dynie do najniższego punktu A. Na półkulę ABD działają w tym 
razie trzy siły, T w D, T—R w A i W w G. Muszą one przecinać 
się w punkcie I. Zatem CGr= CA tan l/2ACD, a stąd tan ll2ACD=^ls 
i tan ACD=i8/55.

Prz. 2. Dwie jednakowe gładkie półkule spoczywają ha dwóch 
kołkach, osadzonych na jednym poziomie. Półkule są złożone w taki 
sposób, że wyglądają jak jedna kula, przyczem dzieląca je płaszczy­
zna jest pionowa. Okazać, że najmniejsza odległość pomiędzy kołkami, 
przy której półkule jeszcze się nie rozchodzą, ma się tak do średnicy, 
jak 3 do V73. (Christ’s Coll.)

Prz. 3. Tarczę eliptyczną o mimośrodzie e rozcięto na dwie 
części według małej osi i umieszczono w zgięciu sznura, umocowanego 
w dwóch punktach nieruchomych. Duża oś tarczy jest pozioma, a czę­
ści sznura, nieś tykające się z tarczą, pionowe. Okazać, że koniecznym 
warunkiem równowagi jest, aby

(6re)2 < (97—4) (31+4). (Coli. Ex„ 1890.)

Na każdą połowę tarczy działają dwa jednakowe naprężenia na 
stycznych w wierzchołkach A i B. Ich wypadkowa tworzy z każdą 
osią kąt 45°. Przypuśćmy, że przecina ona pion, przechodzący przez 
środek ciężkości G-, w punkcie H; przez ten sam punkt H musi prze­
chodzić i reakcya między połowami tarczy. Stąd wynika, że wznie­
sienie pionowe punktu H nad B musi być mniejsze od osi małej, 

czyli a—CGr<2b, gdzie Coznacza środek elipsy. Przyjmując, że CG—~, 

otrzymamy rezultat żądany.

Prz. 4. Cylinder kołowy stoi na gładkiej płaszczyźnie pochyłej. 
Do najwyższego punktu cylindra jest przymocowany sznur, który 
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przechodzi przez blok, urządzony na szczycie płaszczyzny, i następnie 
zwisa pionowo, dźwigając ciężar. Część sznura pomiędzy cylindrem 
i blokiem idzie poziomo. Znaleźć warunki równowagi.

(Math. Tripos, 1843).
Okazać prócz tego, że stosunek wysokości cylindra do średnicy 

podstawy powinien być mniejszy od kotangensa nachylenia płaszczy­
zny do poziomu.

Prz. 5. Sztaba jednorodna o długości a wisi na dwóch sznurach 
o długościach l i V. Końce sznurów są przywiązane do końców sztaby 
i do dwóch punktów nieruchomych, położonych na jednym poziomie
w odległości c, a linie sznurów tworzą kąt prosty. Okazać, że stosu­

al+cl' 
al' + cl

nek ich naprężeń wynosi (Math. Tripos, 1874).

Prz. 6. Prosta przecięcia gładkiej pionowej ściany AB i pła­
szczyzny BC jest pozioma. W rozwartym kącie ABC znajduje się gła­
dka kula, ważąca W, pozostając w zetknięciu ze ścianą i płaszczyzną 
dzięki ciśnieniu jednorodnej sztaby o długości Z, osadzonej na zawia­
sie w A i opartej o kulę. Okazać, że ciężar sztaby musi być większy od

Whcos a cos —
_______________ 2

0 a — 0 a — 0
2/ sin — sin -----cos2------

2 2 2

gdzie a i 3 oznaczają odpowiednio kąty ostre, które płaszczyzna i szta­
ba tworzą ze ścianą, a h=AB. (Tath. Tripos, 1890).

Prz. 7. Pewną liczbę gładkich jednakowych cylindrów związano 
sznurem, tworząc pęk, którego przekrój poprzeczny jest trójkątem ró­
wnobocznym. Jeden bok trójkąta zawiera n cylindrów, i cały pęk 
waży W. Dowieść, że gdy pęk spoczywa na płaszczyźnie poziomej, 

w 1 
to naprężenie sznura nie może być mniejsze od   1-|—) lub 

4V3 n/
W / 1

---- — 1-----) stosownie do tego, czy n jest liczbą parzystą, czy niepa- 
4 V3 \ n /
rzystą. Naprężenia powyższe występują odpowiednio wtedy, gdy cy­
lindry, położone w jednej jakiejkolwiek warstwie poziomej po nad naj­
niższą, nie wywierają jeden na drugi żadnych reakcyi.

(Math. Tripos, 1886).

Prz. 8. n równych gładkich kul, każda o promieniu r i wadze 
W, włożono do próżnego pionowego cylindra, ustawionego na pła­
szczyźnie poziomej. Cylinder jest otwarty z obydwóch końców, a jego 
promień a jest mniejszy od 2r. Dowieść, że aby cylinder się nie prze­
wrócił, to ciężar jego powinien conajmniej wynosić W, wyznaczone 
z równania
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aW'=(n—1)(a— r) W lub a W'=n(a-r) W, 

stosownie do tego, czy n jest liczbą nieparzystą, czy parzystą.
(Math. Tripos, 1884).

Prz. 9. Ciężką obręcz połączono z inną większą obręczą współ- 
środkową zapomocą n sprężystych sznurów, przeprowadzonych we­
dług wspólnych promieni w równych odstępach. Tę drugą obręcz 
połączono w podobny sposób z trzecią zapomocą 2n sznurów, trzecią 
połączono z czwartą zapomocą 3n i t. d. Wagi wszystkich obręczy są 
jednakowe, a sznury w tern położeniu pierwotnem nie mają naprężeń. 
Okazać, że jeżeli podniesiemy obręcz największą i będziemy ją trzy­
mali poziomo, to wszystkie inne ustawią się na powierzchni prostego 
stożka. (Pet. Coli., 1862).

Prz. 10. Dwie kule o gęstościach p, a i promieniach a, b leżą 
w paraboloidzie obrotu o osi pionowej. Punkt zetknięcia kul znajduje 
się w ognisku. Okazać, że p3al0=g3b10.

(Curtis’ problem. Educational Times, 5460).
130. Równowaga czterech odpychających się cząsteczek. 

Prz. 1. Cztery cząsteczki swobodne, położone w wierzchołkach czwo­
roboku, pozostają w równowadze pod działaniem wzajemnych przy- 
ciągań i odpychać, a mianowicie na bokach AB, BC, GD, DA działają 
siły przyciągające, a na przekątniach AG, BD odpychające. Siły te są 
proporcyonalne do boków lub przekątni, na których działają. Do­
wieść, że ów czworobok jest równoległobokiem.

W danym razie siły, działające na cząsteczkę A, odpowiadają 
odcinkom AB, AD i AG. Twierdzenie wynika bezpośrednio z równo- 
ległoboku sił.

Prz. 2. Czworobok, utworzony przez takie cztery cząsteczki, 
może być wpisany w koło. Okazać, że siła przyciągająca na którym­
kolwiek boku jest proporcyonalna do boku przeciwległego, a siła od­
pychająca na przekątni jest proporcyonalna do drugiej przekątni.

Prz. 3. Czworobok jest jakikolwiek, i cząsteczki w wierzchoł­
kach są w równowadze; dowieść, że

f(AB)_ f(BC)_  _ f{BD) _ __ f\AC)
AB.OGOD BG.OD.OA " AG. OB. OD BD-OA-OG' 

gdzie O oznacza punkt przecięcia przekątni BD, AC, a f{AB) siłę, dzia­
łającą na prostej AB.

Rozważamy równowagę cząsteczki A.
f(AG) sin DAB pole DAB AD . A O _ BD AO 
f(AB) “ sin DA0 “ pole DAO • AD. AB ~7)0’Ad '’

dalsze związki żądane wynikają ze względów na symetryę.
Prz. 4. Czworobok posiada postać dowolną. Okazać, że (1) mo­

menty sił, działających na bokach, względem 0 są równe, i (2)

AB f(AB) + B Gf(B C) + GDf( GD) + DA f(DA)=A Gf{A G) + BD f(BD).
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Reakcye w przegubach.

131. Wyobraźmy sobie, że dwie belki lub sztaby są złą­
czone gładkim przegubem czyli zawiasą, albo bardzo krótkim 
sznurem; w takim razie reakcye, które jedna z nich wywiera 
na drugą, są równoważne jednej sile, przyłożonej w punkcie 
złączenia. Kierunek tej siły bywa często widoczny od razu, 
w innych przypadkach wypada wyznaczać ją zarówno co do 
wielkości jak i kierunku z równań równowagi.

W dwóch przypadkach kierunek tej reakcyi wypadkowej 
jest widoczny. Po pieriusze wtedy, gdy ciała oraz siły zewnętrzne 
są symetryczne względem pewnej prostej, przechodzącej przez 
złączenie. W tym razie obydwie reakcye, które belki wywie­
rają na siebie wzajemnie, muszą być także położone symetry- 
trycznie. Lecz reakcye te są równe i odwrotne, a zatem muszą 
być prostopadłe do osi symetryi.

Powtóre kierunek reakcyi jest widoczny wtedy, gdy ciało 
jest osadzone w dwóch przegubach A, B^ i nie działają nań 
żadne siły prócz reakcyi w A, B. Skoro ciało pozostaje w ró­
wnowadze pod działaniem dwóch sił, to siły te muszą być ró­
wne i działać na prostej AB w strony odwrotne.

Prz. 1. Dwie równe lekkie sztaby AA', BB' są połączone prze­
gubem we wspólnym środku C i ustawione 
w płaszczyźnie pionowej na gładkim pozio­
mym stole. Ich górne końce A, B łączy 
lekki sznur ADB, na który nawleczono cię­
żki pierścień D. Okazać, że w położeniu 
równowagi prosta pozioma, przechodząca 
przez pierścień D, dzieli na pół odcinki A C 
i BC. (Coli. Ex.).

Reakcye w C są poziome, gdyż układ 
jest symetryczny względem pionu przez C. Reakcya w A' jest piono­
wa, bo gdy koniec sztaby spoczywa na powierzchni, to reakcya musi 
być normalna do powierzchni (125). Naprężenie sznura działa na pro­
stej AD. Trzy te siły utrzymują w równowadze sztabę AA', a zatem 
muszą się spotykać w jakimś punkcie I. Z podobieństwa trójkątów 
znajdziemy, że DC jest równe połowie 1A', a stąd bezpośrednio wy­
nika twierdzenie, o które chodzi.

Prz. 2. W przykładzie poprzedzającym ciężar każdej sztaby jest 
n razy większy od ciężaru pierścienia; dowieść, że w położeniu ró­
wnowagi prosta pozioma, poprowadzona przez pierścień, przecina CA 
w punkcie P tak, że CP—(2n+pPA.
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Prz. 3. Dwie równe, ciężkie sztaby CA, CB są połączone zawia­
są w C, a ich końce A, B spoczywają na gładkim poziomym stole. 
Środki sztab E i F wiąźe sztaba trzecia, złączona z niemi zapomocą 
gładkich zawias. Wyznaczyć reakcye w złączeniach w dwóch przy­
padkach: (1) gdy sztaba EF nic nie waży, (2) gdy ciężar jej wynosi W.

Reakcya R w C jest pozioma, jak tego wymaga symetrya ukła-
du. Jeżeli nie uwzględniamy ciężaru sztaby 
prawidła paragrafu niniejszego musimy uwa­
żać, że reakcye w E i F działają na prostej 
EF. Oznaczmy je przez X. Reakcya R' w A 
jest pionowa, a ciężar W sztaby CA działa 
pionowo w E. Biorąc rzuty na kierunki pio­
nowy i poziomy oraz momenty względem 
E, znajdziemy z łatwością, że R a także — X 
są równe Wtan a gdzie a oznacza połowę ką­
ta A CB.

EF, to w myśl drugiego

Fig. 28.

Jeżeli dach na domu nie jest spiczasty, to kąt ACB pomiędzy 
krokwiami nie wiele się różni od dwóch prostych, a zatem a jest 
duże, i reakcye w C, E są znacznie większe od ciężaru belki. Wobec 
tego złączenia krokwi powinny być szczególnie mocne.

Jeżeli ciężar W' sztaby EF nie jest znikomy, to reakcye w E i F 
nie będą poziome. Oznaczmy składowe poziomą i pionową reakcyi, 
działającej w E na EF, odpowiednio przez X i Y, uważając, że pier­
wsza działa w prawo, a druga na dół. Uderzać musi, że kierunki te 
są odwrotne do tych, których należałoby oczekiwać. Obrano je tak, 
aby nie gmatwać rysunku; otrzymamy je w ostatecznym wyniku jako 
wielkości ujemne. Reakcye na sztabę AC w punkcie E są naturalnie 
odwrotne do tamtych. Warunki równowagi będą następujące:

Rzuty pion. (szt. EF) 
Rzuty pion, (cały układ) 
Mom. wzgl. E (szt. AC)
Rzuty poz. (szt. AC)

W tem 2a oznacza długość sztaby AC 
określają X, Y, R i R'.

2Y+ W‘=0.
2R'= W‘+2 W.
Ra cos a.=R'asin a.
X+R=0.

lub CB. Równania powyższe

Prz. 4. Sztaby AB, BC o jednakowych ciężarach, lecz nie je­
dnakowych długościach, połączono przegubem w punkcie B, pozostałe 
zaś końce osadzono na zawiasach w nieruchomych punktach A i C, 
położonych na tym samym pionie. Okazać, że linia działania reakcyi 
w przegubie B przechodzi przez środek odcinka AC.

Prz. 5. Dwa jednorodne pręty AB, AC są połączone luźno w A. 
Punkt A może się przesuwać na gładkim drucie poziomym, a punkty 
B i C na dwóch gładkich drutach pionowych w płaszczyźnie ABC. 
Dowieść, że gdy pręty tworzą kąt prosty, to a V l+l‘=lv l' +1' \/T, gdzie 
l i 1' oznaczają długości prętów, a zaś odległość pomiędzy drutami 
pionowemi (Coli. Ex., 1890).
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132. Prz. 1. Cztery pręty łączą się przegubami w końcach A, B, 
C, D, tworząc równoległobok, a pomiędzy przeciwległymi wierzchołka­
mi równoległoboku zaciągnięto wyprężone sznury. Okazać, że naprę­
żenia sznurów są proporcyonalne do długości.

Dodajmy do figury cztery cząsteczki, każdą w jednym wierzchoł­
ku, i zamiast łączyć boki bezpośrednio połączmy je z cząsteczkami; 
do tych samych cząsteczek przywiążemy sznury. Przy takiem urzą­
dzeniu na każdy pręt działają tylko dwie siły na końcach, a zatem 
zgodnie z prawidłem drugiem par. 131 ich linie działania leżą na prę­
cie. Dalej postępujemy tak, jak w par. 130, prz. 1. Siły, działające na 
cząsteczkę A, są równoległe do boków trójkąta ABC, a zatem ich wiel­
kości są proporcyonalne do tych boków. Stąd wynika, że każdy bok 
figury jest miarą siły, która na nim działa.

Inne rozwiązanie. Pozostawmy pręty w połączeniu bezpośre- 
dniem, ale sznury przymocujmy do końców prętów AB i CD. Na pręt 
AD działają teraz jedynie reakcye w przegubach, a więc ich linią 
działania jest AD (131). Również reakcye w B i C działają na prostej 
BC. Widzimy, że na pręt CD działają naprężenia T, T' wzdłuż prze­
kątni DB, CA, oraz reakcye wzdłuż AD i BC. Biorąc rzuty na kieru­
nek prostopadły do BC, otrzymamy Tsin OBC=T' sin OCB, gdzie O 
oznacza punkt przecięcia przekątni. Stąd T.0C=T'.OB, t. j. napręże­
nia są w tym samym stosunku, co odpowiednie przekątnie.

Wypada zaznaczyć, że w dwóch rozwiązaniach powyższych otrzy­
mujemy nie jednakowe reakcye wzajemne prętów. W rozwiązaniu 
pierwszem rozważamy osobno równowagę pręta CD i cząsteczek 
C, D. W rozwiązaniu drugiem uważamy to wszystko za jedno ciało, 
i warunki równowagi takiego ciała złożonego wystarczają do wyzna­
czenia stosunku naprężeń sznurów. Rozważmy reakcye w wierzchoł­
ku D. W rozwiązaniu pierwszem działały tu dwie reakcye, a miano­
wicie reakcye pomiędzy cząsteczką, umieszczoną w D, a prętami AD 
i CD. Dowiedliśmy, że działają one wzdłuż tych prętów. Oznaczmy 
je odpowiednio przez R, i R2. W rozwiązaniu drugiem wprowadza­
my jedynie reakcyę Ri, gdyż R2 jest niepotrzebne.

Jeżeli zagadnienie wymaga także wyznaczenia reakcyi w punkcie 
D, to musi być wskazane, w jaki sposób pręty są połączone jeden 
z drugim i ze sznurem. Tylko w takim razie można będzie rozstrzy­
gnąć, co właściwie uważać należy za reakcyę w wierzchołku D: siłę 
R1, czy R2, czy też może pewną kombinacyę obydwóch.

Prz. 2. Dwanaście lekkich prętów, połączonych swobodnie 
w końcach, tworzy równoległościan; układ utrzymują w równowadze 
cztery sprężyste sznury, naciągnięte pomiędzy parami wierzchołków 
przeciwległych. Dowieść, że naprężenia prętów, i sznurów są pro­
porcyonalne do długości. (Coli. Ex., 1890.)

Prz. 3. Cztery pręty, złączone w końcach przegubami, tworzą 
czworobok ABCD; przeciwległe wierzchołki tego czworoboku A, C 
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oraz B, D łączą wyprężone sznury. Oznaczywszy przez f^AG) i f{BD) 
naprężenia, okazać, że

/ 1 1 \ / 1 1 \f(AGn — +----) = ----- + —- ,
7 UO OCJ ‘ \BO odJ 

gdzie O oznacza punkt przecięcia przekątni.
Umieściwszy w wierzchołkach cząsteczki, jak w prz. 1, sprowa­

dzimy zagadnienie do już rozwiązanego w par. 130 przykładu 3, i otrzy­
mamy od razu żądany związek. Zagadnienie to zawdzięczamy Eulerowi, 
który dał równoważną odpowiedź w Acta Academiae Scientiarum Im- 
perialis Petropolitanae, 11T9. Z tego Euler wyprowadził twierdzenie 
o równoległoboku, podane w prz. 1.

Prz. 4. Przedłużenia boków przeciwległych AD, BG (lub GD, 
BA) przecinają się w punkcie X; dowieść, że naprężenia sznurów są 
odwrotnie proporcyonalne do odległości ich od X.

Stosujemy metodę drugą z prz. 1. Uważamy, że sznury są przy­
wiązane do końców prętów AB, CD; w takim razie reakcye w D i G 
działają w kierunkach AD i BG. Biorąc momenty sił działających na 
GD względem X, otrzymamy od razu żądany wynik.

Prz. 5. Cztery pręty, złączone przegubami w końcach, tworzą czwo­
robok ABCD. Punkty E, F na przyległych bokach AB, BC łączy jeden 
sznur, a punkty G, H na BC, CD inny. Porównać naprężenia sznurów. 
Jest to modyfikacya zagadnienia, które rozwiązał Euler w r. 1779 (Acta 
Academiae Petropolitanae). Na rozwiązaniu Eulera oparte jest rozwią­
zanie następujące:

Twierdzenie pomocnicze. Możemy zastąpić sznur EF sznurem 
innym, łączącym dwa jakiekolwiek inne punkty E', F' tych samych

prętów AB, BC; jeżeli momenty naprężeń tych obydwóch sznurów 
względem B będą równe, to nie zmieni się przytem żadna reakcya 
z wyjątkiem reakcyi w B. Aby to uzasadnić, oznaczmy literą K punkt 
przecięcia prostych EF i E'F'. Naprężenie T, działające w punkcie F 
na pręt BG, przenosimy do K i rozkładamy na dwie składowe, a mia­
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nowicie U w kierunku prostej KF' i V- w kierunku KB. Pierwszą 
z nich przenosimy do F'~ a drugą do B. Tak samo naprężenie T, dzia­
łające na pręt AB w punkcie E, rozkładamy na U, przyłożone w E' 
i działające w kierunku prostej E'K, oraz V, przyłożone w B i działa­
jące w kierunku BK. Tym sposobem dwie równe siły T, T, przyło­
żone w E i F, zastąpiliśmy przez dwie równe siły U, U, przyłożone 
w E', F', czyli przez naprężenie U sznura E'F'. Jednocześnie zmie­
niliśmy wzajemne reakcye prętów w B przez dodanie dwóch sił V, 
równych i odwrotnych. Zmiana ta nie dotknęła wcale innych sił 
i reakcyi układu. Momenty sił T i U względem B muszą być równe, 
bo T jest wypadkową sił U i V.

Opierając się na twierdzeniu powyższem, możemy przenieść 
sznury EF, GH aż na przekątnie AC, BD. Oznaczmy naprężenia w EF, 
GH odpowiednio przez T, T'. W takim razie naprężenie w AC wy- 
niesie U—nT, gdzie n oznacza stosunek odległości prostych EF i AC 
od wierzchołka B. Również naprężenie w BD będzie U'—n'T', gdzie 
n1 jest stosunkiem odległości prostych HG i BD od C. Stosunek na­
prężeń w przekątniach znaleźliśmy w przykładzie 3; korzystając z te­
go, otrzymamy

Prz. 6. Cztery pręty, złączone w końcach przegubami, tworzą 
czworobok ABCD. Przeciwległe boki AB, CD a także AD, BC po­
łączono naprężonymi sznurami EF i GH. Przedłużenia pierwszej 
pary przeciwległych boków przecinają się w Y, przedłużenia drugiej 
w X; p, p' oznaczają odległości punktów X, Y od sznurów EF, GH. 
Każdą z tych odległości uważamy za dodatnią, jeżeli linia odpowie­
dniego sznura przecina prostą XY w punkcie, położonym pomiędzy 
X i Y. Okazać, że naprężenia sznurów T, T’ pozostają w związku

Tpsin X T‘p‘sin Y ----------- —-------------- == 0 . 
AB. CD AD.BC

Fig. 30.

Stąd wynika, że w stanie równowagi jeden ze sznurów musi 
przechodzić pomiędzy X i Y, a drugi na zewnątrz odcinka XY wbrew 
temu, co wyobraża rysunek. Jeżeli sznur GH przechodzi przez Y, to 
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albo naprężenie sznura EF jest równe zeru, albo przedłużenie jego 
przechodzi przez X.

Rozkładamy reakcye w każdym z wierzchołków czworoboku na 
składowe w kierunkach boków przyległych, a więc reakcyę w A, na 
składowe P', P w kierunkach DA, AB reakcyę w B, na Q', Q w kie­
runkach AB, BC, reakcyę w C na R1, R i wreszcie reakcyę w D na 
S', S. Na figurze zaznaczono reakcye, działające na pręty AD, BC; na 
AB, CD działają reakcye równe tamtym i odwrotne.

i niech A, A' oznaczają pola trójkątów ABC, DEF. Można okazać, że
A’ AF . BD . CE+AE. CD. BF

abc
Iloczyny AF. BD. CE i AE. CD. BF tworzymy tak: wychodzimy z któ- 
regobądź wierzchołka, np. A, i obiegamy trójkąt naokoło, biorąc pod­
czas każdego obiegu po jednym odcinku z każdego boku. Każdemu 
z czynników przypisujemy znak w sposób następujący: długość od­
mierzoną na boku trójkąta ABC od jednego z wierzchołków uważamy 
za dodatnią lub ujemną zależnie od tego, czy ciągnie się ona w stronę 
drugiego wierzchołka, czy też w stronę 
odwrotną. Naprzykład długość AF jest 
odmierzona od wierzchołka A w stronę 
wierzchołka B, a więc uważamy ją za 
dodatnią; również dodatnia jest długość 
BF, bo ciągnie się od wierzchołka B 
w stronę wierzchołka A. Gdyby punkt F 
leżał na przedłużeniu AB poza B to AF 
byłoby i w tym razie dodatnie, ale BF 
byłoby ujemne. Gdy punkt F biegnie 
w kierunku AB, to pole DEF stopniowo 
znika i staje się ujemnem, gdy F prze- 
kracza sieczną ED.

Rozważamy równowagę prętów AD i BC. Biorąc momenty od­
powiednio względem D i C, otrzymamy.

P. YD sin Y=T'.DHsinH, Q‘ . YCsin Y= T. CG sin G.
Rozważamy następnie równowagę pręta AB. Biorąc momenty 

względem X, otrzymamy
(P—Q') XM=Tp, 

gdzie XM oznacza prostopadłą z X do AB. Pamiętając, że stosunki 
synusów kątów H, G, X są równe stosunkom przeciwległych boków 
w trójkącie XHG, otrzymamy ze związków powyższych

DH. CY. XG-DY. CG. XH sin X XM.T’ -------------------------------------.--------.------------=Tp.
YD.YC sinh BIG ‘

Licznik pierwszego ułamka po lewej stronie jest to ujemna suma ilo­
czynów odcinków (ze stosownymi znakami), na które punkty G, H, Y 
dzielą boki trójkąta DCXA, a zatem równanie ostatnie da się sprowa­
dzić do

[GilY] . DC . CX. XD sin X XM. T'
---------------------------- .-------- .---------- \-Tp=o,[DCX\.YD .YC sin Y HG ‘

gdzie [GHY] i [DUX] oznaczają pola trójkątów GRY i DCX. Pola te

*) Obierzmy trzy dowolne punkty D, E, Fna bokach trójkąta ABC,

A
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. , HG. p' . DX . CX. sin X
są odpowiednie równe —2— i--------- 2-------- . Dalej AB.XM wy­

raża podwójne pole trójkąta AXB, a zatem jest równe XA . XB. sin X. 
Prócz tego

YD _AD YC _ BC XA _ AB _ XB 
sin A sin Y‘ sin B sin Y" sin B sin X sin A 

Podstawiając, otrzymamy żądany związek pomiędzy T i T.
133. Prz. 1. Pewna liczba prętów w jednej płaszczyźnie, złą­

czonych w końcach przegubami, tworzy wielokąt zamknięty. Na każdy 
pręt działa siła, przyłożona w środku, prostopadła do pręta i propor- 
cyonalna do jego długości; siły te są zwrócone wszystkie na zewnątrz 
albo wszystkie na wewnątrz. Okazać, że w stanie równowagi (1) 
wielobok może być wpisany w koło, (2) reakcye w wierzchołkach 
działają na stycznych do koła, (3) wszystkie reakcye są równe.

Niechaj L, M, N..... będą środkami 
prętów AB, BC, CD...., a aB^>, ^Cy...  
liniami działania reakcyi w wierzchoł­
kach B, C.... Ponieważ każdy pręt jest 
w równowadze, przeto siły, przyłożone 
w środkach L, M, N..... muszą prze­
chodzić odpowiednio przez punkty 
a, 3, ...... Zwróćmy uwagę na pręt BC. 
Trójkąty BM^, CM^>, są równe, a więc 
reakcye, działające wzdłuż B$ i C^, ró­

wnoważą siłę, działającą wzdłuż dwusiecznej MB kąta B^C. Stąd wy­
nika, że reakcye te są równe, i że wogóle reakcye we wszystkich 
wierzchołkach są równe co do wielkości.

Poprowadźmy proste BO, CO prostopadle do reakcyi w wierz­
chołkach B i C; przetną się one w pewnym punkcie 0, położonym 
na prostopadłej w M do BC. Boki trójkąta OBC są prostopadłe do 
trzech sił, działających na pręt BC i pozostających w równowadze, 
a zatem CO wyraża reakcyę w C pod względem wielkości w tej sa­
mej skali, co BC siłę, przyłożoną w M.

Poprowadźmy następnie proste CO', DO' prostopadle do reakcyi 
w C i D; przetną się one w punkcie O', położonym na prostopadłej 
w N do CD Znajdziemy znowu, że odcinek CO' wyraża reakcyę w C 
w tej samej skali, w której CD wyraża siłę, przyłożoną w N. Z wa­
runków zagadnienia wynika, że CO—CO', a więc punkty 0 i 0' leżą 

Poprowadźmy jeszcze przez wierzchołki trójkąta trzy dowolne 
proste AD, BE, CF. Utworzą one trójkąt PQR, którego pole ozna­
czmy przez A". Można dowieść, że

A" (AF. BD . CE- AE. CD . BF)2
A - (ab-CE. CD) (bc-AE.AF) (ca-BF.BD)

Autor nie spotkał nigdzie tych związków, które są nie raz po­
trzebne; dlatego też przytoczył je na tern miejscu, aby ułatwić zrozu­
mienie rachunku, podanego w tekście.
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razem. Widać teraz, że można zatoczyć z punktu 0 koło, przechodzące 
przez wszystkie wierzchołki wieloboku i stykające się z liniami 
wszystkich reakcyi.

Prz. 2. Pewna liczba prętów, połączonych przegubami tworzy 
wielokąt niezamkiii^ty. Końce takiego układu są przytwierdzone do 
obrączek, nawleczonych na inny pręt nieruchomy. Podobnie, jak 
w przykładzie poprzedzającym, na środek każdego pręta ruchomego 
działa siła prostopadła do pręta i proporcyonalna do jego długości. 
Dowieść, że wielobok można wpisać w koło, którego środek leży na 
pręcie nieruchomym.

Połączmy z końcami układu prętów inny układ równy i podobny, 
ale położony po przeciwnej stronie pręta nieruchomego. W środku 
każdego z tych prętów dodatkowych przyłóżmy siłę, działającą tak 
samo, jak w układzie danym. W takiem urządzeniu symetrycznem 
pręt nieruchomy jest zbyteczny, i możemy go usunąć. Otrzymamy 
odrazu pożądany rezultat, powołując się na przykład poprzedzający.

Rozwiązania dwóch zagadnień ostatnich można także oprzeć na 
zasadach hydrostatyki. Wyobraźmy sobie naczynie utworzone z pła­
skich pionowych ścian, połączonych na krawędziach pionowych za­
wiasami. Przypuśćmy, że naczynie to nie posiada własnego dna; stoi 
ono na poziomym stole i zawiera płyn, który nie może wyciekać 
ani pomiędzy ścianami i stołem, ani na połączeniach pionowych. 
Ciśnienie płynu na każdą ścianę jest proporcyonalne do części pola, 
pogrążonej wpłynie, i działa na punkt linii środkowej. Ciśnieniom tym 
w zagadnieniach powyższych odpowiadały siły, przyłożone w środkach 
prętów. Naczynie musi przybrać taką postać, aby wysokość środka 
ciężkości płynu ponad stołem była jaknaj mniejsza. Wynika to z pewnej 
zasady ogólnej, którą poznamy w rozdziale o pracy przygotowanej. Tak 
więc głębokość płynu musi być jaknajmniejsza, a ponieważ objętość 
jego jest dana, przeto pole podstawy powinno być jaknajwiększe.

W rachunku różniczkowym można znaleźć twierdzenie, że póle 
wieloboku utworzonego z boków o danej długości, jest największe 
wtedy, gdy na wieloboku można opisać koło lub półkole, zależnie od 
tego, czy wielobok jest zamknięty, czy otwarty.*)  Stąd wynikają od 
razu rozwiązania zagadnień powyższych.

*) Zobacz Wł. Folkierskiego „Zasady rachunku różniczkowego 
i całkowego" (Warszawa, 1904), tom I, str. 563. Przyp. tłom.

Można także rozwiązać te zagadnienia przy pomocy zasady pracy 
przygotowanej bez wprowadzania twierdzeń hydrostatycznych.

Warto zauważyć, że obydwa twierdzenia nie tracą mocy i w tym 
razie, gdy wielobok posiada bardzo wiele boków bardzo krótkich. 
W granicy możemy je uważać za łuki elementarne sznura, podlegające 
działaniu sił normalnych i proporcyonalnych do długości łuków. Jeżeli 
wielobok składa się z prętów i sznurów i pozostaje w równowadze pod 
działaniem jednostajnego, normalnego ciśnienia z wewnątrz, to na 
bokach można opisać koło, a sznury tworzą łuki tegoż koła.
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Pierwsze z tych zagadnień rozwiązał N. Fuss w Memoires de 
1’Academie Imperiale des Sciences de St. Petersbourg, tom VIII, 1822. 
Miał on na celu wyznaczyć formę, którą przybierze wielokątne naczy­
nie o ścianach połączonych luźno, gdy je zanurzymy w cieczy.

134. Prz. Wielobok z prętów ciężkich, n jednorodnych, cięż­
kich prętów AgAi, ArA2.... An^An łączą się przegubami w A, A2... A,-1, 
końce zaś Ao i An są osadzone na zawiasach w dwóch punktach nieru­
chomych. Wyznaczyć warunki równowagi.

Poprowadźmy pion przez każdy z przegubów w górę i oznaczmy 
przez 31, 32... kąty, które pręty A,A1, A,A2... tworzą z tymi pionami, 
mierząc je od pionu do pręta w jednym i tym samym kierunku obro­
tu. Ciężary prętów oznaczymy przez Wo, W...

Metoda pierwsza. Równowaga nie doznałaby zakłócenia, gdyby-
Wsmy zastąpili ciężar pręta W przez dwie siły pionowe 9, działające 

na jego końce. Dzięki tej okoliczności możemy uważać, że każdy pręt 
składa się z trzech części, a mianowicie z dwóch cząsteczek końco­
wych, z których każda posiada połowę ciężaru pręta, i z części środ­
kowej nieważkiej. Rozważmy przedewszystkiem oddziaływania wza­
jemne tych części. W każdym złączeniu dwóch prętów mamy dwie 
cząsteczki, połączone przegubem. Każda cząsteczka pozostaje w równo­
wadze, podlegając działaniu reakcyi w przegubie, działaniu siły ciąże­
nia równej połowie wagi pręta i wreszcie działaniu nieważkiej części 
pręta. Stąd widać, że to ostatnie działanie jest siłą. Na średnią część 
pręta siła ciążenia nie działa, a zatem owe siły, czyli reakcye na koń­
cach muszą działać wzdłuż pręta (131). Przypuśćmy więc, że na prę­
tach A,A1, A{A2... działają reakcye T^ T2 — ; będziemy je uważali za 
dodatnie, gdy ciągną cząsteczki końcowe tak, jak gdyby pręty były 
sznurami.

Aby nie wprowadzać do równań reakcyi, działających w prze­
gubie, będziemy rozważali równowagę cząsteczek przyległych do tego 
przegubu, jak gdyby tworzyły one jeden układ. Na taką cząsteczkę zło­
żoną działają połowy ciężarów prętów przyległych oraz reakcye części 
nieważkich tych prętów. Dochodzimy ostatecznie do wniosku nastę­
pującego: można uważać, że pręty są pozbawione ciężaru, ale łączą się 
przegubami z cząsteczkami ciężkiemi, położonemi w wierzchołkach; ciężar 
każdej cząsteczki jest równy połowie sumy ciężarów prętów przyległych.

Taki układ ciężarów, połączonych nieważkimi prętami albo sznu­
rami i zawieszonych u dwóch punktów nieruchomych, zowie się wie- 
lobokiem sznurowym.

Rozważmy równowagę jednej z owych cząsteczek złożonych np. 
tej, która leży w złączeniu A2. Biorąc rzuty na kierunek poziomy i pio­
nowy, otrzymamy

Tx sin 9,= T sin 82

T2 cos 92- T, cos 9, = 1/2( W + W,)
............................. (1)
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1/2 ( W + W2)Wynika stąd łatwo-------- —---- -=T sin 01. Prawa strona tego
cot 02— cotti

równania oznacza naprężenie poziome w przegubie; naprężenia te są 
dla wszystkich przegubów jednakowe, a zatem będzie

1/2 (W+ W) _ ‘,(W+W) _ (2
cot 32 — cot 8, cot 83 — cot 82

Jeżeli Ar, As. oznaczają dwa jakiekolwiek przeguby, to każdy
— . . 1/2 W,-1+ W+..+ W5-+1/2 Wsz ułamków no wyższych jest równy----------------------------------------- .

cot 3s— cot 3,-1
135. Metoda druga. W metodzie tej rozważamy równowagę 

dwóch następujących po sobie prętów, np. A,A2, A,A,, i bierzemy mo­
menty dla każdego z nich względem końca bardziej odległego od dru­
giego pręta (A3 i A). Równania momentów będą

-Xcos8a+Yasin8a+"/2 Wasin8a=01

— X, cos 8,+ Ya sin 8,- 1/2 Wasin $,=0 J 
gdzie X2, Y2 oznaczają składowe reakcyi w przegubie A2. Rugując Y2 
otrzymamy

Xa(cot 8,—cot 81)=1/2(W+W2) ....(4). 
Jest to równoważne z równaniami (2).

136. Oznaczmy przez l0, l ... długości prętów, a przez h, k współ­
rzędne poziomą i pionową punktu An w odniesieniu do A,, jako do po­
czątku. Będzie wówczas

l0 cos 30 + li cos 3, +... + ln-i cos 8,—1 = k
............................. (5).

lo sin 30 + li sin 31 +... + ln^ sin Un-1 =h J
Równania (2) zawierają n—2 związków pomiędzy kątami 8,, 32... 

i ciężarami prętów Wo, Wi ... Dołączywszy do tego (5), będziemy mieli 
wystarczającą liczbę równań do wyznaczania kątów, jeżeli dane są 
ciężary. Gdy mamy kąty a także ciężary dwóch prętów, to można 
n—2 ciężary pozostałe wyznaczyć z (2).

137. Można stosować każdą z tych metod i w tych razach, gdy 
pręty są niejednorodne, lub gdy działają na nie prócz ciężarów jeszcze 
i inne siły. Dwa równania momentów w metodzie drugiej będą mniej 
proste, ale dadzą się łatwo utworzyć. Również i w metodzie pierwszej 
równoległe przenoszenie sił do złączeń nie nastręczy trudności (par. 79).

Statyka. 7
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138. Wyznaczyć reakcye w przegubach. Jeżeli stosujemy metodę 
drugą, to wyznaczymy łatwo te reakcye z równań (3). Stosując meto­
dę pierwszą, musimy przenieść z powrotem ciężary 1I2WX i 1/2W2 na 
końce prętów, schodzących się w A2. Oznaczmy reakcyę, działającą 
w przegubie A2 na pręt A2A3, przez R2. Tak więc na cząsteczkę krań­
cową pręta A,A3 działają trzy siły R2, 1/2 W2 i T2, a zatem będzie

R,‘= T,2+, W’- WTcos . ...................................... (6).
Kierunek tej reakcyi wyznacza się łatwo przy pomocy równań (2). 

Przypuśćmy, że pręty ArA2, A,A3 są połączone krótkim nieważkim prę­
tem lub sznurem. Taki wyobrażalny pręt pośredni musi oczywiście 
leżeć na linii działania reakcyi R2. Oznaczmy nachylenie jego do pio­
nu przez “2; postępując z nim, jak z każdym innym prętem wieloboku, 
otrzymamy •

_ ‘/2W2___  (7) 
cot2— cot,____cot 82—cot @2

skąd (W+ W) cot 2= Wacot 9,+ W, cot 82.
139. Wielobok pomocniczy. Linie działania reakcyi Rr, R2... two­

rzą nowy wielobok, którego wierzchołki Bi, B2... leżą pionowo pod 
środkami ciężkości prętów ArA2, A2A3... Możemy uważać, że ciężary 
prętów działają na wierzchołki tego nowego wieloboku. Każdy ciężar 
równoważy się tu z reakcyami, działającemi na przyległych bokach 
wieloboku. Przypuśćmy, że wierzchołki BY, B2... połączono nieważki­
mi sznurami lub prętami. Tym sposobem powstał drugi wielobok 
sznurowy, z którym możemy postępować podobnie, jak z pierwszym; 
różnica polega na tern, że w wierzchołkach działają ciężary W^, W2... 
zamiast 1/2(W+ W2), WV2+ Wa)...

140. Niech będzie jakikolwiek wielobok sznurowy BBB..., 
i niech Wi, W2... oznaczają ciężary, zawieszone w wierzchołkach

Jo,

B,, B2... Poprowadźmy z dowolnego punktu O proste Obr, Ob2, Ob3... 
równolegle do boków B.Bi , Bi B2, B2BS...; przetną one pewną prostą 
pionową, obraną dowolnie, w punktach bi, b2, bs— Cząsteczka, poło­
żona w punkcie B1, pozostaje w równowadze pod działaniem ciężaru
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Wi oraz naprężeń R1, R2, działających na bokach BiBo, B1B2; z twier­
dzenia o trójkącie sił wynika, że boki trójkąta Ob^ są proporcyonal- 
ne do tych sił. Tak samo boki trójkąta Ob2b3 wyobrażają w tej samej 
skali ciężar W2 i naprężenia, działające na B,B1, B2B3. Wogóle odcin­
ki Obr, Ob2... określają naprężenia tych boków wieloboku sznurowego, 
do których są równoległe, a każdy z odcinków, na które została po­
dzielona owa prosta pionowa, reprezentuje sumę ciężarów; np. odci­
nek bab; reprezentuje sumę ciężarów w B2, Ą i Ą.

Przy pomocy tej figury można geometrycznie wyznaczyć związek 
pomiędzy ciężarami i naprężeniami. Jeżeli 1, 2... oznaczają nachy­
lenia boków BB1, ByB2- do pionu, to będzie

ON(cot Pi— cot {2)==b,b2 , 

gdzie ON oznacza odległość punktu O od owej prostej pionowej. Od­
cinek ten określa naprężenie poziome X w którymkolwiek punkcie 
wieloboku sznurowego. Z równania powyższego otrzymamy

W,, Wa— A --  —---
cot 1— cot 2 cot 2—-cot 73

W podobny sposób dają się utworzyć i inne związki.
Zastosowanie dyagramatu powyższego opisał Rankine w swej 

„Mechanice Stosowanej" ('Applied Mechanics). Figury tego rodzaju zo- 
wią się zwykle wielobokami sił. Tutaj była mowa jedynie o tym pro­
stym przypadku, w którym siły są równoległe; w rozdziale o statyce 
graficznej powrócimy do tej metody rozwiązywania zagadnień sta­
tycznych i rozciągniemy ją do sił, działających w kierunkach do­
wolnych.

141. Prz. 1. Łańcuch składa się z pewnej liczby jednakowych, 
jednorodnych i ciężkich prętów, połączonych w końcach przegubami; 
końce jego są umocowane w dwóch punktach nieruchomych. Okazać, 
że tangensy kątów pomiędzy prętami a poziomem tworzą postęp ary­
tmetyczny; taki sam postęp tworzą tangensy kątów pomiędzy reakcya- 
mi w przegubach a poziomem, i różnice obydwóch postępów są równe.

(Coli. Ex., 1881.)
Prz. 2. OA i OB oznaczają promienie pionowy i poziomy pio­

nowego koła, w którym A jest punktem najniższym okręgu. Sznur 
ACDB jest umocowany w punktach A, B i dzieli się w O, D na trzy 
części równe. Gdy w O, D przyczepiono do sznura ciężary W, W’, 
to znaleziono, że w stanie równowagi C i D leżą na okręgu. Okazać, 
że W= W tan 150. (Trin. Coli., 1881.)

Prz. 3. Cztery równe jednorodne pręty AB, BO, CD, DA, złą- 
czone w końcach przegubami, tworzą romb, którego wierzchołki A i C 
łączy sznur. Romb ten zawieszono w wierzchołku A; okazać, że na­
prężenie sznura wynosi 2 W, a reakcya w B (lub D) 1/2 W tan 1/2BAD, 
gdzie W oznacza ciężar jednego pręta.

Prz. 4. Trzy równe pręty AB, BC, CD są połączone swobodnie 
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w Bi G. Pręty AB, GD spoczywają na dwóch kołkach, położonych 
na tym samym poziomie, przyczem pręt BG posiada położenie pozio­
me. Okazać, że 3tanatan^=l, gdzie a i 3 oznaczają nachylenia do po­
ziomu pręta AB oraz reakcyi w B. (St John’s Coli., 1881).

Prz. 5. Trzy równe jednorodne pręty są złączone swobodnie 
w końcach i spoczywają na dwóch gładkich kołkach, położonych na 
jednym poziomie. Odległość między kołkami wynosi połowę długości 
jednego pręta, i pręt najniższy posiada położenie poziome. Okazać, że 
reakcya w złączeniu górnem wynosi 5WV3, a w każdem z dolnych 

18

— WV57, gdzie W oznacza ogólny ciężar prętów. (Coli. Ex., 1882).

Prz. 6. Trzy pręty, złączone w końcach przegubami, leżą na 
gładkim poziomym stole, i na środki boków takiego trójkąta działają 
siły do nich prostopadłe. Okazać, że, jeżeli zachodzi równowaga, to 
reakcye w przegubach są równe i działają na stycznych do koła opi­
sanego na trójkącie. (Math. Tripos, 1858).

Prz. 7. AB i AC są bokami dwóch kwadratów, zrobionych z je­
dnakowego drutu. Dwa ich wierzchołki połączono przegubem A, 
wierzchołki zaś B i C osadzono na zawiasach w punktach nierucho­
mych. Kąt BAC jest prosty, i cała figura leży w płaszczyźnie piono­
wej. Okazać, że reakcye w przegubie A są prostopadłe do BC bez 
względu ha to, jaki kąt ta prosta tworzy z poziomem.

(Math. Tripos, 1867).
Prz. 8. Trzy jednorodne sztaby, których ciężary są proporcyo- 

nalne do długości, wynoszących a, b, c, połączono przegubami tak, że 
utworzył się trójkąt. Trójkąt ten ustawiono pionowo na gładkiej pła­
szczyźnie poziomej na boku a, następne na b i wreszcie na c. Okazać, 
że gdy boki a, b, c zajmowały położenia poziome, to panowały w nich 
odpowiednio naprężenia proporcyonalne do

{b +c) cosec 2A, (c+a) cosec 2B, (a+b) cosec 2C.
(Math. Tripos, 1870).

Prz. 9. Trzy jednorodne sztaby AB, BG, CD o długościach 2c, 
2b, 2c leżą symetrycznie na gładkim łuku parabolicznym, którego oś 
jest pionowa, a wierzchołek zwrócony do góry; w B i C są urzą­
dzone przeguby, i wszystkie sztaby stykają się z parabolą. Okazać, że

dlc
reakcye sztab pochyłych na parabolę wynoszą W(a2+62)b ‘ gdzie 4a

oznacza latus rectum paraboli, a W ciężar każdej z tych sztab pochy­
łych. (Coli. Ex., 1883).

Prz. 10. ABGD jest czworobokiem, zrobionym z czterech jedno­
rodnych prętów jednakowej wagi, złączonych przegubami. Pręt AB 
jest umocowany w położeniu poziomem, i układ pozostaje w równo­
wadze w płaszczyźnie pionowej. Okazać, że 2 tan 8=tan o— tan 3, gdzie 
a i 3 oznaczają kąty u wierzchołków A i B, 8 zaś nachylenie pręta
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CD do poziomu. Prócz tego wyznaczyć reakcye w C i D i okazać, że 
/ tan 3 — tan 3)\ 

tworzą one z poziomem odpowiednio kąty arc tan-------2---- —)

/tan a + tan S\ — _ — .
i arc tan (------2— ---- )• (Math. Tripos, 1879)

Prz. 11. Cztery jednakowe pręty AB, BC, CD, DA łączą się 
przegubami w A, B, C, D i. leżą na poziomym gładkim stole. Pręt BC 
jest przymocowany do stołu, a środki prętów AD, DC łączy sznur 
wyprężony, gdy pręty tworzą kwadrat. Na pręt AB zaczyna działać 
para sił, wywołująca w sznurze naprężenie T; okazać, że moment jej 
wynosi 74 T.ABV2. (Coli. Ex., 1888).

Prz. 12. Bok A|A2 nieważkiego czworoboku A1A2A3A4 spoczywa 
na płaszczyźnie poziomej, a cały czworobok pozostaje w płaszczyźnie 
pionowej. W wierzchołkach A4, A3 wiszą odpowiednio ciężary W, W', 
wierzchołki zaś Ax, A3 łączy sznur, zapobiegający opadnięciu prętów. 
Okazać, że naprężenie sznura T wyznacza się z równania

nTsin $2 sin ?,= Wcos 31 sin $3— W' cos $2 sin 34 , 
gdzie 81, $2, 33, 34 oznaczają kąty wewnętrzne czworoboku, n zaś sto­
sunek długości boku A1A2 do długości sznura.

Prz. 13. Pięć jednakowych sztab, ciężkich i jednorodnych, two­
rzy pięciobok, łącząc się przegubami. Pięciobok ten jest zawieszony 
w jednym wierzchołku, a bok przeciwległy podtrzymuje sznur, przy­
wiązany do środka tego boku. Sznur posiada długość taką, że pięcio- 

a 
bok jest foremny. Okazać, że naprężenie sznura wynosi 4WCOS10 , 

gdzie W oznacza ciężar jednej sztaby. Wyznaczyć także reakcye 
w wierzchołkach.

Prz. 14. Pięciobok foremny ABCDE, utworzony z pięciu jedna­
kowych prętów ciężkich, złączonych przegubami, jest zawieszony 
w wierzchołku A; postać pięcioboku foremnego utrzymuje lekki pręt, 
łączący środki K, L boków BC i DE. Okazać, że stosunek reakcyi 
w K lub L do ciężaru pręta jest równy 2cotl8°.

(Math. Tripos, 1885).
Prz. 15. Dwanaście prętów stanowi krawędzie foremnego ośmio- 

ścianu, łącząc się w wierzchołkach swobodnie, jak ogniwa łańcucha. 
Pomiędzy przeciwległymi wierzchołkami ośmiościanu zaciągnięto sprę­
żyste sznury, których naprężenia wynoszą X, Y, Z. Okazać, że ciśnie­
nie, działające wzdłuż pręta, położonego pomiędzy końcami sznurów 

X+ Y_ z
o naprężeniach Y i Z, jest równe------- —. (Math. Tripos, 1867).

2 V2
Prz. 16. Pewna liczba jednakowych prętów, ciężkich i jedno­

rodnych, każdy o długości a, połączona luźno, tworzy łańcuch. Łań­
cuch ten wiruje ze stałą szybkością kątową o około osi pionowej, 
przechodzącej przez jeden z końców, który pozostaje nieruchomym. 
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Okazać, że

(2n+3) tan ^" — (472+2) tan 3‘+(2n-1) tan 8+x(sin 8"144sin 8‘+sin 3)=0, 

gdzie 3, 3"’, 3"’ oznaczają nachylenia do pionu prętów n-go, (n+1)-go, 
(n+2)-go, licząc od końca swobodnego, i ao?=3ng.

(Math. Tripos, 1877).

Reakcye w złączeniach sztywnych.

142. AB wyobraża poziomą belkę, osadzoną nieruchomo 
w końcu A w ścianie pionowej i obciążoną w końcu B cięża­
rem W. Pragniemy zbadać naprężenia, panujące w przekroju 
poprzecznym, przeprowadzonym przez jakikolwiek punkt G, 
czyli reakcye, które część belki AC wywiera na część CB. Re­
akcye te równoważą siły zewnętrzne, działające na CB.

Jest rzeczą oczywistą, że działanie jednej części belki na 
drugą, wywierane w przekroju C^ nie może się składać z je­
dnej siły, bo siła, działająca w C, nie mogłaby być odwrotna 

do siły W, a więc nie mogłaby jej równo- 
_A__ ________ ważyć. Przenieśmy siłę W z B do jakie- 

gokolwiek punktu przekroju C w sposób, 
, podany w paragrafie 100; przekonamy się, 

—._____ że działanie owo jest równoważne sile ró- 
wnej W oraz parze o momencie W. BC.

Jeżeli część GB belki jest ciężka, to możemy uważać, że 
siła ciążenia działa na środek odcinka GB. Dajmy na to, że 
ciężar tej części wynosi W. Przenosimy go również do środka 
redukcyi C, a zatem wszystkie reakcye, przenikające przez 
przekrój C, sprowadzają się do siły W+ W' i do pary o mo­
mencie W. BC+^ W .BC.

Tej sile i parze nadawano w różnych czasach nazwy ro­
zmaite. Składowe siły w kierunku belki i w kierunku poprze­
cznym nazywano siłą ciągnącą i siłą tnącą. Ponieważ pierwsza 
z nich ma kierunek normalny do prostopadłego przekroju bel­
ki, nazywano ją przeto także naprężeniem normalnem. Wiel­
kość pary nazywano tendencyą sił do złamania belki albo 
krótko tendencyą do złamania; zowią ją także momentem gną- 
cym lub naprężeniem gnącym (Rankine, Applied Mechanics). 
W dalszym ciągu ograniczymy się jedynie do tego przypadku,
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w którym belka jest bardzo cienka, tak że w rozważaniach 
geometrycznych będziemy ją mogli uważać za linię. -

143. Uogólniając rozważania powyższe, dojdziemy do wy­
niku następującego: działanie iv jakimkolwiek przekroju belki^ 
jest równe i ^odwrotne do wypadkowej wszystkich sił, działają­
cych na belkę po jednej stronie tego przekroju.

Reakcye, przenoszone przez przekrój C na część CB^ ró- 
wnoważą siły, działające na CB^ reakcye zaś równe i odwro­
tne, przenoszone przez ten sam przekrój na AC, równoważą 
siły, działające na AC. W stanie równowagi siły, działające 
na belkę po jednej stronie C, równoważą siły, działające po 
drugiej stronie, a zatem jest rzeczą obojętną, który z tych 
dwóch układów sił mamy brać pod uwagę.

Tak więc moment pary gnącej w C jest równy sumie 
momentów wszystkich sił, działających po jednej stronie C, 
a siła tnąca w C jest równa sumie rzutów tych sił na nor­
malną do belki w C.

Uważając, że belka jest nieco sprężysta, możemy w inny 
sposób wytłomaczyć powstanie tej siły i pary. Ciężar W zgina 
nieco belkę, skutkiem czego włókna górne zostają rozciągnięte, 
a dolne ściśnięte. Stąd wynika, że działanie w przekroju C 
składa się z nieskończonej liczby małych naprężeń, przenoszo­
nych przez elementy przekroju. Obrawszy jakiś punkt prze­
kroju za środek redukcyi, możemy sprowadzić te naprężenia 
do jednej siły i pary (104).

144. Prz. 1. Belka AB danej długości l wspiera się końcami na 
dwóch podstawkach, położonych na jednym poziomie; po niej wędruje 
zwolna od jednego końca do drugiego ciężka cząsteczka M, ważąca W. 
Wyznaczyć naprężenie w jakimkolwiek punkcie belki.

Niech będzie AM=^, BM=l-^, i niech B, R' oznaczają reakcye, 
które podstawki wywierają na belkę w A i B. Reakcye te wyznaczy­
my z równań

R'l=WA, Rl=W(.l-^).

Rys. 36.
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Dajmy na to, że chodzi o naprężenie w punkcie P, i niech będzie 
AP=x. Rozważamy równowagę części belki AP lub części BP. Wy- 
bieramy pierwszą z nich jako dogodniejszą, gdyż działa na nią tylko 
jedna siła R; zatem siła tnąca w P wynosi R, a moment pary gną- 
cej Rx.

Jeżeli mamy wyznaczyć naprężenie w punkcie P', położonym 
po drugiej stronie M, to dogodniej będzie rozważać równowagę części 
BP'. Siła tnąca wyniesie tu R', a moment gnący R\l— x‘), gdzie 
x'=AP'.

Para gnąca może wogóle snadniej spowodować złamanie belki, 
niż siła tnąca lub siła ciągnąca, dlatego też odtąd zwrócimy całkowi­
cie uwagę na tę parę. Zbudujmy w każdym punkcie P rzędną PQ 
proporcyonalną do momentu pary zginającej w P; miejsce geometry­
czne punktów Q będzie naocznym obrazem pary zginającej we wszy­
stkich punktach belki. W wypadku danym miejsce geometryczne 
punktu Q składa się z odcinków dwóch prostych, zaznaczonych na 
rysunku kropkami. Rzędna największa wypada w punkcie M i wynosi 
w obranej skali Rk lub R'(l—^ zależnie od tego, czy weźmiemy wzglę­
dem M momenty sił, działających po stronie AM, czy po stronie MB 
Podstawiwszy zamiast R lub R' odpowiednią wartość, znajdziemy, że

W^l-^)
para gnąca w M posiada moment -----I------• Moment ten osiąga raa- 

ksymum, gdy M przechodzi przez punkt środkowy belki.
Wyobraźmy sobie, że człowiek idzie wolno przez kładkę, prze­

rzuconą nad strumieniem. Największa para gnąca występuje w kładce 
w tym punkcie, który człowiek w danej chwili przebywa, a gdy znaj­
dzie się on po środku pomiędzy punktami oparcia, to owa para będzie 
największa.

Prz. 2. Jednorodna ciężka sztaba AB, której jednostka długości 
waży w, jest podparta w dwóch końcach. Okazać, że para gnąca

, . . w.AP. BP
w punkcie P wynosi----- 2—-—.

145. W podobny sposób można zbudować dyagramat naprężeń 
gnących i w tym razie, gdy na belkę działa większa liczba sił. Dajmy 
na to, że na belkę AB działają siły Rr, R2..., przyłożone odpowiednio 
w punktach A1, A2... i skierowane tak, jak wskazują strzałki. Oznaczmy 
A,A2 przez a2, AA3 przez a3, i t. d. Otrzymamy moment gnący w ja­
kimkolwiek punkcie P, położonym np. pomiędzy A3 i At, biorąc mo­
menty sił, działających na Ai, A2, As, t. j. na punkty, położone po je­
dnej stronie punktu P. Wypadnie

J = Rx - R2(x - a,) + Ra(x - aa), 
gdzie x=ArP. Gdy wzniesiemy rzędną PQ, równą y, to miejsce geo­
metryczne punktu Q pomiędzy A3 i At będzie linią prostą.

Gdy punkt P przejdzie przez At, to będziemy musieli dodać do 
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wyrażenia powyższego moment siły Rą czyli—R,(x—a). Miejscem geo- 
metrycznem punktu Q będzie tutaj inna prosta, przecinająca poprze­
dnią w punkcie x=a, t. j. w wierzchołku rzędnej, wzniesionej w A{.

• --"

A, A, A, A,

Fig. 37.

Jeżeli więc na belkę działają siły, przyłożone w punkiach odoso­
bnionych, to dyagramat pary gnącej składa się z odcinków linii prostych. 
Daje to łatwą metodę wykreślania takich dyagramatów. Obliczamy 
rzędne, odpowiadające parom gnącym w owych punktach odosobnio­
nych, i końce ich łączymy liniami prostemi. Rzędna nie może oczy­
wiście osiągnąć maksymum w przedziałach pomiędzy punktami A1,A2..., 
na które działają siły, a zatem para gnąca osiąga maksymum w jednym 
z tych punktów przyłożenia.

Przypuśćmy teraz, że belka jest ciężka, i że ciężar jej jest rozło­
żony na całej długości. Para gnąca w punkcie P będzie teraz zawie­
rała nie tylko momenty sił, przyłożonych w A1, A2..., ale także mo­
ment ciężaru części belki ArP. Jeżeli ciężar jednostki długości belki 
wynosi w, to para gnąca w P będzie

ww2
J=2R(-d)-9, 

bo ciężar części ArP wynosi wx i jest przyłożony w punkcie środko­
wym tego odcinka.

Jest to równanie paraboli, a zatem dyagramat składa się z sze­
regu łuków parabolicznych-, każdy z nich przecina łuk sąsiedni na 
końcu rzędnej, wzdłuż której działa jedna z sił odosobnionych. Wszy­
stkie te parabole posiadają osi pionowe, a jeżeli ciężar jednostki dłu­
gości we wszystkich przedziałach belki jest jednakowy, to wszystkie 
parabole posiadają równe latera recta.

Wzór powyższy daje moment gnący, z którym siły, działające 
po lewej lub ujemnej stronie punktu P, usiłują skręcić część belki, 
położoną po stronie dodatniej punktu P, w kierunku ruchu wskazó­
wki zegara.

Przypuśćmy, że część CD belki ACDB jest nieważka, i że po­
między O i D niema żadnego punktu oparcia. Pozostałe części belki, 
położone po obydwóch stronach CD, mogą posiadać ciężary dowolne 
i dowolne liczby punktów oparcia. W takim razie para gnąca w ka­
żdym punkcie pomiędzy C i D będzie zawsze proporcyonalna do rzę­
dnej pewnej linii prostej. Lecz jeżeli J1, Y2, y oznaczają odpowiednio 
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rzędne pewnej prostej, wystawione w C, D i P, a l, 12 odległości GP 
PD, to, jak łatwo widzieć, -

y(l,+1))=yi 12+J2 I,.
Takie więc równanie musi także zachodzić pomiędzy momentami gną- 
cymi J1, J2, y w punktach O, D oraz w dowolnym punkcie pośre­
dnim P.

Przypuśćmy teraz, że część CD jest ciężka. Para gnąca w jakim­
kolwiek punkcie tej części jest w tym razie proporcyonalna do rzędnej 

wx2
paraboli y—A+Bx —, gdzie — ^Ba i B=ZR Jeżeli Ui y2, y 

oznaczają rzędne w G, D i w jakimkolwiek punkcie P, a GP—li i PD=l2, 
to łatwo okazać, że

_ 7 , wl,l2(l+12)J(1+l2) =Yil2+Y2l1-------- o------- •

Związek taki zachodzi pomiędzy momentami gnącymi trzech do­
wolnych punktów ciężkiej belki, jeżeli na rozważanej długości nie istnieje 
żaden punkt oparcia.

Prz. Niech y^ y2, y3 oznaczają momenty gnące w trzech kolej­
nych punktach oparcia, a l, l2 odległości pomiędzy punktami; w takim

wldAL + L)
razie J2(4+l2)=Y,l2+yal4-------,---------Rl, 12, 

gdzie R oznacza reakcyę w środkowym punkcie oparcia, w zaś ciężar 
jednostki długości belki.

146. Para gnąca w jakimkolwiek punkcie P jest równa sumie 
momentów sił poszczególnych, działających po jednej stronie punktu P, 
widzimy więc, że udział każdej siły w parze gnącej jest taki, jak gdyby 
sama jedna działała na belkę. Niekiedy też bywa dogodnie rozwa­
żać skutki działania każdej siły z osobna.

Przypuśćmy np., że na ciężkiej belce AB, podpartej w obydwóch 
końcach, wisi w punkcie M ciężar W. Para gnąca w dowolnym pun­
kcie P jest sumą par gnących, wyznaczonych w par. 144 dla dwóch 
przypadków, (1) gdy belka jest lekka, i (2) gdy w M nie działa żadna 
siła; zatem owa para wyznaczy się z równania

wl
ly = W. BM.AP+ — . AP. BP.

147. Prz. 1. Ciężki pręt, oparty końcami o dwa kołki, pozostaje 
w położeniu poziomem. Na pręcie w punkcie M leży cząsteczka, n razy 
cięższa od pręta. Okazać, że para gnąca jest największa albo w jakimś 
punkcie pomiędzy M a środkiem C pręta, albo w M, zależnie od tego, 
czy odległość punktu M od G jest większa czy mniejsza niż n razy 
powiększona odległość jego od najbliższego końca pręta.

Prz. 2. Drut AGB w kształcie półkola wiruje ze stałą szybkością 
kątową około stycznej, poprowadzonej w końcu A. Okazać, że para 
gnąca jest równa zeru w B, osiąga maksymum w punkcie środkowym G, 
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znika w pewnym punkcie pomiędzy C i A i znowu osiąga maksymum 
ze znakiem odwrotnym w A- Okazać także, że maksymum w A jest 
większe niż w G.

Skutki ruchu wirowego możemy wyrazić tak: uważamy, że drut 
pozostaje w spoczynku, i że oś obrotu odpycha każdy element z siłą 
proporcyonalną do odległości i do masy elementu.

Prz. 3. Pozioma belka AB, zupełnie lekka, jest podparta w koń­
cach; po niej wędruje ciężar W, rozłożony jednostajnie na odcinku PQ 
o długości stałej. Okazać, że gdy ciężar przechodzi przez jakikolwiek 
punkt belki X, to moment gnący w tym punkcie osiąga maksymum 
w chwili, gdy X dzieli odcinek PQ w tym samym stosunku, co i AB. 
Okazać także, że ten największy moment gnący wynosi

■ W.AX.BX^AB-1/2PQ}-------------AB2--------------. (Townsend.)

Niech będzie AX=a BX=b, AB=a+b, PQ—l, AP—x, BQ=k, 
prócz tego oznaczamy przez R siłę tnącą, a przez y moment gnący 
w punkcie X. Ciężar odcinka PX, wynoszący w(a— x), działa na punkt 
środkowy, a zatem biorąc momenty sił, działających na część belki AX, 

w(a—x) (a+x)
względem A, otrzymamy-------- 9---------- yABa—o; otrzymamy podo- 

iv(b— €) (b+€)
bnież------------------- y—Bb=o, biorąc momenty sił, działających na BX, 

względem B. Gdy wyrugujemy z tych równań R, to będzie
2l(a+b)y= W\ab(a+b') — ba2- at2|.

Wyznaczając dla y maksymum pod warunkiem, aby było x+ź=a+b — l, 
otrzymamy wynik żądany.

Prz. 4. Belka pozioma, jednakowo obciążona we wszystkich 
punktach, posiada oparcie w jednym końcu i jeszcze w innym pun­
kcie. Okazać, że zniesie ona największe obciążenie, jeżeli ten drugi punkt 
oparcia dzieli ją w stosunku 1:(V2— 1). (Math. Tripos.)

Przypuśćmy, że belka ABC jest podparta w A i B, że obciążenie 
elementu dx jest równe wdx, i że reakcye w A, B wynoszą odpowie­
dnio wR, wR’-, oznaczmy prócz tego przez l długość belki i przez § 
odległość AB. W takim razie 26> l, i znajdziemy bez trudności, że

Weźmy dwa punkty P i Q, położone odpowiednio na OB i BA, 
i niech x—CP, x'—AQ. Biorąc momenty względem P oraz Q, znaj­
dziemy, że pary gnące y i y' mają w tych punktach wartości

wx? wx'2 
J= —, y'=wRx' —.

Największa rzędna paraboli pierwszej odpowiada punktowi B, 
a największa rzędna drugiej punktowi x'=R, leżącemu pomiędzy
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A i B. Pary gnące w tych punktach są równe iv (l~ 8)2 w, —-— 1 — l-----12\2

282 2
Jeżeli 
punkt

te pary są nierówne pomiędzy sobą, to można tak przesunąć 
oparcia B, aby większą z nich zmniejszyć. Położenie najko­

rzystniejsze otrzymamy wtedy, gdy pary te będą równe, a zatem
[2 l

±(— ^)—l— —. Wobec tego, że $ musi być większe od —, równanie 
2 $ 2

to daje $ V2=l
Prz. 5. Trzy drążki ^B, BO, CA, połączone przegubami w A, B, C, 

tworzą żóraw. Kąt B jest rozwarty, drążek AB pionowy, i punkt A 
osadzony nieruchomo w ziemi. Do drążka AB około punktu B jest 
przymocowany koniec linki, która idzie następnie wzdłuż drążka AC, 
przechodzi przez blok, osadzony w C, i dźwiga na drugim końcu cię­
żar W, bardzo duży w porównaniu z ciężarem drążków i linki. Wy­
znaczyć pary, które usiłują złamąć żóraw w punktach A i B.

(Math. Tripos.)
Prz. 6. Trójnóg cygański składa się z trzech jednorodnych pro­

stych drążków, połączonych swobodnie w jednym końcu. Na tym 
wspólnym końcu wisi kocioł. Trzy pozostałe końce drążków spoczy­
wają na gładkiej poziomej płaszczyźnie, a przed rozsunięciem zabez­
piecza je okrągła gładka obręcz, opasująca je wszystkie i przymoco­
wana do płaszczyzny. Okazać, że równowaga jest możliwa tylko w tym 
razie, gdy długości drążków są jednakowe; prócz tego, mając dane 
ciężary drążków (równe lub nierówne), okazać, że największy moment 
gnący przypada punkcie środkowym drążka, że jest on niezależny od 
długości drążków i nie wzrośnie, gdy powiększymy ciężar kotła.

(Math. Tripos, 1878.)
Prz. 7. Kruchy pręt AB jest osadzony na gładkich zawiasach 

A i B i podlega przyciąganiu środka sił C według prawa natury. Przy­
puszczając, że przyciąganie wzrasta nieograniczenie, okazać, że pręt 

a+B a— 3 
pęknie w punkcie E, określonym w równaniu sin —2 cos 2=sin 2 

gdzie a i 3 oznaczają kąty BAC, ABC, 3 zaś kąt AEC.
(Math. Tripos, 1854.)

Zagadnienia nieokreślone.

148. Ciało, spoczywające na płaszczyźnie poziomej, wy­
wiera na nią dzięki swemu ciężarowi reakcyę, która rozkłada 
się na różne punkty oparcia. Jeżeli tych punktów oparcia 
jest więcej od trzech albo więcej od dwóch w tej samej pła­
szczyźnie pionowej, to wypada, że ów rozkład jest nieokreślony. 
Weźrny dla przykładu stół z nogami pionowemi; oznaczmy 
punkty przecięcia nóg z poziomą płaszczyzną blatu przez
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A, A,..., a rzut środka ciężkości ciała na tę płaszczyznę 
przez G. Ciężar stołu W podtrzymują pewne reakcye R^ R2 -- - 
działające na punkty A,, A,... Obierzmy w płaszczyźnie 
blatu osi Ox, Oij prostokątnego układu współrzędnych; w ta­
kim razie .oś Oz będzie pionowa. Oznaczmy jeszcze przez 
(x, ij^^ (x, J2) .... współrzędne punktów A,, A,...., a przez 
(xy) współrzędne punktu G. Ponieważ siła W równoważy się 
z układem sił równoległych, przeto według paragrafów 110 i 111

W=R+R+...
Wx — R^ + R2x2 + ...
WlJ =R,U+R,y,+ -

Równania te wystarczają do wyznaczenia Rv R2...., je­
żeli istnieją tylko trzy takie reakcye, działające nie w jednej 
płaszczyźnie pionowej. Wypada natomiast zagadnienie nie­
określone, jeżeli liczba reakcyi przewyższa trzy.

W rozwiązaniu powyższem zastąpiliśmy działanie po­
dłogi siłami R,, R2--^ działającemi wzdłuż nóg w górę, i do­
wiedliśmy, że stół może być podtrzymany przez rozmaite kom- 
binacye sił takich. Przypuśćmy, że stół ma cztery nogi; mo­
żemy w tym razie jedną reakcyę obrać dowolnie, a trzy pozo­
stałe dadzą się wyznaczyć z powyższych trzech równań. Oczy- 
wistem jest przeto, że gdy chodzi o wyznaczenie czterech sił, 
które mogą podtrzymać stół, to zagadnienie takie jest nie­
określone.

Istotne reakcye, które stół wywiera na podłogę, nie są 
nieokreślone, bo w naturze wszystko musi być określone. Jeżeli 
wypada jakaś nieokreśloność, to z pewnością pominęliśmy 
pewne dane zagadnienia, a mianowicie pewną właściwość ma- 
teryi, od której zależy rozwiązanie.

Aksyomaty zasadnicze o siłach, wygłoszone w paragrafie 18, 
nie zawierają żadnej wzmianki o naturze materyału, z którego 
ciało się składa. W rozdziałach następnych widzieliśmy, że ró­
wnania, wynikające z tych aksyomatów, wogóle wystarczały do 
wyznaczenia wszystkich wielkości nieznanych w dotychczaso­
wych zagadnieniach statycznych, a zatem we wszystkich tych 
zagadnieniach wielkości reakcyi oraz położenia równowagi za­
leżały nie od materyału ciał, lecz od ich kształtów i od wiel­
kości sił przyłożonych. Jeżeli natomiast pewne wielkości nie­
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wiadome zależą od materyału ciała, to oczywiście aksyomaty 
owe nie mogą być do wyznaczenia ich wystarczające. W tych 
razach musimy uciec się do nowych doświadczeń, aby wykryć 
dalsze aksyomaty statyczne. Tak np. do badania położeń ró­
wnowagi ciał niegładkich potrzebne są nowe wyniki doświad­
czeń, zależne od stopnia chropowatości ciał badanych. Znale­
ziono podobnież, że rozkład reakcyi na nogi stołu zależy od 
giętkości materyałów.

Giętkość materyału, z którego zrobiono stół, może być 
bardzo mała, pomimo to jednak pod działaniem ciężaru W 
nogi doznają wyraźnych jakkolwiek bardzo drobnych odkształ­
ceń. Odkształcenia te zależą od Rp Rt..., i nawzajem wy­
wierają wpływ na te reakcye. Stopień odkształcenia, które wy­
wołuje w ciele działająca nań siła, bywa zazwyczaj rozważany 
w tej części mechaniki, którą nazywamy teoryą sprężystości. Co 
się tyczy owego szczególnego zagadnienia o stole, to dotychczas 
nie znaleziono rozwiązania kompletnego, ale można łatwo wy­
kazać na kilku przykładach, że zagadnienie staje się określo- 
nem, gdy mamy dane pewne określone prawo sprężystości. 
(Elements de Staticpie Poinsota i Traite de Mecaniąue Poissona.)

149. Prz. 1. Stół prostokątny posiada w rogach cztery nogi, zu­
pełnie jednakowe i z lekka sprężyste. Zakładamy, że skurczenie każdej 
nogi jest proporcyonalne do wywieranego na nią ciśnienia, oraz że po­
dłoga i blat stołu są sztywne. Wyznaczyć reakcye, działające na wszyst­
kie nogi przy jakiemkolwiek obciążeniu stołu. Okazać prócz lego, że stół 
wspiera się tylko na trzech nogach, jeżeli ciężar wypadkowy przypada na 
jednej z czterech prostych, przeprowadzonych na blacie.

(Math. Tripos, 1860.)
Obierzmy boki AB, AD za osi x, y, przypuśćmy, że ciężar wypad­

kowy W działa na punkt G, którego współrzędne 
są (x y), i niech będzie AB—a, AD=b. Blat 
stołu jest sztywny, zatem powierzchnia jego 
pomimo skurczenia nóg pozostanie płaską. 
Skurczenie jest małe, a zatem, odrzucając małe 
wielkości drugiego rzędu, możemy uważać, że 
reakcye w punktach A, B, C, D pozostają piono- 
wemi. Otrzymamy zwykłe równania statyczne

W=R,+R,+R,+R, \ 1
Wx=(R2+R3)a, Wy=(R3+Rj)b. J .......................

Przekątnia blatu pozostaje linią prostą, zatem obniżenie się jej 
środka jest średnią arytmetyczną obniżeń końców, a stąd wynika, że 

3

D

Fig. 38.
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przeciętne skurczenie nóg A i C jest równe przeciętnemu skurczeniu 
nóg B i D. Ale według założenia reakcye są proporcyonalne do tych 
odkształceń, a zatem

R1+R=R2+R4.......................................... (2).
Te cztery równania określają reakcye całkowicie.

Zakładając R3=o, znajdziemy z łatwością, że ap=l to zna- 

czy, że stół wspiera się tylko na trzech nogach A, B, D, jeżeli ciężar 
W leży na prostej, łączącej środki boków AB i AD. Łącząc środki 
innych boków, otrzymamy cztery proste, wyobrażone na figurze li­
niami kropkowanemi. Jeżeli ciężar W leży wewnątrz figury punkto­
wanej, to wszystkie cztery nogi są skurczone, jeżeli nazewnątrz, to 
tylko trzy. W przypadku ostatnim równania powyższe byłyby popra­
wne tylko w takim razie, gdyby reakcye mogły przybierać wartości 
ujemne; ponieważ jest to wogóle niemożliwe, musimy przeto poprawić 
równania (1), czyniąc jedną z reakcyi zerem. Równanie (2) wypada 
w tym razie odrzucić.

Prz. 2. Sztaby ADB i CD mogą się swobodnie obracać na za­
wiasach A i C, osadzonych nieruchomo na jednym pionie. Sztaba CD 
podpiera sztabę AB, która posiada położenie poziome i dźwiga na 
końcu B ciężar W. Wyznaczyć reakcyę w C w dwóch przypadkach: 
(1) gdy sztaby łączą się w D zapomocą przegubu, (2) gdy sztaba CD 
tworzy jedną całość z AB, pomijając w obydwóch przypadkach cię­
żary sztab. (Math. Tripos, 1841.)

W pierwszym przypadku reakcya w D jest siłą, w drugim re- 
akcya składa się z siły i pary (142). W oby­
dwóch razach w C działa siła pojedyńcza. A_______D_______ B

W przypadku pierwszym reakcye w C 292700 j 
i D są równe i działają wzdłuż CD (131). Bio- c _ " 
rąc momenty sił, działających na AB, wzglę- • 
dem A, znajdziemy z łatwością, że każda Fig. 39.

W. AB 
z owych reakcyi wynosi —----- , gdzie AN oznacza prostopadłą 

AN
z A do CD.

W przypadku drugim nic nie wskazuje, jaki kierunek posiada 
reakcya w C. Wiemy tylko, że równoważy ona nieznaną siłę i parę. 
Gdy napiszemy trzy równania równowagi całego ciała, to nie będzie 
można wyznaczyć z nich czterech składowych dwóch reakcyi, działa­
jących w A i C. Widzimy więe, że zagadnienie jest nieokreślone.

Prz. 3. Sztywną lekką sztabę zawieszono w położeniu poziomem 
na trzech pionowych prętach równych i nieco sprężystych. Dolne 
końce prętów są zaopatrzone w małe obrączki A, B, C, i przez te 
obrączki przechodzi sztaba. Następnie na sztabie w punkcie Gr zawie­
szono ciężar. Zakładamy, że wydłużenie lub skurczenie każdego pręta 
jest proporcyonalne do siły, która go rozciąga lub ściska, oraz że pręty 
i po zawieszeniu ciężaru zachowują położenie pionowe. Okazać, że 



— 112 —

pręt, zakończony obrączką B, się skurczy, jeżeli G leży na dłuźszem 
z dwóch ramion AB, BC, a przytem odległość jego od B przewyższa 
AB2 + BO2
ABLBC (Math. Tripos, 1883.)

Prz. 4 Pręty AB, BC, CD, DA tworzą boki kwadratu, a pręty 
AC, BD jego przekątnie, i wszystkie łączą się przegubami w wierzchoł­
kach. W punktach B i D przykładamy równe i odwrotne siły F 
w kierunkach DB i BD. Pręty są sprężyste, ale zachodzące tu skró­
cenia i wydłużenia można traktować jako nieskończenie małe. Ozna­
czamy przez e, stosunek wydłużenia (lub skrócenia) na jednostkę dłu­
gości pręta AB do siły odkształcającej. Jest to stała zależna od mate- 
ryału i od przekroju pręta. Oznaczamy dalej przez €2, e3 .... e6 odpo­
wiednie stałe dla innych prętów w porządku, w którym wymieniliśmy 
je wyżej. Okazać, że naprężenie w pręcie BD wynosi.

[1------------ -—26 V2--------- —)F. (Coli. Exam., 1886.) 
e1+e,+es+e,+2(es+e) V 2 '

Wobec tego, że odkształcenia są drobne, tworzymy zwykłe ró­
wnania równowagi, uważając, że figura zachowała postać pierwotną, 
t. j. że ABCD jest wciąż kwadratem. Znajdziemy wówczas, że naprę­
żenia we wszystkich bokach są równe. Oznaczając to wspólne naprę­
żenie przez P, a naprężenia w przekątniach BD, AC przez T i T', 
otrzymamy Pv2 +T= o, Pv2 +T+F=o.

Poszukujemy następnie związku geometrycznego, który zachodzi 
w stanie odkształconym figury pomiędzy długościami boków i prze­
kątni. Oznaczmy te długości w porządku wzmiankowanym przez 
a(1+x), a(1+y), a(1+z), a(1+u), a v2 (1+p‘), a V2 (1+p). Odrzucając 
kwadraty wielkości małych, otrzymamy 2(p+p‘)=x+y+z+u. Stosując 
prawo sprężystości, otrzymamy stąd 2(eT+eT)=(e,+e2+e+e4) P.

Mamy teraz trzy równania do wyznaczenia P, T i T' w funkcyi F.

150. Kratownica sztywna ).  Niech Ar, A2 .... oznaczają n 
cząsteczek połączonych prętami prostymi; dajmy na to, że połą­
czenia zostały uskutecznione zapomocą przegubów, i że wszystkie 
siły, działające na układ, są przyłożone do cząsteczek. Stąd wynika, 
że reakcye, występujące na końcach każdego pręta, są skierowane we­
dług tegoż pręta. Pragniemy zbadać, czy liczba równań statycznych 
jest wystarczająca do wyznaczenia tych wszystkich reakcyi; innemi słowy 
chcemy się przekonać, czy mamy tu do czynienia z zagadnieniem okre- 
ślonem, czy nieokreślonem. Jeżeli zagadnienie jest nieokreślone, tg wy- 
padnie jeszcze zbadać, czy liczba równań sprężystości wystarczy do znale­
zienia rozwiązania kompletnego.

*

*) Bliższe wskazówki można znaleźć w dwóch pracach Max- 
wella, drukowanych w Phil. Mag. 1864 i w Edinburgh Transactions 1872, 
oraz w Statigue Graphigue M. Levy’ego, 1887.
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151. Przedewszijstldem wyznaczymy liczbą prętów łączących, do­
stateczną do usztywnienia kratownicy. W przypuszczeniu, że n jest nie 
mniejsze od 2, usztywniamy naprzód dwie cząsteczki A| i A2, łącząc 
je jednym prętem. Z A, i A2 mamy połączyć n—2 cząsteczek pozosta­
łych. Aby otrzymać sztywne połączenie cząsteczki A3 z dwiema 
pierwszemi, musimy ją połączyć zarówno z jedną jak i z drugą, a to 
wymaga dwóch nowych prętów. Otrzymamy sztywne połączenie czą­
steczki A,, łącząc je z dwiema z trzech pierwszych. Postępując tak 
w dalszym ciągu, przekonamy się, że do przyłączenia każdej następnej 
cząsteczki niezbędne są dwa pręty nowe. Do sztywnego połączenia 
n cząsteczek wystarcza 2(n-2)+1 czyli 2n—3 prętów.

Gdy wypada połączyć pewną cząsteczkę, np. A3, z dwiema inne- 
mi, np. A1, A2, to powinna obowiązywać jakaś umowa, wskazująca, po 
której stronie podstawy A,A2 ma leżeć wierzchołek trójkąta 43A,A2. 
W razie przeciwnym może istnieć niejeden wielobok, posiadający boki 
równe długościom danym.

Potrzeba jeszcze zaznaczyć, że w wypadku szczególnym, gdy 
cząsteczka A3, połączona dwoma prętami z już utrwalonemi cząstecz­
kami di, A2, leży na prostej A{A2, połączenie nie jest całkowicie 
sztywne. Cząsteczka A3 może doznać nieskończenie małego przesunię­
cia w kierunku prostopadłym do prostej A,A2A3 w jedną lub w drugą 
stronę. Jest to przesunięcie wyobrażalne, które należy brać w rachubę, 
gdy okoliczności wymagają odrzucenia nieskończenie małych drugiego 
rzędu.

Jeżeli cząsteczki nie leżą w jednej płaszczyźnie, i n jest nie 
mniejsze od 3, to usztywniamy naprzód trzy cząsteczki, łącząc je trze­
ma prętami. Każdą następną z n—3 cząsteczek pozostałych musimy 
połączyć z trzema już utrwalonemi. Ostatecznie do sztywnego połą­
czenia n cząsteczek wystarczy 3(n~3)+3 czyli 3n — 6 prętów.

Nie jest rzeczą konieczną, aby połączenia pomiędzy cząsteczkami 
odpowiadały całkowicie opisowi powyższemu; dowiedliśmy jedynie, 
że można usztywnić układ zapomocą 2n—3 albo 3n—6 prętów, umie­
szczonych w sposób właściwy. Możliwe są różne rozkłady prętów, 
usztywniające układ *).  Z drugiej jednak strony, jeżeli pręty nie zo­
stały rozłożone w sposób właściwy, to układ może nie być sztywny; 
tak np. jedna część układu może być usztywniona większą liczbą prę­
tów, niż tego wymaga konieczność, gdy inna część posiada zamało 
prętów.

*) Wywody powyższe dadzą się streścić, jak następuje. Mając 
dany pewien stały układ współrzędnych, możemy określić figurę pod 
względem położenia i formy zapomocą 2n, względnie 3n, współrzędnych 
wierzchołków. Są to wielkości dowolne kratownicy. Jeżeli chodzi 
jedynie o określenie formy, to odnosimy figurę do pewnego układu 
osi, związanych z nią samą; w takim razie nie rozporządzamy już 
współrzędnemi, określającemi położenie ciała sztywnego i swobodnego. 
Pozostaje zatem 2n—3 lub 3n—6 wielkości dowolnych, zależnie od 
tego, czy ciało jest płaskie, czy trójwymiarowe (zob. par. 206).

Statyka. 8
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Układ cząsteczek, który uczyniono sztywnym zapomocą ściśle 
niezbędnej liczby prętów, nazwiemy dostatecznie sztywnym. Jeżeli 
liczba prętów jest większa od niezbędnej, to będziemy układ nazywali 
przesztywnionym. Jeżeli wreszcie liczba prętów nie wystarcza do 
usztywnienia układu, to możemy nazwać kratownicę niedosztywnioną 
lub odkształcalną. W przypadku ostatnim nie znamy kształtu, który 
układ przybiera w stanie równowagi; należy go wyznaczyć wraz z re- 
akcyami z równań równowagi.

152. Z rozważań powyszych wynika wniosek, że wielokąt o n 
wierzchołkach jest dany, gdy znamy długości 2n—3 boków. Jeżeli 
liczba boków i przekątni wielokąta wynosi ni, to pomiędzy ich dłu­
gościami musi zachodzić m — (2n—3) związków. Widzimy zatem, że 
z owych m długości 2n—3 są dowotne; muszą one jedynie czynić zadość 
tym warunkom, które umożliwiają utworzenie figury. Tak np. trójkąt 
można utworzyć z trzech długości dowolnych, ale suma każdych dwóch 
powinna być większa od trzeciej.

Gdy w wielokącie o n wierzchołkach wszystkie wierzchołki są 

połączone pomiędzy sobą, to liczba długości wynosi 
n(n-l)
--------- , a zatem

(n—2) (n—3)
wypadnie - .— 9------ związków pomiędzy bokami i przekątniami.

Tak samo znajdziemy, że liczba związków pomiędzy krawędziami
(n-3) (n—4)

wielościanu jest równa
2

153. Zobaczmy teraz, ile mamy równań statycznych. Zakładamy, 
że na układ działają siły jakiekolwiek, posiadające punkty przyłożenia 
w niektórych, albo we wszystkich cząsteczkach. Nazwiemy te siły 
zewnętrznemi.

Każda cząsteczka poszczególna pozostaje w równowadze, a zatem 
rzutując siły, działające na każdą z nich, na osi współrzędnych, otrzy­
mamy 2n albo 3n równań statycznych stosownie do tego, czy układ 
jest płaski, czy przestrzenny.

Z równań tych można zawsze wyrugować reakcye, działające 
wzdłuż prętów, bez względu na to, jak liczne są te reakcye; tym spo­
sobem otrzymamy trzy równania, jeżeli układ jest płaski, albo sześć, 
jeżeli układ jest przestrzenny. Daje się to okazać w sposób nastę­
pujący. Wszystkie cząsteczki razem tworzą jeden układ, w którym 
reakcye wewnętrzne się równoważą. Jeżeli układ jest płaski, to bie- 
rzemy rzuty sił zewnętrznych na jakieś dwa kierunki i momenty 
względem jakiegoś punktu; tym sposobem otrzymamy trzy równania 
równowagi, niezawierające żadnych reakcyi wewnętrznych (112)*). Jest 

’) Jeżeli nie jest całkowicie jasnem, że te trzy równania wyni­
kają z 2n lub 3n równań równowagi cząsteczek poszczególnych, to 
można uzupełnić dowód w sposób następujący. Dajmy na to, że na
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rzeczą jasną, że ani rzuty na jakieś inne kierunki ani momenty wzglę­
dem jakichś innych punktów nie dadzą nam więcej od trzech równań 
niezależnych (115). Jeżeli układ jest przestrzenny, to tak samo oka- 
żerny, że można otrzymać sześć równań wolnych od reakcyi we­
wnętrznych; w tym celu należy wziąć rzuty na trzy kierunki oraz 
momenty względem trzech osi. Z tego wynika, że do wyznaczenia 
reakcyi pozostanie 2n— 3, względnie 3n—6 równań. Tyle właśnie re­
akcyi niezależnych występuje w kratownicy dostatecznie sztywnej. 
Tak więc w kratownicy dostatecznie sztywnej, na którą nie działają 
żadne nieznane siły zewnętrzne, liczba równań statycznych wystarcza do 
wyznaczenia wszystkich 2n — 3 lub 3n—6 reakcyi.

Jeżeli kratownica podlega pewnym ograniczeniom zewnętrznym, 
jeżeli np. pewne jej punkty są osadzone w przestrzeni nieruchomo, to 
liczba prętów, niezbędnych do usztywnienia układu, będzie inna. Przy­
puśćmy, że układ sztywny czy niesztywny, zawiera 2n — 3—k albo 
3n — 6—k prętów. Wypada łatwo, że równania równowagi po wyrugo­
waniu reakcyi wewnętrznych dają nam k+3 albo k+6 równań do wy­
znaczenia reakcyi zewnętrznych i położenia równowagi. Zagadnienie 
jest określone, jeżeli równania le są wystarczające.

154. Nawet w tych razach, w których liczba równań byłaby 
dostateczna do wyznaczenia reakcyi wewnętrznych, możliwe są wypadki 
wyjątkowe. Równania, otrzymane w sposób wskazany, mogą nie być 
niezależne, lub mogą być sprzeczne.

Dla przykładu rozważmy przypadek taki: Trzy pręty A,A3 , A,A,, 
A^2 łączą się przegubami Ar, A3, A2, długości zaś ich są takie, że 
wszystkie trzy leżą na jednej prostej. A A 
Przypuśćmy, że na końce A^ A 2 działają F._ e..  7 42 F 
dwie równe i odwrotne siły F, i ozna-_____________________ - 
czmy reakcye, działające wzdłuż A,A2,__________ Fig. 40.
A,A,, A^ odpowiednio przez R12 , R23,
R13. Kratownica taka jest dostatecznie sztywna, a zatem powinni- 

cząsteczkę Ar działa reakcya R12, skierowana do A2; w takim razie 
na cząsteczkę A2 działa równa i odwrotna reakcya R21, skierowana 
do A2. Rzuty tych reakcyi R12 i R21 na oś x są oczywiście równe 
i odwrotne. Dodajmy wszystkie równania, które otrzymaliśmy, rzutu­
jąc na oś x siły, działające na poszczególne cząsteczki; otrzymamy 
oczywiście w sumie równanie, wolne od wszelkich R. W ten sam 
sposób rzuty na osi a i ^ dadzą nam dwa inne równania, nie zawie­
rające żadnych reakcyi wewnętrznych.

Ponieważ siły, działające na każdą cząsteczkę, są w równowadze, 
przeto suma ich momentów względem każdej prostej jest równa zeru. 
Rozumując, jak wyżej, dojdziemy, że moment reakcyi R12, działającej 
na A1} jest równy i odwrotny do momentu reakcyi R21, działającej na 
A2. Dodajemy wszystkie równania, które otrzymaliśmy, biorąc mo­
menty sił, działających na poszczególne cząsteczki. W sumie wypa- 
dnie nowe równanie, wolne od reakcyi R.
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byśmy mieć dostateczną liczbę równań do wyznaczenia reakcyi; tym­
czasem, tworząc równania dla trzech wierzchołków, otrzymamy

Ri+R,,=F, R=R,3, R,2+R,= F.
Nie wystarcza to oczywiście do wyznaczenia trzech reakcyi.

Takie przypadki wyjątkowe zachodzą w warunkach, które 
wskazuje teorya równań liniowych. Wszystkie 2n— 3 albo 3n— 6 ró­
wnań do wyznaczenia reakcyi w wierzchołkach kratownicy są liniowe. 
Jeżeli pewien wyznacznik jest równy zeru, to przynajmniej jedno ró­
wnanie wynika z pozostałych, albo jest z niemi w sprzeczności. 
W przypadku ostatnim wypadałoby, że niektóre reakcye są nieskończenie 
wielkie, co w naturze jest niemożliwe. W przypadku pierwszym jedna 
reakcya jest dowolna; reakcye pozostałe można wyrazić w funkcyi tej 
pierwszej oraz sił zewnętrznych. W podobny sposób możemy zna­
leźć warunki, przy których dwie reakcye będą dowolne. Warunki te 
dają się wyrazić w sposób bardziej określony, ale odnośna część 
teoryi wyprowadza się łatwiej z zasady pracy przygotowanej, odło­
żymy ją przeto do rozdziału, poświęconego tej zasadzie.

155. Przypuśćmy teraz, że układ, złożony z n cząsteczek, posiada 
więcej prętów, niż potrzeba niezbędnie do usztywnienia. W tym razie 
liczba równań jest niedostateczna do wyznaczenia reakcyi, jeżeli nie 
wiemy o nich czegoś ponadto, co zawierają równania statyczne. Pręty, 
łączące cząsteczki, są z natury sprężyste, a siły, działające wzdłuż 
pręta, są następstwem odkształcenia, czyli skurczenia lub rozciągnięcia. 
Dajmy na to, że związek pomiędzy siłą i odkształceniem jest znany; 
mamy zbadać, czy wypływające z niego równania dodatkowe wystar­
czają do wyznaczenia reakcyi. Kratownica, na którą zaczęły działać 
siły zewnętrzne, zaczyna się odkształcać i odkształca się dopóty, do­
póki wywołane reakcye wewnętrzne nie wzmogą się dostatecznie do 
utrzymania układu w spoczynku. Będziemy uważali dla skrócenia roz­
ważań, że odkształcenie ostateczne jest bardzo drobne, i że zgodnie 
z prawem Hooke’a reakcya wzdłuż danego pręta jest równa pewnej 
znanej wielokrotności stosunku wydłużenia do długości pierwotnej. Ta 
wielokrotność zależy od natury materyału, z którego pręt zrobiono.

Przypuśćmy, że kratownica posiada m prętów, i że liczba ta jest 
o k większa od 2n—3 lub 3n—6. Jeżeli na kratownicę nie działają 
żadne reakcye zewnętrzne, to potrzeba mieć k równań dodatkowych 
(par. 153). W myśl par. 152 znajdziemy k związków pomiędzy długo­
ściami prętów li, l2...., i niech jeden z tych związków będzie

m, 1,.)=0...................................... (i).
Różniczkując to równanie, otrzymamy

M1dl1 + M2dl2+ ....=0.(2), 
gdzie M, , M2.... oznaczają pochodne cząstkowe, a dl , dl.... wydłuże­
nia prętów.

Oznaczając przez R, R2-- reakcye, działające wzdłuż prętów 
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i przez X, , ).2.... odwrotności znanych wielokrotności, przekształcimy 
równania ostatnie przy pomocy prawa Hooke’a na

M,),L,R,+M,)„,1,R,+ ••• =0
Widzimy, że każde równanie takie, jak (1), dostarcza jednego ró­

wnania pomiędzy reakcyami, a więc teorya sprężystości dostarcza potrze­
bnej liczby równań dodatkowych.

W przypadku, wzmiankowanym w par. 154, związek pomiędzy 
długościami, odpowiadający (1) będzie 113 + 123 — l 12=0, gdzie 112 =A|A2 
i t. d. Różniczkując, znajdziemy, że wszystkie trzy reakcye są równe 
co do wielkości, jeżeli wszystkie trzy pręty są zrobione z jednego 
materyału i posiadają przekroje równe.

Astatyka.

156. Na ciało sztywne działają siły P1, P2...., przyłożone 
w punktach Av A, ... . ; wielkości tych sił oraz ich kierunki 
w przestrzeni są dane. Przypuśćmy, że ciało to doznaje jakie­
gokolwiek przesunięcia; pragniemy zbadać, jak zmieni się siła 
wypadkowa i para wypadkowa.

Obieramy pewien środek redukcyi 0 i osi układu pro­
stokątnego Ox, Oy, utrwalone w danem ciele. Żądane przesu­
nięcie możemy wykonać w dwóch stadyach. Przedewszystkiem 
przesuwamy ciało równolegle tak, aby punkt O zajął żądane 
położenie 01, następnie obracamy ciało około punktu 0^ 
dopóki oś Ox nie dojdzie do położenia żądanego. Wówczas 
każdy punkt ciała zajmie położenie żądane, bo w razie prze­
ciwnym odległości różnych punktów ciała od początku 0 i od 
osi 0x nie byłyby stałe.

Jeżeli wielkości siłP P...., a także ich kierunki w prze­
strzeni są niezmienne, to oczywiście ani rzuty tych sił na osi 
ani ich momenty względem O skutkiem przesunięcia równo­
ległego nie ulegną zmianie. Możemy przeto pominąć przesu­
nięcie równoległe i uważać 0, 01 za jeden punkt.

Rozważamy teraz przesunięcie obrotowe. Chodzi tu na­
turalnie o położenie względne sił i ciała; gdybyśmy obrócili 
siły wraz z ciałem, to skutek byłby tylko ten, że siła wypad­
kowa oraz para wypadkowa obróciłyby się o ten sam kąt. 
Z tego wynika, że zamiast obracać ciało około punktu O o dany 
kąt 3, zachowując bez zmiany kierunki sił, możemy obrócić 
każdą siłę około jej punktu przyłożenia o taki sam kąt w kie­
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Podobnie i

runku odwrotnym, nie zmieniając przytem położenia ciała 
(par. 70).

157. Jesteśmy teraz w możności określić zmiany, jakie 
zajdą w sile wypadkowej i w parze wypadkowej. Za osi Ox 
i Oy obieramy proste utrwalone w ciele, i niech P oznacza 
jedną z sił P^ P2. . .. ; jej punkt przyłożenia oznaczmy przez A, 
a jej nachylenie do osi a przez a. Obróćmy tę siłę około 
punktu A w kierunku dodatnim o kąt 3; będzie więc ona te­

raz działała w kierunku, wskazanym na figurze 
przez AP'.

Oznaczmy przez X, Y rzuty siły wypad­
kowej na osi, a przez G moment pary wypad­
kowej przed przesunięciem; X’, Y\ G' będą 
oznaczały te same wielkości po przesunięciu, 

r par. 106 otrzymamy
X’ ^-P cos(a + 3) = Xcos 9 — Psin 8, 
Y = ŁP sin( + 9) = X sin 9 + Tcos 9, 
G' = EP[x sin (a +8) — y cos (a + 8)] 

= G cos 8+V sin 8,
gdzie G=^{xPy - yP.), V=(xP,+ ijPy). Px i Py oznaczają tu 
rzuty siły P na osi x i y.

Symbol G wyraża moment pary wypadkowej, czyli sumę mo­
mentów sił względem środka obrotu O, przed przesunięciem. Jeżeli

T
U=9, to G‘= V- A zatem symbol V wyraża sumę momentów sił wzglę­

dem punktu O po obróceniu tychże o kąt prosty.*)  Jeżeli wolno jest nieco 
zmienić znaczenie nazwy, danej przez Clausiusa (Phil. Mag., sierpień 1870), 
to możemy nazwać V wiryałem sił. Oznaczmy wartość, którą przy- 
bierze wiryał po obróceniu sił o kąt 3, przez V. W takim razie

*) Darboux, Sar beguilibre astaligue, str. 8.

V‘=zP[x cos («+9)+y sin (+8)]= V cos }- G sin 9.
Z równania tego widać, że moment G posiada taką wartość, jaką 

przybierze wiryał po obrocie o kąt prosty, lecz ze znakiem odwrotnym.
Można wiryałowi V przypisać i inne znaczenie. Przypuśćmy, że 

składowe Pi Py działały początkowo na punkt O, i przesuńmy ich punkt 
przyłożenia do punktu N, położonego na osi Ox tak, aby było 0N=x. 
Praca składowej Px wyniesie xPx, a praca składowej Py będzie zerem. 
Przesuńmy następnie punkt przyłożenia z N do A tak, aby było NA=y. 
Teraz praca składowej Px będzie zerem, a praca składowej Py wynie­
sie yPy. Suma takich prac dla wszystkich sił jest równa V. Widzimy 
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więc, że V jest t o praca, potrzebna do przeniesienia sił ze środka reduk- 
cyi do ich obecnych punklóin przyłożenia; wielkości i kierunki sił po­
winny przytem pozostać bez zmiany.

158. Jeżeli przed przesunięciem ciało było w równowa­
dze, to X=0, Y~ 0, G=0, a zatem po obrocie o kąt 3 będzie 

X‘=0, Y' — Q, G‘= Vsin 3. Stąd wynika, że nowe położenie bę­
dzie tylko wtedy położeniem równowagi, gdy 0 = T. Jeżeli ciało 
jest w równowadze w dwóch położeniach, tworzących kąt 0 
różny od T, to równowaga zachodzi we wszystkich położeniach. 
Warunek analityczny równowagi we wszystkich położeniach 
polega na tem, aby w jednem z położeń równowagi było V=0.

159. Prz. 1. Ciało nie jest w równowadze, lecz siły są takie, że 
obydwa rzuty X i Y są zerami. O jaki kąt należy obrócić ciało, aby 
otrzymać położenie równowagi?

Prz. 2. Ciało znajduje się w położeniu równowagi pod działa­
niem sił danych co do wielkości i kierunków. Okazać, że równowaga 
jest trwała lub chwiejna zależnie od tego, czy V jest dodatnie czy 
ujemne.

160. Środek sił. Okazaliśmy w par. 118, że cały układ 
sił daje się sprowadzić do jednej wypadkowej w skończonej 
odległości od środka redukcyi, jeżeli tylko sumy rzutów na osi 
(t. j. X i Y) nie są zerami. Po obrocie sił o kąt 3 równanie 
linii działania tej wypadkowej będzie

G‘-Y+1X‘=0,
czyli (G — 6 Y+ 7X) cos 9 + (V— 4X- 1 Y) sin 9 = 0.
Z równania tego wynika, że jakkolwiek obrócimy siły około 
ich punktów przyłożenia, to zawsze wypadkowa przejdzie 
przez pewien punkt stały; współrzędne jego określają ró­
wnania

G-iY+^X=0
V- 4X- Y=0

Punkt ten nazywamy środkiem sił. Pierwsze z równań powyż­
szych jest równaniem linii działania wypadkowej przy pierwo- 
tnem położeniu sił, t. j. gdy 3 = 0, równaniu drugiemu odpo­
wiada linia działania wypadkowej po obrocie sił o kąt prosty, 
t. j. gdy •=3

W teoryi tej uważamy, że punkt przyłożenia danej siły 
jest w ciele niezmienny, a z tego względu będzie dogodnem 
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uważać środek sił za punkt przyłożenia wypadkowej. Tak więc 
wypadkowa, równoważna całemu układowi, posiada podobnie 
do innych sił określoną wielkość, określony kierunek i okre­
ślony punkt przyłożenia w ciele. Możemy zatem określić śro­
dek sił w sposób podobny, jak określiliśmy go w przypadku 
sił równoległych (83). Jeżeli punkty przyłożenia sił danych 
są w ciele niezmienne, to i punkt przyłożenia wypadkowej zacho­
wuje w ciele położenie niezmienne, jakkolwiek przesuniemy to 
ciało; wielkości i kierunki sił powinny przytem pozostać bez zmiany. 
Taki punkt stały nazywamy środkiem sił.

Obrawszy przy pewnem określonem położeniu ciała i sił 
prostokątny układ współrzędnych, otrzymamy współrzędne 
(^rj) środka sił we wzorach

LR2 - VX+ G Y, 7 R2 = V Y- GX;
V i G odpowiadają tutaj początkowi układu, jako -środkowi 
redukcyi, a R jest wypadkową sił X i Y.

161. Prz. 1. Okazać, że środek sił leży w nieskończoności, je­
żeli układ sprowadza się do pary wypadkowej.

Prz. 2. Dowieść, że jakkolwiek obrócimy siły i przy każdem 
Gśrodku redukcyi stosunek — jest równy tangensowi kąta, który two­

rzy prosta, łącząca O ze środkiem sił C, z kierunkiem wypadkowej R; 
okazać prócz tego, że wartość G2+V2 jest niezmienna i równa R2.CO2.

Układ jest równoważny jednej sile R, przyłożonej w C, a więc 
oczywiście Gr=R. ON, gdzie ON oznacza odległość linii działania siły 
Rod O. Obróciwszy R o kąt prosty, znajdziemy V=R.CN. Stąd wyni­
kają bezpośrednio żądane wnioski.

162. Istnieje inna metoda wyznaczania wypadkowej astatycznej 
danego układu sił.)  Nadajemy ciału pewne dogodne położenie wzglę­
dem sił danych i rozkładamy każdą z nich na składowe w kierun­
kach Ox i Oy. Sumę składowych w kierunku Ox oznaczamy przez X, 
a sumę składowych w kierunku Oy przez Y. Osi Ox i Oy powinny 
być tak dobrane, aby ani X ani Y nie było zerem. Bierzemy naprzód 
pod uwagę składowe równoległe do osi Ox. Są one równoważne jed­
nej sile X=^Px, działającej na punkt niezmienny w ciele; współrzędne 
(x,y,) tego punktu znajdziemy z równań

*

*) Stosowali ją Darboux (Sur reąuilibre astatiąue) i Larmor 
(Messenger of Mathematics).

xX=XxP,, y\X —^yPx-
Składowe równoległe do osi Oy tworzą również układ sił równoległych 



— 121 —

równoważny jednej sile Y=%Py; siła ta jest przyłożona w punkcie 
(x2, J2), i

x,¥=EyP, J2Y=EyPs
Osi współrzędnych można obierać dowolnie, przyczem nieko­

niecznie mają tworzyć kąt prosty; tak więc sprowadziliśmy dany 
układ do dwóch sił, działających na dwa punkty w ciele niezmienne 
w kierunkach obranych dowolnie lecz nierównoległych. Położenie 
owych punktów zależy od obranych kierunków.

163. Oznaczmy owe punkty niezmienne przez A i B, i niech 
w pewnem położeniu ciała względem sił składowe X i Y przecinają 
się w punkcie I, a ich wypadkowa niech działa na prostej IF. Ta pro­
sta IF przecina koło, opisane na trójkącie ABT, w punkcie C. Z asta- 
tycznego trójkąta sił wynika, że punkt C jest w ciele niezmienny, 
a możemy uważać, że wypadkowa sił X i Y jest przyłożona właśnie 
w tym punkcie C; zatem punkt C jest środkiem sił.

Odwrotnie, jeżeli znamy środek i siłę wypadkową, to możemy 
ją rozłożyć na dwie składowe astatyczne, posługując się trójkątem sił 
w sposób, opisany w par. 73.



ROZDZIAL°V.

TARCIE.

164. Wiadomo z doświadczenia, że gdy jedno ciało pod 
ciśnieniem sunie lub toczy się po drugiem, to powstaje siła, 
przeciwdziałająca ruchowi. Aby zbadać prawa, którym ta siła 
podlega, rozpoczniemy od doświadczeń nad pewnym prostym 
przypadkiem równowagi, a następnie będziemy usiłowali uogól­
nić otrzymane wyniki aż do przypadków najbardziej złożonych.

Wyobraźmy sobie skrzynkę A, ustawioną na chropowa­
tym stole BC. Do skrzynki w punkcie D jest przymocowany

Fig. 42.

sznur DEH^ który przechodzi przez 
bloczek E i dźwiga szalkę H; na 
szalkę można kłaść gwichty lub sy­
pać piasek. Kładąc ciężary do skrzyn­
ki A i zmieniając wagę szalki, mo­
żemy zbadać wszelkie przypadki. 

Obciążamy więc skrzynkę A i powiększamy stopniowo ciężar 
szalki, sypiąc na nią piasek, który będzie można następnie 
zważyć. Czynimy tak aż do chwili, w której skrzynka ruszy 
z miejsca. Znajdziemy, że skrzynka niezależnie od zawartego 
w niej ładunku rusza dopiero wtedy, gdy waga szalki dojdzie 
do pewnej określonej wielokrotności wagi skrzynki i ładunku. 
W doświadczeniu takiem, rzecz prosta, potrzeba daleko więcej 
uwagi poświęcić szczegółom, niż by wynikało z powyższego 
opisu; tak np. należy uwzględnić tarcie w bloczku E.

165. Prawa tarcia. Doświadczenie powyższe wykazuje, 
że zjawiskiem tarcia rządzą prawa następujące:

1. Kierunek tarcia jest odwrotni] do kierunku, w którym 
wymuszany jest ruch ciała.
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2. Wielkość tarcia jest taka, jaka właśnie wystarcza do 
przeszkodzenia ruchowi. Tak np. pomiędzy skrzynką i stołem 
tarcia niema, dopóki na skrzynkę nie zacznie działać ciężar H^ 
a odtąd tarcie co do wielkości jest równe temu ciężarowi.

3. Wywołane tarcie nie może przekroczyć pewnej określo­
nej granicif; ruch następuje, gdy ta granica już została osią­
gnięta, a pomimo to tarcie nie wystarcza do utrzymania ciała 
w spokoju. To największe tarcie osiągalne nazywa się grani- 
cznem.

4. Wielkość tarcia granicznego pozostaje w stałym stosunku 
y. do ciśnienia normalnego, które istnieje pomiędzy ciałem, spo- 
czywającem na płaszczyźnie, i tą płaszczyzną. Ten stały stosu­
nek p. zależy od natury stykająch się materyałów; nazywamy 
go zwykle współczynnikiem tarcia.

Nie twierdzimy tutaj, że wywołane tarcie jest w każdym 
wypadku p. razy większe od ciśnienia normalnego; taka jest 
tylko największa wartość, do jakiej tarcie dojść może. Dla ciał 
gładkich .=0. Dla ciał, z któremi będziemy mieli najczęściej 
do czynienia, p. leży pomiędzy zerem i jednością.

5. Tarcie jest niezależne od wielkości powierzchni ciała, 
pozostającej w zetknięciu z chropowatą płaszczyzną.

6. Znaleziono, że, gdy ciało jest w ruchu, to wywołane 
tarcie jest niezależne od szybkości i proporcyonalne do ciśnienia 
normalnego. Stosunek nie jest dokładnie ten sam, co dla tarcia 
granicznego w spoczynku.

Tarcie, które trzeba przezwyciężyć, aby wprawić w ruch 
skrzynkę, stojącą na stole, jest większe od tarcia pomiędzy 
temi samemi ciałami w ruchu przy tern samem ciśnieniu. Je­
żeli skrzynka stała na stole pod ciśnieniem przez czas dłuższy, 
to będziemy mieli do przezwyciężenia więcej tarcia, niż wpra­
wiając ją w ruch przy tern samem ciśnieniu natychmiast po 
powstaniu zetknięcia. Dla niektórych ciał ta różnica pomiędzy 
tarciem statycznem i dynamicznem jest bardzo drobna, dla 
innych bywa dość znaczna. Wogóle współczynnik tarcia, p. dla 
ciał w ruchu jest nieco mniejszy niż dla ciał w spokoju.

Wypada jeszcze zaznaczyć, że tarcie należy do tych sił, 
które nazywamy zwykle oporami. Wskazuje na to drugie z praw 
wyżej podanych. Gdy przyciskamy ciało do ściany, to powstaje 
opór, czyli reakcya; wielkość tej reakcyi jest dokładnie taka, 
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jaka właśnie wystarcza do zrównoważenia siły przyciskającej. 
Gdy niema ciśnienia, to niema i reakcyi. Zupełnie taksamo 
tarcie tylko przeciwdziała przesuwaniu, lecz go nie wywołuje.

166. Istnieje jeszcze inna metoda badania praw tarcia; 
unika się w niej użycia bloka i sznura, a więc posiada ona 
pewną wyższość nad poprzednią. Wyobraźmy sobie skrzynkę A,

ustawioną symetrycznie na płaszczy­
źnie pochyłej BC. Niech W oznacza 
ciężar skrzynki, a 3 nachylenie pła­
szczyzny do poziomu. Znajdziemy ła­
two, że reakcya normalna R= W cos 3, 
a siła tarcia B = Wsin 3, a zatem

— =tan 3. Powiększamy stopniowo nachylenie płaszczyzny do 

poziomu czyli kąt 3, dopóki skrzynka nie zacznie się zsuwać. 
Wtedy właśnie tarcie staje się granicznem. Znaleziono, że owo 
nachylenie jest zawsze jednakowe niezależnie od obciążenia 
skrzynki. Stąd wynika, że stosunek tarcia granicznego do ci­
śnienia normalnego jest od tego ciśnienia niezależny.

W doświadczeniu tern mamy łatwą metodę wyznaczania 
współczynnika tarcia p. dla dwóch danych materyałów. Umie­
szczamy ciało A, zrobione z jednego materyału, na płaszczy­
źnie pochyłej BC^ zrobionej z drugiego. Dajmy na to, że ciało 
pozostawało początkowo w spokoju; powiększamy stopniowo 
nachylenie, dopóki A nie zacznie się zsuwać. Jeżeli ruch na­
stąpi przy nachyleniu 3, to p. jest nieco mniejsze od wyzna­
czonego w ten sposób tan0. Przypuśćmy teraz, że początkowo 
ciało A się zsuwa; zmniejszamy nachylenie, dopóki nie doj­
dziemy do takiego kąta 3, przy którym A właśnie pozostaje 
w spokoju; w tym razie współczynnik M. jest nieco większy od 
otrzymanego tan 3. W ten sposób znajdziemy dwie blizkie 
liczby, pomiędzy któremi leży p.. Kąt 3, którego tan jest równg 
M., zowie się zwykle kątem tarcia.

Prz. Czynimy przypuszczenie, że tarcie graniczne składa się 
z dwóch części, z których jedna jest proporcyonalna do ciśnienia, 
a druga do powierzchni zetknięcia. Ustawiamy na danej równi pochy­
łej prostopadłościan o krawędziach a, b, c, i przypuśćmy, że najmniej­
sza siła, która może go utrzymać w równowadze, wynosi odpowiednio
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P, Q lub R, gdy na równi spoczywają ściany bc, ca lub ab. Okazać, że 
w takim razie (ę—R^bc+ęR—P^ca+ęP—ę^ab—O. (Triu. Coli., 1884).

167. Para tarcia. W przypadku koła, toczącego się po 
płaszczyźnie chropowatej, należy prowadzić doświadczenie w in­
ny sposób# Kładziemy na chropowatej płaszczyźnie poziomej 
cylinder o promieniu r; ciężar jego niech będzie równy W. Na 
cylinder zarzucamy sznur, którego końce przechodzą przez szpa­
rę, wyciętą w płaszczyźnie poziomej, i na tych końcach zawie­
szamy ciężary P i P+p. Rysunek wyobraża cylinder w prze­
kroju, zrobionym przez sznur; C oznacza 
środek, A punkt zetknięcia z płaszczy­
zną poziomą. Przypuśćmy, że p jest 
z początku zerem, a następnie wzrasta, 
dopóki cylinder nie zacznie się poru­
szać. Biorąc rzuty na kierunek piono­
wy, znajdziemy, że reakcya w punkcie 
A wynosi W+2P + p, a biorąc rzuty na 
kierunek poziomy, przekonamy się, że 
w punkcie A nie działa żadna siła pozioma, a więc siła tarcia 
jest równa zeru. Bierzemy wreszcie momenty względem punktu 
A; wypadnie, że musi istnieć para tarcia o momencie pr.

168. Powstanie tej pary możemy wytłomaczyć w sposób 
następujący. Cylinder nie jest całkowicie sztywny; spłaszcza się 
on nieco w okolicach A i zatem styka się z płaszczyzną poziomą 
na małej powierzchni. Gdy cylinder zaczyna się toczyć, to ele­
menty tylne tej powierzchni, odrywane od płaszczyzny, usiłują 
utrzymać się na niej, elementy zaś przednie opierają się dal­
szemu ściskaniu. Wszystkie te działania można zastąpić parą 
i siłą, przyłożoną w stosownym środku redukcyi. Spłaszczenie 
cylindra w A zmienia nieco położenie środka ciężkości całej 
masy, ale zmiana ta jest małoznacząca i zazwyczaj nie bierze­
my jej w rachubę. Postępujemy tak, jak gdyby przekrój ciała 
był dokładnem kołem, stykającem się z płaszczyzną w geome­
trycznym punkcie A. Całe działanie wyraża siła wypadkowa, 
przyłożona w A, i para. Składowe siły w kierunku normalnej 
i stycznej w A zowią się nieraz reakcyą normalną i siłą tarcia-, 
w doświadczeniu naszem ta ostatnia była równa zeru. Parę 
nazywamy parą tarcia.
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Doświadczenia wskazują, że wielkość siły p, ściśle wystar­
czająca do poruszenia cylindra, jest wprost proporcyonalna do 
ciśnienia normalnego i odwrotnie proporcyonalna do promie­
nia cylindra. Możemy zatem wygłosić nowe prawo tarcia: 
moment pary tarcia jest niezależny od krzywizny i proporcyona- 
tny do ciśnienia normalnego. Stosunek momentu do ciśnienia 
normalnego bywa nieraz nazywany współczynnikiem pary tar­
cia. Para tarcia jest zwykle bardzo drobna; skutki jej dają się 
odczuwać jedynie w takich okolicznościach, w których siła 
tarcia jest znikomo mała.

169. Należy zaznaczyć, że prawa tarcia, które poznaliśmy 
w paragrafach poprzedzających, są tylko przybliżeniami. Sto­
sunek tarcia granicznego do ciśnienia nie jest bezwzględnie 
stały we wszelkich okolicznościach. Owe prawa należy uwa­
żać za zwięzłe streszczenie wyników wielkiej liczby doświad­
czeń, i można im ufać, o ile ciśnienie leży w granicach tych 
doświadczeń. Granice te są tak rozległe, że w rachunkach ma­
tematycznych uważa się prawa tarcia za słuszne ogólnie.

Obecnie wypadałoby z kolei zbadać, z jakiem przybliże­
niem prawa tarcia są w zgodzie z rzeczywistością, aby w razie 
potrzeby można było wprowadzić stosowną poprawkę; należa­
łoby również zestawić przybliżone wartości współczynnika p 
dla różnych materyałów. Ale rozważania te zajęły by zbyt wiele 
miejsca i odwiodłyby nas zbyt daleko od teoryi przedmiotu.

170. Doświadczenia nad tarciem były tak liczne, że możemy 
wspomnieć tylko niektóre nazwiska. Pierwszym był prawdopodobnie 
Amontons w r. 1699; po nim pracowali nad tarciem Muschanbroek 
i Nollet. Najgłośniejsze były doświadczenia Coulomba (Savaiits etran- 
gers, Acad. des Sc. de Paris X. 1785), Ximenesa (Teoria e pratica delle 
resistenze ddsolidi nedoro attriti. Pisa 1782), Vince‘a (Phil. Trans. vol. 
75, 1785) i Morina (Sanants etrangers Acad. des Sc. de Paris IV. 1833). 
Prócz tego ogłosili swe badania Southern, Rennie, Jenkin i Ewing, 
Osborne Reynolds i in.

171. Jedno z praw tarcia głosi, że kierunek tarcia powi­
nien być odwrotny do kierunku, w którym wymuszany jest 
ruch ciała. Jeżeli ciało może się zacząć poruszać tylko jednym 
sposobem, to kierunek tarcia jest wiadomy z góry, i pozostaje 
wyznaczyć tylko wielkość jego. Jeżeli natomiast ciało może się 
poruszać rozmaitymi sposobami, zależnie od popędu, to tarcie 



127 —

jest nieznane ani pod względem wielkości ani kierunku. Za­
tem zagadnienia na tarcie można ryczałtowo podzielić na dwie 
klasy; do pierwszej zaliczymy te, w których ciała posiadają 
jeden lub więcej punktów oparcia, i we wszystkich są znane 
linie działania sił tarcia, ale nieznane ich wielkości; do klasy *
drugiej zaliczymy zagadnienia, w których chodzi o wyznacze­
nie zarówno kierunku jak i wielkości tarcia.

Rozwiążemy naprzód pewną liczbę zadań pierwszej klasy, 
stosując tylko co poznane prawa tarcia; rozważymy następnie, 
jak można wyznaczyć kierunki sił tarcia, gdy stan ciała już 
doszedł do granicy pomiędzy spoczynkiem i ruchem.

172. Cząsteczka pozostaje na chropowatej krzywej w dwóch 
wymiarach pod działaniem sił jakichkolwiek; mamy wyznaczyć 
położenia równowagi.

Niech X i Y oznaczają sumy rzutów sił przyłożonych na 
osi, gdy cząsteczka zajmuje położenie P, a R niech oznacza 
reakcyę normalną krzywej na cząsteczkę; będziemy mierzyli 
tę reakcyę wewnątrz krzywej. Oznaczmy prócz tego przez F 
wywołane tarcie, mierzone w kierunku łuku s, i przez P kąt, 
który styczna tworzy z osią x. Przypuszczamy przytem, że czą­
steczka znajduje się na właściwej stronie krzywej, tak że pod 
działaniem sil przyłożonych przyciska się do tej linii. Biorąc 
rzuty na styczną i normalną w punkcie P (fig. 45), otrzymamy

Xcos 1+ Ysin$+F=0
— Xsin 1 + Ycos 1 + R= 0.

Jeżeli ma zachodzić równowaga, to liczbowa wartość F po­
winna być mniejsza od M.R, gdzie M. oznacza współczynnik tar­
cia; a więc szukane położenia równowagi, znajdują się w tych 
punktach krzywej, dla których wyrażenie

Xcos 1 + Psin $
— Xsin 1 + Ycos • 

jest liczbowo mniejsze od M.. Wyrażenie to jest funkcyą poło­
żenia cząsteczki na krzywej; oznaczmy je przez f{x).

Rozwiązując równanie f(x)= dM, znajdziemy te położenia 
równowagi, w których cząsteczka znajduje się w stanie, grani­
czącym pomiędzy spoczynkiem i ruchem. Równanie to może 
posiadać nie jeden pierwiastek, a zatem znajdziemy różne skraj­
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ne położenia równowagi. W takim razie należy zbadać, czy 
równowaga zachodzi dla położeń pośrednich, t. j. czy liczbowo 
f(x) jest dla nich mniejsze czy większe od p..

Kwestyę ostatnią można nieraz rozstrzygnąć w sposób następu- 
ący: Wyznaczyliśmy położenie skrajne równowagi, np. X=X, rozwią- 
zając f(x)=^. Jeżeli w położeniach, odpowiadających wartościom x 
nieco mniejszym od X1 zachodzi równowaga, to f(x) musi wzrastać, 
gdy x, wzrastając, przekracza wartość x^ Odwrotnie, jeżeli dla owych 
wartości x równowaga uslaje, to f(x) musi się zmniejszać. Z tego 
wynika, że dla wartości x nieco większych od X1 równowaga ustaje 
lub trwa zależnie od tego, czy f\x) dla x=x jest dodatnie, czy uje­
mne. Przypuśćmy teraz, że znaleziono położenie skrajne x=x2, ro­
związując równanie f(x)==u. Jeżeli w położeniach, odpowiadających 
wartościom x, nieco mniejszym od X2, zachodzi równowaga, to f(x) 
musi zmniejszać się algebraicznie, gdy- x, wzrastając, przekracza X2, 
a zatem f‘(x2) jest ujemne.

Jeżeli przeto skrajne położenie równowagi odpowiada wartości 
X1 zmiennej niezależnej, to dla wartości x nieco większych od X1 
równowaga ustaje lub zachowuje się zależnie od tego, czy f‘(x) po­
siada znak zgodny z p., czy odwrotny. Prawidło to można oczywiście 
stosować i do ciała sztywnego, jeżeli jego położenie w przestrzeni 
określa się jedną zmienną niezależną.

173. Stożek tarcia. Istnieje inna metoda wyznaczania 
położeń równowagi, stosowniejsza w tym razie, gdy chodzi 
o rozwiązanie geometryczne. Oznaczmy przez e kąt tarcia, a za­
tem p. = lane. Poprowadźmy przez punkt P dwie proste, poło­

żone po dwóch stronach normalnej w P 
do krzywej i tworzące z tą normalną 
kąty e. Niech to będą proste PA i PB. 
W takim razie linia działania reakcyi 
wypadkowej (t. j. wypadkowej sił R i F) 
musi leżeć pomiędzy PA i PB. Nazwie- 
my te proste skrajnemi lub granicznemi 
liniami tarcia. Jeżeli siły, działające na 

Fig. 45.

cząsteczkę, nie są ograniczone do dwóch wymiarów, to zatacza­
my prosty stożek około linii działania normalnej reakcyi B; 
wierzchołek tego stożka powinien leżeć w P, a połowa kąta 
wierzchołkowego ma być równa arc tan p.. Stożek taki zowie 
się stożkiem tarcia.

W stanie równowagi reakcya wypadkowa jest równa i od­
wrotna do wypadkowej wszystkich innych sit, przyłożonych do 
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cząsteczki, a stąd wynika prawidło następujące. Cząsteczka po- 
zoslaje iv równowadze w tych wszystkich punktach, w których 
siła przyłożona działa wewnątrz stożka tarcia. W granicznych po­
łożeniach równowagi wypadkowa sił przyłożonych (t. j. wszy­
stkich sił z wyjątkiem reakcyi krzywej) działa na powierzchni 
stożka tarcia.

174. Cząsteczka w trzech wymiarach pozostaje na krzywej 
chropowatej pod działaniem sił jakichkolwiek. Pragniemy wyzna­
czyć położenia równowagi.

Oznaczmy przez X, Y, Z sumy rzutów sił przyłożonych 
do cząsteczki na osi, przez R wypadkową tych sił, a przez T 
jej rzut na styczną do krzywej w punkcie, który obecnie zaj­
muje cząsteczka. W każdem położeniu równowagi T musi 
być mniejsze od p. razy wziętego ciśnienia normalnego, czyli 
T2<i\pęR2 — T^. Oznaczywszy przez ds element łuku krzywej, 
możemy ten warunek napisać w postaci

+Y^-+ zdz? < 3 (X2 +74 Z2).
\ ds ds dsl 1 +

X, Y, Z i s są funkcyami współrzędnych x, y, z. Cząsteczka 
pozostanie w równowadze we wszystkich punktach krzywej, 
w której nierówność powyższa jest spełniona. Zmieniwszy nie­
równość na znak równości, otrzymamy równanie do wyznacze­
nia granicznych położeń równowagi.

175. Cząsteczka pozostaje na chropowatej powierzchni pod 
działaniem sił. Wyznaczyć położenia równowagi.

Niech f(x, y, z) = Q będzie równaniem powierzchni, a Q 
niech oznacza sumę rzutów sił przyłożonych na normalną do 
powierzchni w punkcie, który obecnie cząsteczka zajmuje. W po­
łożeniu równowagi będzie R2— Q2<0202, z czego wynika

(Xfx+ Yfy + Zf^ X‘+ Y2 + Z2 
12+12+12 " 1 + ^2 ‘ 

gdzie fx, fy> fz oznaczają odpowiednio pochodne cząstkowe 
f(x, y, z) względem cc, y, z. X, Y, Z i f są funkcyami współrzę­
dnych; gdy zmienimy nierówność na równość, to otrzymamy 
równanie powierzchni, która przecina daną powierzchnię f=0 
według pewnej linii. Krzywa ta jest granicą położeń równo­
wagi cząsteczki.

Statyka, 9
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176. Prz. 1. Paciorka, ważąca W, jest nawleczona na chropo­
waty drut, zgięty w postaci koła i ustawiony nieruchomo w płaszczy­
źnie pionowej. W jednym końcu średnicy poziomej znajduje się śro­
dek siły odpychającej; wywiera on na paciórkę siłę pr, gdy odległość 
wynosi r. Wyznaczyć graniczne położenia równowagi.

Jeżeli oznaczymy przez 28 kąt, który promień, przechodzący 
przez paciórkę, tworzy z poziomem, to siły styczna i normalna będą 
( Wcos29— prsin 8) i (Wsin 28+prcos 8). Zakładając, że stosunek pier­
wszej z tych sił do drugiej =±tan s, znajdziemy sin(r=e-29)=±cos Y sin s, 
gdzie W— patan i a oznacza promień koła. Przeprowadzić roztrzą­
sanie tych położeń.

Prz. 2. Ciężka cząsteczka pozostaje w równowadze na chropo­
watej cykloidzie, której oś jest pionowa, a wierzchołek zwrócony ku 
dołowi. Okazać, że wzniesienie cząsteczki nad wierzchołkiem nie prze­
nosi 2a sin 2s, gdzie a oznacza promień koła tworzącego.

Prz. 3. Sztywna rama w postaci rombu o boku a i ostrym ką­
cie a wisi na chropowatym kołku; współczynnik tarcia jest równy p. 
Okazać, że odległość pomiędzy punktami skrajnymi jednego boku, 
które mogą spoczywać na kołku, wynosi ap. sin o. (Zob. par. 173).

(St John’s Coli., 1890.)
Prz. 4. Dwie jednorodne sztaby AB i BG są połączone sztywno 

w punkcie B pod kątem prostym i sztaba AB wspiera się w punkcie 
D na krawędzi stołu. Wyznaczyć największą możliwą długość wysta­
jącej części DB; okazać prócz tego, że układ pozostanie w równowa­
dze, opierając się tylko w punkcie A, jeżeli współczynnik tarcia prze- 

AB(AB+2BG) _ - . _ wyzsza 2 . (Math. Tnpos, 1874.)
BG

Prz. 5. Trzy chropowate cząsteczki o masach m,, m2, m3 są po­
łączone lekkimi i gładkimi drutami, schodzącymi się w punkcie O; 
cząsteczki tworzą wierzchołki trójkąta równobocznego, a punkt O jest 
jego środkiem. Układ ten leży na płaszczyźnie pochyłej, tworzącej 
z poziomem kąt a, i może się obracać w tej płaszczyźnie około pun­
ktu O. Dowieść, że układ będzie w równowadze w każdem poło­
żeniu, jeżeli współczynnik tarcia dla każdej cząsteczki jest nie mniej­
szy od

tan a
m1—M2—M3

(mi2 + m22 + m,3 — mam, — nigmi — mm).
(Math. Tripos, 1877.)

Prz. 6. Cząsteczka pozostaje na powierzchni xyz=c3 pod dzia­
łaniem stałej siły równoległej do osi z; współczynnik tarcia jest ró-

wny M. Dowieść, że linia przecięcia powierzchni ze stożkiem — 4—- 
J -2

odgranicza punkty, w których równowaga jest 
w których równowaga jest niemożliwa.

x2 y2 22
Prz. 7. Oś x elipsoidy — —%—-—= 1 jest 

a2 b2 c2

możliwa od punktów, 
(Math. Tripos, 1870.)

pionowa. Okazać, że
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cząsteczka pozostanie na powierzchni jej w równowadze wszędzie po 
y2 / a2 \ z2 / a2 \

nad linią przecięcia z cylindrem — 14—— )4—, 1-—— = 1, gdzie U.
M2D-/ CE M."C’/

oznacza współczynnik tarcia. (Trin. Coli., 1885.)

177. Zagadnienie następujące rozważymy z rozmaitych punktów 
•widzenia, pragnąc zilustrować różne metody postępowania.

Prz. 1. Drabina ma stać oparta o chropowatą podłogą poziomą 
i o chropowatą ścianę pionową, pozostając w płaszczyźnie pionowej, 
prostopadłej do ściany. Wyznaczyć położenia równowagi.

Oznaczmy przez A i B końce drabiny (fig. 46), przez 21 jej dłu­
gość, przez w jej ciężar, działający na punkt środkowy C, i przez 9 
nachylenie do poziomu.

Niech dalej R i R' oznaczają reakcye normalne w A i B, dzia­
łające odpowiednio na prostych AD i BD, a p i p.’ współczynniki tar­
cia w tych punktach. Siły tarcia w A i B będą kR i ^R', gdzie 6 i n 
są wielkościami odpowiednio mniejszemi liczbowo od p i p.’. W pe­
wnych zagadnieniach § i A mogą być dodatnie lub ujemne, ale ponie­
waż tarcie jest tylko oporem a nie siłą czynną, przeto w danym przy­
padku możemy przyjąć, że siły tarcia działają w kierunkach AL i LB; 
można więc tu uważać § i A za dodatnie. Ograniczenie takie wynika 
także z równań równowagi.

Biorąc rzuty i momenty, otrzymamy

kR—R', ^R'+R=w,
2^R'l cos 9+2R‘l sin }= wl cos %.

1-8Rugując R i R', znajdziemy tan *=2 . Każda wartość dodatnia na 

tan 8, którą otrzymamy z tego wzoru, dając § i 0 wartości mniejsze 
od p i u’, wskaźe możliwe położenie równowagi. Jeżeli chropowa­
tość jest tak mała, że pp‘<1, to najmniejszą wartość tan 8 otrzyma- 

1 — uu‘
my ze wzoru tan s=—-—. Jeżeli chropowatość jest tak znaczna, że

pp‘> 1, to drabina będzie w równowadze przy każdem nachyleniu.
Prz. 2. Ustawiono drabinę pod danym kątem 9 do poziomu; 

wyznaczyć ciężar, który można umieścić na danym szczeblu, nie za­
kłócając równowagi.

Oznaczmy dany szczebel przez M, a zawieszony na nim ciężar 
przez W; załóżmy prócz tego, że AM—m, p=tan£ i p‘=tan e‘.

Rozwiązanie geometryczne. Poprowadźmy proste AE i BF tak, 
aby było DAE=s i DBE=F. Reakcye wypadkowe w punktach A i B 
muszą leżeć wewnątrz tych kątów, a ich punkt przecięcia leży we­
wnątrz czworoboku EFDH. Niech G będzie środkiem ciężkości cięża­
rów W i w. Jeżeli pion, poprowadzony przez punkt Gr, przechodzi po 
lewej stronie punktu E, to możemy uważać, że ciężar W+ w działa 
na jakiś punkt P, położony wewnątrz wspomnianego czworoboku. 
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Można w tym razie rozłożyć ten ciężar na dwie składowe w kie­
runkach PA i PB; zrównoważą je reakcye w A i B, gdyż każda z nich 

Fig. 46.

D

leży między liniami granicznemi. Tak 
więc, równowaga będzie zachowana, 
jeżeli pion przez G przechodzi po le­
wej stronie punktu E.

Powyższy sposób rozumowania po­
siada oczywiście znaczenie ogólne. Mo­
żna go stosować do wyznaczenia wa­
runków równowagi ciała, którego dwa 
punkty mogą przesuwać się na dwóch 
krzywych danych, jeżeli tylko siły wy­

wierane (z pominięciem reakcyi krzywych) dają się dogodnie sprowa­
dzić do jednej wypadkowej. Prowadzimy linie graniczne w tych pun­
ktach owych krzywych, na których wspiera się ciało, i tym sposo­
bem tworzymy czworobok. Warunek równowagi polega na tern, aby 
wypadkowa sił wywieranych przecinała pole tego czworoboku.

Powracając do naszego zagadnienia, znajdziemy bez trudności, 
że odcięte punktów E i Gr, mierzone poziomo od punktu A w prawo, 
wynoszą odpowiednio

2l(pp.’ cos 3+p sin 3)

up‘+1
(Wm + wl) cos 3 

W+w
Jeżeli punkt C leży po prawej stronie pionu przez E, (t. j. gdy 

lcos8 > x), to równowaga jest możliwa pod warunkiem, aby dany 
szczebel leżał po lewej stronie tegoż pionu (mcos8<x),; przytem cię­
żar W, zawieszony na szczeblu powinien być dostatecznie duży, aby 
ogólny środek ciężkości G znalazł się po lewej stronie owego pionu 
(x<x).

Jeżeli O leży po lewej stronie pionu przez E (Z cos 3 <x), to ró­
wnowaga zachowa się przy każdem W, jeżeli i dany szczebel leży 
po tej samej stronie (m cos 8<x). Lecz jeżeli szczebel leży po prawej 
stronie (mcos8> x), to ciężar W powinien być dostatecznie mały, aby 
nie przeciągnąć na tę stronę ogólnego środka ciężkości.

Jeżeli wreszcie pion przez E przechodzi po prawej stronie pun-
T

ktu B (arctan"29 3); to ciężar W może być jakikolwiek i może 

wisieć na którymkolwiek szczeblu.
Rozwiązanie analityczne. Trzymając się oznaczeń, wprowadzo- " 

nych w prz. 1, znajdziemy przy pomocy rzutów i momentów

^R=R', ^'AR^ W+w,
2R‘l cos ^+2R'l sin 8 = (Wm+ wl) cos 8.

Rugując R i R', otrzymamy
21(5-cos 8+6 sin 8) ( Wm+ wb) COS 8

§+1 W+w
(A).
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Warunek równowagi polega na tern, aby można było uczynić 
zadość ostatniemu równaniu, dając § im wartości niniejsze odpowie­
dnio od p i p‘. Wyznaczając największą wartość lewej strony równa­
nia, moglibyśmy dojść do pewnego warunku geometrycznego, a mia­
nowicie, że ogólny środek ciężkości ciężarów W i w powinien leżeć 
po lewej stronie pewnej linii pionowej. Chodzi nam jednak o dysku- 

•syę równania na innej drodze.
Będziemy uważali § i n za współrzędne pewnego punktu Q 

w układzie prostokątnym. W takim razie (A) 
perboli, której jedną gałąź zaznaczono na 
fig. 47 linią kropkowaną. Jeżeli ta hiperbola 
przechodzi przez pole prostokąta NN', utwo­
rzonego przez proste §== ±p, =±u‘, to 
równaniu (A) mogą czynić zadość wartości 
6 i mniejsze od granicznych, i równowaga 
zachodzi. Jeżeli hiperbola nie przecina pro­
stokąta, to równowaga przy danych współ­
czynnikach tarcia jest niemożliwa.

będzie równaniem hi-

Fig. 47.

Na prawej stronie równania (A) mamy tę samą wielkość, którą 
oznaczyliśmy poprzednio przez x. Przenieśmy ją na lewo, a otrzyma­
my równanie postaci z=0; zauważymy przytem, że w początku układu 
z jest ujemne. Hiperbola przetnie prostokąt, jeżeli z jest dodatnie 
w punkcie N, gdzie §==u, ==u‘; jest to warunek konieczny i wy­
starczający. Tak więc szukany warunek równowagi głosi, że

2l(pp‘cos 8+p sin 8)
pu‘+1

powinno być dodatnie. Wynik ten nie różni się od poprzedzającego 
i można go interpretować w podobny sposób.

Prz. 3. Drabina AB opiera się o chropowatą pionową ścianę 
wielkiej skrzyni, stojącej na podłodze, jak wskazuje fig. 46. Wyzna­
czyć warunki równowagi.

Musimy teraz rachować się z równowagą skrzyni BLL'. Oznacz­
my ciężar jej przez W', reakcyę normalną pomiędzy nią i podłogą 
przez R" i tarcie przez (R". W takim razie do równań z przykładu 1 
przybywają jeszcze

R‘‘= W‘+R‘, (R‘=R‘.
Rugując R", znajdziemy

(W + w) E$ + W’ - wĘ = 0.
Mamy prócz tego z prz. 1

6+26 tan 8- . ......................
Aby mieć n i $ w funkcyach § rugujemy :

2 (W' + w) 86 tan 0 + wt - (2 W' + w)ć = 0

(A).

(BY
Warunkiem równowagi jest, aby równaniom (A) i (B) czyniły 

jednocześnie zadość wartości §, , % mniejsze odpowiednio od p, p.’ p", 
gdzie p" oznacza współczynnik tarcia skrzyni o podłogę.
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Uważajmy §, ", $ za współrzędne punktu Q; w takim razie ró­
wnaniom (A) i (B) odpowiadają powierzchnie cylindryczne. Powierzch­
nie te przecinają się według linii. Jeżeli część tej linii leży wewnątrz 
równoległościanu prostokątnego, utworzonego przez płaszczyzny §== ±u, 
==p‘, (==±u", to warunki równowagi są spełnione.

Zamiast uciekać się do geometryi trójwymiarowej, możemy (A) 
i (B) uważać za równania hiperbol, przyczem it będą oznaczały 
rzędne, a § odciętą. Tarcia są tu tylko oporami, a więc 6, ", C przybiera­
ją tylko wartości dodatnie, i będzie dostatecznem wykreślić tylko część

Fig. 48.

figury, zawartą w ćwiartce dodatniej. Uczyń­
my 0M=p, OM' = ^', OM"=[i", i niech OB 
i AH będą hiperbolami (B) i (A). Znajdziemy 
z łatwością, że

M'A ==
1

u.‘+2tan 8
, M"B

(2W+w)y"
2 (W' + w) p" tan 3+w

Warunki równowagi polegają na tern, aby 
istniała rzędna, przecinająca hiperbole w pun­

ktach Q, Q', z których każdy leży wewnątrz odpowiedniego prostokąta 
ograniczającego. Warunki te dają się wyrazić w sposób następujący.

(1) Hiperbola AH powinna przecinać pole prostokąta ON', a do 
tego potrzeba, aby było M'A<[i.

(2) Jeżeli hiperbola OB przecina M"N" po lewej stronie pun­
ktu N", t. j. jeżeli M‘B<p, to powinno być M'A <M"B, bo inaczej 
rzędna QQ‘ nie mogłaby przecinać obydwóch krzywych wewnątrz pola 
przepisanego. Warunek ten zawiera się w (1), jeżeli M"B>^.

Jeżeli ustawiono drabinę w taki sposób, że nierówność (2), sta­
ła się równością (M'A=M"B), a nierówność (1) nie jest naruszona, to 
tarcia it osiągają wartości graniczne, a § nie dochodzi jeszcze do 
granicy; w takim razie górny koniec drabiny ma właśnie zacząć się 
osuwać po skrzyni, a skrzynia ma właśnie zacząć się posuwać po po­
dłodze.

Jeżeli drabina jest ustawiona tak, że nierówność (1) stała się ró­
wnością {M'A— == OM), gdy nierówność (2) nie została naruszona, to 
§ i 0 doszły do wartości granicznych, a $ jest mniejsze od swej granicy. 
Skrzynia w takim razie pozostanie nieruchomą, a drabina osunie się 
w obydwóch końcach.

178. Prz. 1. Drabina stoi oparta w górnym końcu B o gładką 
ścianę, a w dolnym końcu A o chropowatą podłogę. Na drabinę wstę­
puje człowiek, ważący n razy więcej od niej. Okazać, że tarcia w A 
w dwóch przypadkach skrajnych, odpowiadających położeniom czło­
wieka na dwóch końcach drabiny, mają się do siebie, jak 2n+1 do 1.

Prz. 2. Chłopiec, ważący w, stoi na lodzie i ciśnie rękami gład­
ką pionową ścianę ciężkiego krzesła, ważącego nw. Okazać, że może 
on nachylić swe ciało do poziomu pod każdym kątem większym od 
arccot 2u lub arccot 2u.n, zależnie od tego, czy cięższe jest krzesło, czy 
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chłopiec; współczynniki tarcia chłopca o lód i krzesła o lód wynoszą 
obydwa p.. (Queen's Coli.)

Prz. 3. Podstawy dwóch półkul o promieniach a i b spoczywają 
nieruchomo na płaszczyźnie poziomej, a na półkulach leży symetry­
cznie sztaba. Jedna półkula jest gładka, a współczynnik tarcia sztaby 
o drugą jest równy p.. Dowieść, że, gdy sztaba ma właśnie zacząć się 
zsuwać, to odległość jej środka od punktu zetknięcia z półkulą gładką

wynosi----- . (St John’s Coli. 1885.)

Prz. 4. Ciężka sztaba opiera się jednym końcem o płaszczyznę po­
ziomą, a drugim o pionową ścianę. Do sztaby w pewnym punkcie przy­
wiązano koniec sznura, którego koniec drugi jest przymocowany na linii 
przecięcia płaszczyzny ze ścianą, przyczem ściana i sznur leżą w pła­
szczyźnie pionowej, prostopadłej do ściany. Okazać, że gdy sztaba

T 
tworzy z poziomem kąt a mniejszy od 2 26, to równowaga jest mo­

żliwa tylko w takim razie, jeżeli sznur tworzy z pionem kąt ostry, 
niniejszy od 0+e, gdzie € oznacza kąt tarcia sztaby o ścianę i płaszczy­
znę. (Math. Tripos, 1890.)

Prz. 5. Płyta paraboliczna, której środek ciężkości leży w ogni­
sku, spoczywa w płaszczyźnie pionowej na dwóch chropowatych 
sztabach, zrobionych z jednego materyału i tworzących kąt prosty. 
Dowieść, że tan2 (a— q) tan (c+:— q)=tan (a — e), gdzie « oznacza kąt, 
który kierownica paraboli tworzy z poziomem w jednem ze skrajnych 
położeń równowagi, e kąt tarcia i a nachylenie jednej ze sztab do po­
ziomu. (Trin. Coli., 1882.)

Prz. 6. Na chropowatej płaszczyźnie poziomej stoją w płaszczy­
źnie pionowej dwie sztaby AC i BC, połączone w G gładkim przegu­
bem. Wyznaczyć warunki równowagi.

Niech 3, 0‘ oznaczają nachylenia sztab do poziomu, W, W' ich 
ciężary, wreszcie (R, ^R), (R1, R‘) reakcye normalne i siły tarcia 
w A i B. . Biorąc, jak zwykle, rzuty i momenty, otrzymamy

w+w w+w
F—-------------------------------------------- A=----------------------------------------------------

■ Wtan 8‘+(2W+W) tan 8‘ W‘tan $+(2 W‘+ W) tan 9‘

Jeżeli powyższa wartość § jest >u, to nastąpi poślizg w A, jeżeli 
>p, to w B. Jeżeli poślizg zachodzi tylko w A, to §>*, a stąd

Wtan I< W‘tan 0‘.
Prz. 7. W płaskiej desce ma być wycięty rowek; okazać, że 

forma jego może czynić zadość warunkowi następującemu: jeżeli 
deska pozostanie w równowadze granicznej, gdy ją zawiesimy na chro­
powatym kołku, wchodzącym w rowek w jednym w jego punktów, to 
takaż sama równowaga będzie zachodziła i wtedy, gdy kołek wejdzie 
w jakikolwiek inny punkt rowka. (Math. Tripos, 1859.)

Prz. 8. Chropowata płyta wisi na trzech sznurach, przyczepio­



— 136 —

nych do haka 0. Okazać, że granicą położeń równowagi czą­
steczki P na płycie jest okręg koła. (Math. Tripos, 1880.)

Niech N oznacza spodek prostopadłej z O do płyty, D środek 
ciężkości płyty, wreszcie G środek ciężkości płyty i cząsteczki razem. 
W stanie równowagi prosta OG jest pionowa, a NG jest linią najwięk­
szego spadku płyty. Kąt NOG, równy nachyleniu płyty do poziomu, 
jest stały, gdyż równowaga ma być graniczna. Miejscem geometry- 
cznem punktu G jest koło, którego środek leży w N, a ponieważ sto­
sunek DP: DG jest stały, przeto miejscem geometrycznem cząsteczki P 
jest również koło.

Prz. 9. Każda z dwóch kul, ważących W i W', spoczywa na 
innej płaszczyźnie pochyłej. Najwyższe punkty kul są połączene sznu­
rem, przechodzącym poziomo nad prostą przecięcia tych płaszczyzn, 
i prostopadłym do tej prostej. Okazać, że w przypadku równowagi 
granicznej p. W=u‘ W', gdzie p. i p.’ oznaczają współczynniki tarcia.

(Math. Tripos.)
Rozważamy równowagę jednej kuli. Wypadkowa naprężenia T 

i tarcia pR równoważy wypadkową sił W i R. Biorąc momenty wzglę­
dem środka, otrzymamy T=uR; stąd i z figury wyniknie, że R= W, 
a zatem T=p W; prowadzi to bezpośrednio do związku żądanego.

Prz. 10. Sztaba jednorodna tkwi pomiędzy dwoma kołkami, 
przechodząc nad jednym z nich i pod drugim. Współczynnik tarcia 
sztaby o kołki jest równy p, odległość pomiędzy kołkami wynosi b, 
a łącząca je prosta tworzy z poziomem kąt 3. Okazać, że równowaga 

tan 
1+------

(Coli. Ex.)
Prz. 11, Sztaba jednorodna ACB o długości 2a opiera się je­

dnym końcem o ścianę, i prócz tego środek jej C jest przywiązany do 
ściany sznurem. Okazać, że w stanie równowagi sztaby punkt C może 
zajmować dowolne położenie na łuku kołowym, którego końce są od­
ległe od ściany o a i a cos e, gdzie € oznaczą kąt tarcia. (Należy wziąć 
momenty względem O.)

Prz. 12. Dwie równe i jednorodne sztaby o długości 2a są po­
łączone na sztywno w końcach i tworzą kąt 2a. Układ ten siedzi 
na nieruchomym chropowatym cylindrze, którego oś jest pozioma, 
a promień równy a tan a. W położeniu równowagi granicznej prosto­
padła z punktu przecięcia sztab do osi cylindra tworzy z pionem kąt 3. 
Okazać, że sin2asin $=cos(9—) sin e, gdzie tane jest równy współczyn­
nikowi tarcia. (Coli. Ex.)

Prz. 13. Trzy ciężkie, równe i jednorodne sztaby AB, PC i CD łą­
czą się przegubami B i C, a za koniec D są zawieszone na sznurze 
u nieruchomego punktu E. Układ wisi w taki sposób, że koniec A 
ma właśnie zacząć się posuwać po chropowatej płaszczyźnie poziomej 
w stronę pionu przez E. Okazać, że
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cos(o— e) cos (3— e) COS (—?) JJ.COS (3— e) 
cos a 3 cos 3 5 cos 6 cos 8

gdzie a, 3, Y oznaczają kąty, które sztaby, poczynając od najniższej, 
tworzą z poziomem, 3 kąt sznura z poziomem i p.==tan: współczynnik 
tarcia. (Coli. Ex., 1881.)

Prz. 14. Kula leży na chropowatej płaszczyźnie poziomej, a jej 
najwyższy punkt łączy się sznurem wyprężonym i równoległym do 
płaszczyzny z kołkiem, wbitym w płaszczyznę. Płaszczyzna zaczyna 
się zwolna obracać około jednej ze swych prostych prostopadłych do 
kierunku sznura. Okazać, że kula nie zacznie się zsuwać, dopóki kąt 
płaszczyzny z poziomem nie dojdzie do arctan 2u, gdzie p. oznacza 
współczynnik tarcia. (Math. Tripos, 1886.)

Prz. 15. Półkula jednorodna, spoczywająca podstawą na chropo­
watej płaszczyźnie pochyłej, pozostaje w równowadze granicznej. Do 
punktu półkuli, najdalszego od płaszczyzny, jest przyczepiony sznur, który 
zaczynamy ciągnąć równolegle do prostej największego spadku w górę 
z siłą, stopniowo wzrastającą. Okazać, źe półkula zacznie się posuwać 
lub przechylać, zależnie od tego, czy 13tanjest mniejsze czy większe 
od 8, gdzie P oznacza nachylenie płaszczyzny do poziomu. Środek 
ciężkości półkuli leży w odległości trzech ósmych promienia od środka.

(Coli. Ex., 1888.)
Prz. 16. Na dwóch chropowatych kołkach, położonych na je­

dnym poziomie w odległości Sasina, położono krążek o promieniu a; 
środek ciężkości krążka znajduje się w odległości c od środka geo­
metrycznego. Dowieść, że równowaga będzie zachowana we wszyst­
kich położeniach, jeżeli

a sin a sin (A+)2)> c sin (2a=) ±22), 
gdzie X, i )2 oznaczają kąty tarcia krążka o kołki.

(St John’s Coli., 1880.)
Prz. 17. Do sznura w pewnych odstępach są przyczepione czą­

steczki jednakowo chropowate, i jeden koniec sznura jest umoco­
wany w punkcie płaszczyzny pochyłej. Okazać, że, gdy wszystkie 
części sznura są wyprężone, to cząsteczka najniższa zajmuje położenie 
możliwie najwyższe, jeżeli sznur przebiega w linii prostej, tworzącej 

tan). .z linią największego spadku kąt arcsin----- , gdzie A oznacza kąt tarcia, tana
a a nachylenie płaszczyzny do poziomu. Dowieść prócz tego, że, gdy 
jedna z części tworzy taki kąt z linią największego spadku, to toż 
samo muszą czynić wszystkie inne części, położone niżej.

(Math. Tripos, 1886.)
Prz. 18. Chropowata paraboloida obrotu, której latus rectum 

wynosi 4a, a współczynnik tarcia cot 3, wiruje ze stałą szybkością ką­
tową około swej osi, zajmującej położenie pionowe. Okazać, że przy 

g V 3 / g
2a) cotg lub mniejszej od 24 3i tan— 

2
szybkości kątowej większej od (
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cząsteczka może pozostawać na powierzchni w każdem miejscu z wy­
jątkiem pewnej strefy, ale dla każdej szybkości kątowej, zawartej 
w granicach powyższych, równowaga jest możliwa w każdym punkcie 
powierzchni. (Math. Tripos, 1871.)

Dajmy na to, że ciężar cząsteczki wynosi mg. Możemy uważać, 
że paraboloida jest nieruchoma, a na cząsteczkę działa siła mo2r, pro­
stopadła do osi i zwrócona na zewnątrz; w oznacza tu szybkość kąto­
wą paraboloidy, a r odległość cząsteczki od osi. Wiadomo o tern 
z dynamiki.

Można dowieść, że rzędne położeń granicznych równowagi czy­
nią zadość równaniu ^y2— (2aw2— g) y+2aug=0. Strefa istnieje, jeżeli 
pierwiastki tego równania są rzeczywiste.

Prz. 19. Sztaba pozostaje po części wewnątrz i po części na ze­
wnątrz naczynia w kształcie prostopadłościanu, opierając się o chro­
powatą pionową ścianę i o przeciwległą krawędź gładką. Naczynie 
waży cztery razy więcej od sztaby, i położenie jest takie, że sztaba 
omal się. nie osuwa, a naczynie omal się nie przewraca. Okazać, że

, gdzie X oznacza kątXI /cos X
sztaba tworzy z pionem kąt 22 arccos \—3
tarcia. (Math. Tripos, 1880.)

Prz. 20. Pręt pozostaje po części wewnątrz a po części naze- 
wnątrz naczynia cylindrycznego, opierając się dolnym końcem o pio­
nową ścianę; największy kąt, jaki pręt może przytem tworzyć z pio­
nem, jest równy a, a najmniejszy 3. Okazać, że kąt tarcia wynosi 

sin3a— sin 33:
1/2 arctan----------------------------------. (Math. Tripos, 1875.)

sin 2a cos a + sin 23 cos 3
Prz. 21. Ciężki pręt o długości 2Z pozostaje w położeniu pozio­

mem wewnątrz próżnego stożka o powierzchni chropowatej; oś stożka 
jest pionowa, wierzchołek zwrócony ku dołowi, kąt wierzchołkowy 
jest równy 2a, a współczynnik tarcia p. mniejszy od cota. Okazać, że 
największe możliwe wzniesienie pręta nad wierzchołkiem stożka wy-

1+cos 2—sin o ysin 20—4u2 ]%— . , 
nosi lcoto------------ ----- -------------------- . (Math. Tripos, 1885.)

L 2 (1 — [x2 tan 2a) J
Prz. 22. Ciężki jednorodny pręt AB umieszczono wewnątrz chro­

powatej paraboli, której oś jest pionowa, a ognisko leży w pun­
kcie S. Dowieść, że, gdy równowaga jest graniczna, to kąt tarcia wy­
nosi i(SAB-SBA). (Coli. Ex., 1889.)

Prz. 23. Końce pręta MN pozostają w dwóch nieruchomych, 
chropowatych, prostych rowkach O A i OB, położonych w jednej pła­
szczyźnie pionowej i tworzących z poziomem odpowiednio kąty a i 3. 
Dowieść, że gdy tarcie w M jest graniczne, to pręt tworzy z pozio- 

sin (a—3-2) 
mem kąt, którego tangens wynosi ------------- ——- ---- -.4 • 2sm(^ + e) sm(«-e)

(Math. Tripos, 1876.)
Prz. 24. Jednorodna prostokątna deska ABCD opiera się rogiem 

A o chropowatą pionową ścianę, a bokiem BO o gładki kołek; pła­
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szczyzna deski pozostaje przytem pionową i prostopadłą do ściany. 
Okazać, że można, nie naruszając równowagi, przesunąć kołek wzdłuż 
boku BC o odległość pcoso (a cosa+bsin a), jeżeli tylko współczynnik 
tarcia u. zawiera się w pewnych granicach; a oznacza tu kąt, który bok 
BG tworzy ze ścianą, a, b zaś długości boków AB, BC. Wyznaczyć 
także granice współczynnika p.. (Math. Tripos, 1880.)

Prz. 25. Cylinder eliptyczny, pozostający w zetknięciu z piono­
wą ścianą i podłogą, ma właśnie zacząć się osuwać, gdy duża oś two­
rzy z poziomem kąt a. Wyznaczyć związek pomiędzy współczynnikami 
tarcia cylindra o podłogę i ścianę; ze związku tego wyniknie, że jeżeli 
ściana jest gładka, a kąt a wynosi 45°, to współczynnik tarcia cylindra

e2o podłogę jest równy —, gdzie e oznacza mimośród przekroju, pro­

stopadłego do osi cylindra. (Math. Tripos, 1883.)
Prz. 26. Chropowaty cylinder eliptyczny o osi poziomej opiera 

się o podłogę i ścianę, które są jednakowo chropowate. Okazać, że 
cylinder zacznie się 'osuwać, gdy duża oś elipsy utworzy z pionem 

kąt Ę jeżeli kwadrat mimośrodu elipsy jest równy 2sin e (sine+cos s);

s oznacza tu kąt tarcia. (Coli. Ex„ 1885.)
Prz. 27. Trzy jednorodne sztaby o długości a, b, c są połączone 

sztywno w końcach i tworzą trójkąt ABC. Trójkąt ten wisi na chropo­
watym kołku, wspierając się na nim bokiem BC. Wyznaczyć długość, 
zajętą przez punkty sztaby BG, które mogą pozostawać w zetknięciu 

a{a-]-b + c')C—B . 
z kołkiem, i okazać, że jeżeli u >------------- cosec G + tan—-—, gdzie

b(b + ć) 2
OB, to trójkąt pozostanie w równowadze w każdem położeniu.

(Math. Tripos, 1887).
Prz. 28. Wózek na czterech jednakowych kołach, osadzonych na 

gładkich osiach, stoi na chropowatej powierzchni nieruchomego, pozio­
mego cylindra kołowego. Osie wózka są równoległe do osi cylindra i pła­
szczyzna ich zawiera środek ciężkości wózka. Zbadać ciśnienia na koła 
i dowieść, że płaszczyzna, przechodząca przez osie, tworzy z poziomem 

(w— w') tano
kąt arctan _------ w------ J, gdzie w, w oznaczają ciężary, przypadające 

na osi, W ciężar całego wózka, i 2a kąt pomiędzy płaszczyznami sty- 
cznemi w punktach oparcia kół o cylinder. (Math. Tripos, 1888.)

Prz. 29. Trzy jednakowe cylindry kołowe A, B, C posiadają osi 
poziome, a ich środki ciężkości leżą w jednej płaszczyźnie pionowej. 
Cylinder A jest nieruchomy, cylindry A i B leżą na jednym poziomie, 
C zaś na poziomie niższym w zetknięciu z tamtymi, przyczem wspó­
lne płaszczyzny styczne są nachylone do poziomu pod kątem 45°. Cy­
lindry B i G utrzymują się w położeniu wskazanem dzięki doskonale 
chropowatej opasce, okalającej wszystkie trzy cylindry w płaszczyźnie 
środków ciężkości. Okazać, że można utrzymać równowagę, zaciskając 
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dostatecznie opaskę, jeżeli współczynnik tarcia pomiędzy cylindrami 

jest większy od 1----- —; znaleźć także, w jaki sposób rozpocznie się
V 2

poślizg, jeżeli opaska jest wyprężona niedostatecznie.
(Math. Tripos, 1888.)

Prz. 30. Dwie jednakowe sztaby AB, BC, połączone przegubem 
w B, stoją w płaszczyźnie pionowej na chropowatej płaszczyźnie pozio­
mej; ich nachylenia do poziomu są równe, a tarcie w A i C jest całko­
wicie rozwinięte. Okazać, że para tarcia w przegubie wynosi Wa(sin a — 
— 2u. Coso), gdzie p. oznacza współczynnik tarcia, W ciężar, 2a długość 
i a nachylenie do poziomu każdej sztaby. (St John’s Coli., 1890.)

Prz. 31. Z sześciu jednakowych prętów utworzono łańcuch, łą­
cząc ich końce pięcioma gładkimi przegubami. Następnie ustawiono 
te pręty w płaszczyźnie pionowej na chropowatej płaszczyźnie pozio­
mej, tworząc symetryczną arkadę. Długość każdego pręta wynosi 2a, 
a współczynnik tarcia pręta o płaszczyznę 1/6. Okazać, że rozpiętość

arkady nie może przewyższać 2a 1----- — ------ — ) V 2.
\ V 5 V13/

(Coli. Ex., 1886.)
Bierzemy pod uwagę tylko połowę arkady. Reakcya w przegu­

bie najwyższym jest pozioma i równa połowie ciężaru jednego pręta. 
Bierzemy momenty (1) dla górnego pręta, (2) dla dwóch górnych i (3) 
dla wszystkich trzech prętów. Wypadnie, że nachylenia prętów do 

pionu wynoszą 4, arctan 1/3, arctan 1/5. Mając to, obliczymy rozpiętość

arkady bez trudności.

179. Tarcie koła o oś. Prz. 1. Wózek dwukołowy jest zbudo­
wany w taki sposób, że gdy dyszel ma położenie poziome, to środek cięż­
kości wózka i dyszla leży pionowo nad osią. Wózek ten stoi na dosko­
nale chropowatym gruncie. Wyznaczyć wielkość i kierunek najmniejszej 
siły, która wprawi w ruch wózek, działając na koniec dyszla, ustawio­
nego poziomo.

Oś jest tak dopasowana, aby koło mogło się na niej łatwo obra­
cać; w tym celu średnica osi jest cokolwiek mniejsza od średnicy otwo­
ru w piaście, i dwa te cylindry stykają się według pewnej tworzącej; 
w punktach tej tworzącej są przyłożone ciśnienia pomiędzy kołem 
i osią.

Niech X, Y oznaczają składowe poziomą i pionową szukanej 
siły, przyłożonej w końcu' dyszla.

Rozważamy równowagę koła. Koło styka się z gruntem w pun­
kcie A, a grunt jest doskonale chropowaty; stąd wynika, że tarcie 
w A nie może być graniczne. Oznaczmy reakcyę normalną i siłę tar­
cia przez R i F. Przyjmujemy, że siła X działa w prawo, a zatem tar­
cie, które ma ją równoważyć musi działać w lewo.
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Oś styka się z okrągłym otworem piasty w pewnym punkcie B, 
W tym punkcie działa normalna reakcya R' oraz tarcie F1; tar­
cie jest tu graniczne, skoro wó­
zek ma właśnie ruszyć, a zatem 
F’=^R'. Wypadkowa sił R' i nR' 
musi równoważyć wypadkową 

* sił R, F i ciężaru koła, a stąd 
wynika, że punkt B leży po le­
wej stronie punktu G, t. j. pozo- 
staje w tyle za osią. Oznaczmy 
kąt AGB przez 3, a promienie 
koła i osi przez a i b. Biorąc mo­
menty względem A, otrzymamy 

Fig. 49.

R'a sin ^—^R\a cos 3 — b}.
Gdy zamiast p. wprowadzimy tan e, to równanie to przekształci się na 

b 
sin (s — 0) —— sin e.

a
Ponieważ b jest mniejsze od a, przeto 3 jest dodatnie i mniejsze od s.

Rozważamy następnie równowagę wózka. Siły R' i [iR' działają 
na wózek w kierunkach odwrotnych do wskazanych na rysunku. 
Niech W oznacza ciężar wózka. Biorąc rzuty na kierunki poziomy 
i pionowy, a także momenty względem O, otrzymamy

X=- R' sin 8+MR’ cos 8,
Y= — R' cos 8—R‘ sin 3+ W,
Yl=^R'b-

l oznacza tu długość dyszla. Bównania powyższe określają X i Y.
Prz. 2. Lekki sznur, dźwigający na końcach ciężary W i W', 

przechodzi przez koło, które może się obracać około wału nierucho­
mego i chropowatego; poślizg pomiędzy sznurem i kołem jest wyłą­
czony. Okazać, że warunkiem równowagi granicznej jest

(W- W) a=(W+ W') b sin 8, 
gdzie a, b oznaczają promienie koła i wału, i p==tan e.

Prz. 3. W ciele stałem wydrążono otwór cylindryczny i osa­
dzono je na nieruchomym wale, dobrze dopasowanym do otworu. 
Cała figura jest symetryczna względem pewnej płaszczyzny prostopa­
dłej do wału; w płaszczyźnie tej działają na ciało siły, i wał jest chro­
powaty. Wyznaczyć najmniejszy współczynnik tarcia, przy którym 
jeszcze ciało pozostanie w równowadze.

Na rysunku przekroje otworu i wału posiadają wymiary różne; 
wykreślono je w ten sposób, aby zaznaczyć wyraźnie, że reakcya nor­
malna i tarcie działają w pewnym określonym punkcie; będziemy 
jednak w rozważaniach geometrycznych promienie otworu i wału 
uważali za równe.
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Płaszczyznę symetryi obieramy za płaszczyznę xy a jej przecię­
cie O z osią za początek. Sumy rzutów sił na osi oznaczamy przez 
X, Y, a sumę momentów względem początku przez G-, uważając, że

siły te dążą do wywołania obrotu 
w kierunku odwrotnym do ruchu 
wskazówek zegara.

Wał styka się ze ścianą otworu 
według pewnej tworzącej; oznaczmy 
przez B jej punkt przecięcia z pła­
szczyzną xy, przez 3 kąt BOx, wre- 
szcie przez R i F reakcyę normal­
ną i tarcie w B. Gdy ciało ma zacząć 
się poruszać, to F—[i.R.

Biorąc momenty i rzuty, znajdziemy 
R (COS 3+u sin 3) + X=0, 
R (sin 9 — p cos 9) + Y=Q,

— p. Ra + G=0;
a oznacza tu promień otworu. Zakładając p.==tan e, z równań powyż­
szych otrzymamy

Y 
tan(3—)===, R2=(X2+Y2) cos 2.

X.
Związki te określają położenie punktu B i reakcyę R. Najmniejszą 
wartość współczynnika tarcia określa równanie

(X2+ Y^a2 sin2=G2.

180. Twierdzenie pomocnicze. Gdy przesuniemy płytę 
z jednego położenia do drugiego w jej płaszczyźnie, to pewien 
punkt płyty znajdzie się ostatecznie w swem położeniu dotych- 
czasowem. Można więc osiągnąć tę samą zmianę położenia, utrwa­
liwszy ów punkt i obróciwszy około niego płytę o kąt odpo­
wiedni.

Niech A, B oznaczają pewne dwa punkty płyty w poło­
żeniu pierwotnem, i A', B' te same punkty w położeniu osta- 
tecznem. Jeżeli zapomocą obrotu około jakiegoś nierucho­
mego punktu I doprowadzimy A, B do położeń A', Bj to 
i cała płyta przejdzie jednocześnie z po- 
łożenia pierwotnego do ostatecznego. Po- ._ _ I 
prowadźmy ze środków odcinków AA', 57 
BB' prostopadłe do nich proste LI^ Ml. (V/ \ -
Oczywiście IA=IA' i IB—IBj a ponie- 
waż długość odcinka AB podczas ruchu 3 B M B' 
nie uległa zmianie, przeto boki trójką- Fig. 51. 
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tów A1B, A'IB' są odpowiednio równe. Stąd wynika, że kąty 
AIB^ A'IB' są równe, a więc kąty ALA’, BIB' są także równe. 
Gdy zatem obrócimy płytę około I o kąt równy AIA', to A 
dojdzie do położenia A', B do B\ i całe ciało zostanie prze­
sunięte z jednego położenia do drugiego.

Jeżeli ciało przesunęło się równolegle, to jest jeżeli wszy­
stkie punkty poruszały się równolegle do pewnej prostej, to 
proste LI^ MI są równoległe, a zatem punkt I jest nieskoń­
czenie odległy.

Jeżeli kąt AIA' jest nieskończenie mały, to nieruchomy 
punkt 1 płyty zowie się środkiem chwilowym.

181. Tarcia w kierunkach nieznanych. Jesteśmy teraz 
w możności przystąpić do uogólnienia praw tarcia. Przypuść­
my, że ciało ciężkie leży na chropowatym stole poziomym, 
wspierając się na nim w n punktach. Punkty te oznaczmy 
literami At1 A2...An, a ciśnienia w tych punktach niech będą 
P1, P2...Pn. Przypuśćmy jeszcze, że na ciało działa para i siła, 
przyłożona w stosownym środku redukcyi, i że wszystkie siły 
są równoległe do stołu. Temu układowi sił przeciwdziałają siły 
tarcia, wywołane w punktach oparcia; ich wielkości i kierunki 
są nieznane, wiemy tylko, że każda z nich co do wielkości nie 
przewyższa tarcia granicznego, a kierunek każdej jest odwrotny 
do wypadkowej wszystkich sił zewnętrznych i między cząsteczko­
wych, działających na dany punkt oparcia. Jeżeli wszystkie ci­
śnienia Pt... Pn są znane, to pozostaje jeszcze 2n wielkości nie­
wiadomych, a mamy wszystkiego trzy równania równowagi. 
Widzimy więc, że siły tarcia w punktach Ar, A2...An są wo- 
góle nieokreślone.

Twierdzenie ostatnie znaczy, że można wskazać rozmaite 
układy sił, przyłożonych w punktach oparcia i równoważących 
siły dane. Który z tych układów możliwych odpowiada pra­
wdziwemu rozmieszczeniu śił tarcia, zależy to od właściwości 
ciała, a mianowicie od tego, w jaki sposób ciało zaczęło się 
odkształcać pod działaniem sił danych. Przypuśćmy np. że na 
punkt B ciała działa siła Q, wzrastająca stopniowo. Z początku 
siły tarcia w, punktach oparcia, położonych w najbliższem są­
siedztwie punktu B, wystarczą do utrzymania równowagi, ale 
gdy Q wciąż wzrasta, to wreszcie tarcia te dojdą do wartości 
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granicznych. Jak tylko najbliższe punkty oparcia zaczną ustę­
pować, wchodzi w grę tarcie w punktach następnych, i w ten 
sposób działanie siły Q rozchodzi się po całem ciele.

Jeżeli siły zewnętrzne są niedostateczne do poruszenia 
ciała w całości, to w każdym razie wywołują one pewne od­
kształcenia, czyli przesunięcia jednych części ciała względem 
innych; przesunięcia te mogą być niezmiernie drobne, nie mniej 
jednak od nich zależą wielkości i kierunki sił tarcia, wywoła­
nych w punktach oparcia. Nawet gdy żadne siły zewnętrzne 
nie działają, można ustawić ciało w stanie naprężenia, i może 
ono utrzymać się w tym stanie dzięki tarciu. Tak więc siły 
tarcia zależą od naprężeń początkowych tak samo, jak od sił ze­
wnętrznych. Możliwy jest również wypadek, że ciało, na pozór 
pozostające w spoczynku, odbywa drobne drgania około pe­
wnego położenia równowagi stałej. Okoliczność ta wywrze ró­
wnież wpływ na siły tarcia.

182. Równowaga graniczna. Przypuśćmy teraz, że siły 
zewnętrzne stopniowo wzrastały według pewnego określonego 
prawa, i ostatecznie ciało doszło do punktu ruszania. Chcemy 
przez to powiedzieć, że w stanie obecnym najmniejsze złago­
dzenie chropowatości płaszczyzny, lub najmniejszy wzrost sił 
zewnętrznych wywoła natychmiast ruch ciała. Mamy zbadać, 
pod jakim warunkiem owe siły są ściśle dostatecznie duże do 
wywołania ruchu albo ściśle dostatecznie małe do utrzymania 
spokoju.

W chwili, gdy ciało ma właśnie ruszyć, rozkład sił tar­
cia znacznie się upraszcza. Przyjmiemy, że ciało jest prawie 
sztywne, a więc odległości pomiędzy cząsteczkami jego nie ule­
gają wyraźnym zmianom. Stąd wynika, że ruchy tych cząste­
czek nie są niezależne, ale podlegają prawu, udowodnionemu 
w twierdzeniu pomocniczem (180); kierunki sił tarcia muszą 
być odwrotne do kierunków ruchów, a zatem podlegają temu 
samemu prawu.

Gdy ciało obraca się około osi chwilowej, to tarcie w każdym 
punkcie oparcia działa w takim kierunku, przy którym może najsku­
teczniej przeciwdziałać ruchowi. Zobaczymy to w dalszym ciągu. Je­
żeli zatem siły tarcia w układzie takim nie są w stanie przeszkodzić 
ruchowi, to nie istnieje żaden inny układ, przy którym by to było 
możliwe.
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Gdy ciało porusza się w płaszczyźnie poziomej, to ruch 
jego jest w każdej chwili obrotowy około pewnej osi pionowej. 
Przypuśćmy, że oś chwilowa przecina ową płaszczyznę w pun­
kcie I. Wypada teraz rozważyć dwa przypadki: (1) punkt 1 
nie leży w żadnym z punktów oparcia, (2) punkt I przypada 

* w jednym z nich.
Rozważymy obydwa te przypadki z kolei. Położenie pun­

ktu I jest nieznane; oznaczmy przez §, 7 jego współrzędne 
w odniesieniu do pewnych osi, obranych w płaszczyźnie stołu. 
Wszystkie punkty A^^.^An zaczynają się poruszać prostopadle 
do prostych, łączących je z punktem I, a zatem siły tarcia 
w tych punktach byłyby wiadome, gdybyśmy znali punkt I. 
Działają one prostopadle do IA, IA2..., są zwrócone w tę samą 
stronę dookoła I, a pod względem wielkości wynoszą M.1P1, M„P..., 
gdzie (.1, (.2 ... oznaczają współczynniki tarcia. Możemy uważać, 
że ciało jeszcze pozostaje w równowadze, gdyż siły zewnętrzne 
zaledwo cokolwiek przemagają siły tarcia. Utworzywszy trzy 
równania równowagi, będziemy mieli dostateczną liczbę równań 
do wyznaczenia §, 7 oraz warunku, który powinien być speł­
niony, aby ciało było w trakcie ruszania. Możliwą jest rzeczą, 
że owe równania nie dadzą żadnych przydatnych wartości na 
§, 7; będzie to znaczyło, że wbrew założeniu punkt I leży w je­
dnym z punktów oparcia.

183. Przypuśćmy teraz, że I leży w jednym z punktów 
oparcia, np. w A1, a więc współrzędne jego §, 7 są w tym razie 
wiadome. Siły tarcia znamy taksamo, jak w przypadku pier­
wszym; ich kierunki są prostopadłe do A^2, A{A3.., a wiel­
kości wynoszą p.,P2. M.3P3... Punkt Alf jako środek obrotu, ma 
pozostać nieruchomym, a zatem nie jest rzeczą konieczną, aby 
tarcie w nim było graniczne. Powinno ono jedynie wystarczać 
do utrzymania go w spokoju. Niech F1, Fi’ będą składowemi 
tej siły tarcia w kierunkach osi a i y. Utworzywszy trzy równa­
nia równowagi, będziemy mieli dostateczną liczbę równań do 
wyznaczenia F1, F‘ oraz potrzebnego warunku, aby ciało było 
w trakcie ruszania. Jeżeli jednak otrzymane wartości na F1, F^ 
są takie, że F12+F‘2 jest większe od .12P12, to znaczy, że na­
wet tarcie graniczne nie zdoła utrzymać punktu At w spo­
czynku, i niemożliwą jest rzeczą, aby ciało zaczęło się obracać 

Statyka. 10
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około A1, jako środka chwilowego. W podobny sposób zbada­
my, czy ciało może zacząć się obracać około A,, i t. d.

184. Należy teraz utworzyć równania, potrzebne do wyznacze­
nia współrzędnych §, tj oraz warunku równowagi granicznej. Równa­
nia te są dość złożone, i w większości wypadków dogodniej będzie wy­
znaczać położenie punktu I zapomocą jakiejś metody geometrycznej 
wyrażania warunków równowagi.

Przypuśćmy, że na ciało działa para o momencie L oraz siła, 
posiadająca składowe X, Y, przyłożone w początku układu. Współ­
rzędne punktów di, A2 ... oznaczymy przez (xiy1), (x2J2)..., współrzędne 
punktu I przez (§n), a odległości IAr, IA2... przez I, 12... Dajmy na 
to, że kierunek obrotu ciała jest odwrotny do ruchu wskazówek zegara; 
tarcia przeciwdziałają ruchowi, a zatem działają naokoło I w kierunku 
odwrotnym.

Obróćmy wszystkie siły tarcia około ich punktów przyłożenia o kąt 
prosty. Ułatwi nam to rzutowanie na osi. Tak więc siły tarcia będą 
działały na prostych lAi, IA2... i będą wszystkie zwrócone do punktu 
I albo odwrócone od niego. Zrobimy to drugie założenie, a przeto rzu­
ty tych sił na osi powinny się znosić z siłą X, działającą w kierunku 
dodatnim na osi y, i z siłą Y, działającą w kierunku ujemnym na osi x.

Biorąc rzuty, otrzymamy

xppśme + Y=0 
r

2p"-J_x- 0

Równanie momentów należy utwo­
rzyć, nie zmieniając kierunków sił tarcia. 
Bierzemy momenty względem I.

EpPr+Y-X-L=0..............(2)

Jeżeli środek chwilowy I leży w Ax, to równania równowagi 
będą nie wiele różniły się od poprzedzających. Napiszemy (xi yA za- 

miast (§ n), Fr i — FA zamiast ^Pi------  i ^P^ ----- , a w równaniu mo-
F1 Ti 

mentów odrzucimy wyraz ^^Pir-i.

185. Metoda minimum. Do równań powyższych można dojść 
na innej drodze, przyczem jaśniej występuje związek pomiędzy oby­
dwoma możliwymi przypadkami. Jeżeli ciało ma właśnie zacząć się 
obracać około pewnej osi chwilowej, to ten sam ruch nastąpiłby 
i w takim razie, gdyby ta oś była osadzona w przestrzeni nieruchomo. 
Niech I oznacza jakikolwiek punkt płaszczyzny xy, zobaczmy, czy cia­
ło zaczęłoby się około niego obracać, gdyby przezeń przechodziła oś 
nieruchoma. Bierzemy momenty względem P, uważamy przytem, że
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tarcie jest całkowicie rozwinięte, i obieramy za dodatni ten kierunek, 
w którym działa tarcie. Wypadnie

«=XpPr+ YE-X-L.
Jeżeli dla jakiegoś położenia punktu I u jest ujemne, to moment sił 
jest potężniejszy od momentu tarcia, i ciało zacznie się poruszać. Je- 

♦ żeli natomiast u jest dodatnie, to przewagę ma moment tarcia, i ciało 
da się utrzymać w spokoju przy tarciu mniejszem od granicznego. 
Wyznaczmy taki punkt I, dla którego u osiąga minimum. Jeżeli na­
wet dla tego punktu u jest dodatnie lub równe zeru, to wogóle niema 
punktu, około którego ciało mogłoby się zacząć obracać.

Aby uczynić u najmniejszem, przyrównywamy do zera pocho­
dne tej funkcji względem 6 i . Uwzględniając, że r2=(x—6)2+(y—)2, 
otrzymamy równania (1) z par. 184.

Treść statyczna tych równań jest następująca: jeżeli ową oś nie­
ruchomą obrano w taki sposób, że u osiągnęło minimum, to jej ciśnie­
nie na ciało jest równe zeru. Jeżeli to nie jest oczywiste, to oznacz­
my składowe tego ciśnienia w kierunkach osi przez Rx, Ry. Sumy 
rzutów na osi sił przyłożonych oraz sił tarcia łącznie z Ra, Ry muszą 
być zerami; ale równania (1) mówią, że rzuty te są zerami i bez Rr, 
Ry, a więc Rx^ i Ry==0.

Można okazać, że przy takiem położeniu punktu I funkcya u 
osiąga minimum a nie maksymum; w tym celu należy wyznaczyć dru­
gie pochodne względem 6 i . Wyrazy drugiego rzędu będą

ZpP IG — y)dł ~ (L - «)dl2,
2,3———

gdzie sumowanie rozciąga się do wszystkich punktów Ar, A2... Każdy 
z tych kwadratów jest dodatni, a więc u osiąga minimum.

Tak więc możemy znaleźć oś, około której ciało zacznie się obra­
cać, wyznaczając minimum momentu sił czyli funkcyi u; zakładając, że 
ten moment jest równy zeru, otrzymamy warunek, który powinien być 
spełniony, aby siły przyłożone były ściśle wystarczające do poruszenia 

- ciała.

186. Wielkości r, r2... są z natury rzeczy dodatnie, a więc nie 
mogą zmniejszać się nieograniczenie. Funkcya u obok wartości naj­
mniejszych, które wyznaczymy stosując reguły rachunku różniczkowe­
go, może posiadać jeszcze inne minima lub maksyma, które wypadają, 
gdy jedno z ri, r2... staje się zerem.

Przypuśćmy, że u osiąga minimum, gdy 7=0, t. j. gdy punkt I 
leży w Ar. Obieramy A, za początek współrzędnych i odsuwamy co­
kolwiek I od Aj. Skutkiem tego współrzędne I przybiorą, dajmy na 
to, wartości §=r COS 31, =r sin 31. Niech współrzędne punktu A2 bę­
dą (1232), punktu A3 (r333) i t. d. Zatrzymując jedynie pierwsze potęgi 
71, jako wielkości małej, znajdziemy, że u przybrało wartość .

u=pPr,+M2P2[r2—ri cos($,—92)]-....+ Yrcos%,— Xrsins,— L.
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Funkcya u osiąga minimum, jeżeli jej przyrost dla każdego małego 
przesunięcia punktu I jest dodatni. Warunek ten będzie spełniony 
gdy współczynnik przy ”1, czyli

MP—p2P2 cos (8,— 02)-.+ Ycos 3,—Wsin 3, , 

będzie dodatni dla wszystkich wartości 3,. Można to napisać w po­
staci

pP+A cos 01+B sin 3 , 

gdzie A i B nie zależą od 31 . Jasną jest rzeczą, że aby współczynnik 
ten był dodatni dla każdego 31 , to MPi musi być liczbowo większe od 
VA2+B2.

Zaznaczamy, że
A——p2 P2 cos $2—..,+ Y

B=-p,P, sin 8--X,
a stąd widać, że A i —B są to sumy rzutów na osi sił zewnętrznych 
oraz wszystkich sił tarcia z wyjątkiem tej, która działa na A}. Jeżeli 
tarcie w Ar jest równe » F, to ciśnienie wypadkowe na oś wyniesie 
F+ ^A^+B2. Można to doprowadzić do zera, dając tarciu F wartość 
mniejszą od granicznej (par. 183).

Z rozważań tych wynika: jeżeli uwzględnimy wszystkie położenia 
punktu I, dla których moment u osiąga minimum, zarówno przypada­
jące w punktach oparcia, jak i nie przypadające, to oś chwilowa przejdzie 
przez to z nich, dla którego a jest najmniejsze.

187. Gdy obrócimy płytę około osi, przechodzącej przez punkt 
1 o mały kąt dł, to siły zewnętrzne łącznie z siłami tarcia wykonają 
pracę ud^; kąt d9 mierzymy tu w stronę, w którą działa tarcie. Fun­
kcya u osiąga minimum, gdy owa praca osiąga minimum dla danego 
kąta obrotu.

188. Prz. 1. Stół trójkątny, posiadający punkty oparcia w wierz­
chołkach A, B, C, stoi na chropowatej podłodze poziomej. Wyznaczyć 
najmniejszą parę, która go może poruszyć.

Można okazać, że ciśnienie w każdym punkcie oparcia jest ró­
wne trzeciej części ciężaru stołu, a zatem graniczne siły tarcia w A, 

p w
B, C wyniosą 3 każda.

Przypuśćmy, że trójkąt zaczyna się obracać około pewnego pun­
ktu I, leżącego nie w wierzchołku. Siły tarcia równoważą parę, a za­
tem same będą w równowadze, gdy je obrócimy o kąt prosty tak, 
aby działały wzdłuż Al, BI, CI. Stąd wynika, że'punkt I musi le­
żeć wewnątrz trójkąta. Wszystkie trzy siły tarcia są równe, a zatem 
każdy z kątów AIB, BIC, CIA musi być równy 120°. Jeżeli więc ża­
den z kątów trójkąta nie dosięga i20°, to punkt I leży w przecięciu 
dwóch łuków, zatoczonych na dwóch którychkolwiek bokach i obejmują­
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cych po 120°. Moment najmniejszej pary, która mogłaby poruszyć stół, 
u TT

wynosi 3 (A+BI+ CI).

Przypuśćmy teraz, że punkt I przypada w wierzchołku C. Obróć-
w G musi równoważyć dwie 

bokach AC i BC. Wypadkowa

my siły tarcia jak poprzednio. Tarcie 

siły, wynoszące po 3 i działające na 

pw C 
tych dwóch sił jest równa -2COS o; jeżeli kąt C nie dosięga 120°,

to ta wypadkowa jest większa od "," , a więc przypadek taki jest 

niemożliwy. Trójkąt tylko w takim, razie może zacząć obracać się około 
wierzchołka, jeżeli kąt u tego wierzchołka przewyższa 120°. Jeżeli wierz- 

p. W
chołkiem takim jest C, to najmniejsza para wyniesie -^-(CA+CB).

Można rozwiązać to zagadnienie statyczne w inny sposób; należy 
którego suma 

osiąga mini-

w tym celu wyznaczyć takie położenie punktu I, dla 
/ .pw\odległości Al, BI, CI ^pomnożonych przez stałą 3) 

mum bezwzględne.
Prz. 2. Cztery jednakowe cząsteczki ciężkie A, B, C, D są połą-

czone lekkimi prętami i tworzą czworobok sztywny. Czworobok ten 
leży ha chropowatej płaszczyźnie poziomej. Zakładając, że ciśnienia 
na wszystkie cząsteczki są jednakowe, wyznaczyć najmniejszą parę, 
która zdoła poruszyć układ.

Położenie środka chwilowego I zależy od tego, czy przekątnie 
przecinają się wewnątrz czworoboku, czy nazewnątrz; w pierwszym 
przypadku I leży w tern przecięciu, a w drugim w jednym z wierz­
chołków.

Prz. 3. Ciężka sztaba spoczywa na chropowatej krzywej pozio­
mej, wspierając się na niej w punktach A i B. Do sztaby w punkcie 
C, stanowiącym środek części AB, przywiązujemy sznur i ciągniemy 
w jakimkolwiek kierunku w płaszczyźnie poziomej z siłą, ściśle wystar­
czającą do poruszenia sztaby. Dowieść, że miejscem geometrycznem 
punktów przecięcia sznura z siłami tarcia, wywołanemi w A i B, jest 
łuk koła łącznie z częścią linii prostej. Znaleźć także, jak siła powinna 
działać, aby jej punkt przecięcia z siłami tarcia zatoczył pozostałą 
część koła.

Przypuśćmy naprzód, że sztaba ma zacząć się posuwać jedno­
cześnie w A i B, i niech F, F' będą siłami tarcia w tych punktach. 
Obydwie te siły są znane i zależą jedynie od ciężaru i położenia 
środka ciężkości sztaby. Dajmy na to, że środek ciężkości leży bliżej B 
niż A; w takim razie tarcie graniczne w B będzie większe niż w A. 
Ponieważ zachodzi równowaga, przeto obydwa tarcia i naprężenie 
nici muszą przechodzić przez jeden punkt, np. punkt P. Odcinki AC
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i CB są równe, zatem odcinek CP jest połową przekątni równole- 
głoboku, zbudowanego na AP i BP, a na zasadzie trójkąta sił odcinki 
AP, BP i 2PC reprezentują siły, działające w tych kierunkach. Stąd

wynika, że AP: PB = F: F', a 
więc stosunek AP: PB dla wszy­
stkich kierunków sznura jest sta­
ły, i miejscem geometrycznem 
punktu P jest koło.

Dajmy na to, że punkt C 
jest ciągniony w stronę PC, czyli 
że prosta CP na rysunku wyo­
braża przedłużenie sznura.

Sznur CP przecina koło w dwóch punktach, ale siły mogą się 
zbiegać tylko w jednym z nich. Wiemy, że sztaba zacznie się obracać 
około jakiegoś punktu I; jest to punkt przecięcia prostopadłych do 
PA, PB w A i B. Tarcia równoważą naprężenie sznura, a więc są 
zwrócone do punktu P, a kierunki ruchu muszą być odwrócone od 
tego punktu. Jest to oczywiście możliwe tylko w takim razie, gdy 
punkty I i P leżą po tej samej stronie prostej AB, a więc kąt PAB 
musi być większy od prostego, i punkt P nie może leżeć na kropko­
wanej części koła.

Przypuśćmy teraz, że ma zacząć się przesuwać tylko jeden z pun­
któw sztaby, opartych na krzywej. Jeżeli środek ciężkości leży bliżej 
od B niż od A, to poruszy się punkt A, t. j. sztaba zacznie się obra­
cać około B. Stąd wynika, że tarcie działa w kierunku QA, i miejscem 
geometrycznem punktu P jest prosta QA.

Punkt przecięcia sił nie może leżeć na kropkowanej części tej 
prostej. Aby to okazać przypuśćmy, że leży on w R. Jeżeli teraz od­
cinek AR reprezentuje siłę F, to RB powinno być mniejsze od F', 
bo w B poślizgu nie będzie. Lecz R leży wewnątrz koła, a zatem sto­
sunek AR: RB jest mniejszy od stosunku AP:PB, czyli mniejszy od 
F: F' i RB jest większe od F', a to przeczy założeniu.

Przedłużenie sznura przetnie zawsze linię, złożoną z łuku i czę­
ści prostej w jednym punkcie, i siły tarcia są skierowane do tego 
punktu, gdy sztaba ma zacząć się poruszać.

Jeżeli miejscem geometrycznem punktu P ma być kropkowana 
część koła, to jedna z sił tarcia powinna być skierowana do P, a dru­
ga od tego punktu, a zatem siła zewnętrzna musi być zawarta pomię­
dzy PA i przedłużeniem PB. Z trójkąta sił APB wynika, że powinna 
ona działać równolegle do boku AB i być doń proporcyonalna.

Prz. 4. Płyta spoczywa na poziomym stole, opierając się na nim 
w trzech punktach A, B, C. Oparcie w C jest gładkie, w A i B chro­
powate. Ciągniemy poziomo za sznur, przywiązany do płyty w pe­
wnym punkcie D, z taką siłą, że właśnie ma się rozpocząć ruch. 
Przyjmujemy, że przy danych współczynnikach tarcia i danem poło­
żeniu środka ciężkości tarcia graniczne F, F' w A i B mają się do 
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siebie jak BD:AD. Okazać, że miejscem geometrycznem punktu P, 
w którym zbiega się linia sznura z liniami działania sił tarcia, jest 
(1) część koła, opisanego na ABD, (2) część hiperboli równoramiennej, 
której środek leży w środku odcinka AB, i która przechodzi przez 
punkty A, B, D, (3) części dwóch linii prostych.

Dajmy na to, że AD=b i BD=a; w takim razie Fb=F'a.
Poprowadźmy proste LAL', HBFL' prostopadle do AB. Jeżeli 

poślizg ma nastąpić tylko w jednym z punktów oparcia A, B, to punkt 
P leży na jednej z tych prostopadłych.

Jeżeli mają się poruszyć obydwa punkty A, B, to, biorąc mo­
menty względem D, znajdziemy, że sin PAD=sin PBD, a zatem kąty
PAD i PBD są albo spełniające 
albo równe. Stąd wynika, że 
miejscem geometrycznem pun­
ktu P jest koło, opisane na trój­
kącie ABD, i równoramienna hi­
perbola, opisana na tym samym 
trójkącie. Pierwsze z tych miejsc 
geometrycznych można również 
otrzymać przy pomocy trójkąta 
astatycznego, o którym była mo­
wa w par. 71. Drugie miejsce 
geometryczne otrzymamy, obie­
rając prostą AB za oś x i wyrażając w równaniu równość tangensów 
kątów PBA i PAB~y, gdzie Y oznacza różnicę kątów DAB i DBA.

Pragnąc zbadać, które części tych dwóch krzywych stanowią 
prawdziwe miejsce geometryczne punktu P, rozważamy położenia 
względne punktu P oraz środka chwilowego I. Punkty te stanowią 
przeciwległe końce średnicy koła, opisanego na trójkącie ABP, a za­
tem, jeżeli P leży na zewnątrz prostopadłych LL', HS', to I musi 
także leżeć na zewnątrz. W takim razie prosta PD przebiega wewnątrz 
kąta APB, bo inaczej siły tarcia nie mogłyby równoważyć naprężenia 
sznura. Jeżeli P leży pomiędzy prostopadłymi, to PD biegnie naze- 
wnątrz kąta APB.

Proste LL1, HF’, DA, DB dzielą płaszczyznę na dzięsięć sekcyi; 
niektóre z tych sekcyi w myśl tylko co podanego prawidła są wyłą­
czone i nie mogą zawierać miejsca geometrycznego punktu P. Dogo­
dnie będzie odznaczyć w jakikolwiek sposób (np. zapomocą cieniowa­
nia) te sekcye, w których P leżeć może. Wykreślamy następnie koło 
i hiperbolę i włączamy do szukanego miejsca geometrycznego tylko 
części, położone w sekcyach odznaczonych. W przypadku, gdy punkt 
D leży pomiędzy prostemi LL', HH' figura będzie inna, niż w przy­
padku, gdy ten punkt leży nazewnątrz.

Prz. 5. Jeżeli w przykładzie ostatnim tarcia graniczne stoją do 
siebie w stosunku jakimkolwiek, to miejsce geometryczne punktu 
przecięcia sznura z liniami sił tarcia składa się z części krzywej czwar­
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tego stopnia i dwóch prostych. Należą tu, jak poprzednio, części po­
łożone w sekcyach odznaczonych.

189. Prz. 1 Jednorodna prosta sztaba AB leży na chropowatym 
stole, wspierając się na nim wszystkimi elementami jednakowo. Wyzna­
czyć najmniejszą siłę, która poruszy sztabę, działając prostopadle do niej 
na koniec A.

Niech l będzie długością sztaby, a w ciężarem jednostki długo­
ści. Każdy element sztaby dx ciśnie stół z siłą wdx, a zatem tarcie 
graniczne tego elementu wynosi \i.wdx. Jeżeli I jest środkiem chwilo­
wym, to tarcie, działające na pewien element, jest prostopadłe do 

A A prostej, łączącej go z I, a wszystkie 
_ I I H‘ B tarcia równoważą siłę zewnętrzną 
HP, działającą na A.

v Daje się łatwo okazać, że śro-
Fig. 55. dek chwilowy I musi leżeć na sa­

mej sztabie. Przypuśćmy na chwi­
lę, że leży on gdzieś na stronie. Obróćmy wszystkie siły tarcia (184) 
o kąt prosty tak, aby wszystkie były zwrócone do punktu I; musia- 
łyby one wówczas równoważyć siłę P, działającą równolegle do szta­
by. Lecz to jest niemożliwe, jeżeli I nie leży na samej sztabie.

Tak więc I leży na sztabie; załóżmy, że Al—z. Na element H 
lub H' siła tarcia działą prostopadle do sztaby w stronę, wskazaną 
na rysunku. Tarcia wypadkowe, działające na Al i BI wynoszą odpo­
wiednio }iwz i [iw(l—z) i są przyłożone w środkach ciężkości tych 
części. Biorąc rzuty i momenty względem A, otrzymamy

pwz—pw (l—z^—P, p.wz2==pw (l2—z2).
Z ostatniego równania wynika, że z\/' 2=1, a z pierwszego, że 

P=u W(V 2—1); W- oznacza tu ciężar całkowity sztaby.
Prz. 2. Dowieść, że sztaba nie może zacząć się obracać około 

punktu I, położonego po lewej stronie punktu A, albo po prawej pun­
ktu B.

Prz. 3. Ciśnienia elementów sztaby na stół są wprost propor- 
cyonalne do odległości od końca A, i na końce A, B działają odpo­
wiednio siły P, Q, ściśle dostateczne do poruszenia sztaby. Okazać, że 
stosunek P do Q wynosi 2(V 2—1).

Prz. 4. Dwie jednorodne i jednakowo chropowate sztaby AB, 
BC, połączone gładkim przegubem B, leżą na stole poziomym, two­
rząc linię prostą, i na koniec A działa siła P w kierunku prostopa­
dłym do tej prostej. P stopniowo wzrasta dopóki nie rozpocznie się 
ruch. Dowieść, że sztaba AB ruszy wcześniej niż BC, jeżeli 2( V 2—1) W’ 
jest większe od W; jeżeli zaś 2(V 2—1) W’ jest mniejsze od W, to 
obydwie sztaby ruszą jednocześnie. W i W' oznaczają tu odpowiednio 
ciężary sztab AB i BC. Dowieść prócz tego, że w tym drugim przy­
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padku 2=1+2(V 2—1)—, gdzie z oznacza odległość środka chwilo­

wego dla sztaby AB od końca A, l zaś długość tej sztaby.
Prz. 5. Ciężka sztaba AB, leży na chropowatym stole poziomym, 

i na jej punkt C działa siła P w kierunku, tworzącym z nią kąt a. 
Siła ta ściśle wystarcza do wywołania ruchu. Środek chwilowy leży 
ną prostopadłej, poprowadzonej do sztaby w punkcie B, a jego odle­
głość od A jest dwa razy większa od długości sztaby. Okazać, że

2(2- V 3) . 
tano= — , i wyznaczyć położenie punktu C.

V 3 log 3
Prz. 6. Do obręczy, leżącej na chropowatym stole poziomym, 

jest przywiązany w punkcie A sznur; ciągniemy za ten sznur w kie­
runku stycznej do obręczy w tym punkcie. Dowieść, że obręcz zacznie 
się obracać około drugiego końca B średnicy, przechodzącej przez A.

(Math. Tripos, 1873.)
Obróćmy każdą z sił około jej punktu przyłożenia o kąt prosty; 

wówczas wszystkie siły tarcia zwrócą się do środka chwilowego I 
(par. 184), a wypadkowa ich będzie równoległa do średnicy AB. Stąd 
wynika bezpośrednio, że punkt I leży na średnicy AB.

Rozważmy teraz równanie momentów. Położenie punktu I po­
winno być takie, aby suma momentów sił tarcia, działających na 
wszystkie elementy obręczy, względem punktu A była równa zeru. 
Warunkowi temu czyni zadość koniec B średnicy AB, bo, gdy I leży 
w B, to linie działania wszystkich sił tarcia przechodzą przez A.

Jest może zbytecznem dowodzić, że żaden inny punkt średnicy 
AB warunkowi powyższemu zadość nie czyni, można jednak to zro­
bić łatwo w sposób następujący. Przypuśćmy na chwilę, że I leży 
nie w B, lecz na średnicy AB wewnątrz koła. Weźmy na obręczy do­
wolny punkt P. Kąt IPA jest mniejszy od prostego, a tarcie w P 
działa w kierunku prostopadłym do IP. Gdy wykreślimy figurę, to 
stanie się oczywistem, że wszystkie siły tarcia usiłują wywołać obrót 
około A i tę samą stronę, a więc ich suma momentów względem A 
nie może być zerem. W ten sam sposób dowiedziemy, że I nie może 
leżeć nazewnątrz koła.

Prz. 7. Drut jednorodny w kształcie półkola leży na poziomym 
chropowatym stole. AB jest średnicą, łączącą końce półkola, a C ozna­
cza punkt środkowy drutu. Zaczynamy ciągnąć z lekka za sznur, przy­
wiązany do drutu w punkcie C, w kierunku CA i powiększamy na­
prężenie stopniowo. Okazać, że drut zacznie się poruszać, gdy naprę- 

22. W ' 
żenie dojdzie do , gdzie W oznacza ciężar drutu. (Środek

TC
chwilowy wypadnie w B). (St John’s Coli., 1886.)

Prz. 8. Kawałek jednorodnego drutu, tworzący część spiralnej 
logarytmicznej, leży na chropowatej płaszczyźnie poziomej. Do pe­
wnego punktu, sztywnie połączonego z drutem, przykładamy siłę, która 
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ściśle wystarcza do poruszenia drutu około bieguna spiralnej, jako 
środka chwilowego. Dowieść, że siła ta jest równa ciężarowi drutu 
prostego o długości takiej, jak odległość pomiędzy końcami spiralnej, 
pomnożonemu przez współczynnik tarcia. Wskazać także, jak ów punkt 
znaleźć. (Math. Tripos, 1888.)

Prz. 9. Trzy jednakowe ciężary A, B, C, zajmujące wierzchołki 
równobocznego trójkąta, połączono sztywno i położono na chropowa­
tej równi pochyłej. Podstawa AB leży na linii największego spadku, 
a najwyższy wierzchołek A przyczepiono sznurem do punktu 0, po­
łożonego wyżej na tejże linii. Układ ten ma właśnie zacząć się poru- 

(2+ V3)p. 
szać. Okazać, że tangens nachylenia równi wynosi  ——, gdzie U.

V 3
oznacza współczynnik tarcia. (Math. Tripos, 1870.)

Przypuśćmy, że I nie leży w żadnym z wierzchołków; w ta­
kim razie wszystkie siły tarcia będą równe. Ponieważ A może się po­
ruszać tylko w kierunku prostopadłym do OA, przeto I musi leżeć 
na OAB. Suma rzutów sił tarcia na prostopadłą do AB nie będzie ró­
wna zeru, jeżeli I nie leży na AB w spodku prostopadłej z C. Biorąc 
momenty względem I, otrzymamy żądany rezultat. Czynimy założenie 
drugie: przypuszczamy mianowicie, że I leży w wierzchołku A. Suma 
rzutów sił tarcia w B i C na prostopadłą do AB jest zbyt wielka na­
wet, gdy w A tarcie jest graniczne. Stąd wynika, że to drugie założe­
nie jest niemożliwe.

Prz. 10. Stołek trójnożny stoi na płaszczyźnie poziomej. Na je­
dną z nóg jego zaczyna działać w pewnym kierunku mała siła pozio­
ma i wzrasta stopniowo, dopóki stołek nie ruszy z miejsca. Współ­
czynniki tarcia wszystkich trzech nóg o płaszczyznę są równe. Oka­
zać, że owa siła będzie największa, jeżeli jej linia działania przetnie 
pion, przechodzący przez środek ciężkości stołka. (Math. Tripos.)

Prz. 11. Ciężka tarcza okrągła leży na chropowatej równi po­
chyłej i może się obracać około punktu O, położonego na obwodzie. 
Okazać, że tarcza pozostanie w spokoju w kaźdem położeniu, jeżeli 
32p > 9x tan i, gdzie i oznacza nachylenie równi do poziomu. Należy 
przyjąć, że ciężar jest rozłożony równomiernie na całą powierzchnię.

(Pet. Coli., 1857.)
Niech W oznacza ciężar tarczy. Obrawszy O za początek, znaj- 

Wcos i.rd^ dr 
dziemy, że tarcie na element r d^ dr wynosi — . Biorąc

Ta- 

momenty względem O, otrzymamy przy pomocy całkowania żądany 
wynik.

Prz. 12. Prosty stożek, którego kąt jest równy 2a, a ciężar W, 
umieszczono wierzchołkiem na dół w okrągłym otworze, wyciętym 
w poziomym stole. Okazać, że najmniejsza para, która mogłaby poru­
szyć stożek, posiada moment AWr coseca, gdzie r oznacza promień 
otworu.

Ciśnienie Rds na element ds brzegu otworu działa normalnie do 
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powierzchni stożka. Biorąc rzuty na kierunek pionowy, znajdziemy 
fRds sin a= W. Tarcie graniczne wynosi na każdy element [iRds; bio­
rąc momenty względem osi stożka, otrzymamy moment szukany.

Prz. 13. Ciężka cząsteczka leży na chropowatej płaszczyźnie pochy­
łej, której nachylenie jest równe kątowi tarcia. Do cząsteczki jest przy­
wiązana nić, która następnie przechodzi przez otwór w płaszczyźnie, po­
łożony niżej od cząsteczki, lecz nie na linii największego spadku. Prze­
ciągamy nić bardzo wolno przez otwór; okazać, że cząsteczka będzie 
posuwała się po linii prostej, a następnie zatoczy półkole.

(Zagadnienie Maxwella, Math. Tripos, 1866.)
Oznaczmy przez W składową ciężaru cząsteczki w kierunku linii 

największego spadku, a przez F siłę tarcia. W takim razie F= W. 
Cząsteczka porusza się bardzo wolno, a zatem siły F, W oraz naprę­
żenie nici T są w każdej chwili w równowadze. Gdy cząsteczka pozo- 
staje wyżej od otworka 0, to naprężenie T jest znikomo małe; wy­
starcza ono jedynie do zakłócenia równowagi, i cząsteczka schodzi po 
linii największego spadku. Gdy cząsteczka przekroczy prostą poziomą, 
na której leży 0, to T staje się skończonem. Nić wówczas stanowi 
dwusieczną kąta pomiędzy F i W; innemi słowy promień wodzący OP 
tworzy jednakowe kąty ze styczną do toru (t. j. F) i z linią najwięk­
szego spadku. Utworzywszy równanie różniczkowe toru, znajdziemy, 
że jest to półkole; punkt O leży na końcu jego średnicy poziomej.

Prz. 14. Tarcie pomiędzy cząsteczką a stołem jest odwrotnie 
proporcyonalne do odległości od pewnej prostej, przeprowadzonej na 
stole. Jeżeli przy przesuwaniu cząsteczki z jednego położenia do dru­
giego praca wykonana ma być jak najmniejsza, to torem cząsteczki po­
winno być koło. (Trin. Coli.)

Twierdzenie to wynika bezpośrednio z prawidła Lagrange‘a 
w rachunku waryacyjnym.

190. Prz. 1. Sznur o bardzo małej sprężystości, łączy dwie cięż­
kie cząsteczki A, A', leżące na chropowatym stole. Początkowo sznur 
jest wyciągnięty, lecz nie wyprężony, a na cząsteczkę A działa w da­
nym kierunku AC siła P. Kierunek ten tworzy z przedłużeniem A‘A 
kąt 3 mniejszy od prostego. Jeżeli siła P będzie stopniowo wzrastała, 
to czy ruszy wprzód cząsteczka A, czy też obydwie cząsteczki ruszą 
razem?

Niech F, F' będą granicznemi siłami tarcia w A, A'. Przypuśćmy, 
że siła P wzrasta, poczynając od zera. Dopóki nie przekroczy ona 
wartości F, równoważy ją całkowicie tarcie w A, sznur zaś, jakkolwiek 
prawie nierozciągalny, może nie mieć 
żadnego naprężenia. Przypuśćmy, że M‘ 
siła P nieco przewyższyła F, i niech / 
ją reprezentuje odcinek AL. Popro- / 
wadźmy prostą LMM1 równolegle do A' L 
AA' i zatoczmy z punktu A koło pro­
mieniem F. Przetnie ono ową równo- Fig. 56. 
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ległą w punktach M, M', i odcinek LM będzie odpowiadał naprężeniu 
sznura. Z dwóch punktów przecięcia prostej LMM' z kołem obrano 
bliższy punktu L, bo przy takiem założeniu kierunek tarcia w A staje 
się odwrotnym do P, gdy P=F.

Gdy P stopniowo wzrasta w dalszym ciągu, to M wędruje po 
łuku CH. Równowaga cząsteczki A staje się niemożliwą, gdy prosta 
LAIM' przestaje przecinać koło, t. j. gdy M dojdzie do H. Cząsteczka 
A' ruszy, gdy LM osiągnie wartość F'. Lecz HK=Fcot 3, a zatem 
cząsteczka A ruszy pierwsza, jeżeli Fcot 3< F', a obydwie cząsteczki 
ruszą jednocześnie, jeżeli Fcot^,>F'.

Jeżeli tarcia graniczne F, F są równe, a kąt 3 mniejszy od po­
łowy kąta prostego, to obydwie cząsteczki ruszą jednocześnie. Jedna 
z sił tarcia działa na prostej AA’, druga zaś tworzy kąt 3 z siłą P, 
a zatem P— 2F cos 3.

W rozwiązaniu powyższem wyłączyliśmy punkt M', kierując się 
zasadą ciągłości, lecz cząsteczka A może także pozostawać w równowa­
dze pod działaniem sił AL, LM', M'A. Gdyby sznur posiadał stosowne 
naprężenie początkowe, równoważone przez siły tarcia w A i A' oraz 
przez początkową siłę P, działającą w kierunku AC, to M' byłby sto­
sownym punktem przecięcia.

Prz. 2. Dwa ciężary A i B, połączone sznurem, leżą na pozio­
mym stole; współczynnik tarcia jest równy p.. Siła P, mniejsza od 
p.A+uB, działa początkowo w kierunku BA na ciężar A, a następnie 
obraca się w płaszczyźnie stołu o kąt 8. Okazać, że obydwa cię- 

p.?( B2-42) + P2 
żary ruszą jednocześnie przy cos 3=------------------ Jeżeli P jest większe

2u BP
od p. VA2+B2, lecz jeżeli P jest mniejsze od p VA2+B2 i większe od

"A, to ciężar A ruszy sam, gdy sin‘=p:

Prz. 3. n— 1 sznurów bardzo mało sprężystych łączy n cząste­
czek A,, Ai... An—i według porządku wskaźników. Ciężary wszystkich 
cząsteczek oraz długości wszystkich sznurów są jednakowe. Cząsteczki 
ułożono na chropowatej płaszczyźnie poziomej na łuku koła, mniej­
szym od ćwierci okręgu, przyczem sznury zostały wyciągnięte lecz 
nie wyprężone. Następnie na cząsteczkę A,_1 zaczęła działać siła P 
w kierunku An_tAn, gdzie An oznacza wyobrażalną (n+1)-szą czą­
steczkę, i siła ta stopniowo wzrasta. Przy jakiej wartości P układ za- 
cznie się poruszać?

Dajmy na to, że dwie następujące po sobie cząsteczki Am i Am+1 
są już w stanie, graniczącym ze stanem ruchu. Oznaczmy przez Pm 
kąt, który tarcie w Am tworzy z cięciwą A+1Am, przez Tm napręże­
nie sznura AmAm+l, przez 3 kąt pomiędzy dwoma kolejnymi sznurami, 
wreszcie przez F tarcie graniczne jednej cząsteczki o stół.

Biorąc rzuty sił, działających na cząsteczki Am i A,+1, odpowie­
dnio na kierunki prostopadłe do Am_1Am i A,+14m+2, otrzymamy

Tm sin ^ = F sin (P„+8), Tm sin }= Fsin 9+1 •
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Biorąc rzuty tych samych sił na kierunki prostopadłe do sił 
tarcia obydwóch cząsteczek, znajdziemy

Im sin ?n=Tn-1 sin (?n+3), Tn+1 sinn+1==Im sin (?n+1+3).
Z dwóch pierwszych równań wynika, że ©„+3 i @„+1 są albo 

równe albo spełniające do 180°, a pozostałe równania wskazują, że 
przy drugiej alternatywie T,+1=T_1. Obydwa te przypadki są sta­
tycznie możliwe, a więc można rozmaicie dobrać siły tarcia, które, 
działając na cząsteczki, zabezpieczałyby równowagę.

Należy obrać alternatywę zgodną z założeniem, że sznury po­
czątkowo nie były wyprężone. Gdy P jest mniejsze od F, to tarcie 
w An_y ma kierunek odwrotny do P, ą wszystkie naprężenia są ze­
rami; gdy P przekroczy F, to sznur A,_2A,_ 1 nieco się wydłuża, 
i wchodzi w grę naprężenie jego. Wówczas występuje tarcie w An_2j 
działając w kierunku odwrotnym do owego naprężenia, a naprężenia 
w sznurach pozostałych są jeszcze zerami. W miarę tego, jak P wzra­
sta, występują po kolei tarcia cząsteczek oraz naprężenia sznurów. 
Skoro początkowo naprężenia były zerami, to musimy przyjąć, że na­
prężenia, wywołane przez siłę P, są w następujących po sobie.sznu­
rach coraz mniejsze, poczynając od sznura An_rAn aż do tego, w któ­
rym naprężenie jest jeszcze równe zeru. Każde inne założenie prowa­
dzi do wniosku, że, ciągnąc z pewną siłą za koniec sznura, można po 
pokonaniu oporów wywołać większe naprężenie na drugim końcu. 
Ponieważ Tm+A musi być większe od Tm_v przeto ?n+1==9n+B.

Przypuśćmy, że wszystkie cząsteczki, poczynając od Av aż do 
A,-1 są już w stanie, graniczącym ze stanem ruchu, i że T,-1=0. 
W takim razie ®,=0, ®,+1=3, i wogóle

9p+x==/8, T,+1sin s= Fsin (+1)8.
Siła P, która doprowadza wszystkie cząsteczki od A, do A,^ do sta­
nu, graniczącego z ruchem, jest równa Tn_x, a zatem

P—F p) 3 . cosec 3.

Gdy P przekroczy wartość powyższą, to wchodzi w grę naprężenie 
sznura A^Ap. Naprężenie sznura ApAp+l, potrzebne do poruszenia 
samej cząsteczki Ap bez Ap^, wynosi F cosec 3, gdy tymczasem na­
prężenie, potrzebne do poruszenia obydwóch, wynosi F sin 23 cosec 3. 
To drugie jest mniejsze od pierwszego, a stąd wynika, że tarcie czą­
steczki Ap_t stanie się granicznem, zanim Ap zacznie się poruszać. 
Widzimy więc, że gdy P ustawicznie wzrasta, to cząsteczki dochodzą 
z kolei do stanu granicznego, ale żadna z nich nie ruszy bez pozo­
stałych.

TJeżeli n3 <2, to wszystkie cząsteczki ruszą jednocześnie, i do 

tego potrzebna jest siła P=F sin n3 cosec 3.

Przypuśćmy teraz, że n3 widzieliśmy że można bez naru-
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szenia równowagi powiększyć P do Fsin p3 cosec 3, gdzie p3 jest mniej-
T

sze, a (P+1)8 większe od —. Wówczas Tn_p_x—0. Gdy P przekroczy 

tę wartość, to cząsteczka An_t ruszy sama jedna. Mianowicie do po- 
Tuszenia An_1 potrzebna jest siła F cosec 3, a naprężenie 7,2 wynosi 
wówczas Fcot. Jest to mniejsze od F sin p3 cosec 3, a więc układ 
At_^, An_3... nie doszedł jeszcze do stanu granicznego.



ROZDZIAŁ VI.

ZASADA PRACY PRZYGOTOWANEJ.

191. W rozdziale II poznaliśmy zasadę pracy przygoto­
wanej w zastosowaniu do sił, działających na cząsteczkę. Mamy 
teraz rozważyć tę samą zasadę ogólniej i zastosować ją do ukła­
dów ciał w dwóch i trzech wymiarach.

Sama zasada daje się wypowiedzieć w sposób następujący. 
Dajmy na to^ że siły Pt, P^... działają na punkty A1, A,... pe­
wnego układu ciał. Pomiędzy temi ciałami mogą istnieć dowolne 
połączenia, umożliwiające lub wyłączające ruchy względne, a za­
tem ciała mogą wywierać reakcye jedne na drugie. Przypuśćmy, że 
układ przesunął się nieco, i punkty A,, A, ... zajęły sąsiednie położenia 
A^A^... Niech dpx, dp2,... będą rzutami przesunięć AtAj, A2A2'... 
na kierunki sił Pr, P2--, i niech będzie dW—Pldp1 + P2dp2 + ... 
Układ jest w równowadze, jeżeli dW—0 dla wszystkich przesunięć, 
na które tylko pozwalają związki geometryczne, zachodzące po­
między ciałami układu.

Układ nie jest w równowadze, jeżeli daje się wynaleźć jedno 
lub więcej przesunięć, dla których dW nie jest zerem.

Biorąc ściśle, należałoby mówić, że dW jest nie zerem, 
lecz małą wielkością drugiego rzędu według terminologii ra­
chunku różniczkowego. Wyjaśni się to w dalszym ciągu.

192. Owe przesunięcia uważać należy za ruchy wyobra- 
żalne; układ może je wykonywać, ale nie jest koniecznem, aby 
to nastąpiło. W zasadzie pracy przygotowanej mamy spra­
wdzian, czy dane położenie układu jest położeniem równowagi. 
Rozważamy przedewszystkiem, jakiemi drogami układ może 
wyruszyć z danego położenia. Nie posunie się on na tej, dla 
której ^Pdp jest zerem. Badamy wszystkie przesunięcia mo­
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żliwe; jeżeli dla każdego z nich ^Pdp jest zerem, to dane po­
łożenie jest położeniem równowagi.

Takie próbne małe przesunięcia układu zowiemy przesu­
nięciami przygotoiuaneini. Iloczyn Pdp nazywa się niekiedy mo­
mentem przygotowanym, a niekiedy pracą przygotowaną siły P. 
Sumę liPdp nazywamy momentem przygotowanym lub pracą 
przygotowaną wszystkich sił.

193. Dowiedliśmy już zasadę pracy przygotowanej dla sił, 
działających na cząsteczkę pojedyńczą. W odniesieniu do układów 
ciał nie udało się dotychczas wyprowadzić tej zasady z elementar­
nych aksyomatów statycznych w sposób zadowalający. Świetną 
próbę uczynił w tym kierunku Lagrange; poznamy ją później.

Można obrać inną drogę postępowania. Uważamy, że 
układ składa się z ciał prostych. Na każde z nich działają 
niektóre z sił danych, a związek pomiędzy niemi tworzą reak- 
cye wzajemne. Tak np. Poisson uważa układ za zbiór punk­
tów, połączonych wiotkimi sznurami lub sztywnymi i nieważ­
kimi prętami Unikając wszelkich założeń, dotyczących mole­
kularnej budowy ciał, będziemy uważali, że układ składa się 
z ciał sztywnych takich rozmiarów, aby można było stosować 
do nich elementarne prawa statyki.

Dowiedziemy naprzód zasadę pracy przygotowanej dla 
ciała prostego, uważając składanie i rozkładanie sił za znane. 
Tern samem zasada będzie udowodniona i dla układu ogól­
nego, jeżeli tylko dołączymy do sił Pv P^--- wszystkie reakcye, 
które ciała układu wywierają jedne na drugie.

Zbadamy wreszcie wszystkie te reakcye. Znajdziemy, że 
nie występują one jawnie w równaniu ogólnem pracy przygo­
towanej. Stąd wynika, że zasadę wolno stosować tak, jak gdyby 
na układ działały jedynie siły P1, P2...

Główna trudność, związana z tym sposobem postępowania, 
jest następująca. Musimy znać dostatecznie reakcye jednych 
ciał na drugie, aby można było udowodnić, że ich prace przy­
gotowane są albo zerami, albo znoszą się nawzajem.

W wyżej naszkicowanym dowodzie pójdziemy w pewnej 
mierze śladem Fouriera (Journal Polytechniąue^ tom II).

Aby udowodnić twierdzenie odwrotne wypadnie zbadać,, 
jakiemi drogami układ, pozostający w spoczynku, może wyru­
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szyć z danego położenia. Okażemy, że droga jest przecięta, 
jeżeli na niej praca przygotowana sił jest zerem.

194. Dowód zasady dla swobodnego ciała sztywnego. 
Dowiedziemy naprzód, że praca przygotowana jakiegokolwiek 
układu sił jest równa pracy przygotowanej wypadkowych, jeżeli 
tylko punkty przyłożenia wszystkich sił danych są połączone 
w sposób niezmienny (par. 19).

Cała czynność, prowadząca do tych wypadkowych, daje 
się podzielić na trzy działania: (1) składamy lub rozkładamy 
siły, działające na punkt, zapomocą równoległoboku; (2) prze­
nosimy siłę z jednego punktu A do drugiego punktu B^ poło­
żonego na jej linii działania; (3) usuwamy lub dodajemy do 
układu siły równe i odwrotne. Stosując kilkakrotnie te dzia­
łania, możemy dany układ sił przekształcić na inny, prostszy, 
który nazywamy wypadkowym (117).

Dowiedliśmy w par. 66, że pierwsze z tych działań nie 
zmienia pracy przygotowanej, dowiedziemy teraz, że nie zmie­
nia jej również działanie drugie. Z tego będzie wynikało, że 
suma prac przygotowanych dwóch sił równych i odwrotnych, 
które wprowadza działanie trzecie, jest równa zeru, a zatem 
nie wpływa na pracę przygotowaną całego układu.

Niech A'B' będzie przesuniętem położeniem odcinka AB, 
i niech F oznacza siłę, której punkt przyłożenia ma być prze­
niesiony z A do B. Poprowadźmy A'AL i B'N prostopadle 
do AB. Przed przeniesieniem 
praca przygotowana wynosiła
F. AM, a po przeniesieniu
F. BN. A'B' tworzy z AB 
kąt nieskończenie mały; ko­

x 7 *v*
Fig. 57.

sy nus jego można uważać za jedność, a zatem MN— A'B'. 
Jeżeli przeto odległość pomiędzy punktami przyłożenia pozo- 
staje bez zmiany, t. j. jeżeli AB=A'Bj to BN=AAI. Stąd wy­
nika bezpośrednio, że F.AM—F.BN.

Tak więc przy wszelkich przekształceniach układu sił, zgo­
dnych z zasadami statyki, praca, którą wykonywają siły skutkiem 
jakiegokolwiek drobnego przesunięcia, pozostaje bez zmiany.

195. Zastosujmy wynik powyższy do układu sił P1, P.2..., 
działających na swobodne ciało sztywne.

Statyka. 11.
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Wszystkie siły, dadzą się sprowadzić do siły B^ działają­
cej na dowolnie obrany punkt O, i do pary G (par. 105). 
W myśl paragrafu poprzedzającego praca przygotowana sil 
P^ P2... jest przy każdem przesunięciu równa pracy przygo­
towanej siły B i pary G.

Jeżeli siły P1, P^- - są w równowadze, to zarówno B, 
jak i G, są zerami (par. 109), a zatem praca przygotowana 
sił P1, Ą-- jest przy każdem przesunięciu równa zeru.

Odwrotnie, jeżeli praca przygotowana- sił P1, P^"- jest 
zerem przy każdem przesunięciu, to i praca przygotowana B 
i G jest równa zeru, a do tego potrzeba, jak to zaraz okażemy, 
aby zarówno B, jak i G, były zerami.

Nadajmy ciału małe przesunięcie równoległe Sr w kie­
runku, w którym działa siła B; jej praca przygotowana wy­
niesie R8r. Przypuśćmy, że ramieniem pary jest AB, i że jej 
siły są przyłożone w A i B. Punkty te otrzymują równe 
i równoległe przesunięcia AA1 i BB', a ponieważ siły, działa­
jące na nie, są równe i odwrotne, przeto oczywiście prace ich 
znoszą się nawzajem. Tak więc praca pary G jest równa zeru, 
a zatem suma prac B i G może zniknąć w tylko w takim ra­
zie, jeżeli B=0.

Obróćmy teraz ciało o mały kąt 80 około prostopadłej 
z O do płaszczyzny pary. Obrót wykonajmy w tę stronę, 
w którą popędza ciało para G. Niech punkt O będzie środ­
kiem ramienia AB, i niech siły pary będą —Q. Każdy z pun- 

ktow A i B otrzymuje przesunięcie —9— W kierunku siły, 

która nań działa, a zatem suma prac sił pary wyniesie 
AB. Q8o, czyli G8o. Praca przygotowana siły B byłaby ró­
wna zeru, nawet gdyby ta siła różniła się od zera, bo jej punkt 
przyłożenia nie został przesunięty. Widzimy, że i G musi być 
zerem, aby zbiorowa praca B i G mogła zniknąć. Stąd wy­
nika bezpośrednio, że ciało jest w równowadze.

196. Siły, nie występujące w równaniu pracy przygo­
towanej. Przypuśćmy teraz, że ciało nie jest swobodne. Ruch 
jego ograniczają pewne przeszkody, lub podlega ono działaniu 
innych ciał sztywnych. Jest rzeczą niezbędną zbadać, które 
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reakcye nie wejdą do ogólnego równania pracy przygotowanej 
(jak to już wyjaśniliśmy w par. 193). Niema sposobu podać 
tu spisu wyczerpującego, ograniczymy się więc do tych przy­
padków, z którymi spotykamy się najczęściej.

I. Przypuśćmy, że dwie cząsteczki A', B, należące do układu, 
wywierają jedna na drugą siły, skierowane według prostej AB. 
Jeżeli odległość AB się nie zmienia podczas przesunięć, to prace 
przygotowane owych sił znoszą się nawzajem. Jeżeli np. cząste- 
steczki te łączy sznur niesprężysty, to naprężenie jego nie 
wejdzie do równania pracy przygotowanej.

Wynika to bezpośrednio z paragrafu 194. Mianowicie 
możemy siłę, działającą na A przenieść do B, i wówczas dwie 
siły równe i odwrotne, działające na B, doznają jednego i tego 
samego przesunięcia. Oczywiście ich prace przygotowane będą 
równe i odwrotne.

II. Jeżeli pewne ciało układu może tylko obracać się około 
punktu nieruchomego lub osi nieruchomej, to praca przygotowana 
reakcyi tego punktu lub osi jest równa zeru. Jest to oczywiste, 
gdyż przesunięcie punktu przyłożenia takiej reakcyi jest równe 
zeru.

III. Punkt A ciała może tylko posuwać się na pewnej po­
wierzchni nieruchomej.

Jeżeli powierzchnia jest gładka, to reakcya, działająca na 
punkt A, jest normalna do powierzchni. Dajmy na to, że 
punkt A przesunął się do sąsiedniego położenia" A'-, w takim 
razie przesunięcie AA' tworzy z siłą kąt prosty, a więc praca 
w myśl par. 68 jest równa zeru.

Jeżeli powierzchnia jest niegładka, to niech F będzie siłą 
tarcia. Działa ona w kierunku A'A, i jej praca wynosi — F. AA'. 
Praca ta wogóle nie jest zerem.

IV. Jeżeli jakieś ciało układu toczy się bez poślizgu po po
wierzchni nieruchomej, to praca r

Jeżeli twierdzenie to nie jest 
dostatecznie oczywiste, to można je 
dowieść w sposób następujący. Ciało 
DA.E, tocząc się po nieruchomej po­
wierzchni MABN, zajęło sąsiednie 
położenie D'BE'. Fig 58 ma wyo­
brażać przekrój powierzchni, zro­
biony przez wspólną normalną w A

akcyi jest równa zeru.
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i przez elementarny łuk toczenia się AB. Punkt A wyrusza w kie­
runku wspólnej normalnej i przybywa do A'. Zastąpmy krzywe DAE 
i MAB ich kołami krzywizny. Łuki AB i A'B są równe, a przeto, jak 
wiadomo, AA': AB2 jest równe połowie sumy krzywizn przeciwległych. 
Przyjmując, że obydwie krzywizny są skończone, dojdziemy do wnio­
sku, że AA' należy do tego samego rzędu wielkości małych, co AB2, 
czyli że AA' jest małą wielkością rzędu drugiego. Jeżeli więc zatrzy­
mujemy tylko wyrazy pierwszego rzędu, jak w zasadzie pracy przygo­
towanej, to możemy tak traktować ruch ciała, jak gdyby obracało 
się około punktu A, w danej chwili nieruchomego. Stąd i z twier­
dzenia poprzedzającego wynika, że gdy ciało toczy się po powierzchni 
nieruchomej, gładkiej czy chropowatej, to praca przygotowana reakcyi 
jest równa zeru.

V. Jeżeli powierzchnia, po której ciało się toczy, na­
leży do innego ciała układu, to powierzchnia ta jest ruchoma. 
Jeżeli jednak włączymy obydwa ciała do jednego równania 
pracy przygotowanej, to ich wzajemne reakcye, jak to zaraz 
okażemy, w równaniu tern nie wystąpią.

Każde takie przesunięcie możemy uskutecznić w sposób 
następujący: (1) przesuwamy obydwa ciała razem tak, aby 
ciało MABN zajęło położenie ostateczne, (2) toczymy ciało DAE 
po ciele AIABD, które już teraz pozostaje nieruchomem, dopóki 
DAE nie zajmie położenia ostatecznego. W ciągu pierwszego 
z tych ruchów obydwie reakcye, równe, odwrotne i przyło­
żone w tym samym punkcie A, wytwarzają oczywiście prace 
równe i odwrotne; suma tych prac jest równa zeru. W ciągu 
drugiego ruchu ciało DAE toczy się po powierzchni nierucho­
mej, a zatem praca przygotowana reakcyi jest równa zeru 
(par. 65).

197. Praca sznura sprężystego. Jeżeli punkty A i B łączy 
sznur sprężysty, to może być potrzebna praca, którą wykona napręże­
nie tego sznura, gdy długość jego zmieni się z l na l+dl. Sznur taki 
może być wyprostowany, albo zgięty w przejściach przez gładkie 
obrączki ruchome lub nieruchome, albo wreszcie może opasywać gład­
ką powierzchnię; we wszystkich tych przypadkach praca przygotowana 
naprężenia T jest równa —Tdl.

Aby jaśniej wyłuszczyć sprawę, rozważymy te różne przypadki 
z osobna.

(1) Sznur jest wyprostowany. Powróćmy do fig. 57. Praca 
przygotowana naprężenia w A jest równa =T.AM. Postawiliśmy 
znak dodatni, bo naprężenie działa na A w kierunku AB, i przesunię­
cie AM odbywa się w tym samym kierunku (par. 62). Naprężenie 
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w B wykona pracę — T. BN, a suma tych prac wyniesie — T(A'B' — AB), 
czyli —Tdl.

Jeżeli na A i B działają siły odpychające R, a nie przyciągające, 
jak w przypadku powyższym, to zastosujemy ten sam rachunek; po­
trzeba tylko wziąć —R zamiast T. Praca przygotowana będzie oczy­
wiście Rdl.

(2) . Sznur, łączący A i B, przechodzi przez pewną liczbę małych 
gładkich obrączek C, D i t. d. Obrączki są nieruchome, a sznur 
w przejściach zmienia kierunek.

Do rozważań naszych wystarczą dwie obrączki; oznaczmy je 
przez C i D. Dajmy na to, że końce A, B przesunęły się do A', B', 
i niech A'M, B'N będą prostopadłe do AC i BD. Sznur wydłużył się 
o BN i skrócił o AAL, a zatem dl=BN— AM.

A

Fig. 59.

Naprężenie jest we wszystkich punktach sznura jednakowe i ró­
wne T, a zatem prace w A i B wyniosą odpowiednio T. AM i —T. BN. 
Praca całkowita jest równa ich sumie, czyli —Tdl.

(3) Obrączki C, D..., przez które przechodzi sznur, są przymo­
cowane do innych ciał układu, a więc są ruchome.

Przypuszczamy, że wszystkie ciała są włączone do jednego ró­
wnania pracy przygotowanej. W takim razie na układ działają siły 
następujące: T działa na A w kierunku AC, T na C w kierunku CA, 
T na C w kierunku CD, T na D w kierunku DC i t. d. W myśl tego, 
co tylko co było dowiedzione, suma prac dwóch pierwszych sił wy­
nosi — T.d(AC), praca dwóch następnych —Td^CD) i t. d. Jeżeli za­
tem l oznacza całkowitą długość sznura, czyli AC+ CD+..., to całko­
wita praca wyniesie —Tdl.

We wszystkich tych przypadkach naprężenie sznura nie wystąpi 
wcale w równaniu pracy przygotowanej, jeżeli długość jego podczas 
przesunięcia nie ulegnie zmianie.

(4) Sznur, łączący A i B, biegnie po gładkiej powierzchni nie­
ruchomej, lub należącej do jednego z ciał, które obejmuje równanie 
pracy przygotowanej. Z każdym elementarnym lukiem sznura możemy 
postąpić w sposób wyżej wyłożony, a zatem wypadnie, że praca na­
prężenia wynosi —Tdl.

Uważaliśmy tu, że naprężenia we wszystkich częściach sznura, 
leżącego na gładkiej powierzchni, są jednakowe. Można to okazać 
w sposób następujący. Przypuśćmy, że sznur tworzy na gładkiej po­
wierzchni łuk BC. Dowolny element PR' tego łuku pozostaje w ró­
wnowadze pod działaniem naprężeń w P i P' oraz normalnej reakcyi 
powierzchni, a więc suma rzutów tych sił na styczną w P musi być 
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równa zeru. Oznaczmy owe naprężenia przez T, f, kąt pomiędzy 
stycznemi w P, P' przez d), a długość luku PP' przez ds. Przypuśćmy 
jeszcze, że ciśnienie powierzchni na jednostkę długości sznura jest 
skończone i równe R, to ciśnienie na łuk PP' wyniesie Rds. Rzut jego 
na styczną w P jest mniejszy od Rds sin d<\>, a więc należy do drugiego 
rzędu wielkości małych. Suma rzutów naprężeń jest równa T—T1 cos d'^ 
co sprowadza się do T— T', jeżeli odrzucamy małe wielkości drugiego 
rzędu. Ponieważ suma tu musi być zerem, przeto T—T'. Biorąc cały 
szereg elementów sznura, a mianowicie PP', P'P"..., znajdziemy, że 
naprężenia w punktach P, P', P"... są równe, czyli, że naprężenie 
sznura nie zmienia się na całej długości. Gdyby powierzchnia nie 
była gładka, to wynik byłby inny, bo, biorąc rzuty na styczną, mu- 
sielibyśmy uwzględnić siłę tarcia.

Można także okazać, że naprężenia są równe, stosując zasadę 
pracy przygotowanej do sznura BC. Przesuwamy sznur ten po danej 
powierzchni, nie zmieniając przytem jego długości. Będzie wówczas 
T.BB'=T'. CG', a zatem T=T’.

Przypuśćmy jeszcze, że sznur przechodzi przez okrągły blok 
o powierzchni chropowatej; blok może się swobodnie obracać około 
gładkiej osi, a sznur leży w płaszczyźnie prostopadłej do osi. Możemy 
w tym razie okazać równość naprężeń, biorąc momenty względem osi. 
Dajmy na to, że sznur ABGD przylega do bloku na łuku BG. Oznacz­
my naprężenia w AB i GD przez T, T', a promień bloka przez r. Bio­
rąc momenty względem osi, otrzymamy Tr=T'r, a stąd T—T'.

198. W rozważaniach poprzedzających przyjmowaliśmy 
w milczeniu, że reakcye, zastępujące połączenia, są co do wiel­
kości skończone. Jeżeli założenie takie nie jest zgodne z pra­
wdą, to ńie jest pewnem, czy praca przygotowana będzie równa 
zeru. Jeżeli w iloczynie P.dp czynnik P jest nieskończenie wielki, 
to nie wystarcza zniknięcie czynnika dp, aby zniknął cały ilo­
czyn. Tego rodzaju przypadki zachodzą niekiedy w przykła­
dach naszych, jeżeli traktujemy ciało jako nieodkształcalne 
masy sztywne. W naturze jednak pod działaniem sił bardzo 
wielkich ciała doznają odkształceń, których pomijać niewolno, 
i przesunięcia różnią się wówczas wyraźnie od przesunięć ciał 
sztywnych.

199. Twierdzenie odwrotne. W paragrafie 195 dowie­
dliśmy twierdzenie proste i odwrotne dla prostego ciała szty­
wnego; wypada jeszcze udowodnić twierdzenie odwrotne dla 
układu ciał.

Umieszczono układ w pewnem położeniu w spoczynku, i wia­
domo, że praca sił zewnętrznych dla wszystkich małych przesil- 
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nięć, nie naruszających połączeń, jest równa zeru; mamy dowieść, 
że układ jest w równowadze.

Jeżeli równowagi niema, to układ zacznie się poruszać. 
Zbadajmy wszystkie drogi, któremi układ może wyruszyć z po­
łożenia danego. Obrawszy jedną z tych dróg, urządźmy sprawę 
tak, aby układ nie mógł obrać żadnej innej. Oczywiście będziemy 
mogli to osiągnąć, wprowadzając odpowiednią liczbę gładkich 
krzywych prowadzących. Tak np. w obranym rodzaju ruchu 
pewien punkt zatacza w przestrzeni pewną krzywą. Przycze­
piamy do tego punktu gładką obrączkę i nawlekamy ją na 
sztywny gładki drut, posiadający kształt owej krzywej. Urzą­
dzenie takie zapobiega wszelkim odmiennym ruchom punktu. 
Reakcye owych krzywych prowadzących, jak już dowiedliśmy, 
nie wykonywają pracy, a więc, wprowadzając je, nie zmienili­
śmy wcale pracy sił zewnętrznych podczas obranego przesu­
nięcia.

Aby teraz układ nie ruszył z danego położenia, potrzeba 
tylko przyłożyć pewną siłę F do któregokolwiek punktu A 
w kierunku odwrotnym do tego, w którymby poszedł punkt A, 
gdyby siła F nie działała. Gdy uczynimy tak, to siły, działa­
jące na układ, będą w równowadze. Nadajmy układowi do­
wolne przesunięcie przygotowane na jedynej drodze, która je­
szcze stoi otworem. Wówczas punkt A znajdzie się w położe­
niu Aj i suma prac sił wraz z pracą siły F będzie równa zeru. 
Ale według założenia praca sił dla takiego przesunięcia jest ze­
rem, a zatem i praca siły F musi być równa zeru. Wynosi 
ona—F. AAj a skoro AA jest dowolne, przeto F musi być ze­
rem. Tak więc siła F jest niepotrzebna; układ i bez niej nie 
wyruszy obraną drogą, i to samo dotyczy dróg pozostałych. 
Stąd wynika, że układ jest w równowadze. (Thomson i Tait. 
Treatise on Natural Philosophy, 1879, par. 290).

200. Ruch początkowy. Wyobraźmy sobie, że układ ciał w pe- 
wnem położeniu jest w chwili obecnej w spoczynku, lecz działające 
nań siły zewnętrzne się nie równoważą. Układ więc zacznie się poru­
szać, i dowiedziemy, że praca sił podczas przesunięcia początkowego 
musi być dodatnia ).*

*) Dowód dynamiczny. Jeżeli układ wyruszył ze stanu spoczyn­
ku, to jak wiadomo z dynamiki, jego siła żywa po przesunięciu jest 
równa pracy, wykonanej przez siły zewnętrzne. Lecz siła żywa jest to
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Dowód tego twierdzenia jest w gruncie rzeczy powtórzeniem 
rozumowania, które już znamy z par. 199. Jeżeli układ wychodzi ze 
stanu spoczynku pewną drogą, to wprowadźmy takie krzywe prowa­
dzące, aby ruch był możliwy tylko na tej drodze. Przyłóżmy nastę­
pnie do punktu A siłę F, zapobiegającą ruchowi; okażemy, jak wyżej, 
że suma prac sił zewnętrznych oraz pracy siły F jest równa zeru. 
Lecz kierunek siły F jest odwrotny do tego, w którym poszedł by 
punkt A, gdyby siła F nie działała; z tego wynika, że przy lakiem 
przesunięciu praca siły F jest ujemna, a praca sił zewnętrznych do­
datnia.

201. Z ostatniego twierdzenia wynika bezpośrednio wniosek na­
stępujący: równowaga układu jest dostatecznie zabezpieczona, jeżeli praca 
sił dla wszystkich przesunięć jest ujemna, bo w takim razie układ nie 
może wyruszyć żadną drogą ze stanu spoczynku. Jeżeli jednak dla pe­
wnego przesunięcia praca sił jest ujemna, to dla przesunięcia odwro­
tnego, w którem kierunek ruchu każdej cząsteczki zostaje odwrócony, 
praca ta będzie dodatnia; jeśli przeto pragniemy uniemożliwić te 
wszystkie przesunięcia, na których praca sił jest dodatnia, to zwykle 
bywa niezbędnem, aby praca dla wszystkich przesunięć była zerem.

Istnieją jednak szczególne rodzaje połączeń, które pozwalają na 
pewne przesunięcia, wyłączając przesunięcia odwrotne. W takim razie 
nie jest rzeczą niezbędną, aby praca była zerem dla wszystkich przesu­
nięć. Tak np. ciężka cząsteczka, umieszczona wewnątrz stożka o osi 
pionowej, jest oczywiście w równowadze, gdy tymczasem praca jest 
dla wszystkich przesunięć ujemna, a więc różna od zera.

202. Stosowanie zasady pracy przygotowanej. Dajmy 
na to, że przy danych połączeniach układu punkty jego A1, A,... 
muszą pozostawać na pewnych powierzchniach nieruchomych. 
Mamy teraz przed sobą dwa zadania: (1) utworzyć równania 
równowagi, nie zawierające reakcyi, (2) wyznaczyć te reakcye. 
Aby osiągnąć pierwszy z tych celów nadajemy układowi przesu­
nięcia takie, podczas których punkty A1, A,... nie odchodzą od 
owych powierzchni prowadzących, i przyrównywamy do zera 
sumę prac przygotowanych, odpowiadającą każdemu przesu­
nięciu. Drugi cel osiągniemy, nadając układowi szereg przesu­
nięć innych; przy każdem z nich jeden z punktów A1, A2 ... 
powinien odejść od swej powierzchni prowadzącej. Przyrówny­
wamy znowu do zera dla każdego przesunięcia sumę prac przy­

suma iloczynów z mas cząsteczek przez połowy kwadratów ich szyb­
kości, a zatem siła żywa nie może być ujemna. Jest przeto rzeczą 
oczywistą, że układ nie może wyruszyć taką drogą, na której praca 
przygotowana sił byłaby ujemna.
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gotowanych, dołączając pracę reakcyi w owym punkcie. Tym 
sposobem otrzymamy dostateczną liczbę równań do wyznacze­
nia reakcyi.

203. Wyprowadzić równania równowagi z zasady pracy.
Równania równowagi układu wyrażają dwa twierdzenia: 

(1) suma rzutów sił na każdy kierunek jest dla każdego ciała 
lub dla każdej grupy ciał układu równa zeru, (2) suma mo­
mentów względem każdej prostej jest równa zeru.

Równania równowagi układu w jednej płaszczyźnie otrzymali­
śmy w roz. IV (109—111), odpowiednie równania dla układu w prze­
strzeni podamy szczegółowo dopiero w rozdziale dalszym; aby jednak 
uniknąć powtarzać włączamy je już tutaj do rozważań obecnych. (Zob. 
także 105 i 113).

Mamy teraz wyprowadzić te obydwa twierdzenia z zasady' 
pracy. Niech P,P,... oznaczają, jak poprzednio, siły, Ą, A, ... 
ich punkty przyłożenia, (0,, Bi, 1), (a2, 32, Y2)... ich kąty kie­
runkowe. Nadajmy ciału lub pewnej grupie ciał układu prze­
sunięcie da, równoległe do osi x. Punkt A dojdzie do A', prze­

sunięcie jego AA' — dx (fig. 60), rzut zaś AN tego przesunię­
cia na linię działania siły = da cos a. Zatem w myśl zasady 
pracy będzie

PY cos 0.1 dx + P, coś 0.2 dx + ... = 0.
Dzieląc to przez dx, otrzymamy równanie rzutów

P cos0.1 + P, cosa2 +... = 0.
Równanie to powinno obejmować wszystkie reakcye, wywierane 
na dane ciała przez ciała inne.

Aby otrzymać równanie momentów względem jakiejś pro­
stej, np. względem osi z, obróćmy rozważane ciało około tej 
osi o kąt do.

Załóżmy naprzód, że wszystkie siły działają w płaszczy­
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źnie ay, i oznaczmy odległości ich linii działań od początku 
układu przez P1, P2... Tak np. na fig. 61 OM—p. Przesunięcie 
AA' punktu A, powstałe skutkiem owego obrotu, wynosi O A. da\ 
a rzut jego na linię działania siły OA. do sin OAM^ czyli pdm. 
W myśl zasady pracy będzie

Pipido + P,P2do + ... = 0. '
Dzieląc przez do, otrzymamy równanie momentów

PP, + P,p,+...= 0.
Przypuśćmy teraz, że siły działają w przestrzeni. Rozkła­

damy przedewszystkiem każdą siłę P na dwie składowe, ró­
wnoległą i prostopadłą do osi z. Składowe te będą Pcos 
i Psin. Przesunięcie AA ich punktu przyłożenia, wynikające 
z obrotu około osi z, jest prostopadłe do tej osi, a zatem praca 
pierwszej składowej jest zerem. Druga składowa jest równole­
gła do płaszczyzny xy, i pracę jej znajdziemy zupełnie tak sa­
mo, jak gdyby działała w płaszczyźnie xy. Praca ta wyniesie 
Psinpdm^ gdzie p oznacza odległość rzutu siły na płaszczyznę 
xy od punktu O. Ostatecznie otrzymamy, jak poprzednio

Pr sin 1P1+Pa sin 2P2+... =0.
Jest to właśnie równanie momentów.

204. Łączenie równań. Biorąc rzuty i momenty, otrzymujemy 
równania równowagi dla każdego z ciał układu; z równań tych mo­
żemy tworzyć dowolne kombinacye liniowe. Mamy np. dwa równa­
nia; jedno z nich otrzymaliśmy, biorąc rzuty na pewną prostą x, a dru­
gie, biorąc momenty względem innej prostej z. Mnożymy pierwsze 
z tych równań przez X, drugie przez p. i dodaj emy iloczyny. Równa­
nie, otrzymane w ten sposób, może być przydatniejsze, do celów na­
szych, niż każde z równań pierwotnych.

Okażemy teraz, że takie równanie pochodne daje się zawsze 
otrzymać wprost z zasady pracy przygotowanej; potrzeba tylko obrać 
stosowne przesunięcie. Przypuśćmy, że obydwa równania, z których 
powstała wyżej wskazana kombinacya liniowa, są równaniami równo­
wagi tego samego ciała. Napiszmy je w postaci

ŁP cos a=0, ^Pp=Q.
Nadajemy ciału przesunięcie dx, równoległe do osi x, i obraca- 

camy je około osi z o kąt d^. Na całkowitem przesunięciu siła P wy­
kona pracę, równą sumie prac, wykonanych na każdem z przesunięć 
składowych, a zatem równanie pracy przygotowanej, odpowiadające 
całkowitemu przesunięciu, będzie

(^P cos o)dx+(ŁPp)do=0. 
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Obrawszy dx i dw w taki sposób, aby ich stosunek był równy X: p, 
otrzymamy od razu żądane równanie pochodne.

Jeżeli do danej kombinacyi należą równania równowagi ciał ró­
żnych, to przesuwamy te poszczególne ciała, przyczem zawsze prze­
sunięcie równoległe powinno odpowiadać równaniu rzutów, a przesu­
nięcie kątowe równaniu momentów.

Tworząc równania równowagi przy pomocy rzutów i momen­
tów, zastępujemy połączenia stosownemi reakcyami; toż samo uczynić 
należy przy tworzeniu równań pracy przygotowanej.

Jeżeli można z równań równowagi wyrugować pewne reakcye 
nieznane, dając stosowne wartości współczynnikom X, p. ..., to zawsze 
można otrzymać to samo równanie pochodne, również wolne od owych 
reakcyi, przy pomocy stosownego przesunięcia układu lub szeregu 
przesunięć.

205. Przykłady na pracę przygotowaną. Prz. 1. Płaszczyzna 
półkolistej tarczy ma położenie pionowe, a podstawa jej spoczywa na 
gładkiej płaszczyźnie poziomej. Na dwa dane punkty obwodu tarczy ci­
sną dwie ciężkie sztaby, wstawione luźno w gładkie i nieruchome rury 
pionowe. Jaki powinien być stosunek ciężarów sztab, aby tarcza była 
w równowadze? (Math. Tripos, 1853.)

Oznaczamy ciężary sztab AB, A'B' przez W, W', kąty, które pro­
mienie CA, CA' tworzą z poziomą średnicą Cx, przez 9, «‘, promień 
tarczy przez a, odległość pomiędzy rurami przez b, wreszcie wynie­
sienie środków ciężkości sztab ponad Cx przez y, y'. Zasada pracy 
przygotowanej daje nam równanie

- Wdy- W'dy'=0. Ą 44 
Postawiliśmy znaki ujemne, gdyż y i y' — - — 
mierzymy w górę, czyli odwrotnie do TT   TT 
kierunku sił ciążenia. Wysokości y, y' A/ 
różnią się od a sin «, a sin «‘ o wielkości / . ./ \ 
stałe, a mianowicie o połowy długości L  C , 
sztab, a więc będzie

Fis. 62.W cos d+ W' cos ©‘dę‘=0.
Prócz tego mamy związek geometryczny

a cos ©+a cos q‘= b.
Różniczkujemy to równanie i rugujemy de : dP. Wypadnie

W cot ę= W cot ‘, 
co określa stosunek żądany.

Prz. 2. Trzy ciężkie sztaby, ważące W, W2, Wa, wstawiono 
luźno w trzy rury pionowe i nieruchome. Końce sztab są oparte 
o gładką półkulę, której podstawa spoczywa na gładkiej płaszczyźnie 
poziomej. Prowadzimy przez środek półkuli C dowolną prostą pozio­
mą Cx, a przez tę prostą oraz dolne końce sztab trzy płaszczyzny. 
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Nachylenia tych płaszczyzn do poziomu oznaczamy przez 3,, 32, 33: 
Okazać, że w przypadku równowagi XW cot 8=0.

Prz. 3. Końce ośmiu jednakowych jednorodnych prętów połą­
czono luźno w taki sposób, że powstał ośmiościan. Jeden wierzcho­
łek, w którym schodzą się cztery pręty, zawieszono w punkcie nieru­
chomym i połączono z nim wierzchołek przeciwległy sprężystym sznu­
rem. Naturalna długość sznura jest równa długości jednego pręta, 
a pod działaniem ciężaru wszystkich prętów sznur wyciągnąłby się do 
długości podwójnej. Dowieść, że w położeniu równowagi każda sztaba 
tworzy z pionem kąt arccos 3/4. (Coli. Ex., 1889.)

Dajmy na to, że AE, BE, CE, DE, AE, BE, CE, DE oznaczają 
pręty, a EF sznur sprężysty, niech prócz tego W będzie ciężarem je­

dnego pręta, 2a jego długością, i 3 jego na­
chyleniem do pionu. Gdy ośmiościan jest 
w równowadze, nadajmy mu odkształcenie 
symetryczne, skutkiem czego kąt 3 przy- 
bierze przyrost d^. Gdy obierzemy punkt 
E za początek, to głębokość środka ciężko­
ści jednego z prętów górnych wyniesie 
a cos 8, a głębokość jednego z dolnych 
3a cos0; prace przygotowane ciężarów czte­
rech górnych prętów i czterech dolnych bę­
dą odpowiednio 4 Wd (a cos 3) i 4Wd(3acos 3).

Naturalna długość sznura wynosi 2a, 
a jego długość obecna EF=4a cos 0; w myśl

E(4a cos 3— 2a) 
2aprawa Hooke’a naprężenie T= gdzie E oznacza siłę,

która mogłaby wyciągnąć sznur do długości podwójnej. W danym ra­
zie E — 8W, i praca przygotowana sznura =- Td(4a cos 3) (par. 197). 
Dodając te wszystkie prace przygotowane, otrzymamy

16 IW (u cos 9-)- Td (4a cos 9)=0.
Po wprowadzeniu wyżej podanej wartości naprężenia T znajdziemy 
łatwo, że Cos 9= 3.

Prz. 4. Cylinder, posiadający promień r i ciężar W, ma być po­
ruszony pod górę na płaszczyźnie, nachylonej do poziomu pod kątem a, 
zapomocą prostej dźwigni o długości l, tworzącej z poziomem kąt 3.

Wr sin a 
Okazać, że potrzebna siła wynosi —— . --------- ------ -.

‘ l 1+cos (o+3)
(Math. Tripos, 1883.)

Prz. 5. Gładki drążek przechodzi przez pierścień, umocowany 
w ognisku elipsy. Duża oś elipsy jest pozioma, a dolny koniec drążka 
spoczywa na ćwiartce krzywej, bardziej odległej od owego ogniska.

(3+ V1+8e2)a
Okazać, że długość drążka musi co najmniej wynosić-------- - -------- ‘ 

gdzie a oznacza połowę dużej osi i e mimośród. (Math. Tripos, 1883.)
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Prz. 6. Płyta w postaci trójkąta równoramiennego spoczywa 
w płaszczyźnie pionowej wierzchołkiem na dół pomiędzy dwoma gład­
kimi kołkami, położonymi na tym samym poziomie. Podstawa płyty 
jest trzy razy dłuższa od odległości pomiędzy kołkami, a kąt u wierz­
chołka jest równy 2a. Okazać, że zachodzi równowaga, jeśli podstawa 
tworzy z pionem kąt arc sin (cos 2a). (Math. Tripos, 1881.)

Prz. 7. Trzy sztaby AB, BC, CD, każda o długości 2a, łączą się 
gładkimi przegubami B i C. Sztaby AB i CD są oparte o dwa gładkie 
kołki, położone na jednym poziomie w odległości 2c jeden od drugie­
go, i tworzą z poziomem jednakowe kąty a. Okazać, że napręże­
nie sznura AD, który utrzymuje układ w obecnej formie, wynosi 

— (3+2 cos 3), gdzie w oznacza wagę każdej sztaby.

(St John’s Coli., 1890.)

Wcosec a sec2a 3c
4 La

Prz. 8. Cztery sztaby równe i jednorodne są połączone przegu­
bami i tworzą kwadrat w płaszczyźnie pionowej; jedna z przekątni 
tego kwadratu ma położenie pionowe, a dwie sztaby górne spoczywają 
na dwóch gładkich kołkach, położonych na jednym poziomie. Okazać, 
że na kołkach są oparte środki sztab, i wyznaczyć reakcye w prze­
gubach. (Coli. Ex., 1884.)

Prz. 9. Trzy jednakowe, jednorodne sztaby AB, BC, CD łączą 
się przegubami w B i C. Końce A i D są zaopatrzone w gładkie 
obrączki, nawleczone na paraboliczny drut. Oś paraboli jest pionowa, 
wierzchołek zwrócony ku górze, a latus rectum równy połowie sumy 
długości wszystkich trzech sztab. Okazać, że kąt 3, który sztaba AB lub 
CD tworzy z pionem, czyni zadość równaniu cos I— sin $+sin 28=0.

(Coli. Ex., 1881.)
Prz. 10. Brzeg nieruchomego naczynia półkulistego o promie­

niu r leży w płaszczyźnie poziomej. Do naczynia włożono ciężki je­
dnorodny prostokąt ABCD tak, że boki AD i BC są oparte o brzeg, 
a wierzchołki A i B spoczywają na powierzchni wewnętrznej. Oka­
zać, że

4(r2—b2) COS 223— U2 COS 20=0,

gdzie 3 oznacza nachylenie prostokąta do poziomu, AB=2b i BC—2a.
(Coli. Ex., 1891.)

Prz. 11. Połączono luźno n jednakowych i jednorodnych sztab 
tak, że stanowią symetryczne tworzące stożka, którego kąt wierzchoł­
kowy jest równy 2a. Ciężar każdej sztaby wynosi W', a długość l; owo 
luźne połączenie znajduje się w wierzchołku stożka. Sztaby są oparte 
wolnymi końcami o wewnętrzną powierzchnię kuli o promieniu r, przy- 
czem oś stożka jest pionowa i u wierzchołka wisi ciężar W Okazać, że

l2(3n2 W‘2+4n W' W) cos 2==(r2—[2) (n I‘+2 W),
i wyznaczyć reakcyę, działającą w wierzchołku stożka na każdą sztabę.

(Coli. Ex., 1884.)
Prz. 12. Namiot stożkowy, ustawiony na gładkiej podłodze, skła­
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da się z wielkiej liczby jednakowych trójkątów równoramiennych, 
połączonych luźno w wierzchołku, a ciężka obręcz, założona na na­
miot, utrzymuje go w obecnej formie. Okazać, że połowa kąta u wierz-

(r / 3 W’ \‘/s 
chołka stożka wynosi arc sin (h (Wi3W1) J ‘ gdzie W, W' oznaczają 

ciężary stożka i obręczy, r promień obręczy, i h wysokość trójkąta.
(St John’s Coli., 1885.)

Prz. 13. Na nieruchomej gładkiej kuli leży strefa drobnych je­
dnakowych kulek. Zsuwaniu się kulek zapobiega sprężysta przepaska, 
tworząca na kuli poziome koło, którego promień widać ze środka pod

W tan a
kątem a. Okazać, że naprężenie przepaski T =--------- , gdzie W ozna-

2T
cza zbiorowy ciężar kulek i przepaski. (St John’s Coli., 1885.)

Należy przyjąć, że środek ciężkości takiej strefy leży w środku 
wysokości.

Fankcya sił.

206. Współrzędne układu. W statyce głównem zada­
niem naszem jest wyznaczenie położeń równowagi układu ciał. 
Do tego są potrzebne jakieś wielkości, określające położenie 
układu w przestrzeni. Tak np. położenie cząsteczki w geome- 
tryi dwuwymiarowej jest określone, gdy znamy jej dwie współ­
rzędne x, y. Jeżeli pewne ciało posiada swobodę ruchu w pła­
szczyźnie xy, to położenie jego jest określone, gdy mamy współ­
rzędne x, y jednego z jego punktów oraz kąt 3, który pewna 
prosta, należąca do ciała, tworzy z osią x. Te trzy wielkości 
x, y i 3 nazywamy współrzędnemi ciała.

Gdy chodzi o ciało w przestrzeni, to, pragnąc określić po­
łożenie jego, podajemy (1) współrzędne x, y, z pewnego pun­
ktu A, należącego do ciała, i (2) dwa kąty, które pewna pro­
sta AB, należąca do ciała, tworzy z osiami x i y. Jeśli tylko 
te wielkości są dane, to położenie ciała nie jest jeszcze całko­
wicie utrwalone, bo może ono obracać się około prostej AB. 
Potrzebny jest nadto (3) kąt, który pewna płaszczyzna, prze­
chodząca przez AB i należąca do ciała, tworzy z pewną pła­
szczyzną, utrwaloną w przestrzeni. Te sześć wielkości, lub ja­
kieś inne sześć wielkości, określających położenie ciała, zowią 
się współrzędnemi jego.

Jeżeli ciało jest nieswobodne, to sprawa zmienia się nie­
wiele. Przypuśćmy dla przykładu, że końce pręta długości da­
nej muszą pozostawać na dwóch danych krzywych w płaszczy­
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źnie pionowej. W takim razie położenie pręta daje się określić 
nachyleniem jego do poziomu lub odciętą jednego z końców. 
Każda z tych wielkości, albo jakaś inna wielkość, określająca 
położenie pręta, zowie się jego współrzędną.

207. W przypadku ogólnym, gdy chodzi o cały układ 
ciał, luspółrzędnemi układu zowią się jakiekolwiek wielkości, okre­
ślające położenia wszystkich części składowych układu.

Jeśli pewien punkt musi pozostawać na pewnej powierzchni 
lub pewnej linii, to pomiędzy współrzędnemi Kartezyusza tego 
punktu istnieją związki, wyrażone w równaniach. Zupełnie tak 
samo, gdy ruch układu podlega pewnym ograniczeniom, to 
współrzędne układu są powiązane równaniami. Przy pomocy 
tych równań można wyrugować tyle współrzędnych, ile jest 
równań; osiągniemy przez to, że położenie układu będzie zale­
żało od mniejszej liczby współrzędnych. Te pozostałe współ­
rzędne będą niezależne jedne od drugich, bo już nie istnieją 
żadne równania połączeń, ograniczających ruch układu.

Przypuśćmy, że układ jest odniesiony do współrzędnych 
niezależnych. Każda z nich może się zmieniać, gdy inne pozo- 
stają bez zmiany, a więc istnieje tyle rodzajów ruchu układu, 
ile jest współrzędnych. Każde małe przesunięcie, określone przez 
jednoczesną zmianę pewnej liczby współrzędnych, możemy od­
tworzyć, zmieniając naprzód jedną ze współrzędnych, potem 
drugą i t. d. Z tego względu liczba współrzędnych niezależnych 
zowie się liczbą stopni swobody układu.

208. Funkcya sił. Umieśćmy układ ciał w pewnem po­
łożeniu i dajmy mu następnie nieskończenie małe przesunięcie, 
nienaruszające ograniczeń, którym skutkiem danych połączeń 
podlega ruch układu. Niech X, Y, Z będą składowemi siły P, 
a {xyzj współrzędnemi prostokątnemi jej punktu przyłożenia. 
Praca siły P jest równa pracy składowych, a zatem ogólne 
wyrażenie pracy będzie

^Pdp^{Xdx + Ydy + Zdz)......... (1); 
znak sumy Z rozciąga się tu na wszystkie siły układu.

Niech 3, “, ... będą współrzędnemi niezależnemi układu, 
a zatem współrzędne x, y, z każdego punktu każdego ciała da­
dzą się wyrazić w funkcyach 3, ©... Tak więc x, y, z oraz
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X, Y, Z są to wszystko funkcye wiadome współrzędnych 3, «... 
Gdy wprowadzimy je do (1), to równanie to przybierze postać

2Pdp=@d8+@dp+... (2), 

gdzie 0, ... oznaczają znane funkcye współrzędnych 3, ©...
209. Współczynniki Q, c ,... posiadają nieraz elementarne znacze­

nie statyczne. Przypuśćmy dla przykładu, że gdy 8 się zmieni (przy- 
czem inne współrzędne pozostają bez zmiany), to ciało obróci się 
około pewnej prostej o kąt d3. W takim razie Od8 jest pracą, wyko­
naną przez siły podczas tego obrotu. Lecz według paragrafu 203 praca 
ta wynosi Md^, gdzie M jest momentem, a zatem 0 jest momentem 
sił względem owej prostej.

Przypuśćmy dalej, że zmiana, zachodząca we współrzędnej d^, 
wywołuje przesunięcie ciała równoległe do osi x; w takim razie we­
dług tego samego paragrafu H oznacza sumę rzutów sił na oś x.

210. Znaleziono, że najczęściej powyższe wyrażenie na 
pracę jest różniczką zupełną pewnej wielkości, którą oznaczymy 
przez W. Przypuśćmy dla przykładu, że siła P, działająca na 
punkt (xyz), jest odpychaniem, wywieranem przez pewien śro­
dek sił C, czyli że jej linia działania przechodzi wciąż przez 
nieruchomy punkt C. Praca takiej siły dla każdego drobnego 
przesunięcia wynosi Pdr, gdzie r oznacza odległość punktu przy­
łożenia od punktu C. Jeżeli P jest funkcyą odległości r, to ta 
część wyrażenia 'LPdp, która pochodzi od siły P, jest różniczką 
zupełną.

Albo przypuśćmy, że pomiędzy punktami A i A', nale­
żącymi do układu, działa siła T. Może ją wywierać sznur 
sprężysty, podobny do opisanego w par. 197, albo jakaś inna 
przyczyna, dość że siła ta jest pewną funkcyą odległości po­
między A i A’. Praca siły takiej wynosi — Pdr; jest to ró­
żniczka zupełna, bo T jest funkcyą r.

Układ może podlegać działaniu różnorodnych sił central­
nych, albo mogą w nim działać siły pomiędzy różnemi parami 
punktów; we wszystkich tych przypadkach część pracy przy­
gotowanej, dostarczona przez każdą z sił, jest różniczką zu­
pełną.

Dwa przypadki powyższe są typowe. Zwykle siły zewnętrz­
ne są siłami centralnemi, a siły wewnętrzne albo wcale nie 
występują w równaniu pracy przygotowanej, albo działają po­
między parą punktów układu, jak wyżej opisane.
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211. We wzorze (2) paragrafu 208 mamy ogólne wyra­
żenie pracy sil w jakiemkolwiek małem przesunięciu, a więc 
całka tego wyrażenia, wzięta w pewnych granicach, jest pracą 
sił, wykonaną podczas przesunięca skończonego, gdy układ 
przechodzi od pewnego położenia I do innego położenia II. 
Aby znaleźć granicę niższą nadajemy współrzędnym 3, © ... te 
wartości, które przybierają one w położeniu I, granicę wyższą 
znajdziemy, dając tym współrzędnym wartości, odpowiadające 
położeniu II.

Jeżeli wyrażenie (2) jest różniczką zupełną, to możemy 
wykonać całkowanie, nie znając wcale drogi, którą układ prze­
chodzi z jednego położenia do drugiego. Całka W jest w takim 
razie funkcyą granic i zależy jedynie od pierwotnego i koń­
cowego położenia układu. Położenia pośrednie nie wywierają 
wpływu, a zatem praca sił w przejściu z jednego położenia do 
drugiego jest zawsze ta sama, jakąkolwiek drogę obierze układ, 
jeżeli tylko nigdzie na niej nie zostaną naruszone związki geo­
metryczne, ograniczające swobodę ruchu.

Jeżeli wyrażenie ItPdp jest różniczką zupełną, to mówimy, 
że siły tworzą układ konserwatywny.

Obierzmy pewne położenie układu ciał za podstawę; okre­
ślimy je wartościami współrzędnych 3=31, ©=®1,... Biorąc 
podstawę za niższą granicę całki, a jakieś położenie ogólne za 
granicę wyższą, otrzymamy

w= / ^.Pdp - F(9, -)- F(%, ,P.).

Gdy nie zachodzi potrzeba obierania podstawy od razu, to pi- 
szemy całkę w postaci nieokreślonej, a mianowicie

W=F(9, P,..)+C.
Funkcya W, zwłaszcza w postaci nieokreślonej, zowią się zwy­
kle funkcyą sił.

W pewnych razach podstawę obiera się za granicę górną, 
a położenie ogólne za dolną. Dajmy na to, że podstawę okre­
ślają wartości 3 =92, ={2,...; w takim razie otrzymamy całkę

v-F(9, 2-)-F(0, P,.).
Zowie się to zwykle energią potencyalną sił w odniesieniu do 
położenia, określonego wartościami 3=32, ©=®2,... Jeżeli w oby­
dwóch razach obrano tęż samą podstawę, to W= — V.

Statyka. 12
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Wypada zaznaczyć, że w każdym razie W + V wyraża pra­
cę, którą wykonają siły, gdy układ przejdzie jakąkolwiek drogą 
z położenia ($1, 1,...) do położenia (32, ?2,-)- Jeżeli te poło­
żenia zostały utrwalone, to suma owa jest stała dla wszystkich 
położeń układu.

212. Maksymum i minimum. Dajmy na to, że układ 
jest w równowadze; w takim razie dla każdego przesunięcia 
przygotowanego dW=0, a więc W osiągnęło maksymum, lub 
minimum, albo stoi w mierze. Alternatywa ostatnia odpowiada 
przypadkowi, w którym zniknięcie pierwszych pochodnych nie 
jest oznaką prawdziwego maksymum lub minimum.

Zyskujemy tu nową metodę wyznaczania położeń równo­
wagi układu. Uważamy funkcyę sił jako wiadomą funkcyę 
współrzędnych 3, «, ..., a mianowicie

W=F(, P,...)+C.
Aby znaleźć położenia równowagi, wyznaczamy przy pomocy 
prawideł rachunku różniczkowego te wartości współrzędnych 
3, ©..., dla których W osiąga maksymum lub minimum.

213. Jeżeli wszystkie współrzędne 3, ©,... są niezależne, to przy­
równywamy do zera wszystkie pochodne cząstkowe funkcyi W. Jest 
to toż samo, co nadać układowi stosowne przesunięcia geometryczne, 
które otrzymamy, zmieniając po kolei 0, « ..., i przyrównać do zera 
każdą z odnośnych prac przygotowanych. Pomimo to metoda, wska­
zana w par. poprzedzającym, jako analityczna a nie geometryczna, po­
siada w wielu razach stanowczą wyższość.

Jeżeli położenie układu nie daje się wyrazić we współrzędnych 
niezależnych, to możemy sprowadzić zagadnienie do rozwiązywania ró­
wnań przy pomocy metody czynników nieoznaczonych Lagrange‘a.

Przypuśćmy, że pomiędzy n współrzędnemi 31, 32, ... zachodzi m 
związków geometrycznych

1(9,9.,.)==0, /(9,, 9..)=0 i t. d.
Tak więc z n współrzędnych n—m jest niezależnych. Różniczkując 
i wprowadzając m czynników X15 X,... , otrzymamy

-0W Of 0f
409 109 209 dł=0.

gdzie Z rozciąga się na 31, 32.... Mamy tu do rozporządzenia m czyn- 
ników ku X2. —; obieramy je tak, by zniknęły współczynniki różniczek 
m współrzędnych zależnych. Pozostałe współrzędne są niezależne; mo­
żemy każdą z nich zmieniać niezależnie od pozostałych, a przeto z ró­
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wnania wynika, że odpowiednie współczynniki muszą być również 
zerami. Skoro współczynniki wszystkich d8 są zerami, mamy więc n 
równań postaci

dW dR dR
— + +...=o.
09 08 108

Dołączając do tego m danych związków geometrycznych, będziemy 
mieli m+n równań do wyznaczenia n współrzędnych i m czynników.

w
w
w

214. Równowaga trwała i chwiejna. Układ ciał jest 
pewnem położeniu w równowadze, jeżeli funkcya W posiada 
tem położeniu maksymum lub minimum, albo jeśli stoi 
mierze. Pomiędzy tymi różnymi przypadkami istnieją jednak 

ważne różnice.
Dajmy na to, że układ pozostaje iv równoiuadze iv taktem 

położeniu, w którem W osiągnęło prawdziwe maksymum. Gdy 
układ przejdzie do jakiegokolwiek położenia sąsiedniego bez 
naruszenia połączeń, to W się zmniejszy. Umieśćmy istotnie 
układ w jednem z owych położeń sąsiednich. Nie będzie już 
tam równowagi, a więc rozpocznie się ruch. Ruch ten w myśl 
par. 200 musi być taki, aby początkowa praca sił była doda­
tnia, t. j. aby W wzrastało. Stąd wynika, że układ usiłuje zbli­
żyć się do pierwotnego położenia równowagi. Mówimy, że w po­
łożeniu owem równowaga była trwała.

Przypuśćmy teraz, że układ pozostaje w równowadze w ta- 
kiem położeniu, w którem W osiągnęło prawdziwe minimum. 
Gdy układ przejdzie do jakiegoś położenia sąsiedniego, to W 
wzrośnie. Umieśćmy układ w jednem z owych położeń sąsie­
dnich. Znajdziemy tak samo, jak poprzednio, że pójdzie on dro­
gą, która oddala go od pierwotnego położenia równowagi. Ró­
wnowaga zowie się w tym razie chwiejną.

Przypuśćmy wreszcie, że układ pozostaje w równowadze w ta- 
kiem położeniu, w którem dla W nie zachodzi ani prawdziwe ma­
ksy mum, ani prawdziwe minimum. W niektórych położeniach 
sąsiednich W jest większe, w innych mniejsze. Rozumując tak 
samo, jak poprzednio, znajdziemy, że równowaga jest trwała 
dla jednych przesunięć, a chwiejna dla innych. Zgodnie z de- 
finicyą, podaną w par. 75, taki stan równowagi uważać należy 
wogóle za nietrwały.

215. Rozważaliśmy jedynie, w jaki sposób układ ruszy 
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' z miejsca, lecz nie badaliśmy wcale, czy w dalszym ciągu będzie 
on zbliżał się do położenia równowagi, czy oddalał od niego. 
Wyjaśniliśmy już w paragrafie 75, że jest to zagadnienie dyna­
miczne, wogóle jednak wyniki badań dynamicznych są zgodne 
z tymi, do których doszliśmy tutaj.

216. Zamiast funkcyi prac można stosować energię po- 
tencyalną. Suma W + V jest stała, a zatem wszystkie wyniki 
powyższe zamieniają się na wprost odwrotne. Gdy umieścimy 
układ w jakiemkolwiek położeniu, w którem niema równowagi, 
to zacznie się on poruszać w taki sposób, że energia potencyalna 
będzie się zmniejszała. W położeniu równowagi energia poten­
cyalna osiąga maksymum lub minimum, albo stoi w mierze. 
Równowaga jest trwała lub chwiejna stosownie do tego, czy 
nastąpiło prawdziwe minimum, czy maksymum.

217. W rozważaniach poprzedzających przyjmowaliśmy, 
że żadne z położeń sąsiednich nie jest położeniem równowagi; 
jest wszakże rzeczą możliwą, że W pozostaje stałem dla jakichś 
dwóch położeń kolejnych, a zmniejsza się, gdy układ przecho­
dzi do każdego innego położenia sąsiedniego. W takim razie 
równowaga jest obojętna dla przesunięcia od jednego z owych 
położeń kolejnych do drugiego i trwała dla wszystkich przesu­
nięć pozostałych. Możliwe są tu różne przypadki. Tak np. ró­
wnowaga może być obojętna dla większej liczby przesunięć lub 
nawet dla wszystkich przesunięć z danego położenia; albo W 
może być stałe dla wszystkich położeń, określonych przez pewne 
związki pomiędzy współrzędnemi, zmniejszać się zaś dla wszel­
kich zboczeń układu od tego miejsca geometrycznego. Mamy 
w takim razie miejsce geometryczne położeń równowagi, i w ka- 
żdem z nich równowaga jest trwała dla wszelkich przesunięć 
w bok od tego miejsca. Jeżeli układ ciał posiada tylko dwie 
współrzędne 3, «, to możemy uważać 3, « i W za trzy współ­
rzędne x, y, z powierzchni. Każda osobliwość, pozostająca 
w związku z maksymum lub minimum współrzędnej z takiej 
powierzchni, posiada odpowiednik statyczny w położeniach ró­
wnowagi układu.

218. Wzniesienie środka ciężkości. Często spotykamy 
się z następującem ważnem zastosowaniem twierdzenia pracy 
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przygotowanej. Przypuśćmy, że ciążenie jest jedyną siłą ze­
wnętrzną, działającą na układ. Oznaczmy przez m,, m,... masy 
różnych cząsteczek układu, przez 21, Z... ich wzniesienia nad 
pewną stałą płaszczyzną poziomą i wreszcie przez z wzniesie­
nie ich środka ciężkości. Wypadnie wtedy z^m = ^mz. Jeżeli g 
jest stałe, a więc mg wyraża ciężar masy m, to praca przygo­
towana ciążenia będzie

dW= —hmgdz^ —gdz^m^ 
a zatem funkcya sił W= —zg^m+C.

Funkcya ta osiągnie prawdziwe maksymum lub prawdzi­
we minimum stosownie do tego, czy środek ciężkości zajmie 
położenie najniższe, czy najwyższe.

Wyprowadzamy stąd twierdzenie następujące. Przypuśćmy, 
że na układ ciał działają tyłka siły ciążenia i takie reakcye wza­
jemne, które nie występują w równaniu pracy przygotowanej; przy­
puśćmy dalej, że układ ten jest podtrzymywany przez reakcye pe­
wnych nieruchomych powierzchni gładkich lub przez jakieś inne 
siły, nie występujące w równaniu pracy przygotowanej. Równo­
waga zachodzi dla tych położeń, w których wzniesienie środka 
ciężkości układu nad jakąś stałą płaszczyzną poziomą osiąga ma­
ksymum lub minimum, albo stoi w mierze. Równowaga bę­
dzie trwała lub chwiejna zależnie od tego, czy wzniesienie 
środka ciężkości osiągnęło prawdziwe minimum, czy nie osią­
gnęło.

219. Następstwo kolejne położeń trwałych i chwiejnych. 
Przypuśćmy, że skutkiem istniejących połączeń układ posiada 
tylko jeden stopień swobody. Gdy układ ten porusza się w prze­
strzeni, to jego środek ciężkości zatacza pewną linię określoną. 
Położenia, w których rzędna jego osiąga prawdziwe maksymum 
lub prawdziwe minimum oczywiście następują naprzemian. 
Stąd wynika, że położenia równowagi prawdziwie stałej i ró­
wnowagi prawdziwie chwiejnej również następują naprzemiany.

220. Metoda analityczna badania trwałości równowa­
gi. Aby okazać, w jaki sposób twierdzenie powyższe daje się 
stosować do wyznaczania położeń równowagi w sposób ana­
lityczny, przypuśćmy, że układ posiada tylko jeden stopień 
swobody. Obieramy naprzód pewną wielkość, określającą po­
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łożenie układu; będzie to współrzędna jego. Oznaczmy ją lite­
rą 3. Chodzi więc o znalezienie tej wartości 3, przy której 
układ jest w równowadze. Niech z oznacza wzniesienie środka 
ciężkości układu nad pewną stałą płaszczyzną poziomą. Opie­
rając się na geometrycznych danych zagadnienia, wyrazimy z 
w funkcyi 0, i wówczas wyznaczymy żądaną wartość 3 z ró- 

dzwnania — = 0. Aby sprawdzić, czy równowaga jest trwała czy 

d^zchwiejna, różniczkujemy po raz drugi i znajdujemy —09. Jeżeli 

ta druga pochodna dla tylko co wyznaczonej wartości 3 jest 
dodatnia, to równowaga jest trwała, w przeciwnym razie chwiej­
na. Jeżeli druga pochodna jest zerem, to należy zbadać trzecią 
i wyższe pochodne stosownie do prawideł, podawanych w ra­
chunku różniczkowym na rozróżnianie maksymum i mini­
mum funkcyi jednej zmiennej niezależnej.

Jeżeli współrzędna 9 nie zmienia się od 3= oo do 
3=+oo, to może ona sama posiadać maksyma i minima. 
Warto przypomnieć, że przy tych wartościach zmiennej 3 wznie­
sienie z może osiągać maksyma i minima odmienne od tych, które 
otrzymujemy przy pomocy zwykłej metody rachunku różniczko­
wego.

221. Przykłady. Prz. 1. Jednorodna ciężka sztaba AB jest oparta 
o gładką pionową ścianę i o gładki kołek C. Wyznaczyć położenie ró­
wnowagi i zbadać, czy równowaga jest trwała, czy chwiejna.

Niech 2a będzie długością sztaby, b odległością kołka od ściany; 
kąt, który sztaba tworzy ze ścianą, oznaczymy literą 9 i obierzemy 

za oś x prostą poziomą, przechodzącą przez 
C. W takim razie wzniesienie środka cięż­
kości sztaby

of

z—a cos 3 — b cot 3,

— — a sin 3 + b (sin 3) -2,
dz 
d8 
d2z 
78.2= — a cos 3— 2b (sin 3)-3 cos 3.

bdzZakładając —=0, znajdziemy, że równowaga następuje, gdy sin 33=—; 
d^’ a

d2z 
równowaga ta jest chwiejna, gdyż —— jest ujemne.

Prz. 2. Prosty stożek ścięty wisi na gładkiej ścianie na sznurze, 



— 183 —

przyczepionym do obwodu podstawy. Długość sznura / jest równa 
średnicy podstawy, a odległość środka ciężkości stożka od podstawy 
wynosi kl. Stożek pozostaje w równowadze, opierając się o ścianę 
jednym punktem obwodu podstawy. Okazać, że tangens kąta, który

2k
sznur tworzy z pionem, jest równy —. Czy równowaga jest trwała?

Prz. 3. Ciało pozostaje w równowadze pod działaniem trzech 
sił P, Q, R, przyłożonych w punktach A, B, C. Gdy poruszymy ciało, 
to siły nie przestają działać w tych samych kierunkach i nie zmie­
niają się pod względem wielkości. Odległości punktów A, B, C w sta­
nie równowagi od punktu O, w którym przecinają się linie działania 
sił, wynoszą a, b, c; uważamy je za dodatnie, gdy są mierzone od pun­
ktu O w kierunkach sił. Okazać, że dla przesunięć w płaszczyźnie sił 
równowaga jest trwała, obojętna lub chwiejna stosownie do tego, czy 
Pa+QbpRc jest wielkością dodatnią, zerem, czy ujemną.

(Coli. Ex., 1892.)
Rozwiązanie elementarne podaliśmy w par. 77. Aby zastosować 

kryteryum pracy, obracamy ciało o kąt 3 około punktu O i pozosta­
wiamy je w spokoju w tern nowem położeniu. Podczas powrotu ciała 
do położenia pierwotnego siły wykonają pracę X(1— cos 3), gdzie 
X=Pa + Qb+Rc. Jeżeli X jest dodatnie, to równowaga jest trwała (200 
lub 214).

222. Prz. Ciężkie ciało może poruszać się w płaszczyźnie pio­
nowej, przyczem jego punkty A i B muszą pozostawać odpowiednio 
na dwóch gładkich krzywych podobnych i równych, posiadających 
równania x—f(<y') i x=—f{y), jeśli'oś y 
ma kierunek pionowy. Prostopadła, po­
prowadzona ze środka ciężkości G do 
cięciwy AB, dzieli ją na pół w E. Wska­
zać, jak się znajduje położenia równo­
wagi, i sprawdzić, czy w położeniu po­
ziomem cięciwy AB równowaga jest 
trwała.

Niech będzie AB=2a, GE=h, i niech 9 oznacza nachylenie pro­
stej AB do poziomu, a (xy) współrzędne środka ciężkości G. Ponieważ 
punkty A, B leżą na danych krzywych, przeto

x+h sin 3+a cos ^=f(y—h cos 3+a sin 8) \
x+h sin 8—a cos =- f{y—h cos 9— a sin 9) /

Rugując x, otrzymamy
2a cos $=fy—h cos 8+a sin ^)+f(y — h cos I— a sin 9)

Różniczkujemy i zakładamy —=0. Wypadnie
do

-2a sin ^z^f^y—h cos 8+a sin 9)(h sin $+a cos 8) \
Ą-f'{y—h cos I— a sin 8)(h sin 9— a cos 9) / '

(1).

(2).

(3).
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Z równania tego łącznie z (1) możemy wyznaczyć x, y i 3. Oczywiście 
3=0 czyni zadość (3), a zatem w położeniu poziomem AB przypada 
jedno z położeń równowagi.

Aby zbadać rodzaj równowagi w tem położeniu, różniczkujemy 
(2) dwa razy, i po dokonaniu redukcyi znajdziemy bez trudności, że

d2U _a+a2f"(y-h') 
d^~~ f(y-h) (4).

Równowaga będzie trwała lub chwiejna stosownie do tego, czy strona 
prawa jest ujemna, czy dodatnia.

• d2y . , .Jeżeli w położeniu równowagi — jest zerem, to mówimy, że 

równowaga jest obojętna w przybliżeniu pierwszem. Należy w takim 
razie różniczkować (2) w dalszym ciągu, aby się przekonać, czy y 
osiąga prawdziwe maksymum, czy minimum, czy ani jedno ani dru- 

gie. Znajdziemy, że —=0 i

d‘y_-a+(3h2-4@2f"(y-h)+6azhf""(y-h±a‘f""(y-h)
~d^~ ”(-1)

Równowaga będzie trwała lub chwiejna stosownie do tego, czy prawa 
strona jest ujemna czy dodatnia. Jeżeli i to znika, uciekamy się do 
pochodnych wyższych.

223. Prz. 1. Pryzmat, którego przekrój poprzeczny jest trójką­
tem równobocznym, spoczywa dwiema krawędziami na dwóch gładkich 
płaszczyznach, nachylonych do poziomu pod kątami a i 3. Okazać, że

23 sin a sin 3 +sin (A.+3) tan 0=----------- —--------------------- ,
V3 sin (a — 3)

jeżeli 3 oznacza kąt, który ściana pryzmatu, zawierająca owe krawę­
dzie, tworzy z pionem. (Coli. Ex., 1889.)

Prz. 2. Czasza ma postać takiej powierzchni obrotu, że każdy 
pręt, spoczywający w niej poziomo, jest w równowadze obojętnej 
w przybliżeniu pierwszem. Okazać, że

dx\2—) =2log^ 
dy/

a

jest równaniem różniczkowem krzywej tworzącej (południka), jeżeli 
oś y ma kierunek pionowy. Okazać prócz tego, że równowaga będzie 
trwała lub chwiejna stosownie do tego, czy długość pręta jest mniej- 

2a
sza, czy większa od —-, gdzie e oznacza podstawę logarytmow natu- 

ela
ralnych.

Prz. 3. Jednorodna płyta kwadratowa może się obracać w pła­
szczyźnie pionowej około wierzchołka A. Sznur, przyczepiony do są­
siedniego wierzchołka B, przechodzi przez blok, umieszczony pionowo



— 185 —

1 
nad A w odległości równej bokowi kwadratu, i dźwiga ciężar V2 

razy większy od ciężaru płyty. Wyznaczyć położenia równowagi i okre­
ślić ich rodzaje. (Matli. Tripos, 1855.)

Prz. 4. Końce nieważkiego pręta mogą się przesuwać po gład­
kiej obręczy, położonej w płaszczyźnie pionowej. U końców pręta wisi 
ciężar na dwóch sznurach, przechodzących przez mały gładki pierścio­
nek, umocowany pionowo pod środkiem obręczy. Dowieść, że ciężar 
jest w równowadze trwałej, gdy pręt przechodzi przez środek biegu­
nowej pierścionka względem obręczy. (Math. Tripos, 1859.)

Prz. 5. Trzy wierzchołki jednorodnego i foremnego czworościanu 
pozostają w zetknięciu z wewnętrzną powierzchnią nieruchomego na­
czynia w kształcie półkuli; wielkość naczynia jest taka, że gdyby je 
dopełnić do kuli, to powierzchnia jego przeszłaby i przez czwarty 
wierzchołek czworościanu. Okazać, że czworościan jest w równowa­
dze we wszystkich położeniach, prócz tego okazać, że 3(P2 + Q2 + R2) — 
—2(QR+RP+PQ)=3 W2, gdzie W oznacza ciężar czworościanu, a P, Q, R 
reakcye naczynia. (Math. Tripos, 1869.)

Prz. 6. Prosty stożek styka się swą krzywą powierzchnią z dwo­
ma jednakowymi gładkimi, cylindrami. Osi tych cylindrów są równole­
głe i leżą w jednej płaszczyźnie poziomej, a przekroje poprzeczne są ko­
łami o promieniu a. Okazać, że stożek może pozostawać w równowadze, 
gdy oś jego leży w płaszczyźnie prostopadłej do osi cylindrów i two­
rzy z pionem kąt 3, czyniący zadość równaniu 4d cosł=3rcos2a+4a coso; 
d oznacza tu odległość pomiędzy osiami cylindrów, 20 kąt wierzchoł­
kowy stożka i r promień jego podstawy. Zbadać prócz tego, czy ró­
wnowaga jest trwała. (Math. Tripos, 1890.)

Prz. 7. Prosty stożek, którego wysokość jest równa h, a kąt 
wierzchołkowy 2a, wstawiono w okrągły otwór o promieniu a, zro­
biony w płycie poziomej. Okazać, że przy położeniu pionowem osi 
stożka równowaga jest trwała lub chwiejna stosownie do tego, czy 
16a jest większe, czy mniejsze od od 3h sin 2o.

(St John’s Coli., 1887.)
224. Prz. Koniec A prostej sztaby AB o długości l opiera się 

o gładką pionową ścianę, a koniec B o nieznaną krzywą. W zniesienie 
środka ciężkości sztaby nad pewną płaszczyzną poziomą wynosi h. Wy­
znaczyć tak postać krzywej, aby w położeniu równowagi zachodził zwią­
zek 4ch — l2—c2, jakiekolwiek będzie l i h. (Zagadnienie Boole’a.)

Niech (0, y‘) i (x, y) będą współrzędnemi punktów A i B. W ta­
kim razie

2h=y+y‘ . . . (i), x2+^y-hy=i2... (2)
Przedewszystkiem wypada stwierdzić, że możliwa jest krzywa, 

na której sztaba o danej długości l będzie w równowadze w sposób, 
opisany w zagadnieniu. Taką krzywą wyznaczymy, czyniąc wysokość 
h stałą. Będzie to elipsa (2), gdzie h i l posiadają jakiekolwiek warto­
ści stałe, czyniące zadość danemu związkowi. Obwiednia wszystkich 



— 186 —

takich elips odpowiada także zagadnieniu mechanicznemu, gdyż ob­
wiednia styka się z każdą elipsą, i obydwie krzywe wywierają reakcye 
jednakowe. Wyznaczymy obwiednię w sposób zwykły; będzie to pa­
rabola x2=4cy.

Można otrzymać ten sam wynik bez uciekania się do teoryi ob­
wiedni. W stanie równowagi przy l stałem dh=0, a zatem różniczkując 
(2), otrzymamy

xdx + 4(y — h) dy=0.
Lecz związek (2) musi być spełniony i w tym razie, gdy zmieniają się 
jednocześnie l i h, zatem

xdx+4(y—h)(dy— dh)—ldl,
a ponieważ 4ch—l2=c2, przeto

2cdh=ldl.
Rugując z tych równań różniczki, znajdziemy 2(h—y)=c, a stąd i z da­
nego związku wyznaczymy h i l w funkcyach y. Podstawiając to w (2), 
otrzymamy żądany związek pomiędzy x i y. Sprowadza się on do po­
danej wyżej paraboli.

225. Prz. Ciężkie ciało może się poruszać w płaszczyźnie pio­
nowej w taki sposób, że dwie jego proste CA i CĘ przesuwają się 
przytem po dwóch podobnych i równych 
krzywych nieruchomych. Równania tych 
krzywych są p^f^} i (ł—f^'\ gdzie p i q 
oznaczają długości prostopadłych, popro­
wadzonych z początku układu do sty­
cznych, a w i o’ kąty, które te prostopa­
dłe tworzą z odwrotnemi stronami osi x, 
gdy oś y ma kierunek pionowy. Środek 
ciężkości G leży na dwusiecznej kąta C B 
w odległości h od każdej z prostych CA, 
CB. Wskazać, jak się wyznacza kąt, który 
prosta CG- tworzy z pionem w stanie ró­
wnowagi, i jak można rozpoznać rodzaj Fig. 66. 
równowagi, gdy CG zajmuje położenie pionowe.

Oznaczmy przez 2a kąt C, przez 9 nachylenie dwusiecznej CG 
do pionu, a przez y wzniesienie punktu G. Z rozważań geometry­
cznych wynika, że

y sin 2o=(p— h) cos (3—a)+(q-h) cos (3+a).
dyZakładamy —-=0, uwzględniając przytem, że p—f^+a) i q=f(o— a);

otrzymamy tym sposobem równanie do wyznaczenia 3.
Gdy CG ma położenie pionowe, to 3=0, i zatem p=q. Różniczku­

jąc po raz drugi, znajdziemy 
sin 2a d2y

2792
dp ■' d2p\ dp

h-p-\----- cos a+2— sina.d92/ d9d9
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Można podać interpretacyę geometryczną tej wartości drugiej 
pochodnej. Gdy CG posiada położenie pionowe, to prosta CA styka się 
z jedną z linii prowadzących w punkcie P. Oznaczmy przez p promień 
krzywizny owej linii w P i przez § odciętą poziomą tego punktu. Mo­
żna okazać, że

d2ySin a--- = h—p— 26 sec a. 
d92

Równowaga jest trwała lub chwiejna stosownie do tego, czy ta war- 
dzu . ćCu

tosć — jest dodatnia, czy ujemna. Jeżeli —=0, to wypada róŻnicz- 
d^ dz^ 

kować raz jeszcze.

226. Przykłady z atomistyki. Teorya atomów Bosko wieża do­
starcza dobrych przykładów na określanie trwałości równowagi przy 
pomocy funkcyi sił. Zagadnienia, które tu zamieszczamy, prawie wszy­
stkie zostały podane przez Sir W. Thomsona (późniejszego lorda Kel- 
vina) w Naturę z listopada 1889 r.

Do celów naszych wystarczy wiedzieć, że według Boskowicza 
materya składa się z atomów lub punktów, pomiędzy którymi zacho­
dzi odpychanie przy odległościach najmniejszych, przyciąganie przy 
większych, odpychanie przy jeszcze większych i t. d.; kończy się na 
przyciąganiu według prawa Newtona dla wszelkich odległości, dla któ­
rych prawo to zostało stwierdzone. Boskowicz przyjmował liczne przej­
ścia od odpychania do przyciągania i odwrotnie, my jednak dla upro­
szczenia sprawy będziemy rozważali jedynie zagadnienia z jedną taką 
zmianą.

Przypuśćmy więc, że siły, które dwa atomy wywierają jeden na 
drugi, są odpychające, równe zeru, lub przyciągające stosownie do 
tego, czy odległość pomiędzy tymi atomami jest mniejsza od p, równa 
p, lub większa od p. W tern przypuszczeniu rozważymy trwałość ró­
wnowagi pewnych grup atomów.

227. Prz. 1. Trzy cząsteczki o masach m, m', m" odpychają się na­
wzajem w taki sposób, że siła działająca pomiędzy m i m1 wyraża się 
wzorem F= — mm\r—p)"-1, gdzie n jest liczbą całkowitą parzystą. Czą­
steczki te są w równowadze, gdy tworzą trójkąt równoboczny o bo­
ku p. Okazać, że równowaga jest trwała. .

Wyraz funkcyi sił W, odpowiadający sile F, będzie

J n
Dajmy na to, że atomy zostały rozsunięte, i że boki trójkąta wynoszą 
obecnie p+x, p+y, p+z. W myśl paragrafu 211 będzie

n^C— W)= m'm"xn + m' mynFmm'zn.
Równowaga jest trwała lub chwiejna stosownie do tego, czy W osią­
gnęło maksymum, czy minimum, albo czy prawa strona ostatniego ró­
wnania osiągnęła minimum, czy maksymum. Lecz n jest parzyste, a za­
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tem prawa strona osiąga minimum, gdy x, ij i z są zerami; przy tych 
wartościach prawa strona jest równa zeru, a przy wszystkich innych 
wartościach większa od zera. Stąd wynika, źe równowaga jest trwała.

Założyliśmy tutaj, że prawo siły zawiera tylko jedną potęgę r—p, 
ale toż samo rozumowanie nie przestaje być słusznem i w tym razie, 
gdy siła wyraża się wielomianem, złożonym z wyrazów w różnych 
potęgach nieparzystych. Można nawet posunąć jeszcze dalej uogólnie­
nie, bo dostatecznem będzie, aby najniższa potęga była nieparzysta.

Zupełnie tąk samo daje się dowieść, że grupa, złożona z czte­
rech cząsteczek, umieszczonych w wierzchołkach foremnego czworo­
ścianu o krawędzi p, stanowi układ trwały.

Prz. 2. Trzy jednakowe atomy A, B, C są w równowadze na 
linii prostej. Siła odpychająca F=-u(r—p)"1, gdzie n jest liczbą cał­
kowitą parzystą. Zbadać, czy konfiguracya taka jest trwała, czy chwiejna.

W położeniu równowagi każda z odległości AB i BC musi być 
mniejsza od odległości krytycznej p, na- 

BAC tomiast odległość AG powinna być wię- 
-----— ksza od p. Przypuśćmy, że AB= BC — a.

4 B C Ponieważ chodzi nam tylko o przesunię-
Fig 67 cia względne, założymy przeto, że atom 

18 1 A jest nieruchomy. Dajmy na to, że ato­
my B, C zostały przesunięte do B', C', i niech (xy) będą współrzę- 
dnemi punktu B' w odniesieniu do B, a ^'y') współrzędnemi punktu 
C w odniesieniu do C. Oznaczywszy jeszcze AB' przez r, otrzymamy

( y2 r=(a+x)2+y2) =a+x+— +. ,

zatem
{r-p)n = ęa-p)n + ii(a-p)n-'l(x+^ + I^-—(a-p)n~2x2 + ... 

\ AC/ A
Gdy w tem wyrażeniu zastąpimy (xy) przez (x‘— x, y' — y), to otrzyma­
my (r"— p)n, gdzie r"=B' C'; gdy natomiast zastąpimy (xy) przez (x‘y‘) 
i napiszemy 2a zamiast a, to otrzymamy (r'—pS\ gdzie r'=AC.

Łącząc te wyrażenia znajdziemy, jak poprzednio
I( o- w) = (r-p^+^-py+(" -Py=

=a-p-(=+ 0-123402) + n“"a-p—Auace—p-

+n(2a-p)"—‘(x‘+%} + "0,1(2a-p)"-2x"+..

Wszystkie wyrazy stałe zostały tu pochłonięte przez C.
W położeniu równowagi W osiąga maksymum lub minimum, 

a w a w w d W 
zakładamy więc —=0, -—=0, — =0, -—=0. Stąd wyniknie 

dx Ox‘ dy oy'
(a— py~ 1+ (2a—p)"‘=0. Ponieważ n—1 jest nieparzyste, i p zawiera
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2psię pomiędzy a i 20, przeto — (a—p)=2a—p, i d=3 • Można dojść do

tego samego w sposób prostszy, przyrównawszy siły, działające na A, 
t. j. odpychanie atomu B i przyciąganie atomu C.

Aby rozpoznać, czy W osiągnęło maksymum czy minimum, bada­
my wyrazy drugiego stopnia. Znajdziemy, że po prawej stronie dają 
one razem

—n(p—a"—C2U.V2  ----(5—(p-ay-2 1x*+x"2.+(x‘—x)?2i.

Oczywiście wyrażenie to nie może zachować tego samego znaku 
dla wszystkich wartości x, y, x', y', gdyż wyrazy z (y, y'} są ujemne, 
a z (x, x‘) dodatnie; wnioskujemy przeto, że W nie osiągnęło ani ma­
ksymum ani minimum. Równowaga jest trwała dla wszystkich prze­
sunięć, gdy atomy pozostają na prostej pierwotnej, i chwiejna dla 
wszystkich przesunięć prostopadłych do tej prostej. Na ogół równo­
waga jest chwiejna.

Obraliśmy metodę powyższą, aby okazać, jak można posługiwać 
się tutaj prawidłami rachunku różniczkowego. Ten sam wynik daje 
się otrzymać prostszym sposobem. Przesuwamy jedną z cząsteczek 
prostopadle do prostej ABC i wyznaczamy normalną siłę odpychającą. 
Przekonamy się wówczas, że równowaga dla takiego przesunięcia jest 
chwiejna.

Prz. 3. Okazać, że następujące konfiguracye czterech atomów je­
dnakowych są nietrwałe: (1) trzy atomy w wierzchołkach trójkąta ró­
wnobocznego, a czwarty w jego środku, (2) cztery atomy w wierz­
chołkach kwadratu, (3) cztery atomy na linii prostej.

Prz. 4. Trzy jednakowe cząsteczki, które odpychają się nawza­
jem proporcyonalnie do n - tej potęgi odległości, połączono trzema ró- 
wnemi sprężystemi nićmi. Wyznaczyć położenie równowagi i okazać, 

że jest ona trwała, jeżeli n<---- , gdzie a oznacza długość nici nie- 
p—a 

rozciągniętej, p zaś rozciągniętej.

228. Prz. Trzy cienkie pręty sztywne zajmują położenia prze­
kątni foremnego sześcioboku, i każdy z nich może się swobodnie 
obracać około wspólnego środka w płaszczyźnie sześcioboku. Na koń­
cach prętów znajduje się sześć jednakowych cząsteczek, odpychają­
cych się nawzajem odwrotnie proporcyonalnie do jakiejkolwiek po­
tęgi odległości. Okazać, że równowaga układu jest trwała.

(Math. Tripos, 1859.)

229. Kratownice. Dobre przykłady na zastosowanie teo- 
ryi pracy spotykamy przy wyznaczaniu sił, działających wzdłuż 
sztab kratownicy. Tryb postępowania można ogólnikowo opi­
sać w sposób następujący. Usuwamy z kratownicy niektóre 
stosownie obrane sztaby i zastępujemy je siłami, przyłożonemi 
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w ich końcach. Tym sposobem rozluźniamy kratownicę, i mo­
żna jej teraz nadawać przesunięcia. Zasada pracy dostarcza ró­
wnań, zawierających związki pomiędzy siłami, które działają 
na układ, z pominięciem reakcyi, występujących pomiędzy szta­
bami nieusuniętemi. Tym sposobem możemy otrzymać równa­
nia, określające reakcye, które działają na dowolnie obrane 
sztaby.

230. Prz. Kratownica składa się z dowolnej liczby sztab nieko­
niecznie w jednej płaszczyźnie, i na jej wierzchołki, czyli punkty wę­
złowe, działają siły. Reakcyę R, działającą wzdłuż którejkolwiek szta­
by, uważamy za dodatnią, jeżeli sztaba podlega ściskaniu; oznaczmy 
przez r długość tej sztaby, a przez X, Y, Z sumy rzutów sił, które 
działają na wierzchołek, posiadający współrzędne x, y, z. Okazać, że

^Rr + z (Xx + Yy+Z z) = 0,
gdzie sumowanie rozciąga się na całą kratownicę. Maxwell, Edinburgh 
Transactions, 1872, tom 26, str. 14.

Usuwamy wszystkie sztaby i przykładamy odpowiednie reakcye 
do cząsteczek, umieszczonych w wierzchołkach. Rozsuwamy następnie 
nieco ten układ w taki sposób, aby figura przekształcona pozostała podo­
bną do pierwotnej. Z zasady pracy wynika ^Rdr+^XdxY Ydy+Zdz)—0.

dr d3
Lecz skoro figury są podobne, to — — — =... Po podstawieniu otrzy-

I a
mamy natychmiast żądany rezultat.

231. Stosując zasadę pracy do kratownicy, musimy roz­
suwać wierzchołki; dobrze będzie odróżniać te przesunięcia przy 
pomocy nazw odpowiednich.

Jeżeli kratownica nie jest usztywniona zapomocą dosta­
tecznej liczby sztab czyli jest niedosztywniona (151), to można 
zmieniać kąty o przyrosty skończone, nie zmieniając przytem 
długości sztab. W tym razie nazywamy każdą zmianę odkształ­
ceniem iwrmalnem. Przesunięcie, nadane istotnie, może być nie­
skończenie małe, ale zmianę kąta można by tu powiększać, 
tak że w końcu stałaby się skończoną.

Jeżeli kratownica jest usztywniona zapomocą dostatecznej 
liczby sztab, to może sztaby łączące dają się tak rozłożyć, aby 
dozwalały na nieskończenie małe zmiany kątów, ale niema 
sposobu osiągnąć zmiany skończonej kąta bez zmiany długości 
sztab (151). Przesunięcie tego rodzaju zowie się odkształceniem 
anormalnem albo osobliiuem. Jest to przesunięcie wyobrażalne; 
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może ono być istotnem tylko w takim razie, gdy pomijamy 
wielkości małe drugiego rzędu.

Jeżeli kratownica jest usztywniona zapomocą ściśle wy­
starczającej liczby sztab, to pomiędzy długościami ich nie za­
chodzą żadne związki; każda sztaba może się wydłużać, nie 
zrywając połączeń z pozostałemi. Kratownice takie zowią się 
dostatecznie sztywnemi lub rozszerzalnemi swobodnie.

Jeżeli kratownica zawiera więcej sztab niż potrzeba do 
usztywnienia, to pomiędzy długościami sztab zachodzą związki; 
zmiana długości jednej z nich pociąga za sobą zmiany w dłu­
gościach niektórych innych. Taka kratownica zowie się nieroz- 
szerzalną albo rozszerzalną warunkowo.

Nazwy te wprowadził Maxwell (Phil. Mag. 1864), oraz w pewnej 
części M. Levy (Statique Graphique).

232. Kratownica dostatecznie sztywna składa się ze sztaby 
połączonych gładkimi przegubami A,, A, ... , i pozostaje w równo­
wadze pod działaniem jakiegokolwiek układu sił. Mamy wyzna­
czyć naprężenie sztaby A1A,, na którą żadne siły zewnętrzne nie 
działają.

Niech R12 będzie reakcyą, działającą wzdłuż sztaby A,A,; 
będziemy uważali ją za dodatnią, jeśli sztaba podlega ściskaniu. 
Długość sztaby oznaczmy przez 112.

Siły zewnętrzne, działające na kratownicę, są w równowa- 
wadze, a zatem praca ich jest równa zeru przy każdem prze­
sunięciu, nie zmieniającem długości sztab. Usuwamy z krato­
wnicy sztabę A1A2 i zastępujemy jej działanie, przykładając do 
krańcowych cząsteczek siły R12. Gdy teraz osadzimy nierucho­
mo w przestrzeni jedną ze sztab pozostałych, np. przyległą szta­
bę A±An, to wielobok będzie miał jeden stopień swobody. Może 
się on odkształcać, i każdy wierzchołek zatacza krzywą, posia­
dającą określone położenie w przestrzeni. Dajemy kratowni­
cy drobne odkształcenie; skutkiem tego długość 112 wzrośnie 
o dl12, a siły zewnętrzne wykonają pracę dW. Inne reakcye 
nie wejdą do równania pracy, a więc będzie

R,2dl,2+dW=0......................................... (1).

Jeżeli w dodatku do tego odkształcenia nadamy jeszcze 
sztabie A1An pewne przesunięcie przygotowane, przesuwając 
wraz z nią całą kratownicę, to praca dW nie ulegnie zmianie.
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Z tego widać, że sposób, w jaki przesuwamy układ, nie wy­
wiera tu wpływu. Nie jest nawet niezbędnem usuwać boku 112; 
nadajemy mu po prostu przyrost dl12. Z (1) wypadnie, że

- dW
Ei= 7 ....................................(2).

Tak więc, jeżeli bez rozerwania kratownicy można powię­
kszać długość każdej sztaby, na którą nie działają siły zewnętrz­
ne, to reakcya, działająca wzdłuż takiej sztaby, jest wyznaczalna. 
Tak np., jeżeli sił zewnętrznych niema wcale, to reakcya wzdłuż 
każdego z takich boków jest równa zeru.

233. Gdy na sztabę A,A, działają jakieś siły zewnętrzne, 
to linie działania reakcyi w wierzchołkach A1, A, mogą nie 
leżeć na sztabie. Przypadek ten daje się sprowadzić do poprze­
dzającego. W tym celu zastępujemy każdą z owych sił ze­
wnętrznych dwiema siłami równoległemi, przyłożonemi w koń­
cach sztaby. Wyłożyliśmy tę metodę w paragrafie 134. Można 
także wyznaczyć reakcye w sposób bardziej bezpośredni.

Rozkładamy reakcyę, działającą na koniec A1 sztaby A,A,, 
na dwie składowe, a mianowicie R12 w kierunku sztaby i S12 
w kierunku prostopadłym do sztaby. Tak samo reakcyę w końcu 
A, tej samej sztaby rozkładamy na R21, S21. Usuwamy nastę­
pnie sztabę A1A2, zastępując jej działanie na pozostałe części 
kratownicy siłami R12, S19 i R21, S21, przyłożonemi w końcach. 
Uważamy R12, R21 za dodatnie, jeżeli sztaba podlegała ści­
skaniu.

Odkształcamy teraz układ w taki sposób, aby długość 
sztaby A,A, otrzymała przyrost dli2, przyczem wierzchołek A, 
powinien pozostać na miejscu, i sztaba powinna zachować da­
wny kierunek w przestrzeni. Prace przygotowane reakcyi R1, 
S21 i S12 będą oczywiście zerami. Niech dW będzie pracą przy­
gotowaną sił zewnętrznych, działających na układ po usunię­
ciu sztaby A,A,; w takim razie

R,2dl,2+ dW=0.
Aby wyznaczyć 812, musimy nadać układowi inne prze­

sunięcie. Skoro usunęliśmy siły, działające na sztabę A^2, to 
pozostałe siły zewnętrzne nie są już w równowadze, i ich praca 
przygotowana podczas przesunięcia całej kratownicy niekonie­
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cznie będzie zerem. Obracamy kratownicę o kąt cl^- około osi, 
która przechodzi przez A, i jest prostopadła do płaszczyzny, za­
wierającej A, i siłę S12; wierzchołek A, pozostanie podczas tego 
nieruchomym, i długość 112 nie ulegnie zmianie. Jeżeli dW ozna­
cza znowu pracę sił zewnętrznych, to będzie

S12l12d^ + dW=0.
Przy pomocy tych dwóch odkształceń można wyznaczyć 

reakcye JRn i S12, działające w wierzchołku A1. Jeżeli kra­
townica jest zupełnie swobodna, to zawsze można wywołać 
odkształcenie niezbędne do wyznaczenia S12; odkształcenie, po­
trzebne do wyznaczenia R12, jest możliwe, jeśli długość sztaby 
daje się zmieniać. Wypada przeto, że te obydwie reakcye są wy- 
znaczalne^ jeżeli można zmieniać długość sztaby A,A,, nie niszcząc 
połączeń kratownicy.

W przypadku, gdy ruch kratownicy podlega ogranicze­
niom zewnętrznym, można je zastąpić ciśnieniami, wywiera- 
nemi na odpowiednie punkty. Wyznaczywszy wielkości tych 
ciśnień z ogólnych równań równowagi, możemy uważać, że 
kratownica jest całkowicie swobodna, i że działają na nią siły 
znane. W takim razie reakcye w wierzchołkach dadzą się wy­
znaczyć tak, jak gdyby kratownica była swobodna.

Wyżej wskazane przesunięcia nie zawsze są dogodne ze 
względu na geometryczne właściwości zagadnienia. Przełożymy 
nieraz inne przesunięcia czy to ze względów symetryi, czy to 
dla tego, że dla nich daje się łatwiej wyznaczyć praca przy­
gotowana. Jakiekolwiek dwa przesunięcia, wprowadzające do 
równań pracy przygotowanej jedynie R12 i S12^ nadają się do 
wyznaczenia tych składowych.

Jeżeli układ jest trójwymiarowy, to reakcya S12 może być 
nieznana nietylko pod względem wielkości, ale i pod względem 
kierunku. W takim razie zamiast siły S12 wprowadzamy jej 
składowe w dwóch kierunkach, i potrzebne będą trzy przesu­
nięcia do utworzenia trzech równań pracy przygotowanej.

234. Przykłady. Prz. 1. Sześć jednakowych sztab ciężkich łą­
czy się swobodnie w końcach, tworząc sześciobok foremny ABCDEF. 
Sześciobok ten jest zawieszony za wierzchołek A, a lekkie pręty BF 
i CE utrzymują go w obecnej postaci. Okazać, że naprężenie pręta BF 
jest pięć razy większe od naprężenia pręta CE, i wyznaczyć wielkości 
tych naprężeń. (Math. T., 1874.)

Statyka. 13
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Przypuśćmy, że każda ze sztab górnych tworzy z pionem kąt 3, 
i niech długość każdej sztaby będzie równa 2a.

Aby wyznaczyć naprężenie T pręta BF, przypuśćmy, że długość 
jego nieco wzrosła. Skutkiem tego nachylenie sztab AB i AF do pionu

wzrośnie o d8, praca naprężenia T wynie­
sie Td(4a sin 3), a praca ciężarów dwóch 
sztab górnych 2Wd(a cos 8). Środek cięż- 

B kości każdej z czterech sztab pozostałych 
podniesie się nieco, i ciężary ich wyko­
nają pracę 4 Wd(2a cos 3), a zatem będzie 
Td(4a sin 3) + 2 Wd{a cos^)+4 Wd(a cos 9) =0, 
skąd 2 T=5 W tan 9.

C
Aby wyznaczyć naprężenie T' pręta 

CE przypuszczamy, że długość jego nieco 
wzrosła. Ciężary czterech sztab górnych 
nie wykonają żadnej pracy, a środki cięż­
kości dwóch sztab dolnych nieco się unio­

są. Jeżeli 3 oznacza kąt, który każda ze sztab dolnych tworzy z pio­
nem, to łatwo wypadnie, że

T'd(.4:a sin 3)+2 Wd{a cos^)=0,
skąd 2T‘= Wtan 3.

Żądany wniosek otrzymamy od razu.
Prz. 2. Czworościan, utworzony z sześciu ciężkich sztab jedna­

kowych, połączonych swobodnie w końcach, wisi na sznurze, przy­
wiązanym w środku jednej z krawędzi. Wyznaczyć reakcye w wierz­
chołkach.

Czworościan jest regularny, a zatem sztaby najwyższa i najniż­
sza, AB i CD, są poziome. Jeżeli L i M są środkami tych sztab, to 
prosta LM jest pionowa. Oznaczmy przez z długość LM, przez w cię­
żar każdej sztaby i przez P, P’ reakcye, działające wzdłuż sztab
AB, CD.

Powiększamy długość sztaby AB 
o dr, nie zmieniając ani jej kierunku 
w przestrzeni, ani położenia jej punktu 
środkowego. Podczas tego przesunięcia 
reakcye prostopadłe w A i B nie wyko­
nają pracy, a zatem równanie pracy przy­
gotowanej będzie

Fig. 69.

dz
Pdr + 4W9 + wdz—0 (1).

Tak samo, gdy powiększymy o dr 
długość sztaby CD, nie zmieniając jej kierunku ani położenia środka, 
to wypadnie
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P'dr—4iv— — ivdz+Tdz=0................................. (2),
dr 

gdzie T oznacza naprężenie sznura. Ponieważ T=6iv, a stosunek — 

jest w obydwóch równaniach jeden i ten sam, przeto otrzymamy od 
razu P=P'.

Wyznaczenie związku pomiędzy dr i dz wymaga pewnych ro­
zważań geometrycznych. Z prostokątnych trójkątów BLG i LGM wy­
nika

BG2-BL2^GL2=CM2+z2.......................................(3) 
dr

Tworząc równanie (1) powiększyliśmy bok BL o —, gdy boki CM i BG 
pozostały bez zmiany, zatem

— BLd(BL)=zdz
skąd dr=— 2\/2dz.

dr .
Tworząc (2) powiększyliśmy CM o —, a więc znajdziemy, jak poprze­

dnio, dr =— 2 V2 dz. Podstawiając te wartości dr w (1) i (2), znajdziemy, 
. 3 V 2w 

że każda z reakcyi P i P wynosi —4—.

Możemy teraz wyznaczyć reakcye pozostałe. Wobec tego, że w ka­
żdym wierzchołku schodzą się trzy sztaby, wypada określić dokładnie 
urządzenie połączeń. Przyjmiemy, że każda ze sztab, wychodzących 
z danego wierzchołka, łączy się gładkim przegubem z nieważką czą­
steczką, umieszczoną w owym wierzchołku. Można będzie uważać na­
stępnie, że cząsteczka taka należy do jednej ze sztab, a zatem rozwią­
zanie obejmie i ten przypadek, gdy dwie sztaby są w wierzchołku po­
łączone przegubami z trzecią.

Reakcya pomiędzy cząsteczką i jedną ze sztab jest siłą pojedyń- 
czą. Biorąc momenty sił, działających na sztabę, względem pionu, po­
prowadzonego przez jeden z końców, znajdziemy, że reakcya w dru­
gim końcu leży w płaszczyźnie pionowej, przechodzącej przez sztabę; 
możemy przeto rozłożyć każdą reakcyę na składową, działającą wzdłuż 
sztaby, i składową pionową. Dajmy na to, że te składowe w punkcie A 
dla sztab AC i AD są Q i Z. Q uważamy za dodatnie, jeżeli siła ta 
ściska sztabę, a Z, jeżeli działa w górę. Tak samo Q', Z' mają ozna­
czać takie składowe w dolnym końcu każdej z tych sztab.

Wydłużamy teraz każdą ze sztab pochyłych o dp, przyczem sztaba 
górna ma pozostać w spokoju. Równanie pracy przygotowanej dla niż­
szej sztaby poziomej wraz z dwiema cząsteczkami na końcach będzie

4Q'dp+4:Z,dz+wdz=Q....................................... (4).
Sztaba GD została tu po prostu przesunięta pionowo, możnaby przeto 
otrzymać toż samo równanie, biorąc rzuty sił na kierunek pionowy (204).

Aby wyznaczyć związek pomiędzy dp i dz uciekamy się znowu 
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do (3). Tworząc równanie (4), zmieniliśmy BC o dp, pozostawiając bez 
zmiany BL i CM, zatem

BC. d(BC)=zdz,
skąd dz— V 2rdp;
zatem będzie 2 V 2 Q' +4Z‘ ... .................................................... (5),

Biorąc rzuty sił, działających na cząsteczkę C, na kierunek CD, 
znajdziemy

— P‘=2Q‘cos ................................................... (6).

_ ., i • .3V 2w w 7 wyznaczyliśmy już poprzednio, zatem wypadnie I = 4— i -=9.

Wydłużamy znowu każdą ze sztab pochyłych o dp, utrzymując 
w spokoju sztabę CD. Równanie pracy przygotowanej dla sztaby gór­
nej i dwóch cząsteczek na końcach będzie

— 4Zdz+4:Qdp— wdzĄ-Tdz=Q.(7). 
Biorąc rzuty sił, działających na cząsteczkę A, na kierunek AB, otrzy- 
mamy

3 v 2 w w
— P=2Q cos 60°=Q, a zatem Q—------------, i Z=—.

4 2
Prz. 3. Dwie sztaby CA i CB, połączone swobodnie w C, pozo- 

stają w płaszczyźnie pionowej, opierając się w A i B o gładki stół 
poziomy. Końce A i B są połączone sznurem AQPB, który przechodzi 
przez gładkie obrączki P i Q, umocowane w punktach środkowych 
sztab CA i CB. Okazać, że naprężenie sznura czyni zadość równaniu

/ 1 1 1 \
T. AB------ - - ---- 1------= Wcos A cos Bcosec C, 

\BP----AQ----AB)
gdzie W oznacza ciężar obydwóch sztab. (Coli., Exam., 1890.)

Prz. 4. Rama ABCD składa się z czterech lekkich sztab, połą­
czonych swobodnie; długość każdej z nich jest równa a. Przekątnia 
AC ma położenie pionowe, sztaby BC, CD pozostają w zetknięciu 
z gładkimi, nieruchomymi kołkami E, F, położonymi na jednym po­
ziomie w odległości c jeden od drugiego, i lekka sztaba BD o długo­
ści b rozpiera przeguby B, D. Okazać, że gdy w najwyższym przegu­
bie A umieścimy ciężar W, to na BD zacznie działać siła ściskająca, któ­
rej wielkość R wyznacza się z równania Rb2(4a2— b^^ = W(2a2c — b3)- 
Zbadać przypadek, w którym b=(2a?c)"*. (Math. T., 1886.)

Prz. 5. Cztery jednakowe sztaby ARB, CRD, ESB, FSD tworzą 
romb RBSD. Dwie pierwsze mogą się obracać około nieruchomych 
punktów A i C, położonych w odległości a od R. R, B S i D są gład­
kimi przegubami, a na końce E i F działają siły, prostopadłe do sztab 
i równe P. Okazać, że a cot a—2 (aĄ-b) tan 3+a cot 3, gdzie a oznacza 
kąt, który reakcye w A i C tworzą z AC, 29 kąt ARC i b bok romba.

(Coli. Exam., 1889.)
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Obieramy środek odcinka AC za początek układu, a prostą AC za 
oś x, i niech X, Y oznaczają reakcye w A, a x=asin 3, y=2(a+b} cos 3 
współrzędne punktu E. Wydłużamy bok AC, nie zmieniając jego kie­
runku w przestrzeni, ani położenia środka. Równanie pracy przygoto­
wanej będzie Xd(asin 8)+P sin ^ dy—P cos O1 dx—0, a biorąc rzuty, otrzy­
mamy Y+Psin 8=0. Stąd od razu wynika związek żądany.

Prz. 6. Cztery jednakowe sztaby AB, BC, CD, DA są połączone 
luźno w końcach i tworzą kwadrat, zawieszony w wierzchołku A. 
Formę utrzymuje sznur, łączący środki boków AB i BC. Okazać, że 
naprężenie sznura i reakcya w najniższym wierzchołku C wynoszą od-

WV5
powiednio 4 W i —2—, gdzie W oznacza ciężar jednej sztaby.

Prz. 7. Przekątnie n rombów leżą na jednej prostej, dwa z nich 
następujące po sobie mają wspólny wierzchołek, a długości boków 
wszystkich figur są równe b. Skrajne boki pierwszego i ostatniego 
romba zostały przedłużone o długość a w kierunkach odwrotnych od­
powiednio do punktów A, B, C, D. Uważajmy wszystkie odcinki figury 
za sztaby, połączone gładkimi przegubami w punktach przecięcia i osa­
dzone na nieruchomych gładkich zawiasach C i D. Na swobodne końce 
A i B działają równe siły prostopadle do sztab. Okazać, że acot©= 
=2 {a+nb') tan 3+a cots, jeżeli reakcye w C i D tworzą z CD kąt , 
a wspólna przekątnia z każdym bokiem kąt 8. (Coli. Exam., 1889.)

Prz. 8. Trójnóg składa się z trzech jednakowych sztab, połączo­
nych luźno końcami. Każda sztaba waży W. Całość stoi na gładkiej 
podłodze, i swobodne końce nóg są połączone sznurami o długości 
równej długości sztab. Wyznaczyć naprężenie sznurów. W szczególno­
ści, jeżeli na trójnogu zawiesimy ciężar W, równy ciężarowi jednej 

5 V6w
sztaby, to naprężenie będzie--------- . (St John’s Coli., 1882.) 

36
Prz. 9. Sześć sztab jednorodnych, połączonych przegubami, two­

rzy sześciobok foremny, zawieszony za jeden z wierzchołków. Każda 
sztaba waży W, a siódma lekka sztaba pozioma łączy dwa środkowe 
boki sześcioboku. Dowieść, że, jeżeli te dwa boki mają położenie pio­
nowe, to sztaba pozioma dzieli je w stosunku niezależnym od ich dłu­
gości. Jeżeli sztaba pozioma jest ciężka i jednorodna z pozostałem!, 

7 WV3 
to stosunek ten =6:1, a naprężenie jej =—9 . Wyznaczyć także 

reakcye w przegubach. (Coli., Exam., 1888.)

235. Odkształcenia anormalne. Powracając do twier­
dzenia ogólnego, które poznaliśmy w par. 232, wskażemy na 
pewien przypadek wyjątkowy.

Przypuśćmy, że wszystkie siły, działające na kratownicę, 
są przyłożone w węzłach, a zatem reakcye działają na bokach 
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wieloboku. Gdy usuniemy sztabę A,A,, to możemy odkształcić 
kratownicę, i zasada pracy przygotowanej daje

R12dl12 + dW=G..........................................(1).

Dajmy na to, że bok A,A, pozostaje nieruchomym; mo- 
żliwem jest, że podczas odkształcania kratownicy wierzchołek 
A, zaczyna się poruszać w kierunku prostopadłym do boku 
A1A2. W takim razie dl12 — 0. Jeżeli jednocześnie przesuwa się 
i AnAr w jakikolwiek sposób wraz z całą kratownicą, to ruch 
ten nie wpływa na dl12, a zatem przyrost ten i wówczas po­
zostanie zerem. Przywróciwszy na miejsce sztabę A,A,, będzie­
my mogli teraz nadać kratownicy małe odkształcenie, nie zmie­
niające długości sztab, jeżeli pomijamy małe wielkości drugiego 
rzędu. Ponieważ kratownica była sztywna, przeto odkształcenie 
tego rodzaju zowie się anormalnem (231).

Siły zewnętrzne, działające na kratownicę, są w równo­
wadze, a zatem ich praca przygotowana podczas każdego prze­
sunięcia całej kratownicy jest równa zeru. Jeżeli nie jest ona 
zerem również i w owem odkształceniu anormalnem, to reakcya 
R12 musi być nieskończenie wielka. Lecz jeżeli dW jest zerem, 
to równanie (1) staje się tożsamością, gdyż i dl12 jest zerem. 
W takim razie reakcya R12 może być skończona.

Chcąc, aby podczas odkształcenia reakcya R12 wykonała 
pracę, musimy usunąć lub wydłużyć dwie lub więcej sztab. 
Niech to będzie dana sztaba l12 i jakaś inna, np. l23. Wypadnie

R.2dL2 + R2.dl^ + dW^0...............................(2).
-—EM40040 E.

Możemy skorzystać z tego równania, jeżeli znamy stosu­
nek pomiędzy odpowiadającymi sobie przyrostami dwóch sztab. 
Równanie (2) da nam w takim razie związek pomiędzy odno- 
śnemi reakcyami. Tak więc reakcye są nieokreślone; jedna z nich 
jest dowolna, a pozostałe można wyrazić w jej funkcyach.

236. Związek pomiędzy przyrostami dwóch boków w większo­
ści wypadków daje się wyznaczyć bezpośrednio z figury, albo przez 
różniczkowanie jakiegoś znanego związku pomiędzy bokami wielo­
kąta. W przypadkach trudniejszych postępujemy, jak następuje. (Zob. 
Levy, Statique Graphiąiie).

Uważając kratownicę sztywną za wielobok ogólny o bokach nie­
określonych, możemy wyznaczyć tyle kątów, ile potrzeba, w funkcyach 
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boków. Przypuśćmy dla przykładu, że znaleźliśmy dwa równania, wią- 
żące dwa kąty 31, $2 z bokami, i niech równania te będą

fi(cos Ba, cos 82, 112, l»3 •) =0) 
fz (cos 81, cos 8,, 1,2, 123 ...) =0

W danym przypadku szczególnym wielobok może uledz drobnemu od­
kształceniu bez zmian w długościach boków, przeto będzie

0/i

09,

0/1
d8, 4----- d%2=

082
0,

9/2

09,

Of2 
d^,+ ~

00,
do,=0.......................(4).

Stąd 
taki,

wynika, że 
że

d8,=0 i d82==0, jeżeli

8f; 3/;

wielobok rozważany nie jest

J=
08,

9/2

092

9/2
=0 . . . ................................. (5).

08, 092
Gdy 
będą

zmieniamy 
takie, że

długości sztab, to

9/i 9/j— d8,+ — d82
00, 002

9/2 9/2
—d84 — d8,
08, 082

odnośne prz

<0f= — 7 — dl

<Of2 , — — • — dl ^dl

yrosty kątów 31 i 32

■.............................. (6).

Mnożymy te równania przez minory pierwszego szeregu wyznacznika J 
i dodajemy stronami. Po lewej stronie wypadnie zero, i otrzymamy 
związek pomiędzy przyrostami długości sztab w postaci

P,2 dl,2+Paa dla+...=0.
Związek ten musi być spełniony przy wszelkich założeniach co do 
zmian w długościach sztab.

237. Naprężenia nieokreślone. Najdogodniej bywa zwy­
kle rozważać te reakcye nieokreślone niezależnie od wszelkich 
sił zewnętrznych. Aby sprawę tę wyjaśnić, przypuśćmy, że dwa 
układy sił zewnętrznych, jednakowe pod każdym względem, 
działając na kratownicę niejednocześnie, mogą wywołać w niej 
dwa różne układy naprężeń wewnętrznych. W takim razie 
możemy odwrócić jeden z układów zewnętrznych i pozwolić 
im działać jednocześnie; tym sposobem otrzymamy kratownicę 
w stanie naprężenia, jakkolwiek żadne siły zewnętrzne na nią 
nie działają. Jeżeli zatem umiemy wyznaczyć wszystkie naprę­
żenia, zachodzące w kratownicy, gdy żadne siły zewnętrzne nie 
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działają, to możemy je dołączyć do każdego układu naprężeń, 
wywoływanych przez dany układ sił; tym sposobem otrzyma­
my wszelkie stany kratownicy, które mogą współistnieć z owemi 
siłami.

P- 
w 
w

W tomie dziesiątym Proceedings o/ the Mathematical Society, 1878, 
Crofton rozważa pewne przypadki sześcioboków i ośmioboków 
stanie samonaprężeń. Teoryę jego rozszerzył następnie M. Levy 
r. 1888 w Statigue Graphigue.

238. Prz. 1. Kratownica płaska posiada liczby parzystą, a miano­
wicie n, wierzchołków. Sztaby tworzą n boków, łączących te wierzchołki, 

n
i 2 przekątni, łączących wierzchołki przeciwległe. Okazać, że kratownica 

może pozostawać w stanie naprężenia bez działania sił zewnętrznych, je­

żeli 9 punktów przecięcia boków przeciwległych leży na jednej prostej. 
(Twierdzenie Levy’ego.) 

Dowód następujący jest zupełnie ogólny, jakkolwiek rysunek 
wyobraża sześciobok. Aby mówić o czemś 
określonem, będziemy uważali, że boki 
podlegają ściskaniu, a przekątnie wycią­
ganiu.

Skoro reakcye R12 ... są w równowa­
dze; to oczywiście siły R12, R32 równo- 
ważą siłę R25, a więc są równoważne si­
łom R5i i R56. Mając to na uwadze i prze­
nosząc punkty przyłożenia, znajdziemy, że 
siły R12 i Ra5 są równoważne siłom R23 
i R56, i analogicznie każda z tych par jest 
równoważna siłom Raa i R61. Wypadkowe 
tych trzech par są przyłożone odpowie- 

. dnio w L, M, N i są równoważne. Stąd 
wynika, że L, M, N, t. j. punkty przecięcia przeciwległych boków, leżą 
na jednej prostej. •

Przypuśćmy teraz naodwrót; że punkty L, M, N leżą na jednej 
prostej. Przykładamy w L i M dwie dowolne siły F, równe i odwrot­
ne. Niech składowe tych sił w kierunkach boków przecinających się 
w L i M, będą odpowiednio (R,2, Ras) i (Ra2, Rg5). Te cztery siły są 
w równowadze, innemi słowy siły R,2 i Ra2, działające na A^, równo­
ważą siły Ri5 i R65, działające na A5. Wypadkowa dwóch pierwszych 
działa w kierunku A2A5, a wypadkowa dwóch pozostałych w kierunku 
A,A2, i wypadkowe te są równe. Z innemi przekątniami postępujemy 
w len sam sposób. Z tego wynika, że w każdym wierzchołku siły się 
równoważą, i stosunek każdej reakcyi do siły F, obranej dowolnie 
daje się wyznaczyć. Inny dowód wskaźemy w rozdziale o statyce gra­
ficznej.
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Twierdzenie to jest tembardziej godne uwagi, że liczba sztab łą-
3n

czących, t. j. 9 (jest to mniej od 2n- 3, gdy n przewyższa 6) nie wy­

starcza do określenia figury (151).
Gdy jeden z boków uczynimy nieskończenie małym, to wypa- 

dnie odpowiednie twierdzenie dla kratownicy o nieparzystej liczbie 
boków.

Prz. 2. Sztaby kratownicy są bokami sześcioboku i przekątniami, 
łączącemi wierzchołki przeciwległe. Okazać, że kratownica taka może 
podlegać naprężeniom wewnętrznym, jeżeli sześciobok jest wpisany 
w stożkową. Wyznaczyć prócz tego stosunek reakcyi.

(Twierdzenie Croftona.)
Prz. 3. Sztaby kratownicy tworzą boki sześcioboku Aj... Ag ora 

jego przekątnie A|A,, A2A6, A,A;. Okazać, że kratownica może posia­
dać naprężenia wewnętrzne, jeżeli odpowiednie sztaby, położone po 
dwóch stronach prostej A|A,, przecinają się po dwie na tej prostej.

(Crofton.)

239. Metoda geometryczna badania trwałości równo­
wagi. Gdy ciało porusza się w dwóch wymiarach w jaki­
kolwiek sposób, to można zawsze odtworzyć ruch jego, lub 
przesunięcie w czasie dt, obracając je około pewnego punktu I 
o kąt nieskończenie mały (par. 180). Położenie tego punktu 
zmienia się ustawicznie tak, że zatacza on (1) pewną krzy­
wą w przestrzeni i (2) pewną krzywą w ciele. Weżmy na pier­
wszej z tych krzywych szereg nieskończenie krótkich łuków 
II'1'1"... i odmierzmy na drugiej łuki IJ'. J'J"... odpowiednio 
równe tamtym. Gdy ciało obróci się około I o pewien kąt de, 
to punkt J' znajdzie się w I'. Punkt ten stanie się wówczas 
środkiem chwilowym obrotu, i można będzie odtworzyć przesu­
nięcie ciała w najbliższym elemencie czasu, obracając je oko­
ło I'. Dajmy na to, że łuk II' = ds.

Kąt pomiędzy stycznemi II' i IJ' do owych dwóch krzy­
wych jest nieskończenie mały, a więc krzywe stykają się w pun­
kcie I. Można zatem odtworzyć ruch ciała, tocząc drugą krzywą 
po pierwszej bez poślizgu, przyczem krzywa ruchoma powinna 
unosić z sobą ciało. Stosunek szybkości, z którą środek chwilowy 
obiega obydwie krzywe, do szybkości kątowej' ciała wynosi oczy- 

ds wiście —.di
Niech P oznacza położenie jakiegoś punktu ciała na po­

czątku pierwszego elementu czasu. Punkt ten zaczyna się po­
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ruszać w kierunku prostopadłym do PI, a więc PI jest nor­
malną do toru punktu P. Dajmy na to, że P' jest położeniem 
tego samego punktu w końcu okresu dt. Kąt PIP' = dd-, a po­
nieważ ciało zaczyna odtąd obracać się około I', przeto P'P 
jest następną normalną do toru rozważanego punktu.

Jeżeli P ma takie położenie, że kąt IPI jest także równy 
d^, to następujące po sobie normalne do toru są równoległe 
i promień krzywizny tego toru w P jest nieskończenie wielki.

Zatoczmy okręg, z którego odcinek II' widać pod kątem d3; 
kaidy punkt tego okręgu znajduje się właśnie w tym punkcie 
swego toru, w którym promień krzywizny jest nieskończenie wielki. 
Ze względu na cele statyki nazwiemy to koło kołem trwałości 
równowagi*).  Można je wykreślić w sposób następujący. Budu­
jemy normalną do toru środka chwilowego w przestrzeni w obe- 

, ds cnym środku I i odmierzamy na tej normalnej długość

*) W cynematyce koło to zowie się kołem przegięć, gdyż leżące 
na niem punkty układu ruchomego przebiegają właśnie w danej chwili 
przez przegięcia swych torów. Przyp. tłom.

Koło, zatoczone na średnicy 18, będzie kołem trwałości.

240. Ciało porusza się w płaszczyźnie w jakikolwiek spo­
sób, i w położeniu danem koło trwałości jest wiadome. Wyzna­
czyć promień krzywizny R toru jakiegokolwiek punktu, należą­
cego do ciała.

Niech G będzie jakimkolwiek punktem ciała, nie leżącym 
na okręgu trwałości, i niech P będzie tym punktem prostej IG, 
w którym promień krzywizny jest nieskończenie wielki, a więc 
prosta GPI jest normalną do torów punktów G i P (fig. 71). 
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Gdy ciało obróci się około I o kąt d8, to punkty Gr i P zajmą 
nowe położenia G-' i P'\ każdy z kątów GIG' i PIP' jest ró­
wny d8, prosta I'P' jest równoległa do IPG^ a prosta G'P 
jest następną normalną do toru punktu G. Punkt O, w którym 
przecinają się proste G'I' i GI, jest szukanym środkiem krzy­
wizny. Z podobieństwa trójkątów wynika

GP: GI= G'P': G'I= G'P: G'O.
W granicy punkty P, P\ oraz punkt P1, w którym GP 

przecina okręg, przypadają razem, a zatem będzie R. GR= GP.
Możemy zatem wygłosić prawidło następujące *):  aby wy­

znaczyć promień krzywizny R toru punktu G, znajdujemy naprzód 
punkt P1, w którym prosta GI przecina okręg koła trwałości; 
wówczas R.GPr — GP.

*) Wzór powyższy jest w zasadzie równoważny z tym, który 
podał Abel Transon w Liouville's Journal, 1845, str. 148, jakkolwiek 
posługuje się on średnicą PS, a nie samem kołem. Miał on na celu 
wyznaczenie promienia krzywizny rulety. Zob. także w tym samym 
tomie pracę Chasles’a o promieniu krzywizny obwiedni rulety.

Uważaliśmy na figurze naszej odcinki, poprowadzone 
z G w kierunku punktu I, za dodatnie; z tego wynika, że R 
jest dodatnie lub ujemne stosownie do tego, czy GP jest do­
datnie, czy ujemne. Innemi słowy tor punktu G jest zwrócony 
do I wklęsłością lub wypukłością stosownie do tego, czy G leży 
na zewnątrz, czy wewnątrz koła trwałości.

241. Prawidło statyczne. W położeniu równowagi sty­
czna do toru środka ciężkości G jest pozioma, a więc prosta 
IG musi być pionowa. Równowaga jest trwała lub chwiejna 
stosownie do tego, czy wzniesienie środka ciężkości osiągnęło 
minimum czy maksymum, innemi słowy, czy tor jego jest 
zwrócony wklęsłością w górę, czy na dół. Sprawę tę od razu 
rozstrzyga prawidło, że tor punktu G jest zwrócony do pun­
ktu I wklęsłością z wyjątkiem tego przypadku, gdy G leży 
wewnątrz koła trwałości równowagi.

242. Prz. 1. Punkty A i B ciała ruchomego obiegają krzywe 
znane. Wskazać, w jaki sposób można znaleźć (1) środek chwilowy I, 
(2) koło trwałości równowagi.

Normalne w A i B do danych krzywych spotykają się w I, a za­
tem punkt I jest wyznaczony (par. 180). Odmierzamy na prostych 
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Al i BI odpowiednio długości AP,= — i BP.2=—, gdzie Pi i P, ozna-
Pi P2

czają promienie krzywizny danych krzywych w A i B. Koło opisane 
na trójkącie IPP2 będzie szukanem kołem trwałości.

Prz. 2. Ciało porusza się w płaszczyźnie, i środek chwilowy jest 
wiadomy. Okazać, że jakaś prosta, należąca do ciała, styka się ze swą 
obwiednią w punkcie G-, leżącym na prostopadłej IGr do tej prostej.

Prosta GrI jest normalną do toru punktu G, a zatem element GG' 
tego toru leży na danej prostej. Stąd wynika, że prosta przecina swe 
położenie następne w G', a więc G' lub G leży na obwiedni.

(Prawidło Robervala.)
Prz. 3. Ciało porusza się w płaszczyźnie, i położenie obecne 

koła trwałości równowagi jest wiadome. Uzasadnić następującą kon- 
strukcyę środka krzywizny obwiedni jakiejś prostej ciała. Ze środka 
chwilowego I prowadzimy prostopadłą IQ do owej prostej; przetnie 
ona okręg trwałości w Pr. Następnie na prostej QPrl odmierzamy 
10 = II\. Punkt O jest szukanym środkiem krzywizny.

Z poprzedniego przykładu wiemy, że 10 jest normalną do ob­
wiedni w punkcie Q. Obróćmy ciało wraz z należącą doń prostą o kąt 
d8 około punktu I i poprowadźmy z P prostopadłą I'Q' do nowego 
położenia owej prostej. Oczywiście I'Q' będzie następną normalną do 
obwiedni, a punkt O, w którym przecinają się normalne Q'P i Ql, bę­
dzie szukanym środkiem krzywizny.

Proste 10 i 1'0 są odpowiednio prostopadłe do dwóch następu­
jących po sobie położeń tej samej prostej ciała, a zatem kąt IOP jest 
równy d^. Poprowadźmy prostą PP' równolegle do IPX; przetnie ona 
okręg trwałości w P', i w myśl par. 239 kąt P'IPi jest także równy 
d^. Stąd wynika, że prosta PO jest równoległa do P'I, i czworobok 
P'O jest równoległobokiem; a więc odcinki 10 i PP' są równe, i za­
tem w granicy odcinki 10, IPX stają się także równymi.

Prz. 4. Wierzchołki trójkąta ABC poruszają się po trzech krzy­
wych, których normalne w A, B, C spotykają się w punkcie I, a z I 
widać boki trójkąta pod kątami a, 3, Y. Okazać, że

AB sin a BI? sin 8 CIsinr . .------------ 1----------- - -I----------- - = Al sin a + BI sin 3 + CI sin Y,
Pi 02 P3
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gdzie P1, P2, P3 oznaczają promienie krzywizny danych krzywych 
w A, B, C.

243. Prz. 1. Wnętrze kielicha tworzy powierzchnia obrotu o osi 
pionowej, a w kielichu spoczywa jednorodna sztabka AB o długości 2l. 
Dowieść, że równowaga jest trwała lub chwiejna stosownie do tego, 
czy l2p jest mniejsze, czy większe od n3, gdzie p jest promieniem krzy­
wizny w A lub B, a n długością normalnej (par. 222).

Normalne w A i B spotykają się na w Z osi obrotu. Odmierzamy

na tych normalnych odcinki AL i BM równe 
będzie kołem trwałości równowagi. 
Okręg, przechodzący przez I i styka­
jący się ze sztabką w Gr, przecina Al 
w punkcie H, i AH. AI=AG2. Równo­
waga jest chwiejna, jeżeli środek cięż­
kości G leży wewnątrz koła ILM, czyli 
jeśli AL jest niniejsze od AH, a więc 

. n2 [2 
jesh — jest mniejsze od —.

Al2—. Koło opisane na ILAL
P

nP
Wyobraźmy sobie, że sztabka po­

siada na końcach gładkie obrączki, 
nawleczone na krzywą symetryczną 
względem osi pionowej. W takim ra­
zie położenie poziome A'B', dla którego punkt przecięcia normalnych 
leży pod sziabką, jest także położeniem równowagi. Z takich samych 
rozważań wyniknie, że tor punktu G jest zwrócony do I wklęsłością, 
jeżeli l2p<ns. Warunki trwałości równowagi są tu odwrócone: równo- 
waga jest trwała lub chwiejna stosownie do tego, czy l2p jest większe, 
czy mniejsze od n3.

Prz. 2. Pręt posiada na końcach gładkie obrączki, nawleczone 
na drut eliptyczny; duża oś elipsy ma położenie pionowe. Dowieść, że 
w niższem położeniu poziomem równowaga pręta jest chwiejna, 
a w wyższem trwała, jeżeli długość pręta przewyższa latus rectum. 
Warunki się odwracają, jeżeli pręt jest krótszy od latus rectum. Jeśli 
mała oś jest pionowa, to niższe położenie poziome będzie trwałe, 
a wyższe chwiejne.

/b2\2
W elipsie P\—)=n, gdzie 2a i 2b są odpowiednio osiami pio­

nową i poziomą. Korzystając z tej właściwości, wyprowadzimy żądane 
wnioski z prz. 1.

Okazaliśmy w par. 126, że gdy duża oś elipsy jest pionowa, to 
pręt pozostaje w równowadze tylko w położeniu poziomem, albo gdy 
przechodzi przez jedno z ognisk. Znajdziemy łatwo warunki trwałości 
dla ostatniego przypadku, posługując się zasadą, że musi zachodzić 
minimum wzniesienia środka ciężkości. Dajmy na to, że pręt AB zaj­
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muje położenie jakiekolwiek, niech S oznacza ognisko dolne, i niech 
AM i BN będą odległościami od kierownicy dolnej. Wzniesienie

. . AM+BN SA+SB , . środka ciężkości nad tą kierownicą wynosi 2—— = —2 , gdzie 

e oznacza mimośród liczbowy elipsy. SA i SB są to boki trójkąta SAB, 
a zatem wzniesienie osiąga minimum wtedy, gdy S leży na AB. Jeżeli 
S oznacza ognisko górne, to to samo wyrażenie określi głębokość 
środka ciężkości pod kierownicą górną. Jeżeli zatem pręt przechodzi 
przez ognisko dolne, to równowaga jest trwała, a jeżeli przez górne, to 
chwiejna.

Prz. 3. Pręt AB posiada na końcach obrączki, nawleczone na 
dwie równe i odwrotne łańcuchowe; krzywe te mają wspólną kie­
rownicę pionową i wspólną oś poziomą. Dowieść, że w dolnem poło­
żeniu poziomem równowaga pręta jest trwała. Zob. par. 126, prz. 5.

Wykreśliwszy figurę, zobaczymy, że tory punktów A i B są 
zwrócone do I wypukłościami, a zatem A i B leżą wewnątrz koła 
trwałości. Stąd wynika, że G leży także wewnątrz, a więc tor jego 
zwraca się również do I wypukłością, i równowaga jest trwała.

Prz. 4. Końce pręta pozostają na cykloidzie, której oś jest pio­
nowa. Okazać, że gdy pręt zajmuje położenie poziome, to równowaga 
jego jest trwała.

244. Staczanie głazów. Ciało ciężkie, doskonale chropo­
wate, pozostaje w równowadze na powierzchni nieruchomej; mamy 
zbadać, czy równowaga jest trwała, czy chwiejna. Naprzód zało­
żymy, że ciało może się przesuwać w płaszczyźnie symetryi, a za­
tem możemy tymczasem uważać zagadnienie za dwuwymiarowe.

Metoda geometryczna, wyłożona w par. 241, daje w wię­
kszości wypadków łatwe rozwiązanie. Dajmy na to, że obydwie 

   powierzchnie stykają się w punkcie 1-, 
/-- _ w takim razie punkt ten jest środkiem 
g Cchwilowym. Niech prosta C1C będzie 

| As / wspólną normalną w położeniu równo- 
\ / wagi, a C, C‘ środkami krzywizny. Krzy- 
")/ / wizny te będziemy uważali za dodatnie, 
/IR jeżeli są zwrócone w strony odwrotne. c \ Przypuśćmy, że ciało poruszyło się cokol­

wiek, i punkt 1! stał się nowym punktem
Fig. 74. zetknięcia. Kąt d^, o który obróciło się 

ciało, jest równy kątowi pomiędzy normalnemi CJ' i CT, 
a ten jest oczywiście równy sumie kątów J'C1, I' C'l, a po­
nieważ 11' = U' = ds, przeto
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ds ds -----  — = do. 
P P

Zob. Salmona Higher Piane Curues, par. 312, lub Besanta Rou- 
lettes and Glissettes^ par. 33.

Aby wykreślić koło trwałości równowagi odmierzamy na 
ds wspólnej normalnej 1C w położeniu równowagi długość IS=-^.

Oznaczając tę długość przez z, otrzymamy

1 1 1 
— =   — • 
z P P

Koło, zatoczone na średnicy 18, jest kołem trwałości; przypuść­
my, że IG przecina jego okręg w punkcie P.

Jeżeli środek ciężkości G leży nazewnątrz tego koła, to 
tor jego zwraca się do 1 wklęsłością, a zatem równowaga jest 
trwała lub chwiejna stosownie do tego, czy G leży pod punktem 
P, czy nad tym punktem. Jeżeli G leży w P, to równowaga 
jest obojętna w pierwszem przybliżeniu.

Wysokość krytyczna 1P, która dzieli trwałość od chwiej- 
. pp‘coso nosci, wynosi oczywiście z cos"=p+pgdzie a oznacza 

kąt, który wspólna normalna w położeniu równowagi tworzy 
z pionem.

245. Prz. 1. Półkula o promieniu p spoczywa na wierzchołku 
kuli nieruchomej o promieniu p‘, stykając się z nią powierzchnią krzy- 

wą. Środek ciężkości półkuli leży w odległości — od środka. Okazać, 
8 

że równowaga jest trwała lub chwiejna stosownie do tego, czy p jest 
3p'mniejsze, czy większe od —.

50W tym razie 0=0, a więc IG, czyli —, 
8 powinno być mniejsze

od z, jeżeli równowaga ma być trwała.
Prz. 2. Półkula jednorodna spoczywa na chropowatej płaszczy­

źnie, nachylonej do poziomu pod kątem 3. Wyznaczyć kąt, który pod­
stawa półkuli tworzy z poziomem, i okazać, że równowaga jest trwała.

Środek ciężkości musi leżeć na pionie, przechodzącym przez /, 
a prosta CG jest prostopadła do podstawy półkuli. Z tego wynika, że 
szukane nachylenie spełnia kąt CGI do T. Pion punktu I nie może
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przechodzić przez G, jeżeli CI.sin3 przewyższa CG, a ponieważ 
3p

CG = ~, przeto koniecznym warunkiem równowagi jest, aby sin 3 <3/8.

Wyznaczymy teraz koło trwałości równowagi. W tym razie 
P‘==c, a zatem z=p, i koło, zatoczone na 

V średnicy IC będzie kołem trwałości. Kąt 
/ \ CGI jest większy od prostego, a więc G 
c/ | leży wewnątrz koła trwałości; tor punktu G 
/Y ) jest zwrócony wklęsłością w górę, i równo- 

/ \ • / waga jest trwała. 
/ \ | / Prź. 3. Półkula jednorodna, której pro- 
S mień wynosi a, ciężar zaś W, spoczywała na 
_ szczycie kuli nieruchomej o promieniu b 

w równowadze obojętnej. Okazać, że 5u=3ó.
Fig. 75. Następnie na brzegu podstawy półkuli umo­

cowano ciężar P. Dowieść, że jeżeli 55 P=18 W, 
to półkulę można i teraz umieścić na szczycie kuli w równowadze 
obojętnej. (Math. Tripos, 1869.)

Prz. 4. Ciężkie półkuliste naczynie o promieniu a, zawierające 
wodę, spoczywa na chropowatej płaszczyźnie, nachylonej do poziomu 
pod kątem a. Okazać, że stosunek ciężaru naczynia do ciężaru wody, 

2 sin a
nie może być mniejszy od---------------, gdzie xa‘COS2 jest polem po- 

sin— 2sino
wierzchni wody. (Math. Tripos, 1877.)

Gdy naczynie zmienia położenie, to woda się w niem porusza; 
przyjmujemy, że zawsze przytem zajmuje ona położenie równowagi, 
a zatem jej skutek statyczny będzie taki sam, jak cząsteczki o tym 
samym ciężarze, umieszczonej w środku naczynia. Ciężar naczynia 
można skoncentrować w jego środku ciężkości, czyli w punkcie środ­
kowym średniego promienia.

Prz. 5. Naczynie paraboliczne, ważące W, stoi na poziomym 
stole i zawiera pewną ilość wody, ważącą n W; wysokość ogólnego 
środka ciężkości naczynia i wody wynosi h. Dowieść, że równowaga 
jest trwała, jeżeli latus rectum paraboli przewyższa 2(n+1)h.

(Math. Tripos, 1859.)
Niech punkt H będzie środkiem ciężkości wody, gdy oś naczynia 

ma położenie pionowe. Ustawmy naczynie nieruchomo w położeniu 
sąsiedniem, przyczem powierzchnia wody pozostanie poziomą (par. 215). 
Pion, przechodzący przez nowe położenie H' środka ciężkości wody, 
przetnie oś paraboloidy w punkcie M, i można dowieść, że odcinek 
HM jest równy połowie latus rectum. Ten punkt M zowie się meta- 
centrem. Podobnie, jak w przykładzie poprzedzającym, można zastąpić 
wodę przez cząsteczkę, umieszczoną w metacentrze. Równowaga bę­
dzie trwała, jeżeli wysokość ogólnego środka ciężkości czyni zadość 
warunkowi paragrafu 244.
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246. Wyobraźmy sobie ciało cylindryczne, spoczywające na nie­
ruchomej płaszczyźnie poziomej. Z rozważań poprzedzających łatwo 
daje się wywnioskować, że równowaga jest trwała lub chwiejna sto­
sownie do tego, czy środek ciężkości ciała leży niżej czy wyżej od 
środka krzywizny w punkcie zetknięcia.

Jest jednak pewien przypadek szczególny, wymagający rozważań 
dalszych. Dajmy na to, że rozwijana (t. j. miejsce geometryczne środ­
ków krzywizny) posiada ostrze O, zwrócone pionowo na dół, gdy pun­
ktem zetknięcia jest A, i że środek ciężkości leży cokolwiek wyżej
od O. Równowaga ciała jest chwiejna, ale 
w najbliższem sąsiedztwie po obydwóch stro­
nach istnieją położenia równowagi trwałej. 
Ciało przybierze takie położenie, gdy któraś 
ze stycznych z G do rozwijanej stanie się 
pionową. Styczne te mają punkty zetknięcia 
L i M, a ponieważ ostrze zwraca się na dół, 
przeto każdy z tych punktów będzie leżał 
nad G, gdy jego styczna będzie pionową. Gdy 
G zbliża się do O, to te dwa położenia ró- 
wnowagi trwałej zbliżają się do położenia ro­

Fig. 76.

wnowagi chwiejnej i ostatecznie się z niem schodzą. Jeżeli zatem śro­
dek ciężkości leży w samem ostrzu rozwijanej, to równowaga jest 
trwała.

Jeżeli ostrze O jest zwrócone do góry, a G leży nieco niżej, to ró­
wnowaga jest trwała przy blizkiem położeniu chwiejnem po każdej stro­
nie. W granicy, gdy G dojdzie do O, równowaga staje się chwiejną. 
(J. Larmor, Critical Equilibrium w czwartym tomie Proceedings of the 
Cambridge Philosophical Society, 1883.)

247. Ciała kuliste, przybliżenie drugie. Jeżeli równo­
waga jest obojętna, to trzeba zbadać pochodne wyższe, aby 
rozpoznać trwałość tej równowagi. Metoda geometryczna nie na- 
daje się dobrze do tego celu. W przypadku, gdy obydwie po-
wierzchnie Są

Fig. 77.

kuliste, możemy wyświetlić wszelkie okoliczności 
równowagi przy pomocy metody, wyłożonej 
w par. 220.

Przesuńmy ciało, wyobrażone na fig. 74, 
w taki sposób, aby punkt J' znalazł się w T. 
To nowe położenie ciała widzimy na fig. 77, 
gdzie J oznacza ten punkt ciała górnego, któ­
ry w położeniu równowagi znajdował się w Z. 
Niech będzie JG = r, IG'I' =, JOT =*; w ta­
kim razie p‘l‘=po. Oznaczmy jeszcze wznie-

sienie środka
Statyka. 14

ciężkości G nad O' przez y. Nachylenia do pionu 



— 210 —

odcinków CC^ CJ i JGr wynoszą odpowiednio a+1‘, a +1+1’, 
$+1. Rzutując te trzy odcinki na kierunek pionowy, otrzy­
mamy

y =(p+ p‘) cos (o. + $‘) - p cos (a + P + $‘) + r cos(p + $‘).

Podstawiamy — zamiast • i rozwijamy wyrażenie po- 
P

wyższe według wzrastających potęg V’. Współczynniki przy V’, 
4/2... będą kolejnemi pochodnemi zmiennej J, można więc 

znaleźć trwałość równowagi z dowolnym stopniem przybliże­
nia według prawidła paragrafu 220.

Współczynnik przy V’ jest zerem, współczynnik przy 9

. (z cosa — r) p‘2 . wynosi   72—9 gdzie z oznacza to samo, co i poprzednio.

Równowaga jest trwała lub chwiejna stosownie do tego, czy 
współczynnik ten jest dodatni, czy ujemny, t. j. czy r jest 
mniejsze, czy większe od z cos a.

Jeżeli i ten współczynnik jest zerem, to równowaga jest 
obojętna w przybliżeniu pierwszem. Badamy w takim razie 
współczynnik przy p‘8. Jeżeli nie jest on zerem, to równowaga 
jest trwała dla przesunięć w jedną stronę od położenia równo­
wagi i chwiejna dla przesunięć w drugą. Jeżeli znika współ­
czynnik przy p‘, to badamy wyrazy czwartego stopnia. Ró­
wnowaga będzie trwała lub chwiejna stosownie do tego, czy 
współczynnik przy $‘4 jest dodatni, czy ujemny.

248. Prz. 1. Powierzchnia kulista spoczywa na szczycie innej 
powierzchni kulistej, a środek, ciężkości pierwszej leży na takiej wy­
sokości nad punktem zetknięcia, że równowaga jest obojętna w pier- 
szem przybliżeniu. Dowieść twierdzenie następujące: jeżeli powierz­
chnia dolna leży wypukłością do góry, jak na fig. 77, to równowaga 
jest nietrwała bez względu na to, czy ciało górne jest zwrócone wy­
pukłością w górę czy na dół; jeżeli powierzchnia dolna leży wklęsło­
ścią do góry, to równowaga jest trwała lub chwiejna stosownie do 
tego, czy promień krzywizny powierzchni dolnej jest większy, czy 
mniejszy od podwójnego promienia ciała górnego.

Współczynnik przy 1’2 jest tu zerem. Współczynnik przy 1’4 po 
p‘(p‘+2p)(p‘+p) wyrugowaniu r sprowadza się do ——  . Równowaga będzie 
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trwała lub chwiejna stosownie do tego, czy współczynnik ten jest do­
datni, czy ujemny, a stąd wynika bezpośrednio twierdzenie żądane.

Prz. 2. Ciało, posiadające w części dolnej powierznię kulistą, 
spoczywa wewnątrz nieruchomego naczynia kulistego w równowadze 
pozornie obojętnej; ciała te stykają się w najniższym punkcie naczy­
nia. Okazać, że równowaga jest istotnie obojętna, jeżeli promień je­
dnej powierzchni jest dwa razy większy od promienia drugiej.

249. Ciała niekuliste, przybliżenie drugie. Jeżeli powierz­
chnie ciał, pozostające w zetknięciu, nie są kuliste, to można zastoso­
wać metodę następującą.

Dajmy na to, że ciało górne stoczyło się z położenia równowagi 
do położenia, wyobrażonego na fig. 77. Jeżeli teraz G leży po prawej 
stronie pionu, przechodzącego przez I’, to oczywiście ciało potoczy się 
dalej od położenia równowagi, lecz jeżeli G leży po lewej stronie tego 
pionu, to ciało potoczy się z powrotem. Niech i oznacza kąt, który 
GI' tworzy z pionem; mamy wyznaczyć ten kąt i. .

Oznaczmy przez « kąt, który GI' tworzy ze / G/ 
wspólną normalną w I', czyli z I'C, a przez r od-/ (C I 
cinek GI'. Niech I'J" będzie dalszym łukiem Ss, J / // / 
o który potoczy się ciało, a p, p' promieniami .—-0/ / 
krzywizny w I' ciał górnego i dolnego. W takim I 
razie będzie / 

dr C‘2 - ‘ 
ds ‘ v Fig. 78.

Dalej CIG+TGJ‘‘=lOJ=CJ‘G+ICJ", czyli
os COS® 8s 

+ = ( do-—, 
r P

, , de COS® 1 
skąd — =     (2). 

ds r p

Wreszcie, oznaczając przez 1‘ nachylenie normalnej CC do pionu, 
d'Y 1 otrzymamy z=^ — ©, i — = —, a zatem ze względu na (2) 
ds p‘
di 1 1 COSe

W tych trzech równaniach zawierają się wszelkie warunki trwałości 
równowagi. W położeniu równowagi środek ciężkości leży pionowo 
nad punktem oparcia, a więc wówczas i=0. W każdem położeniu in- 
nem wartość i określa szereg Taylora

. di d2i 8s2 
i=—■ 8s— — L...

ds ds21.2
Jeżeli w tym szeregu pierwsza nieznikająca pochodna jest nie­

parzystego rzędu i dodatnia, to odcinek IG odchyla się od pionu w tę 
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samą stronę, w którą porusza się ciało. Stąd wynika, że równowaga 
jest chwiejna dla odchyleń w obydwie strony od położenia równo­
wagi. Jeżeli owa pochodna jest ujemna, to równowaga będzie trwała. 
Jeżeli pierwszy wyraz nieznikający jest rzędu parzystego, to nie zmie­
nia on znaku ze zmianą znaku os, a więc równowaga będzie trwała 
dla odchyleń w jedną stronę i chwiejna dla odchyleń odwrotnych.

Pierwszą pochodną mamy w (3), drugą znajdziemy różniczkując 
de dr

(3) i podstawiając — i — z (2) i (1). Powtarzając to działanie, znaj- 
ds ds

dziemy trzecią pochodną i każdą następną.

Po pierwsze przypuśćmy, że w położeniu równowagi — nie jest 
ds

zerem; w takim razie warunek trwałości równowagi polega na tem, aby
1 1 cos©

----- 1-----------------było ujemne. Prowadzi to do prawidła, które pozna-
0,P‘ r

liśmy już w par. 244.
Po drugie przypuśćmy, że w położeniu równowagi środek cięż­

kości leży na okręgu trwałości. W takim razie — =0. Różniczkując (3) 
ds

1 1 cos©
i podstawiając---- 1-----zamiast--------otrzymamy

P P T
dH
ds2

d/1 1 \ /1 1\/1 2\ 
— 1 „) — tan p 1 ) i ; ) dS P p / \ p p /p p / (4).

Jeżeli to nie znika, to równowaga będzie trwała dla odchyleń w jedną 
stronę od położenia równowagi i chwiejna dla odchyleń odwrotnych.

Po trzecie przypuśćmy, że w położeniu równowagi i druga po­
chodna, czyli (4), jest zerem. Różniczkując (3) dwa razy i rugując r, 
jak poprzednio, otrzymamy

d3i d2 /I 1\ /I l\f/l 21 d /1\
— = —9 — -—,) + \---- '—,)----- '—,)—- tan—— / ds3---ds2p-------p / P------ p /\ p------ p / p ds \ p /

./1 1\/1 2\)
-3 tan 2 I---- 1---- --------- 1---- .

P PP p •

Równowaga jest trwała lub chwiejna stosownie do tego, czy wy­
rażenie to jest ujemne, czy dodatnie.

250. Prz. 1. Równowaga ciała, spoczywającego na powierzchni 
innego, jest obojętna w przybliżeniu pierwszem, i obydwa ciała są sy­
metryczne względem wspólnej normalnej. Okazać, że równowaga może 
być trwała tylko w takim razie, jeżeli punkt zetknięcia jest szczytem 
powierzchni nieruchomej, albo jeżeli p'=—2p.

Prz. 2. Równowaga ciała, spoczywającego na chropowatej pła­
szczyźnie pochyłej, jest obojętna w przybliżeniu drugiem. Okazać, że 
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d2p 
równowaga ta jest trwała lub chwiejna, stosownie do tego, czy 792 
jest dodatnie, czy ujemne.

Prz. 3. Ciało pozostaje w równowadze na powierzchni innego 
ciała nieruchomego, przyczem na środek ciężkości G pierwszego działa 
siła zewnętrzna; siła ta jest skierowana do pewnego punktu O, poło­
żonego na przedłużeniu GI, i zmienia się proporcyonalnie do odległo­
ści. Prócz tego na IG, leży punkt G', położony w taki sposób, że 
111

-—= — + -—; okazać, że równowaga jest trwała, jeżeli G' znajduje 
IG IG 10
się wewnątrz koła trwałości równowagi, i chwiejna w przypadku od­
wrotnym.

251. Staczanie głazów w trzech wymiarach. Gdy ciało górne 
zajmuje położenie równowagi, obieramy wspólną płaszczyznę styczną 
w punkcie zetknięcia 0 za płaszczyznę xy, i niech wówczas równania 
powierzchni ciała górnego i dolnego będą odpowiednio

2z = ax2 + 2 bxy + cy2 +.. A
—2z'=a'x2+2b'xy+c'y2+.. J

Zatem w przypadku, obranym za modłę, ciała są zwrócone do 
siebie wypukłościami. Przypuśćmy teraz, że ciało górne potoczyło się 
z położenia równowagi po dolnem wzdłuż osi x o mały łuk ds, i niech 
OP=OP’ ^=ds.

Zobaczmy naprzód, jak trzeba obrócić ciało górne, aby płaszczy­
zna styczna w P przystała do płaszczyzny stycznej w P'. Z równań

(1) wyniknie, że styczne do łuków OP i OP' w punktach P i P' two- 
dz 

rzą z płaszczyzną XJ kąty odpowiednio równe Te = ads i
dz
----— — a'ds. 
dx

Styczne te przystaną, gdy obrócimy ciało górne około Oy o kąt 
Q,=(a + a')ds. Zwróćmy następnie uwagę na styczne w punktach 
P i P', prostopadłe do OP i OP'; tworzą one z płaszczyzną xy kąty 
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dz dz' 
dy —bds i Aby styczne te przystały potrzeba obrócić ciało 

górne około 0x o kąt 0,==- (b + b')ds. Gdy wykonamy te obydwa obroty 
jednocześnie, albo jeden po drugim, to ciało górne potoczy się na łuku 
0P= ds.

Dwa obroty 0, i 02 około osi x i y są równoważne obrotowi 
wypadkowemu L około pewnej osi Oy'. Oznaczywszy kąt xOy' przez i, 
znajdziemy 9 cos i=0, oraz Lsini=w2. Nie jest koniecznem, aby oś 
obrotu Oy' była 
kierunków jest 
powyższych.

252. Gdy

prostopadła do łuku toczenia 0x. Gdy jeden z tych 
dany, to drugi można wyznaczyć na mocy związków 

ustawimy ciało nieruchomo w nowem położeniu, to 
środek ciężkości G- już nie będzie leżał na pionie, przechodzącym 
przez punkt zetknięcia, i ciało zacznie się poruszać pod działaniem 
siły ciążenia. Założymy, że ciało jest zmuszone albo iwacać do położe­
nia równowagi tą samą drogą, którą przyszło, albo odchylać się dalej. 
W takim razie równowaga będzie trwała lub chwiejna stosownie do 
tego, czy moment siły ciążenia względem osi równoległej do Oy' 
i przechodzącej przez nowy punkt zetknięcia, usiłuje powrócić ciało 
do położenia równowagi, czy odchylić jeszcze dalej.

Przesunięcia środka ciężkości G dogodniej będzie odnosić do 
nowego układu prostokątnego Ox', Oy' i Oz; niech współrzędne jego 
w tym nowym układzie w położeniu równowagi będą x', y', z. Oznacz- 
my prócz tego OG przez r, i kąty kierunkowe prostej OG przez a', 3‘, Y. 
W takim razie będzie x‘=rcosa‘, y'=r cos^,', z=^r cos .

Poprowadźmy prostą GN prostopadle do Oy'. Skutkiem obrotu 
Q2 środek ciężkości G przebiegnie mały łuk koła GG'; płaszczyzna tego 
koła jest równoległa do płaszczyzny x'z, środek leży w N, a promień jest 
równy NG. Stąd wynika, że punkt G przesunie się równolegle do osi 
x‘ o Lz, a równolegle do osi z o — Qx‘. Oznaczywszy ciężar ciała przez 
W, znajdziemy, że składowe jego w kierunkach osi x', y', z będą

X=- Wcosa’, Y=—Wcos^>', Z—— Wcosy,
moment zaś siły W względem prostej, równoległej do Oy' i przecho­
dzącej przez nowy punkt zetknięcia P, wyniesie

M= (z— Qx‘) X — (x‘ +^iz — ds sin i)Z= {rQ(cos 2a' + cos 2r) — ds sin i cos Y | W.

Równowaga zatem będzie trwała lub chwiejna stosownie do tego, 
czy M jest ujemne czy dodatnie.

253. Zauważymy, że 9 oraz i nie zależą od krzywizn a, a' lub 
b, b' lecz od ich sum a + a' i b + b'. Możemy zatem zastąpić ciało górne 
innem, na którem krzywizny przekrojów normalnych są równe krzywi­
znom względnym ciał danych; to ciało zastępcze powinno spoczywać na 
płaszczyźnie chropowatej, nachylonej do poziomu pod kątem . Warunki 
równowagi jego będą takie same, jak ciała danego.
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Równanie powierzchni tego ciała nowego będzie
. .............................................................................................. (2).

Otrzymamy indicatrix (courbe indicatrice Dupina), odrzucając wyrazy 
oznaczone przez domyślnik i dając z jakąś wartość stałą. Stożkową tę 
można nazwać indicatrix względną powierzchni, określonych przez 
równania (1). Musi to być elipsa, bo inaczej toczenie się byłoby nie­
możliwe. Oś y' posiada równanie 02x=w,y, czyli (a+a')x+(b + b')y—0; 
jest to średnica sprzężona z x. Tak więc oś obrotu Oy' i styczna Ox 
do łuku toczenia są średnicami sprzężonemi indicatrix względnej.

Niech pip' będą promieniami krzywizny względnej przekrojów 
normalnych, zrobionych przez Ox i Oy', a P1, P2 głównymi promie­
niami krzywizny. Każde p jest proporcyonalne do kwadratu odpowie­
dniej średnicy krzywej indicatrix; opierając się na tem i na własno­
ściach średnic sprzężonych, znajdziemy, że pp‘ sin2i=P1P2 .

254. Pragnąc zbadać znak momentu M, podstawmy (a + aj ds, 
ds 

czyli — zamiast Lsin i. Wówczas będzie 
P

/ P1P2 \WdsM= rsin2‘-----cosy)............. ..............................................(3).
\ p‘ / psin i

Równowaga jest trwała lub chwiejna dla pewnego przesunięcia, sto­
sownie do tego, czy pierwszy czynnik jest ujemny, czy dodatni.

Dajmy na to, że ciało górne spoczywa na samym wierzchołku 
ciała dolnego. W takim razie środek ciężkości G- leży na wspólnej

T
normalnej Oz, a zatem 3’= 2‘ T=0, i

P1P-) Wds 
p' / p sin ż

Rozważając przesunięcia we wszystkich kierunkach, widzimy, że ró­
wnowaga będzie całkowicie trwała, jeżeli OG, czyli r, jest mniejsze od 
najmniejszego promienia krzywizny względnej łuku toczenia; jeżeli zaś 
OG jest większe od największego promienia krzywizny względnej, to ró­
wnowaga będzie całkowicie chwiejna. Jeżeli OG zawiera się w tych 
granicach, to równowaga jest trwała dla pewnych odchyleń, a chwiejna 
dla innych. Granicę stanowi to odchylenie, w którem promień p‘ krzy­

wizny łuku sprzężonego jest równy P1P2 
r

Prz. Ciało ma kształt paraboloidy obrotu z podstawą prostopa­
dłą do osi w odległości 9/8 latus rectum od wierzchołka. Okazać, że 
równowaga takiego ciała jest trwała, gdy opiera się ono końcem latus 
rectum paraboli tworzącej o płaszczyznę poziomą. (Coli. Ex., 1891.)

255. Dowód Lagrange‘a zasady pracy przygotowanej. Przy­
puśćmy, że na ciało ABC działają współmierne siły P, Q, R ..., przy­
łożone w punktach A, B, C..., i niech wspólna miara 2K zawiera się 
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w owych siłach odpowiednio Z, m, n... razy. Umocujmy gładki blo­
czek w punkcie A ciała, i taki sam bloczek urządźmy w nierucho­
mym punkcie A', tak aby prosta AA' miała kierunek siły P. Opro­
wadźmy następnie te bloczki wiotkim sznurem tak, aby przechodził 
przez każdy bloczek Z razy. Jeżeli teraz naprężenie sznura będzie 
równe K, to oczywiście siła, działająca na punkt A, będzie równa da­
nej sile P i będzie działała w tym samym kierunku. Podobne bloczki

A
Fig. 80.

Przypuśćmy teraz, że ciało

urządzamy w B, C... i naprzeciwko 
w nieruchomych punktach B', C... 
Ten sam sznur oprowadzamy m ra­
zy około bloczków B, B', n razy 
około C, C i t. d. Jeden koniec 
sznura przywiązujemy w nierucho­
mym punkcie O, a drugi przepro­
wadzamy przez gładki bloczek D, 
ustawiony nieruchomo w przestrze­
ni, i zawieszamy na nim ciężar K. 
Tym sposobem zastąpiliśmy siły 
P, Q, R ... ciśnieniami bloków, które 
wywołuje naprężenie sznura K.

otrzymało pewne małe przesunięcie, 
skutkiem czego bloczki A, B, C... zbliżyły się odpowiednio do A', B', C... 
o a, 3, Y...; te małe długości a, 3, ... mogą być dodatnie lub ujemne. 
Sznur owija bloczki A, A' l razy, gdy więc bloczki te zbliżą się o a, to 
sznur skróci się o 2/a. Podobnie sznur skróci się o 2m3, gdy B zbliży 
się do B' o 3 i t. d. Odległości OA', A'B'... są niezmienne, a zatem 
skutkiem owego przesunięcia ciężar K opadnie o s=2(la+m3+...). Po- 
nieważ P=2lK, Q=2mK..., przeto praca tych sił wyniesie 2K(la+m3+...), 
czyli Ks.

Lagrange rozumuje dalej tak. Ciężar K ma dążność do opadania, 
gdyby więc było możliwe przesunięcie układu, pozwalające ciężarowi 
opadać, to ciężar ten by opadł i wywołał owe przesunięcie. Stąd wy­
nika, że jeżeli układ jest w równowadze, to żadne z przesunięć możli­
wych nie pozwala na opadanie ciężaru, a więc s=0, i praca przygoto­
wana wszystkich sił jest równa zeru.

Następnie Lagrange czyni uwagę taką. Jeżeli wielkość la+m^+... 
różni się od zera, lecz jest ujemna, to warunek ten na pozór zabezpie­
cza równowagę, bo jest rzeczą niemożliwą, aby ciężar K Sam przez się 
zaczął się podnosić; ale jeżeli dla pewnego przesunięcia wielkość 
la+m3+ ... jest ujemna, to będzie ona dodatnia dla przesunięcia wprost 
odwrotnego. Przy tern przesunięciu odwrotnem ciężar K opada, a więc 
równowaga zostanie zakłócona.

Wielu wybitnych matematyków uznało, że założenie, dotyczące 
opadania ciężaru K, jest uprawnione; swoją drogą nie wydaje się ono 
tak oczywistem i elementarnem, aby zasada prac przygotowanych, do­
wiedziona w sposób powyższy, mogła stać się podstawą nauki. Uczy­
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niono także zarzut, że założenie to nie jest słuszne bez pewnych dal­
szych ograniczeń; gdy np. ciężka cząsteczka spoczywa w równowadze 
chwiejnej na najwyższym punkcie gładkiej nieruchomej kuli, to małe 
przesunięcie umożliwi cząsteczce opadanie pomimo, że istnieje ró­
wnowaga.

256. Odwrotnie, jeżeli równanie la + m3 + ... = 0 zachodzi dla 
wszelkich możliwych przesunięć nieskończenie małych układu, to 
układ jest w równowadze. Przy tych wszystkich przesunięciach cię­
żar K pozostaje w spokoju, niema więc racyi, dlaczego by siły, dzia­
łające na układ, miały poruszyć go w jakimś kierunku albo w kierun­
ku odwrotnym; a zatem układ pozostanie w równowadze.

Sposób, w jaki Lagrange udowadnia to twierdzenie odwrotne, 
podlega różnym zarzutom; można je znaleźć w artykule De Morgana 
Virtual Yelocities w Knighfs English Cgclopaedia. Autor proponuje pe­
wne zmiany w dowodzie Lagrange’a, pozwalające uniknąć zwykle czy­
nionych zarzutów, ale ten nowy sposób dowodzenia nasuwa również 
pewne wątpliwości.



ROZDZIAŁ VII.

SIŁY W TRZECH WYMIARACH.

257. Wyznaczyć wypadkowe jakiejkolwiek liczby sił, dzia­
łających na ciało w trzech wymiarach. Metoda Poinsota.

Oznaczmy siły przez P1,P2,..., a ich punkty przyłożenia 
przez A1, A2,... Niech O będzie punktem, obranym dowolnie; 
mamy sprowadzić siły dane do jednej siły, przyłożonej w 0, 
i do pary.

Obieramy punkt O za początek prostokątnego układu

N 

Fig 81.

104), wprowadzając

współrzędnych. Niech P będzie jedną 
z sił danych, i niech x=OM, y — MN 
i z = NA będą współrzędnemi jej punktu 
przyłożenia A.

Przedewszystkiem rozkładamy P na 
trzy składowe Px, Py, Pz w kierunkach 
osi; każdą z tych składowych przenosi­
my następnie do punktu 0 (jak w par. 

w tym celu do układu stosowną parę. 
Przykładamy więc w punkcie M dwie siły odwrotne, z któ­
rych każda jest równa i równoległa do Pz; takie same dwie 
siły przykładamy w punkcie O. Możemy uważać, że siła Pz jest 
przyłożona w punkcie N, a zatem siła ta jest równoważna sile 
Pz, przyłożonej w O, i dwom parom, których momenty wyno­
szą odpowiednio yPz i —xPz, i których płaszczyzny są równo­
ległe do yz i xz. Każda z tych par usiłuje obrócić ciało w kie­
runku dodatnim lub ujemnym płaszczyzny współrzędnych, 
w której działa; stosownie do tego przypisujemy jej momen­
towi znak + lub -. Prowadząc prostopadłą z punktu A do 
płaszczyzny yz, możemy dowieść zupełnie tak samo, jak po­
przednio, że składowa Px daje się zastąpić przez taką samą 
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siłę, przyłożoną w O, i przez pary zPx i -yPx-> działające od­
powiednio w płaszczyznach xz i xy. Wreszcie zastępujemy 
składową Py przez siłę Py^ przyłożoną w O, oraz dwie pary 
xPy i —zP,, działające w płaszczyznach xy i yz. Ostatecznie 
zamiast siły P mamy trzy składowe Px, Pyi Pz, przyłożone 
w 0 i działające w kierunkach osi współrzędnych, oraz trzy 
pary o momentach yPz — zPy^ zPx — xPz^ xPy — yPx^ działające 
odpowiednio w płaszczyznach yz, zx, xy.

Czyniąc to samo ze wszystkiemi siłami danemi, sprowa­
dzimy dany układ do trzech sił X, Y, Z, działających na 
osiach współrzędnych i do trzech par, których momenty wy­
noszą L, M, N, i których osi leżą na osiach współrzędnych; 
co do wielkości

X^Px, X^yPz-zPy\
Y^Py, M=X(zP„-xP),
Z^Pz, N=^xPy-yPxy

Nazywamy te wielkości sześcioma składnikami lub sześcioma 
współrzędnemi układu sił.

Trzy składniki X, Y, Z można połączyć w jedną siłę. 
Niech R oznacza jej wielkość, a (l, m, n) kosynusy kierunko­
we jej kierunku dodatniego. W takim razie

Pl--^X, Rm=^Y, Rn = Z, 
R^X^+ Y2 + Z\

Moigno nazwał tę siłę siłą główną dla punktu 0.
Można również połączyć pary L, M, N w jedną parę; 

oznaczmy moment jej przez G, a kosynusy kierunkowe przez 
(A, p, v).

G\=:L, Gp=M, Gv = N,
G^L2 + M2 + N\

Parę G nazywamy parą główną dla punktu O. Jej składowe 
L, M, N zowią się także momentami sił względem osi.

258. W zagadnieniu tern obraliśmy środek redukcyi O 
za początek układu współrzędnych. Gdy trzeba będzie rozróż­
niać te dwa punkty, to wypadnie zmienić wzory powyższe. 
Niech środkiem redukcyi będzie punkt O', posiadający współ­
rzędne i, 7, C- Wyrażenia składników dla tego nowego środka 
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redukcyi możemy otrzymać z wyrażeń składników dla środka 
redukcyi w początku układu; należy tylko w tym celu zastą­
pić x, y, z przez a — §, y — 7, z — C.

Wyrażenia składowych siły R nie zawierają x, y, z, a więc 
wielkość i kierunek głównej siły R są dla wszystkich środków re­
dukcyi jednakowe.

Wyrażenia składowych pary G będą teraz
L' ^\(y-^Pz-{z~^Py\=L-^Z^Y,
M' = ^z- QPX -(x-6 )PB} = M- (X+ EZ,
N'^\x-^Py-{y-^Px\=N-^Y+^X.

Widzimy, że wielkość i oś pary głównej G są wogóle różne 
dla różnych środków redukcyi.

259. Warunki równowagi. Dowiedliśmy w par. 105, że 
siły, działające na ciało, dają się zawsze sprowadzić do jednej 
siły R i do jednej pary G. Rozumując, jak w par. 109, znaj- 
dziemy, że do równowagi potrzeba i wystarcza, aby ta siła 
i para znikały z osobna, czyli aby było P — Q i G=0.

W przypadku, gdy układ współrzędnych jest prostokątny, 
prowadzi to do sześciu warunków następujących

X=0, Y=0, Z=0, L = Q, M=0, N=0.

Możemy wynikom tym nadać postać dogodniejszą.
Warunek niezbędny i wystarczający do tego, aby wypadko­

wa R była zerem, jest następujący: suma rzutów wszystkich sił 
na każdą z trzech prostych, obranych dowolnie, lecz nie równole­
głych do jednej płaszczyzny, powinna być równa zera. Aby to 
udowodnić przypuśćmy, że GA, OB, OC są równoległe do 
owych trzech prostych. Jeżeli rzut wypadkowej B na OA jest 
zerem, to albo R jest zerem, albo kierunek tej siły jest pro­
stopadły do OA. Gdyby wypadkowa R nie była zerem, to kie­
runek jej musiałby być prostopadły do trzech prostych, prze­
chodzących przez O i nie leżących w jednej płaszczyźnie, a to 
jest niemożliwe.

Rozkładamy pary według tych samych zasad, co i siły, 
a zatem i dla par istnieje twierdzenie analogiczne. Dla punktu 
O, jako środka redukcyi, każdej z sił danych odpowiada para, 
i wypadkową tych par jest G. Aby ta para główna była ze­
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rem, to sumy rzutów osi owych par składowych na trzy pro­
ste, przechodzące przez 0 i nieleżące w jednej płaszczyźnie, po­
winny być zerami; jest to warunek konieczny i wystarczający. 
Zobaczymy w dalszym ciągu, że taka suma rzutów na prostą, 
przechodzącą przez O, jest także momentem sił względem tej 
prostej (par. 263).

Parę można przenieść do płaszczyzny równoległej, przy- 
czem jej skutki działania nie ulegną zmianie, łatwo więc zro­
zumieć, że, gdy R jest zerem, to momenty układu względem 
wszystkich prostych równoległych są równe. A więc do ró­
wnowagi wystarcza, aby moment sił względem każdej z trzech 
prostych obranych dowolnie (przecinających się lub nieprzecinają- 
cychj był równy zeru; proste te jednak nie powinny być równo­
ległe do jednej płaszczyzny. Wkrótce wyjaśnimy szczegółowo, 
w jaki sposób wyznaczają się te momenty.

260. Współrzędne siły. Siła jest dana, gdy znamy jej 
wielkość i mamy równania jej linii działania, lecz widzieliśmy 
w par. 257, że niekiedy bywa dogodniej określać siłę P war- 
tościami jej sześciu składników lub współrzędnych Px, Py, Ps 
oraz yPz-zPy, zPx — xPz, xPy — yPx. Osiągamy przy tern tę ko­
rzyść, że możemy wyznaczyć ogólne skutki działania dowolnej 
liczby sił, dodając odpowiednie współrzędne tych ostatnich.

Każdą prostą można uważać za linię działania pewnej 
siły, której wielkość obieramy dowolnie; współrzędne tej siły 
określą całkowicie ową prostą. Niech (Z, m, n) będą kosynu- 
sami kierunkowymi pewnej prostej, a (x, y, z) współrzędnemi 
któregokolwiek z jej punktów. Obrawszy siłę jednostkową, 
otrzymamy współrzędne prostej

l, m, n, k — yn — zm, M. =zl- xn, v = xm — yl.
Pomiędzy wielkościami temi zachodzi oczywisty związek

..............................................................(1).
Jeżeli na tej prostej działa siła P, to współrzędne tej siły 

będą
PI, Pm, Pn; Pk, PM., Pm, 

a współrzędne układu pewnej liczby sił przybierają postać

X=1PI, Y=^Pm, Z^Pn- L^Pk, M^P^, N^Pm.
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W tym razie związek
XL+YM+ZN=O.(2). 

nie zawsze istnieje.

261. Widzieliśmy w par. 257, że wszystkie siły układu 
można sprowadzić do jednej siły R i jednej pary G. Takie 
połączenie siły i pary Plucker nazwał dynamą, a sześć wielko­
ści X, Y^ Z, L^ M, N zowią się składnikami lub współrzędnemi 
dynamy. Trzy pierwsze są wielokrotnościami pewnej siły jedno­
stkowej, a trzy ostatnie pewnej pary jednostkowej.

Jeżeli współrzędne dynamy czynią zadość warunkowi (2), 
to, jak zobaczymy w dalszym ciągu, albo siła R albo para G 
jest równa zeru.

262. Prz. 1. Siła posiada współrzędne 1, 2, 7; 4, 5,—2. Okazać, 
że wielkość siły wynosi V54, a równania jej linii działania są

Ty—2z z— 7x ^x—y
-4 5—5-278

Prz. 2. Dynama posiada współrzędne 1, 2, 3; 4, 5, 6. Okazać, 
że wielkość siły wynosi \/14, a jej kosynusy kierunkowe są propor- 
cyonalne do 1, 2, 3. Jeżeli siła działa na początek układu, to wielkość 
pary wynosi V77, a kosynusy kierunkowe jej osi są proporcyonalne 
do 4, 5, 6.

263. Moment siły. W par. 257 była już mowa o tern, 
że wyrażenia na L, M^ N zowią się zazwyczaj momentami sił 
względem osi x, y, z. Wyrażenia te są

L = ^yP3 - zPy\ M = ^{zPx - xPz\ N^{xPy - yPx}.
Zobaczymy, czy taki sposób mówienia jest w zgodzie z de- 

finicyą, podaną w par. 113. W tym celu zbadajmy, jak po­
wstało wyrażenie na N. Siłę P rozłożyliśmy na składowe Pa, 
Py^ Pz. Dwie pierwsze działają w płaszczyźnie prostopadłej do 
osi z, a więc w myśl definicyi z par. 113 wyrażenia —yPx i ^Pv 
są odpowiednio równe ich momentom względem tej osi. Trze­
cia składowa Ps działa równolegle do osi z; jeżeli zdefiniujemy 
jej moment jako zero, to wyrażenie na N będzie momentem 
sił względem osi z. Z drugiej strony jest rzeczą jasną, że para, 
złożona z siły P oraz z siły równej i odwrotnej, przyłożonej 
w O, posiada trzy pary składowe, których osi leżą na osiach 
x, y, z. Moment ostatniej pary jest równy xPy — yPx’, jest to 
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także rzut osi pary danej na oś z, a zatem N jest sumą rzu­
tów takich osi.

Niech Q będzie wypadkową sił Pa i Ps; w takim razie 
moment tej siły Q względem osi z jest równy sumie momen­
tów składowych Px i Pz (116). Przychodzimy tedy do następu­
jącej definicyi momentu siły względem prostej. Oznaczmy tę 
prostą przez CD. Rozkładamy siłę P na dwie składowe, z któ­
rych jedna jest równoległa, a druga prostopadła do CD. Moment 
pierwszej według definicyi jest zerem, moment drugiej otrzyma­
my, mnożąc jej wielkość przez najkrótszą odległość pomiędzy nią 
i prostą CD.

Ta najkrótsza odległość jest oczywiście równa najkrótszej 
odległości pomiędzy siłą P i prostą CD, bo każda z nich jest 
równa odległości prostej CD od płaszczyzny, zawierającej oby­
dwie składowe. Oznaczmy tę odległość przez r, a kąt pomiędzy 
siłą P i prostą CD przez 0; w takim razie składowa prosto­
padła do CD wyniesie Psin 3. Wypada więc, że moment siły P 
względem CD jest równy Pr sin 3.

Gdy mamy dodawać momenty różnych sił względem CD, 
to należy baczyć, aby każdy z nich wszedł ze stosownym zna­
kiem. Pewien kierunek obrotu około CD obieramy za dodatni 
i uważamy moment siły za dodatni, jeżeli usiłuje ona obrócić 
ciało około CD w kierunku dodatnim.

264. Dajmy na to, że dwie siły równe działają w kie­
runkach dodatnich na prostych AB i CD. Z paragrafu poprze­
dzającego wynika, że moment pierwszej siły względem CD jest 
równy momentowi drugiej względem AB.

Iloczyn r sin 3 zowie się niekiedy momentem jednej z pro­
stych AB, CD względem drugiej. Niech i oznacza moment pier­
wszej prostej względem drugiej, i przypuśćmy, że na pierwszej 
działa siła P. W takim razie moment siły P względem drugiej 
prostej wyniesie Pi.

265. W pewnych razach wypada liczyć się ze znakami r i 8. 
Przypuśćmy, że kierunek dodatni na wspólnej prostopadłej prostych 
AB i GD został już obrany, musimy więc mierzyć r w tym kierunku. 
Kąt 3 mierzymy w jakiejkolwiek płaszczyźnie, prostopadłej do r od 
rzutu jednej prostej do rzutu drugiej w takim kierunku, aby siła do­
datnia, działająca na jednej prostej, wywoływała obrót w kierunku 
dodatnim około drugiej, gdy r i sin 8 są dodatnie (97).
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266. Znaczenie geometryczne momentu i. Wiadomo, że objętość 
czworościanu jest równa szóstej części iloczynu z dwóch przeciwle­
głych krawędzi, ich najkrótszej odległości oraz synusa kąta pomiędzy 
niemi )  Niech AB i CD będą jakimikolwiek odcinkami, położonymi od­*

*) Wyznaczyć objętość czworościanu. Przesuwamy płaszczyznę 
przez krawędź GD i wspólną prostopadłą EF krawędzi GD oraz kra­

wędzi przeciwległej AB. Objętość czworościanu 
AB GD jest równa sumie lub różnicy objętości 
dwóch czworościanów, których wierzchołkami są 
A i B, a wspólną podstawę stanowi trójkąt DEC; 
zatem objętość czworościanu ABGD jest równa 
trzeciej części pola DEC, pomnożonej przez 
ABsin 8, gdzie 3 oznacza kąt, który AB tworzy
z płaszczyzną DEC-

Wyobraźmy sobie prostą, poprowadzoną przez 
punkt E w płaszczyźnie DEC prostopadle do EF; 
oczywiście będzie to rzut prostej AB na płaszczy­
znę DEC, a zatem ta prosta tworzy z nim kąt 0. 

tworzy z AB prosta CD, bo leży ona również w pła­
szczyźnie DEC i jest prostopadła do EF; widzimy więc, że 3 jest ką­
tem pomiędzy przeciwległemi krawędziami AB, GD. Ostatecznie obję- 

AB. GD. EF. sin 3
tość czworościanu wypadnie------------ 6------------ •

powiednio na dwóch prostych. Moment wzajemny tych prostych wynosi
6V

abIdc' gdzie V oznacza objętość czworościanu, w którym AB i CD są

krawędziami przeciwległemi.
Wyznaczenie analityczne momentu i. Niech (fg h), (f' g' h') będą 

współrzędnemi punktów A, C, a (jmn), {l'm'n') kosynusami kierunko­
wymi kierunków dodatnich prostych AB, GD. Moment wzajemny pro­
stych AB, CD jest równy wyznacznikowi 

f-f, 9~9\ h-h'
l, m, n
V, m', n'

Porządek wyrazów w tym wyznaczniku jest następujący: jeżeli f, g, h 
poprzedzają f, g', h' w pierwszym wierszu, to l, m, n poprzedzają 
V, m', n' w porządku wierszy.

Aby to udowodnić obieramy G za początek, i niech będzie 
x=f—f, y=g—g', z=h—h'. W takim razie moment żądany wyniesie 
IX’ +npd +nv‘; znaczenia liter X, p., v wskazaliśmy w par. 260.

267. Prz. 1. Dwie proste posiadają współrzędne (lmnłuv) i 
C'm'n'\'[t''/); okazać, że ich moment wzajemny i=[k'+m[d+nZ + 
+l‘+m‘u+n‘v. Wielkość ta jest zatem dla dwóch danych prostych 
niezależna od tego, jak obraliśmy prostokątny układ współrzędnych. 
Jeżeli i=0, to proste się przecinają.

Taki sam kąt
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Inne twierdzenia o momentach linii prostych można znaleźć 
w książce Scotta p. t. Determinants.

Prz. 2. Punkty H i K, położone na linii działania siły P, posia­
dają współrzędne czworościanowe (xyzu), (x'y'z'u'). Okazać, że mo­
ment siły P względem krawędzi AB czworościanu wynosi

P 6v 2, 2‘ 
' HK. AB I u, u' | ’

Jeżeli siła dodatnia działa w kierunku HK, to wyrażenie powyż­
sze daje moment jej w kierunku obrotu około AB od wierzchołka C 
do wierzchołka D.

Prz. 3. Momenty wzajemne przeciwległych krawędzi czworo­
ścianu są równe; okazać, że iloczyny tych krawędzi są także równe. 
Okazać prócz tego, że

r4-2r2s2 cos 2r+s*=s4-2s2t2 C0S2 ---------- -- -  cos28+r4, 

gdzie r, s, t oznaczają długości odcinków, łączących środki przeciw­
ległych krawędzi, a a, 3, Y kąty pomiędzy tymi odcinkami.

(St John’s, 1891.)
Prz. 4. Oko, umieszczone w punkcie O, widzi trójkąty ABC 

i A'B'C' w perspektywie. Na bokach BC, CA, AB działają odpowiednio 
siły P, Q, R, a na bokach C'B', A'C, B'A' siły P', Q', R1, i cały ten 
układ sił jest w równowadze; okazać, że

A. P.OA’ _ A'. P. 0A _A.Q.OB_AQ.OB_A.R.oc_ ^.R'. OC 
mPAA' - B‘C‘.AA‘ - CA. BB' - CAPBB' - AB. CC' - A'B'. CC'’ 

gdzie A i A' są objętościami czworościanów O ABC i OA'B'C'.
(Math. Tripos, 1883.)

Odcinki OA, OB, OC, AB, BC, CA są krawędziami czworościanu. 
Przyrównywując do zera momenty wszystkich sześciu sił względem 
krawędzi OA, znajdziemy, że dwa pierwsze z wyrażeń powyższych są 
równe. W ten sam sposób, biorąc momenty względem AB, dowiedzie­
my równości drugiego i czwartego, a z symetryi wyniknie, że wszyst­
kie sześć wyrażeń są równe. Momenty można wyznaczać przy pomo­
cy prawidła, podanego w par. 266.

268. Zagadnienia równowagi. Prz. 1. Układ sił działa na 
ciało, które może obracać się swobodnie około osi nieruchomej. Pragnie­
my znaleźć warunki równowagi oraz reakcye osi.

Oś obrotu obieramy za oś z, a za osi x i y proste do niej pro­
stopadłe.

Ciśnienia różnych elementów osi tworzą układ sił. Gdyby ciało 
mogło przesuwać się wzdłuż osi bez tarcia, to każde z tych ciśnień 
byłoby prostopadłe do osi. Ograniczenie to jednak nie upraszcza roz­
ważań, założymy więc, że kierunki ciśnień są zupełnie ogólne. Obie­
ramy na osi dowolny punkt B za środek redukcyi i każde ciśnienie 
przenosimy do B, wprowadzając stosowną parę; płaszczyzna tej pary 

Statyka. 15
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AGz

Fig. 83.

oczywiście przechodzi przez oś. Tak sprowadzimy wszystkie ciśnienia do 
jednej siły, przyłożonej w B, i do pary, której płaszczyzna przechodzi 

przez oś. Przenieśmy tę parę w taki sposób, aby 
jedna z jej sił działała na B, i zmieńmy tak jej 
ramię, aby druga siła działała na inny punkt C, 
również obrany na osi. Składając siły, działające 
na punkt B, sprowadzimy ciśnienia wszystkich ele­
mentów osi do dwóch reakcyi, przyłożonych w dwóch 
punktach B i C, obranych na osi dowolnie. Możemy 
uważać, że ciało jest osadzone na osi w tych punk­
tach zapomocą gładkich zawias.

Niech Fx, Fy, Fz i G, G-y, G, będą odpo­
wiednio składowemi reakcyi w B i C, b i c rzęd- 
nenii tych punktów, wreszczie X, Y, Z, L, M, N 
ego układu sił. Biorąc rzuty na osi i momenty współrzędnemi

względem nich, jak w par. 257, otrzymamy
F,+G,+x=0 -Fh-GcYL=Q
Fv + a^+Y^ Fxb + Gxc+M=0
Fs+Gz+Z=Q) N=0

Równanie ostatnie zawiera warunek równowagi; głosi ono, że 
ciało będzie się obracać około osi, jeżeli moment sił danych względem 
osi nie jest równy zeru.

Mamy więc pięć równań do wyznaczenia sześciu składowych 
reakcyi osi. Składowe Fx, Fy, G,, Gy są oczywiście wyznaczalne, co 
się zaś tyczy składowych Fz i G,, to jedynie suma ich daje się wy­
znaczyć.

Możemy sobie ułatwić rozwiązywanie tych równań, obierając 
stosownie punkty B i C. Okoliczności zagadnienia wskazują zwykle 
najdogodniejsze położenie początku układu; jeżeli w tym samym pun­
kcie umieścimy B, to Gy i G, otrzymamy bezpośrednio.

Przypuśćmy dla przykładu, że ciałem są ciężkie drzwi, któ­
rych linia zawias tworzy z pionem kąt a. Moment sił względem osi 
musi być zerem, a więc w tym razie środek ciężkości drzwi leży 
w płaszczyźnie pionowej, przechodzącej przez oś. Obieramy tę pła­
szczyznę za płaszczyznę xz, a linię zawias za oś z. Niech x. O, ż 
oznaczają współrzędne środka ciężkości, a W ciężar drzwi. Aby do­
godniej było wyznaczać momenty, zastępujemy W składowemi 
Wsin o i — Wcoso, przyłożonemi w środku ciężkości i równoległemi 
do osi x i z. Punkt B obieramy w początku układu, a punkt 0 w od­
ległości c od początku. Biorąc rzuty i momenty, jak poprzednio, 
otrzymamy

F,+G,+Wsino=0 —G„c=0
F,+G, =0 G,c+Wz sin a+Wa cos a==0
FzYGz — Wcos 0=0
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Z równań tych wynika, że Fy i G-y są zerami, a więc reakcye 
wypadkowe działają w płaszczyźnie pionowej, przechodzącej przez oś. 
Wartości Fx, G, i F,+G, dają się wyznaczyć bez trudności.

Prz. 2. Trzy jednakoive kule, których środkami są A, B, C, leżą 
na gładkim stole poziomym, opasane sznurem. Sznur przebiega w pła­
szczyźnie środków i posiada stosowną długość, ale jeszcze nie jest wy-

Fig. 84.

A

prażony. Kładziemy na wierzch czwartą taką samą kulę D tak, 
aby wsparła się na wszystkich trzech dolnych. Okazać, że w sznurze po­

wstanie naprężenie T= W
3 16

Oznaczmy przez R reąkcyę górnej kuli na jedną z dolnych, 
i niech DN będzie odległością jej środka D od płaszczyzny ABC. Znaj- 
dziemy, że 3Rcos ADN=W. Rozważmy teraz równowagę kuli A. Dwie 
pozostałe kule dolne nie wywierają na nią żadnych reakcyi. Składowa 
reakcyi R w kierunku NA równoważy naprężenia w częściach sznura,
równoległych do AB i AC. 
BAC=60°, i

AN 
sin ADN= —

AD

Zatem R cos DAN = 2Tcos BAN.

2 AM_ 2 2rsin600
3 ’ AD — 3 ' 2r ‘

Kąt

Można teraz łatwo wyrazić T w funkcyi W.
Prz. 3. Cztery jednakowe kule pozostają w zetknięciu na dnie 

gładkiego kulistego naczynia, a ich środki leżą w jednej płaszczyźnie 
poziomej. Kładziemy na nie piątą kulę taką samą. Okazać, że kule 
dolne się rozejdą, jeżeli promień naczynia przewyższa (2 V13+1) razy 
wzięty promień kuli. (Math. Tripos, 1883.)

Prz. 4. Końce sześciu jednakowych prętów połączono luźno 
w taki sposób, że powstał czwprościan foremny, w którym pręty są 
krawędziami. Jedna jego ściana spoczywa na gładkiej płaszczyźnie 
poziomej. Okazać, że naprężenie podłużne w każdym boku tej ściany 

Wwynosi —-—, gdzie W oznacza wagę jednego pręta. (Coli. Ex.)
2 V 6

Prz. 5. Ciężka elipsoida jednorodna leży na trzech gładkich koł­
kach, położonych w jednej płaszczyźnie poziomej, opierając się na nich 
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końcami średnic sprzężonych. Dowieść, że zachodzi równowaga, i że 
reakcye kołków mają się do siebie, jak pola’ sprzężonych przekrojów 
centralnych. (Coli. Ex.)

Prz. 6. Cztery jednakowe sztaby, połączone w końcach swobo­
dnie, tworzą czworobok skośny. Jedna z nich jest umocowana w po­
łożeniu poziomem, a na przeciwległą działa para sił o osi pionowej. 
Okazać, że w stanie równowagi dolna sztaba tworzy z górną kąt

G
2 arc sin wi gdzie G oznacza moment pary, W ciężar, a l długość 

sztaby. Wyznaczyć prócz tego reakcyę w jednem z połączeń dol­
nych. (Coli. Ex., 1880.)

Prz. 7. Trójkątna równoboczna płyta jest zawieszona za wierz­
chołki u trzech punktów ruchomych na trzech sznurach pionowych. 
Płyta ma położenie poziome, a długość każdego sznura jest równa 
średnicy 2a koła opisanego na trójkącie. Okazać, że moment pary, 
która utrzyma płytę na wysokości 2(1— n)a nad położeniem początko- 
wem, wynosi Wa V1—n2. (Coli. Ex., 1886.)

Prz. 8. Lekka sztaba o długości 2l pozostaje w danem położeniu 
poziomem, oparta końcami o krzywe powierzchnie dwóch poziomych 
gładkich cylindrów kołowych. Promień każdego cylindra jest równy a, 
osi są równoległe, a odległość pomiędzy niemi wynosi 2c. Na sztabę 
działa siła P, przyłożona w środku, i para. Wyznaczyć parę w przy­
padku równowagi i dowieść, że moment jej jest najmniejszy, gdy P

a (
działa pionowo, jeżeli c<‘sin+—-=sec—; P oznacza tu kąt pomiędzy

sztabą i osiami cylindrów. (Math. Tripos, 1889.)
Prz. 9. Pełny cylinder o wysokości li i promieniu a składa się 

z nieskończenie wielkiej liczby nici równoległych i jednakowo sprę­
żystych. Końce nici są przymocowane do dwóch tarcz, stanowiących 
podstawy cylindra, a wszystkie nici razem uniosłyby ciężar W, gdyby 
je wyciągnąć do długości 2h. Cylinder ten jest zawarty w innym pró­
żnym cylindrze sztywnym, wypełniając go całkowicie. Przekręcamy 
jedną z tarcz końcowych w jej płaszczyźnie o kąt a. Zakładając, że 
każda nić przybiera kształt śrubowej, okazać, że w kierunku osi cy- 

2Wa2 h , h2\ 
lindra zacznie działać siła —   V h2—a2q2 -i 

a' 2 0.2 0.2/
(Math. Tripos, 1871.)

Prz. 10. Trzy jednakowe kule są zawieszone u nieruchomego 
punktu na trzech jednakowych sznurach o długości l. Każda kula waży 
W i posiada promień a. Umieszczamy na kulach symetrycznie lekką 
szalkę kulistą o promieniu b i lejemy do niej ostrożnie wodę. Oka­
zać, że im więcej wody zawiera szalka, tern bliżej muszą leżeć kule 
dolne jedna od drugiej, aby równowaga była możliwa, i że równo­
waga stanie się niemożliwą, gdy ciężar wody przekroczy nW; n ozna­
cza tu pierwiastek dodatni równania
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n\l - b) (l+2a+b)+(2n+3) (a2 —Bab— 3b2)==0.

Promień szalki b jest według założenia tak mały, że sznury zachowują 
kształt linii prostych. (Math. Tripos, 1890.)

269. Prz. 1. Ciężka sztaba OAB może obracać się swobodnie oko­
ło nieruchomego punktu O i opiera się o brzeg CAD chropowatej ściany. 
Tworzy ona przytem z prostopadłą OC do brzegu ściany kąt 3, a kąt, 
który OC tworzy z prostopadłą OE do pionowej powierzchni ściany, jest 
równy 3. Okazać, że tan 3 sin J=p, gdy równowaga jest graniczna.

Aby ułatwić sobie opis figury obierzmy OAB za oś x, a za oś z pro­
stą prostopadłą do płaszczyzny A OC; oś y będzie prostopadła do x i z. 
Ciężar sztaby W zastępujemy przez składową B
W cos 3, równoległą do z, oraz składową Wsin 3, CA4_ - 
równoległą do CO. Tę drugą rozkładamy jeszcze / I 
na siły Wsin 3 cos $ i W sin 3 sin 9 odpowiednio / /“ 
równoległe do osi x i y. /

/E———Reakcya R w punkcie A jest prostopadła / 
do OA i CD, a więc równoległa do osi z. O 
Punkt A sztaby może przesunąć się tylko w kie- Fig. 85.
runku prostopadłym do OA, a więc siła tarcia 
działa nie wzdłuż brzegu ściany, lecz odwrotnie do kierunku ruchu 
czyli równolegle do osi y. Biorąc momenty względem osi y i z, otrzy­
mamy.

Wcosp. 0G-=R.0A, Wsin sin $.OG=pR.0A.
Stąd wypadnie, że p=tan 3 sin 3.

Prz. 2. Trzy jednakowe kule, z których każda waży W, leżą na 
chropowatej podłodze możliwie blizko jedna od drugiej, ale jeszcze 
nie w zetknięciu. Na nich kładziemy czwartą kulę, ważącą nW. Oka­
zać, że układ pozostanie w równowadze, jeżeli współczynnik tarcia 

pomiędzy kulami przewyższa tan —, a współczynnik tarcia pomiędzy

a n 
kulą i podłogą przewyższa tan — . -, gdzie a oznacza kąt, który

z pionem tworzy prosta, łącząca środek kuli górnej ze środkiem jednej 
z dolnych.

Prz. 3. Drążek jednorodny opiera się końcem A o podłogę, 
a drugim końcem o pionową ścianę. Podłoga jest tak chropowata, że 
wszelki ruch końca A jest wyłączony, a współczynnik tarcia drążka 
o ścianę wynosi p. B oznacza położenie graniczne drugiego końca 
drążka dla pewnego położenia końca A, N spodek prostopadłej z A do 
ściany, a kąt BAN i 3 nachylenie prostej BN do pionu. Dowieść, że 
tan a tan 0 jest wielkością stałą, i wyznaczyć tarcie całkowite w B. 
Wyznaczyć prócz tego miejsce geometryczne punktu B na ścianie, gdy 
N jest nieruchome, i okazać, że B odchyla się najdalej od pionu, prze­
chodzącego przez N, gdy a=3=arc tan Vp . (Coli. Ex., 1886.)
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Prz. 4 Sztaba o długości 2a stoi na podłodze, oparta o pionową 
ścianę. Współczynniki tarcia sztaby o podłogę i ścianę wynoszą odpo­
wiednio M.1 i p2, odległość dolnego końca sztaby od ściany jest równa k, 
a płaszczyzna pionowa, przechodząca przez sztabę, tworzy ze ścianą 
kąt 8. Okazać, że sztaba ma zacząć się osuwać w dolnym końcu, gdy 
ku,(M22 sin2 8—cos2 8)2 == k-2u,(4a2 sin 8—k2)^, i że wówczas reakcya 
styczna w górnym końcu tworzy z poziomem kąt arc sec (U.2 tan 9).

(Math. Tripos, 1887.)
Prz. 5. Pierścień, nawleczony na cylinder poziomy, podtrzymuje 

kotarę zapomocą haczyka, umocowanego w tem miejscu pierścienia, 
który zajmuje położenie najniższe, gdy kotara zwisa swobodnie. Oka­
zać, że (1) pierścień może stykać się z cylindrem w jednym, a najwy­
żej w dwóch punktach, (2) w przypadku zetknięcia podwójnego pier­
ścień się nie przesunie, jakkolwiek będziemy ciągnęli kotarę, jeżeli 

(2a+b) cos 8. 
współczynnik tarcia przewyższa (2a-b)s i—--—L, gdzie b oznacza pro­

mień koła tworzącego, a promień koła kierowniczego, i 3 nachylenie 
płaszczyzny koła kierowniczego do osi cylindra. Ciężar samego pier­
ścienia nie jest tu brany w rachubę. (Math. T.)

Obieramy oś pierścienia za oś z, płaszczyznę koła kierowniczego 
za płaszczyznę xy, a oś x prowadzimy przez haczyk. Niech B, B' ozna­
czają punkty zetknięcia pierścienia z cylindrem, i dajmy na to, że B' 
leży bliżej haczyka. Oznaczmy jeszcze reakcye w tych punktach przez 
(R- p.R) i {R'; ^R'}\ wszystkie te cztery siły leżą w płaszczyźnie xz. 
Biorąc momenty względem osi, przechodzącej przez haczyk, i rozwią­
zując, znajdziemy

(2a+b) cos 3— pb cos 9
1 (2a+b) sin 8— b+pb(1+sin 9)’

gdzie p oznacza stosunek R' do R. Dopóki istnieje zetknięcie podwój­
ne, to zarówno R, jak i R', muszą być dodatnie. Jeżeli jednak p. jest 
większe od wartości, podanej w zadaniu, to z równania powyższego 
wypada, że p musi być ujemne.

Prz. 6. Ciężki stożek styka się wzdłuż tworzącej z chropowatą 
pionową ścianą i może obracać się swobodnie około wierzchołka, umo­
cowanego nieruchomo. Na stożek działa para o momencie L w pła­
szczyźnie równoległej do podstawy. Okazać, że w stanie równowagi 
tworząca zetknięcia tworzy z pionem kąt 3, czyniący zadość równaniu

3 Whsin I-tano .
L—-------------------, gdzie W oznacza wagę stożka, 20. kąt wierzchołkowy, 

4
i h wysokość. Okazać jeszcze, że współczynnik tarcia musi wynosić 

2 tan 9
conajmniej ——, jeżeli jedynie obwod podstawy stożka jest chro- 

sin 20
po waty.
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Oś centralna i niezmienniki.

270. Oś centralna Poinsota. Obrawszy środek redukcyi 
O, sprowadziliśmy układ do siły JR, przyłożonej w 0, i do 
pary G. Zbadamy teraz, czy układ nie da się uprościć jeszcze 
bardziej przez stosowny obiór środka redukcyi.

Dajmy na to, że siła R tworzy z osią pary G kąt 3. Roz­
kładamy G na dwie pary składowe G cos9 i Gsin 0; płaszczy­
zna pierwszej jest prostopadła do R, a płaszczyzna drugiej za­
wiera R. Para Gsin 9 i siła R są równoważne jednej sile, dzia­
łającej w ich płaszczyźnie, równej R^ równoległej do niej i po- 
. • — Gsin 9 , — łożonej w odległości ——— od O.

R

Tym sposobem sprowadziliśmy cały układ do siły R i do 
pary^ której płaszczyzna jest prostopadła do siły. Ta siła R jest 
równoległa do siły głównej któregokolwiek środka redukcyi; 
jej linia działania zowie się osią centralną Poinsota.

Przypuśćmy, że para G i siła R są dane dla jakiegokol­
wiek środka 0; pragniemy zbudować geometrycznie oś central­
ną. Należy w tym celu wziąć pod uwagę, że (1) oś centralna

Gsin 9jest równoległa do R, (2) leży w odległości ----—— od R, (3)h
prosta, poprowadzona prostopadle z O do osi centralnej, jest 
prostopadła do R i do osi pary G, (4) para Gsin 3 powinna 
popychać spodek tej prostopadłej na osi centralnej w tym sa­
mym kierunku, co i siła R.

271. Śruby i skrętniki. Wyobraźmy sobie, że ciało obró­
ciło się około pewnej prostej o mały kąt do i jednocześnie 
przesunęło się równolegle do niej o małą odległość ds. Mó­
wimy, że ciało odbyło wzdłuż tej prostej ruch śrubowy,

, ds . , , . a stosunek — nazywamy stromością śruby. Jeżeli stromosc jest 

jednostajna, to możemy ją zdefiniować jako drogę, odbytą 
wzdłuż osi podczas obrotu o jeden radyan, t. j. o jednostkę 
kąta miary bezwzględnej. Widzimy więc, że stromość śruby 
jest długością. Nieraz dla krótkości śrubą nazywamy oś śruby.

Jeżeli w układzie, złożonym z siły i pary, oś pary leży 
na linii działania siły lub jest do niej równoległa, to układ 
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taki nazywamy skrętnikiem. Termin ten (po angielsku wrench) 
wprowadził Sir R. Bali *). Wyrażenie skrętnik na śrubie ozna- 
cza siłę, skierowaną według osi śruby, i parę, działającą w pła­
szczyźnie prostopadłej do śruby, przyczem moment pary jest 
równy iloczynowi z siły przez stromość. Siłę nazywamy natę­
żeniem skrętnika. Jeżeli stromość śruby jest zerem, to skrętnik 
jest po prostu siłą, jeżeli stromość jest nieskończenie wielka, to 
skrętnik sprowadza się do pary. Niekiedy wyrażenie skrętnik 
na śrubie oddajemy jednym wyrazem skrętnik.

Skrętnik jest to dynama, której siła posiada kierunek pro­
stopadły do płaszczyzny pary.

Do określenia śruby potrzeba pięciu wielkości. Cztery 
z nich są niezbędne do określenia położenia osi; mogą to być 
np. współrzędne jej punktów przecięcia z dwiema płaszczy­
znami współrzędnych. Piąta wielkość określa stromość śruby. 
Określenie skrętnika na śrubie wymaga jeszcze szóstej wielko­
ści, a mianowicie wielkości siły.

272. Rozróżniamy śruby prawoskrętne i lewoskrętne, sto­
sownie do tego, w którą stronę obraca się ciało podczas tego 
samego przesunięcia. Wyobraźmy sobie, że obserwator stoi 
oparty o oś plecami; jeżeli przesunięcie odbyło się w kierunku 
od stóp do głowy, to nazywamy je dodatniem. Jeżeli przy- 
tem obserwator widzi obrót ciała w kierunku ruchu wskazówki 
zegara, to śrubę nazywamy lewoskrętną, jeżeli w odwrotnym to 
prawoskrzętną. (Zob. par. 97).

Zwykły korkociąg jest przykładem śruby prawoskrętnej, 
a oto przykład inny. Niech czytelnik wyciąga obydwie ręce 
poziomo ku przodowi, obracając jednocześnie wielki palec pra­
wej ręki w prawo, a lewej w lewo. Ruch prawej ręki będzie 
ilustracyą śruby prawoskrętnej, a ruch lewej śruby lewo- 
skrętnej.

Figury rozdziału niniejszego wykreślono zgodnie z układem 
współrzędnych, zwykle używanym w geometryi trójwymiarowej, a za­
tem śruba lewoskrętną stanowi podstawę umów, zawartych celem

*) Polską nazwę skrętnik wprowadził J. N. Franke. Ten sam 
ds

autor nazywa stosunek ---- wskaźnikiem skrętnika-, wydało mi się, że do
wyraz stromość maluje dosadniej to pojęcie. Przyp. tłómacza. 
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rozróżnienia kierunków dodatnich i ujemnych w ruchu postępowym 
i obrotowym. Uczyniwszy zamianę pomiędzy osiami x i y, można 
przystosować figury do układu odwrotnego.

273. Skrętnik równoważny. Dany jest układ sił zapo- 
mocą sześciu składników X, Y, Z, L, M, N, odniesionych do ja­
kiegokolwiek układu prostokątnego ze środkiem redukcyi w po­
czątku O. Mamy znaleić wyrażenia analityczne na skrętnik ró­
wnoważny.

Jest rzeczą oczywistą, że oś skrętnika równoważnego leży 
na osi centralnej Poinsota i jest równoległa do siły głównej R 
jakiegokolwiek środka redukcyi. Wynikają stąd wnioski nastę­
pujące:

(1 ) Kosynusy kierunkowe osi centralnej wynoszą

(2 ) Siła, czyli natężenie skrętnika, jest równa R.
(3 ) Niech T oznacza szukaną parę skrętnika. W myśl 

twierdzenia Poinsota wszystkie siły są równoważne sile R i pa­
rze T, a więc moment wszystkich sił układu względem dowol­
nej prostej jest równy momentowi R i T względem tejże pro­
stej. Jeżeli ta prosta jest równoległa do osi centralnej, to mo­
ment siły R jest zerem, a moment pary jest równy T. Wynika 
stąd, że moment sił układu względem każdej prostej, równoległej 
do osi centralnej, jest równy momentowi względem osi centralnej.

Główna siła R punktu O, jako środka redukcyi, jest ró­
wnoległa do osi centralnej, jeżeli więc 0 oznacza kąt pomię­
dzy Cr i R, to

r = G cos ^ — Ll + Mm + Nn,

a zatem TR= LX+ MY+ NZ.

Stromość śruby, na której działa skrętnik, będzie

_T _LX+MY+NZ 
PFR- R2 '

(4 ) Niech (§n%) będą współrzędnemi któregokolwiek pun­
ktu osi centralnej. Obierzmy ten punkt za środek redukcyi. 
Składowe L', M‘, N' pary mieliśmy w par. 258; są one pro-
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266. Znaczenie geometryczne momentu i. Wiadomo, że objętość 
czworościanu jest równa szóstej części iloczynu z dwóch przeciwle­
głych krawędzi, ich najkrótszej odległości oraz synusa kąta pomiędzy 
niemi )  Niech AB i CD będą jakimikolwiek odcinkami, położonymi od­
powiednio na dwóch prostych. Moment wzajemny tych prostych wynosi 

*

*) Wyznaczyć objętość czworościanu. Przesuwamy płaszczyznę 
przez krawędź CD i wspólną prostopadłą EF krawędzi CD oraz kra­

wędzi przeciwległej AB. Objętość czworościanu
D ABCD jest równa sumie lub różnicy objętości
/ dwóch czworościanów, których wierzchołkami są

/ / >” A i B, a wspólną podstawę stanowi trójkąt DEC;
/ / / \ zatem objętość czworościanu ABCD jest równa

A-———C trzeciej części pola DEC, pomnożonej przez 
_-+ ABsin3, gdzie 9 oznacza kąt, który AB tworzy 
E /- z płaszczyzną DEC-

L Wyobraźmy sobie prostą, poprowadzoną przez
P punkt E w płaszczyźnie DEC prostopadle do EF;

Fig. 82. oczywiście będzie to rzut prostej AB na płaszczy­
znę DEC, a zatem ta prosta tworzy z nim kąt 0. 

Taki sam kąt tworzy z AB prosta CD, bo leży ona również w pła­
szczyźnie DEC i jest prostopadła do EF; widzimy więc, że 3 jest ką- 
tem pomiędzy przeciwległemi krawędziami AB, CD. Ostatecznie obję- 

. AB. CD. EF. sin 3 
tość czworościanu wypadnie------------ -—- -------•

6V
abIdc’ gdzie V oznacza objętość czworościanu, w którym AB i CD są

krawędziami przeciwległemi.
Wyznaczenie analityczne momentu i. Niech (fgh), [f g'h') będą 

współrzędnemi punktów A, C, a (jmn), (1'm'n') kosynusami kierunko­
wymi kierunków dodatnich prostych AB, CD. Moment wzajemny pro­
stych AB, CD jest równy wyznacznikowi

f-f, 9~9', h-h'
l, m, n
1', m', n'

Porządek wyrazów w tym wyznaczniku jest następujący: jeżeli f, g, h 
poprzedzają f, g', h' w pierwszym wierszu, to l, m, n poprzedzają 
l', m', n' w porządku wierszy.

Aby to udowodnić obieramy C za początek, i niech będzie 
x=f—f‘, y=g—g', z—h—h'. W takim razie moment żądany wyniesie 
IX‘+mu‘+nv‘; znaczenia liter X, p., v wskazaliśmy w par. 260.

267. Prz. 1. Dwie proste posiadają współrzędne (lmn)^D i 
(rm'n'\'ik''/y, okazać, że ich moment wzajemny i=l\'+m[).'+nM' + 
+ l'XAm'ii.+n'v. Wielkość ta jest zatem dla dwóch danych prostych 
niezależna od tego, jak obraliśmy prostokątny układ współrzędnych. 
Jeżeli i=0, to proste się przecinają.
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Inne twierdzenia o momentach linii prostych można znaleźć 
w książce Scotta p. t. Determinants.

Prz. 2. Punkty H i K, położone na linii działania siły P, posia­
dają współrzędne czworościanowe (xyzu), (x'y'z'u'). Okazać, że mo­
ment siły P względem krawędzi AB czworościanu wynosi

6V | z, z' i
" AB ) u, u’ I'

Jeżeli siła dodatnia działa w kierunku HK, to wyrażenie powyż­
sze daje moment jej w kierunku obrotu około AB od wierzchołka C 
do wierzchołka D.

Prz. 3. Momenty wzajemne przeciwległych krawędzi czworo­
ścianu są równe; okazać, że iloczyny tych krawędzi są także równe. 
Okazać prócz tego, że

r4- 2r2s2 cos 2+s*=s4-2s2t2 cos2 a+1=t—2t?r2cos2 8+r4, 
gdzie r, s, t oznaczają długości odcinków, łączących środki przeciw­
ległych krawędzi, a a, 3, Y kąty pomiędzy tymi odcinkami.

(St John’s, 1891.)
Prz. 4. Oko, umieszczone w punkcie O, widzi trójkąty ABC 

i A'B'C' w perspektywie. Na bokach BC, CA, AB działają odpowiednio 
siły P, Q, B, a na bokach C'B', A' C, B'A' siły P', Q, B', i cały ten 
układ sił jest w równowadze; okazać, że

A. P. OA' _ A'. P'. OA _ A . Q . OB' _ A'. Q'. OB _ A . B . OC _ A'. B'. OC 
^BC?AA' - B‘C‘.AA‘ - CA . BB' - C'A'.BB' - AB. CC' - A'B'. CC'’ 

gdzie A i A' są objętościami czworościanów O ABC i OA'B'C'.
(Math. Tripos, 1883.)

Odcinki OA, OB, OC, AB, BC, CA są krawędziami czworościanu. 
Przyrównywując do zera momenty wszystkich sześciu sił względem 
krawędzi OA, znajdziemy, że dwa pierwsze z wyrażeń powyższych są 
równe. W ten sam sposób, biorąc momenty względem AB, dowiedzie­
my równości drugiego i czwartego, a z symetryi wyniknie, że wszyst­
kie sześć wyrażeń są równe. Momenty można wyznaczać przy pomo­
cy prawidła, podanego w par. 266.

268. Zagadnienia równowagi. Prz. 1. Układ sił działa na 
ciało, które może obracać się swobodnie około osi nieruchomej. Pragnie­
my znaleźć warunki równowagi oraz reakcye osi.

Oś obrotu obieramy za oś z, a za osi x i y proste do niej pro­
stopadłe.

Ciśnienia różnych elementów osi tworzą układ sił. Gdyby ciało 
mogło przesuwać się wzdłuż osi bez tarcia, to każde z tych ciśnień 
byłoby prostopadłe do osi. Ograniczenie to jednak nie upraszcza roz­
ważań, założymy więc, że kierunki ciśnień są zupełnie ogólne. Obie­
ramy na osi dowolny punkt B za środek redukcyi i każde ciśnienie 
przenosimy do B, wprowadzając stosowną parę; płaszczyzna tej pary

Statyka. 15
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Fig. 83.

oczywiście przechodzi przez oś. Tak sprowadzimy wszystkie ciśnienia do 
jednej siły, przyłożonej w B, i do pary, której płaszczyzna przechodzi 

przez oś. Przenieśmy tę parę w taki sposób, aby 
jedna z jej sił działała na B, i zmieńmy tak jej 
ramię, aby druga siła działała na inny punkt C, 
również obrany na osi. Składając siły, działające 
na punkt B, sprowadzimy ciśnienia wszystkich ele­
mentów osi do dwóch reakcyi, przyłożonych w dwóch 
punktach B i C, obranych na osi dowolnie. Możemy 
uważać, że ciało jest osadzone na osi w tych punk­
tach zapomocą gładkich zawias.

Niech Fg Fy, Fe i G,, Gy, G, będą odpo­
wiednio składowemi reakcyi w B i 0, b i c rzęd- 
nemi tych punktów, wreszczie X, Y, Z, L, M, N 
ego układu sił. Biorąc rzuty na osi i momenty współrzędnemi

względem nich, jak w par. 257, otrzymamy

F,+G,+x=0 -J?sb~l}tc+L=0
F„+G-U+Y=O F.b+G,c+M=0
F,+G,+Z=0 N=Q

Równanie ostatnie zawiera warunek równowagi; głosi ono, że 
ciało będzie się obracać około osi, jeżeli moment sił danych względem 
osi nie jest równy zeru.

Mamy więc pięć równań do wyznaczenia sześciu składowych 
reakcyi osi. Składowe Fx, F , G,, Gy są oczywiście wyznaczalne, co 
się zaś tyczy składowych Fe i Gz, to jedynie suma ich daje się wy­
znaczyć.

Możemy sobie ułatwić rozwiązywanie tych równań, obierając 
stosownie punkty B i C. Okoliczności zagadnienia wskazują zwykle 
najdogodniejsze położenie początku układu; jeżeli w tym samym pun­
kcie umieścimy B, to G, i G, otrzymamy bezpośrednio.

Przypuśćmy dla przykładu, że ciałem są ciężkie drzwi, któ­
rych linia zawias tworzy z pionem kąt a. Moment sił względem osi 
musi być zerem, a więc w tyra razie środek ciężkości drzwi leży 
w płaszczyźnie pionowej, przechodzącej przez oś. Obieramy tę pła­
szczyznę za płaszczyznę xz, a linię zawias za oś z. Niech x. O, ż 
oznaczają współrzędne środka ciężkości, a W ciężar drzwi. Aby do­
godniej było wyznaczać momenty, zastępujemy W składowemi 
Wsin a i — Wcoso, przyłożonemi w środku ciężkości i równoległemi 

do osi x i z. Punkt B obieramy w początku układu, a punkt C w od­
ległości c od początku. Biorąc rzuty i momenty, jak poprzednio, 
otrzymamy

F,+G,+Wsino=0 —G„c=0
F+G, = 0 G,c+Wz sin a+Wa cos =0 
F,+G, — Wcos 0=0
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Z równań tych wynika, że Fy i Gy są zerami, a więc reakcye 
wypadkowe działają w płaszczyźnie pionowej, przechodzącej przez oś. 
Wartości Fx, G, i F,+G, dają się wyznaczyć bez trudności.

Prz. 2. Trzy jednakowe kule, których środkami są A, B, C, leżą 
na gładkim stole poziomym, opasane sznurem. Sznur przebiega w pła­
szczyźnie środków i posiada stosowną długość, ale jeszcze nie jest wy­

Fig. 84.

prężony. Kładziemy na wierzch czwartą taką samą kulę D tak, 
aby wsparła się na wszystkich trzech dolnych. Okazać, że w sznurze po-

W
wstanie naprężenie T — 3 16

Oznaczmy przez R reąkcyę górnej kuli na jedną z dolnych, 
i niech DN będzie odległością jej środka D od płaszczyzny ABC. Znaj- 
dziemy, że 3R cos ADN— W. Rozważmy teraz równowagę kuli A. Dwie 
pozostałe kule dolne nie wywierają na nią żadnych reakcyi. Składowa 
reakcyi R w kierunku NA równoważy naprężenia w częściach sznura, 
równoległych do AB i AC. Zatem R cos DAN— 2T cos BAN. Kąt 
BAC=6Q°, i

AN 2 AM 2 2rsin 60° 
sin ADN— — = — . — = — . .

AD 3 AD 3 2r
Można teraz łatwo wyrazić T w funkcyi W.

Prz. 3. Cztery jednakowe kule pozostają w zetknięciu na dnie 
gładkiego kulistego naczynia, a ich środki leżą w jednej płaszczyźnie 
poziomej. Kładziemy na nie piątą kulę taką samą. Okazać, że kule 
dolne się rozejdą, jeżeli promień naczynia przewyższa (2 V13+1) razy 
wzięty promień kuli. (Math. Tripos, 1883.)

Prz. 4. Końce sześciu jednakowych prętów połączono luźno 
w taki sposób, że powstał czworościan foremny, w którym pręty są 
krawędziami. Jedna jego ściana spoczywa na gładkiej płaszczyźnie 
poziomej. Okazać, że naprężenie podłużne w każdym boku tej ściany 

Wwynosi ———, gdzie W oznacza wagę jednego pręta. (Coli. Ex.)
2 v 6

Prz. 5. Ciężka elipsoida jednorodna leży na trzech gładkich koł­
kach, położonych w jednej płaszczyźnie poziomej, opierając się na nich 
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końcami średnic sprzężonych. Dowieść, że zachodzi równowaga, i że 
reakcye kołków mają się do siebie, jak pola’sprzężonych przekrojów 
centralnych. (Coli. Ex.)

Prz. 6. Cztery jednakowe sztaby, połączone w końcach swobo­
dnie, tworzą czworobok skośny. Jedna z nich jest umocowana w po­
łożeniu poziomem, a na przeciwległą działa para sił o osi pionowej. 
Okazać, że w stanie równowagi dolna sztaba tworzy z górną kąt 
2 arc sin w gdzie G oznacza moment pary, W ciężar, a Z długość 

sztaby. Wyznaczyć prócz tego reakcyę w jednem z połączeń dol­
nych. (Coli. Ex., 1880.)

Prz. 7. Trójkątna równoboczna płyta jest zawieszona za wierz­
chołki u trzech punktów ruchomych na trzech sznurach pionowych. 
Płyta ma położenie poziome, a długość każdego sznura jest równa 
średnicy 2a koła opisanego na trójkącie. Okazać, że moment pary, 
która utrzyma płytę na wysokości 2(1 — n)a nad położeniem początko- 
wem, wynosi Wav1—n2. (Coli. Ex., 1886.)

Prz. 8. Lekka sztaba o długości 2Z pozostaje w danem położeniu 
poziomem, oparta końcami o krzywe powierzchnie dwóch poziomych 
gładkich cylindrów kołowych. Promień każdego cylindra jest równy a, 
osi są równoległe, a odległość pomiędzy niemi wynosi 2c. Na sztabę 
działa siła P, przyłożona w środku, i para. Wyznaczyć parę w przy­
padku równowagi i dowieść, że moment jej jest najmniejszy, gdy P

C ©działa pionowo, jeżeli c<‘sin+—^sec—; P oznacza tu kąt pomiędzy

sztabą i osiami cylindrów. (Math. Tripos, 1889.)
Prz. 9. Pełny cylinder o wysokości h i promieniu a składa się 

z nieskończenie wielkiej liczby nici równoległych i jednakowo sprę­
żystych. Końce nici są przymocowane do dwóch tarcz, stanowiących 
podstawy, cylindra, a wszystkie nici razem uniosłyby ciężar W, gdyby 
je wyciągnąć do długości 2h. Cylinder ten jest zawarty w innym pró­
żnym cylindrze sztywnym, wypełniając go całkowicie. Przekręcamy 
jedną z tarcz końcowych w jej płaszczyźnie o kąt a. Zakładając, że 
każda nić przybiera kształt śrubowej, okazać, że w kierunku osi cy-

. 2W(a2 h ,______ , h 
lindra zacznie działać siła — V h2—a2q2 -—

a2 2 a2 a

(Math. Tripos, 1871.)
Prz. 10. Trzy jednakowe kule są zawieszone u nieruchomego 

punktu na trzech jednakowych sznurach o długości l. Każda kula waży 
W i posiada promień a. Umieszczamy na kulach symetrycznie lekką 
szalkę kulistą o promieniu b i lejemy do niej ostrożnie wodę. Oka­
zać, że im więcej wody zawiera szalka, tern bliżej muszą leżeć kule 
dolne jedna od drugiej, aby równowaga była możliwa, i że równo­
waga stanie się niemożliwą, gdy ciężar wody przekroczy nW; n ozna­
cza tu pierwiastek dodatni równania
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n\l - b) (l+2a+b)+(2n+3) (a2 -6a&—3b2)=0.

Promień szalki b jest według założenia tak mały, że sznury zachowują 
kształt linii prostych. (Math. Tripos, 1890.)

269. Prz. 1. Ciążka sztaba OAB może obracać się siuobodnie oko­
ło nieruchomego punktu O i opiera się o brzeg CAD chropowatej ściany. 
Tworzy ona przytem z prostopadłą OC do brzegu ściany kąt 3, a kąt, 
który OC tworzy z prostopadłą OE do pionowej powierzchni ściany, jest 
równy B. Okazać, że tan^> sin^=[)., gdy równowaga jest graniczna.

Aby ułatwić sobie opis figury obierzmy OAB za oś x, a za oś z pro­
stą prostopadłą do płaszczyzny AOC; oś y będzie prostopadła do x i z. 
Ciężar sztaby W zastępujemy przez składową B
W cos 3, równoległą do z, oraz składową Wsin 3, CAA__ 
równoległą do GO. Tę drugą rozkładamy jeszcze /D 
na siły Wsin 8 cos $ i Wsin 3 sin $ odpowiednio / /“ 
równoległe do osi x i y. /

/.E -—- —JReakcya R w punkcie A jest prostopadła £ 
do OA i CD, a więc równoległa do osi z. O 
Punkt A sztaby może przesunąć się tylko w kie- Fig 85.
runku prostopadłym do OA, a więc siła tarcia 
działa nie wzdłuż brzegu ściany, lecz odwrotnie do kierunku ruchu 
czyli równolegle do osi y. Biorąc momenty względem osi y i z, otrzy­
mamy.

W cos 3. OG^R.OA, Wsin 3 sin 8 .OG^R . OA-
Stąd wypadnie, że p=tan 3 sin 3.

Prz. 2. Trzy jednakowe kule, z których każda waży W, leżą na 
chropowatej podłodze możliwie blizko jedna od drugiej, ale jeszcze 
nie w zetknięciu. Na nich kładziemy czwartą kulę, ważącą nW. Oka­
zać, że układ pozostanie w równowadze, jeżeli współczynnik tarcia

a.
pomiędzy kulami przewyższa tan —, a współczynnik tarcia pomiędzy

a n 
kulą i podłogą przewyższa tan — . , gdzie

2 n — 3 
a oznacza kąt, który

z pionem tworzy prosta, łącząca środek kuli górnej ze środkiem jednej 
z dolnych.

Prz. 3. Drążek jednorodny opiera się końcem A o podłogę, 
a drugim końcem o pionową ścianę. Podłoga jest tak chropowata, że 
wszelki ruch końca A jest wyłączony, a współczynnik tarcia drążka 
o ścianę wynosi p. B oznacza położenie graniczne drugiego końca 
drążka dla pewnego położenia końca A, N spodek prostopadłej z A do 
ściany, a kąt BAN i 3 nachylenie prostej BN do pionu. Dowieść, że 
tan a tan 9 jest wielkością stałą, i wyznaczyć tarcie całkowite w B. 
Wyznaczyć prócz tego miejsce geometryczne punktu B na ścianie, gdy 
N jest nieruchome, i okazać, że B odchyla się najdalej od pionu, prze­
chodzącego przez N, gdy o=}=arc tan Vp . (Coli. Ex., 1886.)
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Prz. 4 Sztaba o długości 2a stoi na podłodze, oparta o pionową 
ścianę. Współczynniki tarcia sztaby o podłogę i ścianę wynoszą odpo­
wiednio M.1 i p.2, odległość dolnego końca sztaby od ściany jest równa k, 
a płaszczyzna pionowa, przechodząca przez sztabę, tworzy ze ścianą 
kąt 3. Okazać, że sztaba ma zacząć się osuwać w dolnym końcu, gdy 
ku,(M22 sin21> —cos2 8) 2 = k— 2p,(4a2 sin 8—k2)^, i że wówczas reakcya 
styczna w górnym końcu tworzy z poziomem kąt arc sec (ug tan 8).

(Math. Tripos, 1887.)
Prz. 5. Pierścień, nawleczony na cylinder poziomy, podtrzymuje 

kotarę zapomocą haczyka, umocowanego w tern miejscu pierścienia, 
który zajmuje położenie najniższe, gdy kotara zwisa swobodnie. Oka­
zać, że (1) pierścień może stykać się z cylindrem w jednym, a najwy­
żej w dwóch punktach, (2) w przypadku zetknięcia podwójnego pier­
ścień się nie przesunie, jakkolwiek będziemy ciągnęli kotarę, jeżeli 

(2a+b) cos 9. 
współczynnik tarcia przewyższa (20-b) si—9—b‘ gdzie b oznacza pro­

mień koła tworzącego, a promień koła kierowniczego, i 3 nachylenie 
płaszczyzny koła kierowniczego do osi cylindra. Ciężar samego pier­
ścienia nie jest tu brany w rachubę. (Math. T.)

Obieramy oś pierścienia za oś z, płaszczyznę koła kierowniczego 
za płaszczyznę xy, a oś x prowadzimy przez haczyk. Niech B, B' ozna­
czają punkty zetknięcia pierścienia z cylindrem, i dajmy na to, że B' 
leży bliżej haczyka. Oznaczmy jeszcze reakcye w tych punktach przez 
(R, LR) i (R‘, p. R‘); wszystkie te cztery siły leżą w płaszczyźnie xz. 
Biorąc momenty względem osi, przechodzącej przez haczyk, i rozwią­
zując, znajdziemy

(2a + b) cos 3— pb cos 9
I (2a+b) sin 9—b+pb(1+sin 9)’

gdzie p oznacza stosunek R' do R. Dopóki istnieje zetknięcie podwój­
ne, to zarówno R, jak i R', muszą być dodatnie. Jeżeli jednak p. jest 
większe od wartości, podanej w zadaniu, to z równania powyższego 
wypada, że p musi być ujemne.

Prz. 6. Ciężki stożek styka się wzdłuż tworzącej z chropowatą 
pionową ścianą i może obracać się swobodnie około wierzchołka, umo­
cowanego nieruchomo. Na stożek działa para o momencie L w pła­
szczyźnie równoległej do podstawy. Okazać, że w stanie równowagi 
tworząca zetknięcia tworzy z pionem kąt 3, czyniący zadość równaniu 

3 Wh sin 9- tan a
L=-------- 4-------- , gdzie W oznacza wagę stożka, 2a kąt wierzchołkowy,

i h wysokość. Okazać jeszcze, że współczynnik tarcia musi wynosić 
2 tan 9- .

conajmniej--------, jeżeli jedynie obwod podstawy stożka jest chro- 
sin 2a

po waty.
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Oś centralna i niezmienniki.

270. Oś centralna Poinsota. Obrawszy środek redukcyi 
O, sprowadziliśmy układ do siły JR, przyłożonej w O, i do 
pary G. Zbadamy teraz, czy układ nie da się uprościć jeszcze 
bardziej przez stosowny obiór środka redukcyi.

Dajmy na to, że siła R tworzy z osią pary G kąt 3. Roz­
kładamy G na dwie pary składowe G coss i G sin 8; płaszczy­
zna pierwszej jest prostopadła do R^ a płaszczyzna drugiej za­
wiera R. Para Gsin 8 i siła R są równoważne jednej sile, dzia­
łającej w ich płaszczyźnie, równej R, równoległej do niej i po- 
. • Gsin 9 - łożonej w odległości ——— od O.

Tym sposobem sprowadziliśmy cały układ do siły R i do 
pary, której płaszczyzna jest prostopadła do siły. Ta siła R jest 
równoległa do siły głównej któregokolwiek środka redukcyi; . 
jej linia działania zowie się osią centralną Poinsota.

Przypuśćmy, że para G i siła R są dane dla jakiegokol­
wiek środka O; pragniemy zbudować geometrycznie oś central­
ną. Należy w tym celu wziąć pod uwagę, że (1) oś centralna

G sin 9- . jest równoległa do R, (2) leży w odległości  7— od R, (3) 

prosta, poprowadzona prostopadle z O do osi centralnej, jest 
prostopadła do R i do osi pary G, (4) para G sin 3 powinna 
popychać spodek tej prostopadłej na osi centralnej w tym sa­
mym kierunku, co i siła R.

271. Śruby i skrętniki. Wyobraźmy sobie, że ciało obró­
ciło się około pewnej prostej o mały kąt do i jednocześnie 
przesunęło się równolegle do niej o małą odległość ds. Mó­
wimy, że ciało odbyło wzdłuż tej prostej ruch śrubowy, 

dsa stosunek — nazywamy stromością śruby. Jeżeli stromość jest 

jednostajna, to możemy ją zdefiniować jako drogę, odbytą 
wzdłuż osi podczas obrotu o jeden radyan, t. j. o jednostkę 
kąta miary bezwzględnej. Widzimy więc, że stromość śruby 
jest długością. Nieraz dla krótkości śrubą nazywamy oś śruby.

Jeżeli w układzie, złożonym z siły i pary, oś pary leży 
na linii działania siły lub jest do niej równoległa, to układ 
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taki nazywamy skrętnikiem. Termin ten (po angielsku wrench) 
wprowadził Sir R. Bali *).  Wyrażenie skrętnik na śrubie ozna- 
cza siłę, skierowaną według osi śruby, i parę, działającą w pła­
szczyźnie prostopadłej do śruby, przyczem moment pary jest 
równy iloczynowi z siły przez stromość. Siłę nazywamy natę­
żeniem skrętnika. Jeżeli stromość śruby jest zerem, to skrętnik 
jest po prostu siłą, jeżeli stromość jest nieskończenie wielka, to 
skrętnik sprowadza się do pary. Niekiedy wyrażenie skrętnik 
na śrubie oddajemy jednym wyrazem skrętnik.

*) Polską nazwę skrętnik wprowadził J. N. Franke. Ten sam 
ds

autor nazywa stosunek — wskaźnikiem skrętnika-, wydało mi się, że 
di

wyraz stromość maluje dosadniej to pojęcie. Przyp. tłómacza.

Skrętnik jest to dynama, której siła posiada kierunek pro­
stopadły do płaszczyzny pary.

Do określenia śruby potrzeba pięciu wielkości. Cztery 
z nich są niezbędne do określenia położenia osi; mogą to być 
np. współrzędne jej punktów przecięcia z dwiema płaszczy­
znami współrzędnych. Piąta wielkość określa stromość śruby. 
Określenie skrętnika na śrubie wymaga jeszcze szóstej wielko­
ści, a mianowicie wielkości siły.

272. Rozróżniamy śruby prawoskrętne i lewoskrętne, sto­
sownie do tego, w którą stronę obraca się ciało podczas tego 
samego przesunięcia. Wyobraźmy sobie, że obserwator stoi 
oparty o oś plecami; jeżeli przesunięcie odbyło się w kierunku 
od stóp do głowy, to nazywamy je dodatniem. Jeżeli przy- 
tem obserwator widzi obrót ciała w kierunku ruchu wskazówki 
zegara, to śrubę nazywamy lewoskrętną, jeżeli w odwrotnym to 
prawoskrzętną. (Zob. par. 97).

Zwykły korkociąg jest przykładem śruby prawoskrętnej, 
a oto przykład inny. Niech czytelnik wyciąga obydwie ręce 
poziomo ku przodowi, obracając jednocześnie wielki palec pra­
wej ręki w prawo, a lewej w lewo. Ruch prawej ręki będzie 
ilustracyą śruby prawoskrętnej, a ruch lewej śruby lewo- 
skrętnej.

Figury rozdziału niniejszego wykreślono zgodnie z układem 
współrzędnych, zwykle używanym w geometry! trójwymiarowej, a za­
tem śruba lewoskrętną stanowi podstawę umów, zawartych celem 
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rozróżnienia kierunków dodatnich i ujemnych w ruchu postępowym 
i obrotowym. Uczyniwszy zamianę pomiędzy osiami x i y, można 
przystosować figury do układu odwrotnego.

273. Skrętnik równoważny. Dany jest układ sił zapo- 
mocą sześciu składników X, Y, Z, L, M, N, odniesionych do ja­
kiegokolwiek układu prostokątnego ze środkiem, redukcyi w po­
czątku O. Mamy znaleić wyrażenia analityczne na skrętnik ró­
wnoważny.

Jest rzeczą oczywistą, że oś skrętnika równoważnego leży 
na osi centralnej Poinsota i jest równoległa do siły głównej R 
jakiegokolwiek środka redukcyi. Wynikają stąd wnioski nastę­
pujące:

(1) Kosynusy kierunkowe osi centralnej wynoszą

Siła, czyli natężenie skrętnika, jest równa R.
Niech P oznacza szukaną parę skrętnika. W myśl

(2)
(3)

twierdzenia Poinsota wszystkie siły są równoważne sile R i pa­
rze T, a więc moment wszystkich sił układu względem dowol­
nej prostej jest równy momentowi R i r względem tejże pro­
stej. Jeżeli ta prosta jest równoległa do osi centralnej, to mo­
ment siły R jest zerem, a moment pary jest równy T. Wynika 
stąd, że moment sił układu względem każdej prostej, równoległej 
do osi centralnej, jest równy momentowi względem osi centralnej.

Główna siła R punktu O, jako środka redukcyi, jest ró­
wnoległa do osi centralnej, jeżeli więc 3 oznacza kąt pomię­
dzy G i R, to

P = G cos 3 = Ll + Mm + Nn,

a zatem TR = LX + M Y + NZ.

Stromość śruby, na której działa skrętnik, będzie

_r _LX+MY+^Z
P~R - R2 '

(4) Niech (§%) będą współrzędnemi któregokolwiek pun­
ktu osi centralnej. Obierzmy ten punkt za środek redukcyi. 
Składowe L', M‘, N' pary mieliśmy w par. 258; są one pro- 
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porcyonalne do kosynusów kierunkowych osi pary głównej, 
a więc przy pomocy (1) otrzymamy

L - 2+ C Y _ M- IX + ^Z N-k Y+ X 
X = Y Z

Są to równania osi centralnej.
Pomnóżmy licznik i mianownik każdego ułamka odpowie­

dnio przez X, Y, Z i weżmy stosunek sum liczników i miano­
wników, to wypadnie, że każdy ułamek jest równy stromości 
śruby p.

274. Jeżeli X, Y, Z są zerami, to przestaje istnieć zasada, 
z której wyszliśmy przy wyprowadzaniu równań powyższych. 
Ale w tym razie dany układ sił jest równoważny parze wy­
padkowej, i każda prosta równoległa do osi tej pary, jest osią 
centralną.

Jeżeli T=0, to dany układ jest równoważny jednej sile R. 
W tym razie dla każdego punktu (§1%), położonego na linii 
działania tej siły, składowe L', M\ N' są zerami, a zatem

L-1Z+tY=0, M-ZX+^Z=^ N-ĘY+X=0.

Którekolwiek dwa z tych równań są równaniami linii działania 
wypadkowej R.

275. Można otrzymać równania osi centralnej na innej drodze. 
L, M, N są to momenty układu, złożonego z siły R oraz pary I, wzglę­
dem osi współrzędnych, a zatem momenty samej siły R wynoszą 
L—II, M—Ym, N—Yn, czyli L—Xp, M—Yp, N—Zp. Tak więc współ­
rzędne siły R a także osi centralnej są X, Y, Z, L—Xp, M—Yp, N—Zp.

276. Odwrotnie, mając dany skrętnik równoważny, może­
my wyznaczyć sześć składników układu sił dla jakiegokolwiek
środka redukcyi.

Niech Oz będzie daną osią skrętnika, a mamy wyznaczyć 
składniki układu dla punktu 0'. Prowa-

Fig. 86.

dzimy 0'0 prostopadle do Oz, O'C równo­
legle do Oz i wreszcie 0'B prostopadle do 
płaszczyzny 0'Oz. Długość odcinka 00' 
oznaczmy przez r.

Siłę R, działającą na prostej Oz, mo­
żemy przenieść na 0'C, wprowadzając pa­
rę JRr, której oś leży na prostej. 0'B. Oś 
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pary T przenosimy również z Oz na 0' C. Składając te oby­
dwie pary, otrzymamy parę wypadkową O] oś jej leży w pła­
szczyźnie BO'O na prostej 0'A. Oznaczając przez 3 kąt AO'Cy 
otrzymamy

Q2 = T2 + R2r^ tan=.

277. Z wzorów powyższych wynika kilka wniosków oczy­
wistych.

(1) Moment O jest zawsze liczbowo większy od I, a więc 
para główna jest najmniejsza wtedy, gdy środek redukcyi leży 
na osi centralnej.

(2) Prostopadłą 00' można poprowadzić w którymkol­
wiek kierunku od Oz^ a więc miejscem geometrycznem środ­
ków redukcyi, dla których para główna G posiada wartość 
daną, jest prosty cylinder kołowy; oś jego leży na osi cen­
tralnej.

(3) Miejscem geometrycznem osi 0’A pary głównej danej 
wielkości jest układ hiperboloid obrotu.

278. Przykłady. Prz. 1. Pomiędzy osią równoważnego skręt­
nika i daną prostą a prowadzimy prostą najkrótszej odległości; prze- 
tnie ona prostą a w punkcie A. Okazać, że ze wszystkich punktów 
prostej a punktowi A, jako środkowi redukcyi, odpowiada najmniej­
sza para główna. Wyznaczyć prócz tego na prostej a środek redukcyi, 
którego oś pary głównej tworzy z prostą a kąt najmniejszy.

Prz. 2. Dowieść, że gdy środkiem redukcyi jest początek ukła­
du, to 

6%
X Y Z
L M N

= 0

jest równaniem płaszczyzny, zawierającej siłę IZ i oś pary G. Okazać 
prócz tego, że minory wyrazów pierwszego wiersza, podzielone przez 
R2, są współrzędnemi spodka prostopadłej, poprowadzonej z początku 
układu do osi centralnej. Następnie, uważając oś centralną za prostą 
przechodzącą przez ten punkt i równoległą do R, wyznaczyć jej ró­
wnania.

Prz. 3. Dwanaście sił równych działa na krawędziach sześcianu 
tak, że równoległe są zwrócone w jedną stronę. Okazać, że osią cen­
tralną takiego układu jest przekątnia. Okazać prócz tego, że jeżeli siły 
zastąpimy przez dwanaście par równych, to oś centralna będzie ró­
wnoległa do przekątni.

Prz. 4. Sześć sił równych działa na krawędziach AB, BC, CA, 
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DA, DB, DC czworościanu foremnego. Okazać, że osią centralną jest 
prostopadła, poprowadzona z wierzchołka D do ściany ABC.

Prz. 5. Sześć sił działa na krawędziach AB, BC, CA, AD, BD, CD 
czworościanu; siły te pod względem wielkości są proporcyonalne do 
krawędzi, na których działają. Okazać, że oś centralna jest równole­

gła do DC, i przebiega w odległości 
24 COS

3Dq od tej prostej; G oznacza

tu środek ciężkości czworościanu, A pole ściany ABC i « kąt, który 
DG tworzy z tą ścianą.

Prz. 6. Odcinki A^/, A2A2'... AnAn' wyobrażają siły, a G i G' 
są odpowiednio środkami ciężkości dwóch grup jednakowych cząste­
czek, umieszczonych w A, ... An oraz w AJ ... An'. Okazać, że oś cen­
tralna tych sił jest równoległa do GG'. Przypuśćmy, że jakaś płaszczy­
zna prostopadła do GG' przecina siły w Br, B2,...Bn, i że w tych pun­
ktach mieszczą się cząsteczki, których masy są wprost proporcyo­
nalne do rzutów sił na GG'. Okazać, że oś centralna przecina ową 
płaszczyznę w środku ciężkości tych cząsteczek. (Coli. Ex., 1889.)

Prz. 7. Siły układu przecinają płaszczyznę xy i płaszczyznę ró­
wnoległą z=h odpowiednio w punktach Ar, A2... i AJ, Aj ...; wiel­
kości tych sił są 0.1 . ArAJ, 0.2 . A2AJ ..., a stromość skrętnika równo­
ważnego wynosi p. Okazać, że oś centralna przecina owe płaszczyzny 
w punktach H, H', których współrzędne (Em) i (6‘m‘) określają wzory

F-x/=t-x=UU)P,
h

, , (x‘— x)p
I— =—Y=------ -  —• h

We wzorach tych (xy) oznaczają współrzędne środka ciężkości G mas 
a1? a2..., umieszczonych w Ai, A2..J i (x'y’) współrzędne środka ciężko­
ści G' takich samych mas, umieszczonych w AJ, AJ ....

Okazać prócz tego, że (1) odcinek GH jest prostopadły do GK' 
pi równy GK'. —, gdzie K' oznacza rzut punktu G' na płaszczyznę xy, 
h

i (2), że prosta HH' jest równoległa do GG'.

279. Niezmienniki układu. Z wniosku (3) w par. 273 
wynika bezpośrednio, że wielkość I-— LX + MY-]- NZ przy wszel­
kich środkach redukcyi oraz przy wszelkich kierunkach osi 
prostokątnego układu współrzędnych pozostaje niezmienną i ró­
wną TR. Kwadrat wypadkowej, czyli R2== X2 + Y2 + Z2 jest ró­
wnież niezmienny. Te dwie wielkości I oraz R2, zowią się nie­
zmiennikami. Gdy znane są niezmienniki I i R2, to można od 

razu wyznaczyć niezmiennik trzeci, czyli stromość p — —^.

Jeżeli układ jest taki, że pierwszy z tych niezmienników 
jest zerem, to albo R=0, albo I=0. Tak więc I=0 stanowi 
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warunek^ aby układ był równoważny jednej sile lub jednej parze. 
Możemy rozróżnić te przypadki, badając niezmiennik drugi. 
Jeżeli układ ma być równoważny jednej sile, to R nie powinno 
być zerem.

280. Mając dane dwa układy sił P1,P2... oraz Q1 , Q2..., 
tworzymy wyrażenia

ŁPQrsin(P, Q\ 1PQ cos (P, Q), 

gdzie r oznacza najkrótszą odległość pomiędzy siłami P i Q, 
a (P, Q) kąt, pomiędzy temi siłami; przytem każdy iloczyn na­
leży brać ze stosownym znakiem. Każde z tych wyrażeń pozo- 
staje niezmiennem, gdy przekształcamy dane układy sił na jakie­
kolwiek układy równoważne.

Twierdzenie to zostało podane przez Chasles’a {Lioiwille^ Jour­
nal, i8^7).

Aby to okazać będziemy uważali obydwa układy za je­
den. Niezmiennik I układu połączonego pozostaje bez zmiany 
przy wszelkich przekształceniach sił, a zatem suma

ZP,P,risin(P,, P,)+2Q,Q,"sin(Q, Q, +^PQr sin (P, Q) ) 
jest niezmienna. Lecz każdy z dwóch wyrazów początkowych 
jest niezmienny, a zatem i ostatni wyraz jest niezmienny.

Zupełnie w taki sam sposób, rozważając niezmiennik R2, 
okażemy, że ZPQ cos(P, Q) jest niezmienne.

281. Wyznaczyć niezmienniki układa sił. Aby wyznaczyć nie­
zmienniki dwóch sił Pr i P2 powrócimy do fig. 86. Przypuśćmy, że 
linią działania siły Pr jest oś z, a linią działania siły P2 prosta O'A, 
i niech prosta najkrótszej odległości 00' będzie osią X. Współrzędne 
układu sił będą

X=0, Y=P, sin 9, Z=Pi + P2 cos9,
L=0, M=-P2rcos^, N=P2rsin^, 

gdzie r= 00'. Niezmienniki są niezależne od układu współrzędnych, 
a zatem

I=LX+MY+NZ=PiP2r sin^-, 
R?= P,2+P,2+2P,P, cos 9.

Widzimy, że I=P1N, a więc niezmiennik dwóch sił jest równy je­
dnej z nich, pomnożonej przez moment drugiej względem pierwszej.

*) Jest to niezmiennik I układu połączonego; dowód na to znaj­
duje się w par. następującym. Przyp. tłom.



— 238 —

Określamy kierunek dodatni na linii prostej znakami kosynu- 
sów kierunkowych tej prostej, a kierunek dodatni obrotu około tej 
prostej określa prawidło z par. 272 lub 97. Niezmiennik dwóch sił 
będzie miał znak dodatni lub ujemny stosownie do tego, czy znak je­
dnej z sił i znak momentu drugiej są jednakowe, czy odmienne.

Jeżeli wyobrazimy siły P i P2 zapomocą odcinków na ich pro­
stych działania, to niezmiennik I będzie równy sześciokrotnej objęto­
ści czworościanu, w którym owe odcinki są krawędziami przeciwle- 
głemi. Mówi się niekiedy, że czworościan ten jest zbudowany na 
dwóch siłach. Zob. par. 266.

Wyznaczyć niezmiennik I jakiejkolwiek liczby sił P1, P^- - Obiera­
my prostokątny układ współrzędnych. Sześć współrzędnych układu 
sił mamy w par. 257. Wyrażenia te wskazują, że niezmiennik I będzie 
funkcyą drugiego stopnia PY, P2... postaci

I=A,P,2+A„P,2+2A,,P,P,+.. ,
gdzie Au, A22... są niezależne od wielkości sił. Gdyby wszystkie siły 
z wyjątkiem P i P2 były zerami, to wyrażenie powyższe powinno by 
się sprowadzić do PPrsin(P, Pj), gdzie (P^ P2) oznacza kąt pomię­
dzy kierunkami sił. Stąd wynika, że A,1==0, A22==0. Stosując to samo 
rozumowanie do innych sił, znajdziemy ostatecznie, że

I=XP,Pan sin(P, P,).
Widzimy, że I jest równe połowie sumy wszystkich iloczynów z każdej 
siły przez sumą momentów wzglądem niej sił pozostałych; każdy moment 
brać należy ze stosownym znakiem.

Można również powiedzieć, że niezmiennik dowolnej liczby sił jest 
równy sumie niezmienników wszystkich układów, utworzonych z danych 
sił, branych po dwie.

Gdy mamy daną pewną liczbę układów sił, to niezmiennik ca­
łości jest równy sumie niezmienników układów poszczególnych oraz 
niezmienników wszystkich układów, branych po dwa, gdyż przy la­
kiem sumowaniu każda siła wejdzie w kombinacyę z każdą inną w nie­
zmienniku cząstkowym, do którego należą obydwie.

282. Niezmiennik I siły R i pary o momencie G jest równy 
RGr cos, gdzie 3 oznacza kąt pomiędzy siłą i osią pary, gdyż według 
definicyi I=Rr=EGr cos 8.

Niezmiennik I dwóch par jest zerem. Aby to udowodnić przeno­
simy tak siły każdej pary w jej płaszczyźnie, aby stały się równole- 
głemi do prostej przecięcia płaszczyzn. Wszystkie cztery siły są teraz 
równoległe, a zatem niezmiennik każdych dwóch jest zerem, i suma 
takich niezmienników jest zerem.

Jeżeli P, P' są siłami dwóch skrętników, posiadających stromości 
p, p', to niezmiennik skrętników wynosi

P2p + P‘2p‘+ PP' {(p +pj cos 9 + r si n 91.
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Udowodnimy to, sumując stosownie do par. 281 sześć niezmienników 
sił P, P' oraz par Pp, P'p', branych po dwie.

Prz. Układ składa się z trzech sił X, Y, Z, działających na osiach 
układu ukośnokątnego, oraz z trzech par L, M, N, których osi leżą 
odpowiednio na tychże osiach; okazać, że niezmiennik

I^=LX+MY+NZ+(YN+ZM) cos (y, z)+(ZL+XN) cos 0, x)+ 
+ (XM+LY) cos (x, y).

283. Przykłady. Prz. 1. Siły la, mb, nc działają na trzech nie- 
przecinających się krawędziach równoległościanu; długości tych kra­
wędzi wynoszą odpowiednio a, b, c, a objętość bryły —V. Dowieść, 
że niezmiennik I=(lm+mn+nl) V. (St John’s, 1890.)

Prz. 2. Układ, złożony z n sił danych, łączymy z siłą P, daną 
pod względem wielkości i przechodzącą przez punkt dany. Okazać, że 
siła P musi leżeć na pewnym prostym stożku kołowym, jeżeli wszy­
stkie n+1 sił mają się sprowadzać do jednej wypadkowej, i że siła P 
musi leżeć na pewnym stożku czwartego stopnia, jeżeli najmniejszy 
moment główny wszystkich sił ma być wielkością stałą; okazać prócz 
tego, że w drugim przypadku oś centralna wszystkich n+1 sił leży 
na pewnej hiperboloidzie obrotowej, jeżeli dany układ n sił spro­
wadza się do pary. (Math. Tripos, 1871.)

Prz. 3. Dane są linie działania dwóch sił oraz płaszczyzna pary, 
i wiadomo, że układ ten sprowadza się do jednej wypadkowej. Oka­
zać, że ta wypadkowa leży na pewnej paraboloidzie hiperbolicznej.

(Math. Tripos.)
Prz. 4. Na ciało sztywne działają trzy siły 2 P tan A, —Ptan B 

i 2Ptan C według nieprzecinających się krawędzi sześcianu. Krawędzie 
te są symetryczne względem układu współrzędnych, którego osi są do 
nich równoległe, a początek leży w środku sześcianu. Okazać, że siły 
sprowadzają się do jednej wypadkowej, która działa na prostej, po­
siadającej równania 2a cot B—xcotA=2ycotB+acotA=—zcot C. W ró­
wnaniach tych 2A, 2B, 2 0 oznaczają kąty trójkąta, którego boki tworzą 
postęp arytmetyczny, i 2a długość krawędzi sześcianu.

(Math. Tripos, 1867.)

Śruby i skrętinki.

284. Wyznaczyć skrętnik wypadkowy dwóch danych skręt­
ników lub dwóch danych sił. Metoda analityczna.

Niech P, P' oznaczają siły danych skrętników, p i p' stro- 
mości, 3 kąt, który tworzą osie, i wreszcie h najkrótszą odle­
głość pomiędzy osiami. Gdyby wypadło wyznaczyć skrętnik wy­
padkowy dwóch śił, to należy tylko założyć w działaniach na­
stępujących p=Q i p' = Q.
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Oznaczmy przez R siłę wypadkowego skrętnika i przez q 
stromość. Przyrównywamy niezmienniki skrętników danych do 
niezmiennika wypadkowego. Wypadnie

Jł2q = P2p + P‘p2 + PP' 1 {p + p1) cos 9 + h sin 9 I
R2= P2+P2+2PP‘cos9.

Równania te określają wielkość skrętnika wypadkowego. Otrzy­
mamy z łatwością

p+p (P2 - P/2)(p-p) , • GI - 1o) =  -------- o ——— + PP ‘h sin 3.

Fig. 87.

moment siły R oraz pary I

285. Wypada teraz znaleźć położenie osi skrętnika wy­
padkowego w przestrzeni. Niech AA' będzie wspólną prostopa­
dłą do osi AP, A'F' skrętników danych; na osiach tych strzałki 

wskazują kierunki dodatnie, w któ­
rych działają siły P, P'. Oś cen­
tralna musi być równoległa do wy­
padkowej sił P, P', przeniesionych 
do dowolnego środka redukcyi, a 
więc musi być prostopadła do AA'. 
Moment skrętników danych wzglę­
dem AA' jest równy zeru, a przeto 
(oś jej, jak widzieliśmy, jest pro­

stopadła do AA') względem tejże prostej musi być także równy 
zeru. Do tego potrzeba koniecznie, aby oś centralna przecinała 
prostą AA' w jakimś punkcie O.

Obieramy prostą AA' za oś x, a szukaną oś centralną za 
oś z. Dajmy na to, że AF i A'F' tworzą z osią centralną kąty 
7, Y; w takim razie 3=+’. Biorąc rzuty sił na stosowne kie­
runki, otrzymamy

Rsin= P‘ sin 8, R cos =P+P‘coss,
R sin‘= Psins, R cos‘‘= P‘+Pcoss (1)

Oznaczmy przez C środek odcinka AA', i niech będzie GO = k- 
Przyrównajmy moment skrętnika wypadkowego względem pro­
stej, przeprowadzonej przez O równolegle do Oy, do momentu 
skrętników danych względem tejże prostej. Wypadnie

RE = —(P COS Y - P' COS Y‘) - Ppsin Y + P‘p‘sin Y‘.
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Podstawiając wartości sin, cos... z (1), otrzymamy
R36 = 3(P2 -P'^- PP‘sin 9 (p - p').

Równanie to określa odległość § osi centralnej dwóch skręt­
ników od punktu C, mierzoną w stronę siły P.

Prz. Dowieść, że oś centralna dwóch sił danych P, P' dzieli 
ich najkrótszą odległość AA' w stosunku P‘(P‘+Pcos9) : P(P+P‘cos), 
niezależnym od długości AA'; 9 oznacza tu kąt pomiędzy siłami.

286. Wyznaczyć skrętnik wypadkowy dwóch skrętników, których 
osi przecinają się w punkcie A. Wielkości R i I wyznaczamy przy po­
mocy tych samych niezmienników, co w przypadku ogólnym, ale po­
łożenie osi wypadkowego skrętnika daje się wyznaczyć znacznie pro­
ściej.

Dajmy na to, że wypadkowa R sił P, P' działa na prostej AB 
i tworzy kąty Y, Y‘ z AF, AF'. W takim razie 
R sin =P‘sin 3 i R sin ‘= Psin 0. W płaszczyźnie 
sił prowadzimy prostą AD prostopadle do R i zgo­
dnie z prawidłem wyznaczania osi centralnej, po- 
danem w par. 270, rozkładamy pary dane w kie­
runku tej prostej oraz w kierunku prostopadłym. 
Składowa pary wypadkowej w kierunku AD będzie

Fig. 88.
Pp sin Y — P'p' sin Y‘:

PP‘sin 3 (p— p‘)
R

, . PP‘sin S(p — p')Odnuerzanuj następnie długość A0=---- w kierunku prosto-
R2

padłym do płaszczyzny sił i prowadzimy prostą Oz równolegle do R. Ta 
prosta Oz będzie osią centralną.

Wypada jeszcze wskazać, w którą stronę od płaszczyzny sił na­
leży odmierzyć długość AO. Otóż para Ppsiny powinna obracać AO 
około A w stronę siły R.

287. Cylindroida. Powierzchni tej używał Sir R. Bali do 
rozkładania i składania skrętników. Zgodnie z jego przedsta­
wieniem rzeczy rozważymy naprzód przypadek szczególny i na 
nim oprzemy rozwiązanie ogólne.

Mamy dane dwa skrętniki o danych natężeniach i danych 
stromościach; osie ich przecinają się pod kątem prostym. Wyzna­
czyć skrętnik wypadkowy. Osie śrub obieramy za osie a i y, 
siły oznaczymy przez X, Y7 stromości przez p, p'. Niech R bę­
dzie wypadkową sił X, Y, a OA jej linią działania, niech dalej 
G będzie parą wypadkową par Xp^ Ypj OB jej osią. Kąt A OB

Statyka. 16. 
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oznaczmy przez t. Rozkładamy G na pary składowe G cos © 
według O A i Gsin ( według prostopadłej do OA. Para G

oznaczywszy więc przez 3

wraz z siłą R są równoważne 
skrętnikowi, którego oś CD jest 
,. Gsin t równoległa do OA, i OC =—— 

(par 270). Siła, czyli natężenie, 
tego skrętnika jest równa R, a para 
G cos «.

G cos © i Gsin« są to mo­
menty układu względem OA 
i względem prostopadłej do OA, 

kąt xOA, otrzymamy
G cos = Xp cos 3 + Yp' sin 3 = R(p cos29 + p‘sin29) 
G sinę = — Xpsin 3 + Yp'cos $ = R(p' - p sin Jcos J.

Oznaczmy jeszcze przez p stromość skrętnika wypadkowego, 
a przez z długość OC. Znajdziemy, że

p = p cos2 3 +p' sin 29 \
z = (p1 - p) sin 9 cos 9 i ....................................... 1

Prócz tego X= Rcoss, Y=Rsin 8.
Przypuśćmy, że skrętniki na osiach Ox, Oy mają stałe 

stromości, lecz zmienne natężenia. Znajdziemy miejsce geome­

tryczne osi CD skrętnika wypadkowego, zakładając tan=y 

i rugując 3 z drugiego z równań (1). Wypadnie
z(x2 + if)-(p'-p)xij^0. . .................................(2)

Powierzchnia ta zowie się cylindroidą.
Zatoczmy cylinder około osi z, i wyobraźmy sobie, że 

prosta CD wędruje od położenia Ox aż do położenia Oy, zato­
czy ona ćwierć cylindroidy, a jej punkt przecięcia z cylindrem 
wykreśli krzywą, którą na rysunku wyobraża linia kropkowana. 
W następnej ćwierci powierzchni linia kropkowana (niewykre- 
ślona na rysunku) przebiega pod płaszczyzną xy, w trzeciej 
ćwierci nad tą płaszczyzną i t. d.

288. Każda tworząca cylindroidy, np. tworząca CD, jest osią 
śruby o stromości p cos28 + p‘sin29. Zbudujmy cylinder, mający za 
podstawę stożkową px2+p‘y?= H, gdzie H jest jakąś stałą. Przypuśćmy, 
że tworząca CD przetnie powierzchnię tego cylindra w punkcie D.
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Stromość śruby, której osią jest CD, wynosi oczywiście —„.
CD

Bali nazwał podstawę tego cylindra stożkową stromości.

Sir R.

289. Dane są siły pewnej liczby skrętników na danej cy- 
lindroidzie; mamy znaleźć skrętnik wypadkowy oraz warunki 
równowagi.

Siły dane oznaczamy przez P P..., a ich nachylenia 
do osi x przez 31, 3, ... Niech CD (fig. 89) będzie osią jedne­
go ze skrętników danych o natężeniu P i takiej stromości, jaka 
odpowiada osi CD. Składowe siły P w kierunku osi x, y, z 
są Pcos 0, Psin 0 i 0\ 3 oznacza tu nachylenie CD do osi x. 
Rozkładanie skrętnika na składowe jest działaniem odwrotnem 
do składania skrętników, opisanego w par. 287, dojdziemy więc 
łatwo, iż momenty skrętnika względem osi współrzędnych wy­
noszą odpowiednio Pcos.p, Psin 3. p‘ i zero.

Rozkładając wszystkie skrętniki dane, otrzymamy współ­
rzędne układu

X=ŁPcos 9, Y=XPsin 0, Z=0,
L= ŁPcos8 .p=Xp, M=XPsin 9.p'= Ypj N—0.
Tym sposobem układ sprowadza się do dwóch skrętników 

na osiach x, y, o stromościach p, p'.
Z definicyi cylindroidy wynika, że oś skrętnika wypadko­

wego leży na tej samej cylindroidzie. Stromość p i wysokość z 
skrętnika wypadkowego mamy w równaniach (1) par. 287.

290. Niezbędne i dostateczne warunki równowagi są 
ŁPcos$= 0 i ZPsin 3 =0, bo gdy te sumy znikają, to wszystkie 
sześć warunków równowagi jest spełnionych. Wyciągamy stąd 
bezpośrednio wniosek następujący: jeżeli siły skrętników, położo­
nych na jednej cylindroidzie, po przeniesieniu do jednego punktu 
są w równowadze, to równoważą się i same skrętniki.

Tak np. trzy skrętniki na tej samej cylindroidzie są w ró­
wnowadze, jeżeli siła każdego z nich jest proporcyonalna do 
synusa kąta pomiędzy pozostałemi.

Gdy mamy wyznaczyć skrętnik wypadkowy dwóch skręt­
ników danych na jednej cylindroidzie, to wyznaczamy na­
przód wypadkową ich natężeń. Oś skrętnika szukanego jest 
równoległa do tej wypadkowej, a stromość jest taka, jaka tej 
osi odpowiada.
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291. Twierdzenie powyższe będzie można zastosować do 
wyznaczania skrętnika wypadkowego jakichkolwiek dwóch 
skrętników, jeżeli udowodnimy, że istnieje tylko jedna cylin- 
droida, zawierająca dwie śruby dane.

Dajmy na to, że CD, CD' są osiami śrub danych, a CC ich naj­
krótszą odległością; w takim razie prosta CC będzie osią z cylindroidy. 
Niech h będzie długością CC, a kątem pomiędzy osiami, i p, p‘ stromo- 
ściami śrub. Należy dowieść, że mając te cztery wielkości, można wy­
znaczyć tylko jeden komplet wartości rzeczywistych na p, p', (z, 0), 
(z', 3‘). Wprowadzając wartości dane na p, z, p‘, z' do równań (1) 
par. 287 i dołączając równania z—z'—h, 3—$‘=a, będziemy mieli sześć 
równań, które dają się rozwiązać. Znajdziemy, że na p, p'... wypada 
po jednej wartości.

292. Praca skrętnika. Wyznaczyć pracę, którą wykona 
skrętnik na śrubie danej, gdy ciało otrzyma przesunięcie, przygo­
towane na innej śrubie danej.

Wyznaczmy naprzód pracę, wykonaną podczas przesuwa­
nia pary w jej płaszczyźnie z jednego położenia do drugiego. 
Przesunięcie takie daje się wykonać w sposób następujący: 
przesuwamy naprzód parę równolegle tak, aby koniec A ra­
mienia AB zajął nowe położenie; następnie obracamy parę oko­
ło punktu A tak, aby koniec B doszedł do nowego położenia. 
Praca dwóch sił równych i odwrotnych podczas przesunięcia 
równoległego jest oczywiście równa zeru; praca siły, przyłożo­
nej w A, podczas obrotu jest także zerem. Pozostaje wyzna­
czyć pracę siły, przyłożonej w B.

Niech F oznacza siłę, a długość ramienia AB i dep kąt 
obrotu. Siła, przyłożona w B, wykona oczywiście pracę Fad^. 
Jeżeli kąt przesunięcia jest skończony, to wyznaczymy pracę, 
całkując Fade^. Tak więc praca, wykonana przez parę o danym 
momencie, jest równa iloczynowi z momentu przez kąt obrotu 
w płaszczyźnie pary. (Zob. par. 203.)

Obróćmy teraz parę o mały kąt de^ około osi, położonej 
w płaszczyźnie pary. Końce A, B ramienia zaczną się poruszać 
prostopadle do płaszczyzny sił, a zatem praca przygotowana 
każdej siły będzie zerem.

293. Z pomocą wyników powyższych wyznaczymy pracę 
skrętnika, okręconego na pewnej śrubie.

Niech p, p' będą stromościami śruby i skrętnika, 3 kątem 
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pomiędzy osiami, i h najkrótszą odległością tych osi. Przyj- 
mierny w przypadku typowym, że gdy 3 i h są dodatnie, to 
siła, działająca na jednej osi w kierunku dodatnim, wywołuje 
obrót około drugiej w kierunku dodatnim (par. 265). Siłę
skrętnika oznaczymy przez R.

Oś śruby obieramy za oś z, a wspól­
ną prostopadłą OH za oś x. Poprowadź­
my proste HC, HB odpowiednio równo­
legle do osi z, i] i rozłóżmy siłę R na 
składowe R cos I, Rsin 9 w kierunkach 
HC, HB. Gdy przesuniemy ciało ró­
wnolegle do osi z o pd^ i obrócimy je 
około tejże osi o kąt d^, to pierw­
sza z tych składowych wykona pracę 
Rsin 9 . hd^.

Parę skrętnika Rp' rozkładamy na pary Rp‘cos I i Rp‘sin 3, 
których osi mają kierunki HC i HB. Praca pierwszej będzie 
Rp'cos 3. d^^ praca drugiej jest równa zeru. Praca całego 
skrętnika

dW=Rd^ {(p+p‘) cos 8+h sin 0}.
Jest to funkcya symetryczna stromości p i p', gdy więc 

śruby zamienią pomiędzy sobą role, to praca nie ulegnie 
zmianie.

294. Śruby przekorne).  Nazwiemy tak dwie śruby, po­
siadające właściwość następującą: gdy ciało zostaje okręcone 
około jednej z nich, to skrętnik, działający na drugiej, nie wy­
konywa pracy. Analityczny warunek przekorności dwóch śrub 
wyraża się równaniem

*

*) Teoryę śrub przekornych (reciprocal screws), zawdzięczamy 
Sir R. Ballowi, i z jego książki o śrubach jest zaczerpnięta treść para­
grafów 294—297. Do tejże książki odsyłamy czytelnika po dalsze roz­
winięcie przedmiotu.

(p+p") cos 9+h sin $=0.
Tak więc dwie przecinające się śruby są przekorne, jeżeli 

tworzą kąt prosty, lub jeżeli stromości są równe i odwrotne.
Z zasady pracy przygotowanej wynika, że ciało, które 

może jedynie poruszać się na śrubie a, pozostanie w równo­
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wadze pod działaniem skrętnika, działającego na śrubie prze­
kornej do a.

295. Jeżeli śruba a jest przekorna do śrub a i 3, to jest ona ró­
wnież przekorna do każdej śruby na cylindroidzie, zawierającej a i 3. 
Weżmy na cylindroidzie dowolną śrubę Y. Skrętnik na tej śrubie Y 
daje się zastąpić skrętnikami na a i 3, jeżeli siły na a i 3 są składo- 
wemi siły na Y (289). Praca przygotowana każdego z tych skrętników 
składowych podczas okręcania na o jest równa zeru, a więc śruby 
Y i o są przekorne. Powiemy krótko, że śruba o jest przekorna do cy- 
lindroidy.

296. Śruba o, przekorna do cylindroidy, przecina jedną z tworzą­
cych pod kątem prostym. Cylindroida jest powierzchnią trzeciego rzę­
du, a zatem śruba a przecina ją w trzech punktach, i przez każdy 
z nich przechodzi jedna ze śrub cylindroidy. Każda z tych trzech śrub 
przecina śrubę a i jest do niej przekorna, a więc w myśl par. 294 ka­
żda z nich musi albo tworzyć z a kąt prosty, albo posiadać stromość 
równą i odwrotną do stromości o. Lecz stromość p jakiejkolwiek śruby 
na cylindroidzie jest równa p cos29+p‘sin 29, a zatem na cylindroidzie 
istnieją tylko dwie różne śruby o danej stromości; odpowiadają im 
spełniające do 180° wartości kąta 8. Z tego wynika, że śruba a musi 
przecinać jedną z owych trzech śrub pod kątem prostym. Jeżeli śruba 
a nie jest osią cylindroidy, to może ona być prostopadła najwyżej do 
jednej z przeciętych śrub cylindroidy, a zatem stromości dwóch po­
zostałych muszą być równe i odwrotne do stromości śruby o.

297. Prz. 1. Okazać, że miejscem geometrycznem śruby prze­
kornej do czterech śrub danych, z których żadne trzy nie należą do 
jednej cylindroidy, jest cylindroida.

Do całkowitego określenia śruby potrzeba pięciu wielkości, je­
żeli więc mają być spełnione cztery warunki przekorności, to wogóle 
śruba musi leżeć na pewnej powierzchni prostokreślnej (surface reglee.) 
Jeżeli powierzchnia ta nie jest cylindroidą, to poprowadźmy cylin- 
droidę przez którekolwiek dwie tworzące; każda śruba tej cylindroidy 
będzie także przekorna do czterech śrub danych, a zatem szukanem 
miejscem geometrycznem byłaby nie pojedyńcza powierzchnia linio­
wa, lecz cały układ cylindroid.

Prz. 2. Dowieść, że wogóle istnieje tylko jedna śruba przekorna 
do pięciu śrub danych.

Śruba szukana musi tu czynić zadość pięciu warunkom, a zatem 
liczba śrub takich jest skończona; lecz gdyby istniały dwie takie śru­
by, to istniałaby cała cylindroida śrub przekornych.

Prz. 3. Okazać, że jakiekolwiek dwie śruby przekorne jednej 
cylindroidy są równoległe do średnic sprzężonych stożkowej stro­
mości.

Oznaczmy przez p, p‘ stromości, a przez z, z' wysokości, i niech 
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będzie z>z' i 8> 8‘ (par. 293). Dojdziemy, że siła, działająca na osi któ­
rejkolwiek ze śrub, wywołuje obrót około osi drugiej w kierunku uje­
mnym, zakładamy przeto h—z—z' i =—(9—8‘). Według par. 294 wa­
runek przekorności śrub zawiera się w równaniu (p+p‘) cos+hsin «=0. 
Podstawiając zamiast p, p‘, z, z' wartości, podane w par. 287, otrzyma­
my p cos 8 coss‘+p‘sin 8 sin 8‘=0, a to wskazuje, że osi śrub są równo­
ległe do średnic sprzężonych stożkowej stromości (288).

O siłach sprzężonych.

298. Płaszczyzna zerowa. Miejscem geometrycznem linii 
prostych, które przechodzą przez dany punkt 0, i względem któ­
rych znika moment układu, jest płaszczyzna.

Płaszczyznę taką nazywamy płaszczyzną zerową, a punkt 
0 zowie się punktem zerowym tej płaszczyzny. Każda prosta, 
względem której moment sił jest zerem, nazywa się linią ze­
rową.

Aby udowodnić twierdzenie powyższe obierzmy punkt 0 
za środek redukcyi i sprowadźmy układ do pary G i siły R. 
Widać od razu, że moment względem prostej, przechodzącej 
przez 0, nie będzie zerem, jeżeli ta prosta nie leży w płaszczy­
źnie pary. Stąd wynika, że można zdefiniować płaszczyznę zero­
wą, jako płaszczyznę pary głównej punktu 0,

Nazwy punkt zerowy i płaszczyzna zerowa wprowadził Moebius 
{Lehrbuch der Statik, 1837). Cremona w książce Le figurę reciproche 
(1872) używał wyrazów biegun i płaszczyzna biegunowa, Chasles stoso­
wał nazwę ognisko (Comptes Rendus, 1843).

299. Jeżeli w płaszczyźnie zerowej punktu 0 istnieje linia 
zerowa, nie przechodząca przez 0, to moment siły R względem 
tej linii musi być zerem, a do tego potrzeba, aby siła R albo 
była zerem, albo działała w płaszczyźnie zerowej. W przypadku 
pierwszym układ sił jest równoważny jednej parze, i płaszczy­
zna zerowa jest równoległa do płaszczyzny tej pary, w przy­
padku drugim układ jest równoważny jednej sile, i płaszczy­
zna zerowa przechodzi przez linię działania tej siły. W oby­
dwóch przypadkach niezmiennik I układu jest równy zeru.

300. Jeżeli płaszczyzna zerowa punktu A przechodzi przez 
punkt B, to i płaszczyzna zerowa punktu B przechodzi przez 
punkt A.
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Z definicyi płaszczyzny zerowej punktu A wynika, że pro­
sta AB jest linią zerową, a zatem prosta AB musi leżeć w pła­
szczyźnie zerowej punktu B.

301. Wyznaczyć równanie płaszczyzny zerowej danego pun­
ktu (§5) w odniesieniu do jakiegokolwiek prostokątnego układu 
współrzędnych.

Kosynusy kierunkowe szukanej płaszczyzny są proporcyo- 
nalne do momentów sił względem osi, przechodzących przez 
punkt zerowy, a zatem według par. 258 równanie żądane będzie 
(L - 1Z+ C Y)x + {M- tX+ kZ)y + (N - (Y+ r]X)z = Lk + Mn + Nt.

Prz. Dane są równania prostej

x—f _ y—9 _ 2—h
l m n

Okazać, że jest to linia zerowa, jeżeli

f 9 h
X Y z —LI A- Mm+Nn.
l m n

302. Wyznaczyć punkt zerowy płaszczyzny danej. Obiera­
my w danej płaszczyźnie dwa stosownie położone punkty; ich 
płaszczyzny zerowe przetną płaszczyznę daną w punkcie szu­
kanym (par. 300).

Prz. 1. Za oś z obrano oś centralną układu; okazać, że współ­
rzędne punktu zerowego płaszczyzny z—Ax+By-\-C są ^——ijB, r^—pA, 
‘= C, gdzie p oznacza stromość skrętnika równoważnego.

Prz. 2. Płaszczyzna przecina oś centralną w punkcie C i two­
rzy z nią kąt «. Okazać zapomocą rozumowania, jak w par. 270, że 
punkt zerowy O leży na prostopadłej CO do osi centralnej, i CO— 

T cot«

Prz. 3. Momenty sił względem boków trójkąta ABC wynoszą 
odpowiednio M1, M2, M3, a suma rzutów na prostopadłą do płaszczy­
zny trójkąta jest równa Z. Dowieść (1), że współrzędne trójliniowe 
punktu zerowego O w odniesieniu do trójkąta ABC są I, Ma,

Z Z Z 
i (2), że płaszczyzny zerowe wierzchołków A, B, C przecinają pła 
szczyznę trójkąta odpowiednio według prostych AO, BO, CO.

303. Siły sprzężone. Obierzmy na danej prostej OA 
środek redukcyi O i sprowadźmy układ do siły R i pary Gr.
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Przesuńmy następnie płaszczyznę przez prostą OA i siłę R; 
przetnie ona płaszczyznę pary BOC według prostej OB.

Rozkładamy siłę R na składowe F C 
i F' w kierunkach OA i OB. Para G / -1 
i siła F' dają się zastąpić przez jedną siłę, / 

G / 
równoległą do OB i odległą o — od tej /   A 

prostej. Wynika stąd, że siły układu są / — 
równoważne pewnej sile F, działającej na 
jakiejkolwiek danej prostej OA, oraz sile F' Fig 91 
działającej w płaszczyźnie zerowej punktu O. 
Do wyznaczenia tych sił służą równania F‘sin AOB= Rsin ROB, 
F sin A OB=Rsin BOA.

Siły F^ F' nazywamy siłami sprzężonemi, a ich linie dzia­
łania prostemi sprzężonemi.

304. Punkt O obraliśmy dowolnie na prostej OA, a za­
tem gdy punkt ten wędruje, po prostej O A, to jego płaszczyzna 
zerowa przechodzi wciąż przez prostą sprzężoną, obracając się około 
niej, jak około osi.

305. Niezmiennik I znika. Jeżeli siła R jest zerem, albo leży 
w płaszczyźnie BOC, to układ sprowadza się do jednej pary albo do 
jednej siły. W obydwóch przypadkach każdy punkt płaszczyzny BOC 
jest punktem zerowym.

Dajmy na to, że układ jest równoważny jednej parze, i prosta 
OA przecina płaszczyznę pary; R—Q, i siła F, działająca na OA, jest 
zerem. Prosta sprzężona znajduje się w nieskończoności, i jej siła jest 
także zerem. Jeżeli OA leży w płaszczyźnie pary, to siła jej stanowi 
jedną z sił pary, a siła sprzężona jest drugą siłą pary. Odległość po­
między siłami sprzężonemi, czyli ramię pary, jest dowolna.

Przypuśćmy teraz, że układ sprowadza się do jednej siły wypad­
kowej. W takim razie OR leży w płaszczyźnie BOC, i jeżeli dana 
prosta nie przecina tej jedynej wypadkowej, to siła F na OA jest ze­
rem, a drugą siłą sprzężoną jest wypadkowa. Jeżeli prosta OA prze­
cina wypadkową, to sprzężoną jest każda prosta, przechodząca przez 
ich punkt przecięcia i położona w ich płaszczyźnie; siłę sprzężoną 
znajdziemy, rozkładając wypadkową w tych dwóch kierunkach.

Odwrotnie, ponieważ 1= FF'r sin 3 (par. 281), przeto gdy nie­
zmiennik jest równy zeru, to albo jedna z sił sprzężonych jest zerem, 
albo siły te leżą w jednej płaszczyźnie.

306. Wyznaczyć prostą sprzężoną z linią zerową. W tym 
przypadku OA leży w płaszczyźnie zerowej punktu O; jeżeli B 
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nie jest zerem i nie leży w tejże płaszczyźnie, to proste OA 
i OB idą w kierunkach przeciwnych (303). Składowe F^ F' siły 
R są nieskończenie wielkie i działają w kierunkach odwrot­
nych na tej samej prostej OA. Możnaby nazwać tego rodzaju 
proste samosprzężonemi, Cremona nazwał je prostemi podiuójnemi.

W przypadku granicznym, gdy niezmiennik I jest zerem, każda 
prosta w płaszczyźnie pary wypadkowej, lub każda prosta, przecina­
jąca siłę wypadkową, jest linią zerową. Wyżej widzieliśmy, że sprzę­
żone takich prostych są nieokreślone.

307. Widzieliśmy wyżej, że sprzężona każdej prostej, 
przechodzącej przez dany punkt O, leży w płaszczyźnie zero­
wej tego punktu; okażemy teraz, że sprzężona każdej prostej, 
położonej iv tej płaszczyźnie, przechodzi przez punkt zerowy.

Jest rzeczą oczywistą, że, jeżeli jedna z prostych sprzężo­
nych przecina linię zerową, to druga albo musi przecinać tę 
samą linię, albo jej siła będzie równa zeru. Linie zerowe pła­
szczyzny BOC promieniują z 0^ i przecina je każda prosta DE, 
obrana w tej płaszczyźnie. Z tego wynika, że albo sprzężona 
z prostą DE przecina te wszystkie linie zerowe, albo siła sprzę­
żona jest zerem. Jeżeli niezmiennik I jest skończony, to siła 
sprzężona nie może leżeć w płaszczyźnie BOC ani być zerem, 
a zatem musi przechodzić przez punkt zerowy O. Jeżeli 1=0, 
to każdy punkt płaszczyzny jest punktem zerowym, a więc 
twierdzenie jest słuszne i w tym przypadku.

308. Mając daną prostą

x-f_ U-9 _ z~h I
1 m n .‘ 

wyznaczyć równania prostej z nią sprzężonej.
Z par. 304 wynika, źe płaszczyzny zerowe dwóch punk­

tów O i Oj obranych dowolnie na prostej OA, przecinają się 
na prostej sprzężonej. Obieramy na danej prostej punkt (/gh) 
i drugi punkt w nieskończoności; współrzędne tego ostatniego 
są proporcyonalne do 1, m, n. Płaszczyzny zerowe tych pun­
któw będą odpowiednio

(L -gZ + hY)x + {M-hX + fZ)y + (N-fY+ gX)z = Lf+ Mg + Nh
{ — mZ + n Y)x + (— nX + lZ)y +( - l Y + mX)z = LI + Mm + Nn.

Takie są równania prostej sprzężonej. Można im także 
nadać postać
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x U z
x y z = af-x) + M(g-y)+N(h-z
f 9 h
x y z
X Y Z = LI + Mm + Nn.
l m n

Przypuśćmy, że dana jest, jak poprzednio, linia działania 
siły F zapomocą równań (1); możemy dla siły F znaleźć wy­
rażenie analityczne, które daje się użyć w tych razach, gdy nie 
chodzi o wielkość i położenie siły sprzężonej F‘. W tym celu 
przyłączamy do danego układu siłę równą i odwrotną do F. 
Ten nowy układ będzie równoważny jednej sile, a zatem jego 
niezmiennik jest równy zeru. Jeżeli Z, m, n są kosynusami 
linii działania siły F, to współrzędne nowego układu będą

X'=X~Fl^ 
Y=Y-Fm, 
Z' = Z-Fn,

L' =L+ Fmh — Fng^ 
M'^M+Fnf-Flh,
N‘ ^N+ Fig- Fmf.

Gdy przyrównamy wyróżnik L'X' + M‘ Y' + N'Z' do zera,
to wypadnie

LX+MY+NZ 
F “ = Ll-\- MmĄ-^n —

f 9 h 
X Y Z 
l m n

W ten sposób otrzymaliśmy dla F jedną wartość. War­
tość ta może być nieskończenie wielka, jeżeli prawa strona jest 
równa zeru; bywa tak to wtedy, gdy dana prosta jest linią 
zerową (par. 301).

Skoro wyznaczyliśmy siłę F^ to znamy wszystkie sześć 
współrzędnych nowego układu. Linię działania jedynej wy­
padkowej F' możemy wyznaczyć według par. 274, a wielkość 
jej z równania F'2 = X12 + Y'2 + Z'2.

309. Zbadać rozkład sił sprzężonych względem osi cen­
tralnej.

Wiemy z par. 285, że oś centralna przecina pod kątem 
prostym wspólną prostopadłą dwóch prostych sprzężonych. 
Niech Oz będzie osią centralną, R i T daną siłą i parą. Przy­
puśćmy, że F^ F' są siłami sprzężonemi, działającemi na pro­
stych AF, A' F\ i że odcinek AA' jest ich najkrótszą odległo-
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ścią. Oznaczamy odcinki OA i OA' przez a i a’, mierząc je 
od O w kierunkach odwrotnych, i zakładamy a+a‘= h.

Fig. 92.

Zastępujemy siłę R przez dwie 
. , _ Ra’ . Raskładowe równoległe I i —, przy­

łożone odpowiednio w A i A' (par. 
79). Para T jest równoważna dwom 
siłom, przyłożonym w tych samych 
punktach, równoległym do osi y 
i równych +1 Ponieważ wypad- 

kowemi sił, przyłożonych w A, A', są F, F", przeto
T = Ra‘tany,
T = Ra tan Y,

F2h2=T2+R2a‘2,
FV2h2=T2+R242.

Gdy dana jest jakaś prosta AF jako linia działania jednej 
z sił, to tern samem dane sąi a, a z równań powyższych 
można wyznaczyć F, F‘, Y, a'. Warto jeszcze zaznaczyć, że 
rzuty sił F, F' na płaszczyznę xy są równoważne parze I, 

, r 
a zatem F‘sin ^ = F sin Y‘ = —.

310. Gdy figura obraca się około Oz, to proste sprzężone AF, 
A'F' zataczają współosiowe hiperboloidy obrotu; pomiędzy ich osiami 
rzeczywistemi a, a' zachodzą związki (1). Osi urojone są acotr i a‘cot‘;

aa' T 
z (1) wypadnie łatwo, że każda z nich jest równa —, gdzie p— R jest 

stromością skrętnika.

311. Otrzymamy klasyfikacyę prostszą, układając siły sprzężone 
nie w hiperboloidy, lecz w płaszczyzny. Gdy siła F obraca się około A, 
zataczając płaszczyzną prostopadłą do OA, to a pozostaje stałem, a zmie­
nia się kąt Y. Z wzorów (1) widać, że Y‘ jest stałe, a zatem siła sprzę­
żona F' przesuwa się równolegle do położenia pierwotnego, zataczając 
inną płaszczyznę, przechodzącą przez O A. Płaszczyzny te przecinają się 
według prostej zerowej, a gdy a się zmienia, to ta prosta przecięcia 
zatacza paraboloidę pz——xy, gdzie p oznacza stromość skrętnika.

Prz. Dowieść, że dwa jakiekolwiek układy sił posiadają wspólny 
układ prostych sprzężonych, rzeczywisty lub urojony. Jeżeli 00'—2c 
jest najkrótszą odległością pomiędzy osiami centralnemi danych ukła­
dów, a O środkiem odcinka 00', to odległość wspólnych sprzężonych 
od O wyznacza się z równania kwadratowego x2+(p—p‘)x cot9+pp‘— 
— c2— (p+p‘)ccot8=0, gdzie p, p' są stromościami skrętników równo­
ważnych, a 3 kątem pomiędzy osiami.
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312. Prz. 1. Jeżeli dwie proste przecinają się w punkcie 0, to 
ich sprzężone przecinają się również i leżą w płaszczyźnie zerowej 
punktu 0 (par. 303).

Prz. 2. Prosta a przecina dwie proste sprzężone. Dowieść, że 
każdy z punktów przecięcia jest punktem zerowym płaszczyzny, za­
wierającej prostą a i drugą prostą sprzężoną.

Widać to stąd, że każda prosta, przechodząca przez jeden z pun­
któw przecięcia i przecinająca drugą prostą sprzężoną, jest linią ze­
rową (303).

Prz. 3. Przez dany punkt O prowadzimy prostą w taki sposób, 
aby momenty sił sprzężonych F, F' względem niej tworzyły dany 
stosunek p.. Okazać, że miejscem geometrycznem takiej prostej jest 
płaszczyzna, a jeżeli p=-1, to miejscem tem jest płaszczyzna zerowa 
punktu O. Przy każdem p. płaszczyzna ta przechodzi przez prostą prze­
cięcia płaszczyzn, przechodzących przez 0 oraz odpowiednio przez

Fpsin ©
F, F', i tworzy z temi płaszczyznami kąty P, P‘ takie, że

p i p' oznaczają tu odległości punktu O od danych prostych.

313. Prz. 1. A i B oznaczają dwa punkty dowolne na linii ze­
rowej. Dowieść, że układ daje się sprowadzić do dwóch sił sprzężo­
nych, działających na A i B, przyczem pierwsza ma tworzyć z AB 
dany kąt «. Dowieść prócz tego, że gdy P się zmienia, to miejscem 
geometrycznem siły, działającej na jeden z tych punktów, jest pła­
szczyzna zerowa drugiego.

Obieramy A za środek redukcyi (par. 257) i przekształcamy parę 
główną w taki sposób, aby jej siły przeszły przez A i B.

Prz. 2. Dane są dwie płaszczyzny, przecinające się na linii ze­
rowej. Okazać, że układ można sprowadzić do dwóch sił sprzężonych, 
leżących w danych płaszczyznach. (Obieramy punkty A, B z przy­
kładu 1, w punktach zerowych płaszczyzn danych).

Prz. 3. AM i BN są liniami zerowemi; okazać, że układ można 
sprowadzić do dwóch skończonych sił sprzężonych, z których każda 
przecina obydwie dane proste AM i BN.

Punkt A obieramy dowolnie na AM; płaszczyzna zerowa punktu 
A przejdzie przez AM i przetnie BN w punkcie B. Reszta wynika 
z prz. 1.

314. Charakterystyką płaszczyzny zowie się prosta sprzężona z pro­
stopadłą do płaszczyzny w jej punkcie zerowym (Chasles, Comptes 
Rendus, 1843).

Prz. 1. Dwie proste sprzężone przecinają daną płaszczyznę w M 
i M'; dowieść, że prosta MM' przechodzi przez punkt zerowy pła­
szczyzny. Dowieść również, że rzuty tych sprzężonych na daną pła­
szczyznę przecinają się na charakterystyce. (Twierdzenie Chasles’a.)

Prz. 2. Miejscem geometrycznem osi par głównych, gdy środek 
redukcyi obiega daną prostą, jest paraboloida hiperboliczna. Jeżeli 
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dana prosta może być charakterystyką, to paraboloida jest płaszczy­
zną; w tym razie obwiednią osi par głównych jest parabola, której 
ognisko leży w biegunie, czyli w punkcie zerowym płaszczyzny.

(Chasles.)
Niech AB będzie daną prostą, a CD jej sprzężoną. Obieramy za 

środek redukcyi jakikolwiek punkt O na AB; według par. 303 oś pary 
głównej będzie prostopadła do płaszczyzny OCD. Obróćmy teraz pro­
stą AB około CD o mały kąt d^-, każdy punkt O prostej AB przebie­
gnie krótką drogę, prostopadłą do płaszczyzny OCD, a więc położoną 
na osi pary głównej. Widzimy, że wszystkie osi przecinają dwie pro­
ste, t. j. prostą AB oraz jej położenie następne, a więc wszystkie są 
równoległe do płaszczyzny prostopadłej do CD. Miejscem geometry- 
cznem jest zatem paraboloida hiperboliczna.

Twierdzenia o siłach.

315. Trzy siły. Jeżeli trzy siły są w równowadze, to mu­
szą leżeć w jednej płaszczyźnie.

Obierzmy na liniach działania dwóch sił punkty A i B. 
Moment całego układu względem prostej AB jest zerem, a za­
tem musi ona przecinać trzecią siłę w jakimś punkcie C. Po­
zostawmy punkt A w spokoju i przesuwajmy B na linii dzia­
łania siły drugiej; prosta AB zatoczy przytem płaszczyznę, 
i w płaszczyźnie tej muszą leżeć siły druga i trzecia. Utrwala­
my następnie C i przesuwamy B jak poprzednio; wypadnie, że 
w tejże płaszczyźnie musi leżeć i pierwsza siła.

Prz. 1. Układ sił można sprowadzić do trzech sił Fi, F2, F3, 
działających na bokach dowolnego trójkąta ABC i do trzech innych 
sił Z1, Z2, Z3, przyłożonych w wierzchołkach A, B, C i prostopadłych 
do płaszczyzny trójkąta.

Rozkładamy każdą z danych sił P na dwie składowe, z których 
jedna działa w płaszczyźnie ABC, a druga prostopadle do tej płaszczy­
zny. Pierwszą z tych składowych zastępujemy przez trzy siły, działa­
jące na bokach trójkąta (par. 120, prz. 2), a drugą przez trzy siły ró­
wnoległe, przyłożone w wierzchołkach (par. 86, prz. 1). Gdyby siła P 
była równoległa do płaszczyzny ABC, to przenosimy ją do tej pła­
szczyzny, wprowadzając stosowną parę. Obróciwszy tę parę w jej pła­
szczyźnie, dołączymy jej siły do sił prostopadłych.

Prz. 2. Układ sił można sprowadzić do trzech sił, przyłożonych 
w wierzchołkach dowolnego trójkąta, i czyniących zadość trzem in­
nym warunkom.

Zastępujemy Fr przez Fy + u, przyłożoną w B, i — u w C, F2 przez 
F2+v w C i — v w A, wreszcie F3 przez F-i + w w A i —w w B. Skła­
damy następnie siły, przyłożone w wierzchołkach; przy pomocy trzech 
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dowolnych wielkości u, v, w możemy uczynić zadość trzem postawio­
nym warunkom.

Prz. 3. Sprowadzamy układ do trzech sił, przyłożonych w pun­
ktach nieruchomych A, B, C. Jeżeli kierunek pierwszej pozostaje sta­
łym, to okazać, że każda z dwóch pozostałych leży w niezmiennej 
płaszczyźnie, i płaszczyzny te przecinają się na boku BC.

(Coli. Ex., 1891.)

316. Cztery siły. Jeżeli cztery siły, działające na czte­
rech prostych wichrowatych, są w równowadze, to te proste na­
leżą do tego samego pasma tworzących hiperboloidy jednopowło- 
kowej. Moebius, Lehrbuch der Statik.

Wyobraźmy sobie prostą ruchomą, która przecina wciąż 
trzy dane proste wichrowate, zwane kierownicami. Miejscem 
geometrycznem prostej ruchomej będzie, jak wiadomo, hiperbo- 
loida, a różne położenia tej prostej tworzą jedno pasmo tworzą­
cych. Istnieje nieskończenie wiele prostych, przecinających trzy 
siły dane, lecz każda z nich musi również przecinać czwartą 
siłę, bo inaczej moment układu względem takiej siecznej nie 
byłby zerem. Gdy obierzemy trzy z tych siecznych za kierowni­
ce, to wypadnie, że cztery dane siły leżą na odnośnej hiperbo- 
loidzie.

Twierdzenia następujące mają służyć, jako przykłady; dla 
tego też dowody są tylko zaznaczone w kilku słowach.

Prz. 1. n sił działa na tworzących hiperboloidy, należących do 
jednego pasma i wiadomo, że siły te sprowadzają się do jednej wypad­
kowej; okazać, prowadząc sieczne, że linia działania tej wypadkowej 
jest również tworzącą i należy do tego samego pasma.

Prz. 2. Dwie siły P, P' działają na tworzących jednego pasma, 
a dwie inne Q, Q‘ na tworzących drugiego tej samej hiperboloidy. 
Siły te tworzą czworobok skośny. Właściwości takiego układu sił ba­
daliśmy w par. 103, niezmienniki będą podane w 317 i 323.

Okazać, że siły takie nie mogą się równoważyć, jeżeli nie leżą 
w jednej płaszczyźnie. W tym celu należy rozważyć sieczne, popro­
wadzone przez punkt przecięcia P i Q'.

Prz. 3. Trzy siły P, P2, P3 działają na tworzących jednego pa­
sma, a czwarta Q na tworzącej drugiego. Dowieść, że układ taki nie 
może być w równowadze, jeżeli wszystkie siły nie leżą w jednej pła­
szczyźnie.

Gdyby każda sieczna sił Px, P2, P3 przecinała i Q, to ostatnia 
przecinałaby wszystkie tworzące swego pasma.

Prz. 4. Cztery siły działają na tworzących jednego pasma hi­
perboloidy; gdyby je przenieść równolegle do jednego punktu, to za­
chodziłaby równowaga. Dowieść, że siły te równoważą się i obecnie.
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Suma rzutów na każdą prostą jest oczywiście równa zeru, i mo­
ment względem każdej tworzącej drugiego pasma jest także zerem 
(par. 259). *)  Pliicker i Darboux.

*) W oryginale podany jest inny, mniej prosty dowód.
Przyp. tłom.

**) Równania parametryczne elipsy przecięcia z płaszczyzną xy, 
czyli elipsy szyjnej, są x=acosł i y=bsin 0. Kąt 0 zowie się anoma­
lią ekcenlryczną. Przyp. tłom.

Prz. 5. Cztery siły P, P2, P3, P, są w równowadze; okazać, że 
niezmiennik którychkolwiek dwóch jest równy niezmiennikowi dwóch 
pozostałych (twierdzenie Chasles’a), a niezmiennik każdej trójki jest 
zerem.

Gdy odwrócimy kierunki sił P3, P, to staną się one równowa­
żne siłom P1, P2, a zatem niezmienniki są równe.

Prz. 6. Cztery siły, działające na prostych a, b, c, d są w równo­
wadze. Oznaczamy symbolem ab iloczyn z najkrótszej odległości po­
między prostemi a, b przez sin kąta pomiędzy niemi; okazać, że owe 
siły są proporcyonalne do (bc . cd . db)'2, (cd . da . ac^2, (da . ab . bd)' 3, 
(ab . bc. ca)^2. (Cayley, Comptes Rendus, 1865.)

Według twierdzenia Chasles’aP1P2.ab—PiPi.cd i PlPi.ac=PiPi.bd. 
Mnożąc jedno przez drugie, otrzymamy stosunek P^-.P^.

317. Niech będą osi hiperboloidy a, b, c V—1; obrawszy 
te osi za osi współrzędnych, otrzymamy równania tworzącej

x— a cos 0 y — bsin 9 z
asin 3 — b cos I —c‘ 

gdzie 3 oznacza anomalię ekscentryczną**)  punktu przecięcia 
z płaszczyzną xy, tworząca należy do jednego lub drugiego 
pasma stosownie do znaku, stojącego przed c. Przypuśćmy, że 
na tej tworzącej działa siła P, której współrzędne oznaczmy 
przez X, Y, Z, L, M, N. Znajdziemy, że

x= + Zsins, Y==!Zcos9, 
c c

ab
L=bZsin, M= — aZcose, N=— 7, 

gdzie znaki górne należy brać razem.
Prz. 1. Cztery siły działają na tworzących hiperboloidy, należą­

cych do jednego pasma; dowieść, że sześć równań równowagi spro­
wadza się do trzech EZsin 8=0, ŁZ cosł=0, ŁZ=0. Będziemy w tern 
mieli dowód analityczny twierdzenia z par. 316 prz. 4.
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Prz. 2. Okazać, że niezmiennik I dwóch sił, działających na 

tworzących tego samego pasma, = +-----Z,z, versin (9,- •,) *).  Jeżeli 

linie działania sił należą do różnych pasm, to niezmiennik jest ze­
rem, bo takie proste się przecinają. Jeżeli mamy większą liczbę sił, 
działających na różnych tworzących, to niezmiennik jest równy sumie 
niezmienników sił, branych po dwie (par. 281).

*) Versin a lub sinvera=1 — cos a. Przyp. tłom.
**) Hiperboloidy zowią się koncyklicznemi, gdy posiadają wspól­

ne płaszczyzny przecięć kołowych. Przyp. tłom.
Statyka. 17

Prz. 3. Dane są cztery tworzące tego samego pasma; okazać, że 
stosunki sił w równowadze określają równania

_______________Zi2______________ __
vers (92— 0) vers (9-a—94) vers ($4—32)

_ _______________ Z22________________
vers (33—3,) vers (8,— 3,) vers (91—9)

Związki te można otrzymać, przyrównywując niezmienniki dwójek sił, 
jak w dowodzie twierdzenia Cayley’a w par. 316.

Prz 4. Cztery tworzące hiperboloidy przecinają płaszczyznę osi 
rzeczywistych w punktach A1, A2, Ag, A,, i siły, działające na nich, 
są w równowadze. Okazać, że rzuty tych sił na oś urojoną są propor- 
cyonalne do pól trójkątów A,AJA,, AzA,A{ ..., przyczem siły w przyle­
głych wierzchołkach czworoboku A,A2A344 mają znaki odwrotne.

Prz. 5. Siły działają na tworzących tego samego rodzaju; dajmy na 
to, że c jest dodatnie. Dowieść, że stromość p skrętnika równoważnego

ab , bc ca 
zawiera się pomiędzy i większą z wielkości — i —. Wynika to 

c ab 
. I ZL.EX+... , 2+62—1 

stąd, ze PER—(x)2+. =aa*+6382+= ‘ gdzie 6, " stoja zamiast 
EZcos8 . “Zsin 9 . , ab , , bc 
 i . Widać od razu, że p-— jest dodatnie, a p — — 

~Z LZ c a 
ujemne, jeżeli b>a.

Prz. 6. Siły działają na tworzących tego samego pasma, a stro­
mość skrętnika równoważnego jest równa p. Dowieść, że oś centralna 
jest tą tworzącą hiperboloidy koncyklicznej **)

fbc \ (ca \ (ab \ (bc \(ca \(ab[ p )X-H——p] yi—[ — +pz2 = ( p (-----p -p 
a-----/ b / C / a-----/b-----/\c 

która przecina płaszczyznę xy w punkcie
ac — bp ZZcosS bc — ap ZZsin 9

c -A c LZ
Prz. 7. Siły działają na tworzących tego samego pasma, i cały 

układ sprowadza się do jednej wypadkowej, która przecina płaszczy­
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znę xy w punkcie D. Okazać, że prosta OD oraz rzut wypadkowej są 
równoległe do średnic sprzężonych.

Prz. 8. Siły działają na tworzących tego samego pasma hiper- 
boloidy. Okazać, że układ sprowadza się do jednej wypadkowej, jeżeli 
oś centralna jest równoległa do jednej z tworzących stożka asymptot, 
i że jest to warunek niezbędny. (Math. Tripos, 1877.)

318. Związki czterech sił z czworościanem. Prz. 1. Na środki 
kół, opisanych na ścianach czworościanu, działają siły prostopadłe do 
tych ścian i proporcyonalne do ich pól. Dowieść, że siły te się ró­
wnoważą, jeżeli wszystkie są skierowane wewnątrz, albo wszystkie 
nazewnątrz.

Prz. 2. Na wierzchołki czworościanu działają siły prostopadłe 
do ścian przeciwległych i proporcyonalne do ich pól. Okazać, że siły 
te się równoważą, jeżeli wszystkie są skierowane wewnątrz czworo­
ścianu albo wszystkie na zewnątrz. (Math. Tripos, 1881.)

Mamy czworościan AB CD i jego wysokości AK, BL... Iloczyn 
każdej wysokości przez pole odpowiedniej ściany jest równy trzy­
krotnej objętości czworościanu, a zatem siły są odwrotnie proporcyo­
nalne do wysokości, na których działają. Przypuśćmy, że wynoszą one 

odpowiednio —, —...
AK BL

U.Rozkładamy siłę — na trzy składowe w kierunkach krawędzi 
AK

AB, AC, AD. Biorąc rzuty na prostopadłą do ściany ACD, wyznaczy-
BL 

my składową F, działającą w kierunku AB. Wypadnie, że F. —-=

= -—cos 9, gdzie 9 jest kątem pomiędzy wysokościami AK i BL. Tak 
AK

samo rozkładamy siłę Nr na składowe w kierunkach krawędzi. Skła-

AK
dową F', działającą w kierunku BA, znajdziemy ze związku F'. —=

AD

= — cos 3. Z tego wynika że siły F i F' są równe i odwrotne. Tak 
BL

samo możemy okazać, że na każdej z pozostałych krawędzi działają 
także siły równe i odwrotne, a zatem układ jest w równowadze.

Prz. 3. Siły, działające na środki ciężkości czterech ścian czwo­
rościanu, są prostopadłe do tych ścian i co do wielkości proporcyo­
nalne do ich pól, a przytem wszystkie są zwrócone wewnątrz czworo­
ścianu lub wszystkie na zewnątrz. Okazać, że siły takie się równoważą.

Łącząc środki ciężkości, zbudujemy czworościan wpisany, któ­
rego ściany są równoległe do ścian czworościanu danego i proporcyo­
nalne do nich. Dane siły działają na wierzchołki tego czworościanu 
nowego, a zatem w myśl przykładu 2 są w równowadze.

Prz. 4. Na środki ciężkości ścian zamkniętego wielościanu dzia­
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łają siły prostopadłe do tych ścian, a pod względem wielkości propor- 
cyonalne do ich pól. Dowieść, że te siły są w równowadze.

Każdą ścianę rozkładamy na trójkąty zapomocą stosownej liczby 
przekątni, a łącząc następnie jakiś punkt wewnętrzny P z wierzchoł­
kami, rozłożymy całą bryłę na czworościany. Siły, działające na środki 
ciężkości ścian każdego czworościanu, według przykładu 3 są w ró­
wnowadze. Gdy usuniemy siły równe i odwrotne, działające na każdą 
ze ścian wewnętrznych, to pozostaną siły, działające na ściany zewnę­
trzne, które oczywiście muszą się równoważyć.

Prz. 5. Na środki krawędzi zamkniętego wielościanu działają 
siły. Każda siła jest prostopadła do odnośnej krawędzi, leży w pła­
szczyźnie dwusiecznej kąta dwuściennego, a co do wielkości jest pro- 
porcyonalna do iloczynu z długości krawędzi przez cos połowy kąta 
dwuściennego. Dowieść równowagi sił.

Przyłóżmy w płaszczyźnie każdej ściany do środków boków siły 
prostopadłe do tych boków i proporcyonalne do ich długości. Według 
par. 37 siły takie będą w równowadze. Składając siły, działające na 
każdą krawędź, otrzymamy twierdzenie żądane.

319. Siły normalne do powierzchni. Prz. 1. Siły działają nor­
malnie na każdy z elementów powierzchni zamkniętej. Okazać, że 
zachodzi równowaga, jeżeli każda siła jest albo (1) proporcyonalna do 
pola elementu, albo (2) proporcyonalna do iloczynu z tego pola przez 
1 1
---- 1—? gdzie pip' oznaczają główne promienie krzywizny.

P P
Możemy uważać powierzchnię za przypadek graniczny wielo­

ścianu, a zatem twierdzenie pierwsze jest następstwem prz. 4 par. 
poprzedniego.

Prowadząc linie krzywizny, podzielimy powierzchnię na prosto­
kątne elementy, które możemy uważać za ściany wielościanu, i wów­
czas twierdzenie drugie wyniknie z prz. 5. Niech ABCD będzie je­
dnym z tych elementów. Kąt zewnętrzny pomiędzy ścianami, które

ABprzecinają się według BC wynosi —, więc siła, działająca na tę kra- 
P

BC. AB 
wędź ==—----- i jest prostopadła do elementu.

2P
Joubert wyprowadza drugie twierdzenie z pierwszego, a z dru­

giego wyciąga wniosek, ze siły normalne i proporcyonalne do ilorazu 
z pola elementarnego przez pp‘ są w równowadze. Liouville’s J. tom 
XIII, 1848.

Prz. 2. Na każdy element ósemki elipsoidy, zawarty pomiędzy 
płaszczyznami głównemi, działają siły normalne i proporcyonalne do 
pól elementów. Okazać, że siły te sprowadzają się do jednej wypad- 
, ...... . / 4a , / 4b\ / 4c\ , . kowej, działającej na prostej a x — — — by——- )= c I z I, gdzie 20,

\ 3T/ \ 3T/ \ 3T/
2b, 2c oznaczają osi główne elipsoidy. (June Exam.)
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320. Pięć sił. Jeżeli pięć sił wichrowatych jest w równo­
wadze, to siły te muszą przecinać diyie proste rzeczywiste lub 
urojone. Moebius.

Dowiedziemy naprzód, że każde cztery proste a, b, c, d 
można przeciąć dwiema siecznemi. W tym celu budujemy hi- 
perboloidę na kierownicach a, b, c; prosta d przecina ją w dwóch 
punktach rzeczywistych lub urojonych. ' Przez każdy z tych 
punktów przechodzi jedna tworząca tego pasma, do którego 
a, b, c nie należą, a więc przecinająca zarówno a, b, c, jak i d. 
Poprowadźmy więc dwie sieczne czterech sił; każda z nich musi 
przecinać i piątą siłę, bo inaczej moment układu względem 
niej nie byłby zerem. Te dwie sieczne możemy nazwać kiero­
wnicami pięciu sił.

321. Obieramy za oś z wspólną prostopadłą dwóch prostych. 
Pięć sił przecina te proste odpowiednio w odległościach (rg'^, 
(rar,)... od osi z, a Z1, Z, ... oznaczają rzuty sił na tę oś. Do­
wieść^ że warunki równowagi są ^Z = 0, l^Zr—O, ^Zr' = 0, 
^Zrr' = 0.

Obieramy początek współrzędnych w środku najkrótszej 
odległości kierownic; oznaczamy tę najkrótszą odległość przez 2c, 
kąt pomiędzy kierownicami przez 23, i obieramy dwusieczne 
tego kąta za osi x i y. Równanie każdej siły możemy napisać 
w postaci

a—r cos $ y — r sin $ z — c
{r—r‘) cos 9 (r+r) sin 3 2c

Zakładamy

,3 = (r - r)2 cos2 • + (r + r')2 sin2 • + 4c2

i oznaczamy siły przez P ... Ps. Biorąc teraz rzuty na osie 
i momenty względem osi, otrzymamy sześć równań równowagi

EPp(r - r') cos $ = 0, ŁP(r+ r‘)sin$=0, 2XPpc= 0, 
X(yZ- zY^ — ^P^r- r')c sin 3=0, 
2(z X — x Z} = - ZPp(r + r)c cos $ = 0, 
^xY — yX)=2E Pprr‘sin9cos$ =0.

Jeżeli c i sin 29 nie są zerami, to te sześć równań sprowadza 
się do czterech wyżej podanych. Owe cztery równania okre­
ślają stosunki pięciu sił P1... P5, gdy są znane punkty przecię­
cia ich linii działania z kierownicami.
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322. Dajmy na to, że kierownice zmieniły położenie w prze­
strzeni, nie przestając przecinać osi z pod kątami prostymi, ale zmie­
niło się ich nachylenie wzajemne 29, albo odległość 2c. Z wyników 
poprzedzających wyciągamy wniosek, że równowaga będzie istniała 
i nadal, jeżeli (1) siły przecinają kierownice w tych samych odległo­
ściach od osi z, i (2) jeżeli rzuty sił na oś z nie uległy zmianie.

Gdy mamy w płaszczyźnie pięć sił, czyniących zadość trzem 
warunkom równowagi i prócz tego jeszcze warunkowi ZZrr‘=0, to 
możemy przy pomocy powyższego zbudować przestrzenny układ pięciu 
sił w równowadze.

323. Prz. 1. Pewna liczba sił przecina dwie kierownice w pun- 
sin 29

ktach A, B, C..., A', B', C ...; okazać, że niezmiennik J—  ------2Z%2. A B. A' B'.
2c

Prz. 2 Cztery siły działają na bokach skośnego czworoboku, 
obieganych w jedną stronę; pod względem wielkości siły te są odpo­
wiednio a, 3, Y, 8 razy większe od boków, na których działają, jak w par. 
103, prz. 5. Okazać, że niezmiennik I~ 2c sin 28(ay— ^)DD', gdzie D, D' 
oznaczają długości przekątni, 2c ich najkrótszą odległość i 23 kąt po-, 
między niemi.

Prz. 3. Pewna liczba sił przecina dwie kierownice i przez każdą 
z tych ostatnich przechodzi płaszczyzna równoległa do drugiej. Wy­
znaczyć współrzędne punktów, w których oś centralna przecina te 
płaszczyzny. Odpowiedź zawiera prz. 7 par. 278.

Prz. 4. Pięć sił w równowadze przecina dwie kierownice w pun­
ktach ABCDE i A'B'0'D'E', a wielkości tych sił są odpowiednio a.AA’, 
^.BBr... Dowieść, że (1) suma współczynników a., 3... jest równa zeru, 
i (2) że
1 CD. BE DB.CE I _ 1 DE. CA EC.DA I
a | C'D'.B'E' D'B'.C'E' | 8 D'E'. CA' E'C'.D'A' F...................

(Coli. Ex., 1892.)
Prz. 5. Dowieść, że siła, działająca na AA', jest zerem, jeżeli sto­

sunki anharmoniczne punktów BCDE i B'C'D'E' są równe. Jest to 
znana właściwość jakiejkolwiek czwórki tworzących hiperboloidy, 
przeciętych dwiema siecznemi.

Prz, 6. Momenty układu sił są równe zeru (1) względem trzech 
prostych, (2) względem czterech, (3) względem pięciu; okazać, że w przy­
padku (1) osią centralną jest jedna z tworzących hiperboloidy koncy- 
klicznej, w przypadku (2) oś centralna przecina pewną prostą określo­
ną pod kątem prostym, a w przypadku (3) jest określona.

(Math. Tripos, 1888.)
(1) Zastępujemy układ przez dwie siły sprzężone, z których 

jedna przecina trzy dane proste; w takim razie i druga będzie je prze­
cinała, a więc te siły są tworzącemi hiperboloidy. Twierdzenie pier­
wsze wynika odrazu z prz. 6 par. 317.

(2) Jedną z sił sprzężonych obieramy na prostej, przecinającej 
wszystkie cztery proste dane, jak w par. 320; w takim razie i druga 
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przetnie te proste, a więc położenie tych dwóch sił w przestrzeni jes 
zupełnie określone. Według par. 285 oś centralna przecina ich wspólną 
prostopadłą pod kątem prostym.

(3) Z pięciu prostych danych tworzymy dwie czwórki; otrzy­
mamy tym sposobem dwie proste, które oś centralna przecina pod 
kątami prostymi. Stąd wynika, że oś centralna jest określona.

324. Sześć sił. *)  Siły, działające na sześciu prostych, są 
iv równowadze. Dowieść, że gdy dane jest pięć tych prostych oraz 
jeden punkt szóstej^ to ta szósta musi leżeć w pewnej płaszczyźnie 
określonej.

*) Twierdzenie, że miejscem geometrycznem szóstej siły jest 
płaszczyzna, zawdzięczamy Moebiusowi {Lehrbuch der Statik, 1837), ale 
nie podał on konstrukcyi tej płaszczyzny. Uczynił to Sylvester w roz­
prawie „Sur fiiwolution des lignes droites dans 1’espace, consideres com- 
me des axes de rotation“. (Comptes Rendus, 1861). Podał on szereg twier­
dzeń, dotyczących położenia względnego piątej i szóstej prostej; on 
również wprowadził nazwy „inwolucya" i „płaszczyzna biegunowa". 
W drugiej rozprawie, umieszczonej w tym samym tomie, Sylvester wy­
prowadza kryteryum inwolucyi sześciu prostych w postaci wyznacznika, 
który podaj emy w par. 327, i wspomina przy tern, że Cayley znalazł inny 
wyznacznik, który może również określać inwolucyę; wyznacznik ten 
jest pierwiastkiem kwadratowym wyznacznika Sylvestra. Dowód podał 
Spottiswoode, Comptes Rendus, 1868. Por. także „Theory of determi- 
nantsu Scotta. Badania analityczne i statyczne, dotyczące inwolucyi, 
prowadził Cayley w pracy „On the six coordinates of a lineu, Cam­
bridge Transactions 1867. Rozszerzenie wyznacznika z par. 327 do sze­
ściu skrętników znajdujemy w „Theory of Screws^, 1876, Sir R. Balia.

Niech będzie siła P, dana zapomocą sześciu współrzędnych 
PI, Pm, Pn Pk, P^, Py (par. 260), i jakiś punkt {fghj na jej 
linii działania. W takim razie

k=^gn-hm, ^ = hl — fn, v — fm — gl.
Przypuśćmy, że każda z sześciu sił P1...P. jest dana w ten 
sam sposób, możemy przeto uważać (lm,n,X1MV1), (l2m2...)... 
za współrzędne ich linii działania.

Siły te są w równowadze, a zatem muszą czynić zadość 
sześciu równaniom równowagi, a więc będzie

ŁPI= 0, lPm = 0, ^Pn^O- ŁPX= 0, EP[.=0, EPy=0.
Z tych sześciu równań wynika, że wogóle każda z sił 

P1 ... Pe powinna być zerem, ale gdy wyrugujemy stosunki tych 
sił, to otrzymamy równanie wyznacznikowe, wyrażające waru-
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nek, pod którym siły mogą być skończone. Wyznacznik posiada 
sześć wierszy, z których każdy składa się z sześciu współrzę­
dnych jednej z sześciu prostych danych.

I, m, n, 91n1-hm, h,1-fin, t\mi-9xh =0
12 m2 • . •

Przypuśćmy, że pięć z tych prostych jest danych, a szó­
sta ma przechodzić przez dany punkt (f 96 he). Niech x, y, z 
oznaczają współrzędne bieżące szóstej prostej. Gdy napiszemy 
w ostatnim wierszu zamiast f, 96, he różnice x—f, y— 9, z— h6, 
to powyższe równanie wyznacznikowe zamieni się na równanie 
miejsca geometrycznego szóstej prostej. Będzie to oczywiście 
równanie pierwszego stopnia, a zatem miejscem geometrycznem 
szóstej prostej jest płaszczyzna.

325. Jeżeli sześć prostych posiada takie położenie, że może . 
na nich działać sześć sił w równowadze, to mówimy, że te sześć 
prostych jest iv iniuolucyi. Gdy mamy dane pięć prostych i punkt 
O, leżący na szóstej, to płaszczyzna, stanowiąca miejsce geome­
tryczne szóstej, zowie się płaszczyzną biegunową punktu 0 wzglę­
dem pięciu prostych danych.

Jeżeli pięć prostych ma takie położenie, że mogą na nich 
działać siły, pozostające w równowadze, to są one w inwolucyi 
z każdą szóstą prostą, a siła, działająca na tej szóstej, jest ze­
rem. Wyrażamy to krótko, mówiąc, że te pięć prostych jest 
w inwolucyi.

Jeżeli proste są w inwolucyi, to każdą siłę, działającą na 
jednej z nich, można zastąpić przez składowe skończone, dzia­
łające na prostych pozostałych, jeżeli tylko te pozostałe nie są 
same w inwolucyi.

326. Dajmy na to, że każda z sześciu prostych jest siedli­
skiem skrętnika o danej stromości; pragniemy znaleźć warunki ró­
wnowagi.

Niech P będzie siłą jednego ze skrętników, p stromością, 
a (tmnh^^ współrzędnemi osi. Biorąc rzuty na osi i mo­
menty względem osi, otrzymamy

1PI = O IPm^O ^Pn = Q
ZP(+ pl^h EP(p. +pm) = 0 EP(y +pn) = G.
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Gdy wyrugujemy siły, to wypadnie równanie wyznacznikowe 
o sześciu wierszach. Podajemy tylko wiersz pierwszy

lr m, n, ^t+pA ^i+PP^ ^^p^ _

Wiersze pozostałe różnią się od pierwszego jedynie co do wska- 
źników. Bali nazwał wyznacznik powyższy seksyanlem.

Przypisując stromościom p^.-p^ wartości zero lub nieskoń­
czoność, znajdziemy warunki równowagi m sił i n par (in + n = &), 
związanych z danemi sześcioma prostemi.

327. Biorąc momenty sześciu sił Pr... P z kolei wzglę­
dem każdej linii działania, otrzymamy sześć równań postaci

P,. o+ P,(12) + P,(13) + P,(14) + P,(15) + P,(16) - o, 

gdzie (12) oznacza moment wzajemny linii działania sił Pv i P2 
(par. 264). Gdy wyrugujemy sześć sił, to wypadnie sześciowier- 
szowy wyznacznik, przyrównany do zera. Wyraża on warunek 
niezbędny, aby sześć prostych było w inwolucyi.

Biorąc którekolwiek pięć z tych równań, wyznaczymy 
stosunki sześciu sił. Jeżeli 112 oznacza minor wyrazu pierwszego 
wiersza kolumny drugiej, to

P_P_P_
11 12 13

Ponieważ zaś 11122= 1312, możemy więc otrzymać związki bar­
dziej symetryczne

p 2 p 2 p 2
1 = - 2 _ 13 _
11 122 133

Taką postać nadał stosunkom sił Spottiswoode w Comptes Ren- 
dus, 1868.

328. Otrzymaliśmy więc dwie definicye inwolucyi w po­
staci dwóch wyznaczników; jeden z nich składa się ze współ­
rzędnych sześciu prostych, a drugi z ich momentów wzajemnych. 
Wyznaczniki te nie są jednak niezależne; jeden z nich jest 
kwadratem drugiego. Można to udowodnić, podnosząc pier­
wszy do kwadratu i uwzględniając wyrażenie momentu wza­
jemnego, podane w prz. 1 par. 267.
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329. Jeżeli proste A, B, C, D, E, F nie są w iniuohicyi, 
to każdą siłę R można rozłożyć na sześć składowych, działających 
na tych prostych.

Niech l' m n' X’ p.’ v‘ oznaczają współrzędne linii działania 
siły R, a Pt... P, jej sześć składowych na danych prostych, 
W myśl par. 324 mamy: ^Pl = Rlj..., LPk= RX ... Te sześć ró­
wnań dają sześć wartości rzeczywistych na P1... P. Warlości 
te będą skończone, jeżeli wyznacznik z par. 324 nie jest zerem, 
t. j. jeżeli dane proste nie są w inwolucyi.

Zauważymy, że P^ będzie żerem, jeżeli zerem jest wyzna­
cznik, który powstanie, gdy w pierwszym wierszu zastąpimy 
lr, m^... przez Ij m1..., czyli jeśli linia działania siły R jest 
w inwolucyi z BCDEF.

Prz. Okazać, że wogóle układ sił daje się tylko jednym sposo­
bem sprowadzić do sześciu sił, działających na sześciu prostych da­
nych. Gdy mamy dane linie działania pięciu z tych sił, a prócz tego, 
wielkość i punkt przyłożenia szóstej, to miejscem geometrycznem 
szóstej będzie prosty stożek kołowy. (Coli. Exam., 1887.)

330. Jeżeli momenty układa sił względem sześciu prostych, 
nie tworzących inwolucyi, są zerami, to siły się równoważą.

Jeżeli równowagi niema, to niech (T, Ii) będzie skrętni­
kiem równoważnym układu. Obieramy oś tego skrętnika za 
oś z i oznaczamy przez (31 @191), ($2(2 12)... kąty, które dane 
sześć prostych tworzy z osiami z, x, y, a przez (r, rj rj'), 
(r, r2‘ r,") ••• ich najkrótsze odległości odpowiednio od z, x, y.

Każda z danych sześciu prostych jest linią zerową ukła­
du, a zatem dla każdej zachodzi równanie Tcoss+ Rr sin $ =0. 
Mamy teraz dowieść, że dane sześć prostych tworzy inwolueyę, 
jeśli tym sześciu równaniom czynią zadość wartości T i R ró­
żne od zera.

Jeżeli można wyznaczyć sześć sił P...P, działających na 
danych sześciu prostych i pozostających w równowadze, to siły 
te muszą czynić zadość sześciu równaniom równowagi, a mia­
nowicie

ŁPcos$=0, ŁPcosę=0, ZPcost=0,
^Pr sin 3=0, 'LPr1 sin=0, ZP"sin$=0.

Równania te wymagają wogóle, aby każda z sił Pr... P była 
zerem, ale jeżeli jest spełnione sześć warunków, podanych po­



— 266 —

przednio, to równania ZPcos9=0 i ZPrsin $ =0 wynikają jedno 
z drugiego. Pozostaje więc tylko pięć koniecznych i dostate­
cznych warunków równowagi, którym siły P...P powinny czy­
nić zadość. Można zatem wyznaczyć stosunki sił, a z tego wy­
nika, że dane proste są w inwolucyi.

Jeżeli proste nie tworzą inwolucyi, to nie mogą wszy­
stkie być jednocześnie liniami zerowemi skrętnika, a zatem T 
i R muszą być zerami. Z rozważań tych widać, że sześć ró­
wnań momentów względem sześciu prostych nie wystarcza do za­
pewnienia równowagi, jeżeli te sześć prostych tworzy inwolucyę.

331. Moment układa sił względem każdej z m prostych, 
oraz sama rzatów na każdą z n prostych są zerami, i m + n = 6. 
Układ ten jest w równowadze, jeśli owe proste są takie, że siły, 
działające na m pierwszych, oraz pary, posiadające osie na n po­
zostałych, nie mogą się równoważyć, przyczem te siły i pary nie 
powinny być wszystkie zerami.

Założymy dla krótkości, że moment układu względem 
każdej z prostych 1. 2, 3, 4, oraz suma rzutów na każdą z pro­
stych 5 i 6 jest zerem. Jeżeli układ nie jest w równowadze, 
to niech (T, R) będzie skrętnikiem równoważnym. Obieramy, 
osie współrzędnych i oznaczenia tak samo, jak w par. 330. 
Mamy więc cztery równania momentów

T cos 31 + Rri sin 31 = 0, l1 cos $2 + Rr, sin 3 = 0........  
oraz dwa równania rzutów

R cos 3,=0, Rcos?, =0. 
Nazwijmy te sześć równań równaniami (A).

Dajmy na to, że na prostych 1... 4 działają siły Pt... P^, 
a na prostych 5, 6 leżą osie par M,, Mg. Jeżeli te siły i pary 
mają być w równowadze, to muszą istnieć równania

Pcos 8,+ .... + P, cos 9, = 0,
Pr, sin 8, + ... + Parąsin 8, + M,cos 8, + M^ cos 96 =0 

wraz z czterema innemi, które otrzymamy, pisząc tylko « i • 
zamiast 9. Nazwiemy te sześć równań równaniami (B).

Równania (B) wymagają wogóle, aby siły P... P, oraz pary 
M,, M. były zerami. Jeśli wszakże równaniom (A) mogą czy­
nić zadość wartości Ti R różne od zera, to równania (B) nie 
są niezależne. Jeżeli mianowicie pierwsze z nich pomnożymy 
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przez I, a drugie przez R i dodamy iloczyny, to suma będzie 
tożsamością na zasadzie (A). W tym razie równania (B) sprowa­
dzają się najwyżej do pięciu równań niezależnych, a zatem 
mogą im czynić zadość wartości P... P, oraz M^ M, różne 
od zera.

Tak więc, jeżeli sześć danych prostych posiada taką 
własność, że siły P^... P, oraz pary M5, M, nie mogą być w ró­
wnowadze, to wartości F i R, określone przez równania (A), 
muszą być zerami, a zatem dany układ sił jest w równowadze.

332. Jeżeli z sześciu prostych danych cztery zajmują osie 
par, a na dwóch pozostałych istnieją tylko pary równe zeru, 
albo siły równe zeru, to można tak dobrać cztery pierwsze 
pary, aby zachodziła równowaga (99). Z tego wynika, że m 
równań momentów, oraz n równań rzutów nie wystarcza do wy­
rażenia warunków równowagi, jeżeli m jest mniejsze od trzech.

333. Twierdzenie paragrafu 331 można także wyprowadzić 
z twierdzenia, dowiedzionego w par. 330.

Moment układu sił względem prostej, poprowadzonej w pła­
szczyźnie xz równolegle do osi x w odległości l od tej osi, w myśl 
par. 258 wyrazi się tak: L'=L+IY. Jeżeli l jest bardzo wielkie, to 
warunek L‘= 0 prowadzi do Y—0. Stąd wynika, że przyrównać do 
zera sumę rzutów sił na prostą y, jest to to samo, co przyrównać do 
zera moment tych sił względem prostej prostopadłej do y i bardzo od 
niej odległej. Prócz tego wiemy, że siła zero, działająca na takiej 
prostej nieskończenie odległej, jest równoważna parze, posiadającej 
oś na y.

Niech teraz będzie układ taki, że jego momenty względem m 
prostych oraz rzuty na n prostych są zerami, a m+n=6. Zamiast n 
prostych danych możemy wprowadzić n prostych nieskończenie od­
ległych i prostopadłych do tamtych, i powiemy wówczas, że momenty 
danego układu względem m prostych zwykłych i n nieskończenie 
odległych są zerami. Z tego wyniknie, że dany układ będzie w ró­
wnowadze, jeżeli nie można wyznaczyć m sił, działających na owych 
m prostych, i równoważących się z n parami, których osi leżą na n 
prostych danych.

334. Pogląd geometryczny. Sześć sił jest w równowadze. 
Jeżeli dane są linie działania pięciu, to szósta leży na linii zero­
wej dwóch sił określonych, działających na dwóch siecznych któ­
rejkolwiek czwórki z pięciu sił danych. Można z tego wyciągnąć 
nowy dowód twierdzenia Moebiusa.

Oznaczymy linie działania sił P^... P^ cyframi 1... 6, a mo­
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menty wzajemne tych prostych symbolami (12), (3 4)... (par. 
264). Niech prócz tego a, b oznaczają sieczne prostych 1, 2, 
3, 4 (par. 320). Skoro siły P... P są w równowadze, to 
moment sił P i P, względem każdej z tych siecznych jest ze­
rem, zatem

P,(5c) + P^ - 0, P^b} + P^b} - 0................. (1)

Rugując stosunek p‘, otrzymamy

(5b)(6a) - (5a)(6b) .. ...............*...................(2)

Tak więc szósta prosta jest położona w taki sposób, że moment 
dwóch sił, działających na a, b i proporcyonalnych do (pb), 
(—5a), względem niej jest zerem. Oznaczmy te siły przez Pa 
i Pb^ to będzie

Pa(Gd) + Pb(6b) = 0.

Zaznaczamy, że położenia siecznych a i b zależą od poło­
żenia prostych 1, 2, 3, 4, lecz są niezależne od wielkości odno­
śnych sił. Stosunek sił, które przykładamy na siecznych, za­
leży od położenia prostej 5 względem a i b. Pomiędzy siecz- 
nemi a, b i prostemi 5, 6 zachodzi związek taki, że pierwsze 
są liniami zerowemi sił P^ P^ a drugie sił Pa, Pb.

Z rozważań powyższych wynika wniosek następujący: gdy 
siły P... P się zmieniają, lecz wciąż zachodzi równowaga, to 
szósta prosta pozostaje wciąż linią zerową sił Fa i Pb. Jeżeli 
zatem jest dany jakiś punkt O na linii działania siły P, to 
siła ta musi leżeć w płaszczyźnie zerowej punktu O względem 
sił Pa i Pb.

335. Można również zastosować jakiekolwiek dwie siły sprzę­
żone, równoważne z Pa, Pb. Obieramy np. jakiekolwiek dwa punkty 
A i B\ ich płaszczyzny zerowe względem Pa, Pb przetną się według 
prostej CD sprzężonej z AB (par. 308). Każda prosta, przecinająca AB 
i CD, jest linią zerową, a więc możliwą linią działania siły szóstej.

336. Gdy szósta prosta obraca się około punktu O w jego pła­
szczyźnie biegunowej, to pozostaje ona wciąż w inwolucyi z prostemi 
1 ...5; podczas tego stosunki sił P... P6 się zmieniają.

Połączmy O z punktem, w którym sieczna a przecina płaszczy­
znę biegunową, i otrzymaną prostą obierzmy za linię działania siły 
szóstej. Będzie to linia zerowa sił, działających na siecznych, a zatem 
musi przecinać i sieczną b. Widzimy, że płaszczyzna biegunowa pun­
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ktu O przecina sieczne a i b w dwóch punktach, leżących na jednej pro­
stej z O.

Można wyznaczyć położenie tej prostej w przestrzeni, mając dane 
proste 1, 2, 3, 4 oraz punkt 0. Nazwijmy ją linią c punktu 0 wzglę­
dem czterech prostych 1, 2, 3, 4. Aby ją wyznaczyć budujemy naprzód 
sieczne a i b, a następnie prowadzimy przez każdą z nich i przez O 
płaszczyznę. Przecięcie tych płaszczyzn będzie linią c.

Gdybyśmy rozpoczęli konstrukcyę od wyznaczania siecznych a', 
b' innej czwórki prostych danych, np. 1, 2, 3, 5, to doszlibyśmy do 
tej samej płaszczyzny, t. j. do płaszczyzny biegunowej punktu O. Łą­
cząc dane proste w czwórki, możemy otrzymać pięć takich prostych, 
jak c, i wszystkie są położone w płaszczyźnie biegunowej punktu O; 
dwie z nich określają tę płaszczyznę.

Jeżeli dane są cztery proste 1, 2, 3, 4 i punkt O, a piąta prosta 
jest dowolna, to płaszczyzna biegunowa punktu 0 przechodzi przez 
prostą niezmienną c.

337. Jeżeli siły P ... P są w równowadze, to moment sił P, P 
względem każdej z siecznych a, b jest zerem, a zatem w myśl par. 334

P,(5c)+P,(6c)=0, P,(5b)+P,(6b)=0. ........................(1).
Gdy szósta prosta zajmuje położenie c, to momenty szóstej siły wzglę­
dem siecznych a i b są zerami. Dajmy na to, że szósta prosta obró­
ciła się z tego położenia w płaszczyźnie zerowej punktu 0 o kąt 0. 
Aby teraz wyznaczyć momenty szóstej siły, rozkładamy ją na dwie 
składowe w kierunku prostej c oraz w kierunku prostej d, poprowa­
dzonej w płaszczyźnie biegunowej prostopadle do c. Momenty pier­
wszej są zerami, a momenty drugiej będą P6sinJ(da) i P sin ^(db). 
Z każdego z równań (1) wynika, że stosunek P5:P6jest proporcyonalny 
do sin^, a więc jest największy, gdy szósta prosta jest proslopadba do c.

Zakładaliśmy, że momenty (5a) i (5b) nie są obydwa zerami, t. j. 
że pięć prostych danych nie posiada kierownic czyli dwóch siecznych 
wspólnych (par. 320). Gdy przypadek taki zachodzi, to proste 1, 2, 3, 
4, 5 są same w inwolucyi. W takim razie, jak wskazują równania (1), 
siła P jest zerem, jeżeli jej linia działania nie przecina tych samych 
kierownic.

338. Prz. 1. Jeżeli proste A, B, C, D, E, F są w inwolucyi, 
i siły, działające na E i F, nie są zerami, to płaszczyzny biegunowe 
punktu 0 względem A, B, C, D, E i względem A, B, G, D, F leżą 
razem.

Niech będzie w pierwszej płaszczyźnie biegunowej dowolna pro­
sta M, przechodząca przez 0. Siłę, działającą na tej prostej M, można 
zastąpić przez pięć sił, działających na A, B, C, D, E; lecz siłę, dzia­
łającą na E, można zastąpić przez siły, działające na A, B, C, D, F, 
zatem siła, działająca na M, jest równoważna siłom na A, B, C, D, F, 
i prosta M leży i w drugiej płaszczyźnie biegunowej. Stąd wynika 
przystawanie obydwóch płaszczyzn biegunowych.
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Prz. 2. Gdy dane są dwie sieczne a i b, to możemy zastosować 
układ współrzędnych z par. 321. Oznaczmy ich najkrótszą odległość 
przez 2c, kąt pomiędzy niemi przez 29, i niech 1" będzie równe zna- 

1—M
nemu stosunkowi (5a):(5b), t. j. stosunkowi momentów piątej siły 
względem siecznych a i b (334). Okazać, że równanie płaszczyzny bie­
gunowej punktu O będzie

x sin (h+pc)+y cos (h+c)—z(fsin 8+ug cos 8)==c(fsin8+gcos8).

Równanie to otrzymamy, podstawiając w (2) paragrafu 334 wyrażenia 
momentów we współrzędnych Kartezyusza, podane w par. 266.

Współrzędne czworościanome.
339. Okazać, że każdy układ sił można sprowadzić do sze­

ściu sił, działających na krawędziach dowolnego czworościanu 
o objętości skończonej.

Niech będzie czworościan ABCD, i przypuśćmy, że jedna 
z sił układu przecina ścianę ABC w punkcie D'-, rozkładamy 
ją na dwie składowe, z których jedna leży w płaszczyźnie 
ABC, a druga ma kierunek DD’. Pierwszą z nich w myśl par. 
120 zastępujemy przez trzy siły, działające na bokach trójkąta 
ABC, a drugą przenosimy do D i rozkładamy na trzy siły 
według krawędzi, zbiegających się w D.

Za kierunki dodatnie na krawędziach obieramy AB, BC, CA, AD, 
BD, CD. Porządek liter jest tu taki, że siła dodatnia, działająca na je­
dnej krawędzi, usiłuje wywołać obrót około krawędzi przeciwległej 
w kierunku dodatnim (par. 97). Siły, działające na krawędziach, ozna­
czymy symbolami Fl2, F^i F3l, F14, F2, Fzl. Porządek wskaźników 
odpowiada tu kierunkom dodatnim sił. Gdy pragniemy mierzyć siły 
w kierunkach odwrotnych, to odwracamy porządek wskaźników; tym 
sposobem F2=-F21. Stosunek sił do długości odnośnych krawędzi 
będziemy oznaczali przez fi2 ..., a objętość czworościanu przez V.

Prz. 1. Okazać, że sześć prostych, stanowiących krawędzie czwo­
rościanu, nie mogą być w inwolucyi.

Jeżeli siły, działające na krawędziach, są w równowadze, to bio- 
rąc momenty względem krawędzi, dowiedziemy, że każda z tych sił 
jest zerem.

Prz. 2. Siła P działa na prostej, łączącej punkty Hi K w kie­
runku od H do K, a współrzędne czworościanowe tych punktów są 
(x, y, z, ii) i (x‘, y','z', u'). Rozkładamy tę siłę na sześć składowych 
według krawędzi czworościanu ABCD; okazać, że składowa, działająca 
na AB, wynosi



— 271 —

Aby to udowodnić przyrównywamy momenty sił F12 i P wzglę­
dem krawędzi CD, przyczem należy zastosować wyrażenie momentu, 
dane w prz. 2 par. 267.

Prz. 3. Dwie siły jednostkowe działają na prostych HK i LM 
w kierunkach od H do K i od L do M, a punkty H, K, L, M mają 
odpowiednio współrzędne czworościanowe (x, y, z, u), (x‘...), (a, 3, Y, 8), 
(a'...). Okazać, że moment jednej z sił względem linii działania drugiej

6 PA 
w kierunku dodatnim obrotu wynosi-------- —, gdzie

• HK.MN
X y z u

A x‘ y' z' u' 
a 3 r a 
a' 8‘ r‘ z’

Porządek wierszy odpowiada tu kierunkom, w których działają siły 
na HK i LM, a porządek kolumn kierunkom dodatnim na krawędziach. 
Wynika to z par. 266. Warto jeszcze zauważyć, że wyrażenie to jest 
niezmiennikiem I dwóch sił jednostkowych.

Prz. 4. Punkt ma współrzędne czworościanowe (a, 3, Y, 8); ró­
wnanie jego płaszczyzny zerowej względem sześciu sił F12 ... jest

A 2 z u
Y a

J u +fu 
8 a

+f21 X u +fai 
a a

J z+fa 
8 r

+f34Z X

Y a
X J 
a B

a równanie płaszczyzny zerowej wierzchołka D będzie f23 x+fs J+f2z=0. 
Współrzędne powierzchniowe punktu zerowego płaszczyzny ABC są 
proporcyonalne do fia, fa, f^.

Prz. 5. Okazać, że niezmiennik 1 sześciu sił wyraża się lak

= 6 VCizfaa+lzaf4—fai fa).
Prz. 6. Okazać, że jeżeli sześć sił posiada jedną wypadkową, to 

wypadkowa la przecina każdą ze ścian w punkcie zerowym tej ściany. 
Wyznaczyć prócz tego jej równanie, korzystając z prz. 4.



ROZDZIAŁ VIII.

STATYKA GRAFICZNA.

Teorya geometryczna figur odiurotnych.

340. Dwie figury płaskie i prostoliniowe zowią się bie­
gunowo odwrotnemi),  (1) jeżeli składają się z jednakowych 
liczb odcinków czyli krawędzi, i odpowiednie krawędzie są 
równoległe, i (2) jeżeli krawędzie jednej figury, zbiegające się 
w jednym punkcie węzłowym lub węźle, odpowiadają bokom 
drugiej, tworzącym wielobok zamknięty lub kratę.

*

*) Następująca notatka bibliograficzna nie będzie bez pożytku. 
Maxwell, On reciprocal figures and diagrams of forces, Phil. Mag. 1864; 
Edin. Trans, t. XXVI, 1870. Maxwell pierwszy podał teoryę kompletną, i od 
niego zaczerpnęliśmy trzy przykłady, podane w par. 347 i 349. Cremona, 
Le figurę reciproche netta statica grafica, 1872; istnieją przekłady francuski 
i angielski. Fleeming Jenkin, On the practical application of reciprocal 
figures to the calculation of strains on frameworks and sonie forms of 
roofs. (O zastosowaniu praktycznem figur odwrotnych do wyznaczania 
naprężeń w kratownicach i w niektórych konstrukcyach dachów.) Autor 
zaznacza, że jego metoda została odkryta niezależnie przez Taylora, 
rysownika praktyka. Rankine, Applied Mechanics, wydanie jedenaste, 
1885. Maurice Levy, Statique Graphiąue, wydanie drugie, 1886. Levy 
traktuje przedmiot bardzo obszernie w kilku tomach. Culmann, Die 
graphische Statik, Zurich, wydanie drugie, 1875. Major Ciarkę, Princi- 
ples of graphic statics, wydanie drugie, 1888. Graham, Graphic and ana- 
hjtic statics, wydanie drugie, 1887. Eddy, American Journal of Malhe- 
matics, tom I, 1878.

Gdy jedną z takich figur obrócimy o kąt prosty, to odpo­
wiednie krawędzie staną się prostopadłemi jedna do drugiej; 
w takiem położeniu figury zowią się także biegunowo odwro­
tnemi.

Figura może posiadać odwrotną tylko wtedy, gdy są speł­
nione następujące dwa warunki: (1) w każdym węźle zbiegają 
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się conajmniej trzy krawędzie, (2) figura daje się rozbić na 
kraty w taki sposób, że każda krawędź stanowi podstawę dwóch 
krat i tylko dwóch.

Krawędzie, które w jednej figurze zbiegają się w tym sa­
mym węźle, odpowiadają krawędziom, tworzącym w drugiej 
wielobok zamknięty. Lecz {wielobok zamknięty musi posia­
dać co najmniej trzy boki, a więc i w punkcie węzłowym muszą 
się schodzić co najmniej trzy krawędzie.

Można niekiedy tworzyć z krawędzi figury różne kombi- 
nacye, skutkiem czego powstają różne układy wieloboków, ale 
uważamy za kraty tylko te wieloboki, które odpowiadają wę­
złom figury odwrotnej. Mówimy, że figura została rozłożona 
na kraty. Bokowi pewnej kraty odpowiada w drugiej figurze 
krawędź, zakończona w węźle, który tej kracie odpowiada. 
Krawędź ma dwa końce, a więc jest rzeczą jasną, że zawszę 
dwie kraty, i tylko dwie, stykają się wzdłuż każdej krawędzi.

341. Twierdzenie Maxwella. Jeżeli boki figury płaskiej są rzu­
tami prostokątnymi krawędzi wielościanu zamkniętego, to figura taka 
posiada odwrotną, którą można otrzymać przy pomocy metody na- 
stępującej.

Przypuśćmy, że jeden z wielościanów jest dany. Tworzymy 
inny wielościan, biegunowo odwrotny do pierwszego względem para- 
boloidy x2+y2=2hz; znaczy to, że każda ściana jednego będzie pła­
szczyzną biegunową odpowiedniego wierzchołka drugiego.

Dowiedziemy, że rzuty prostokątne takich wielościanów na pła­
szczyznę xy są figurami odwrotnemi, których odpowiednie krawędzie 
są do siebie prostopadłe.

Weźmy jakąkolwiek krawędź jednego wielościanu. Stanowi ona 
prostą przecięcia dwóch ścian. W wielościanie drugim odpowiada jej 
krawędź, łącząca bieguny tamtych ścian. Weźmy pod uwagę krawę­
dzie jednego wielościanu, zbiegające się w wierzchołku A. Odpowie­
dnie krawędzie drugiego wielościanu leżą w płaszczyźnie biegunowej 
punktu A. Tak więc każdemu wierzchołkowi jednego wielościanu od­
powiada ściana drugiego, i ściana ta posiada tyle boków, ile krawędzi 
zbiega się w owym wierzchołku.

Wypada teraz udowodnić, że rzut każdej krawędzi jednego wie­
lościanu jest prostopadły do rzutu odpowiedniej krawędzi drugiego. 
W tym celu utwórzmy równania dwóch ścian jednego wielościanu, 
stanowiących płaszczyzny biegunowe wierzchołków (4M%) i (§‘‘(‘) 
drugiego. Wypadnie

h(z+^=x^+y^, h(z+6)=yt‘+yn‘.
Rugując z, otrzymamy równanie rzutu krawędzi wielościanu pier- 

Statyka. 18.
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wszego, a mianowicie h(‘—(‘)=x(§—6)+y(—’). Równanie rzutu kra­
wędzi drugiego wielościanu, czyli krawędzi, łączącej obrane wierz­
chołki, będzie (y—)(6—6)—(x-4)(—‘)=0. Dwa te rzuty tworzą 
oczywiście kąt prosty.

Warto zaznaczyć jeszcze, że biegun płaszczyzny z—Ax+By-]-C 
posiada współrzędne ^=hA, -r\—hB, ^=—C.

Prz. Okazać, że gdy przesuniemy paraboloidę równolegle, to 
Maxwellowska figura odwrotna nie ulegnie zmianie, lecz tylko zmieni 
położenie, a gdy zmienimy latus rectum paraboloidy, to figura ta po­
zostanie podobną. Co stanie się z figurą odwrotną, gdy przesuniemy 
wierzchołki pierwszego wielościanu w taki sposób, że rzuty ich po­
zostaną bez zmiany?

342. Twierdzenie Cremony. Cremona podał inną konstrukcyę. 
Przypuśćmy, że dany jest jeden wielościan; tworzymy drugi, łącząc 
bieguny ścian pierwszego. Cremona nazywa biegunem danej pła­
szczyzny pewien punkt, położony w tej samej płaszczyźnie. Gdy wy­
znaczymy rzuty prostokątne krawędzi takich wielościanów, to powsta­
ną figury odwrotne, których odpowiednie krawędzie są równoległe.

Niech płaszczyzną rzutów będzie płaszczyzna xij. W takim razie 
biegun Cremony daje się zdefiniować następującymi sposobami. Sla- 
lycznie biegunem płaszczyzny nazwiemy punkt zerowy tej płaszczyzny 
dla układu sił, którego skrętnik równoważny leży na osi z, a stro- 
mość jest równa h. Analitycznie biegunem płaszczyzny z=Ax+By + C 
jest punkt i,~ — hB, ^\=hA, ^=C (par. 302). Geometrycznie-, przypuśćmy, 
że płaszczyzna dana przecina oś z w punkcie G i tworzy z tą osią kąt«. 
W takim razie biegun O leży na prostej CO, poprowadzonej w danej 
płaszczyźnie prostopadle do osi z, przyczem CO—hcol^.

Konstrukcya Cremony daje się łatmo wyprowadzić z konstrukcyi 
Maxwella. Obróćmy odwrotną figurę Maxwella około osi z o 90°. 
Skutkiem tego współrzędne bieguna, stosowanego w jego konstruk­
cyi, przybiorą wartości następujące: ^= — hB, r{=hA, l=—G. Gdy 
jeszcze zmienimy znak współrzędnej (, to wypadną współrzędne bie­
guna z konstrukcyi Cremony. Skutkiem obrotu rzuty odpowiednich 
krawędzi wielościanów, które były prostopadłe, staną się równoległy­
mi, a zmieniając znak współrzędnej %, zastępujemy wielościan odwro­
tny przez jego obraz, odbity w płaszczyźnie xy, jak w źwierciadle. Ta 
ostatnia zmiana nie wywiera wpływu na rzuty wielościanu na pła­
szczyznę xy, a więc obydwie konstrukcyę prowadzą do tych samych 
figur odwrotnych; cała różnica polega na tera, że w jednym wypadku 
odpowiednie proste są do siebie prostopadłe, a w drugim równoległe.

343. Przykład figury odwrotnej. Fig. 94 składa się z 8 węzłów, 
18 krawędzi oraz 12 krat trójkątnych z punktami węzłowemi w O i O'. 
Sześcioboku, utworzonego przez krawędzie 1... 6, nie uznajemy za kratę, 
a zatem możemy uważać figurę, za rzut wielościanu, złożonego z dwóch 
piramid; piramidy te posiadają wspólną podstawę ABGDEF, a wierz­
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chołki 0 i O' leżą po tej samej stronie podstawy, lub po stronach 
odwrotnych. Z tego wynika, że figura ta posiada odwrotną.

Aby zbudować tę odwrotną, prowadzimy płaszczyzny biegunowe 
punktów 0 i 0'. Ich prosta przecięcia będzie miała w myśl twier­
dzenia Maxwella rzut prostopadły do rzutu prostej 00'. Na fig. 93 
rzut obrócono o 90°, skutkiem czego odpowiednie proste stały się ró- 
wnoległemi, i rzut prostej LM.N... jest równoległy do rzutu 00'. 
W O i O1 zbiega się po sześć krawędzi, a więc w płaszczyznach bie­

gunowych tych wierzchołków otrzymamy sześcioboki 1...6, 1'...6'. 
W każdym z sześciu wierzchołków pozostałych zbiegają się cztery kra­
wędzie, a płaszczyzny biegunowe dadzą nam sześć krat czworokątnych; 
krawędzie 11‘, 22', 33'... figury 93 idą równolegle do krawędzi 1,2,3... 
figury 94.

Krawędzie 12, 1'2' leżą w płaszczyźnie jednego czworokąta oraz 
w płaszczyznach sześcioboków, a zatem krawędzie te się przetną i punkt 
przecięcia musi leżeć na prostej LMN...

Fig. 93 wyobraża wielościan odwrotny lub rzut jego. Widzimy, 
że figura odwrotna ma 8 krat, 12 węzłów i 18 krawędzi.

344. Gdy dana jest jakakolwiek figura płaska, to można wogóle 
znaleźć wielościan, dla którego figura ta jest rzutem; w tym celu po­
trzeba w wierzchołkach pobudować rzędne i połączyć ich końce. Na­
leży jednak przy tern uważać, aby utworzone ściany były płaskie. 
Jeżeli kraty figury są trójkątne, to warunek powyższy spełnia się sam 
przez się przy wszelkich długościach rzędnych, bo ściana, zawarta 
w trzech krawędziach, jest zawsze płaska. Jest również rzeczą oczy­
wistą, że jeżeli figura ma być rzutem wielościanu, to kraty powinny 
pokrywać jej pole dwa razy lub wogóle parzystą liczbę razy.

345. Aby zbudować figurę odwrotną prowadzimy proste równo­
ległe do krawędzi figury danej, uwzględniając przytem właściwości, 
które poznaliśmy dotychczas. Tak więc, aby zbudować fig. 93 obiera­
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my punkt L i prowadzimy przezeń proste LMN, L21, L2‘1‘ odpowie­
dnio równolegle do 00', OA, 0'A. Obieramy następnie na L1 punkt 2 
i prowadzimy przezeń 22', 2M równolegle do AB, OB; otrzymamy 
wówczas prostą 2‘M, która na fig. 93 jest równoległa do 0'B i będzie 
tak samo, jakkolwiek obierzemy punkt 2 na LI. Wynika to z teoryi 
podobieństwa figur (czyli jednokładności), albo z trójkątów współbie- 
gunowych*).  Na prostej 2M obieramy punkt 3 i prowadzimy 33', 3N, 
3‘N równolegle do BO, 00, 0'0. Tak samo postępujemy z węzłami 
4, 5, 6; wierzchołek 1 wypadnie jako przecięcie R6 i L2. Gdybyśmy 
obrali jeden z węzłów inaczej, gdybyśmy np. punkt 6 przysunęli bliżej 
do Q, to otrzymalibyśmy nowy trójkąt R11‘, którego wierzchołki leża­
łyby na prostych LM, L2, L2', a boki R1, Rl' byłyby równoległe do 
ich kierunków poprzednich. Z własności trójkątów współbiegunowych 
wynika, że i trzeci bok 11' pozostałby równoległym do poprzedniego 
kierunku.

*) Autor nazywa współbiegunowymi (co-polar) dwa trójkąty 
ArB^i i A2B2O2, których pary wierzchołków odpowiednich leżą na 
trzech prostych a, b, c, wychodzących z jednego punktu. Według 
twierdzenia Desargues’a punkty przecięcia odpowiednich boków leżą 
na jednej prostej. (Przyp. tłom.)

346. Właściwości mechaniczne figur odwrotnych. Wy­
obraźmy sobie kratownicę i przypuśćmy, że na każdej sztabie 
działają dwie siły równe i odwrotne, przyłożone w końcach. 
Jeżeli wielkości tych sił są proporcyonalne do odpowiednich 
krawędzi figury odwrotnej, to siły w każdym punkcie węzło­
wym kratownicy są w równowadze.

Twierdzenie to jest bezpośredniem następstwem tej oko­
liczności, że sztaby, zbiegające się w tym samym węźle krato­
wnicy, są równoległe do boków wielokąta zamkniętego na fi­
gurze odwrotnej.

Przypuśćmy dla przykładu, że fig. 93 wyobraża kratownicę z 18 
sztab, połączonych swobodnie w węzłach, i dajmy na to, że jedna ze 
sztab się kurczy, skutkiem czego cała kratownica jest w stanie naprę- 
żenią. Wyznaczymy naprężenie każdej sztaby, mierząc długości kra­
wędzi odpowiednich figury odwrotnej. Obacz także par. 354.

347. Gdy węzeł kratownicy jest w równowadze pod dzia­
łaniem sił, które w tym węźle się schodzą, to można wykreślić 
odpowiedni wielobok sił. Gdy wszystkie węzły są w równowa­
dze, to otrzymamy tyle wieloboków, ile jest węzłów. Jeżeli 
można wykreślić figurę odwrotną, to wieloboki te dadzą się 
tak dopasować jeden do drugiego, że każdej sztabie kratownicy 
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będzie odpowiadała tylko jedna krawędź kompletnego wielo- 
boku sił. W razie przeciwnym, jeżeli warunki paragrafu 340 
nie są spełnione, a zatem figura odwrotna jest niemożliwa, to 
wieloboki cząstkowe nie dopasują się całkowicie. Skutkiem 
tego jednej sile będą odpowiadały równe i równoległe odcinki, 
położone w różnych częściach figury. Swoją drogą pewna licz- 
ba wieloboków cząstkowych może się dopasować, bo w pe­
wnych razach część kratownicy może stanowić rzut jakiegoś 
wielościanu zamkniętego. Dyagramat sił, jakkolwiek niedo­
skonały, może jednak być użyteczny przy wyznaczaniu na­
prężeń.

Fig. 95. Fig. 96.

Dla przykładu rozważmy kratownicę, wyobrażoną na fig. 95. 
Uważajmy, że niektóre pary sztab, a mianowicie F, G; L, M;... nie są 
połączone w punktach skrzyżowania i nie wywierają na siebie wza­
jemnie reakcyi. Jeżeli tutaj jedna sztaba się skurczy, to naprężenia 
innych będą wyznaczalne, chociaż nie będzie można wykreślić figury 
odwrotnej. Sztaba N jest krawędzią czterech krat, a mianowicie NFH, 
NGI, NJL i NKM, gdyby więc istniała figura odwrotna, to krawędź, 
odpowiadająca sztabie N, miałaby cztery końce. Możemy jednak zbu­
dować dyagramat, wyobrażony na fig. 96; tutaj każdej z sił H, I, J, K 
odpowiadają dwa odcinki równoległe.

348. Siły zewnętrzne. Z kratownicy, wyobrażonej na fig. 93, 
usuńmy sześć sztab, tworzących sześciobok zewnętrzny, a także sztaby 
pośrednie 11', 22'.... Przyłóżmy następnie do wierzchołków 1... 6 sze- 
ścioboku pozostałego siły P... P6, zastępujące naprężenia w sztabach 
usuniętych. Tym sposobem powstanie kratownica, złożona jedynie ze 
sztab 12, 23,..., połączonych w wierzchołkach przegubami, i podlega­
jąca działaniu sił zewnętrznych P... P. Kratownica taka jest podobna 
do wieloboku sznurowego, który opisaliśmy w par. 140; różnica po­
lega na tem, że siły, przyłożone w wierzchołkach, nie koniecznie mają 
być pionowe. Znając te siły zewnętrzne, zmieniamy odpowiednio do 
ich wielkości fig. 94 (zob. par. 352). Można więc wyznaczyć graficznie 
naprężenia kratownicy i w tyra przypadku, gdy naprężenia te powstają 
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pod działaniem sił zewnętrznych, przyłożonych w węzłach, jeżeli tylko 
potrafimy dopełnić figurę w taki sposób, aby było można wykreślić 
figurę odwrotną. Takie dopełnianie figury nie jest jednak w zwyczaju, 
gdyż niema potrzeby wyznaczać naprężeń, które panowałyby w szta­
bach dodatkowych, gdyby sztaby te istniały rzeczywiście. Wykreśla 
się jedynie części figury niezbędne do wyznaczenia naprężeń w kra­
townicy danej.

349. Niekiedy bywa w użyciu inny sposób znaczenia figur, przy 
którym odwrotność ich występuje dobitniej. Proste, zbiegające się

Fig. 98.

w węźle jednej figury, odpowiadają prostym, tworzącym wielobok 
zamknięty w drugiej, dogodnie więc jest oznaczać tą samą literą wę­
zeł jednej figury oraz kratę drugiej. Tym sposobem krawędzie, wy­
chodzące z wierzchołka A figury 97 są równoległe do krawędzi, two­
rzących kratę A figury 98, a krawędzie kraty P.są równoległe do kra­
wędzi, zbiegających się w węźle P. Krawędź CD jednej figury, prze­
dzielająca kraty P i Q, jest równoległa do prostej PQ figury drugiej. 
Taka metoda znaczenia figur odwrotnych nazywa się systemem Bow’a. 
(On Ihe economics of construclion in relation to framed structare. Spon, 
1873.)

Fig. 99. Fig. 100.

Jeszcze inną metodę znaczenia figur odwrotnych stosował Max- 
well. Odpowiednie proste oznacza on tą samą literą z pewnym zna­
kiem odróżniającym. Na jednej figurze używał np. liter dużych, a na 
drugiej małych. Metodę tę ilustrują figury 99 i 100.

550. Jak wykreślić figurę odwrotną do figury prostoliniowej danej6? 
Daje się to najlepiej wyjaśnić na przykładzie. Na figurze 97, lub 98, 
wszystkie kraty są trójkątne; znajdziemy odwrotną, opisując na kra­
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tach koła. Proste, łączące środki tych kół, będą oczywiście prostopa­
dłe do odpowiednich boków figury danej. Gdy zbudujemy w ten spo­
sób jedną figurę odwrotną, to każda figura do niej podobna będzie 
także odwrotną.

W przypadkach bardziej złożonych koła takie nie dadzą się wy­
kreślić. Przypuśćmy, że mamy wykreślić figurę odwrotną do 99. Zwy­
kle bywa dogodnie zaczynać konstrukcyę od węzła, w którym scho­
dzą się trzy krawędzie, gdyż trójkąt, odpowiadający temu węzłowi da 
nam trzy krawędzie figury odwrotnej. Prowadząc proste a, b, c ró­
wnoległe do A, B, C, otrzymamy trójkąt, odpowiadający węzłowi, 
z którego wychodzą krawędzie A, B, C. Przez punkt przecięcia b i c 
prowadzimy równoległą e do E, gdyż E tworzy trójkąt z B i C. Pro­
wadzimy również d równolegle do D przez przecięcie a, b. Proste 
D, E, F, G- tworzą wielobok, a zatem otrzymamy fig, prowadząc ró­
wnoległe do F i Gr przez punkt przecięcia prostych e, d. Również pro­
ste A, C, K, L, H tworzą wielobok zamknięty, a więc proste k, l, h 
przejdą przez przecięcie a, c. Prostą i prowadzimy równolegle do I 
przez przecięcie h, f, a prostą j równolegle do J przez przecięcie g, k. 
Prosta, wykreślona na ostatku, powinna przejść przez przecięcie Z, i, 
bo inaczej nie mogłaby powstać figura odwrotna. Z twierdzenia, do­
wiedzionego w par. 341, wynika, że warunek ten jest spełniony.

Prz. 1. Wewnątrz trójkąta obrano dwa punkty i połączono je 
z wierzchołkami. Zbudować figurę odwrotną.

Prz. 2. Poprowadzono odcinki AA', BB', CC, które w przedłu­
żeniu przechodzą przez jeden punkt, oraz odcinki AB, BC, CA, A'B', 
B'C, CA'. Tym sposobem powstały trzy czworoboki i dwa trójkąty. 
Zbudować figurę odwrotną.

351. Niech W oznacza liczbę węzłów lub wierzchołków figury 
danej, B liczbę boków lub krawędzi, wreszcie K liczbę krat lub wie- 
loboków. W, B', K' mają oznaczać to samo w figurze odwrotnej. Z de- 
finicyi, podanej w par. 340, wynika, że B=B', W=K!, K= W’.

Otrzymujemy boki figury odwrotnej, prowadząc proste równo­
ległe do boków figury danej. Naprzód budujemy krawędź AB równo­
ległą do pewnej krawędzi figury danej, następnie prowadzimy przez 
A i B proste równoległe do odpowiednich krawędzi figury danej. Po­
stępując tak dalej, otrzymujemy każdy nowy wierzchołek jako prze­
cięcie dwóch nowych boków. Podobnie, jak w par. 151, obiór pier­
wszego boku AB określa dwa węzły; aby wyznaczyć pozostałe W’ —2 
wierzchołki, potrzeba jeszcze prócz AB przeprowadzić 2(W‘— 2) pro­
ste. Jeżeli zatem B'—2W' — 3, to wszystkie wierzchołki są określone, i fi­
gura jest sztywna. Pod tym warunkiem daje się zbudować dyagramat, 
w którym kierunki prostych są dane dowolnie. Jeżeli B' jest mniejsze 
od 2W‘—3 to postać figury jest nieokreślona lub odkształcalna. Jeżeli 
B’ przewyższa 2W’— 3, to konstrukcya jest możliwa tylko wtedy, gdy 
kierunki prostych czynią zadość B1—2 W‘+3 warunkom.

Figura 97 posiada cztery wierzchołki, cztery kraty trójkątne
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i sześć boków, a zatem na tej figurze W+K=B+2. Możemy z figury 
tej otrzymać inną, prowadząc nowe proste dopełniające. Gdy z jakie­
goś wierzchołka P poprowadzimy prostą do punktu Q, niezłączonego 
z figurą, to każda z liczb W i B powiększy się o jednostkę. Gdy na­
stępnie dopełnimy nowy wielobok, łącząc Q z innym wierzchołkiem 
P', to znowu liczby K i B wzrosną o jednostkę każda. Gdy podzielimy 
jedną z krat na dwie części, łącząc dwa punkty na jej bokach, to zno­
wu W+K i B wzrosną jednakowo. Z rozważań tych wynika, że jeżeli 
związek W+ K=B+2 jest ważny dla pewnej figury prostoliniowej, to 
jest on ważny i dla wszystkich innych figur, które z tamtej wypro­
wadzić się dają *).

*) Jest to ten sam związek, który zachodzi pomiędzy liczbami 
wierzchołków, ścian i krawędzi prostego wielościanu, i który odkrył 
Euler. W każdym wieloboku W=B, i K=l, a zatem W+K=B+1. Aby 
zbudować wielościan obieramy pewien wielobok i stopniowo łączymy 
z nim krawędziami inne wieloboki. Można łatwo sprawdzić, że, dołą­
czając nową ścianę, powiększamy w równej mierze W+K i B, a za­
tem związek W+K=B+1 jest słuszny dla wielościanu niezamknięlego. 
Gdy zamkniemy wielościan, dodając ścianę ostatnią, to K wzrośnie o je­
dnostkę, a W i B pozostaną bez zmiany. Stąd wynika, że w wielościa- 
nie zamkniętym W+K— B+2. W przypadku granicznym, gdy wszystkie 
wierzchołki wielościanu znajdą się w jednej płaszczyźnie, otrzymu­
jemy figurę płaską, w której do każdej krawędzi przylegają tylko dwie 
ściany. Jest rzeczą oczywistą, że i dla takiej figury związek Eulera 
musi być ważny.

Rozważając obydwie figury, t. j. daną i odwrotną, otrzymujemy 
związki następujące:

B=B', W=K', K^W, W+K=B+2, W'+K'=B'+2.
Jeżeli figura dana jest taka, że W—K, to B=2W— 2 oraz B'—2 W — 2. 
W przypadku takim w każdej figurze liczba wierzchołków jest równa 
liczbie krat, i każda z figur ma o jedną krawędź więcej, niż wystar­
czałoby do usztywnienia. Istnieje dla każdej pewien warunek geome­
tryczny, któremu powinny podlegać krawędzie; inaczej żadna z figur 
nie będzie możliwa.

Jeżeli W<K, jak w par. 343, to B>2W-2 i B'<2W'-2; figura 
odwrotna, przy założeniu takiem, jest nieokreślona. Jeżeli W>K, to 
B<2W— 2 i B‘> 2 W‘—2; w tym przypadku nie można określić figury 

odwrotnej, jeżeli nie jest spełnionych W— K+1 warunków.

Rozważania statyczne.

352. Dane są linie działania oraz wielkości sił P,P... P; 
mamy wyznaczyć wypadkową.
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Aby wyznaczyć wielkość i kierunek wypadkowej buduje­
my dyagramat lub wielobok sił, jak to już było wyjaśnione 
w par. 36. Kreślimy więc odcinki równoległe i proporcyo- 
nalne do sił danych, szeregując je jeden za drugim w dowol­
nym porządku. Wypadkową określi odcinek zamykający, wzięty 
w stosownym kierunku. Przypuśćmy, że odcinki 1 ... 5 odpowia­
dają siłom P...P5; w takim razie odcinek 6 wyrazi wypad­
kową co do wielkości i kierunku.

Badając ten wielobok, nie braliśmy pod uwagę punktów 
przyłożenia sił, a zatem wypadkowa nie jest określona całko­
wicie, i wypada uciec się do drugiego dyagramatu; ta figura 
druga zowie się wielobokiem sznurowym.

W dyagramacie sił obieramy dowolnie pewien punkt 0 
i prowadzimy zeń promienie wodzące do wierzchołków. Pro­
mienie te dzielą figurę na szereg trójkątów, służących do roz­
kładania sił P, P2 ... w stosownych kierunkach. Bok, łączący 
0 z którymkolwiek wierzchołkiem wieloboku, należy do dwóch 
trójkątów, a zatem reprezentuje dwie siły, działające w kierun­
kach odwrotnych; dlatego też na tych odcinkach nie porobiono 
strzałek. Ów dowolny punkt O zowie się biegunem wieloboku. 
Przecięcie boków 1 i 2 nazywamy węzłem 12, a odcinek, łą­
czący 0 z tym węzłem, promieniem biegunowym 12.

Możemy teraz przystąpić do budowy 
wego. Za punkt wyjścia obieramy dowolny punkt L. Przez ten 
punkt L prowadzimy prostą LA równolegle do promienia bie­
gunowego 61; przetnie ona prostą działania siły P1 w punkcie 
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A1. Następnie przez A, prowadzimy A,A, równolegle do pro­
mienia biegunowego 12 aż do przecięcia w A, z P2. Dalej wy­
kreślamy proste A,A3, A,A4, A,A; równolegle do promieni bie­
gunowych 23, 34, 45. W końcu prowadzimy A,A: równolegle 
do 56; przetnie ona prostą ArL w punkcie Ag, i punkt len 
jest szukanym punktem przyłożenia wypadkowej.

Aby to udowodnić zwróćmy uwagę, że siła P, przyłożona 
w A|, rozkłada się zapomocą jednego z trójkątów w wieloboku 
sił na dwie składowe, działające na prostych LA, i A2A1. Ta 
druga łącznie z P2 jest równoważna sile, działającej na A,A2; 
ta znowu łącznie z P3 jest równoważna sile, działającej na 
A,A3 i t. d. Znajdziemy ostatecznie, że siły P ... P^ sprowa­
dzają się do dwóch, z których jedna działa na LAt, a druga 
na A645, stąd zaś wynika, że te dwie proste muszą przecinać 
się na linii działania wypadkowej. Na figurze 101 odcinek P, 
poprowadzony równolegle do 6, wyraża siłę, równoważącą

Gdybyśmy wyszli nie z L, lecz z jakiegoś innego punktu, 
to otrzymalibyśmy inny wielobok sznurowy; boki jego byłyby 
równoległe do boków A^.-.A^. Wykreślając dwa wieloboki 
sznurowe, możemy otrzymać, gdzie to jest pożądane, dwa pun­
kty linii działania wypadkowej.

Jeżeli w wieloboku sił obierzemy za biegun jakiś punkt 
O’, różny od O, lecz zachowamy poprzedni punkt wyjścia L 
wieloboku sznurowego, to boki nowego wieloboku sznurowego 
nie będą równoległe do boków ArA2... A&-, niektóre z tych no­
wych boków zaznaczono na rysunku liniami kropkowanemi. 
Ostatni punkt A będzie i teraz leżał na wypadkowej. Wynika 
stąd twierdzenie geometryczne, że dla wszelkich biegunów tego 
samego wieloboku sił miejscem geometrycznem punktu Ag jest li­
nia prosta.

353. Warunki równowagi. Z rozważań powyższych wy­
nika, że jeżeli tylko wielobok sił nie jest zamknięty, to dany 
układ sił posiada wypadkową; położenie jej możemy wyzna­
czyć, budując wielobok sznurowy.

Inaczej będzie, gdy wielobok sił jest zamknięty. Aby mo­
żna było skorzystać z fig. 101 i 102 przypuśćmy, że układ 
składa się z sił P... P. Obieramy znowu dowolny punkt L 
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i prowadzimy, jak poprzednio, prostą LAr równolegle do pro­
mienia biegunowego 61. Prowadząc dalej budowę wieloboku 
sznurowego, dojdziemy ostatecznie do punktu Ag, położonego 
na sile P, w tym przypadku danej. Do dokończenia budowy 
pozostaje jeszcze poprowadzić przez Ag prostą równoległą do 
tego samego promienia biegunowego 61, od którego rozpoczę­
liśmy. Ta ostatnia prosta albo pójdzie po prostej LA, którą 
wykreśliliśmy na samym początku, albo będzie do niej równo­
legła. Tym sposobem cały układ sił sprowadził się do dwóch 
sił równych i odwrotnych; jedna z nich działa na ArL^ druga 
na równoległej do niej przez A6.

Jeżeli te dwie proste leżą razem, to działające na nich 
siły, równe i odwrotne, się znoszą, i układ jest w równowadze. 
W tym przypadku wykreślony przez nas wielobok sznurowy (a więc 
i każdy inny wielobok sznurowy, jaki tylko daje się wykreślić), 
jest zamknięty.

Jeżeli owe dwie proste są równoległe, to układ sprowadza 
się do dwóch sił równych, równoległych i odwrotnych. W tym 
więc razie układ jest równoważny parze sił^ i wielobok sznurowy 
jest niezamknięty. Moment pary wypadkowej będzie równy ilo­
czynowi jednej z sił przez odległość pomiędzy niemi.

354. Przypuśćmy, że odcinki A,A,, A2A3..., łączące pun­
kty przyłożenia sił, wyobrażają sztaby, połączone przegubami 
w A,, A,... ; wiemy, że sztaby takie wywierają na przeguby 
siły, działające w ich własnych kierunkach (131). Figurę zbu­
dowano w taki sposób, że reakcye w każdym przegubie równo­
ważą działającą nań siłę zewnętrzną, a więc wszystkie sztaby 
razem tworzą kratownicę, której część każda jest w równowadze 
pod działaniem sił zewnętrznych; naprężenia w sztabach możemy 
wyznaczyć, mierząc odpowiednie odcinki w wieloboku sił.

Weżmy kilka sił, działających na następujące po sobie 
wierzchołki wieloboku sznurowego, np. P,, P5, P. Układ taki 
jest statycznie równoważny naprężeniom czyli reakcyom, które 
działają na bokach, wychodzących z wierzchołków skrajnych, 
w danym razie na A,A4, A,Ag. Stąd wynika, że boki muszą 
przecinać się na linii działania wypadkowej tak obranego 
układu. Tak więc gdy biegun O i punkt wyjścia L są nieokre­
ślone, to miejscem ,geometrycznem przecięcia dwóch odpowiednich 
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boków wielobokn sznurowego (np. A,A, i A,A£) jest linia prosta. 
W wielobokn sznurowym zamkniętym taka prosta stanowi linię 
działania wypadkowej każdego z dwóch układów sił, przedzie­
lonych przez obrane boki. Tak np. boki A3A, i A,A, przeci­
nają się na wypadkowej sił P4, P,, P lub P3, P2, P.

355. Fig. 101 nie może posiadać odwrotnej, gdyż odcinki, re­
prezentujące siły Pi... P, nie stanowią krawędzi żadnych krat; pomimo 
to jednak wielobok sił został zbudowany. Było to możliwe dlatego, 
że fig. 101 stanowi część innej figury bardziej kompletnej i posiadają­
cej odwrotną. Gdy dopełnimy figurę, budując drugi wielobok sznuro­
wy, odpowiadający innemu biegunowi O', to w myśl paragrafu 348 
cała figura stanie się rzutem wielościanu, a przeto będzie posiadała 
odwrotną. Znajdziemy, że wogóle figury, kreślone celem wyznaczania 
naprężeń kratownicy, są niekompletnemi figurami odwrotnemi. Wy­
kreśla się tę część, która w danem zagadnieniu posiada znaczenie 
istotne, i opuszcza się resztę. Teorya figur odwrotnych jest ważna 
pod tym względem, że pozwala badać związki pomiędzy różnymi ele­
mentami figury w drodze czysto geometrycznej.

356. Siły równoległe. Jeżeli siły są równoległe, to oby­
dwa wieloboki będą prostsze (par. 140). Dajmy na to, że od­
cinki Ao^, AA2, A,A3, A,A4 wyobrażają lekkie sztaby, połą­
czone przegubami A1, A,, A,, i w tych przegubach są zawie­
szone ciężary P, P2, Ps.

W tym razie wielobok sił sprowadza się do odcinka pro­
stej ab, podzielonego na części, wyobrażające siły P1, P2, P3. 
Odcinki Oa i Ob są równoległe do skrajnych sztab A,A1, A,A,; 
długości tych odcinków określają naprężenia sztab; również 
odcinki, łączące O z węzłami 12, 23 dają nam naprężenia 
w sztabach pośrednich.

Aby wyznaczyć wypadkową trzech danych sił P1, P2^ P^^ 
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obieramy w wieloboku sił dowolny biegun O i budujemy od­
powiedni wielobok sznurowy A,A,... A,. Skrajne boki A,A1 
i A4A3 przecinają się na linii działania wypadkowej. Wypad­
kowa ta jest pod względem wielkości równa sumie sił danych, 
a pod względem kierunku jest do nich równoległa.

357. Dany jest wielobok sił oraz punkt wyjścia L, a biegun wę­
druje na jakiejkolwiek prostej 00'. Dowieść (1), że każdy bok wieloboku 
sznurowego obraca się około punktu nieruchomego, i (2), że wszystkie te 
punkty nieruchome leżą na linii prostej, równoległej do 00'. Twierdze­
nie to wynika ze znanych własności biegunowych wielościanów od­
wrotnych Maxwella (343). Podajemy tu dowód statyczny.

Zbudujmy dwa wieloboki sznurowe, jeden odpowiadający bie­
gunowi 0, drugi biegunowi O' na fig. 101 i 102. Punkty przecięcia od­
powiednich boków oznaczymy przez L, M, N..., a (R61, R21) i (R‘61, 
R‘21) mają oznaczać reakcye, działające na tych bokach, które spoty­
kają się na linii działania siły P. Te dwa układy posiadają wspólną 
wypadkową Pi, a zatem siły R61, Rje, R21 i R‘12 są w równowadze; 
stąd wynika, że wypadkowa sił R61 i Rj6, przyłożonych w L, musi ró­
wnoważyć wypadkową sił R2r i Rj^^ przyłożonych w M, a więc te 
obydwie wypadkowe działają na prostej LM. W równoległoboku sił 
siłom R61 i R‘6i odpowiadają promienie biegunowe, poprowadzone z O 
i O' do wierzchołka 61, a wypadkowa tych sił musi być równoległa 
do 00'. W taki sam sposób dowiedziemy, że i prosta MN jest równo­
legła do 00', a zatem punkty L, M, N leżą na prostej.

(Levy, Statique Graphique).
Zbudujmy jeszcze trzeci wielobok sznurowy, odpowiadający trze­

ciemu biegunowi O"■> położonemu również na 00', wychodząc znowu 
z L. Ten nowy wielobok przetnie pierwszy, dajmy na to, w M', N'... 
Obydwie proste LMN... i LM'N'... są równoległe do 00'0", a zatem 
M' leży razem z M, N' z N i t. d. Widzimy, że istotnie punkty M, N... 
należą do wszystkich wieloboków sznurowych.

Wyznaczyć w danym wieloboku sił miejsce geometryczne bieguna 
O lak, aby odnośny wielobok sznurowy, wyszedłszy z danego punktu M, 
przeszedł przez inny punkt dany N. Wiemy, że szukanem miejscem 
geometrycznem będzie prosta, równoległa do MN; potrzeba wykreślić 
tę prostą.

Przypadek L Jeżeli dane punkty M, N leżą pomiędzy następują- 
cemi po sobie siłami (np. Plf Pj), to obieramy pierwszy bok A{A2 na 
prostej MN W takim razie biegun 0 musi leżeć na prostej, poprowa­
dzonej przez wierzchołek 12 danego wieloboku sił równolegle do AYA2 
(par. 352).

Przypadek II. Przypuśćmy teraz, że M leży pomiędzy siłami P 
i P2, a N pomiędzy dwiema innemi, np. Ps i Pą. Możemy usunąć 
przedzielającą siłę P2, zastępując ją dwiema siłami, przyłożonemi 
w M, N, i równoległemi do P2; oznaczymy te siły przez Q2, Qj (par.
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360). Podobnież zastąpimy inną przedzielającą siłę Pa siłami Q3, Q‘3, 
przyłożonemi w M, N, i równoległemi do P3. Do zmian tych przysto­
sowujemy wielobok sił, przyczem wypadnie tylko zmienić boki 2 i 3. 
Prowadzimy więc odcinki równoległe do Q2, Q3, Q2‘, Q3', poczynając 
od końcowego punktu siły 1 i kończąc, musowo, w początkowym pun­
kcie siły 4. Punkty M, N leżą teraz pomiędzy następującemi po sobie 
siłami Q3, Q2‘, a zatem, jak w przypadku poprzedzającym, miejscem 
geometrycznem bieguna 0 będzie prosta, przechodząca przez przecię­
cie tych sił w wieloboku sił i równoległa do MN.

(Levy, Statique Graphique.)
Mając dane siły, poprowadzić wielobok sznurowy przez, trzy dane 

punkty L, M, N.
Wyznaczamy naprzód miejsce geometryczne bieguna 0, gdy wie­

lobok sznurowy przechodzi przez L i M, a następnie miejsce geome­
tryczne dla punktów L i N. Punkt szukany leży na przecięciu.

Mając dane siły, zbudować wielobok sznurowy w taki sposób, aby 
jeden z boków był prostopadły do prostej danej.

Dajmy na to, że bok A,A2 mą być prostopadły do danej prostej; 
w takim razie promień biegunowy 12 musi być także prostopadły do 
tej prostej (par. 352). Tak więc biegun O będzie leżał na prostej, po­
prowadzonej przez wierzchołek 12 wieloboku sił prostopadle do pro­
stej danej.

Prz. Wypadkowa dwóch sił układu jest prostopadła do wypad­
kowej jednej z nich oraz trzeciej siły. Okazać, że można zbudować 
wielobok sznurowy, zawierający trzy kąty proste. (Coli. Ex., 1887.)

358. Z wieloboku sznurowego usuwamy pewną liczbę sił kolejnych, 
zastępując je innemi siłami statycznie równoważnemi. Okazać, że te boki, 
pomiędzy którymi zawierają się usuwane siły, pozostaną bez zmiany co 
do położenia i kierunku, lecz nie co do długości. Zastąpmy np. Pa i Ps 
ich wypadkową; w takim razie w wieloboku sił wypadnie zastąpić 
boki 4 i 5 odcinkiem, łączącym 34 z 56. Promienie biegunowe 34 i 56 
się nie zmieniają, a do nich są równoległe boki AJA, i A5A6, pomię­
dzy którymi leżały usunięte siły. Boki te przechodzą prócz tego przez 
nieporuszone punkty A3, Ag, a więc nie zmieniają ani położenia, ani 
kierunku.

359. Dowieść, ze wogóle wielobok sznurowy nie istnieje, jeżeli siły 
nie leżą w jednej płaszczyźnie. Dajmy na to, że chodzi o wyznaczenie 
wypadkowej sił P, P2 ...Pn- Wielobok sznurowy Aj, A2:..An, o ile 
istnieje, musi czynić zadość dwóm warunkom: (1) ponieważ każda 
siła P daje się rozłożyć na dwie składowe, działające na przyległych 
bokach, przeto każda siła oraz jej dwa boki przyległe muszą leżeć 
w jednej płaszczyźnie; (2) składowe dwóch sił kolejnych na boku, łą­
czącym ich punkty przyłożenia, muszą być równe i odwrotne. Gdy 
siły leżą w jednej płaszczyźnie, to tem samem jest spełniony warunek 
pierwszy, i potrzeba jeszcze tylko spełnić warunek drugi. Ten drugi 
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warunek wystarcza całkowicie do określenia wszelkich możliwych 
wieloboków sznurowych.

Gdy w przypadku ogólnym obierzemy jeden bok, np. A1A2, to 
warunek pierwszy wogóle już określa wszystkie boki pozostałe. Aby 
to okazać poprowadźmy płaszczyznę przez A,A2 i P2; przetnie ona P3 
w As, a więc bok A2A3 jest określony, i tak obejdziemy cały wielo- 
bok. Z tego widać, że nie rozporządzamy tu dostateczną liczbą sta­
łych, aby czynić zadość drugiemu warunkowi, jakkolwiek w pewnych 
przypadkach szczególnych obydwa warunki mogą dać się spełnić je­
dnocześnie.

360. Prz. 1. Uzasadnić następującą konstrukcyę rozkładania da­
nej siły P2, przyłożonej w danym punkcie A2, na dwie siły, równole­
głe do P2 i przyłożone w danych punktach Alf A3. Wykreślamy od­
cinek ac, wyrażający P2 co do kierunku i wielkości w jakiejkolwiek 
skali danej. Następnie prowadzimy proste aO, cO odpowiednio równo­
ległe do A2A3, A|A2, i przez ich przecięcie O równoległą Ob do A|A3; 
przetnie ona ac w b. Odcinki ab i bc określają żądane składowe, przy­
łożone W A3 i dr

Inna konstrukcya. Dajmy na to, że linia działania siły P2 prze­
cina A|A; w punkcie N. W takim razie odcinki AN i NA; określają 
odpowiednio składowe w A; i Ax w takiej samej skali, w jakiej A|A3 
określa daną siłę P2.

Prz. 2. Dowieść, że istnieje tylko jeden rozkład siły P na trzy 
składowe, działające na trzech danych prostych, położonych z tą siłą 
w jednej płaszczyźnie. Uzasadnić prócz tego konstrukcyę następującą. 
Dajmy na to, że linia działania siły P przecina dane proste BC, CA, 
AB odpowiednio w punktach L, M, N. Aby wyznaczyć składową S, 
działającą na AB, wyrażamy siłę P pod względem wielkości i kie­
runku odcinkiem Np; prowadzimy następnie równoległą ps do CN aż 
do przecięcia s z AB. Odcinek Ns określa szukaną składową S. (prz. 2 
par. 120).

Oznaczmy szukane składowe przez Q, R, S. Suma ich momen­
tów względem C musi być równa momentowi siły P, a zatem mo­
ment składowej S względem C jest równy momentowi P. Pola trój­
kątów CNp i CNs są równe, bo prosta ps jest równoległa do CN, 
a więc momenty Ns i p względem C są równe, i odcinek Ns określa 
istotnie składową S.

Prz. 3. Rozłożyć graficznie daną parę na trzy siły składowe, 
działające na trzech prostych danych, położonych w płaszczyźnie ró­
wnoległej do płaszczyzny pary. Uzasadnić przytem konstrukcyę nastę­
pującą. Przesuwamy parę w taki sposób, aby jedna z jej sił przeszła 
przez wierzchołek C danego trójkąta. Przypuśćmy, że druga siła prze­
tnie AB w punkcie N, i że wyraża ją odcinek Np-. Prowadzimy ps ró­
wnolegle do CN aż do przecięcia s z AB. Wówczas odcinek Ns określi 
składową, położoną na prostej AB.
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361. Lekka pozioma belka A,A; jest oparta w końcach A,, A,, 
a na niej wiszą ciężary W1, W2, W3, Wa, uczepione w punktach A,, A2, 
A,, A,. Chodzi o wyznaczenie graficzne reakcyi w punktach oparcia 
belki.

W tym razie wszystkie siły są równoległe i wielobok sił prze­
chodzi w odcinek ab. Odcinek ten dzielimy na cztery części, wyraża­
jące ciężary Wi ...Wa, gdy odcinki bc i ca mają określać reakcye R' 
i R w punktach A5 i Ao. Chodzi o wyznaczenie punktu c.

Obieramy dowolnie biegun O i wykreślamy promienie bieguno­
we, łączące punkt O z końcami odcinków, wyrażających siły. Wy­
szedłszy następnie z punktu Ao i prowadząc równoległe do promieni 
biegunowych, wykreślamy wielobok sznurowy A, B... B. Promień 
biegunowy Oc będzie równoległy do prostej B5A0, zamykającej wielo­
bok sznurowy. Tym sposobem wyznaczymy punkt c, a wraz z nim 
obydwie reakcye R i R'.

Jeżeli belka jest ciężka, to możemy ześrodkować jej ciężar 
w środku ciężkości; nie wpłynie to na reakcye R i R'. Reakcye te 
znajdziemy, jak poprzednio, uwzględniając przy wykreślaniu wielo- 
boku sznurowego ów ciężar dodatkowy.

362. Lekką belkę poziomą A,A,, opartą w końcach, obciążają 
w punktach A|... A, ciężary W1... Wą. Mamy wyznaczyć parę gnącą w ja­
kimś punkcie M (par. 145).

Wyznaczamy naprzód reakcye w punktach oparcia, a następnie 
dla wszystkich sześciu sił budujemy wielobok sznurowy, przecho­
dzący przez A, i A5. Dowiedziemy, że para gnąca w punkcie M wy­
nosi Hy, gdzie y oznacza rzędną wieloboku sznurowego w M, a H na­
prężenie poziome.

Niech AoCi ... C4A5 będzie wielobokiem sznurowym. Układ sztab, 
wyobrażonych przez odcinki A0Ci, CiC2— 0^, pozostaje w równowa­
dze pod działaniem ciężarów W..W, reakcyi pionowych R, R' i na­
prężenia poziomego H na A|A5 (par. 354). Weźmy momenty dla części
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A, ... P względem punktu P, stanowiącego koniec rzędnej w M. Wy- 
padnie, że Hy jest równe sumie momentów ręakcyi R oraz cięża­
rów W ..., położonych po jednej stronie P, a więc Hy jest momen­
tem gnącym belki w punkcie M (par. 143).

Aby wielobok sznurowy przeszedł przez punkty At i A5, potrzeba 
tylko obrać biegun O' na poziomej, przechodzącej przez c w wielo- 
boku sił; sam wielobok sznurowy wykreśla się tak samo, jak poprze­
dnio. Prosta cO idzie równolegle do A,B5, a zatem B5 wypadnie w A5, 
jeżeli O leży na cO'. Odcinek O'c określa oczywiście naprężenie po­
ziome.

Przypuśćmy, że O' wędruje wzdłuż prostej cO'; zmienia się przy- 
tem cały wielobok sznurowy, a więc zmienia się rzędna MP i naprę­
żenie poziome cO', ale pozostaje bez zmiany iloczyn, gdyż jest on ró­
wny momentowi gnącemu w M. Twierdzenie to daje się także udo­
wodnić bezpośrednio.

Jeżeli belka jest ciężka i jednorodna, to nie zmienimy momentu 
gnącego w M, zastępując ciężary części A0M, MA^ przez ich połowy, 
przyłożone odpowiednio w A,, M i M, A5 (par. 134). Jeżeli są potrze­
bne momenty gnące we wszystkich punktach At ... A^, to możemy za­
stąpić ciężar każdego odcinka przez dwie połówki, przyłożone w koń­
cach. Tym sposobem ten sam wielobok sznurowy może służyć do 
wyznaczenia wszystkich momentów.

363. Kratownice. Siły zewnętrzne są przyłożone do kra­
townicy w punktach węzłowych] wskazać sposób graficzny wyzna­
czania reakcyi, działających wzdłuż sztab.

Wyobraźmy sobie, że kratownica składa się z trzech trój­
kątów, jak to bywa często w żelaznych konstrukcyach dacho­
wych. Na węzły A1, A,, A3, A,, A, działają, dajmy na to, siły 
P,P, Pa, P, P, i cały układ pozostaje w równowadze.

Statyka. 19
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Gdyby te siły były równoległe, to trzy z nich możnaby uwa­
żać za ciężary, umieszczone w przegubach, przyczem Cała kon- 
strukcya byłaby oparta w końcach A, i A, .

Siły P... P5 są w równowadze, a zatem odcinki 1 ... 5, 
reprezentujące je w wieloboku sił, tworzą pięciobok zamknięty. 
Wypada teraz wykreślić odcinki, odpowiadające naprężeniom 
kratownicy.

Wyżej opisana kratownica nie posiada figury odwrotnej; 
przyjmiemy tymczasem, że można ją dopełnić zapomocą pię- 
cioboku ^...a^ (par. 355). W par. 365 rozważymy, jakie po­
winno być to dopełnienie *).

*) Jeżeli nie chcemy się powoływać na teoryę figur odwrotnych, 
to wypadnie uzasadnić konstrukcyę nieco inaczej. W niektórych wierz­
chołkach zbiega się więcej od trzech sił, skutkiem czego wykreślenie 
dyagramatu sił może nastręczać pewne trudności. Aby wykreślić od­
cinek, odpowiadający sztabie A|A5, zauważymy, że siły, działające na 
Ai, powinien reprezentować trójkąt, którego dwa boki są odpowiednio 
równoległe do P i A|A5, a siły w A; reprezentuje czworobok, którego 
dwa boki są równoległe do Ps i A{A5. Można wykonać konstrukcyę 
próbną, posługując się prawidłem, podanem w tekście. Pokaże się, że 
konstrukcya taka czyni zadość warunkom powyższym, z czego wyni­
knie, że założenie było słuszne (347).

Sztaba A|A, stanowi krawędź kraty czworokątnej A{A,a,a,. 
Czworobokowi temu odpowiadają na figurze odwrotnej cztery 
odcinki, wychodzące z jednego punktu, a zatem sztabie A|A, 
odpowiada prosta, przechodząca przez przecięcie kolejnych sił 
1, 5 i równoległa do A{A,. To samo dotyczy każdej innej szta­
by; każdej odpowiada na figurze odwrotnej linia prosta, prze­
chodząca przez przecięcie kolejnych sił, przyłożonych w koń­
cach. Przy pomocy tego prostego prawidła figury odwrotne 
dają się wykreślić bez trudności. Tak np. bokowi A1A, odpo­
wiada odcinek, równoległy do A|A2 i przechodzący przez punkt 
przecięcia kolejnych sił, oznaczonych cyframi 1 i 2. Na dya- 
gramacie sił odcinki te oznaczono wskaźnikami liter, stojących 
przy końcach odpowiednich sztab.

Wykreśliwszy trójkąt, reprezentujący siły w A1, przecho­
dzimy do najbliższego węzła A,. Siłom, działającym na ten 
węzeł, odpowiadał czworobok. W myśl powyższego prawidła 
prowadzimy przez przecięcie kolejnych sił 4 i 5 prostą 45, ró­
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wnoległą do A,As. Mamy już teraz trzy boki czworoboku, 
a mianowicie 5, 15 i 45. Dopełnimy go, prowadząc przez prze­
cięcie znanych prostych 12 i 15 prostą 25 równoległą do A,A;.

Przejdźmy do węzła A,. Przeprowadziwszy według pra­
widła prostą 34, będziemy mieli trzy boki odpowiedniego czwo­
roboku, a mianowicie 34, 4 i 45. Czwarty bok 24 przechodzi 
przez przecięcie już znanych prostych 45 i 25.

Węzłowi A, odpowiada trójkąt. Dwa jego boki, 3 i 34, są 
już wykreślone, bok trzeci przechodzi przez przecięcie znanych 
prostych 34 i 24 i przez przecięcie sił kolejnych 2 i 3. Bok 
ten powinien być równoległy do sztaby A,A3, co może być 
częściową próbą dokładności rysunku.

Wreszcie siłom, działającym na węzeł A,, powinien odpo­
wiadać pięciokąt. Zbadawszy dyagramat sił, znajdziemy, że wszy­
stkie boki tego pięciokąta, a mianowicie 2, 23, 24, 25, 12 są 
już wykreślone.

Aby wyznaczyć reakcye, działające wzdłuż sztab krato­
wnicy, potrzeba tylko jeszcze zmierzyć długości różnych odcin­
ków dyagramatu.

364. Na każdej sztabie kratownicy działają dwie reakcye 
równe i odwrotne, i dla tego też na odcinkach dyagramatu sił 
zazwyczaj nie stawia się grotów kierunkowych. Dogodnie jest 
natomiast odróżniać zapomocą stosownych znaków sztaby, po­
dlegające wyciąganiu, od sztab, podlegających ściskaniu. Pier­
wsze nazywamy ścięgnami, drugie rozporami.

Rozważmy raz jeszcze siły, działające w węźle A,. Są one 
równoległe do boków trójkąta 1, 12 i 15. Kierunek siły 1 jest 
znany, a kierunki dwóch pozostałych określa prawo trójkąta sił. 
Na węzeł A, siły te działają w kierunkach 15 i 21; stąd widać, 
że sztaba A,A2 podlega ściskaniu, jest to więc rozpora, a sztaba 
A|A, podlega wyciąganiu i jest ścięgnem. Możemy to zaznaczyć 
na rysunku, robiąc w A1, A, groty, zwrócone do Alt A,, oraz w Ao 
A; groty, odwrócone od At, Ay Inny sposób wskazał prof. 
R. H. Smith. Oznacza on ścięgna znakiem +, a rozpory zna­
kiem —. Znaki te można stawiać na każdym wieloboku.

365. Figura, którą wykreśliliśmy, wystarcza do wyznaczenia na­
prężeń, panujących w sztabach kratownicy, nie jest to jednak kom­
pletna figura odwrotna. Pragnąc ją dopełnić, musimy naprzód wy­
kreślić wielokąt a,... as w taki sposób, aby figura odwrotna stała się 
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możliwą. Statycznie wielokąt taki powinien być dla danych sił sznu­
rowym, bo inaczej siły w wierzchołkach a, ... a5 nie byłyby w równo­
wadze (par. 354). Geometrycznie wielobok powinien być taki, aby pięć 
czworoboków a,a,A|A2,... było rzutami płaskich ścian wielościanu. Mo­
żna ten wielościan zbudować, wystawiając rzędne w wierzchołkach.

Wykreślmy dla sił Pi ... Ps dwa wieloboki sznurowe ax ...a5 i by... b^, 
wiemy, że pięć przecięć a^, byb.^; aa,, baba;... leży na prostej LMN 
(par. 357). Rzuciwszy okiem na fig. 93, na której widzimy wieloboki 
sznurowe 1... 6 i 1'... 6', przekonamy się, że pięć czworoboków aa,b,ba,... 
mogą być rzutami ścian płaskich. Aby zbudować wielościan pozosta­
wiamy a, ... «5 na miejscu, a w punktach b, ... b5 wznosimy rzędne, 
proporcyonalne do odległości tych punktów od LMN. Boki A|A2,... 
mogą leżeć w płaszczyznach a,a,bba,..., a zatem pięć czworoboków 
a,a2A1A2, ... są również rzutami ścian płaskich, i można wyznaczyć rzę­
dne w 4i... A5.

Jeżeli obierzemy ax ... a^ za wielobok sznurowy sił P ... P, to na 
dyagramacie sił odpowiadają mu proste punktowane; wychodzą one 
z odpowiedniego bieguna O i biegną do punktów, w których przeci­
nają się siły. Linie te są praktycznie bez związku z resztą figury, 
i niema potrzeby wykreślać ani wieloboku sznurowego a^-.a^, ani 
odpowiednich prostych w wieloboku sił, chyba że pragniemy się upe­
wnić, czy siły P... Ps są w równowadze.

366. Metoda przekrojów. Opiszemy teraz wyznaczanie reakcyi 
zapomocą metody przekrojów. Przypuśćmy, że chodzi o wyznaczenie

Fig. 106.

reakcyi, działających według sztab A,A,, 
A2A5, AzA,. Oznaczmy te reakcye odpowie­
dnio przez Q, R, S.. Robimy przekrój kratowni­
cy przez wspomniane sztaby, i niechaj B, G, D 
będą punktami przecięcia. Usuńmy teraz 
wszystkie części kratownicy, położone po 
jednej stronie przekroju. Jeżeli reszta ma 
pozostać na miejscu, to wypadnie tylko 
przyłożyć w B, C, D siły Q, R, S, działające 
w kierunku sztab. Usuwamy w danym przy­

padku tę część kratownicy, która leży po prawej stronę przekroju, 
• jako bardziej skomplikowaną, i wyznaczamy siły Q, R, S z warunków ró­

wnowagi części pozostałej.
W naszym przykładzie tylko trzy sztaby zostały przecięte, mamy 

wyznaczyć tylko trzy siły, i zadanie jest określone. Według par. 360, 
prz. 2, każda siła daje się rozłożyć na trzy składowe, działające na 
trzech danych prostych, i rozkład ten można wykonać graficznie.

Równie łatwo można otrzymać szukane reakcye zapomocą zwy­
kłych metod statyki analitycznej. W par. 120 rozwiązaliśmy takie za­
danie, biorąc momenty względem punktów przecięcia danych prostych.

Jeżeli kratownica jest tak nieskomplikowana, jak figury rozwa­
żane dotychczas, to obydwie metody, t. j. metoda dyagramatu sił i me­
toda przekrojów, nadają się jednakowo. Wogóle jednak każda z nich 
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posiada właściwe sobie zalety. Pierwsza daje nam wszystkie reakcye 
na jednej figurze, ale gdy liczba sztab jest znaczna, to figura taka może 
być wielce złożona. Metoda przekrojów jest szczególnie dogodna, gdzie 
chodzi jedynie o trzy reakcye; możemy je wyznaczyć, nie kłopocząc 
się o pozostałe, jeżeli przekrój przechodzi tylko przez trzy odnośne 
sztaby, nie dotykając innych.

367. W tego rodzaju kratownicach każda sztaba pozostaje w ró­
wnowadze pod działaniem dwóch sił, przyłożonych w końcach, gdyż 
jej ciężaru własnego możemy nie brać w rachubę. Te dwie siły dzia­
łają zatem wzdłuż sztaby, i ta podlega wyciąganiu lub ściskaniu. Jest 
to okoliczność, posiadająca w pewnych razach ważne znaczenie, bo 
sztaba może znieść bez szkody pewną siłę rozciągającą lub ściskającą, 
a nie zniesie takiej samej siły, działającej ukośnie. Gdyby sztywność 
konstrukcyi osiągnięto zapomocą usztywnienia węzłów, to wytrzyma­
łość byłaby mniejsza.

W rzeczywistości niektóre siły mogą nie działać na węzły; tak 
np. własny ciężar każdej sztaby jest przyłożony w środku ciężkości. 
Wypadkową takich sił, działających na sztabę, wyznaczamy zapomocą 
zwykłych metod statyki; następnie rozkładamy tę wypadkową na dwie 
składowe równoległe, przyłożone w węzłach, pomiędzy którymi mie­
ści się sztaba.

Takie przekształcenie sił, działających na sztabę, nie wywrze 
wpływu na rozkład naprężeń w reszcie kratownicy. Gdy połączymy 
owe równoległe składowe z innemi siłami, działającemi w węzłach, 
to tern samem uwzględnimy całkowite działanie kratownicy na każdą 
sztabę, sama zaś sztaba przypuszczalnie nie wygnie się wyraźnie pod 
działaniem własnego ciężaru oraz innych sił, przyłożonych pomiędzy 
węzłami.

368. Naprężenia nieokreślone. Przypuśćmy, że siły P^, P2,...Pn 
są w równowadze, i niech będą dwa wieloboki sznurowe tego układu 
A ... An i A/... An'. Przypuśćmy dalej, że odpowiednie wierzchołki 
A^A'1; A2,A'2,... połączono sztabami, i że.obydwa wieloboki składają 
się ze sztab, przyczem sztaby wieloboku zewnętrznego podlegają wy­
ciąganiu, a sztaby wewnętrznego ściskaniu.
rowego wiadomo, że taka kratownica 
będzie w równowadze, i również jest 
rzeczą jasną, że naprężenia (w tym ra­
zie ściskanie) sztab poprzecznych A^/,... 
są odpowiednio równe siłom danym 
Pi, P2,-Pn- Tym sposobem zbudowa­
liśmy kratownicę, której sztaby są w sta­
nie naprężenia, chociaż nie działają siły 
zewnętrzne (par. 237). W myśl twierdze­
nia o wielokątach sznurowych, które po­
znaliśmy w par. 357, odpowiednie boki 
iv punktach, leżących na linii prostej.

Z teoryi wieloboku sznu­

Fig. 107.

tej kratownicy przecinają się
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Jeżeli dany układ składa się tylko z trzech sił, to wieloboki są 
trójkątami. Ponieważ siły P, P2, P3 są w równowadze, przeto proste 
A| A|‘, A2A2‘, A;A;’, łączące odpowiednie węzły, muszą zbiegać się 
w jednym punkcie. Trójkąty takie zowią się współbiegunowymi (lub 
trójkątami Desargues’a). Widzimy, że w trójkątach współbiegunowych 
mogą istnieć naprężenia nieokreślone.

Stąd można wyprowadzić twierdzenie Levye’go, które poznaliśmy 
w par. 238. Weźmiemy tylko sześć sił, gdyż na fig. 107 wykreślono 
sześciobok, i przypuśćmy, że (P, P), (P2, P), (Pa, P) są to trzy 
układy sił, równych, odwrotnych i pozostających w równowadze. 
Niech A| ... A, będzie jakimkolwiek wielobokiem sznurowym; drugi 
wielobok zbudujmy w taki sposób, aby wierzchołek A^ leżał w A4. 
i obierzmy biegun tak, aby wierzchołki A,', A,' wypadły odpowiednio 
w A5, A, (357). W takim razie drugi wielobok całkowicie przystanie 
do pierwszego i sztaby poprzeczne A| A4, A2A5, A3A; będą przekątnia­
mi sześcioboku.

Tym sposobem zbudowaliśmy ramę o parzystej liczbie boków; 
jej przekątnie i boki są w stanie naprężenia, pierwsze podlegają ści­
skaniu, a drugie wyciąganiu.

369. Linia ciśnień. Wyobraźmy sobie szereg ciał, pomiędzy 
któremi istnieją pewne połączenia, i które pozostają w równowadze 
pod działaniem pewnego układu sił. Przypadek taki wyobraża fig. 108,

na której widzimy cztery ciała, pozostające pod działaniem trzech sił 
P, Q, R, Przypuszczamy, że ciała te są symetryczne względem pew­
nej płaszczyzny, którą w danym razie jest płaszczyzna rysunku. Ciało 
pierwsze jest osadzone na nieruchomej zawiasie A i połączone prze­
gubem B z BCC'. Ciało drugie styka się z trzeciem CCD na płaskiej 
powierzchni CC, ciało trzecie łączy się przegubem D z czwartem, 

i wreszcie to ostatnie siedzi na nieruchomej zawiasie E.
Reakcya zawiasy A działa na pewnej prostej Ap, przecinającej 

linię działania siły P w punkcie p. Wypadkowa tych dwóch sił musi 
równoważyć reakcyę przegubu B, a więc musi przechodzić przez B. 
Reakcya w B przecina siłę Q w q, a wypadkowa ich musi równowa-
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żyć ciśnienie na CC. Z tego wynika, że ta wypadkowa przecina CC 
w pewnym punkcie M pod kątem prostym. Punkt M musi leżeć we­
wnątrz pola zetknięcia, i wypadkowa powinna ściskać powierzchnię CC. 
Ciśnienie to działa na trzecie ciało według prostej MD i przecina R 
w punkcie D. Wreszcie wypadkowa tych dwóch sił musi przecho­
dzić przez E.

Jest rzeczą oczywistą, że linia ApąDE jest wielobokiem sznuro­
wym sił P, Q, R. Jeżeli zatem mamy taki szereg ciał, podparty w pun­
ktach krańcowych, to do równowagi potrzeba i wystarcza, aby istniał 
wielobok sznurowy, przechodzący przez owe punkty oparcia oraz wszy­
stkie przeguby i przecinający powierzchnię ciśnienia pod kątem prostym. 
Ten szczególny wielobok sznurowy zowie się linią ciśnień.

370. Uczyńmy w wyobraźni jakiś przekrój xy, dzieląc cały układ 
na dwie części; pragniemy wyznaczyć działanie wypadkowe w tym 
przekroju.

Jest to wypadkowa sił, działających na wszystkie elementy po­
wierzchni przekroju, ale działanie jednej części układu na drugą po­
winno być takie, aby utrzymać tę drugą część w równowadze. Można 
przeto wyznaczyć działanie wypadkowe, opierając się na zasadzie 
ogólnej, że równoważy ono wszystkie siły zewnętrzne, działające na 
którąkolwiek z dwóch części układu (par. 143). Stąd wynika odrazu, 
że działanie wypadkowe w przekroju xy jest to wyżej wzmiankowana 
siła, działająca na prostej pq. To samo dotyczy każdego innego prze­
kroju, a zatem działanie wypadkowe w każdym przekroju jest to siła, 
działająca na odpowiednim boku linii ciśnień.

Gdy przekrój xy przesuwa się od końca A układu do końca E, 
to mogą nawinąć się pewne wątpliwości, który bok linii ciśnień na­
leży uważać za „odpowiedni“. Zdarza się to mianowicie wtedy, gdy 
przykrój mija punkt przyłożenia siły. Przypuśćmy dla przykładu, że 
siła P jest przyłożona w punkcie a. Jeżeli przekrój x'y' przechodzi 
po lewej stronie a, zresztą dowolnie blizko od tego punktu, to odpo­
wiednim bokiem jest Ap, ale jeżeli przekrój znajdzie się po prawej 
stronie, chociażby cokolwiek, to odpowiednim bokiem będzie pq. 
Jeżeli przekrój jest równoległy do siły P, to odpowiednim jest zawsze 
przecięty bok linii ciśnień; zatem w przypadku, gdy wszystkie siły są 
pionowe, dogodniej będzie rozważać działania w przekrojach piono­
wych, niż w przekrojach pochyłych.

Linia działania siły, wyrażającej działanie wypadkowe w prze­
kroju, może nie przecinać pola tego przekroju. Łatwo to zrozumieć, 
biorąc pod uwagę, że siła owa jest wypadkową wszystkich sił ele­
mentarnych, działających na różne elementy pola przekroju. Niektóre 
z tych sił elementarnych mogą być ciśnieniami, inne zaś ciągnieniami, 
a zatem wypadkowa może przechodzić na zewnątrz pola. Jeżeli wszy­
stkie siły elementarne są zwrócone w jedną stronę, jak np. w prze­
kroju CC, w którym jedno ciało ciśnie na drugie, to wypadkowa 
musi przechodzić w granicach przekroju.



296 —

371. Reakcye w przegubie, lub na powierzchni granicznej po­
między dwoma ciałami, dają się tak samo wyznaczyć i w tyra przy­
padku, gdy ciała są ciężkie. Uważamy, że ciężar każdego ciała jest 
przyłożony w środku ciężkości, i zaliczamy go do układu sił zewnę­
trznych, a reakcyą w pewnem zetknięciu będzie siła, działająca na 
odpowiednim boku wieloboku sznurowego.

Jeżeli jednak chodzi o działanie w jakimkolwiek przekroju, np. 
xy na fig. 108, to taki cząstkowy wielobok sznurowy jest niewystar­
czający. Musimy w tym razie uważać, że ciało BCC składa się z dwóch 
ciał odrębnych, przedzielonych płaszczyzną xy. Ciężar każdej z tych 
części zbieramy w jej własnym środku ciężkości i odpowiednio do 
tego budujemy wielobok sznurowy. Przypuśćmy, że Q jest ciężarem 
ciała BCC', a punkt 3 środkiem ciężkości. Usuwamy ten ciężar Q i za­
stępujemy go dwoma ciężarami, przyłożonymi w środkach ciężkości 
części Bxy oraz xyCC'. Wielobok sznurowy będzie teraz miał o jeden 
bok więcej, niż poprzednio, a mianowicie straci on węzeł, należący do 
siły Q, a zyska dwa nowe węzły, położone na liniach działania tych 
nowych ciężarów. Ale reakcya w B musi, jak dawniej, równoważyć 
te wszystkie siły zewnętrzne, których punkty przyłożenia leżą po le­
wej stronie przegubu B, a reakcya w M wciąż równoważy siły ze­
wnętrzne, położone w prawo od CC; z tego wynika, że boki pB i MD 
wieloboku sznurowego nie ulegną zmianie. Tak więc dwa nowe wierz­
chołki będą leżały na bokach Bq, qD, i nowy wielobok sznurowy bidzie 
wpisany w poprzedni.

Prowadźmy dalej działanie powyższe, t. j. dzielmy ciała układu 
na coraz więcej części. Liczba boków wieloboku sznurowego będzie 
wzrastała, ale każdy bok, przechodzący przez przecięcie istotne, t. j. 
przez zetknięcie dwóch ciał, zachowa położenie pierwotne. Ostatecz­
nie, gdy podzielimy ciała na elementy, to wielobok stanie się linią 
krzywą. Krzywa ta styka się z każdym wielobokiem cząstkowym w ka­
żdym przegubie i na każdej istotnej powierzchni granicznej.

Przykłady.

372. Prz. 1 Kratownica składa się z jedenastu jednakowych 
sztab ciężkich. Dziewięć z nich tworzy trzy równoboczne trójkąty 
ABC, BDE, DFG-, których podstawy AB, BD, DF łączą się przeguba­
mi na prostej poziomej. Dwie sztaby pozostałe łączą wierzchołki 
C, E, Gr. Cała konstrukcya jest podparta w dolnych końcach A, F, 
a w górnych węzłach C, E, G obciążają ją ciężary W,, w2, wu Zbu­
dować dyagramat sił, określający naprężenia sztab.

Prz. 2. Przęsło poziome składa się z czterech belek poziomych 
AB, BC, CD, DE o długości 5 stóp każda, z trzech sztab pionowych 
BB', CC, DD' po 3 stopy, ze sztab poziomych B'C, CD' i wreszcie 
ze sztab ukośnych AB’, B'C, CD', D'E. Na przęśle leży równomiernie 
rozłożony ciężar W; wyznaczyć wykreślilie ciągnienia i parcia w szta­
bach. (St John’s Coli., 1893.)
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Prz. 3. Kratownica płaska ABGDEFGi, położona w płaszczyźnie 
pionowej, składa się ze sztab, połączonych przegubami. Konstrukcya 
jej jest następująca. Proste ABGD i GFE są poziome; węzeł A leży 
pionowo nad G; ABFG oraz BGEF są kwadratami; sztaba CD jest ró­
wna CE, a usztywniające sztaby BG-, CF i DE tworzą przekątnie. Cała 
konstrukcya jest umocowana w węzłach A i G-, a ciężar jest zawie­
szony w D. Zbudować dyagramat, określający naprężenia wszystkich 
sztab; należy przyjmować przytem, że ciężar każdej sztaby jest rozło­
żony na dwie połowy, działające na końce, i że siła, podtrzymująca 
kratownicę w A, ma kierunek poziomy. Okazać, że naprężenia w szta­
bach G-F i BG, a także w FE i GD są równe, i rozpoznać, które szta­
by są rozporami a które ścięgnami. (Coli. Ex., 1894.)

Prz. 4. Przęsło dachowe ABGD w kształcie połowy sześciokąta 
foremnego opiera się o mur w punktach A i D; usztywniają je sztaby 
poprzeczne AC i BD. Wyznaczyć naprężenia w sztabach, które wywo­
łuje ciężar dachówek, ułożonych równomiernie. (St John’s Coli., 1892.)

Prz. 5. Kratownica składa się z sześciu lekkich prętów, połączo­
nych przegubami i tworzących sześciokąt foremny ABCDEF, i z lek­
kich prętów BF, OA, OC, OE, gdzie O oznacza środek sześciokąta. 
Pręty BF i OA nie są połączone w punkcie przecięcia. Kratownica ta 
jest zawieszona za węzeł A i dźwiga w węźle D ciężar W. Okazać 
zapomocą metody graficznej, że w rozporze BF panuje naprężenie 
Wv 3, i wyznaczyć naprężenia w innych sztabach. (Trin. Coli., 1895.)

Prz. 6. Kratownica w kształcie dwunastokąta foremnego składa 
się z ciężkich prętów, połączonych luźno, a każdy węzeł łączy się lek­
kim prętem z czopem, osadzonym w środku. Cała konstrukcya spo­
czywa na tym czopie w płaszczyźnie pionowej, przyczem jedna z prze­
kątni zajmuje położenie pionowe. Okazać, że naprężenia prętów są 
nieokreślone; założywszy następnie, że pręty poziome nie są naprężo­
ne, zbudować dyagramat sił i obliczyć naprężenia prętów pozostałych.

(Coli. Ex., 1893.)
Prz. 7. Sześć sił, których linie działania są znane, pozostają 

w równowadze. Pierwsza siła jest znana, a także znane są stosunki 
drugiej do trzeciej i czwartej do piątej. Wyznaczyć graficznie siły pod 
względem wielkości. (Math. Tripos, 1895.)

Prz. 8. Z wierzchołkami B i D romba ABGD, zrobionego ze 
sztab, są połączone równe sztaby OB i OD. Wszystkie połączenia są 
gładkie luźne, a na węzły O, A, C działają siły równoległe, nie na je­
dnej prostej. Zbudować wielobok sił i dowieść, że równowaga możli­
wa jest tylko w tym razie, gdy siły są równoległe do BD.

(Math. Tripos, 1891.)
Prz. 9. Cztery siły, działające na bokach czworokąta ABGD są 

proporcyonalne do tych boków. Zbudować wielobok sznurowy, któ­
rego jeden bok łączy środki boków AB i BG, przyczem parcie w nim 
powinien wyrazić odcinek CA w takiej samej skali, w jakiej boki 
czworokąta wyrażają siły. (St John’s Coli., 1893.)
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Prz. 10. Dane są linie działania n — 1 sił; dowieść, że można za­
wsze tak dobrać wielkości tych sił, aby układ, złożony z nich oraz 
z siły odwrotnej do ich wypadkowej, utrzymał w równowadze kra­
townicę, złożoną z n sztab, połączonych przegubami, i posiadającą 
kształt wieloboku o kątach równych, przyczem na każdy węzeł po­
winna działać jedna z owych sił. (St John’s Coli., 1890.)

Prz. 11. Każdy z czterech punktów A, B, C, D wywiera siły na 
pozostałe, i pod działaniem tych sił wszystkie punkty są w równowa­
dze. Udowodnić następującą konstrukcyę dyagramatu sił. W trójkąt 
ABC wpisujemy stożkową, której jedno ognisko znajduje się w D, 
i wyznaczamy drugie ognisko D'; prowadzimy następnie prostopadłe 
D'A', D'B', D' C do boków trójkąta ABC. W takim razie D'A'B'C' jest 
dyagramatem sił, którego każdy bok ma kierunek prostopadły do od­
nośnej siły. (Math. Tripos.)

Niech P oznacza punkt przecięcia prostych AD i B'C. Zauwa- 
żymy (1), że AD, AD' tworzą równe kąty ze stycznemi, poprowadzo- 
nemi z A, a zatem kąty PAC' i B'AD' są równe; (2) na D'B'C'A mo­
żna opisać koło, a więc kąty ACP i AD'B' są równe. Stąd wynika, 
że trójkąty PAC i B'AD' posiadają równe kąty, a zatem prosta AD 
jest prostopadła do B'C.

Prz. 12. Dziewięć lekkich prętów łączy się w końcach przegu­
bowo; sześć z nich tworzy obwód sześciokąta foremnego, a trzy po­
zostałe łączą przeciwległe wierzchołki. W każdym węźle jest umoco­
wany ciężar W, i cała rama wisi w płaszczyźnie pionowej na dwóch 
sznurach, uczepionych w przyległych wierzchołkach A, B. Bok AB 
ma położenie poziome, a sznury są dwusiecznemi zewnętrznemi ką­
tów sześcioboku. Wyznaczyć zapomocą dyagramatu naprężenia wszy­
stkich prętów. (Coli. Ex., 1887.)

Prz. 13. Punkty Pi Q są położone wewnątrz sześciokąta AB CDEF; 
punkt P łączy się z wierzchołkami A, B, O, D, a punkt Q z wierzchoł­
kami D, E, F, A. Zbudować figurę odwrotną.



ROZDZIAŁ IX.

ŚRODEK CIĘŻKOŚCI.

373. Środek sił równoległych. Dowiedliśmy w par. 80, 
że wypadkową dowolnej liczby sił równoległych P1, P2..., dzia­
łających na punkty A19 A,:.., złączone sztywno, jest siła 
równa ZP.

Wyobraźmy sobie, że ten sztywny układ punktów zmie­
nia jakkolwiek położenie w przestrzeni, lecz siły P1, P,...dzia- 
łają wciąż na te same punkty, zachowując stałą wielkość i stały 
kierunek w przestrzeni. Dowiedliśmy, że w takim razie linia 
działania wypadkowej przechodzi wciąż przez pewien punkt, 
zachowujący względem A15 A,... położenie niezmienne. Ten 
właśnie punkt uważamy zwykle za punkt przyłożenia wypad­
kowej i nazywamy środkiem sił równoległych. Główną właści­
wością środka sił równoległych jest jego niezmienne położenie 
w układzie punktów A,, A, ...

Jeżeli siły P1, P2... są ciężarami cząsteczek ciała, to śro­
dek tych sił zowie się środkiem ciężkości. Tak więc środek 
ciężkości jest to szczególny przypadek środka sił równoległych.

374. Definicya środka ciężkości. Uważajmy ciężary ro­
zmaitych cząsteczek ciała za układ sił równoległych. Przypu­
szczamy mianowicie, że na każdą cząsteczkę działa siła pionowa; 
nazywamy ją siłą ciążenia. Wypadkową tych wszystkich sił 
jest ciężar ciała. Z teoryi sił równoległych wnioskujemy, że 
w każdem ciele (lub w każdym sztywnym układzie ciał) istnieje 
pewien punkt niezmienny, przez który przechodzi linia działa­
nia ciężaru przy każdem położeniu ciała. Punkt ten nazywany 
środkiem ciężkości ).*

*) Pojęcie środka ciężkości zawdzięczamy Archimedesowi, który 
żył około r. 250 przed Chr. W dziele, którego tytuł łaciński brzmi
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Z definicyi powyższej wynika, że gdy podparty jest środek 
ciężkości, to ciało będzie w równowadze we wszelkich poło­
żeniach.

375. Ciało posiada tylko jeden środek ciężkości. Wynika to w spo­
sób oczywisty z par. 83; podajemy tu jeszcze dowód samoistny.

Przypuśćmy na chwilę, że istnieją dwa takie punkty A i B. Gdy 
będziemy obracali układ na wszelkie możliwe sposoby, to wypadkowa 
zachowa niezmienny kierunek w przestrzeni. Ustawmy ciało w taki 
sposób, aby prosta AB stała się prostopadłą do kierunku wypadkowej. 
Oczywiście linia działania tej siły nie może już teraz przechodzić 
jednocześnie przez A i przez B.

376. Niechaj (x, Y1 z^, (x, J2 z,)... oznaczają współ­
rzędne punktów przyłożenia sił równoległych P1, P^ - - w odnie­
sieniu do jakiegokolwiek układu prostokątnego lub ukośno- 
kątnego. W myśl par. 80 współrzędne środka tych sił będą

_ ZPa _ ^Pz
ETYP V=xp‘ Z = ^P'

Należy zwrócić uwagę na następującą ważną okoliczność. 
Jeżeli wszystkie siły zmienią się w tym samym stosunku, to 
i wielkość wypadkowej zmieni się w jednakowym stosunku, ale 
współrzędne punktu przyłożenia pozostaną bez zmiany.

377. Jeżeli dwie jakiekolwiek części danego ciała, posia­
dające jednakowe objętości, ważą toż samo, to mówimy, że ciało 
jest jednorodne, lub że gęstość jego jest jednostajna. W cia­
łach tego rodzaju ciężary objętości różnych są proporcyonalne 
do objętości, i ciężar objętości elementarnej do możemy mie­
rzyć tą objętością. Zatem na zasadzie paragrafu poprzedzają­
cego będzie

Zastąpiliśmy tu znak sumy całką, gdyż uważamy siły równoległe, 
o których była mowa, za ciężary elementarnych objętości ciała.

Równania powyższe straciły wszelkie ślady ciężaru, i mo­
żemy z tego względu nazwać punkt (x y z) środkiem objętości.

„De aequiponderantibusu, wyznaczył on środki ciężkości rownoległo- 
boku, trójkąta, zwykłego trapezu prostoliniowego, odcinka parabo­
licznego, trapezu parabolicznego i t. d.
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Jeżeli ciało nie jest jednorodne, to ciężary elementów nie 
są proporcyonalne do objętości. Ciężar elementu dv oznaczy­
my przez pdu^ gdzie p każdego elementu ciała jest inne. Jeżeli 
budowa ciała jest znana, to p można wyrazić w funkcyi współ­
rzędnych elementu. W takim razie będzie

_pdv.x fpdv. y fpdu . z 
fpdv ‘ J fpdu ‘ fpdv ■

W równaniach tych moglibyśmy zastąpić p przez xp, gdzie 
%* jest niezmienne dla wszystkich elementów ciała; potrzeba 
jedynie, aby pdv było proporcyonalne do ciężaru elementu dv.

Można definiować p jako granicę stosunku ciężaru małej 
objętości, zawierającej punkt (xyz\ do ciężaru takiej samej obję­
tości pewnej substancji, obranej za wzorzec.

Dla zwięzłości będziemy mówili o p jako o gęstości ciała. 
Jeżeli ciało jest jednorodne, to iloczyn z gęstości przez obję­
tość zowie się masą. W razie przeciwnym, jeżeli ciało jest nie­
jednorodne, pdv będzie masą objętości elementarnej dv^ a fpdv 
masą całego ciała. Gdy założymy dm = pdv, to równania po­
wyższe przybiorą postać taką:

_ Jdm . a sdm . y _ fdm . z
fdm ‘ 9 fdm ‘ 2 fdm

Jeżeli uważamy masę elementu za właściwość samoistną 
ciała, niezależną od ciężaru, to możemy nazywać wyżej okre­
ślony punkt środkiem masy.

378. Równania podobne do powyższych spotykamy nietylko 
tam, gdzie chodzi o siły równoległe; występują one i w innych zaga­
dnieniach. W takich razach wielkości, które oznaczaliśmy przez P 
lub m, posiadają jakieś znaczenia odmienne, i odpowiednio do tego 
punkt, określony przez współrzędne x, y, z, będzie miał inną nazwę, 
odpowiadającą biegowi rozumowań, które do tych równań doprowa­
dziły. Okoliczność ta komplikuje sprawę, ale ma tę dobrą stronę, że 
nazwa specyalna, użyta właściwie, wskazuje czytelnikowi na wła­
ściwość wspomnianego punktu, o którą w danym razie chodzi.

W rozważaniach poprzedzających otrzymaliśmy ów punkt, jako 
szczególny przypadek środka sił równoległych, a mianowicie ten przy­
padek, w którym siły pochodzą z ciążenia, słusznie więc będzie po­
sługiwać się w tym razie nazwą środek ciężkości. Dogodna jest także 
bezbarwna nazwa centroid. Prócz tego używa się często nazwa środek 
bezwładności; pozostaje ona w związku z pewną dynamiczną właści­
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wością ciał, której nie możemy roztrząsać w książce, poświęconej 
statyce.

379. W wielu przypadkach można wskazać środek cięż­
kości od razu. Tak więc środek ciężkości dwóch cząsteczek 
jednakowych leży w środku odcinka łączącego, środek ciężko­
ści jednorodnego pręta prostego i cienkiego leży w środku tego 
pręta. Wogóle, jeżeli ciało jest symetryczne względem punktu, 
to ten punkt jest środkiem ciężkości, jeżeli jest symetryczne 
względem osi, to środek ciężkości leży na tej osi i t. d.

380. Prawidło robocze. Mając wyznaczyć środek cięż­
kości ciała lub układu ciał, postępujemy, jak następuje. Dzie­
limy to ciało lub układ na części skończone co do wymiaru 
lub elementarne. W każdym razie części te powinny być takie, 
aby była znana masa każdej z nich oraz położenie jej środka 
ciężkości. Niech m,, m,... oznaczają masy części, a (x, Y1 ą), 
(x, y2 zj)... współrzędne ich środków ciężkości.

Ciężar każdej części jest wypadkową ciężarów cząsteczek, 
przyłożoną w środku ciężkości tej części (par. 82), możemy 
przeto uważać, że na całe ciało działa układ sił równoległych, 
przyłożonych w (x, Y1 zr\ (x, y2 z^)..., a pod względem wielko­
ści proporcyonalnych do ml, m2... Znajdziemy więc środek 
ciężkości przy pomocy wzorów

_ ^mx _ ^my _ 'Linz
"FEm‘ "5Em‘

381. Warto zaznaczyć, że we wzorach powyższych nie­
które masy mogą być ujemne. Może być np. ciało takie, że jego 
masa i środek ciężkości byłyby znane, gdyby wypełnić w niem 
pewną pustą przestrzeń. Uważamy ciało tego rodzaju za różnicę 
dwóch ciał. Jedno z nich wypełnia całkowitą objętość, włą­
czając w to i ową przestrzeń pustą, a na cząsteczki jego działa 
ciążenie w sposób zwykły; drugie ciało wypełnia tylko prze­
strzeń pustą, i na jego cząsteczki działają siły równe i od­
wrotne do sił ciążenia. Uwzględnimy takie odwrócenie siły 
ciążenia, uważając masę drugiego ciała za ujemną. W teoryi 
sił równoległych siły mogą mieć znaki dodatnie lub ujemne, 
a zatem można zastosować wzory powyższe do wyznaczenia 
środka ciężkości nowego układu.
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382. Prz. 1. Utworzono paletę malarską, wycinając kółko o pro­
mieniu b z tarczy okrągłej o promieniu a. Wyznaczyć odległość środ­
ka ciężkości palety od środka większego koła.

Niech 0 i C oznaczają odpowiednio środki dużego i małego koła, 
i niech będzie OC—c. Obieramy O za początek układu i OC za oś x. 
Masy kół są proporcyonalne do pól, zakładamy więc, że m^Ka2, m,= 
=-xb2 Drugą masę uważamy za ujemną, gdyż materyał został usu­
nięty. Środki ciężkości kół leżą w ich środkach, a zatem x^o i x^c.

Ema xa2. O—^b2. c b2c 
Będzie więc x=  =   =   Znak — wskazuje, żeSm Ta-—Tb- a^—b2 
środek ciężkości palety leży po stronie punktu O odwrotnej do C.

Prz. 2. Jeżeli środki ciężkości pewnej liczby ciał leżą na jednej 
prostej, to i środek ciężkości całego układu leży na tej prostej.

Obieramy tę prostą za oś x; w takim razie y i z każdego środka 
ciężkości są zerami, a zatem w myśl par. 380 [=0 i x=0.

Prz. 3. Dwie cząsteczki m, i m2 umieszczono w punktach A i B. 
Okazać, że ich środek ciężkości G dzieli odcinek AB w stosunku 
odwrotnym do mas (par. 53 prz. 1).

Prz. 4. Trzy cząsteczki leżą w wierzchołkach trójkąta i ciężary 
ich W, W2, w 3 zmieniają się, spełniając równanie lW,+mw,+nw,=0. 
Okazać, ze miejscem geometrycznem środka ciężkości jest linia prosta. 
Jakie będzie równanie powierzchniowe tej prostej (par. 53 prz. 2)?

Prz. 5. Cztery ciężary mieszczą się w czterech danych pun­
ktach przestrzeni. Znana jest suma dwóch z nich oraz suma dwóch 
pozostałych. Okazać, że środek ciężkości układu leży w pewnej pła­
szczyźnie niezmiennej. (Math. Tripos, 1869.)

Prz. 6. Woda leje się zwolna do cylindrycznego naczynia o sta­
łej grubości ścian i stałej gęstości. Okazać, że miejscem geometrycz­
nem środka ciężkości wody, naczynia i trzonka jest hiperbola.

(Math. Tripos, 1859.)
Prz. 7. Woda leje się zwolna do naczynia dowolnego kształtu, 

i w pewnej chwili środek ciężkości wody i naczynia zajął położenie 
możliwie najniższe; dowieść, że leżał on wówczas na powierzchni 
wody. (Math. Tripos, 1859.)

Prz. 8. W figurze Euklidesa, księga I, teor. 47 *),  uważamy obwo­
dy kwadratów za jednorodne linie fizyczne; dowieść że figura taka 
będzie w równowadze, gdy przeciwprostokątną ustawimy poziomo 
i podeprzemy jej środek. (Math. Tripos, 1860.)

*) Jest tu mowa o twierdzeniu Pitagorasa, a zatem wzmianko­
waną figurę stanowi trójkąt prostokątny, na bokach którego zbudowano 
kwadraty (Przyp. tłom.)

Gdy obierzemy przeciwprostokątną za oś x, a środek jej za po­
czątek, to wypadnie od razu, że x=0.
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383. Pole trójkąta. Wyznaczyć środek ciężkości jednorod­
nego pola trójkątnego ABC.

Podzielmy dane pole na paski elementarne prostemi ró- 
wnoległemi do boku BC i połączmy środek tego boku D z wierz-

Fig 109.

chołkiem A. Prosta AD prze- 
tnie prostą PQ, jedną z owych 
równoległych do BC, w pun­
kcie N. Z podobieństwa trój­
kątów wynika, że

PN.NQ^BD-DG.
Lecz BD = DC, a zatem N 
jest środkiem odcinka EQ. 

Widzimy, że środki wszystkich odcinków równoległych do BC 
leżą na AD.

Możemy uczynić każdy pasek dowolnie wązkim, a zatem 
środek ciężkości każdego z nich leży w środku geometrycznym 
(podobnie jak środek ciężkości cienkiego pręta (par. 379), czyli 
na prostej AD. Z tego wynika, że środek ciężkości całego trój­
kąta leży na AD (par. 382, prz. 2).

Dowiedziemy tak samo, że środek ciężkości trójkąta leży 
na prostej BE, łączącej środek boku AC z wierzchołkiem B, 
a więc w przecięciu G prostych BE i AD.

Punkty D i E są środkami boków CB i CA, a zatem trój­
kąt CED jest podobny do trójkąta CAB, odcinek zaś ED jest 
równoległy do boku AB i równy połowie tego boku. Z tego 
wynika, że trójkąty DEG i ABG są także podobne, i DG : GA = 
= ED :AB. Wypada, że odcinek DG jest równy połowie AG, 
a więc stanowi trzecią część odcinka AD.

384. Otrzymaliśmy dwa prawidła do wyznaczania środka 
ciężkości trójkąta jednorodnego.

(1 ) Prowadzimy dwie ośrodkowe czyli proste, łączące 
którekolwiek dwa wierzchołki ze środkami przeciwległych bo­
ków. Środek ciężkości leży w przecięciu.

(2 ) Prowadzimy jedną ośrodkową, np. AD. Środek cięż­
kości G jest położony na AD tak, że AG—^AD.

Nie będzie bez pożytku uwaga, że środek ciężkości trój­
kąta ma to samo położenie, co środek ciężkości trzech jedna­
kowych cząsteczek, umieszczonych w wierzchołkach.
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Oznaczmy masę jednej takiej cząsteczki przez m. Środkiem 
ciężkości cząsteczek, położonych w B i C będzie punkt D, 
a środek ciężkości wszystkich trzech jest to to samo, co środek 
ciężkości Im, położonych w D, oraz m w A; z tego wynika, że 
dzieli on AD w stosunku 1:2 (par. 382). Ten sam punkt jest 
środkiem ciężkości trójkąta.

Jeżeli masa każdej z tych cząsteczek wynosi jedną trzecią 
masy trójkąta, to ciężar wypadkowy wszystkich trzech jest ró­
wny ciężarowi trójkąta, i tylko co widzieliśmy, że dwie te siły 
mają wspólny punkt przyłożenia. Trzy takie cząsteczki są ró­
wnoważne trójkątowi, gdy chodzi o jakiekolwiek składowe cięża­
rów lab o ich momenty.

Gdy pragniemy zapomocą metody paragrafu 380 wyzna­
czyć środek ciężkości figury, złożonej z trójkątów, to możemy 
zastąpić każdy trójkąt trzema cząsteczkami równoważnemi; po­
łączona masa tych cząsteczek powinna być równa masie trój­
kąta. Stosując następnie do powstałego w ten sposób zbioru 
cząsteczek prawidło ogólne, znajdziemy środek ciężkości całej 
figury.

385. Prz. 1. Pole trójkąta posiada środek ciężkości w tym samym 
punkcie, co trzy jednakowe cząsteczki, położone w środkach boków.

Prz. 2. Na bokach trójkąta, obieganych w jedną stronę, odmie­
rzono od wierzchołków długości AP, BQ, CB, proporcyonalne do tych 
boków. Okazać, że środek ciężkości trzech jednakowych cząsteczek, 
umieszczonych w P, Q, R, leży w środku ciężkości trójkąta.

Prz. 3. Na bokach wieloboku odmierzono od wierzchołków 
w jedną stronę długości AP, BQ... proporcyonalne do tych boków. 
Okazać, że jednakowe cząsteczki, umieszczone w P, Q..., mają środek 
ciężkości w tern samem miejscu, co jednakowe cząsteczki, umieszczone 
w wierzchołkach wieloboku (par. 79). Wielobok może nie być płaski.

Prz. 4. Na bokach płaskiego wielokąta ABC... zbudowano podo­
bne trójkąty ABP, BCQ.... Dowieść, że środek ciężkości równych cię­
żarów, umieszczonych w P, Q ..., leży razem ze środkiem ciężkości ró­
wnych ciężarów, położonych w A, B ....

Prz. 5. Prostopadłe z wierzchołków A, B, C przecinają boki 
trójkąta w P, Q, R. Okazać, że środek ciężkości sześciu cząsteczek, 
odpowiednio proporcyonalnych do sin2A, sin 2B, sin2C, cos2^, cos2B, 
cos2C i położonych w A, B, C, P, Q, R, leży w środku ciężkości trój­
kąta PQR. (Math. Tripos, 1872.)

Prz. 6. Dany punkt G- leży wewnątrz czworościanu ABCD. Wy- 
znaczyć zapomocą konstrukcyi geometrycznej trójkąt, którego wierz­
chołki leżą na krawędziach DA, DB, DC, a środek ciężkości w G. Zna-

Statyka. 20
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leźć również położenie graniczne punktu G, przy którem jeszcze kon- 
strukcya jest możliwa.

386. Obwód trójkąta. Prz. 1. Trzy cienkie pręty a, b, c two­
rzą trójkąt ABC. Dowieść, że współrzędne powierzchniowe środka 
ciężkości H są proporcyonalne do b+c, c+a, a+b.

Prz. 2. Środek ciężkości obwodu trójkąta ABC jest środkiem 
koła, wpisanego w trójkąt DEF, gdzie I), E, F oznaczają środkowe 
punkty boków trójkąta ABC. (Statyka Locka.)

Prz. 3. H, G oznaczają odpowiednio środki ciężkości obwodu 
i pola trójkąta, I środek koła wpisanego. Dowieść, że H, G-, I leżą na 
jednej prostej, i że GH stanowi połowę IG. Udowodnić prócz tego 
podobieństwo trójkątów IGF i EGO, gdzie O jest środkiem koła opi­
sanego, a P punktem przecięcia wysokości.

Prz. 4. Boki wielokąta ważą jednakowo. Dowieść, że środek 
ciężkości obwodu leży razem ze środkiem ciężkości jednakowych czą­
steczek, umieszczonych w wierzchołkach (par. 385, prz. 3).

387. Pole czworokątne. Wyznaczyć środek ciężkości czwo­
rokątnego pola ABCD.

W myśl par. 384 zastępujemy trójkąt ADG trzema czą­
steczkami, umieszczonemi w A, D, C, z których każda posiada 
masę trzy razy mniejszą od masy trójkąta ADC. Zastąpimy ró­
wnież trójkąt ABC trzema masami, umieszczonemi w wierz­
chołkach i trzy razy mniejszemi od masy trójkąta. Tym spo-

M sobem w A i C znajdą się masy, wynoszące po , jeżeli M 

oznacza masę całego czworokąta.
Masy, umieszczone w B i D, oznaczmy przez mr i m2. 

MSuma ich wynosi także —, a stosunek jest równy stosunkowi 0

Fig. 110.

pól trójkątów ABC i ADC, czyli BE\ED. Aby otrzymać roz­
kład dogodniejszy, zastąpimy te dwie masy trzema innemi, 
. • i .M Mumieszczonemi w B, D, E, i wynoszącemi odpowiednio —, 9,
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M 
3:

M • , Suma tych mas zastępczych jest także równa 9, i łatwo 

się przekonać, że mają one ten sam środek ciężkości, co 
m. i m2. Mianowicie według par. 380 odległość ich środka 
ciężkości od E wynosi

_ _ Zma _ }M . BE-^M. DE+^M. 0
“=Im F JMT

Z drugiej zaś strony odległość od E środka ciężkości mas m1 
i m2 wypad nie

_ _ m^BE-m^DE _ BE2-DE2
m, + m, BE + DE ‘

czyli tożsamo, co poprzednio.
Środek ciężkości pola czworokąta ma to samo położenie, co 

środek ciężkości czterech jednakowych cząsteczek, umieszczonych 
w wierzchołkach, oraz piątej cząsteczki, umieszczonej na przecię­
ciu przekątni, o masie takiej samej lecz ujemnej.

Możemy prawidłu temu nadać postać analityczną. Niech 
(x1Y1), (x,y2)... oznaczają współrzędne wierzchołków i punktu 
przecięcia przekątni. W takim razie otrzymamy

i analogiczne wyrażenie dla y (Quaterly Journal of Mathematics, 
tom XI, 1871, str. 109).

Radzimy czytelnikowi posługiwać się tymi punktami ró­
wnoważnymi z dwóch względów: przedewszystkiem dla tego, 
że tą drogą dochodzimy od razu do wyrażeń analitycznych, 
a powtóre, że punkty te są używane w dynamice ciał szty­
wnych do wyznaczania momentów bezwładności oraz momen­
tów odśrodkowych (iloczynów bezwładności) czworokąta.

Moglibyśmy cztery cząsteczki w wierzchołkach zastąpić przez 
cztery takie same cząsteczki, umieszczone w środkach boków lub 
w innych położeniach równoważnych, opisanych w par. 385.

388. Prz. 1. Udowodnić następującą konstrukcyę geometryczną 
środka ciężkości pola czworokątnego. Na BD i AC obieramy punkty 
P, Q w taki sposób, aby QA, PB były odpowiednio równe EC, ED. 
Środek ciężkości czworoboku leży w środku ciężkości trójkąta EPQ. 

(Quaterly Journal of Mathein. t. VI, 1864.)
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Prz. 2. Przekątnia BD dzieli czworokąt na dwa trójkąty, któ­
rych środkami ciężkości są punkty M, N, i prosta MN przecina BD 
w punkcie I. Odmierzamy na większym odcinku NI długość NG-, ró- 
wną długości mniejszego odcinka MI. Okazać, że G jest środkiem 
ciężkości pola czworokąta. (Guldin.)

Prz. 3. W trapezie boki AB—a i CD—b są równoległe. Dowieść, 
że środek ciężkości G pola trapezu leży na prostej, łączącej środki 
M, N boków AB, GD; dowieść prócz tego, że MG-: GN=(a-\-2b): (2a + b). 

(Archimedes i Guldin.)
Należy zwrócić uwagę, że stosunek MG: GN nie zależy od wy­

sokości trapezu, lecz jedynie od długości boków równoległych.
(Poinsot.)

Prz. 4. Okazać, że środek ciężkości czworokąta AB CD leży razem 
ze środkiem ciężkości czterech cząsteczek, umieszczonych w wierzchoł­
kach i posiadających masy odpowiednio proporcyonalne do 3+Y+3, 
1+3+a, 8+a+3, 0+3+1, gdzie a, 3, y, 8 są odwrotnościami długości 
EA, EB, EG, ED, a E oznacza przecięcie przekątni. (Caius Coli., 1877.) 

Prz. 5. W pięciokącie ABGDE przekątnie CA i CE przecinają 
przekątnie EB i AD odpowiednio w punktach F i G. Dowieść, że
związki

3z—b + c+d —
f+g-a-e

1“n
(b-f)(d-g) 
(b — e^ęd—a)

określają rzędną z środka ciężkości pola pięciokąta; w równaniach 
tych a, b, c, d, e, f, g są rzędnemi punktów A, B, C, D, E, F, G w od­
niesieniu do jakiejkolwiek płaszczyzny xy.

389. Czworościan. Wyznaczyć środek ciężkości czworo­
ścianu ABCD.

Dzielimy czworościan na warstwy elementarne płaszczy­
znami równoległemi do jednej ze ścian. Niech jedną z tych 
płaszczyzn będzie abc, i niech E będzie środkiem krawędzi BC. 
Prosta DE dzieli na pół wszystkie odcinki takie, jak bc, ró­
wnoległe do B C, a prócz tego widać, że proste AE i ae są ró- 

2 
wnoległe. Gdy odmierzymy AF=— AE, to F będzie środkiem 

ciężkości podstawy ABC. Poprowadźmy prostą DF; przetnie 
ona ae w punkcie f. Z podobieństwa trójkątów wypadnie, że 

af;AF^Da:DA = ae;AE, zatem af=T9, z czego znów wynika, 

że f jest środkiem ciężkości trójkąta abc. Widzimy, że środki 
ciężkości wszystkich warstw elementarnych leżą na prostej DF, 
a więc na tejże prostej leży środek ciężkości całego czworo­
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ścianu. Środek ciężkości czworościanu leży na każdej prostej, łą­
czącej wierzchołek ze środkiem ciężkości przeciwległej ściany.

Niech K oznacza środek ciężkości ściany BOD. Proste
DF i AK leżą w płaszczyźnie DAE, 
a więc się przecinają, i punkt prze­
cięcia G jest środkiem ciężkości 
czworościanu.

Dowiedziemy podobnie, jak 
w analogicznem twierdzeniu o trój­
kącie, że odcinek FK jest równo­
legły do AD i równy ^AD, a z po­
dobieństwa trójkątów AGrD i KGrF 
wynika, że FGr=^^GD-, zatem DG =

Aby wyznaczyć środek ciężko­
ści czworościanu łączymy którykol­
wiek wierzchołek, np. D, ze środ­
kiem ciężkości F ściany przeciwle­
głej. Środek ciężkości G leży na DF, i DG = y)F.

Można określić środek ciężkości czworościanu zapomocą 
pewnych punktów równoważnych podobnie, jak to uczyniliśmy 
dla trójkąta. Środek ciężkości czworościanu jest tym samym pun­
ktem, co i środek ciężkości czterech jednakowych cząsteczek, umie­
szczonych w wierzchołkach. Dowód jest taki sam, jak dla trójkąta.

390. Piramida i stożek. Wyznaczyć środek ciężkości ob­
jętości piramidy, mającej płaską podstawę o bokach prostych.

Postępując podobnie, jak w przypadku poprzedzającym, 
dzielimy piramidę na warstwy elementarne płaszczyznami ró- 
wnoległemi do podstawy. Wszystkie te przecięcia są podobne 
do podstawy, a środek ciężkości każdej warstwy leży na pro­
stej, łączącej wierzchołek ze środkiem ciężkości podstawy; oczy­
wiście i środek ciężkości piramidy leży na tej samej prostej.

Rozkładamy następnie podstawę na trójkąty. Łącząc wierz­
chołki tych trójkątów z wierzchołkiem piramidy, podzielimy 
całą piramidę na czworościany, posiadające wspólny wierzcho­
łek. Środki ciężkości wszystkich czworościanów leżą w pła­
szczyźnie, równoległej do podstawy i położonej w odległości 2 
wspólnej wysokości od wierzchołka.
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Zestawiając wyniki powyższe, otrzymamy następujące pra­
widło do wyznaczania środków ciężkości piramid. Należy po­
łączyć wierzchołek V ze środkiem ciężkości F podstawy i odmie­
rzyć na VF od wierzchołka długość VG = IVF. Punkt G będzie 
środkiem ciężkości piramidy.

Jeżeli podstawa piramidy jest krzywoliniowa, to uważamy 
ją za granicę wieloboku. Wypada więc prawidło następujące. 
Aby wyznaczyć środek ciężkości stożka, łączymy wierzchołek V ze 
środkiem ciężkości F podstawy i odmierzamy na VF od wierz­
chołka VG = IVF. Punkt G będzie środkiem ciężkości stożka.

391. Prz. 1. Połowa kąta wierzchołkowego stożka wynosi 
1

arctan — 7; okazać, że stożek taki, umieszczony w kuli opisanej, po- 
V 2

zostanie w równowadze w każdem położeniu. (Math. Tripos, 1851.)
Prz. 2. Podstawa piramidy jest kwadratem, a ściany pozostałe 

są równymi trójkątami równoramiennymi. Dowieść, że piramida taka, 
umieszczona w kuli opisanej, pozostanie w równowadze w każdem 
położeniu, jeżeli cos kąta wierzchołkowego każdej ze ścian bocznych 

.2 .
(Math. Tripos, 1859.)wynosi —.

Prz. 3. Podstawy pnia trójkątnej piramidy ABC, A'B'C są ró­
wnoległe. Okazać, że środek ciężkości G leży na prostej, łączącej
,.. EG 1+2n+3n2 środki ciężkości E, E podstaw ABC, A'B C, i że — , 

EE' 4(1+n+n2)’
gdzie n oznacza stosunek któregokolwiek trójkąta A'B'C' do odpowie­
dniego boku trójkąta ABC. (Poinsot.)

Prz. 4. Pień piramidy trójkątnej ABCD posiada podstawy ABC 
i A'B'C't niekoniecznie równoległe. Wyznaczyć środek ciężkości.

Oznaczmy odległości punktów A, B, C, A', B', C' od D przez 
a, b, c, a', b', c' i uważajmy DA, DB, DC za ukośny układ współrzę­
dnych. W takim razie wypadnie

3(a2bc— a'2b'c') _ 3(ab2c — a'b'2c') _ 3(abc2—a'b'c'2)
^tabc — a'b'c') ’ 4(abc—a'b'c') ’ 4tabc — a'b'c')

Aby to udowodnić, uważamy pień za różnicę dwóch czworo­
ścianów, których objętości mają się do siebie jak abc:a'b'c'.

Prz. 5. Prosty stożek, którego kąt wierzchołkowy jest równy 
2a, przecięto płaszczyzną, nachyloną do osi pod kątem 3, i część, za­
wierającą wierzchołek, ustawiono na równi w taki sposób, że duża oś 
przekroju znalazła się na linii największego spadku. Równia jest do­
skonale chropowata, a stożek jest na skraju równowagi. Dowieść, że 
tan kąta nachylenia równi do poziomu posiada jedną z wartości 
4sin2a±sin2^ ...  (Math. Tripos, 1876.) 
cos2a—cos2^
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392. Ściany i krawędzie czworościanu. Prz. 1. Okazać, że 
środek ciężkości wszystkich krawędzi czworościanu leży tam, gdzie 
środek ciężkości czterech cząsteczek, umieszczonych w wierzchołkach; 
każda z tych cząsteczek waży tyle, co trzy krawędzie, zbiegające się 
w odnośnym wierzchołku. Prócz tego dowieść, że twierdzenie byłoby 
słuszne i wtedy, gdybyśmy zamiast krawędzi napisali ściany (par. 
79 i 86).

Prz. 2. Środek ciężkości czterech ścian czworościanu jest środ­
kiem kuli, wpisanej w czworościan, którego wierzchołki są środkami 
ciężkości ścian czworościanu pierwotnego.

Prz. 3. H oznacza środek ciężkości ścian czworościanu, G śro­
dek ciężkości objętości, a I środek kuli wpisanej. Dowieść, że punkty 
H, G, I leżą na prostej, i że odcinek HG jest równy jednej trzeciej GI.

Prz. 4. Odcinki, łączące środki przeciwległych krawędzi czwo­
rościanu, zowią się ośrodkowemi. Okazać, że ośrodkowe przechodzą 
przez środek ciężkości G .czworościanu, i każda dzieli się w nim 
na pół.

Umieszczamy jednakowe cząsteczki w wierzchołkach A, B, G, D. 
Środki ciężkości cząsteczek A, B i G, D leżą odpowiednio w środkach 
M, N krawędzi AB, GD. Zatem środek ciężkości wszystkich czterech 
leży w środku G odcinka MN.

Prz. 5. Wielościan jest opisany na kuli. Okazać, że środki cięż­
kości objętości G i powierzchni H oraz środek kuli 0 leżą na pro- 

3
stej, i że OG——OH. (Liouville‘s J., 1843.)

393. Czworościan równoramienny. Czworościan nazywamy ró­
wnoramiennym, jeżeli w nim każde dwie krawędzie przeciwległe są ró­
wne. Z definicyi tej wynika, że każde dwie ściany mają boki odpo­
wiednio równe. •

Prz. 1. Okazać, że pięć punktów następujących leży razem: (1) 
środek ciężkości objętości, (2) środek ciężkości sześciu krawędzi, (3) 
środek ciężkości czterech ścian, (4) środek kuli opisanej, (5) środek 
kuli wpisanej. Oznaczymy ten punkt przez G.

Prz. 2. Okazać, że ośrodkowe przechodzą przez punkt G, dzielą 
się w nim na pół i są prostopadłe do odnośnych krawędzi. Prócz tego 
dowieść, że ośrodkowe tworzą prostokątny układ współrzędnych. (Ca- 
sey, Spherical Trigonometry, 1889, par. 127.)

Oznaczmy literami M, N, P, Q, R, S środki krawędzi AB, CD, 
BD, AC, AD, BG. Odcinki PR, QS są równoległe do AB, i każdy z nich 
jest równy połowie AB; podobnież PS, QR są równoległe do CD i ró­
wne połowie tej krawędzi. Lecz krawędzie przeciwległe AB, CD są 
równe, a zatem PQRS jest rombem, i jego przekątnie, czyli ośrodkowe 
czworościanu, PQ, RS tworzą kąt prosty. Ośrodkowa MN, prostopadła 
do płaszczyzny romba, jest prostopadła do PR, QS, a więc i do kra­
wędzi AB.
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394. Czworościan podwójny. Wyznaczyć środek ciężkości bryły, 
zawartej w sześciu ścianach trójkątnych, l. j, złożonej z dwóch czworo­
ścianów przedzielonych wspólną ścianą.

Niech ABC stanowi wspólną podstawę czworościanów, a D, D' 
ich wierzchołki, i niech E oznacza punkt przecięcia prostej DD' 
z podstawą. Czworościan ABCD zastępujemy czterema cząsteczkami, 

umieszczonemi w wierzchołkach; masa ka­
żdej z nich wynosi ćwierć masy czworo­
ścianu. Postępując tak samo z drugim czwo­
rościanem, skoncentrujemy w każdym z pun­
któw A, B, C ćwierć masy całej bryły i prócz 
tego otrzymamy w D i D' dwie cząsteczki, 
których masa zbiorowa stanowi ćwierć po­
zostałą masy bryły. Stosunek mas tych dwóch 
cząsteczek jest równy stosunkowi objętości 
czworościanów, czyli DE:ED'. Rozumując 

zupełnie tak samo, jak w przypadku czworokąta, dojdziemy z łatwo­
ścią, że dwie te masy można zastąpić przez trzy cząsteczki, z których 
każda ma czwartą część masy bryły; dwie z nich o masach dodatnich 
umieszczamy w D, D', a trzecią o masie ujemnej w E. Środek ciężko­
ści całej bryły leży w środku ciężkości pięciu jednakowych cząsteczek, 
położonych w A, B, C, D, D', oraz szóstej cząsteczki, położonej w E i po­
siadającej masę równą każdej z tamtych lecz odwrotnego znaku.

395. Prz. Środek ciężkości piramidy o podstawie czworokątnej 
leży razem ze środkiem ciężkości pięciu jednakowych cząsteczek, 
umieszczonych w wierzchołkach, oraz szóstej takiej samej lecz uje­
mnej cząsteczki, umieszczonej na przecięciu przekątni podstawy.

Poprowadziwszy płaszczyznę przez wierzchołek i jedną z prze­
kątni podstawy, otrzymamy dwa czworościany, przedzielone wspólną 
ścianą.

396. Łuk koła. Wyznaczyć środek ciężkości łuku koła.
Mamy dany luk ACB, którego 

a promień = a. Kąt AOB oznaczmy 
przez 2a, i niech OC będzie dwusieczną 
jego; dalej PQ ma oznaczać jeden z ele­
mentów tuku, a kąt POC—^. W ta­
kim razie w myśl par. 380 m=ads, 
x = a cosi. Oznaczywszy przez x odle­
głość szukanego środka ciężkości łuku 
od O, znajdziemy

Zma  f ad^ . a cos 3 _ a sin a 

środkiem jest punkt O,

Fig. 113.Jadi2m a
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gdyż granice zmiennej 3 są 3 == - o i $= + o. Wynikowi po­
wyższemu nadamy postać taką: 
Odległość śr. cięż. sin (połowa kąta) cięciwa rom 
łuku od środka J połowa kąta Prom łuk P

Wzory te podał Wal lis.

397. Prz. W łuk kołowy wpisano 2n [równych odcinków, two­
rzących linię łamaną; każdy z nich widać ze środka pod kątem 28. 
Okazać, że odległość środka ciężkości linii łamanej od środka wynosi 
rcos sin2n8 - ., , ,----------------- . Stąd wyprowadzić wzór na środek ciężkości dowolnego 

2n sin 3
łuku kołowego. (Zagadnienie Guldina.)

398. Środek ciężkości łuku krzywej. Współrzędne środ­
ka ciężkości łuku jakiejkolwiek jednorodnej krzywej płaskiej 
określają wzory następujące:

_ Zmx fxdx . fyds
Em fds ‘ 4 fds '

We wzorach tych na miejsce elementarnego łuku ds należy 
napisać jego wartość, wziętą z rachunku różniczkowego, a mia­
nowicie

ds=1+ ' | l dx, lub ds =)r2 + — l d^-, \dx I I I

stosownie do tego, czy równanie krzywej mamy w postaci Kar- 
tezyusza y = f(x\ czy w postaci biegunowej r=F(J). Gdy krzy­
wa jest przestrzenna, to dla z otrzymamy wyrażenie podobne 
do powyższych, a odpowiedni wzór na ds można znaleźć w pod­
ręcznikach rachunku różniczkowego.

399. Cały proces wyznaczania środka ciężkości łuku polega na 
podstawieniu wartości ds, zaczerpniętej z danego równania krzywej, 
i całkowaniu. W odnośnych przykładach główną sprawą jest całkowa­
nie, i byłoby zbytecznem przykłady te omawiać szczegółowo; podaje- 
my tylko rozwiązania w kilku przypadkach ważniejszych.

x X

c +e c' C l 'Prz. 1. Środek ciężkości łuku łańcuchowej y— 2 e 

c(y—c) _ 1 /
*= 0 do *=x posiada współrzędne x~x------------, y=~y

od

Wynik ten możemy interpretować geometrycznie w sposób na­
stępujący. Niech będzie jakikolwiek łuk łańcuchowej PQ, i niech T 
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oznacza przecięcie stycznych, poprowadzonych w P i Q, a N przecię­
cie normalnych, wystawionych w tychże punktach. Jeżeli teraz x, y 
są współrzędnemi środka ciężkości łuku PQ, to T= odciętej punktu T, 
a y— połowie rzędnej punktu N.

Prz. 2. Wyznaczyć środek ciężkości łuku OP cykloidy pomię­
dzy wierzchołkiem O, gdzie ©=0 i punktem P, gdy równania cykloidy 
są x=2ap+asin 2p, y=a — a cos2p, a długość łuku OP wynosi s=4a sin q.

—. _ , 2a(1—cos )2(2+cos«) _ yWypadnie T=2d------------- —----------------, y=—.
3 sin ( 3

Prz. 3. G oznacza środek ciężkości łuku APlemniskaty r2=a2cos28; 
okazać, że OG- jest dwusieczną kąta AOP.

Prz. 4. Środek ciężkości łuku PQ krzywej r‘sin38=a3 leży na 
prostej, łączącej biegun O z przecięciem stycznych w P i Q.

Prz. 5. Gęstość w punktach krzywej r"sinn=an jest proporcyo- 
nalna do r-3; okazać, że środek ciężkości łuku PQ leży na prostej, łą­
czącej biegun z przecięciem stycznych w P i Q.

Prz. 6. Miejscem geometrycznem środków ciężkości łuków le- 
mniskaty r2=a2 cos 29 o długości danej jest krzywa, odpowiadająca 
w inwersyi elipsie współśrodkowej. (Twierdzenie R. A. Roberta.)

400. Wycinek koła. Wyznaczyć środek ciężkości wycinka 
kołowego.

Niech ACB będzie lukiem wycinka, a O środkiem. Podo­
bnie jak w par. 396 promień oznaczamy przez a, kąt AOB 
przez 20 i prowadzimy dwusieczną OC kąta AOB. Dzielimy 
następnie wycinek na elementarne trójkąty o jednakowych po­
lach; jednym z nich jest, dajmy na to, OPQ. W myśl par. 
380 koncentrujemy masę tego trójkąta w jego środku ciężkości,

Fig. 114.

t. j. w takim punkcie p, że Op = ^OP. 
Czyniąc to samo w każdym trójkącie, 
otrzymamy szereg cząsteczek o jedna­
kowych masach, rozłożonych w je­
dnakowych odległościach na łuku ko­
łowym ab. Na fig. 114 wyobrażono 
te cząsteczki zapomocą szeregu kro­
pek. W granicy punkty te utworzą 

jednorodny łuk kola, możemy więc wyznaczyć środek ciężkości 
wycinka przy pomocy wzorów par. 396; odległość jego od środ­
ka O będzie

_ sina 2a 2 cięciwa AB . , .
X =----- .—=.--—^—.promień 00.a 3 3 łuk AB

Są to również wzory Wallisa.
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401. Prz. Wyznaczyć środek ciężkości pola ćwiartki koła AOB.
Jest to ten przypadek szczególny zagadnienia z paragrafu po­

przedzającego, w którym a 7. Gdy obierzemy za osi współrzędnych

proste OA i OB, to współrzędne środka ciężkości G- będą: 

4a 
T =OGCOS =, 

37
4a

J=3,
402.

od środka 

odcinka.

Prz. Odległość środka ciężkości pola odcinka kołowego 
. . 2a sino . , 
koła wynosi , gdzie a oznacza połowę kąta 

3(0— sin a cos a)
(Gułdin.)

403. Rzuty pól. Gdy wykonamy rzut prostokątny jakie­
gokolwiek pola płaskiego na płaszczyznę^ to środkiem ciężkości 
rzutu będzie rzut środka ciężkości pola danego.

Obierzmy płaszczyznę rzutów za płaszczyznę xy i oznacz­
my przez a kąt pomiędzy płaszczyznami. Niech teraz dS 
oznacza element pola danego, a dli pole rzutu tego elementu. 
Wiadomo, że dll=dS.cosa, a współrzędne x i y elementów 
dS i dli są jednakowe, bo rzuty są prostokątne. Współrzędne 
środków ciężkości każdego pola wyznaczymy według wzorów 
_ Zma _ ^my . . . , x= En: y na miejsce m należy tu postawie dli dla 

rzutu i dS dla oryginału. Otrzymamy dla obydwóch pól jedna­
kowe x, y, gdyż stosunek dII:dS jest stały.

Aby z pożytkiem posługiwać się metodą rzutów, wypada 
do twierdzenia powyższego dołączyć dwa znane twierdzenia 
następujące: (1) rzuty prostych równoległych są równoległe, 
(2) stosunek dwóch odcinków równoległych pozostaje w rzu­
cie bez zmiany. Możemy przeto postępować według reguły 
następującej.

Mamy, dajmy na to, pewien związek geometryczny po­
między odcinkami na figurze oryginalnej, a pragniemy wykryć 
odpowiedni związek w rzucie. Przedewszystkiem wyrażamy 
związek dany w postaci stosunków odcinków równoległych; 
w tym celu wypadnie niekiedy przeprowadzić nowe proste, ró­
wnoległe do pewnych prostych oryginału, jeżeli w danym zwią­
zku o takich równoległych niema wzmianki. Gdy mamy zwią­
zek geometryczny w Epostaci stosunków, to taki sam związek 
zachodzi i w rzucie.
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404. Pola eliptyczne. Wiadomo, że elipsa jest prosto­
kątnym rzutem koła, a zątem można otrzymać środki ciężkości 
różnych części pola elipsy ze środków ciężkości odpowiednich 
części koła. Koło, używane w tym celu, zowie się niekiedy ko­
łem pomocniczem.

405. Wyznaczyć środek ciężkości pola eliptycznego.
Niech będzie ćwiartka koła A0B\ obrawszy promienie OA 

i OB za osi współrzędnych i oznaczając współrzędne środka 
ciężkości ćwiartki przez x, y, możemy napisać

2-0-4 m
OA OB 37.................................

Lecz x i OA są to odcinki równoległe; toż samo dotyczy y i OB, 
a zatem związki powyższe zachodzą i w rzucie.

Wzory (i) dają współrzędne środka ciężkości pola ćwiartki 
elipsy, gdy OA i OB oznaczają połowy diiżej i małej osi.

Jeżeli płaszczyzna rzutów przecina ćwiartkę koła nie we­
dług jednego z promieni granicznych lecz według jakiejś innej 
prostej, to rzutem ćwiartki jest wycinek elipsy, zawarty po­
między dwiema średnicami sprzężonemi.

Gdy OA i OB są połówkami dwóch jakichkolwiek średnic 
sprzężonych elipsy, to wzory (Ij określają środek ciężkości wy­
cinka eliptycznego, zawartego pomiędzy OA i OB.

Położenie środka ciężkości połowy elipsy pierwszy wyzna­
czył Guldin.

406. Prz. 1. Środkiem elipsy jest punkt C, a jej ruchoma cię­
ciwa PQ przechodzi wciąż przez stały punkt O. Dowieść, że miejscem 
geometrycznem środka ciężkości trójkąta CPQ jest elipsa podobna.

(Coli. Exam.)
Prz. 2. Środek ciężkości G wycinka eliptycznego, zawartego po­

między półśrednicami OP, OP', leży na średnicy OA, przechodzącej 
. OG 2 sin 8 . przez środek cięciwy PP , i  , = —o—; sin v równa się tutaj Sto-

sunkowi cięciwy PP' do średnicy sprzężonej z OA'■
ab («‘ — ©)

Prz. 3. Wycinek eliptyczny POP' posiada pole A= -—2----- s

a współrzędne środka ciężkości w odniesieniu do średnic głównych są
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x 2 (sin e‘—sin«) y 2(cos —cose’) 
a 3(‘- p) ’ b 3(p‘—p) 

gdzie «, «‘ są anomaliami ekscentrycznemi*)  punktów P, P'.

*) Zob. przypisek do par. 317.

Prz. 4. Okazać, że położenie środka ciężkości G‘ odcinka elipty- 
, , 2. O A' sin 34

cznego, opartego na cięciwie PP', określa wzór 0G-'——------.------------,3(P—sin p COS ) 
gdzie O A’ jest półśrednicą sprzężoną z PP', a sin« oznacza stosunek 
cięciwy PP1 do średnicy równoległej.

Prz. 5. G jest środkiem ciężkości pola, zawartego pomiędzy eli­
psą i dwiema stycznemi, poprowadzonemu z punktu T, obranego na 
przedłużeniu średnicy OA'. Dowieść, że

OG tan2 sin« 
OA' 3(tanp-«)‘

gdzie sin« jest stosunkiem cięciwy PP', łączącej punkty zetknięcia, 
do średnicy sprzężonej z OT.

. Dowieść prócz tego, że współrzędne punktu G w odniesieniu 
do stycznych TP, TP' jako do osi są

X
TP

J 1 / tan sin"e 
TP' 2 sin2\ 3(tan —i)

TP
W paraboli po odrzuceniu wyższych potęg P wypadnie T=5

TP'
5

Prz. 6. Środek ciężkości czworobocznego pola, zawartego po­
między łukami czterech elips współśrodkowych i współosiowych, po­
siada współrzędne

2 a,2b (sin ©,‘— sin ©1)+a2b,(sin‘— sin ,)+...T=— .--------------------------------------------------------
3 d1bi(Pi‘—P1)—d,ba(P2‘—92) ... 

Wyrażenie na y jest podobne.
407. Znaczenie analityczne metody rzutów. Geometryczna 

metoda rzutów, przy pomocy której przekształcamy elipsę na koło lub 
odwrotnie, jest równoważna zmianie współrzędnych. Zakładamy x=x‘ 
i y—gy', gdzie wartość g zależy od naszego uznania; możemy obrać 
ten współczynnik w taki sposób, aby równanie elipsy przeszło w ró­
wnanie koła. Oczywiście zasada ta daje się rozciągnąć do każdej krzy­
wej. Pisząc x=fx', y—gy', będziemy mieli do rozporządzenia dwie stałe 
zamiast jednej.

Geometrycznie działanie takie prowadzi do tego samego, co dwa 
rzuty kolejne. Pisząc y=gy', tworzymy rzut oryginału na płaszczyźnie, 
przechodzącej przez oś x, a pisząc x=fx', tworzymy nowy rzut na pła­
szczyźnie, przechodzącej przez oś y'. Stosując do tych rzutów uogól­

Przyp. tłom.
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nionych dwa twierdzenia wyżej wspomniane, przeniesiemy wszystkie 
wzory, dotyczące stosunków odcinków równoległych, z jednej figury 
na drugą.

Analitycznie zapomocą podstawień x—fx', y—gy' przekształcamy 
równania linii granicznych pola A'. Niech (x, y), (x‘, y') będą środkami 
ciężkości pól A i A'. Otrzymamy

A=ffdxdy=fgUdx'dy,=fgA',
i tak samo x—fx', y=gy'. Granice całek rozciągają się tutaj na całe 
odnośne pola.

Prz. Możemy jeszcze bardziej uogólnić metodę rzutów, pisząc 
x—a+bx' + cy', y—eAfx'-Agy'. Okazać, że A^A'(bg — cf), x—a+bx' + cy', 
y=e+fx‘ +gy', gdzie A, A' są polami odpowiednich figur.

Warto zauważyć, że przekształcenie powyższe jest równoważne 
z przejściem do nowego układu ukośnokątnego wraz z następującymi 
po nim rzutami.

408. Metoda rzutów nie da się tak łatwo stosować, gdy chodzi 
o wyznaczanie środków ciężkości pól hiperbolicznych, gdyż musieli- 
byśmy tworzyć rzuty urojone koła. Biorąc zamiast koła pomocniczego 
hiperbolę równoramienną można byłoby wyznaczyć środek ciężkości 
każdego pola hiperbolicznego.

Możemy wszakże z każdego twierdzenia ogólnego, dotyczącego 
elipsy, otrzymać odpowiednie twierdzenie o hiperboli przy pomocy 
zasady ciągłości. Tak np. środek ciężkości wycinka elipsy od x=x do 

2ak 
x=a (406 prz. 2) określa wzór x ==------------ , gdzie dla skrócenia k stoi

3arcsink
2

. Musi to być słuszne i dla urojonych gałęzi elipsy, . x2\zamiast 1-----
\ a2/

powstających dla x>a. Zakładamy k=k'i i stosujemy znany wzór 
z trygonometryi analitycznej Ji=log(cos}+isin 3), gdzie J=arc sin k. 
Dla środka ciężkości wycinka hiperbolicznego otrzymamy

x 2k' (lx\2 13/2
— =-------------- —------ -, gdzie — — 17 .
a 3log(k‘+ Vk‘2+1) la/ )

409. Środek ciężkości pola jakiegokolwiek. Wobec wzo­
rów, podanych w par. 380, wyznaczanie środka ciężkości pola 
sprowadza się do dwóch czynności: (1) obieramy dogodnie ele­
ment m i (2) uskuteczniamy potrzebne całkowania. To ostatnie 
działanie stanowi przedmiot rachunku całkowego a nie statyki, 
poprzestaniemy przeto na pewnych uwagach o obiorze ele­
mentu m.

Gdy mamy wyznaczyć środek ciężkości pola, zawartego pomię­
dzy rzędnemi Aa i Bb, to nadajemy równaniu krzywej postać y—f(x). 
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a za element obieramy pasek PQM; tak więc PM—y i m—ydx. Współrzę- 
ydne środka ciężkości elementu m będą e i 2, a wzory z par. 380 prze­

kształcą się tak:
Zmx fydx. x _ fydx . %

== —— =--------- , J= -------  .
2m fydx ydx

Gdy chodzi o wyznaczenie środka ciężkości pola wycinkowego 
AOB, to równaniu nadajemy postać r—f^), a za element obieramy

trójkątny pasek P0Q. W tym razie QP—r, m=-2, i środek ciężkości

2rcos 8 2rsin 8 
elementu m ma współrzędne Kartezyusza —-----, —- --- . Wzory na 

x, y przybierają postać
J2r2d8.3rcos8 _ J 2r2d8.3rsin $ 

J3r2d9 ‘ 9 f^r2d^

Niekiedy mamy dane równanie krzywej w postaci parametry­
cznej x ==(t), y=^(t). Taką postać nadaje się naprzykład równaniu cy- 
kloidy (par. 399, prz. 2). W takich razach uciekamy się do wzoru 
r2d^=xdy—ydx, zaczerpniętego z rachunku różniczkowego. Wstawiając 
w zasadnicze wzory na x, y połowę wartości powyższej zamiast m, 
otrzymamy dogodne wzory do wyznaczania środka ciężkości.

410. Gdy mamy wyznaczyć środek ciężkości figury w kształcie 
trójkąta lub czworokąta o bokach krzywych, to stosowny obiór ele­
mentu m zależy od postaci krzywych.

Połączywszy punkty wierzchołkowe z początkiem współrzędnych, 
otrzymamy trzy lub cztery wycinki i możemy wyznaczyć pole oraz 
środek ciężkości każdego z nich z osobna; następnie znajdziemy we­
dług paragrafu 380 środek ciężkości całej figury. W niektórych razach 
krzywe graniczne należą do tego samego rodzaju, i gdy wykonamy 
działanie powyższe dla jednego wycinka, to możemy już wywniosko­
wać, co wypadnie dla pozostałych. W przypadkach takich metoda ta 
jest bardzo dogodna. Widzieliśmy już, jak można bezpośrednio otrzy­
mać pole i środek ciężkości czworoboku, okolonego łukami eliptycz­
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nymi, mając pole i środek ciężkości wycinka eliptycznego (par. 406, 
prz. 6).

Nadając wywodom powyższym postać analityczną, otrzymamy 
dla trójkąta krzywoliniowego, zawartego pomiędzy krzywemi 1=f(8), 
r'=f^'l r‘‘=f,($")

Zmx= 3 I r3cossd9+
J a

/ T (03 r‘3cosS‘d8‘+1 r
J3 JY

113 cos S"‘d8",

(3 (T (a.
Sm=^ 12d8+7 r‘2d8‘+7 r"W".

Jo

W wyrażeniach tych a, 3, Y oznaczają nachylenia promieni wodzących 
punktów wierzchołkowych do osi x. Tworząc całki powyższe, obiegamy 
boki figury trójkątnej w porządku kołowym.

Może się wydać, że dodaliśmy wszystkie trzy wycinki, gdy tym­
czasem należało jedne dodać, a inne odjąć, ale chwila zastanowienia 
przekona, że tak nie jest; w tych wycinkach, które należało odjąć 
uczyniliśmy d& ujemnem, biorąc granice w tym samym porządku, 
w którym obiegaliśmy pole.

Zamiast łączyć punkty wierzchołkowe z początkiem układu mo­
żna poprowadzić z nich prostopadłe do osi x. W takim razie wy- 
padnie

db
^mx=xydx+ , x’y'dx'+ I x"y,'dxr',

Ja Jb Jc 

gdzie a, b, c są odciętemi punktów wierzchołkowych. I tutaj bierzemy 
granice w tym porządku, w którym obiegamy w koło boki trójkąta.

411. W pewnych razach można stosować całkowanie podwójne. 
Przypuśćmy, że udało się wyrazić równania dwóch boków przeciwle­
głych czworoboku krzywoliniowego w tej samej postaci przy pomocy 
pewnej wielkości pomocniczej u. Znaczy to, że pewne równanie re­
prezentuje jedną linię graniczną, gdy w niem u—a, i to samo równanie 
reprezentuje przeciwległą linię graniczną, gdy u=b. Niech ę(x, y, u)=0 
będzie lakiem równaniem. Jest to zawsze możliwe, bo przypuśćmy, że 
fJx,y)=0 i fjx, y)—0 są równaniami przeciwległych boków; w takim 
razie

=(u-a)f(x, y)+{u-b)f2(x, y)=0 

reprezentuje jeden lub drugi stosownie do tego, czy u —a, lub u = b. 
Taka jednak szczególna postać równania P nie zawsze jest dogodna. 
Załóżmy jeszcze, że w ten sam sposób V(x, y, v) ==0 reprezentuje dwa 
pozostałe boki, gdy v=e i v—f.

Po uskutecznieniu tego należy dalej postępować według prawi­
deł rachunku całkowego. Nadając wielkościom u i v wszelkie warto­
ści, zawarte pomiędzy u—a i u=b, oraz v=e i v—f, otrzymamy dwa 
pasma krzywych, dzielących pole na elementy. Niech m będzie polem 
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jednego z takich elementów, i niech J oznacza wyznacznik Jakobiego 
zmiennych x, y względem u, v; w takim razie m=Jdudv, i

_ SSJdudv.x _ ffJdudu.y
" ffJdadv ‘ 9 ffdudu

Do wyznaczenia Jakobianu może być niezbędne rozwiązanie ró­
wnań ©=0, V=0 celem wyrażenia x i y w funkcyach u, v. W takim ra- 

dx dy dx dy
zie będzie J——. —----------.—. Metoda ta może prowadzić do bar- 

da dv----- dv da
dzo zawiłych rachunków, jeżeli od razu nie dobierzemy tak udatnie 
« i 1, aby Jakobian, wyrażony w funkcyi u, v, przybrał postać prostą. 
Zaleta metody polega na tern, że granice a i b zmiennej u, oraz gra­
nice e i f zmiennej v są stałe, można więc wykonać całkowania w do­
wolnym porządku lub nawet jednocześnie.

412. Prz. 1. Z paraboli wycięto pole, ograniczone osią ON oraz
, , _ 3x rzędną PN; okazać, że x=—, 

5
- 3J 
J=g*

Prz. 2. Do paraboli poprowadzono dwie styczne PP i TP'; oka­
zać, że współrzędne środka ciężkości pola, zawartego pomiędzy krzy­
wą i stycznemi, w odniesieniu do TP, TP', jako do osi, są: x=^TP, 
y=^TP' (406, prz. 5). (Walton.)

Należy uważać owo pole za różnicę pól trójkąta i odcinka pa­
rabolicznego.

Prz. 3. Równania cykloidy są: x = a (1— cos 8), y = a (9 + sin 8). 
Okazać, że środek ciężkości połowy pola ma współrzędne z 7d, 

6 
a/ 16\

J=I- —). (Wallis.)2 \ JT/
Prz. 4. Wyznaczyć środek ciężkości pola, zawartego pomiędzy 

jedną pętlicą lemniskaty 12=a2cos29 a osią. Wypadnie
_ ma _ 3log(V2+1)—v 2T = ——, y^--------------—--------- a.

4 v 2 6 v2
Prz. 5. Granicami pola czworokątnego są parabole y2=a3x, y2=b3x, 

x2=e3y, x2=fy. Wyznaczyć środek ciężkości.
Obieramy za równania boków przeciwległych y2—u3x oraz x?=vy. 

Rozwiązując otrzymamy x=uv2, y=u2v oraz J=3u?v2. Ostatecznie wy­
padnie

—9 (b—a*)(f"—e5)
" F20 (63—23) (43—e3)

Prz. 6. Środek ciężkości pola, zawartego pomiędzy dwiema eli­
psami i dwiema hiperbolami, gdy wszystkie cztery krzywe są współ- 
ogniskowe, leży na prostej

y _ (az—a )(az‘—a‘)(a,2+a a,+a,2—a2‘2—a,‘a2‘—a/2)
x (b2 b,)(b2‘ b,‘)(b22 +6,62 +6,2+ b2'2p b/b^ Pbi'2)

Statyka. 21 
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gdzie litery bez kresek oznaczają połówki osi elips, a litery kresko­
wane połówki osi hiperbol.

Równania przeciwległych boków obieramy w postaci —|—— =1, 
u u—h

x2 y2
—I------ =1, gdzie u>h, i v<h. Z tego wynika hx=uv, —hy2—(u—h)(v—K), 
v v—h
następnie łatwo już otrzymuje się żądany wynik.

Prz. 7. Gęstość tarczy kołowej o promieniu a jest proporcyo- 
nalna do odległości od środka. W tarczy tej wycięto otwór w postaci 
koła, zatoczonego na jej promieniu, jako na średnicy. Okazać, że śro- 

6a
dek ciężkości tarczy z takim otworem leży w odległości------------od 

157—10
środka. (Math. Tripos, 1875.)

Prz. 8. W tarczy kołowej, której gęstość zmienia się proporcyo- 
nalnie do odległości od środka, wycięto okrągły otwór, którego obwód 
przechodzi przez środek tarczy; promień tarczy =/•, a promień otworu 
—a. Dowieść, że środek ciężkości części pozostałej leży w odległości 

644------ --------od środka tarczy. (Col. Ex., 1888.) 
15713 — 10a3

Prz. 9. Krzywa posiada właściwość następującą: rzędna i odcięta 
środka ciężkości pola, zawartego pomiędzy rzędnemi x—a i x—x, mają 
się do siebie, jak graniczna rzędna y do odciętej x. Okazać, że równa­
nie takiej krzywej jest a3y3—b3x3—x3y3. (Math. Tripos, 1871.)

413. Twierdzenia Pappusa. Przed przystąpieniem do 
wyznaczania środków ciężkości powierzchni i brył, nie od rze­
czy będzie rozważyć pewną metodę wyznaczania powierzchni 
i objętości brył obrotu, w której zużytkujemy wyznaczone do­
tychczas środki ciężkości łuków i pól. Niżej podane twierdzenia 
pierwszy wygłosił Pappus w końcu przedmowy do siódmej 
księgi swego Zbioru (Zovaonh).

Dajmy na to, że pewne płaskie pole obróciło się o pe­
wien kąt około osi, położonej w płaszczyźnie tego pola; w ta­
kim razie

(1 ) powierzchnia, którą zatoczył obwód pola, jest równa ilo­
czynowi z obwodu przez długość drogi, którą obiegł środek cięż­
kości obwodu,

(2 ) objętość bryły, którą wytworzyło pole, jest równa iloczy­
nowi z pola przez długość drogi, którą obiegł środek ciężkości pola.

W obydwóch twierdzeniach przypuszcza się, że oś obrotu 
nie przecina obwodu pola.
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414. Dajmy na to, że łuk AB pewnej krzywej leży w pła­
szczyźnie xz. Obróćmy go około osi z o elementarny kąt do. - 
Element PQ, = ds tego łuku dojdzie do położenia P'Q\ zatacza­
jąc powierzchnię ds. PP'= ds . xd&. Cały łuk AB zatoczy po­
wierzchnię d^fxds. Lecz to jest równe d9 . xs, jeżeli s oznacza 
długość łuku AB^ a x odległość środka ciężkości tego łuku od 
osi z. Gdy łuk AB obróci się około osi z o następny kąt ele­
mentarny do, to powstanie taka sama powierzchnia. Z tego 
wynika, że gdy kąt obrotu stanie się równy 0, to powierzchnia 
będzie s. x0. Lecz x0 jest to długość drogi, którą obiegł śro­
dek ciężkości łuku, a zatem twierdzenie pierwsze zostało do­
wiedzione.

Fig. 116.

Przypuśćmy teraz, że pewna krzywa zamknięta, położona 
w płaszczyźnie xz^ obróciła się, jak poprzednio, około osi z 
o kąt do. Skutkiem tego elementarne pole dA, położone w oko­
licach B^ zatoczyło bryłę, którą możemy uważać za elementar­
ny cylinder. Podstawą jest dA, wysokość wynosi xdo, a za­
tem objętość wyniesie dA . xd^. Cała krzywa zamknięta wytwo­
rzy objętość d$fxdA. Lecz to jest równe d^.xA, gdzie A ozna­
cza pole krzywej, a x odległość środka ciężkości tego pola od 
osi obrotu. Całkując raz jeszcze do pewnej skończonej warto­
ści 0, znajdziemy, że objętość powstałej bryły wynosi A . x3. 
Wynik ten jest dowodem twierdzenia drugiego.

Przyjmowaliśmy w obydwóch dowodach, że krzywa leży 
całkowicie po jednej stronie osi obrotu. Przypuśćmy teraz, że 
punkty tej krzywej Px i P, leżą po stronach odwrotnych osi z; 
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w takim razie odcięte ich x1, x, mają znaki odwrotne, a za­
tem odpowiednie elementy powierzchni lub objętości, jako za­
wierające czynnik xdo, będą miały także znaki odwrotne. Całka 
daje sumę takich elementów, wziętych z właściwymi znakami, 
a więc, jeżeli oś przecina krzywą, to prawidła Pappusa dają 
różnicę powierzchni lub objętości, które zataczają dwie części 
krzywej, położone po odwrotnych stronach osi obrotu.

415. Prz. 1. Wyznaczyć powierzchnię i objętość pierścienia ko­
łowego.

Bryła ta powstaje, gdy koło odbywa całkowity obrót około osi, 
położonej w jego płaszczyźnie. Oznaczmy przez a odległość środka od 
osi, a przez b promień koła tworzącego, przyczem powinno być a>b, 
jeżeli wszystkie elementy mamy uważać za dodatnie. Obwód koła 
tworzącego wynosi ‘lub, a długość drogi, którą obiega środek ciężko­
ści, 2ma. Stąd wynika, że powierzchnia jest równa ^2ab. Pole koła wy­
nosi xb2, a droga jego środka ciężkości 2xa; zatem objętość jest równa 
2K2ab2.

Prz. 2. Wyznaczyć objętość wycinka kuli o kołowem obrzeżu, 
a także jego powierzchnię sferyczną.

Można uważać, że bryłę taką zatoczył wycinek koła, dokonawszy 
całkowitego obrotu około jednego ze swych promieni granicznych. 
Niech 2a będzie kątem tego wycinka kołowego, a promieniem, a 0 
niech oznacza środek. Długość łuku wycinka = 2aa, a długość drogi, 
którą obiega środek ciężkości G łuku wynosi 2x.OGsin a, gdzie 

a sin a
OG = --------. Zatem powierzchnia sferyczna jest równa 4xa‘sin‘o. Pole 

a
wycinka kołowego =u2a, droga środka ciężkości G‘ wynosi 2n. O^sina, 

9 4xa‘sin2o
gdzie OG‘=30G, a więc objętość jest równa----- .——.

Prz. 3. Bryła powstała skutkiem obrotu trójkąta ABC około bo- 
, n cp2 ku AB. Okazać, że powierzchnia jej wynosi n^a+b^p, a objętość 

gdzie p oznacza odległość wierzchołka C od boku AB.

416. Warto zaznaczyć, że podczas obrotu o elementarny 
kąt d9 oś obrotu może być tylko osią chwilową. Wyobraźmy 
sobie, że ruchome pole płaskie pozostaje wciąż normalnem do 
krzywej, którą obiega jego środek ciężkości. Gdy środek cięż­
kości zatacza łuk ds, to możemy uważać, że pole A obraca 
około osi, przechodzącej przez środek krzywizny toru. Stąd 
wynika, że objętość elementarna wynosi Ads, a cała objętość 
będzie równa iloczynowi z pola A przez długość drogi, którą 
obiegnie środek ciężkości pola.
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Również gdy figura płaska ruchoma pozostaje wciąż nor­
malną do toru środka ciężkości obwodu, to powierzchnia bryły 
będzie równa iloczynowi łuku przez drogę środka ciężkości ob­
wodu.

417. Jeżeli oś obrotu nie leży w płaszczyźnie krzywej, to objętość 
bryły, wytworzonej przez pole ruchome, daje się wyznaczyć przy po­
mocy pewnej modyfikacyi prawidła Pappusa.

Dajmy na to, że oś obrotu jest równoległa do płaszczyzny krzy­
wej, że jest to np. prosta CL na fig. 116. Poprowadźmy z pewnego 
punktu R, położonego wewnątrz zamkniętej krzywej, prostopadłą do 
osi; przypuśćmy, że L będzie jej przecięciem z osią. Element pola dA, 
okalający punkt R, zatoczy część cienkiego pierścienia, którego środ­
kiem jest L. Długość tej części wynosi ^.RL. Pole normalnego prze­
kroju tego pierścienia jest równe dA. cos«, gdzie « oznacza kąt, który 
normalna RL do pierścienia tworzy z płaszczyzną elementu dA. Tak 
więc wytworzona objętość wyniesie RL .costf .^dA, a to jest równe 
x^dA. Otrzymaliśmy to samo, co poprzednio, gdy osią obrotu była oś z.

Gdyby ten sam element obracał się nie około CL, lecz około Oz, 
to powstał by pierścień o mniejszym promieniu, i położenie jego 
w przestrzeni byłoby odmienne. Lecz przekrój normalny pierścienia 
mniejszego tak dalece przewyższa przekrój większego, że objętości 
obydwóch są równe.

Z powyższego wynika, że prawidło Pappusa daje się zastosować 
i w danym przypadku, przyczem jednak musimy postępować tak, jak- 
gdyby rzut osi na płaszczyznę krzywej był prawdziwą osią obrotu. Kąt 
obrotu powinien być jednakowy dla obydwóch osi.

Gdy dane pole jest położone po obydwóch stronach rzutu, to 
należy mieć na uwadze, że objętości, które wytworzą dwie części pola, 
będą miały znaki odwrotne.

Prz. 1 Oś obrotu tworzy z płaszczyzną pola kąt a. Okazać, że 
prawidło Pappusa da nam objętość powstałej bryły, jeżeli będziemy 
postępowali z rzutem osi na ową płaszczyznę, jak z osią obrotu, uwa­
żając przytem za kąt obrotu 3 cos a zamiast 3.

Prz. 2. Ćwiartka koła odbyła całkowity obrót około osi, która 
przechodzi przez środek, jest prostopadła do jednego z promieni gra­
nicznych i tworzy z drugim kąt a. Okazać, że objętość powstałej bryły 

2xa‘coso 
wynosi------------ .

Prz. 3. Łuk A1A2 krzywej płaskiej obrócił się o kąt 8 około osi 
prostopadłej do jego płaszczyzny. Okazać, że zaciągnięte pole wynosi

---- 2----- , gdzie I r2 są odległościami końców A^ A2 od osi obrotu.

Należy przyjąć, że promień wodzący r nie przechodzi pomiędzy 
A| i A2 ani przez maksymum, ani przez minimum. W razie przeci-
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wnym pola, które zaciągną łuki, położone po odwrotnych stronach 
takiego punktu, będą miały znaki odwrotne.

Prz. 4. Pole obraca się około osi z, położonej w jego płaszczy­
źnie. Gęstość D w każdym punkcie P powstałej bryły jest daną fun- 
kcyą zip, gdy p oznacza odległość punktu P od osi obrotu. Okazać, 
że masę bryły można wyznaczyć zapomocą prawidła Pappusa, uważa­
jąc D za gęstość powierzchniową pola tworzącego w punkcie P, któ­
rego współrzędnemi są z. i p.

418. Powierzchnia boczna prostego stożka. Wyznaczyć 
środek ciężkości powierzchni bpcznej prostego stożka. Twierdzenie 
Guldina.

Niech 0 będzie wierzchołkiem stożka, a C środkiem pod­
stawy; w takim razie prosta OC jest prostopadła do podstawy,

i szukany środek ciężkości leży na 
tej prostej.

Podzielmy boczną powierzchnię 
na trójkąty elementarne, łącząc pro- 
stemi wierzchołek 0 z punktami pod­
stawy a, b^ c... Środek ciężkości ka­
żdego trójkąta leży w płaszczyźnie, 
równoległej do podstawy i dzielącej 
boki Oa, Ob... w stosunku 2:1, a za­
tem środek ciężkości całej powierz­
chni bocznej leży w przecięciu tej 
płaszczyzny z OC.

Odległość środka ciężkości powierzchni prostego stożka od
wierzchołka wynosi dwie trzecie wysokości.

Prz. Okazać, że prawidło powyższe dotyczy również bocznej 
powierzchni prostego stożka o podstawie eliptycznej, lub wogóle o ja­
kiejkolwiek podstawie symetrycznej względem dwóch średnic prosto­
kątnych.

419. Wyznaczyć wielkość oraz środek ciężkości części po­
wierzchni prostego stożka o podstawie kołowej.

Niech będzie element PQ^dS bocznej powierzchni stożka 
(fig. 117), i P'Q' = dII rzut jego na płaszczyznę podstawy. Kąt 
pomiędzy PQ i P'Qj czyli kąt pomiędzy płaszczyzną trójkąta 
Oab i płaszczyzną podstawy, jest spełniającym połowy kąta 
wierzchołkowego stożka. Gdy ten ostatni oznaczymy przez 2a, 
to wypadnie dlI=dS.sin o. To samo dotyczy każdego innego 
elementu powierzchni, a zatem, pragnąc wyznaczyć wielkość
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jakiejkolwiek części powierzchni prostego stożka, dzielimy przez 
sina pole jej rzutu na płaszczyznę prostopadłą do osi.

Jeżeli za oś z obierzemy oś stożka, to oczywiście elementy 
dS i dli będą miały jednakowe współrzędne a i y, a zatem, 
postępując zupełnie tak samo, jak w par. 403, przekonamy się, 
że rzut środka ciężkości jakiejkolwiek części powierzchni stożka 
na płaszczyznę prostopadłą do osi jest środkiem ciężkości rzutu 
tej części.

Pozostaje jeszcze wyznaczyć współrzędną z środka ciężko­
ści. Obieramy za płaszczyznę xy dowolną płaszczyznę prosto­
padłą do osi; w takim razie wypadnie

'Lmz fdS. z fzdll 
hm fdS fdU

Widzimy, że odległość środka ciężkości części S powierzchni 
od płaszczyzny xy jest równa ilorazowi objętości cylindrycznej 
bryły, zawartej pomiędzy S i rzutem II na ową płaszczyznę, 
przez pole II.

Takie wyniki są następstwem tej okoliczności, że stosunek ele­
mentu powierzchni dS do jego rzutu dU na płaszczyznę xy jest wiel­
kością stałą, a do tego znowu potrzeba, aby wszystkie płaszczyzny, 
styczne do powierzchni, tworzyły z płaszczyzną xy kąty równe. Taką 
właściwość poza powierzchnią prostego stożka oraz płaszczyzną po­
siadają jeszcze i inne powierzchnie. Każda powierzchnia rozwijalna, 
stanowiąca obwiednię układu płaszczyzn, nachylonych do xy pod ką­
tem danym, czyni oczywiście zadość warunkowi powyższemu.

Prz. 1. Płaszczyzna AB przecina stożek dowolnego kształtu, 
a przez wierzchołek stożka O przeprowadzono dowolnie prostą, prze­
cinającą AB w punkcie H. Dowieść, że objętość stożkowej bryły, za­
wartej pomiędzy płaszczyzną AB i wierzchołkiem, jest równa iloczy-

OH
nowi —— przez pole rzutu przekroju AB na płaszczyznę prostopadłą 

do OH.
Prz. 2. Płaszczyzna przekroju AB prostego stożka przecina oś 

w punkcie H i tworzy z nią kąt 3, a kąt wierzchołkowy stożka == 2. 
Okazać (1), że boczna powierzchnia S, zawarta pomiędzy wierzchoł­
kiem O i przekrojem eliptycznym AB, jest równa iloczynowi z prze- 

sinBkroju AB przez ——, (2), że środek ciężkości powierzchni S leży na 
sin a

prostej, poprowadzonej przez środek C przekroju AB równolegle do 
osi stożka, (3), że odległość środka ciężkości powierzchni S od C wy- 
nosi ^OS.
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Powierzchnia S i przekrój AB mają wspólny rzut eliptyczny A'B', 
a więc dwa pierwsze twierdzenia wynikają bezpośrednio z tego, co 
dowiedliśmy poprzednio.

Aby udowodnić trzecie twierdzenie, dzielimy powierzchnię S na 
trójkąty elementarne, prowadząc proste od wierzchołka do podstawy 
AB. Wypadnie, jak w par. 418, że środek ciężkości powierzchni leży 
na płaszczyźnie, równoległej do podstawy i odcinającej trzecią część 
od OH.

Prz. 3. Prosty cylinder posiada płaską podstawę A'B' dowolnej 
postaci i jest przecięty inną płaszczyzną AB. Okazać, że (1) powierz­
chnia boczna cylindra pomiędzy płaszczyzną AB i podstawą jest ró­
wna iloczynowi z obwodu podstawy przez wysokość środka ciężkości 
obwodu AB nad podstawą, (2) objętość cylindra, zawarta pomiędzy 
płaszczyzną AB i podstawą, jest równa iloczynowi z pola podstawy 
przez wysokość środka ciężkości pola AB nad podstawą.

Fig. 118.

Zakładając, że część obwodu podstawy stanowi linia krzywa, 
a część prosta, otrzymamy powierzchnię i objętość części cylindra, 
zawartej pomiędzy dwiema płaszczyznami równoległemi do osi i dwie­
ma przecinającemi oś.

Prz. 4. Prosty cylinder posiada podstawę Ax2+By?=1 i jest 
przecięty płaszczyzną z—h+px+qy. Okazać, że współrzędne środka 
ciężkości bryły czynią zadość równaniom iAhx~p, 4Bhy—q1 2z—h+ 
+px + qy.

420. Powierzchnie kuliste. Dwa rodzaje rzutów po­
wierzchni kulistej są szczególnie użyteczne, mianowicie rzut 
na opisany cylinder i rzut na płaszczyznę, przechodzącą przez 
środek. Rozważymy te obydwa rzuty po kolei.

Obierzmy początek układu prostokątnego w środku kuli; 
w takim razie osie x, y, z przetną jej powierzchnię w punktach 
A, B, C. Współrzędne biegunowe jakiegoś punktu P będą, jak 
zwykle, OP — a^ kąt zOP~^ i N0A = ^-, niech prócz tego odle­
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głość PL punktu P od osi z będzie równa p; oczywiście 
OL^z.

Opiszmy na kuli cylinder, stykający się z nią według 
koła, którego ćwiartkę stanowi luk AB. Otrzymamy na cylindrze 
rzut punktu P, przedłużając LP do przecięcia z powierzchnią 
cylindryczną w P'. W myśl tej definicyi każdy punkt kuli P 
posiada ze swym rzutem P' jednakowe współrzędne z i p.

Pole elementu PQR powierzchni kulistej jest równe PQ. QR, 
czyli a sin 3de . ad^. Pole rzutu P'Q'R' na cylinder wynosi 
P'Q’.Q'R\ albo ad^.dz', gdzie z‘= CL = a - a cos 3; wstawiając tę 
wartość na miejsce z', znajdziemy, że obydwa te pola są równe. 
Tak więc każdy element powierzchni kuli jest równy swemu rzu­
towi na cylinder. *)

*) Związek pomiędzy wymiarami cylindra i kuli odkrył Archi- 
medes i napisał o tern dwie księgi. Badał on zarówno powierzchnie 
jak i objętości całkowite oraz części, zawarte pomiędzy płaszczyznami 
prostopadłemi do wspólnej osi. Dokonane odkrycia sprawiły mu tyle 
rozkoszy, że polecił wyryć na swym kamieniu grobowym cylinder, 
okalający kulę.

Z rozważań powyższych wynika, że i każda skończona 
część powierzchni kuli jest równa polu swego rzutu na jaki­
kolwiek cylinder opisany. Przy pomocy tego prawidła można 
wyznaczać pola różnych figur kulistych. Tak np. powierzchnia, 
którą wycinają z kuli dwie płaszczyzny równoległe, poprowa­
dzone w odległości h jedna od drugiej, jest równa powierzchni 
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bocznej cylindra o wysokości h, czyli 2v.ah. Wynik ten jest 
niezależny od położenia płaszczyzn; muszą one tylko być ró­
wnoległe. Również krzywa powierzchnia odcinka kulistego 
o wysokości h wynosi 2^ah.

421. Ważne to twierdzenie znalazło zastosowanie w konstrukcyi 
kart geograficznych. Rzuca się powierzchnię kuli ziemskiej w sposób 
podany wyżej na opisany cylinder, a następnie rozwija się powierz­
chnię cylindra na płaszczyźnie. W ten sposób cała ziemia daje się 
wyobrazić na mapie prostokątnego kształtu. Konstrukcya taka posiada 
tę zaletę, że równym polom na kuli odpowiadają równe pola na mapie. 
Dotyczy to wszelkich obszarów, dużych i małych, bez względu na to, 
w jakich okolicach kuli ziemskiej są położone. Wada konstrukcyi po­
lega na tem, że jakaś drobna figura na mapie jest niepodobna do odpo­
wiedniej figury na kuli. Jeżeli jeszcze figura leży blizko linii zetknięcia 
z cylindrem, to podobieństwo jest do celów praktycznych wystarcza­
jące, natomiast w pobliżu bieguna linii zetknięcia figury są rażąco 
niepodobne; tak np. małemu kołu, położonemu w okolicach bieguna, 
odpowiada wydłużony owal. W niektórych innych rodzajach kart geo­
graficznych, np. Mercatora, mała figura na mapie jest podobna do odpo­
wiedniej figury na kuli, lecz za to równym polom na mapie nie odpo­
wiadają równe pola na kuli.

Prz. Wykonano mapę, trzymając się zasady następującej. Obrano 
na powierzchni kuli o promieniu jednostkowym punkt O i na mapie 
odpowiadający mu punkt O'; aby wyznaczyć punkty P', Qj odpowia- 

OP dające punktom P, I na kuli, odmierzono długości OrP’=atan

00i O‘Q‘=atan 2 , a kąt P'O'Q' uczyniono równym POQ. Dowieść, że 

odpowiadające sobie nieskończenie małe części kuli i mapy są podobne. 
Prócz tego dowieść, że skala mapy w okolicach jakiegoś punktu P' 
zmienia się, jak a2+0‘P‘2.

Jeżeli w związkach powyższych zastąpimy tan przez sin, to pola 
odpowiadających sobie obszarów będą w stosunku stałym.

Nazywa się to rzutem stereograficznym i konstrukcyą chordalną.

422. Środek ciężkości jakiejkolwiek części powierzchni ku­
listej leży w tej samej odległości od płaszczyzny zetknięcia, co 
środek ciężkości rzutu tej części na cylinder opisany. Wynika to 

wprost ze wzoru 7=3, bo elementy m i rzędne z powierzchni 

kulistej są równe odpowiednim elementom oraz rzędnym rzutu.
Wyciągamy stąd wniosek, że środek ciężkości powierzchni 

strefy kulistej, zawartej pomiędzy dwiema płaszczyznami ró- 
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wnoległemi, leży razem ze środkiem ciężkości odpowiedniej 
strefy cylindra, czyli na połowie drogi pomiędzy płaszczyznami 
na promieniu prostopadłym.

Tym sposobem środek ciężkości cienkiej warstiuij półkulistej 
o grubości stałej leży w środku środkoiuego promienia.

423. Prz. 1. Odcinek kuli o wysokości h ma podstawę płaską. 
Okazać, że środek ciężkości całkowitej powierzchni odcinka (krzywej 

ah
i płaskiej) leży w odległości 4 od podstawy; a oznacza w tern 
promień kuli.

Prz. 2. Odległość środka ciężkości wycinka powierzchni kulistej 
(t. j. części powierzchni kuli, zawartej w jednym kącie dwóch pła- 

, rasino 
szczyzn, przechodzących przez środek) od osi jest równa ———, gdzie 
2a oznacza kąt wycinka.

Prz. 3. Czasza, zrobiona z cienkiego jednorodnego materyału ma 
kształt odcinka kulistego; zamyka ją płaskie okrągłe wieko, zrobione 
z tego samego materyału, i tej samej grubości. Wieko składa się 
z dwóch połów, osadzonych na zawiasach na średnicy podstawy. Cza­
szę postawiono na gładkiej płaszczyźnie poziomej z jedną połową wieka 
otwartą i spoczywającą na drugiej. Okazać, że płaszczyzna wieka two-

a
rzy z płaszczyzną poziomą kąt ? taki, że 3rtan =4tan 2 ; a oznacza 

tu kąt, pod którym promień wieka widać ze środka kuli.
(Math. Tripos, 1881.)

424. Wyznaczyć środek ciężkości trójkąta sferycznego.
Wykonajmy naprzód rzut jakiejkolwiek części powierzchni kuli­

stej na płaszczyznę, przechodzącą przez środek; płaszczyznę tę obie- 
rzemy za płaszczyznę xy. Niech dS oznacza element powierzchni, dII 
rzut jego i 8 kąt, który normalna w dS tworzy z osią z. W takim razie

a z
dW=--dS. cos ^=dS.—.

a
Całkując, otrzymamy al=Sz.

Wynikają stąd twierdzenia następujące: środek ciężkości jakiej­

kolwiek części S powierzchni kulistej leży w odległości — od płaszczy- 
S

zny, przechodzącej przez środek; II oznacza w tein rzut powierzchni S 
na ową płaszczyznę *).

*) Zastosowaliśmy tu metodę, podaną przez prof. Giulio, głównie 
dla tego, że powyższe twierdzenie pomocnicze posiada znaczenie ogólne 
i może być użyteczne w innych przypadkach. Praca Giulio ukazała się 
w tomie czwartym czasopisma Journal de Mathematigues Liouville’a. 
Istnieje przekład angielski w Mechanical Problems Waltona.
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Twierdzenie powyższe jest następstwem związku Cos=—. Nie 
a

tylko kula posiada taką właściwość. Kula o promieniu stałym, poru-

Fig. 120.

boków AC, BC na tę płaszczyznę;

szająca się tak, że jej środek pozo- 
staje w płaszczyźnie xy, wytwarza 
powierzchnię, posiadającą taką sa­
mą właściwość. Można przytoczyć 
jako przykład pierścień kołowy.

Zastosujemy teraz powyższe 
twierdzenie pomocnicze do trójkąta 
sferycznego. Niech A, B, C ozna- 
czają kąty, a, b, c boki, O środek 
kuli i p promień. Poprowadźmy 
z wierzchołka C prostopadłą CN do 
płaszczyzny A OB i utwórzmy rzuty 
będą to łuki eliptyczne AN, BN.

W myśl twierdzenia pomocniczego

z:p=pole ANB:pole ABC.
Prócz tego

(pole ANB)=(pole A OB)- (pole AOC) cosA- (pole BOC) cos B— 
p2

—~(c—b cos A—a cosB).

Oznaczmy przez E nadmiar sferyczny trójkąta, czyli E=A+B+C— T. 
Wiemy z trygonometryi sferycznej, że pole ABC=^E, a zatem

z c— bcosA— acosB
p - 2E

Wzór ten daje odległość środka ciężkości od płaszczyzny AOB, zawie­
rającej bok AB trójkąta. Analogiczne wzory wyrażają odległości od 
płaszczyzn BOC, COA, zawierających boki pozostałe.

Prz. 1. Jeżeli p, q, r oznaczają łuki prostopadłe z wierzchołków 
A, B, C do boków przeciwległych, a G środek ciężkości trójkąta sfe­
rycznego, to 

cosAOG-_cosBOG-_ cosCOGr _ 1 
asin p bsin q csinr 2E

Jest to równoznaczne z wzorem, podanym w Statyce Moigno.
Prz. 2. Powierzchnię zatoczyła łańcuchowa, obracając się około 

swej osi. Obieramy tę oś za oś z, a płaszczyznę, opisaną przez kie­
rownicę, za płaszczyznę xy. Rzucamy prostokątnie dowolną część S 
owej powierzchni na płaszczyznę xy, i niechaj V oznacza objętość cy­
lindrycznej bryły, którą okalają prostopadłe z obwodu figury S. Do­
wieść, że x i y powierzchni S i bryły V są jednakowe, ale z pier­
wszej jest dwa razy większe niż drugiej. (Giulio, a także Walton).
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425. Powierzchnie i bryły obrotu wogóle. Znana krzy­
wa płaska obraca się około osi, położonej w płaszczyźnie tej 
krzywej; obieramy oś obrotu za oś z i oznaczamy kąt, o który 
obróciła, się krzywa, przez 2a. Chodzi o wyznaczenie środka 
ciężkości zatoczonej powierzchni i objętości.

Każdy punkt zatacza oczywiście łuk koła, którego środek 
leży na osi z, a zatem cała bryła będzie symetryczna wzglę- 

przez oś z i dzielącej na półdem płaszczyzny, przechodzącej 
wszystkie łuki. Płaszczyznę tę 
obieramy za płaszczyznę xy, 
w niej leży szukany środek cięż­
kości. Dajmy na to, że PP' 
jest połową łuku, który zato­
czył punkt P; drugą połowę, 
leżącą za płaszczyzną xz, pomi­
nięto na rysunku.

Fig. 121.

kiem elementarnym krzywej tworzącej; w myśl twierdzenia 
Pappusa powierzchnia elementarnego paska, który zatacza ds^ 
będzie m = 2xads. Środek ciężkości takiego paska leży na MP

3C s i n 0. 
w odległości —-—- od M. Stąd wynika, że współrzędne środka 

ciężkości powierzchni są
_ Zma ^ds sina _ fxzds r =--—=——. , z=^-r——.źm ]xds a fxds

Tak samo znajdziemy współrzędne środka ciężkości bryły, 
a mianowicie

_ Zma Jx2do sina _ fxzdo 
Em fxdo a ‘ fxdf3 ‘

gdzie do oznacza element pola krzywej danej. Zamiast do mo­
żemy napisać dxdz lub rd^dr stosownie do tego, czy mamy ra­
chować we współrzędnych Kartezyusza czy biegunowych; je­
dnocześnie zastępujemy pojedyńczy znak całki przez znak cał­
kowania podwójnego.

Otrzymujemy tu oczywiście te same całki, które służą 
w matematyce wyższej do wyrażania momentów oraz iloczy­
nów bezwładności (czyli momentów odśrodkowych) łuków i po­
wierzchni. Jeżeli poznaliśmy prawidła wyznaczania tych mo­
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mentów, to rzadko wypada nam wykonywać całkowanie; zwy­
kle przytaczamy od razu rezultat, jako coś znanego. Prawidła 
te są podawane zazwyczaj w związku z dynamiką ciał szty­
wnych, gdyż znajomość ich jest w tej gałęzi wiedzy sprawą 
zasadniczą, ale można je znaleźć także w niektórych trakta­
tach rachunku całkowego, jak np. w dziele prof. Williamsona.

Prz. 1. Ćwiartka koła o promieniu a wykonała całkowity obrót 
około osi, równoległej do jednego z promieni granicznych i położonej 
w odległości b od niego. Dowieść, że środki ciężkości (1) krzywej po­
wierzchni powstałej bryły, (2) samej bryły leżą w odległościach

a(2b±a) . a(8b±3a)
xb±2a 2(3xb±4a)

od płaszczyzny, którą zatoczył drugi promień graniczny. Przypuszcza 
się tutaj, że oś obrotu nie przecina ćwiartki tworzącej.

Prz. 2. Połówka elipsy obróciła się o kąt prosty około średnicy 
granicznej. Okazać, że odległość środka ciężkości powstałej bryły od

3ab
4rv2osi obrotu wynosi , gdzie 2r jest długością średnicy.

Prz. 3. Trójkąt obrócił się o dwa kąty proste około osi, położo­
nej w jego płaszczyźnie. Okazać, że odległość środka ciężkości bryły od 

2 (02+82+2)
osi jest równa---------------- , gdzie a, 3, Y są odległościami środków 

T(«+3+Y)
boków od osi.

Prz. 4. Koło o promieniu a obróciło się o kąt 2a około prostej, 
położonej w jego płaszczyźnie w odległości c od środka, większej niż a. 
Znaleźć objętość powstałej bryły i okazać, że jej środek ciężkości jest 

(4c2 - ) sin 0odległy o -—----- ------- od osi. (Coli. Ex, 1887.) 
4 Ca

426. Wyznaczyć środek ciężkości wycinka kuli z obrzeżem
kołowem.

Niech na fig. 114 OC oznacza promień środkowy wycin­
ka, N środek obrzeża i G środek ciężkości wycinka; oznaczmy
dalej przez V objętość całej kuli i przez a promień. W takim
razie

QG JON+OC
•"=4 2 ’ °2a' (Wallis.)

Aby to udowodnić uciekniemy się do tej samej metody, 
którą stosowaliśmy, wyznaczając środek ciężkości wycinka ko­
łowego. Niech PQ będzie elementem powierzchni, a punkt p 
środkiem ciężkości piramidy OPQ] w takim razie Op = ^OP.



— 335 —

Jeżeli G‘ jest środkiem ciężkości powierzchni wycinka, to 
OG={0G. Lecz według par. 422 OG' — ^{0N+ 0G\ a stąd 
wynika wyżej podany rezultat. Objętość V wyznaczyliśmy już 
w par. 415.

Opierając się na wyniku powyższym, możemy od razu 
otrzymać środek ciężkości półkuli. Gdy założymy ON=0, to 
wypadnie, że środek ciężkości półkulistej bryły leży na promieniu 
środkowym, a odległość jego od środka wynosi 3 promienia.

Z tego znowu daje się łatwo wywnioskować położenie 
środka ciężkości ósemki kuli. Po każdej stronie płaszczyzny, 
przechodzącej przez środek, są położone cztery ósemki, i ich 
środki ciężkości muszą leżeć w jednakowych odległościach od 
tej płaszczyzny. W tej samej odległości musi także leżeć ogólny 
środek ciężkości wszystkich czterech ósemek, a tylko co dowie- 

3adliśmy, że odległość ta wynosi —. Tak więc środek ciężkości o
ósemki kuli leży w odległości 3 promienia od każdej z trzech pła­
szczyzn granicznych.

427. Prz. 1. Następujące wzory określają środek ciężkości i ob­
jętość odcinka kuli, którego podstawa leży w odległości z od środka 
kuli 0:

m(a—z)2(2a+z)9 (a+z)2OG=Ą\---- —, V= 
2a+z 3

Prz. 2. Gęstość kuli zmienia się jak odwrotność odległości od 
punktu, położonego na powierzchni; okazać, że odległość środka cięż­
kości od tego punktu wynosi 2 średnicy. (Math. Tripos, 1867.)

Prz. 3. Gęstość kuli zmienia się jak odwrotność piątej potęgi 
odległości od pewnego punktu zewnętrznego. Dowieść, że środek 
ciężkości takiej kuli leży w środku przecięcia kuli z płaszczyzną bie­
gunową owego punktu zewnętrznego. (Math. Tripos, 1872.)

428. Środek ciężkości części elipsoidy. Pragniemy wy­
znaczyć środek ciężkości pewnej części elipsoidy, mając środek 
ciężkości odpowiedniej części kuli; zastosujemy w tym celu 
dalsze rozwinięcie tej samej metody rzutów, przy pomocy któ­
rej przechodziliśmy od pól kołowych do pól eliptycznych.

Mówimy, żeśmy utworzyli rzut [x'y'z} punktu (xyz), gdy 
napiszemy x =axj y=byj z—cz'\ mówimy także, że punkty 
(xyz) i wyz'} odpowiadają sobie. Bryły V, V’ odpowiadają so­
bie, jeżeli granice ich zakreślają punkty odpowiednie. Niech 
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(xyz) i (^x y'z'} będą środkami ciężkości brył V, V'; wypa- 
dnie, że

V= fffdxdijdz=abcfffdx'iiy'dz'=abcV.

W podobny sposób otrzymamy x =ax‘, y=by\ z — cz'.
Z równań powyższych wynika, że stosunek odpowiadających 

sobie objętości jest stały^ oraz że środek ciężkości jednej odpowiada 
środkowi ciężkości drugiej.

Można również udowodnić *),  że (1) prostym równoległym 
odpowiadają równoległe, i (2) stosunek długości odcinków ró­
wnoległych w rzucie nie ulega zmianie. Stąd wynika, że pra­
widło dotyczące pól, wyłożone w par. 403, rozciąga się i do 
brył.

*) Wyznaczmy rzut A’ B' prostej AB, pozostawiając y, z bez 
zmiany i pisząc x=ax'. Geometrycznie zbudujemy A‘B‘, powiększając 
odcięte LA, MB (L i M oznaczają rzuty punktów A i B na yz) w sto­
sunku a-A. Wypadnie LA'—a. LA i MB'—a. MB. Czyniąc to samo z pro­
stą CD równoległą do AB, dojdziemy łatwo z podobieństwa trójkątów, 
że prosta CD' jest także równoległa do A'B', i że stosunek CD''.A'B' 
jest równy stosunkowi CD: AB. Powtarzamy następnie to samo dzia­
łanie, pisząc y—by' i wreszcie z=cz'. Twierdzenie jest oczywiście tak 
samo słuszne po trzecim rzucie, jak i po pierwszym.

Zasady powyższe zastosujemy do bryły elipsoidalnej. Ró­
wnanie elipsoidy, posiadającej osi 2a, 2b, 2c, przechodzi w ró­
wnanie kuli współśrodkowej, gdy podstawimy x = axj y = byj 
z—cz'. Z tego wynika, że wszystkie twierdzenia rzutowe dają 
się przenieść z kuli na elipsoidę.

429. Prz. 1. Wyznaczyć środek ciężkości wycinka elipsoidy 
z obrzeżem eliptycznem.

Niech O będzie środkiem elipsoidy a N środkiem obrzeża. W ta­
kim razie ON jest średnicą sprzężoną płaszczyzny obrzeża; przypuść­
my, że ta prosta przecina powierzchnię elipsoidy w punkcie C. W par. 
426 mieliśmy twierdzenie odpowiednie dla wycinka kuli. Podane tam 
wartości OG- i V zależą od stosunków odcinków równoległych, mo­
żna więc przenieść to na elipsoidę. Środek ciężkości G wycinka eli­
psoidy leży zatem na ON, i wypadnie

OG=34
ON+OC

2
ON

V=200Vo-

Prz. 2. Współrzędne środka ciężkości ósemki elipsoidy, zawartej

pomiędzy trzema płaszczyznami sprzęźonemi, są x
3a
8‘

36
8‘

_ 3c 
z——
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Prz. 3. Środek ciężkości i objętość odcinka elipsoidy określają 
wzory następujące:

oc =3 (+z)2 v_(C-z)2(2c+2)y
• 4 2c+z‘ 4c8 10

W tein 2c oznacza średnicę sprzężoną z podstawą odcinka, z rzędną tej 
płaszczyzny, mierzoną wzdłuż c, i Vo objętość całej elipsoidy.

430. Zbudujmy dwie elipsoidy współśrodkowe i współosiowe; po­
między niemi powstanie cienka warstwa. Niech (a, b, c) i (a+da,...) ozna­
czają połowy osi elipsoid a p i p+dp prostopadłe do dwóch płaszczyzn 
stycznych równoległych. W takim razie t—dp będzie grubością warstwy 
w jakimkolwiek punkcie. Oznaczmy dalej przez da element powierzchni 
jednej z elipsoid, a przez dII rzut jego na płaszczyznę xy; wypadnie, że

pz dn=da—.
c2

Prz. 1. Okazać, że rzędna z środka ciężkości jakiejkolwiek części 

warstwy czyni zadość równaniu z v= c2 ( dI, gdzie V oznacza obję-
J P

tość tej części warstwy.
Prz. 2. Elipsoidy, stanowiące granice warstwy, są podobne, tak że 

da db dc dp
—=—=—==—; okazać, że z:c—Ildc:V.a b c p

Gdy dwie płaszczyzny równoległe wycinają część takiej cienkiej 
warstwy, to środek ciężkości tej części leży na wspólnej średnicy sprzę­
żonej w jednakowych odległościach od płaszczyzn. Par. 428.

Prz. 3. Granicami warstwy są elipsoidy współogniskowe, tak że 
ada=bdb=cdc=pdp. Dowieść, że

z ndcf ( c2\k22 / c2\)
c v l \ a2/ a2 \ b2) b2 ^

gdzie IIk2 i IIk22 są odpowiednio momentami bezwładności II wzglę­
dem osi x i y (425).

Prz. 4. Gęstość warstwy, zawartej pomiędzy elipsoidami współ- 
środkowemi, podobnemi i położonemi podobnie, zmienia się jak od­
wrotność sześcianu odległości od punktu, położonego wewnątrz elip­
soidy mniejszej; dowieść, że punkt ten jest środkiem ciężkości.

Jeżeli warstwa jest cienka i gęstość zmienia się, jak odwrotność 
sześcianu odległości od punktu zewnętrznego, to środek ciężkości leży 
w płaszczyźnie biegunowej owego punktu. Wyznaczyć położenie jego.

(Math. Tripos, 1880).
Przypuśćmy, że warstwa jest cienka, i punkt O.leży w prze­

strzeni wewnętrznej. Budujemy elementarny stożek z wierzchołkiem 
w O', wykraje on z warstwy dwie objętości elementarne v i v‘, poło­
żone w odległościach r i r' od O. Z właściwości elipsoid podobnych 

Statyka. 22
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wynika, że — — 7/2. Niech D, D' oznaczają gęstości tych elementów.

u.pPonieważ D=,a 1D=/a przeto vDr=v' D'r', t. j. środek ciężkości ele­

mentów leży w 0. Stąd daje się łatwo wywnioskować, że w tym sa­
mym punkcie leży środek ciężkości całej cienkiej warstwy. Utwórzmy 
warstwę grubą, łącząc pewną liczbę warstw cienkich; z powyższego 
wynika, że środek ciężkości takiej grubej warstwy leży także w 0.

Niech teraz 0 będzie punktem zewnętrznym, i przypuśćmy, że 
stożek elementarny, wychodzący z 0, przecina płaszczyznę biegunową 
tego punktu w odległości p od 0. Biorąc pod uwagę, że p jest średnią 
harmoniczną odległości r i r', znajdziemy z łatwością, że vDr+v' D'r' = 
=(vD+v‘ D‘)p, czyli że środek ciężkości objętości elementarnych v i v‘ 
leży w płaszczyźnie biegunowej punktu 0; stąd zaś wynika, że środek 
ciężkości całej warstwy leży w tejże płaszczyźnie.

431. Środki ciężkości brył i powierzchni wogóle. Wzory 
zasadnicze dla wszystkich przypadków znaleźliśmy już w par. 380, 
a mianowicie:

_ Zma _ Zmy _ Zmz
"=Zm‘ "=Em‘ 5xm

Różnice, które mamy wskazać, zachodzą jedynie w wyborze 
elementu m.

Wyznaczmy naprzód środek ciężkości bryły. Jeżeli mamy 
stosować współrzędne Kartezyusza, to obieramy m = dxdydz i za­
stępujemy Z znakiem potrójnego całkowania. A więc będzie

fff dxdydz . x . JJJ dxdydz. y - JJJ dxdydz . z
fffdxdydz ‘ 9 fffdxdydz ‘ Z fffdxdydz

Wzory te są oczywiście ważne i dla ukośnokątnego układu 
współrzędnych.

Stosując współrzędne biegunowe bierzemy
m = rd^ . dr . r si n 3 de, 

oraz x=rsin 8 cos ©, y = rsin S sin«, z=rcos9 i stawiamy zamiast 
Z całkę potrójną; uzasadnienie tych związków można znaleźć 
w podręcznikach rachunku całkowego. Wypadnie

— fff rs sm2 ^ cos ^drd^d^ JJJr3sin29sinq drd 8 dep 
" fff r2 sin 9 dr dSdp ‘ 9 fff r2sin 8 dr dde ‘ 

fff rsinJ cos 9 dr do de 
fff r2 sin ^ dr d^d^
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Przy współrzędnych cylindrycznych bierzemy m=pd« . dpdz, 
a także x=pcose, y=psin e. Wypadnie

— fff p2cosedodp dz _ fff p2 sin « dedp dz 
"F fffpd^dpdz ‘ fffpd^dpdz

— JJpzdedpdz 
fffp^dpdz ’

Jeżeli wreszcie x, y, z są danerni funkcyami trzech zmien­
nych pomocniczych u, v, w, to możemy zastosować wyznacz­
nik Jakobiego, jak w par. 411. Otrzymamy wówczas m — Jdududiv. 

432. Aby wyznaczyć środek ciężkości powierzchnią obiera­
my przedewszystkiem element m stosownie do rodzaju współ­
rzędnych, który mamy stosować.

Jeżeli równanie powierzchni jest dane w postaci z— f(x, y\ 
to tworzymy rzut elementu powierzchni na płaszczyznę xy. Pole 
tego rzutu będzie dxdy. Niech a, 3, Y będą kątami kierunko­
wymi normalnej do tego elementu; w takim razie pole elementu 
wynosi sec 7 dxdy. Taką wartość posiada w tym razie element m, 
i wypadnie

„_Jsecidxdy.x - =f/sec^dxdiL^ ; t d 
ffsecydxdy ‘ J ffsecydxdy

Z równania normalnej wynika, że
1 / /d22 idz^]1'^ Sec= =1-— + — ( . COS l \dxl \dy / )

Jeżeli równanie powierzchni jest dane' we współrzędnych 
cylindrycznych z=f(p, «), to w podobny sposób znajdziemy 

f / 1 dz\2 / dz 2,1/, m=eded (1*dp) +y).
Gdy wreszcie mamy równanie powierzchni we współrzęd­

nych biegunowych r=f(^, «), to
(idr\^ idr\^ ‘/2 m=rdSdo— + sin?9 — + r2 sin29 " .
Odr/ )

433. W pewnych razach dogodniej jest rozcinać bryłę na 
elementy większe; należy zwłaszcza, gdzie tylko można, obierać 
za elementy cienkie warstwy, których objętości i środki cięż­
kości są już znane. Dajmy np. na to, że chodzi o wyznaczenie 
współrzędnej x dla pewnej bryły. Za element obieramy cienką 
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warstwę bryły, zawartą pomiędzy dwiema płaszczyznami pro- 
stopadłemi do osi x. Jeżeli granicę tej warstwy stanowi elipsa, 
trójkąt lub jakaś inna figura, której pole A jest znane, to mo­
żemy zastosować wzór

—_fAdx. x 
"F fAdx ’

Mamy tu całki pojedyńcze zamiast całek potrójnych. Jeżeli 
znamy nietylko pole A, ale i środek ciężkości warstwy, to mo­
żemy przy wyznaczaniu y i z korzystać z tych samych ele­
mentów.

Weżmy jeszcze dla przykładu bryłę niejednorodną. Za­
miast wyżej wzmiankowanej warstwy płaskiej możemy tu obrać 
jakąś warstwę inną, ale w całej rozciągłości jednorodną. Jeżeli 
mamy masę i środek ciężkości takiej warstwy, to całkowanie 
pojedyńcze wystarczy do wyznaczenia środka ciężkości całej 
bryły.

434. Prz. 1. Wyznaczyć środek ciężkości ósemki bryły

Ze względu na symetryę dostatecznie będzie wyznaczyć z, i oczy­
wiście uprościmy zagadnienie, uwalniając równanie od a, b, c; zakła­
damy w tym celu x—ax', y—by1, z=cz' (428).

Za element obieramy warstwę płaską, 
równoległą do płaszczyzny xy, a do tego po­
trzeba mieć pole A przekroju PMQ. Pole to 
będzie

1
A—f y' dx'=f (1 — z,n—x'n)ndx'.

1
Granicami całkowania są tu O i (1 — z’n)n.

Fig. 122. Podstawiając x‘=(1—z'n)£, sprowadzimy to do

A=(1—z’)— (1-6)"6" d6=(1—z‘")n B. 
n •

Granicami całkowania są tu O i 1, a zatem B można wyrazić, jeżeli 
potrzeba, w funkcyach gamma.

Dalej znajdziemy
z - SAdA.z' fA~z,ny dz’.z’ ,
— =----- ----- =-------------- -------- od z—0 do z =1.

° JAdZ JA-^nYdz'

1 .
Zakładając Z" =5 oraz — = m, sprowadzimy to wyrażenie do
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z J(1-6)762" 1dE_T(2m+1)r(2m) T(3m+1) 
c /(1-g2mem-ldĘ P(4m+1) T(2m+1)P(m)

Stosując związek F(x+1)=xT(x), otrzymamy 

z 3 T(2m)T(3m) , . 1 
— = — , gdzie m=—. 

c 4 T(m)T(4m) n

Prz. 2. Wyznaczyć środek ciężkości półkuli, w której gęstość 
zmienia się, jak n—ta potęga odległości od środka.

Cienka półkuli sta warstwa posiada w tym razie gęstość stałą; 
znamy objętość oraz środek ciężkości takiej warstwy, a więc obieramy 
ją za element. Osiągniemy tu jeszcze i inną korzyść, a mianowicie gra­
nice będą stałe, bo warstwa skrajna bryły jest jednorodna.

Promień środkowy półkuli obieramy za oś z, i niech (r, r+dr) 
będą promieniami pewnej warstwy, a jej gęstość D=ur". W takim razie

m=2Kr2dr. p.r", 
padnie więc

a według par. 422 rzędna środka ciężkości- Wy-
2

f2nr2 dr p.r ‘ 2 1
z—--------- — —

J2nl2drur 2
n+3 a"+4—b"+4
n—4 an+^_ bn^

Całkowaliśmy tu w granicach od r=b do r=a, a więc znaleźliśmy śro­
dek ciężkości warstwy półkulistej grubości skończonej; promienie we­
wnętrzny i zewnętrzny są tu odpowiednio równe b i a. Dla półkuli 

a n—3
pełnej będzie 6=0 Jeżeli n+3 jest dodatnie, to z— 2 n+q’ w innych 

przypadkach z—Q. Jeżeli n—3, albo n+4, jest zerem, to całkowanie 
prowadzi do postaci logarytmicznych, ale z jest w każdym razie zerem.

Prz. 3. Gęstość w ósemce elipsoidy zmienia się, jak kwadrat od- 
5c a2+b2+2c2 

ległosci od środka; okazać, że z— —-------—.8 16 a2+b2Ą-c2

435 Dwa twierdzenia Langrange’a. De/inicya. Gdy po­
mnożymy masę cząsteczki przez kwadrat odległości od danego 
punktu 0, to iloczyn nazywa się momentem bezwładności czą­
steczki względem punktu 0. Moment bezwładności układu czą­
steczek jest sumą momentów bezwładności cząsteczek poszcze­
gólnych.

436. Pierwsze twierdzenie Lagrangea. Moment bezwład­
ności układu cząsteczek względem punktu O, składa się z dwóch 
części; jedna z nich jest równa momentowi bezwładności układu 
względem środka ciężkości, a druga momentowi bezwładności, 
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który by posiadał układ względem O, gdyby masę jego skon­
centrować w środku ciężkości.

Dajmy na to, że cząsteczki m,, m, .... są położone w punk­
tach A1, A, ...., posiadających współrzędne (x, y, z,), (x, J2 Z,) .... 
w odniesieniu do 0, jako do początku. Niech-x, y, z, ozna­
czają współrzędne środka ciężkości G, i załóżmy x = x + x\ 
J=y+y‘, z=z+z‘. W takim razie

Z(m . OA2) — ^m !(x +2)2 + (J+ u')2 + (z +2)3]
= Em . OG2 + 222ma‘ + 2[Zmy‘ + ^Thmz1 + z (m GA?).

Początkiem współrzędnych kreskowanych jest środek cięż­
kości, a zatem Zmx‘=0, Zmy‘=0, 'Lmz' — Q, i

Z(m. OA2)=^M. GOA^m. GA2) . . . . (A), 
gdzie M — ^m. Równanie to wyraża twierdzenie Lagrange’a w po­
staci analitycznej.

Zaznaczamy, że moment bezwładności ciała względem pun­
ktu 0 jest najmniejszy wtedy, gdy 0 jest środkiem ciężkości.

W dynamice ciał sztywnych potrzebne bywa pewne ważne 
uogólnienie twierdzenia powyższego. Dowodzi się lam, że jeżeli 
f(x, y, z) jest jakąkolwiek funkcyą drugiego stopnia współrzęd­
nych cząsteczki, to

Xmf(x, y, z) — Jff(x, y, z) + ^m[(x\ y\ z').

437. Drugie twierdzenie Lagrange’a. Niechaj m, m ozna­
czają masy jakichkolwiek dwóch cząsteczek, i AA' odległość 
pomiędzy niemi; w takim razie twierdzenie daje się analitycz­
nie wyrazić tak:

^(mm'. AA‘?)=ME(m. GA2)........................ (B).
Suma iloczynów mas, wziętych po dwie, oraz kwadratu odle­
głości pomiędzy niemi jest równa iloczynowi z całej masy przez 
moment bezwładności względem środka ciężkości.

Można to łatwo wyprowadzić z pierwszego twierdzenia La- 
grange’a. Według (A) mamy

Em, OA2=M . OG2 + ^mo GA2, 
gdzie X oznacza sumowanie dla wszystkich wartości a. Punkt 0 
można obierać dowolnie, umieszczamy więc go po kolei w A1, 
A2...., i tym sposobem wypadnie
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Z/n^A^^2 = M . ArG2 + ^mo GA^,
^m A2A2 —M.A2G2 + ^m GAr2

Mnożąc równania te odpowiednio przez m,, m2 .... i dodając ilo- 
czyny, otrzymamy

. ^mam^A^Aa2 = M^m^A^G2 + Emg . 'Lm^GA^.

Po lewej stronie Z oznacza sumowanie dla wszystkich wartości 
zarówno a jak i 3, a zatem każdy wyraz wystąpi dwa razy, 
raz w postaci m^ma. A^Aa2, a drugi raz w postaci mam^ . AAg2. 
Jeżeli pragniemy, aby każdy wyraz wchodził tylko raz, to mu- 
simy wziąć połowę prawej strony. Obydwa wyrazy są tam jed­
nakowe, a zatem

Zm,mą . A,A92 = MEm, • GA,?.

438. Prz. Niechaj symbol [ABC oznacza pole trójkąta, który po­
wstanie, gdy połączymy trzy punkty A, B, C; podobnież oznaczmy przez 
[ABCD\ objętość czworościanu, który powstanie, gdy połączymy cztery 
punkty A, B, C, D. Przy pomocy takich samych symbolów możemy 
rozciągnąć wyrażenia analityczne pól i objętości do dowolnej liczby 
punktów. Otrzymamy wówczas następujące rozszerzenia twierdzeń 
Lagrange‘a:

Sm OA 2=M.0G2+2m GA 2 a a a a 

Em m>[0A AA2=M^m \OGA ]2+^m mAGA A,12 a 3- a 3 0. 0 a 3 a 3-

Sm mom [OA AaA 12=M2m mAOGA A,12+2m mom [GA APA 12 & 3-03 a >- a 3 a 3 Y a 3 {

m m0A AA—M^m GA 2 0 3 a 3 a a 

hm mam [A APA ]2=Mhm mAGA AA2

hm mom m,[A A0A AA2=Mhm mom [GA A0A. ]2 & 3YO03Y0 0 a > Y

W każdej z tych seryi równanie pierwsze jest tylko powtórze­
niem odnośnego równania Lagrange’a, równania pozostałe podał Franklin. 

(American Journal of Mathematics, 1888.)

*439. Zastosowania geometryczne. Przy wykrywaniu no­
wych twierdzeń geometrycznych może nieraz przyjść nam z po­
mocą okoliczność, że każde ciało posiada tylko jeden środek 
ciężkości. Metoda ogólna daje się opisać w kilku słowach. 
W pewnych punktach figury umieszczamy stosownie dobrane 
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ciężary; łącząc je różnymi sposobami, otrzymamy różne kon- 
strukcye środka ciężkości. Wszystkie te konstrukcye muszą pro­
wadzić do jednego i tego samego punktu. Podajemy niżej kilka 
przykładów.

Prz. 1. Proste, łączące środki przeciwległych boków czworokąta 
oraz prosta, łącząca środki przekątni, przechodzą przez jeden punkt, 
punkt ten jest środkiem każdego z trzech odcinków.

(Coli. Exam.)
Prz. 2. Środek ciężkości czterech jednakowych cząsteczek, poło­

żonych w tej samej płaszczyźnie, jest środkiem stożkowej, która dzieli 
na pół odcinki, łączące te punkty. (Caius Coli.)

Jeżeli punkt nie jest środkiem stożkowej, to ma w nim środek 
tylko jedna cięciwa tej stożkowej. Lecz w środku ciężkości, według 
przykładu poprzedzającego, dzielą się na pół trzy cięciwy, a więc jest 
on środkiem stożkowej.

Prz. 3. Przez każdą krawędź czworościanu poprowadzono pła­
szczyznę dwusieczną odnośnego kąta dwuściennego, przecinającą kra­
wędź przeciwległą. Okazać, że proste, łączące tak określone punkty 
krawędzi przeciwległych, schodzą się w jednym punkcie.

(St. John’s Coli., 1879.)
Umieszczamy w wierzchołkach ciężary, proporcyonalne do pól 

ścian przeciwległych. Środek ciężkości tych czterech ciężarów leży na 
każdej ze wzmiankowanych prostych.

440. Twierdzenia o środku ciężkości mogą być użyteczne jesz­
cze pod innym względem. Przychodzą one z pomocą pamięci, gdy 
pragniemy przypomnieć sobie związki, które istnieją pomiędzy pewny­
mi punktami, często spotykanymi w figurach geometrycznych, a inny­
mi punktami lub liniami konstrukcyi. Tak np., jeżeli zapamiętaliśmy 
przykład 1, to możemy od razu wyznaczyć odległość środka stożkowej 
wpisanej od dowolnej prostej, biorąc tylko momenty względem tej 
prostej.

Prz. 1. Stożkowa, wpisana w trójkąt odniesienia, posiada rów­
nanie powierzchniowe Vix + V my+ Vnz = 0. Okazać, że środek tej 
stożkowej jest środkiem ciężkości trzech cząsteczek, których ciężary 
są proporcyonalne do l, m, n, i które leżą w środkach boków. Punkt 
ten jest również środkiem ciężkości trzech cząsteczek, których ciężary 
są proporcyonalne do m+n, n+l, l+m, i które leżą albo w punktach 
zetknięcia albo w wierzchołkach trójkąta.

Przypuśćmy, że stożkowa styka się z bokami w D, E, F; w takim 
razie D i E dzielą boki BC i AC w stosunkach m:n i l:n. Umieśćmy 
w A, B, O takie ciężary §, m, %, aby ich środek ciężkości leżał w środku 
stożkowej. Ciężary 6 i m są odpowiednio równoważne z ciężarami 
^(Z+n) . n(m+n) .
- i , położonymi w E i D, wraz pewnym ciężarem, umiesz- 

n--------- ii
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czonym w C (par. 79). Lecz prosta, łącząca C ze środkiem 0 dzieli na 
pół odcinek DE, a więc biorąc momenty względem CO, znajdziemy 
że ciężary w D i E muszą być równe. Z tego wynika, że § i n są pro- 
porcyonalne do m+n i n+l.

Jeżeli stożkowa jest parabolą, to l+m+n=0, gdyż ciężary muszą 
się sprowadzać do pary sił, a zatem nieskończenie odległy koniec osi, 
lub nieskończenie odległe ognisko, jest środkiem ciężkości ciężarów 
Z, m, n, położonych w wierzchołkach A, B, G. Ponieważ iloczyny od­
ległości ognisk od wszystkich stycznych są równe, przeto ognisko bliż- 

a2 62 c2 
sze jest środkiem ciężkości ciężarów —, —, —■, umieszczonych 

Z m n
w wierzchołkach.

Prz. 2. Stożkowa, opisana na trójkącie, posiada równanie po­
wierzchniowe lyz+mzx+nxy=O. Okazać, że jej środek jest środkiem 
ciężkości sześciu ciężarów, a mianowicie ciężarów 12, m2, n2, umiesz­
czonych w wierzchołkach, oraz ciężarów — 2mn,— 2nl,—2lm, umieszczo­
nych w środkach boków.

stosować
Prz

441. Udowodniając właściwości geometryczne, możemy również
twierdzenia o rozkładaniu i dodawaniu sił.

1. Z wierzchołka D czworościanu poprowadzono prostą,
tworzącą równe kąty 8 z krawędziami DA, DB, DC;

AE
płaszczyznę ABC w punkcie E. Okazać że stosunki AB 

proporcyonalne do synusów kątów BEC, CE A, AED.
1 1 1

tego, że ------- 1----------- 1--------=
AD BD CD

3cos8

przetnie ona
BE CE
—,   sąBD CD

Okazać prócz

ED
Prz. 2. Przeciwległe boki czworokąta AB CD przecinają się w X 

iy. Okazać, że dwusieczne kątów X, Y, dwusieczne kątów B, D i wresz­
cie dwusieczne kątów A, C przecinają się na linii prostej; wypada tu 
poczynić pewne zastrzeżenia, które pary dwusiecznych brać należy 
(Fig. 29). (Math. Tripos, 1882.)

Przykładamy na bokach czworokąta cztery siły równe i wyzna­
czamy wypadkową, dodając je po dwie różnymi sposobami.

Prz. 3. Dowieść w drodze rozważań mechanicznych, że miejscem 
geometrycznem środków elips, wpisanych w czworobok, jest prosta, 
łącząca środki dwóch przekątni. (Coli. Exam.)

Niech litery A, B, C, D oznaczają kolejne wierzchołki. Na AB, 
AD, CB, CD przykładamy siły, proporcyonalne do tych boków. Uwa­
żajmy prócz tego, że odcinki boków od wierzchołka do przyległych 
punktów zetknięcia wyobrażają siły; wypadkowa takich dwóch sił prze­
chodzi przez środek elipsy. Lecz osiem takich sił daje razem cztery 
siły AB, AD, CB, CD, a więc i wypadkowa tych ostatnich przechodzi 
przez środek. Lecz wypadkowa sił AB, AD, jak również wypadkowa 
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sił CB, CD przechodzą przez środek przekątni BD. Wypadkowa prze­
chodzi także przez środek drugiej przekątni.

Prz. 4 Przeciwległe boki czworoboku ABCD (fig. 29) przecinają 
się w punktach X i Y. Dowieść, że stosunek odległości punktów X, Y 
od przekątni AC jest równy stosunkowi odległości od przekątni BD. 
Prócz tego dowieść, że każdy z tych stosunków jest równy stosunkowi 
AB. CD sin Y do AD. BCsin X.



ROZDZIAŁ X.

O SZNURACH.

442. Łańcuchowa. Sznury, o których będzie mowa w roz­
dziale niniejszym, mają być według założenia doskonale wiot­
kie. Rozumiemy przez to, że całkowite działanie, przenoszone 
przez każdy przekrój sznura, składa się z jednej siły, i linią 
działania tej siły jest styczna do linii sznura. Każdy przekrój 
normalny ma być tak mały, aby sznur można było uważać za linię 
krzywą, a zatem mamy prawo mówić o stycznej lub o pła­
szczyźnie ściśle stycznej.

Całkowite działanie w przekroju sznura nazywamy na­
prężeniem; będziemy je oznaczali literą T. W teoryi siła ta mo­
że być dodatnia lub ujemna, lecz jest rzeczą oczywistą, że w rze­
czywistości sznur może tylko ciągnąć. Naprężeniu przypisuje­
my znak dodatni, gdy wywiera ono na pewien przedmiot cią­
gnienie zamiast pchania.

Ciężar elementu długości ds wyrażamy przez wds. W sznu­
rze jednorodnym w jest ciężarem jednostki długości. Jeżeli sznur 
nie jest jednorodny, to iv oznacza ciężar jednostki długości pe­
wnego sznura wyobrażalnego; każdy element ds tego sznura wy- 
obrażalnego jest podobny i równy rozważanemu elementowi ds 
sznura danego.

443. Ciężki sznur jednorodny jest zawieszony w danych 
punktach A, B i pozostaje w równowadze w płaszczyźnie pionowej. 
Mamy znaleźć równanie krzywej, którą sznur tworzy. Krzywą tę 
nazywamy łańcuchową lub katenoidą pospolitą).*

*) Podajemy tu w krótkim zarysie historyę zagadnienia, znane­
go pod nazwą „Chainette" według Montucli. Problemat formy łańcu­
cha, zawieszonego w dwóch punktach, postawił Jakób Bernoulli, jako 
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Niechaj C oznacza najniższy punkt łańcuchowej, t. j. ten 
punkt, w którym styczna ma kierunek poziomy. Bierzemy za 
oś x poziomą prostą Ox, której odległość od C będziemy mogli 
następnie obrać według uznania. Prowadzimy prostą CO pro­
stopadle do 0x i obieramy punkt 0 za początek układu. Ozna­
czamy dalej przez • kąt, który styczna w jakimś punkcie P 
tworzy z 0x, przez To, T naprężenia w C^ P i przez s łuk CP. 
Na fig. 123 umieszczono oś x, która ma następnie wyobrażać 
kierownicę, bliżej krzywej, niż być powinno; uczyniono tak dla 
zaoszczędzenia miejsca.

Część CP sznura pozostaje w równowadze pod działaniem 
trzech sił, a mianowicie naprężeń T i T, działających w C i P 
w kierunkach strzałek, oraz ciężaru tej części ws, przyłożonego 
w środku ciężkości G łuku CP.

Biorąc rzuty na kierunek poziomy i pionowy, otrzymamy

Tcost=  .............................................. (1),

Tsinp = ws..........................................(2) 

zagadnienie dla innych matematyków ówczesnych. Sławę rozwiązania 
zdobyło czterech matematyków, a mianowicie: Jakób Bernoulli, brat 
jego Jan, Leibniz i Huyghens. Ogłosili oni swe rozwiązania w Actes de 
Leipsick (Act. Erud. 1691), nie podając jednak analizy; pragnęli zapewne 
pozostawić parę listków wawrzynu dla następców. Dawid Gregory 
ogłosił rozwiązanie w kilka lat później w Phil. Trans. 1697.

Matematycy mają zwyczaj po przezwyciężeniu jednej trudności 
atakować następne, a nawet wytwarzają sobie nowe przeszkody, aby 
mieć przyjemność je pokonywać. Tak też postąpił i Bernoulli; rozwią­
zawszy zagadnienie katenoidy w przypadku najprostszym, przystąpił 
natychmiast do przypadków trudniejszych. Założył naprzód, że sznur 
jest niejednorodny i postawił pytanie, jak powinna zmieniać się gęstość, 
aby krzywa miała postać daną, i jaka będzie krzywa, jeżeli sznur jest 
rozciągalny. Wkrótce potem Bernoulli ogłosił rozwiązanie bez podania 
analizy. Wreszcie postawił zagadnienie, jaką postać przybierze sznur 
pod działaniem siły centralnej. Bozwiązania tych wszystkich zagadnień 
podał następnie Jan Bernoulli w Opera Omnia. (Ob. także Short History 
of Mathematics Balia).

Montucla zaznacza, że zagadnienie łańcuchowej wzbudziło już 
ciekawość Galileusza, który miał jakoby przyjść do wniosku, że krzy­
wa jest parabolą. Venturoli stwierdził, że to posądzenie jest niesłuszne, 
Galileusz wskazywał jedynie na podobieństwo dwóch krzywych.
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Dzielimy następnie drugie z tych równań przez pierwsze. Wy­
pad nie

dy , , wsdetnt-7,()

Jeżeli sznur jest jednorodny, to iv jest stałe, i w tym razie do­
godnie jest założyć T = wc. Aby otrzymać krzywą należy całko­
wać równanie (3). Otrzymamy

/ds\2 /da\2 c2 — = 1 + — =1+5,

sds ____  skąd dy=-—===== i ij + A^ — 1 s2+c2.
V s2 + c2

Wypada pozostawić tylko znak górny, bo z (3) widać, że 
y wzrasta, gdy wzrasta x i s. Gdy s=0, to y + A = c. Obieramy 
oś x o c niżej od najniższego punktu sznura C; z powyższego 
wynika, że w takim razie A = O. Równanie przybiera teraz 
postać

y2 — s2 + c2....................................... (4).
Podstawiając taką wartość y w (3), znajdziemy

cds
V s2 + c2

= dx,

gdzie pierwiastek jest dodatni. Całka będzie
clog (s + Vs2 + c2) = x + B.

Lecz x i s znikają jednocześnie, a zatem B=clogc.
X

Z równania tego wypadnie Vs2 + c2 + s = cec. Bierzemy 
odwrotność i uwalniamy mianownik w sposób znany od pier-



— 350 —

X 
wiastka; wówczas będzie Vs2+c2— s — ce c.

Dodając i odejmując dwa równania ostatnie, otrzymamy 
przy pomocy (4)

x C. / T C

c c Cc Ce te /; S=gle - € / • • • • (5)

Pierwsze z tych równań jest równaniem katenoidy pospo­
litej we współrzędnych Kartezyusza. Prosta, którą obraliśmy 
za oś x, nazywa się kierownicą^ oś y osią łańcuchowej i punkt G 
wierzchołkiem.

Podnosimy jeszcze (1) i (2) do kwadratu i dodajemy; przy 
pomocy (4) otrzymamy

T2 = w2 (s2 + c2) = w2y2, 
skąd T= wy............................................ (6).

Równania (1) i (2) wyrażają dwie ważne właściwości krzy­
wej: (1) naprężenie poziome jest we wszystkich punktach krzywej 
jednakowe i równe wc, (2) naprężenie pionowe w dowolnym punk­
cie P jest równe ws, gdzie s oznacza długość łuku od wierzchołka 
do P. Dodajemy do tego jeszcze trzecią właściwość łańcucho­
wej, zawartą w równaniu (6), a mianowicie: (3) naprężenie wy­
padkowe w każdym punkcie jest równe wy, gdzie y jest rzędną, 
mierzoną od kierownicy.

444. Jeżeli PN oznacza rzędną punktu P (fig. 123), to 
T—w.PN. Poprowadźmy prostą NL prostopadle do stycznej 
w P; widzimy, że kąt PPL = ^, a na zasadzie (2) i (1).

PL^PN. sin*=s, 
NL = PN. cos P = c.

Te dwie właściwości geometryczne krzywej można byłoby 
również wyprowadzić z jej równania (5).

Różniczkując (3), otrzymamy
1 d^ 1 c — 

—— —=—, czyli ==9, • • • • Vł cos‘$ ds c COS"
Z trójkąta prostokątnego PNH wypada łatwo, że długość 

normalnej od krzywej do kierownicy, czyli PH, jest równa pro­
mieniowi krzywizny p w punkcie P.

Zwracamy uwagę, że wszystkie te równania zawierają tylko 
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jedną stałą nieokreśloną c; gdy stała ta jest dana, to kształt 
krzywej jest całkowicie określony. Położenie krzywej w prze­
strzeni zależy od położenia dwóch prostych, zwanych kierow­
nicą i osią. Stała c zowie się parametrem łańcuchowej. O dwóch 
łąkach katenoid, posiadających parametry jednakowe, mówimy, 
że należą do katenoid równych.

Według (7) pcos2^ = c, a zatem parametr c jest mały lub 
duży stosownie do tego, czy linia w okolicach wierzchołka jest 
silnie skrzywiona, czy słabo. Jeżeli np. sznur jest uwiązany 
w punktach A i B, położonych na jednym poziomie, to c bę­
dzie duże lub małe w porównaniu z odległością AB stosownie 
do tego, czy sznur jest wyprężony, czy luźny.

Można zawsze łatwo przypomnieć sobie związki, zachodzące w łań­
cuchowej pospolitej pomiędzy g, s, c, p, 1 i T, uciekając się do figury 
PLNH. Mamy tam PN—y, PL—s, NL=c, PH=ę. T—w. PN, i wreszcie 
kąt LNP, a także NPH, są równe 1. Tym sposobem ważne związki (1), 
(2), (3), (4) i (7) wynikają bezpośrednio ze zwykłych właściwości trój­
kąta prostokątnego.

445. Weźmy dowolny łuk łańcuchowej AB. Trzy siły, a miano­
wicie naprężenia w A i B oraz ciężar części AB, są w równowadze, 
a zatem linie działania tych sił muszą schodzić się w jednym punkcie. 
Tak więc środek ciężkości G łuku leży pionowo nad przecięciem stycz­
nych krańcowych tego łuku. Mamy tu dowód statyczny jednej części 
twierdzenia ogólniejszego, podanego w par. 399, prz. 1; dowiedliśmy 
tam jeszcze, że rzędna środka ciężkości wynosi połowę rzędnej punktu 
przecięcia normalnych krańcowych.

446. Prz. 1. Okazać, że, jeżeli sznur ciężki nie jest pionowy, to 
nie można zapomocą sił przyłożonych w końcach, wyciągnąć go tak, 
aby utworzył linię dokładnie prostą.

Dajmy na to, że sznur tworzy prostą, nachyloną do poziomu pod 
kątem 1, i niech W oznacza jego wagę. Gdy rozłożymy W w kierunku 
sznura i w kierunku prostopadłym, to wypadnie Wcost=0, a zatem 
kąt • musi być prosty. Dowód len nie wymaga jednorodności sznura.

Prz. 2. Sznur, umocowany w punktach A i B, nie leżących na 
jednym pionie, tworzy linię prawie prostą. Okazać, że c jest bardzo 
wielkie.

Niechaj V i •‘ oznaczają nachylenia stycznych w A i B, a l dłu­
gość sznura. W takim razie l=s— s‘=c(tany— tany’). Lecz • i V’ są pra­
wie równe, zatem c jest duże w porównaniu z l.

Prz. 3. Koniec A ciężkiego jednorodnego sznura AB o długości l 
jest umocowany nieruchomo, a na drugi koniec B działa siła pozioma 
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F—wa. Okazać, że odległości pozioma i pionowa pomiędzy punktami

A i B wynoszą odpowiednio alog------------- i Vl2+a2— a.
a

Prz. 4. Końce A i B ciężkiego sznura o długości 2Z są przywią­
zane do obrączek, nawleczonych na nieruchomy drążek poziomy, i na 
każdą obrączkę działa siła pozioma F—wl. Dowieść, że odległość po­
między obrączkami wynosi 2llog(1+ V2).

Prz. 5. Za zmienną niezależną obieramy nachylenie 1 stycznej 
do łańcuchowej w punkcie P. Okazać, że w takim razie

/ T d \ c c 
x=clog tan ( — 4- — , J= -, s=ctan^, P=——,

\4 2/ COS COS"

x=x— etan —, ij=—------ — ccol’ ,
\cos. 7 

gdzie x i y oznaczają współrzędne środka ciężkości łuku, zawartego 
pomiędzy wierzchołkiem i punktem P.

447. Gdy znamy położenie punktów zawieszenia A i B, a także 
długość sznura lub łańcucha, to możemy utworzyć dostateczną liczbę 
równań do wyznaczenia paramatru c katenoidy oraz położeń jej kie­
rownicy i osi.

Za początek współrzędnych obieramy punkt A, a za osi współ­
rzędnych prostą poziomą i pionową. Niech (h, k) będą współrzędnemi 
punktu B w odniesieniu do A, a l długością sznura AB. Te trzy wiel­
kości są dane. Niech dalej (x, y) i (x+h, y+k) będą współrzędnemi 
punktów A i B w odniesieniu do kierownicy i osi łańcuchowej; w ta­
kim razie x, y, c są wielkościami szukanemi. Według par. 443

y=S\e+e
x\ / a +h x+h
c), y+k=-^\e c+e c , U).

Długość l jest różnicą algebraiczną łuków CA i CB, a zatem według 
wzmiankowanego paragrafu

(B).

Jeżeli C leży pomiędzy A i B, to x jest ujemne. Te trzy równania wy­
starczają do wyznaczenia x, y i c, ale nie mo­
żna ich rozwiązać w postaci skończonej. Niewia­
dome x i y dają się wyrugować w sposób następu- 

x h
jący. Zakładając u=ec, v=ec, otrzymamy z (A) i (B)

(C).

Zaznaczamy, że v zawiera tylko jedną niewiadomą c, bo h jest dane.
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Aby wyrugować u podnosimy te równania do kwadratu i odejmujemy; 
wypadnie ostatecznie h h \

_ c26-e 20)............................ (D).

Jest to zgodne z równaniem, które podał Poisson w Traite de Meca- 
nique.

Z równania powyższego trzeba wyznaczyć c. Wypadną dwie rze­
czywiste wartości skończone, liczbowo równe, lecz różniące się w zna­
kach. Przy c ujemnem y jest ujemne, a więc ujemna wartość c odpo­
wiada łańcuchowej, zwróconej wypukłością do góry. Należy oczywiście 
wziąć dla c wartość dodatnią.

Aby przeprowadzić analizę równania (D), zakładamy c—— i na-
T 

dajemy mu postać
.......................................................................... ......

gdzie a2—l2—k2, i 2m=h. Obydwie te wielkości a i m są dodatnie, a po­
nieważ długość sznura l musi być większa niż odległość pomiędzy 
punktami zawieszenia, przeto znajdziemy, że a jest większe od 2m. Róż­
niczkując, otrzymamy

dz_m(emT+e-mr)-a.
dy

dz
Gdy 1=0, to — jest ujemne, a więc gdy Y wzrasta, poczynając od zera, 

dy
to z jest z początku równe zeru, następnie staje się ujemnem i wresz­
cie dodatniem dla dużych wartości . Z tego wynika, że istnieje tam 
pewna wartość, Y powiedzmy q—i, przy której z=0. Gdyby istniała 

dz
jeszcze druga, np. 1= i', to pochodna — znikałaby dwa razy, raz po- 

d 
między 1=0 i Y= i i drugi raz pomiędzy r=i i ^—i'. Okażemy, że jest 
to niemożliwe.

Różniczkując po raz drugi, otrzymamy
d2z (M ———mn2 e—e ).

dz
Pochodna ta jest dodatnia, gdyjest większe od zera, a zatem — wzra- 

dy
sta, poczynając od wartości 2m— a, gdy Y wzrasta, poczynając od y=0. 
Z tego wynika, że pierwsza pochodna nie może znikać dwa razy, gdy 
Y pozostaje dodatniem, a więc równanie daje tylko jedną wartość do­
datnią niewiadomej c.

Gdy wyznaczymy tę jedyną wartość c z równania (D), to doda­
jąc do siebie równania (C), otrzymamy proste równanie do wyznacze­
nia u. Tym sposobem znajdziemy tylko jedną wartość rzeczywistą dla x; 
wreszcie pierwsze z równań (A) da nam wartość niewiadomej y. Wszyst­
ko to prowadzi do wniosku, że istnieje tylko jedno położenie równowa­
gi sznura, zawieszonego w dwóch punktach nieruchomych.

Statyka. 23
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Równanie (D) daje się rozwiązać w sposób przybliżony, gdy 
h .
— jest tak małe, że możemy rozwinąć funkcye wykładnicze w szeregi

i zatrzymać tylko najniższe potęgi —, nie znikające same przez się.

Przypadek taki zachodzi wtedy, gdy c jest duże, czyli gdy sznur jest 
silnie wyprężony, ale w tych razach dogodniej będzie podjąć całe za­
gadnienie od początku, zamiast uciekać się do równania (D) lub (E).

448. Prz. 1. Końce sznura jednorodnego umocowano w punktach 
A i B, położonych na jednym poziomie. Odległość h pomiędzy tymi 
punktami jest prawie równa długości sznura Z; wyznaczyć parametr 
łańcuchowej.

Z fig. 123 widać, że S=9 i z= —, a zatem na zasadzie drugiego

z równań (5) par. 443 będzie

Równanie to określa parametr c dla wszelkich wartości li i Z. 
hJeżeli h i Z są prawie równe, to —, jak wiemy z par. 446, prz. 2, jest 
c 

małe, rozwijamy więc funkcye wykładnicze i zatrzymujemy jedynie 
h 

najniższe nieznikające potęgi —; wypadnie

13 
c2=------------ .

24 (Z -h)
Sznur, który tu rozważamy, jest prawic poziomy, a więc we 

wszystkich elementach panują prawie równe naprężenia. Jeżeli sznur 
jest nieco sprężysty, i wydłużenie każdego elementu jest pewną funk- 
cyą naprężenia, to pozostanie on jednorodnym i po rozciągnięciu; po­
wstanie łańcuchowa, której parametr wyznaczymy z tego samego wzo­
ru, uważając Z za długość sznura rozciągniętego.

Pragnąc skorzystać ze wzoru powyższego, musimy zmierzyć dłu­
gość sznura Z oraz odległość pomiędzy punktami zawieszenia A i B. 
Lecz pomiary nie dadzą się wykonać bez pewnych błędów, i koniecz­
ną jest rzeczą umieć ocenić wpływ tych błędów, aby można było sto­
sować wzór poprawnie. Biorąc różniczki logarytmiczne otrzymamy

2 Sc 38h ± 8l ±h
c h l—h

W równaniu tern S/z i SZ oznaczają błędy, które popełniliśmy, 
mierząc h i Z. Widzimy, że błąd, tkwiący w otrzymanem c, może sta­
nowić znaczną część tej wielkości, jeżeli h lub Z—h jest małe. W da­
nym wypadku Z — h jest małe, a zatem należy tak urządzić pomiary, 
aby błąd, tkwiący w Z—h, był mały w stosunku do małej wielkości 
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l—h, natomiast dokładność pomiaru h jest wystarczająca, jeżeli stosu­
nek błędu do h, t. j. do wielkości daleko większej, zawiera się w ta­
kich samych granicach. Pomiar różnicy Z—h powinien być dokonany 
z większą dokładnością, niż pomiar odległości h.

Przypuśćmy dla przykładu, że h=30m i l=31 m, przyczem możli­
we błędy, popełnione przy pomiarach, nie przekraczają jednej tysiącz­
nej części wielkości mierzonej. Z wzoru znajdziemy, że c—33,5 m, ale 
możliwy błąd wynosi aż trzydziestą część tej wielkości.

Prz. 2. Jednorodny łańcuch mierniczy o długości l rozciągnięto 
nad rzeką; środek jego dotyka powierzchni wody, a końce są umoco­
wane na samych brzegach na wysokości k nad poziomem wody. Oka­
zać, że różnica pomiędzy długością łańcucha i szerokością rzeki wy- 

8k2
nosi w przybliżeniu 31°

Prz. 3. Ciężki sznur o długości 2/ jest zawieszony u punktów 
A i B, położonych na jednym poziomie; odległość pomiędzy tymi punk­
tami wynosi 2a. Na sznur jest nawleczony pierścień, ważący W; wy­
znaczyć parametr łańcuchowej i położenie równowagi pierścienia.

Oczywiście pierścień będzie 
w równowadze w najniższym punk­
cie D sznura, a BD i AD są rów- 
nemi częściami łańcuchowej. Przy­
puśćmy, że C jest wierzchołkiem 
łańcuchowej BD, a OCi 0x jej osią 
i kierownicą. Oznaczmy jeszcze 
przez x odciętą punktu D. Ponie- 
waż l jest różnicą łuków OB i CD, 
przeto Fig. 125.

(1)

Pierścień podtrzymują dwa naprężenia pionowe sznura w punkcie D, 
a zatem

W-2we c -e
2 (2).

Równania (1) i (2) określają x i c; można następnie wyznaczyć rzędne 
punktów D i B, a więc i głębokość D pod AB.

Jeżeli ciężar pierścienia znacznie przewyższa ciężar sznura, to 

każda część sznura jest prawie wyprostowana. W takim razie — jest 
c

małe, ale — nie koniecznie musi być małem, bo C może leżeć w zna­

cznej odległości od D. Rozwijamy wyrazy, zawierające wykładnik
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—, i rugujemy wyrazy, zawierające —; otrzymamy w przybliżeniu

Wa 
c—------ ------ .

2w Vl2—a2

Jeżeli przyczepimy ciężar W nie w środku sznura, lecz w jakim­
kolwiek punkcie D, to części AD i BD znowu utworzą łańcuchowe, 
i położenia tych krzywych dadzą się wyznaczyć w sposób podobny. 
Zauważymy, że te dwie łańcuchowe będą miały parametry równe. Aby 
to udowodnić, należy rozważyć równowagę ciężaru W; biorąc rzuty 
na kierunek poziomy, znajdziemy, że wc musi być jednakowe dla oby­
dwóch krzywych.

Jeżeli sznur przechodzi luźno przez gładki pierścień umocowany, 
to naprężenia po obydwóch stronach pierścienia muszą być równe, 
a zatem obydwie łańcuchowe mają wspólną kierownicę. Parametry 
mogą nie być równe, bo różnica pomiędzy naprężeniami poziomemi 
w dwóch łańcuchowych jest równa ciśnieniu poziomemu na pierścień, 
a ciśnienie to może nie być zerem.

Prz. 4. Ciężki sznur o długości l przechodzi przez gładką nie­
ruchomą obrączkę D, a końce jego są umocowane w punktach A, A', 
położonych na jednym poziomie. Oznaczamy spodek prostopadłej z D 
do AA' przez N, i niech będzie NA=h, NA'=h’, DN—k. Okazać, że pa­
rametry c, c' wyznaczają się z równania

( h1 h'\y / 12*)

*) Cosh jest symbolem funkcyi, zwanej cosinus hyperbolicus. 
e +e e —e 1

Cosho=--------- , podobnież sinha=—- ---- , cosech x=—------- .
2 2 sinh x

Przyp. tłom.

4c2== 12, cosh— cosech---- 1—— ? — kA cosech —‘ 2c‘ \2c 2c ‘/) \ 2c/ 

oraz z równania drugiego, które otrzymamy czyniąc w pierwszem za­
mianę pomiędzy literami kreskowanemi i literami bez kresek.

Prz. 5. Część A C jednorodnego łańcucha leży wyprostowana na 
chropowatej płaszczyźnie poziomej, a część pozostała CB zwisa w po­
staci łańcuchowej z danego punktu B, położonego nad ową płaszczy­
zną. Cały łańcuch ma właśnie zacząć się przesuwać w kierunku pionu, 
przechodzącego przez B. Okazać, że parametr łańcuchowej

c=p (1-^-p.h)—p. V(2+1) h2+2phl, 

gdzie l oznacza całkowitą długość łańcucha, h wysokość punktu B nad 
płaszczyzną, i p. współczynnik tarcia.

Prz. 6. Ciężki sznur rozwieszono na dwóch gładkich kołkach nie­
ruchomych; części końcowe zwisają swobodnie, a część środkowa two­
rzy łańcuchową. Dowieść, że końce leżą na kierownicy. Przyjmując 
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dalej, źe kołki leżą na jednym poziomie w odległości 2a, dowieść, że 
koniecznym warunkiem równowagi jest, aby długość sznura była ró­
wna 2ae lub większa.

Prz. 7. Ciężki łańcuch jednorodny zawieszono w punktach A i B, 
położonych na jednym poziomie, a styczna w A tworzy z poziomem 
kąt 45°. Okazać, że odległość najniższego punktu łańcucha od prostej 
AB tak się ma do długości łańcucha, jak (V 2—1):2.

Prz. 8. Końce jednorodnego ciężkiego łańcucha zaopatrzono 
w obrączki, ważące jednakowo, obrączki nawleczono na dwa gład­
kie pręty, przecinające się w płaszczyźnie pionowej; każdy pręt two­
rzy z pionem kąt a. Jaki warunek powinien być spełniony, aby na­
prężenie w najniższym punkcie było równe połowie ciężaru łańcu­
cha? Okazać, że w przypadku takim odległość pionowa pierścieni od 
punktu przecięcia prętów wynosi lcotalog(V 2-1-1), gdzie 2Z oznacza 
długość łańcucha. (Math. Tripos, 1856.)

Prz. 9. Ciężki sznur jednorodny zawieszono u dwóch punktów 
danych, położonych na jednym poziomie, a w punkcie najniższym 
sznura przyczepiono ciężar, stanowiący n-tą część jego ciężaru. Oka­
zać, źe tan©=(1+n) tan 8, gdzie 8 i « oznaczają kąty, które tworzą 
z pionem styczne w punkcie najwyższym i najniższym.

(Math. Tripos, 1858.) .
Prz. 10. Styczne w punktach zawieszenia sznura o długości l 

tworzą z pionem kąty a i 3; okazać, że wysokość jednego z punktów 
zawieszenia nad drugim wynosi

, . a~ 8 Z sin——

sin-----
2 (Pet. Coli., 1855.)

Prz. 11. Ciężki sznur bez końca założono na dwa małe gładkie 
kołki, umocowane na jednym poziomie, i połączono dolną część sznura 
z górną gładkim i nieważkim pierścionkiem. Dowieść, że stosunek 
kosynusów kątów, które z poziomem tworzą styczne u kołka, jest ró­
wny stosunkowi tangensów kątów, które z pionem tworzą styczne 
u pierścienia. (Math. Tripos, 1872.)

Prz. 12. Dwa gładkie kołki A i B leżą na jednym poziomie, 
a pionowo pod środkiem odcinka AB leży taki sam kołek C. Na tych 
kołkach rozwieszono sznur bez końca, który utworzył trzy łańcucho­
we AB, BG i CA, przyczem najniższy punkt łańcuchowej AB dotyka 
kołka C. Okazać, że kołki A, B dzielą cały sznur w stosunku 2w+w‘ 
do 2w—iv', gdzie w i w’ są składowemi pionowemi ciśnień na A i C.

(Math. Tripos, 1870.)
Prz. 13. Sznur bez końca rozwieszono na dwóch małych gład­

kich kołkach, osadzonych na jednym poziomie. Okazać, że w położe­
niu równowagi stosunek odległości pomiędzy wierzchołkami dwóch 
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katenoid do połowy długości sznura jest równy tangensowi połowy 
kąta, który tworzą styczne do łańcuchowych w punkcie zawieszenia 

(Math. Tripos, 1855.)
Prz. 14. Ciężki sznur jednorodny o długości 4Z przechodzi przez 

dwie gładkie obrączki, nawleczone na nieruchomą sztabę poziomą; 
jedna z obrączek pozostaje nieruchomą, a drugą przesuwamy wzdłuż 
sztaby, przyczem sznur wciąż zachowuje równowagę. Dowieść, że ko­
niec sznura bardziej odległy od obrączki nieruchomej zatoczy krzywą 
x=2Vlijlog, (Coli. Ex.)

Prz. 15. Końce ciężkiego jednorodnego sznura umocowano w pun­
ktach A i B, położonych na jednym poziomie, i przyczepiono do sznura 
w pewnym punkcie P ciężką cząsteczkę. Okazać, że obydwie części 
sznura należą do łańcuchowych równych. Okazać dalej, że styczna 
w B dzieli odcinek stycznej w A, zawarty pomiędzy pionami, popro­
wadzonymi przez P i przez środek ciężkości sznura, w stosunku, nieza­
leżnym od położenia punktu P. Wreszcie oznaczywszy przez 0, « na­
chylenia do poziomu stycznych w P, a przez a, 3 nachylenia stycznych 

. -. ian9+tan c . . , , . ,W A i B, dowieść, że-------------- jest niezmienne dla wszystkich po- tan a+tan 3
łożeń punktu P. (St John’s Coli.)

Prz. 16. Ciężki sznur jednorodny założono na dwa gładkie kołki, 
leżące na jednym poziomie, przyczem długość każdej części pionowej 
jest równa długości sznura, zawartej pomiędzy kołkami. Dowieść, że 
całkowita długość sznura tak się ma do odległości pomiędzy kołkami, 
jak V 3 do log V 3; porównać prócz tego ciśnienie na kołek z ciężarem 
sznura.

Prz. 17. Jednorodny sznur bez końca o długości l umieszczono 
symetrycznie na gładkim nieruchomym sześcianie, którego przekątnia
ma położenie pionowe. Okazać, że sznur zsunie 
. 1 lv2log(1+V2) 

sześcianu nie jest większa od --------------------— 
6

się, jeżeli krawędź 

(Emm. Coli, 1891.)

Prz. 18. Sznur bez końca wisi na dwóch małych kołkach, poło­
żonych na jednym poziomie, i styczna do jednej z katenoid w punkcie 
najwyższym tworzy z pionem kąt 3. Dowieść, że styczna do drugiej 
w tym samym punkcie musi tworzyć z pionem kąt 3 lub «, przy­
czem « posiada tylko jedną wartość i jest funkcyą samego 3. Jeżeli 

I sec I 
cot =e , to =3. (Coli. Ex.)

Prz. 19. Cztery gładkie kołki, położone w płaszczyźnie piono­
wej, tworzą kwadrat, którego jedna przekątnia ma położenie pionowe, 
a druga poziome. Na kołki założono łańcuch bez końca, przechodzący 
nad trzema górnymi i pod najniższym. Styczne do łańcucha tworzą 
z pionem kąt a u kołka najwyższego, 3 i Y u każdego ze środkowych 
i 8 u najniższego. Udowodnić związki następujące:
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a 3 Y 0 
sin 3 108cot2 tan — — sm T log cot, tan —,

sin 3 sin 8 + sin a sin Y =2 sin a sin 8.
(Caius Coli.)

Prz. 20. Końce sztaby o długości 2a są przywiązane do końców 
ciężkiego sznura o długości 2Z, i sznur jest zawieszony symetrycznie 

na kołku. Ciężar sztaby jest n razy a naprężenie poziome — razy wię- 
2

ksze od ciężaru sznura. Okazać, że
( a a m2+n2= (n+1) cosech n coth — 7 .
- ml ml) 

(Coli. Ex., 1889.)
Prz. 21. Jeden koniec ciężkiego łańcucha jest przymocowany do 

końca nieruchomego pręta, a drugi do gładkiej obrączki, nawleczonej 
na pręt. Okazać, że w położeniu równowagi

( 9- / T 4\ / 1 1 \
5 2 \4 2/) \cosy sin /‘

9 oznacza tu nachylenie pręta, a ! nachylenie łańcucha w najwyższym 
punkcie do poziomu. (Coli. Ex.)

Prz. 22. Końce sznura o długości ra są umocowane w odległości 
2a jeden od drugiego, i sznur jest odpychany od prostej, łączącej 
końce, z siłą prostopadłą do tej prostej i odwrotnie proporcyonalną 
do kwadratu odległości. Dowieść, że sznur ma kształt półkola.

(Coli. Ex., 1882.)
Prz. 23. Łańcuch jest 21 długi i waży 2 W. Koniec jego A jest 

przymocowany nieruchomo do poziomego pręta, a koniec B do gład­
kiej obrączki, nawleczonej na pręt. Początkowo końce się stykają, na­
stępnie odsuwamy koniec B tak daleko, aby styczna w A do łańcucha 
utworzyła z pionem kąt 45°. Okazać, że wykonana praca wynosi 
Wl.{ 1— • 2 +log(1 + V2) }. (Coli. Ex., 1883.)

Prz. 24. Zbadać, czy łańcuchowa jest jedyną krzywą, posiadającą 
właściwość taką: jeżeli G jest środkiem ciężkości dowolnego łuku AB, 
a AT i BT stycznemi w A i B, to prosta G-T posiada kierunek stały.

Prz. 25. Ciężki łańcuch jednorodny o długości 2d zawieszono 
u dwóch punktów, położonych na tym samym poziomie. Jeden z tych 
punktów jest ruchomy. Wyznaczyć równanie linii, którą zatacza wierz­
chołek łańcuchowej, i dowieść, że pole, zawarte pomiędzy tą linią 

a?(„2— 4)
i linią końców wynosi ---------- . (Math. Tripos, 1867.)

449. Trwałość równowagi. Do niektórych zagadnień na ró­
wnowagę sznurów dogodnie jest stosować zasadę, że odległość środka 
ciężkości od pewnej określonej prostej poziomej musi być największa 
lub najmniejsza (par. 218). Jeżeli przytem są dozwolone odchylenia 
linii sznura od formy katenoidalnej, to zastosowanie tej zasady wy­
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maga rachunku waryacyjnego; jeżeli jednak ograniczymy przesunięcia 
dozwolone, jeżeli postawimy warunek, że sznur ma zachowywać wciąż 
kształt łańcuchowej, a może zmieniać się jedynie parametr c, to zada­
nie da się rozwiązać przy pomocy zwykłych metod rachunku różnicz­
kowego.

Metoda taka posiada pewne zalety, gdy chodzi o stwierdzenie, 
czy równowaga jest trwała, czy chwiejna. Wiemy mianowicie (par. 
218), że równowaga będzie trwała lab chwiejna stosownie do tego, czy 
głębokość środka ciężkości pod pewną stałą płaszczyzną poziomą osią­
gnęła prawdziwe maksymum, czy minimum.

Prz. 1. Sznur o długości 2/ rozwieszono na dwóch gładkich koł­
kach, leżących na jednym poziomie w odległości 2a jeden od drugiego. 
Końce sznura zwisają swobodnie, a część środkowa tworzy łańcucho­
wą. Okazać, że równowaga jest możliwa tylko wtedy, gdy l jest co 
najmniej równe ae. Jeżeli l>ae, to katenoidę równowagi trwałej dla 

a
przesunięć symetrycznych określa pierwiastek równania cec — l wię­
kszy od a. (Math. Tripos, 1878.)

Oznaczmy przez 2s długość części sznura pomiędzy kołkami, 
a przez y głębokość środka ciężkości całego sznura pod linią kołków. 
Znajdziemy łatwo (par. 399), że

2ly=sy—ca+ (l—s)2.

Wprowadzając zamiast s i y ich wyrażenia w funkcyi c, otrzymamy

oidlJ 1 \ p2(c— a)— (c+a)2 I -- C ) ---------- . 
dc \ p / c 

gdzie p=e®. Łatwo się przekonać, że drugi czynnik prawej strony 
jest ujemny dla wszystkich wartości dodatnich parametru c. Gdy 

, dy przyrównamy — do zera, to wypadnie, że wszystkie możliwe poło­

żenia równowagi określa równanie l—cp. Pragnąc wyznaczyć najmniej­

szą wartość l, odpowiadającą temu równaniu, zakładamy —=0. Z te- 
dc

go wypadnie c—a, a więc l musi być równe ae lub większe.
Gdy l jest większe od ae, to dla c wypadają dwie wartości, 

z których jedna jest większa od a, a druga mniejsza. Pragnąc zbadać, 
która z tych dwóch łańcuchowych jest w równowadze trwałej, rozpa­
trujemy znak drugiej pochodnej (par. 220). Gdy l=cp, to

d2y . . p2(c— a)-(c+a) 
dc27 c2

Równowaga będzie trwała, jeżeli wyrażenie to jest ujemne, a do tego 
potrzeba, aby c było większe od a.

Prz. 2. Koniec A ciężkiego sznura o długości danej jest umo­
cowany nieruchomo; sznur przechodzi przez gładki kołek B, położony 
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na jednym poziomie z A, i drugi koniec jego zwisa swobodnie. Oka­
zać, że jeżeli długość sznura przekracza pewną wartość, to istnieją 
dwa położenia równowagi; równowaga jest trwała w tern położeniu 
w którem łańcuchowa ma parametr większy.

450. Łańcuch niejednorodny. Ciężki łańcuch niejedno­
rodny jest zawieszony w dwóch danych punktach A i B. Wyzna­
czyć równanie linii łańcucha.

Zagadnienie to daje się rozwiązać w sposób podobny do 
tego, który zastosowaliśmy w par. 443 do łańcueha jednoro­
dnego. Równania (1) i (2) owego paragrafu otrzymaliśmy, bio- 
rąc rzuty na osi, a zatem będą one ważne z małemi tylko 
zmianami i w tym razie, gdy łańcuch nie jest jednorodny. 
Ciężar części łańcucha, poczynając od punktu najniższego bę­
dzie teraz fwds w granicach od s=0 do s=s (par. 442). Bio- 
rąc rzuty, jak poprzednio, otrzymamy

Tcost= T, . . . (1), Tsint =Jwds . . . (2).

Gdy podzielimy (2) przez (1), to wypadnie
Jwds = T tan $,

T skąd w = -—0,  ................................... (3).
p COS“V

Podstawiając zamiast p i tan P odpowiednie wyrażenia we współ­
rzędnych Kartezyusza, otrzymamy

7 d2y dx 
°dx2 ds (4).

Odwrotnie, gdy znamy prawo gęstości, np. w = f(s\ to ró- 

wnanie (3) daje nam związek pomiędzy s i Ti można mu na­

dać postać d =f(s). Otrzymamy stąd łatwo

x=/[1+ [f(s)]2}""ds, y=m+[f1^r^fl(s)ds.
Tak więc można wyrazić x i y w funkcyach pewnej zmiennej 
pomocniczej, posiadającej znaczenie geometryczne.

Prz. 1. Dowieść, że naprężenie w jakimkolwiek punkcie P łań­
cucha niejednorodnego jest równe ciężarowi łańcucha jednorodnego, 
którego długość jest równa rzutowi promienia krzywizny na kierunek 
pionowy, a gęstość jest taka sama, jak gęstość łańcucha danego w pun­
kcie P.
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Prz. 2. Prowadzimy przez punkt B, dowolnie obrany na osi y, 
prostą BR równolegle do normalnej w punkcie P do łańcucha; prze- 
tnie ona oś x w punkcie R. Okazać, że (1) naprężenie w P jest równe 
T
— . BR, i (2) ciężar luku OP, zmierzonego od najniższego punktu 0,

T
wynosi — . OR, gdzie OB—c, a To oznacza naprężenie poziome (par. 35)

451. Łańcuch cykloidalny. Łańcuch niejednorodny przybrał 
pod działaniem siły ciążenia postać cykloidy; wyznaczyć prawo gę­
stości.

W cykloidzie p=4acosy i s=4a sin, gdzie a oznacza promień 
koła tworzącego. Podstawiając te wartości, otrzymamy

T 16a2T,
4a cosB (16a2—82) 2

Z tego wzoru wynika, że w częściach niższych łańcuch posiada 
gęstość prawie stałą; tak np. w punkcie, którego odległość od wierz­
chołka, zmierzona na krzywej, jest równa promieniowi koła tworzą­
cego, gęstość wynosi około dziewięciu dziesiątych gęstości w wierz­
chołku. W częściach łańcucha, położonych wyżej, gęstość wzrasta 
gwałtownie, a w ostrzu jest nieskończenie wielka. Jeżeli zatem łań­
cuch, rozpięty pomiędzy dwoma punktami na jednym poziomie, jest 
wygięty niezbyt silnie, to możemy go uważać w przybliżeniu za je­
dnorodny.

Łańcuch cykloidalny zasługuje na uwagę dzięki okoliczności 
następującej: gdy wyprowadzimy go nieco z położenia równowagi, 
to wykonywa małe drgania, których okres i amplituda dają się wy­
znaczyć.

Prz. Niech O będzie najniższym punkiem łańcucha cykloidal- 
nego, a B środkiem odcinka, łączącego ostrza. Prowadzimy w którym­
kolwiek punkcie P normalną do krzywej; przypuśćmy, że przetnie ona 
prostą, łączącą ostrza, w punkcie M; prowadzimy następnie przez B 
równolegle do MP prostą BR, przecinającą poziomą przez 0 w pun­
kcie R. Dowieść, że środek ciężkości łuku OP leży w przecięciu pro­
stej BR z pionem przez M. Znajdziemy, że T =2a), y=2alcoty, gdy B 
jest początkiem współrzędnych.

452. Łańcuch paraboliczny. Ciężki łańcuch AOB jest zawie­
szony u innego łańcucha DCE zapo- 
mocą sznurów pionowych; sznury te 
tak są liczne, że każdy element łań­
cucha AOB łączy się z odpowiednim 
elementem łańcucha DCE, i ciężary 
tych sznurów a także ciężar łańcucha 
DCE są nieznaczne w porównaniu 
z ciężarem łańcucha AOB. Mamy zba­
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dać, jaką postać powinien posiadać łańcuch DCE, aby łańcuch AOB 
w położeniu równowagi był poziomy.

Naprężenie łańcucha AOB w punktach O i M są poziome i ró­
wne, a zatem część OM podtrzymują naprężenia w punktach 0 i P 
łańcucha BOB. Możemy przeto uważać, że łańcuch DGE jest ciężki, 
niejednorodny, i że ciężar dowolnej długości CP wynosi mx. Biorąc 
rzuty sił, działających na tę część łańcucha, na kierunki poziomy 
i pionowy, otrzymamy

Tcos!=T, TsinV=mx.

Gdy podzielimy jedno z tych równań przez drugie, to wypadnie 

mx=T tand= T.—, skąd
dx

mx2—=T(y—c).

Widzimy, że łańcuch DCE tworzy parabolę.
Wynik powyższy jest ważny pod tym względem, że łańcuch AOB 

można zastąpić jednorodną ciężką sztabą, stanowiącą jedną z belek 
mostowych. Naprężenia łańcuchów, które wywołuje ciężar mostu, nie 
mają tendencyi do złamania lub zgięcia belek. Potrzeba tylko, aby 
belki były dostatecznie wytrzymałe i nie zginały się pod działaniem 
ciężarów dodatkowych, t. j. pod ciężarów wozów. Nie byłoby tak, 
gdyby lekki łańcuch DCE miał postać, różniącą się od parabolicznej.

Sprawa jest bardziej zawiła, gdy bierzemy w rachubę ciężar 
łańcucha DCE, a także gdy sznury podtrzymujące są nie pionowe, 
lecz mają jakieś inne urządzenie.

Zagadnienie powyższe pierwszy rozważał Mikołaj Fuss w Nova 
Acta Petropolilanae, t. 12, 1794. Zamierzano podówczas zbudować most 
na Newie, zawieszony zapomocą łańcuchów pionowych u czterech 
łańcuchów poprzecznych, rozpiętych nad rzeką. Fuss doszedł do wnio­
sku, że łańcuchy ówczesne nie zniosłyby niezbędnych naprężeń.

Prz. 1. Dowieść, że w łańcuchowej parabolicznej naprężenie 
T

w dowolnym punkcie P wynosi — razy długość normalnej pomiędzy

P i osią paraboli; 2a oznacza tu połowę latus rectum. Dowieść prócz 
tego, że gęstość liniowa w w P jest równa stosunkowi To do tej nor­
malnej.

Prz. 2. Okazać, że ciężar części łańcucha OP, mierzonej od naj-
Tniższego punktu O krzywej, wynosi — razy odległość punktu P od osi 
20

paraboli; okazać prócz tego, że T0=2am.
Prz. 3. Środek ciężkości G dowolnego łuku leży na średnicy,

PN przechodzącej przez środek cięciwy tego luku, i PG=—; średnica ta

przecina parabolę w punkcie P, a cięciwę w N.
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‘ Prz. 4. Naprężenia w C i P podtrzymują część mostu OM (fig. 
126), a zatem styczne w G i P muszą przecinać się na pionie, prze­
chodzącym przez środek ciężkości tej części. Wywnioskować stąd, że 
krzywa CP jest parabolą.

Prz. 5. Ciężar elementu ds sznura DCPE wynosi w(ds-\-ndx); 
, , , , . r cdz okazać, że krzywą sznura określa równanie X= I  7 , gdzie z 

J n+ V 1+z2
oznacza tan nachylenia stycznej do poziomu, a c jest wielkością stałą.

(Fuss.)
Prz. 6. Sznury, utrzymujące most wiszący, są pionowe, i odle­

głości pomiędzy nimi są równe; bierzemy w rachubę tylko ciężar 
tych sznurów, pomijając ciężary pozostałych części mostu. Dowieść, 
że krzywa DCE jest w tym razie rzutem prostokątnym katenoidy.

(Math. Tripos, 1880.)

453. Łańcuchowa o wytrzymałości stałej. Ciężka lina, umoco­
wana w dwóch punktach, ma taką budowę, że pole przekroju jest 
proporcyonalne do naprężenia. Wyznaczyć kształt linii, którą two­
rzy lina.

Z warunków zagadnienia wynika, że T^cw, gdzie c jest pewną 
stałą, a wds ciężarem elementu ds. Równania (1) i (2) paragrafu 450 
przybierają postać

Tcos!=T, Tsint=— / Tds.

Wprowadzając do drugiego równania wartość T, wziętą z pierwszego 
/ds c 1 ds 

 , a różniczkując znajdziemy ----=- , 
COS • COS24 COS 4^4 

skąd pcos4=c.
To samo wypada od razu z ogólnego równania równowagi, które 

Tds
poznamy w par. 454. Mamy tam -----=ivds cos O. Jeżeli lina ma mieć

P
stałą wytrzymałość, to T=cw, a zatem pcosy=c.

Widzimy, że rzut promienia krzywizny na kierunek pionowy jest 
stały i równy c.

Zamiast p i cos 4 wprowadzamy wyrażenia ich we współrzę­
dnych Kartezyusza. Wypadnie

14(dy)2-1d2y
\ dx/ J dx2

1 dy x = — skąd aretan — — — —A. 
c dx c

Jeżeli obierzemy najniższy punkt za początek, to A=0, i wówczas
, x y— - clog cos—.

Wykreślając krzywą, zobaczymy, że y wzrasta, poczynając od 
zera, gdy x wzrasta od zera w stronę dodatnią lub ujemną, i że krzy-
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TC
wa posiada dwie asymptoty pionowe X==. Gdy X zawiera się po-

TC 3nc , ...między — i —, to rzędna jest urojona; gdy x zawiera się pomiędzy 
2 2

3Tc . 5TC , , ... TC— i —, to krzywa ma taki sam przebieg, jak pomiędzy X— —. . 
2 2 2

Większym wartościom odciętej odpowiada znowu rzędna urojona, 
i t. d. Krzywa składa się z nieskończonej liczby gałęzi takich, jak po- 

między x=±—, a więc dostatecznem będzie zbadać tę jedną gałąź. 
2

Ponieważ rzędna liny musi być skończona, przeto wartość odciętej x
TC musi byc zawarta pomiędzy ± —, a rozpiętość liny nie może docho- 

dzić do Tc.
Niechaj 0 będzie najniższym punktem krzywej, G środkiem krzy­

wizny w jakimś punkcie P i PH prostopadłą do pionu przez C. W ta­
kim razie CH~c. Boki trójkąta PCH są odpowiednio prostopadłe i pro- 
porcyonalne do sił, działających na łuk OP, a mianowicie do naprężenia 
w P, ciężaru części OP i naprężenia poziomego To w 0. Możemy stąd 

T
wyciągnąć wnioski następujące: (1) naprężenie w P jest równe — razy

T 
wziętemu promieniowi krzywizny, (2) ciężar łuku OP jest równy — razy 

c 
wziętemu rzutowi promienia krzywizny na kierunek poziomy.

Krzywą tę wynalazł Davies Gilbert z okazyi budowy mostu wi­
szącego przez cieśninę Menai pomiędzy wyspą Anglesey i Walią (Phil. 
Trans. 1826.). Lioiwille’s Journal z r. 1836 (tom I) zawiera notatkę Co- 
riolisa o „chainette" stałej wytrzymałości. Zdaje się, że Coriolis nie 
wiedział o tern, że ta postać łańcucha już została zbadana dziesięć lat 
temu.

Prz.

Prz. 
łuku pod

n+21
1. Okazać, że (1) x=c^, (2) S= dog tan—4

2. Dowieść, że głębokość środka ciężkości jakiegokolwiek 
punktem przecięcia normalnych w końcach tego luku jest 

stała i równa c. Dowieść prócz tego, że jego odcięta jest równa od­
ciętej przecięcia stycznych w tych samych punktach.

Prz. 3. Odległość pomiędzy punktami łańcuchowej stałej wy­
trzymałości jest równa a, a długość łańcucha l. Okazać, że parametr c 

l a wyznacza się z równania tanh— = tan—. Okazać dalej, że równanie to 
4c 4c 

daje dodatnią wartość c, większą od —.
T

Prz. 4. Okazać, że rzut poziomy rozpiętości jest w każdym razie 
mniejszy od T razy wziętej największej długości liny jednorodnej z tego 
samego materyału, którą można zawiesić za jeden koniec. Należy tu 
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uważać, że wytrzymałość w każdej części liny jest proporcyonalna 
do masy na jednostkę długości. (Kelvin, Math. Tripos, 1874.)

Jeżeli długość wzmiankowanej liny jednorodnej wynosi L, to 
naprężenie w punkcie zawieszenia jest równe ciężarowi liny, czyli wL. 
Z drugiej strony naprężenie w każdym punkcie liny niejednorodnej 
wynosi cw, a zatem c musi być mniejsze od L, a rozpiętość będzie 
mniejsza od TL.

454. Sznur pod działaniem sił jakichkolwiek. Utworzyć 
ogólne równania równowagi sznura, na który działają siły jakie­
kolwiek. Obierzmy na sznurze pewien stały punkt A, i niech 
będzie AP~s^ i AQ = s + ds. Naprężenie w P oznaczymy przez 
T; ponieważ T jest funkcyą luku s, przeto w Q naprężenie 
wynosi T+dT).*

*) Wypada zaznaczyć, że gdybyśmy mierzyli s od B w stronę 
A, a więc gdyby było BQ—s, to T oznaczałoby naprężenie w Q, 
a T+dT w P.

Utwórzmy rzuty sił zewnętrznych, działających na element 
PQ na trzy kierunki, a mianowicie, na styczną w P, promień 
krzywizny i binormalną w tym samym punkcie. Na pierwszej 
z tych prostych za dodatni obierzemy ten kierunek, w którym 
mierzymy s, na drugiej ten, w którym mierzymy p, t. j. we­
wnątrz, na trzeciej kierunek dodatni możemy obrać dowolnie. 
Te trzy kierunki zowią się kierunkami głównymi lub osiami 
głównemi krzywej w punkcie P. Dajmy na to, że suma rzu-
tów
Fds,

sił zewnętrznych, działających na ds, na styczną wynosi 
na promień krzywizny Gds i na binormalną P[ds.
Niech kąt pomiędzy stycznemi w P i Q będzie równy d^-, 

w takim razie i kąt PCQ = dĄ>. Ele­
ment ds pozostaje w równowadze pod 
działaniem sił T, T+dT, działają­
cych na stycznych w P, Q, oraz sił 
Fds, Gds, Hds. Biorąc rzuty na sty­
czną w P, otrzymamy

(T+dT) cos d^>- T+Fds - 0.
Równanie to sprowadza się do

dT+Fds = 0 . . . (1).

Bierzemy następnie rzuty na promień krzywizny:
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(T+dT) sin d^ + Gds^ O,

czyli T~~Gds^0(2).
P

Pozostaje wziąć rzuty na binormalną, czyli na prostopadłą do 
płaszczyzny ściśle stycznej do krzywej w P. W płaszczyźnie 
lej leżą obydwie styczne w następujących po sobie punktach 
krzywej, a zatem rzuty naprężeń na kierunek prostopadły są 
zerami. Wypadnie więc

Hds = 0....................................... (3).
Te trzy równania (1), (2) i (3) są ogólnemi równaniami 

równowagi.
Uważamy, że gęstość sznura jest uwzględniona w wyra­

żeniach Fds^ Gds, Hds^ a zatem powyższe równania równowagi 
są ważne zarówno w przypadku sznura jednorodnego, jak 
i wtedy, gdy gęstość jest zmienna.

Z równań tych wyciągamy wniosek, że naprężenia T 
i T+dTy działające na końce elementu, są równoważne z dwie- 

dsma innemi siłami, a mianowicie dT i T—5 z tych pierwsza 

działa na stycznej, a druga na promieniu krzywizny w jednym 
z końców elementu. Często w zagadnieniach, dotyczących sznu­
rów, dogodnie bywa zastąpić naprężenia przez te dwie siły. 
Zamiana daje nam tę korzyść, że kosynusy kierunkowe sty­
cznej i promienia krzywizny są znane z rachunku różniczko­
wego, tworząc więc równania statyczne, z łatwością znajdziemy 
rzuty tych dwóch sił, jak i sił zewnętrznych, na kierunki, które 
uznamy za dogodne.

Prz. Okazać, że kształt sznura czyni zadość warunkowi nastę­
pującemu: w każdym punkcie wypadkowa sił zewnętrznych leży 
w płaszczyźnie ściśle stycznej i tworzy z główną normalną do sznura 
, d(log T) 
kąt aretan---------- .d

455. Utworzyć ogólne równania równowagi sznura we współ­
rzędnych Kartezyusza ).*

*) Równania równowagi sznura pod działaniem sił jakichkol­
wiek w dwóch wymiarach podał w postaci Kartezyańskiej Mikołaj Fuss 
w Noua Acta Petropolilanae, 1796. Otrzymał on dwa rozwiązania, jedno
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Niechaj ds będzie długością elementu PQ sznura. Siły ze- 
wnętrzne, działające na ten element, rozkładamy równolegle do 
dodatnich kierunków osi; niech składowe te będą Xds, Yds, 
Zds. Element ds pozostaje w równowadze pod działaniem tych 
trzech sił zewnętrznych oraz naprężeń w P i Q.

Bierzemy rzuty tych wszystkich sił na oś x. Rzut naprę-
Q3żenią w P wynosi i jest zwró­

cony w lewo. W Q zmienna s przy­
biera wartość s + ds, a zatem naprę­
żenie poziome w Q wynosi

ddx ,dx

i jest zwrócone w prawo. Dodając te 
obydwa rzuty oraz Xds, otrzymamy

T— \ds + Xds^0.
ds /

Tak samo postępujemy z rzutami na osi pozostałe; wypadną 
więc równania

+ X = 0

0

+ Z =0

456. Prz. 1. Na element sznura, pozostającego w płaszczyźnie, 
działają siły Pds i Qds, z których pierwsza ma kierunek promienia wo­
dzącego, a druga jest prostopadła do tegoż. Okazać, że równania rów­
nowagi we współrzędnych biegunowych są 

d T
— (T cos ©)----- sin2 + P=0,
ds r

— (Tsin )- sinocos@+Q=0, 
ds r

dr
gdzie cos<p=— sin©=

rdo 
ds

Następnie wyprowadzić równania równo-

zapomocą momentów i drugie zapomocą rozważania naprężeń. W roz­
wiązaniu drugiem Fuss bierze rzuty na osi, następnie wyprowadza 
algebraicznie równania równoważne z temi, które otrzymujemy z rzu­
tów na styczną i normalną, i wreszcie stosuje swe równania do kate- 
noidy i do innych zagadnień podobnych.
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wagi sznura w przestrzeni trójwymiarowej we współrzędnych cylin­
drycznych.

Prz. 2. Sznur w stanie równowagi ma postać linii śrubowej, a na­
prężenie jest stałe na całej długości. Dowieść, że oś odpycha każdy 
element z siłą do niej prostopadłą.

Prz. 3. Końce sznura danej długości są umocowane w dwóch 
punktach danych, a oś z odpycha każdy element ds z siłą prostopadłą 
do tej osi i równą 2[irds. Oznaczając przez (r, 3, z) współrzędne bieżą­
ce cylindryczne dowieść, że

T^A— pr,
dd- B fdr\2 / p. \2 B2— = —, (—=C 1—12)-------- 1.
dz r2 \dz/ A/I” 

Wyjaśnić, jak wyznacza się pięć stałych dowolnych, i okazać, że w pe­
wnych razach śrubowa stanowi rozwiązanie.

Prz. 4. Ciężki łańcuch wisi u dwóch punktów i część jego jest 
zanurzona w płynie. Okazać, że krzywizny w dwóch punktach, z któ­
rych jeden leży tuż pod powierzchnią płynu, a drugi tuż nad powierzch­
nią, mają się do siebie, jak D—D' do D, gdzie D i D' oznaczają gę­
stości łańcucha i płynu. (St. John’s Coli.)

Ciężary elementów nad powierzchnią są proporcyonalne do Dds, 
a pod powierzchnią do {D—D')ds. Jeżeli naprężenie na granicy jest 
równe T, to składowe ciężarów elementów skrajnych w kierunku nor-

Tds Tds D p‘ 
malnej wynoszą  i . Stąd = —.

p p‘ D—D' p
Prz. 5. Ciężki sznur umocowano w punktach A i B; gęstość je­

go jest taka, że przybrał on postać spiralnej logarytmicznej. Okazać, że 
gęstość w każdym punkcie P jest odwrotnie proporcyonalna do rcos21, 
gdzie r oznacza odległość punktu P od bieguna, a • kąt, który styczna 
w P tworzy z poziomem. (Trin. Coli., 1881.)

457. Sznur krępowany. Sznur leży na krzywej płaskiej do­
wolnej postaci, a na końce jego działają siły. Mamy zbadać wa­
runki równowagi oraz naprężenie w każdym punkcie.

Cztery przypadki posiadają tu ważniejsze znaczenie; zba­
damy je po kolei.

Założymy naprzód, że ciężar sznura jest bardzo mały w po­
równaniu z siłami, przyłożonemi w końcach, i możemy się z nim 
nie liczyć. Będziemy uważali prócz tego, że krzywa jest zupeł­
nie gładka. Na element ds działają tu jedynie naprężenia oraz 
reakcya lub ciśnienie krzywej. Niech ciśnienie to będzie równe 
Rds-, w takim razie R jest ciśnieniem na jednostkę długości sznura. 
Mówi się zwykle dla krótkości, że R jest ciśnieniem w danym

Statyka. 24 
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elemencie. Ciśnienie uważamy za dodatnie, gdy działa w stro­
nę odwrotną do tej, w którą mierzymy promień krzywizny.

Biorąc rzuty na styczną i normalną do sznura, otrzyma­
my według par. 454

dT=0, I— -Hds = 0.
P

Z równań tych wnioskujemy, że, gdy sznur leży na krzy­
wej gładkiej, to naprężenie jest stałe, a ciśnienie zmienia się pro- 
porcyonalnie do krzywizny.

458. Doniosłość twierdzenia powyższego jest większa, niż się 
wydaje na pierwszy rzut oka. Krzywa może mieć postać dowolną, a za­
tem twierdzenie obejmuje i ten przypadek, gdy sznur pozostaje w ró­
wnowadze pod działaniem sił w każdym punkcie normalnych do krzy­
wej. Jeżeli owe siły normalne są dane, to można określić formę krzy­
wej, posługując się otrzymanem twierdzeniem, że krzywizna w każdym 
punkcie jest proporcyonalna do siły normalnej.

Jako przykład rozważymy zagadnienie Bernoullego: wyznaczyć 
kształt żagla prostokątnego, którego dwa boki przeciwległe są umoco­
wane nieruchomo, prostopadle do kierunku wiatru. Będziemy uważali, 
że ciężar żagla jest nieznaczny w porównaniu z ciśnieniem wiatru, 
i zbadamy, jaka krzywa wypada w przekroju płaskim żagla, prosto­
padłym do boków nieruchomych.

Można otrzymać dwie odpowiedzi stosownie do tego, czy wiatr 
po uderzeniu o żagiel znajduje natychmiast wyjście, czy też pozostaje 
we wklęsłości żagla i ciśnie nań, jak gaz w równowadze. Stojąc na 
gruncie hipotezy pierwszej, przyjmiemy jako prawo oporu, że wiatr 
wywiera na każdy element żagla ciśnienie w kierunku normalnej do 
tego elementu, i że ciśnienie to jest proporcyonalne do kwadratu skła­
dowej szybkości wiatru w kierunku tej normalnej. Mamy więc
R=wcos21, gdzie 1 oznacza kąt pomiędzy normalną do przekroju żagla 
i kierunkiem wiatru, a w jest wielkością stałą. Z tego wynika
c

—=cos21; zatem w myśl par. 444 krzywa jest łańcuchową, której os 
P
idzie równolegle do kierunku wiatru, a kierownica jest pionowa.

Jeżeli powietrze ciśnie na żagiel, jak gaz w stanie równowagi, 
to ciśnienie po jednej stronie żagla jest według praw hydrostatyki we 
wszystkich kierunkach jednakowe, ale po jednej stronie większe, niż 
po drugiej. Widać z tego, że R jest równe tej różnicy stałej, a zatem p 
jest stałe, i szukana krzywa jest kołem.

Prz. 1. Żagiel kwadratowy łączy się z masztem zapomocą dwóch 
rejów; gdy żagiel jest wydęty, to każdy jego przekrój poziomy stano­
wi prostą, równoległą do rejów. Przyjmując zwykłe prawo oporu, oka­
zać, że żagiel najskuteczniej działa na bieg okrętu, gdy 3 sin (a— 2) — 
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—sin a=0; a oznacza tu kąt pomiędzy kierunkiem wiatru a sztabą (albo 
osią) okrętu, a P kąt pomiędzy rejami i sztabą.

Prz. 2. Koniec lekkiego sznura jest umocowany w wierzchołku 
gładkiej cyklojdy; nawijamy sznur na cykloidę, utrzymując go wciąż 
w naprężeniu. Dowieść, że obwiednią ciśnienia wypadkowego na cy­
kloidę jest inna cykloida o parametrze podwójnym. (Coli. Ex., 1890.)

Ciśnienie wypadkowe krzywej na łuk sznura równoważy naprę­
żenia w końcach luku, a zatem przechodzi przez punkt przecięcia 
stycznych w tych punktach i działa na dwusiecznej kąta pomiędzy 
niemi.

459. Ciężki sznur gładki. Przypuśćmy teraz, że wypada 
uwzględnić ciężar sznura. Niech wds będzie ciężarem elementu ds, 
a • kątem, który styczna PK w punkcie P tworzy z poziomem.

Element PQ pozostaje w równowadze pod działaniem wds 
oraz naprężeń w P i Q.na rzędnej LLV, Kas na normalnej 1 

Biorąc rzuty na styczną i normalną 
w P, otrzymamy

dT- wdssin^ = 0 . . (1)

T — — wds cos 1 - R ds = 0 . (2). 
P

dyPonieważ sin?=d9 przeto, całkując 

pierwsze z tych równań, otrzymamy
.(3). 

Jeżeli Tr i T2 są naprężeniami w punktach, których rzędne 
wynoszą Ji i y2, to

T-T=w(J2-yi).
Ten ważny wynik da się wypowiedzieć tak: gdy ciężki 

sznur spoczywa na gładkiej krzywej, to różnica naprężeń w dwóch 
dowolnych punktach jest równa ciężarowi sznura o długości ró­
wnej odległości pionowej pomiędzy owymi punktami.

460. Twierdzenie powyższe otrzymaliśmy, biorąc jedynie 
rzuty na styczną do sznura, a więc nie zależy ono od prawdzi­
wości równania drugiego. Twierdzenie jest przeto słuszne i w tym 
razie, gdy sznur nie przylega do krzywej na całej długości; 
część jego może być swobodna, albo może obiegać inne krzy­
we. Tak np. na fig. 130 sznur ABCD obiega gładkie krzywe 
L, M i N; naprężenie w każdym punkcie, np. B lub C, prze­
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wyższa naprężenie w A o ciężar sznura, którego długość jest 
równa pionowej odległości od A do B lub C.

Naprężenia w A i D są równe zeru, a zatem swobodne 
końce ciężkiego łańcucha leżą na jednym poziomie. Napręże­
nie osiąga maksymum w punkcie najwyższym, i żaden punkt 
sznura, taki np. jak C lub C\ nie może leżeć poniżej prostej 
poziomej, łączącej końce swobodne.

Aby wyznaczyć ciśnienie w dowolnym punkcie P (fig. 129), 
napiszemy równanie (2) paragrafu poprzedzającego w postaci

Rp — T— wp cost,

gdzie ciśnienie R, które krzywa wywiera na sznur, działa (je­
żeli jest dodatnie) na zewnątrz, czyli w kierunku odwrotnym 
do tego, w którym mierzymy promień krzywizny p (par. 457). 
Jeżeli w określonym punkcie A panuje naprężenie T, a z 
jest wysokością jakiegoś punktu P ponad A, to według (3) 
T=T+wz. Z tego wynika, że

Rp= Tx + iv (z — pcos •).

Odmierzmy na normalnej punktu P na zewnątrz długość 
PS=p; punkt S można nazwać przeciivśrodkiem krzywizny. Jest 
rzeczą oczywistą, że z — pcos 1 wyraża wysokość punktu S nad A. 
Tak więc gdy ciężki sznur leży na krzywej gładkiej, to wartość 
Rp w dowolnym punkcie P przewyższa naprężenie w A o wagę 
sznura, którego długość jest równa wzniesieniu przeciwśrodka 
punktu P ponad A.

Gdy koniec A jest swobodny, jak na fig. 130, to Rp w ja­
kimś punkcie B jest równe iloczynowi z w przez wysokość prze- 
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ciwśrodka punktu B nad A. W częściach swobodnych sznura, 
np. w C lub C\ ciśnienie R jest równe zeru, a stąd wynika, 
że wszystkie przeciwśrodki krzywizny leżą na prostej, łączącej 
swobodne końce A i D. Jest to wspólna kierownica wszystkich 
łańcuchowych.

W równaniach powyższych Rds jest ciśnieniem, skierowa- 
nem na zewnątrz linii sznura. Gdyby Ił wypadło ujemne, i sznur 
leżał na wypukłości, to oczywiście odstał by on od krzywej, 
i równowaga byłaby niemożliwa. W punktach takich, jak np. 
B, przeciwśrodek leży nad B, i R jest oczywiście dodatnie; ale 
w punktach takich, jak E, przeciwśrodek leży niżej od E^ a gdy­
by leżał jeszcze i pod prostą AD^ to ciśnienie w E byłoby ujem­
ne. Gdy sznur leży we wklęsłości krzywej, to warunki te zmie­
niają się na odwrotne. Wogóle mówiąc do równowagi jest 
niezbędnem, aby Bp było dodatnie lub ujemne stosownie 
do tego, czy sznur leży na wypukłej, czy na wklęsłej stronie 
krzywej.

Streszczając rozważania paragrafu niniejszego, widzimy, że 
można poprowadzić prostą poziomą, posiadającą właściwość na­
stępującą: naprężenie w każdym punkcie P sznura wynosi wy, 
gdzie y oznacza wysokość punktu P nad ową prostą. Nazwijmy 
tę prostą kierownicą statyczną sznura. Na kierownicy statycznej 
leżą swobodne punkty sznura, jeśli istnieją, a żadna część sznura 
nie może leżeć niżej od tej prostej. Jeżeli R jest ciśnieniem krzy­
wej na sznur, skierowanem na zewnątrz, to Rp jest równe wy\ 
gdzie y' oznacza wzniesienie przeciwśrodka punktu P nad kie­
rownicą. Niezbędną więc jest rzeczą, aby przeciwśrodek każde­
go punktu leżał nad kierownicą, albo pod kierownicą, stosow- 
nie do tego, czy sznur leży na wypukłości, czy we wklęsłości 
krzywej.

Prz. 1. Okazać, że miejscem geometrycznem przeciwśrodka w kole 
jest inne koło.

Prz. 2. Okazać, że współrzędne przeciwśrodka dowolnego punktu 
P elipsy w odniesieniu do jej osi czynią zadość równaniom 
ax— 2aa cos «— c2 cos3ę, by=2b‘sin +c2sin3«, gdzie c2=a2 — b2, a « jest 
anomalią ekcentryczną punktu P.

Prz. 3. Punkt S jest przeciwśrodkiem punktu P pewnej krzywej; 
okazać, że normalna do miejsca geometrycznego punktu S tworzy z PS 

1 dptaki kąt 3, że tan I==------ .
2 ds
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- 461. Wypada zaznaczyć, że w punktach, w których sznur opu­
szcza krzywą, może nastąpić gwałtowny przeskok zarówno iv krzywi- 
źnie sznura, jak i w ciśnieniu R. Tak np. w punkcie, położonym bezpo­
średnio pod F (fig. 130), promień krzywizny sznura jest nieskończenie 
wielki, a li jest równe zeru, natomiast w punkcie zaraz nad F krzy­
wizna sznura jest taka sama, jak krzywizna ciała N, a ciśnienie R jest 

Trówne —. W takim punkcie, jak E, przeskok w wartości iloczynu Rp, 
P

o ile istnieje, jest w myśl prawidła paragrafu 460 równy ciężarowi 
sznura tak długiego, jak odległość pionowa pomiędzy przeciwśrodkami 
po obydwóch stronach owego punktu.

Jeżeli siły zewnętrzne, działające na sznur, są tego rodzaju, że 
wielkość ich na jednostkę długości jest skończona, to iv naprężeniu nie 
mogą zachodzić gwałtowne przeskoki. Istotnie, przypuśćmy na chwilę, 
że naprężenia po dwóch stronach pewnego punktu różnią się o wiel­
kość skończoną; w takim razie element sznura, zawierający ów punkt, 
byłby w równowadze pod działaniem dwóch sił nierównych, działają­
cych w kierunkach odwrotnych. Nie może również nastąpić przeskok 
gwałtowny kierunku stycznej ('wyjątek stanowi tu punkt, w którym na­
prężenie jest równe zeru); gdyby styczne po obydwóch stronach pewne­
go punktu tworzyły kąt skończony, to element z takim punktem byłby 
w równowadze pod działaniem dwóch naprężeń skończonych, których 
kierunki nie są wprost odwrotne.

462. Prz. 1. Ciężki sznur o długości 2Z owija kompletnie gładki 
poziomy cylinder o promieniu a, końce zaś zwisają swobodnie po oby­
dwóch stronach. Obydwa zwoje na półkolu górnem leżą tuż jeden przy

drugim, możemy więc uważać, że cały sznur mieści się w płaszczyźnie 
pionowej, prostopadłej do osi cylindra. Wyznaczyć położenie spoczyn­
ku i najmniejszą długość sznura, przy której jeszcze równowaga jest 
możliwa.

Naprzód przypuśćmy, że sznur pozostaje w zetknięciu z kołem 
zarówno na półkolu dolnem, jak i górnem. W takim razie po każdej
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3xa -stronie zwisa pionowo długość l——. Przeciwsrodek najniższego punk- 

tu D koła leży o 2a niżej od środka koła O. Stąd wynika, że sznur nie 
pozostanie w zetknięciu z kołem, jeżeli nie jest spełniony warunek

3xa
Z------->2a.

2
Przypuśćmy teraz, że część sznura zwisa swobodnie w postaci 

katenoidy. Niech P' będzie jednym z punktów zetknięcia tej krzywej 
z kołem. Na figurze wyróżniono jeszcze punkt P; uczyniono to jedynie 
w tym celu, aby uwidocznić trójkąt PLN (444). Oznaczmy kąt P'OD 
przez V (a zatem V będzie także nachyleniem stycznej w P' do pozio­
mu), łuk CP' przez s i współrzędne punktu P' przez x, y. Mając na uwa- 

c
dze trójkąt PLN, napiszemy y=------ , s=ctan, a ponieważ x=asin • 

COS!
przeto przy pomocy równań (5) par. 443 otrzymamy

a sin •

--------+tanJ=e c
COS • (1).

Wiemy, że swobodne końce sznura A i B leżą na kierownicy (par. 460), 
/ T \ 

a zatem BF=y+a CosY dalej łuk FE— xa, EP'={^——‘)a i P'C=s. Su­

ma tych czterech wielkości jest równa. Z, a więc

cl
/ 1 A , 3xa
I---- -tan • J+dCOS!—a‘+ ——I
\cos •/ 2 . • (2)

Zakładając, że

asind
c—-----------

V

1 1+sin d
"=2 081—sinq‘ otrzymamy z (1) i (2)

Drugie z tych

l / sin J . \. /1+sin • 3T 
—= +1—siny)V , —-!+. 
av /V 1 — sin 4 2

równań określa długość sznura, odpowiadającą da­
nemu położeniu równowagi.

Wypada teraz wyznaczyć najmniejszą długość l, przy której je­
szcze równowaga jest możliwa. W tym celu przyrównywamy do zera 
dl
—. Wymaga to dość rozwlekłych rachunków; podajemy tu już wynik 
dy _

dv 1 
ostateczny Wobec tego, że — ==------ , otrzymamy

cos •
1 dl (1— v) (v cos2Y—sin ) 0
a dy u2(l—sin V)

Rozwijając v według potęg sin 1, przekonamy się, że (v cos21—sin () 
jest ujemne i nie znika, gdy sin • zawiera się pomiędzy zerem i je­
dnostką. Założywszy, że czynnik (1 — v) jest równy zeru, otrzymamy
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e2—1 dl
sin J=------ . Pochodna — zmienia znak z — na +, gdy sino wzrasta, 

€2+1--------dy
a zatem l osiąga minimum. Wykonawszy rachunki liczbowe, znajdzie- 

3xa
my, że ^=0,86, a Z-----9=(e- Y) a=l,85 a.

Każdej wartości l większej od tego minimum odpowiadają dwa 
położenia równowagi. W jednem z nich część sznura zwisa swobodnie 
w postaci łańcuchowej, w drugiem sznur opasuje ściśle cylinder, albo 

3xa 
zwisa swobodnie stosownie do tego, czy l 2 jest większe, czy mniej­
sze od 2a.

Prz. 2. Jednorodny łańcuch bez końca jest zawieszony na obwo­
dzie koła pionowego; a oznacza promień koła, 2ay łuk, który łańcuch 
okala, i l całkowitą długość łańcucha. Dowieść, że

20 sin2 ~
(l— 2ay) {log (— cos )— log (1+sin )}=---------- .

COS Y

(May Exam.)
Prz. 3. Końce sznura jednorodnego o danej długości umocowa­

no w punktach nieruchomych, następnie po ustaleniu równowagi za­
mknięto sznur całkowicie w cienkiej nieruchomej rurce, która nigdzie 
go nie dotykała, i wreszcie przecięto go w punkcie, w którym styczna 
tworzyła z poziomem kąt . Okazać, że w punkcie, w którym styczna 
tworzy z poziomem kąt 1, stosunek ciśnienia na rurkę do ciężaru je-

, cos2^ 
dnostki długości sznura wynosi , 

cos Y
(Math. Tripos, 1886.)

463. Krzywa chropowata, sznur lekki. Rozważymy te­
raz przypadek, w którym ciężar sznura jest nieznaczny, a krzywa 
chropowata. Powracając do figury 129, przypuścimy, że na koń­
ce A i B działają siły nierówne F, F'. Chodzi o wyznaczenie 
równowagi granicznej, założymy przeto, że sznur ma właśnie 
zacząć się przesuwać w kierunku AB. Na każdy element PQ 
działa tarcie [iJRds, gdzie p. oznacza współczynnik tarcia. Siła 
ta działa w kierunku odwrotnym do kierunku ruchu, a więc 
od B do A.

Siłę tę wprowadzamy do równań, które otrzymaliśmy 
w par. 459, biorąc rzuty na styczną i normalną, a natomiast 
odrzucamy wyrazy, zawierające ciężar elementu; wypadnie

dT — p.Rds=0 . . (1),

dTPo wyrugowaniu R znajdziemy 7 =!

dsT~-Rds = h . . (2),
P

ds— =Ud, a stąd
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log T=w+A i T=Be^^ 
gdzie A i B są stałemi nieokreślonemi. Oznaczmy przez T1 i T2 
naprężenia w punktach, w których styczne tworzą z osią a kąty 
P1 i $2; w takim razie z równania ostatniego wypadnie

T,=T,et—h) . (3).

Dobrze będzie ująć ten wynik w formę prawidła. Gdy lekki 
sznur leży na krzymej chropoioatej w stanie graniczącym z ru­
chem, to stosunek naprężeń w dwóch dowolnych punktach jest 
równy e w potędze p. razy większej od kąta pomiędzy stycznemi 
lub normalnemi w owych punktach.

Znak, który trzeba postawić przed p, zależy od kierunku, w któ­
rym działa tarcie. Stosując powyższe prawidło, nie napotkamy pod tym 
względem żadnych trudności, gdyż (1) jest rzeczą oczywistą, że to 
z dwóch naprężeń jest większe, które ma kierunek odwrotny do tar­
cia, i (2) funkcyi wykładniczej ze współczynnikiem dodatnim może być 
równy tylko stosunek naprężenia większego do mniejszego, a nie od­
wrotnie.

Aby wyznaczyć kąt pomiędzy stycznemi wyobrażamy sobie, że 
prosta, która początkowo przystawała do pierwszej stycznej, toczy się 
po sznurze, dopóki nie przystanie do drugiej; kąt, o który obróci się 
przytem owa prosta ruchoma, jest kątem szukanym.

Równanie (2) określa ciśnienie w każdym punkcie sznura; 
widzimy, że Rp w jakimkolwiek punkcie jest równe naprężeniu 
w tym punkcie.

464. Gdy dane są siły F, F', działające na końce A, B, 
a także długość sznura l, to możemy wyznaczyć położenie gra­
niczne równowagi w sposób następujący. Nadajemy równaniu 
krzywej postać $=f(s), i niechaj s będzie współrzędną łukową 
punktu A; wówczas s + l będzie współrzędną punktu B, a kąty 
• w punktach A i B będą f^s) i f(s + l). Logarytmując równa­
nie (3), otrzymamy

log F, - log F=vl/s+1- /s) .
Z równania tego wyznacza się s. Znajdziemy inne położenie 
graniczne, pisząc—M zamiast M.

465. Zauważymy, że równanie (3) paragrafu 463 jest nie­
zależne od rozmiarów krzywej. Przypuśćmy, że ciężki sznur prze­
chodzi przez małą chropowatą obrączkę, albo przez kołek, i znaj­
duje się w stanie, graniczącym z ruchem. Można niekiedy po­
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minąć ciężar części sznura, pozostającej w zetknięciu z kołkiem, 
jako znikomy w porównaniu z naprężeniami po obydwóch stro­
nach. Jeżeli sznury po obydwóch stronach kołka tworzą kąt 
skończony, to ciśnienia a więc i tarcia nie będą małe, i nie- 
wolno ich pomijać. Wyciągamy stąd wniosek, że gdy ciężki wy­
prężony sznur przechodzi przez chropowatą obrączkę, albo przez 
kołek, to stosunek naprężeń po obydwóch stronach wyznacza się 
tak samo, jak dla sznura lekkiego.

466. Prz. 1. Lina tworzy dwa zwoje na chropowatym palu, a na 
jej końce działają siły F, F’. Wyznaczyć stosunek F: F' dla chwili, gdy 
właśnie my nastąpić poślizg.

W tym razie kąt pomiędzy stycznemi jest równy 4m, a zatem sto­
sunek większej siły do mniejszej wynosi e4TH.

Prz. 2. Okrągła tarcza, ważąca W i pozostająca w płaszczyźnie 
pionowej, opiera się w jednym punkcie o ścianę pionową, zupełnie 
chropowatą; do ściany przyciska ją sznur, którego jeden koniec jest 
przymocowany do ściany nad tarczą, a na drugim wisi ciężar P. Sznur 
tworzy ze ścianą kąt 3, a jego współczynnik tarcia o tarczę jest ró­
wny p. Dowieść, że gdy tarcza ma zacząć się osuwać, to 
P(1+cos%)e= W+2P. (Coli. Exam.)

Prz. 3. Zarzucono lekki sznur na chropowatą, nieruchomą tar­
czę .pionową, a do jego końców przywiązano końce ciężkiej sztaby, 
której długość jest równa średnicy tarczy, i która pozostaje w położe­
niu poziomem. Pomiędzy jakimi punktami sztaby można na niej zawie­
sić dany ciężar, nie naruszając równowagi? Okazać następnie, że cię­
żar można zawiesić w każdym punkcie, jeżeli stosunek jego do ciężaru

sztaby nie przewyższa
e“—1

, gdzie p. jest współczynnikiem tarcia sznura
2

o tarczę. (Coli. Exam., 1880.)
Prz. 4. Lekki sznur przechodzi przez poziomy i nieruchomy cy­

linder chropowaty. Do jednego końca sznura jest przywiązany ciężar 
W; ciężar P, przywiązany do drugiego końca, wystarczyłby do podnie­
sienia ciężaru W, a ciężar P' wystarczyłby do utrzymania W w zawie­
szeniu, wreszcie R i R' oznaczają odpowiednio ciśnienia wypadkowe 
sznura na cylinder. Okazać, że P: P'=R2 \ R'2. (Math. T., 1880.)

Prz. 5. Lekka wstęga opasuje ściśle dwa nierówne koła chropo­
wate. Jedno z nich jest nieruchome, a drugie zaczyna się zwolna obra­
cać około środka. Dowieść, że poślizg wstęgi rozpocznie się na mniej- 
szem kole.

Prz. 6. Na szczycie chropowatej kuli nieruchomej o promieniu 
c leży ciężka cząsteczka; do niej są przywiązane dwie inne takie same 
cząsteczki lekkiemi nićmi, każda o długości co. Dwie ostatnie czą­
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steczki leżą jaknajbliżej jedna od drugiej, a płaszczyzny nici two­
rzą kąt «p. Okazać, że 2 sin (—) cos 3= sin X. e" tan ", gdzie X oznacza 

kąt tarcia cząsteczek o kulę a także nici o kulę. (Coli. Exam. 1887.)
Prz. 7. Ciężki sznur jednorodny, 2/ długi, przechodzi przez dwie 

nieruchome obrączki A, B, położone na jednym poziomie, i ma wła­
śnie zacząć się przesuwać wewnątrz w obydwóch. Wyznaczyć położe­
nie równowagi.

Oznaczmy przez 2s długość części sznura, zawartej pomiędzy 
obrączkami, i przez y rzędną łańcuchowej przy każdej obrączce; na­
prężenia po dwóch stronach obrączki są proporcyonalne do y i L — s. 
Przywołując na pomoc trójkąt PLN na fig. 123, przekonamy się, że 
sznur jest wygięty o kąt, stanowiący spełnienie do a najmniejszego 

c
kąta, którego sin jest równy —, a zatem według (3), par. 463, będzie 

J
y / c\

log [---- = arcsin —J! Znana odległość pomiędzy obrączkami niech

będzie 2a; w takim razie x—a. Podstawiając na miejsce y i s ich war­
tości w funkcyach x lub a, znane z par. 443, otrzymamy równanie do 
wyznaczenia c. Następnie można będzie wyznaczyć y i s.

Prz. 8. A, B, C oznaczają trzy chropowate kołki, osadzone w pła­
szczyźnie pionowej, P, Q, R największe ciężary, które mógłby zrówno­
ważyć ciężar W, połączony z jednym z nich sznurem, przechodzącym 
odpowiednio przez A, B, C, przez A, B i przez B, C. Dowieść, że współ-

. 1 , QR czynnik tarcia o B wynosi — log ----- . 
T PW

(Math. Tripos, 1851.)

Niech a, 3, Y oznaczają kąty, o które sznur jest zgięty, gdy prze­
chodzi przez ABC', suma tych kątów jest równa T. Według par. 463
POR

10g w="ot"BH"Y, 108 w=+P(B+T), log w =M(o+B)P"T

Otrzymamy pożądany rezultat, rugując niewiadome pomocnicze. Przyj- 
mujemytu, żekołek Bieży pomiędzy pionami, przechodzącymi przez Ai C.

Prz. 9. Sznur o długości l zarzucono na dwa chropowate kołki, 
położone w odległości a na jednym poziomie, a różnica poziomów 
końców sznura iest jak największa. Dowieść, że styczna do sznura 
u kołka tworzy z pionem kąt, czyniący zadość równaniu
l sin 3 9 ,—-—. log cot 2—cos—fcosher—3) (St. John‘s Coli., 1881.)

Prz. 10. Ciężki łańcuch bez końca przechodzi przez dwa kołki 
chropowate, położone na jednym poziomie, oraz przez trzeci kołek 
gładki, położony w środku pomiędzy dwoma pierwszymi. Tym sposo­
bem łańcuch zwisa w postaci trzech katenoid. Styczne do sznura u kołka 
chropowatego tworzą z pionem kąty •, 3, a p oznacza współczynnik 
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tarcia. Dowieść, że wartości graniczne kątów a i 3 czynią zadość ró- 

+ u(n-—»•+ 3)wnaniu e 1=

a
2 sin a log cot 9

3sin 3 log cot 2
(Math. Tripos, 1879.)

467. Krzywa chropowata, sznur ciężki. Rozważymy te­
raz przypadek najogólniejszy, w którym potrzeba się liczyć zaró­
wno z ciężarem sznura^ jak i z chropowatością krzywej.

Powrócimy znowu do figury 129. Wprowadzając do ró­
wnań (1) i (2) par. 459 tarcie, otrzymamy

dT — wds sin P — \iJRds — 0 . . . (1)

-------wds cos P - Rds ....................................... (2).

Stosując te równania do odmiennych postaci sznura, na­
leży mieć na uwadze, że tarcie jest M. razy większe od ciśnie­
nia, uważanego za dodatnie. Tak np. ponieważ sznur jest ciężki, 
to może on leżeć we wklęsłości krzywej. W przypadku takim 
należy zmienić znak u R w równaniu drugiem, lecz nie w pier- 
wszem.

dsWypadnie w dalszym ciągu napisać p= dĘ 

jest taka, że s i • nie wzrastają jednocześnie, to 
, ds życ, że p= - —.

Aby rozwiązać równania powyższe, rugujemy 
dT

Jeżeli figura

należy zało-

R.

. . (3).

Jest to jedna z postaci typowych w teoryi równań różniczko­
wych. Zgodnie z prawidłem mnożymy przez e—P i całkujemy.

Te~^ —fiup (sin • - p. cosq)e—Płdp + C . . . (4).

Możemy uskutecznić całkowanie dopiero wtedy, gdy jest 
dana postać krzywej. Przedewszystkiem wyrażamy p według 
reguł rachunku różniczkowego w funkcyi $. Podstawiając 
i całkując, otrzymamy

Te-^=f^)+C...................................(5).
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Wyznaczywszy tym sposobem T, otrzymamy R z (1) lub 
(2). Należy zaznaczyć, że w tein wszystkiem nie zakładaliśmy je­
dnorodności sznura.

Ciśnienie w punkcie dowolnym czyni zadość równaniu
Rp — T— wp cos O.

Takie samo równanie mieliśmy w par. 460 dla ciężkiego sznura 
na krzywej gładkiej.

Jeżeli tarcie nie jest graniczne, to zastępujemy w (1) 
— [tRds przez — Fds, gdzie F oznacza tarcie na jednostkę dłu- 
gości.

Prz. Sznur jest jednorodny długości skończonej, i na końce jego 
działają siły Pi, P2. Okazać, że całkowite wywołane tarcie fFds — 
=P2 — Pi~wz, gdzie z=Y2—Y; tak więc z jest to odległość pionowa po­
między końcami sznura.

468. Widzieliśmy w par. poprzedzającym, że do badania równo­
wagi ciężkiego sznura na krzywej chropowatej potrzebna jest całka

I=fwpe—P(siny—ucos@) d).

W wielu przypadkach całka ta daje się wyznaczyć.
Gdy krzywa jest kołem, a sznur jednorodny, to p = a. Znajdziemy 

bez trudności
wa _  I—~—{(u.2—1) cost — 2u sino} e

M"+1
Jeżeli krzywa jest spiralną logarytmiczną, i sznur jednorodny, 

to r=ae" coto. Ponieważ psina=r i (=9+o, można więc otrzymać 
ae-acoto

całkę z poprzedzającej, pisząc u.—cola zamiast u i------------- zamiast a.
sin a

Jeżeli krzywa jest cykloidą z podstawą nachyloną do poziomu 
pod kątem jakimkolwiek, to p=4ucos(4—a), gdzie a oznacza promień 
koła tworzącego. Wogóle jeżeli krzywa jest tego rodzaju, że wp daje 
się wyrazić w postaci sumy potęg dodatnich całkowitych siny i cosy, 
to można wyrazić wp(sin—ucosy) w postaci sumy kosynusów i synu- 
nusów kątów wielokrotnych. W tych razach można wyznaczyć całkę 
w sposób podobny, jak dla koła.

IVCC -
Jeżeli krzywa jest łańcuchową, to pcos24=c i I—------ —.Wogóle 

COS •
jeżeli krzywa jest tego rodzaju, że p=acos"!, gdzie n jest liczbą cał­
kowitą dodatnią lub ujemną, to można wyznaczyć I zapomocą wzoru 
redukcyi. Znajdziemy łatwo, że 
l2+(n+1)2I,—(n-1)(n+2)1,-=

= wa (cos !)" - le - P {n + 2 - p(n + 2) sin + cos + - (n +1 - p?) cos 2/ I. 
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469. Prz. 1. Ciężki sznur zajmuje jedną ćwiartkę obwodu na 
górnej połowie chropowatego koła pionowego i znajduje się w stanie, 
graniczącym z ruchem. Dowieść, że promień, przechodzący przez 
niższy koniec, tworzy z pionem kąt a, czyniący zadość równaniu 

un
tan (a—2:)= e 2 , gdzie tane—p.

Prz. 2. Ciężki sznur spoczywa na obwodzie chropowatego koła 
pionowego; długość sznura jest równa ćwiartce obwodu, jeden koniec 
leży w najwyższym punkcie koła, i tarcie jest graniczne. Okazać, że

—tane=log tan 2$. (Coli. Ex., 1881.)

Prz. 3. Jeden koniec sznura jest umocowany w punkcie nieru­
chomym; sznur przechodzi pod ruchomym krążkiem, ważącym W, 
a na drugi koniec jego działa siła P, ściśle wystarczająca do utrzy­
mania krążka w zawieszeniu. Na krążku sznur okala luk, które­
mu odpowiada kąt centralny «. Okazać, że kąt len czyni zadość ró­
wnaniu

P(1—2e*? cos p+e)‘= w.
(Coli. Ex„ 1882.)

Prz. 4. Sznur leży na chropowatej katenoidzie, której oś jest 
pionowa a wierzchołek zwrócony do góry. Długość sznura jest równa 
parametrowi, jeden koniec jego znajduje się w wierzchołku katenoi- 
dy, i tarcie jest graniczne. Okazać, że współczynnik tarcia wynosi 
21092 
 —. (Coli. Ex., 1885.)

T
Prz. 5. Ciężki sznur leży we wklęsłości chropowatej cykloidy, 

której podstawa tworzy z poziomem kąt a; koniec A znajduje się 
w najniższym punkcie cykloidy, a koniec B w wierzchołku. Okazać, 
że stan sznura graniczy z ruchem, jeżeli

tan E—2 tan a
___________________________ tan e 

tan s + (1—3 cos 2e) tan a
gdzie tan s jest współczynnikiem tarcia.

Prz. 6. Ciężki sznur spoczywa na chropowatej cykloidzie, poło­
żonej w płaszczyźnie pionowej i posiadającej podstawę poziomą. Nor­
malne w końcach sznura tworzą z pionem jednakowe kąty a, i a jest 
również kątem tarcia sznura o cykloidę. Obracamy zwolna cykloidę 
około jednego z końców o kąt a. Dowieść, że tarcie stanie się grani- 
cznem, jeżeli

, 2 — 20 tan a
3------—==€COS2a

(Przyjmujemy tu, że żadna część sznura nie zwisa swobodnie).
(Coli. Ex., 1883.)

Prz. 7. Ciężki sznur jednorodny spoczywa na gładkiej cykloi­
dzie, której oś jest pionowa, a wierzchołek zwrócony ku górze; sznur 



— 383 —

okala dokładnie jedną gałęź krzywej, i końce jego leżą w ostrzach. 
Dowieść, że -ciśnienie w każdym punkcie cykloidy jest odwrotnie 
proporcyonalne do krzywizny. (Math. Tripos, 1865.)

Prz. 8. Położono ciężki sznur AB na wypukłości krzywej chro­
powatej w płasżczyźnie pionowej, i tarcie we wszystkich punktach 
jest zwrócone na krzywej w jedną stronę. Okazać, że sznur pozosta­
nie w spokoju, jeżeli nachylenie cięciwy AB do poziomu jest mniej­
sze od arctan u, gdzie p. oznacza współczynnik tarcia.

(June Ex., 1878.)
470. Twierdzenie następujące obejmuje sporo zagadnień, pro­

wadzących do całek znanych.
Przypuśćmy, że znana jest forma, w której niejednorodny sznur 

swobodny, umocowany tylko w końcach, pozostaje w równowadze 
w płaszczyźnie pod działaniem pewnych sił. Niech y=f{x) będzie tą 
znaną krzywą. Przypuśćmy dalej, że ten sam sznur ułożono w tem 
amem położeniu na nieruchomej krzywej chropowatej, która również 
posiada równanie ij=f(x~). Jeżeli teraz na końce działają siły takie, że 
sznur ma właśnie zacząć się posuwać, to

(T+Gp^^^C, Rpe~^^C.......................(1)

0 jest tu stałe na całej długości sznura, Gds podobnie, jak w par. 454, 
jest składową normalną siły, działającej na element ds, zwróconą we­
wnątrz. Przypadek typowy jest tu ten sam, co w par. 467. Poślizg 
ma się rozpocząć w tym kierunku, w którym V wzrasta, a ciśnie­
nie R krzywej na sznur działa na zewnątrz, jeżeli jest dodatnie. Gdy 
odwrócimy którekolwiek z tych założeń, to wypadnie zmienić znak 
przed p.. Aby sznur nie odstał od krzywej, to C powinno mieć znak 
taki, przy którym R działa od krzywej w stronę sznura.

Aby udowodnić wzory powyższe, powracamy do równań (1) 
i (2) par. 454. Wprowadzając do tych równań ciśnienie R, otrzymamy

Tds 
dT]-Fds — [tRds—O, ------ \-Gds—Rds—0- . . . . (2).

P
Rugujemy R, jak w par. 467; wypadnie

Te M=-J(F_pG)pe-Md+c................................ (3).

Gdy sznur wisi swobodnie, to R=0; rugując w tem przypuszczeniu T

z rownan (2), znajdziemy, że Fp—------ jest słuszne 
dy

wzdłuż krzywej.

Gdy sznur leży na krzywej, posiadającej wspomnianą własność, to 
możemy podstawić powyższą wartość Fp w równaniu (3). Wówczas 
wypadnie Te Mł=-e ^GpFC. Pierwszy z wzorów, które mieliśmy 
udowodnić, wynika stąd bezpośrednio, drugi otrzymamy, podstawiając 
ostatnią wartość T w drugiem z równań (2).
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471. Prz. 1. Ciężki jednorodny sznur AB leży na górnej stro­
nie chropowatej katenoidy, której kierownica jest pozioma, przyczem 
koniec dolny sznura znajduje się w wierzchołku. Wyznaczyć najmniej­
szą siłę, która poruszy sznur, działając na koniec górny.

W górnym końcu sznura T=F, G=-gcost; w końcu dol­
nym T=0, G=-g, 1=0. Według paragrafu poprzedzającego będzie 
(F— gp cos@)e"M=- gc, a zatem F= g{y — ce TM). Znakowi górnemu 
przed p. odpowiada większa wartość F, będzie to siła ściśle wystar­
czająca do posunięcia sznura w górę; znakowi dolnemu odpowiada 
siła dostateczna do utrzymania sznura w spoczynku. Wyprowadzić te 
wyniki bezpośrednio z warunków równowagi.

Prz. 2. Sznur jednorodny AB leży na obwodzie chropowatego 
koła pod działaniem siły centralnej; środkiem tej siły jest punkt O, 
położony na przeciwległym końcu średnicy, przechodzącej przez A, 
a natężenie jej zmienia się, jak odwrotność sześcianu odległości. Do­
wieść, że do utrzymania sznura w spokoju wystarczy, aby na koniec

/e- 2gp \ 21
A działała siła F—k(-------—1), gdzie 3 oznacza kąt AOB, — siłę 

\ cos2^----- / a3 
centralną w A, i a średnicę.

472. Sznury bez końców i inne. Gdy ciężki sznur nierozcią- 
galny pozostaje w równowadze w płaszczyźnie pionowej na gładkiej 
krzywej, nie posiadającej punktów osobliwych, to można wyznaczyć 
ciśnienie i naprężenie, jak w par. 459, z jedną stałą nieokreśloną. Stałą 
tę wyznaczamy zazwyczaj, przyrównywając do zera naprężenie w je­
dnym z końców swobodnych. Gdy jednak sznur jest bez końca, albo 
gdy obydwa końce są przymocowane do krzywej, przyczem sznur 
mógł być wyprężony dowolnie, to niema danych do wyznaczenia owej 
stałej.

Dajmy na to, że sznur styka się z dolną stroną krzywej; rozlu­
źniamy go stopniowo, dopóki długość jego nie przewyższy nieskoń­
czenie mało długości łuku, z którym pozostaje w zetknięciu. W tym 
stanie sznur ma właśnie odstać od krzywej w pewnym nieznanym 
punkcie Q; mówimy, że opasuje on krzywą ściśle. Jeżeli sznur będzie 
wydłużał się w dalszym ciągu, to ostatecznie skończona część jego 
odstanie od krzywej i zwiśnie w postaci łańcuchowej. Taksamo, gdy 
górna wklęsła strona krzywej podtrzymuje ciężar rozważanego sznura, 
to można wyprężać go, dopóki nie odstanie od krzywej w pewnym 
punkcie Q. Gdy będziemy wyprężali albo skracali sznur w dalszym 
ciągu, to skończona część jego zawiśnie w postaci łańcuchowej, a reszta 
będzie wciąż leżała na krzywej.

Celem wyznaczenia punktu Q zauważymy, że ciśnienie krzywej 
na sznur, mierzone w stronę, po której sznur leży, musi być dodat- 
niem we wszystkich punktach i zerem w Q, a zatem ciśnienie, mie­
rzone w taki sposób, osiąga w Q minimum.
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Według par. 460 ciśnienie B, mierzone na zewnątrz, wyznacza się 
z równania

Rp=To+tw(y—P cos!)............................ (1). 
, . dRRóżniczkując i biorąc w rachubę, że w I zarówno R jak i — są ze­

rami, otrzymamy
dii do .d0 0= cost—+psin.—. 
as ds as

Wyjątek stanowi przypadek, gdy w znalezionym punkcie p jest nie- 
dy . . ds 

skończenie wielkie. Ponieważ —=sm •, i p=—, przeto wypadnie od razu 
ds 

dp.. ................................................................... (2). 
ds

Równanie to określa punkt, w którym Rp osiąga maksymum, lub 
dR minimum, albo słoi w mierze. Skoro zarowno R, jak i —, są zerami, to

d2R d2RP ,/2 d2p\
p------ —----- — cos U-----------

ds2 ds2 \ p ds2 /
siny 

P
dP
ds

Znak wyrażenia tego rozstrzyga, czy R osiągnęło maksymum, czy mi­
nimum. Gdy długość sznura jest skończona, to odrzucimy niektóre z wy­
znaczonych punktów, jako leżące po za danemi granicami; należy jed­
nak w tym razie liczyć się z końcami sznura, bo jest rzeczą oczywi­
stą, że ciśnienie w końcu może być mniejsze, niż we wszystkich pun­
ktach pośrednich. Z takich wszystkich punktów ten będzie szukanym pun­
ktem Q, w którym ciśnienie, mierzone w stronę sznura, jest najmniejsze. 
Znajdziemy następnie stałą nieokreśloną To, zakładając, że w tym punkcie 
ciśnienie jest zerem.

Jeżeli sznur odstanie od krzywej w punkcie najniższym, to 
dp—=0, a więc w tym punkcie promień krzywizny musi osiągać maksy­

mum, lub minimum, albo pozostawać w mierze. Ponieważ Rp musi 
osiągać minimum albo maksymum stosownie do tego, czy sznur leży 
zewnątrz czy wewnątrz, przeto jest rzeczą niezbędną, aby w pierwszym

d2Rp
razie 192 było dodatnie, a w drugim ujemne.

Można tym warunkom nadać postać geometryczną. Weźmy pod 
uwagę część sznura, opasującą dolną wypukłą stronę krzywej; przy­
puśćmy, że rozluźnia się ona coraz bardziej i wreszcie zaczyna odsta- 
wać od krzywej. Niechaj Q będzie takim punktem, którego przeciwśro- 
dek leży najniżej; określamy stałą To, prowadząc przez ten przeciw- 
środek kierownicę statyczną (par. 460). Jeżeli R oznacza ciśnienie, skie­
rowane na zewnątrz, to Rp będzie we wszystkich punktach dodatnie 
i równe zeru w Q. Z tego wynika, że właśnie w tym punkcie Q sznur 
odstanie od krzywej.

Statyka. 25
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Dajmy teraz na to, że sznur spoczywa na górnej wklęsłej stro­
nie krzywej. Gdy zaczniemy go wyprężać stopniowo, to zacznie on 
odstawać od krzywej w punkcie Q, którego przeciwśrodek leży najwy­
żej. W samej rzeczy, obierzmy stałą T w taki sposób, aby kierownica 
statyczna przeszła przez ten przeciwśrodek; przyjmując, że sznur leży 
całkowicie nad kierownicą (par. 460), dojdziemy do wniosku, że Bp jest 
we wszystkich punktach ujemne, a w punkcie Q równe zeru.

473. Prz. 1. Sznur ciężki ściśle opasuje koło pionowe, okazać, że 
naprężenie w punkcie najwyższym jest trzy razy większe, niż w naj­
niższym.

Niech a oznacza promień koła, a TQ, Ti naprężenia w punktach 
najniższym i najwyższym. W takim razie Ti— T0—2wa. Ponieważ p jest 
stałe, przeto jedyne rozwiązanie równania (2) będzie 1=0, i dla tej war­
tości • ciśnienie R, mierzone na zewnątrz, osiąga minimum. Tak więc 
ciśnienie w punkcie najniższym jest równe zeru, a zatem ciężar wds 
elementu najniższego podtrzymują naprężenia na końcach tego elemen-

ds
tu, i ivds—T0—. Z tego wynika T0=iva i Ty—^wu.

a
Można dojść do tego samego w sposób prostszy, stosując prawi­

dło geometryczne, podane w paragrafie poprzedzającym. Miejscem ge- 
ometrycznem przeciwśrodków jest oczywiście inne koło o promieniu 
2a współśrodkowe z kołem danem. Gdy obierzemy styczną w punkcie 
najniższym tego miejsca za kierownicę statyczną, to stosunek wyso­
kości punktów najwyższego i najniższego na kole danem będzie 3:1; 
tyleż wyniesie i stosunek naprężeń w tych punktach (par. 460), Gdy 
nieco rozluźnimy sznur, to zacznie on odstawać w punkcie najniższym.

Prz. 2. Część ciężkiego sznura, którego całkowita długość jest 
równa 21, leży wewnątrz gładkiego naczynia kulistego, a dwie inne 
części przewisają symetrycznie po obydwóch stronach przez gładki 
brzeg, leżący w płaszczyźnie poziomej. Promień kuli=a, kąt centralny 
naczynia—23. Znaleźć warunki równowagi.

Wszystkie punkty sznura muszą leżeć nad kierownicą statyczną, 
i wykreśliwszy figurę, dojdziemy, że l> a(^ + l — cos 3). Sznur leży we 
wklęsłości, a zatem ciśnienie R musi być ujemne, i wszystkie punkty 
linii przeciwśrodków powinny leżeć pod kierownicą statyczną. Z tego 
wynika, że l< a (3+cos 3). Te dwa warunki wymagają, aby kąt 3 był

T 
mniejszy od —.

Prz. 3. Ciężki sznur opasuje od dołu katenoidę o osi pionowej, 
a końce jego są przymocowane do tej krzywej. Dowieść, że sznur od­
stanie od krzywej jednocześnie we wszystkich punktach, gdy będzie­
my go rozluźniali stopniowo.

Prz. 4. Jeden koniec ciężkiego sznura jest przymocowany do naj­
niższego punktu cykloidy, której oś jest pionowa, a wierzchołek leży 
w owym punkcie najniższym. Sznur opasuje cykloidę od dołu aż do 
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ostrza, przechodzi tam przez gładki bloczek, a koniec zwisa swobodnie. 
Okazać, że najmiejsza długość zwisającej części sznura, przy której 
jeszcze zachodzi równowaga, jest równa sześciokrotnemu promienio­
wi koła tworzącego. Wyznaczyć w tym przypadku granicznym ciśnie­
nie wypadkowe na cykloidę. (Queen’s Coli.)

Prz. 5. Ciężki sznur ściśle opasuje od dołu cykloidę, a końce jego 
są przywiązane w ostrzach. Okazać, że ciśnienie jest zerem w punkcie Q, 
który określa ujemny pierwiastek równania 3 sin (2+a)==-sin a, gdzie « 
oznacza kąt, który normalna w Q tworzy z osią cykloidy, a a nachy­
lenie osi do pionu. Wyznaczyć prócz tego naprężenie w wierzchołku.

Prz. 6. Ciężki sznur bez końca jest zawieszony na krzywej owal­
nej tak, że część jego zwisa w postaci łańcuchowej. Skracamy sznur 
stopniowo, dopóki łuk łańcuchowej nie stanie się nieskończenie krót­
kim. Okazać (1), że krzywa i łańcuchowa posiadają cztery kolejne pun­
kty wspólne, i (2) że ten nieskończenie krótki łuk łańcuchowej leży

dpw punkcie krzywej, dla którego 2 tan J==—.ds
Prz. 7. Sznur opasuje mocno gładką elipsę; działa nań odpycha­

jąca siła centralna, wychodząca z ogniska i proporcyonalna do kwa­
dratu odległości. Wyznaczyć prawo, według którego zmienia się na­
prężenie, i dowieść, że gdy rozluźnimy sznur cokolwiek, to odstanie 
on od krzywej w punkcie, którego odległość od ogniska wynosi 7/4 po­
łowy dużej osi, jeżeli mimośrod jest większy od 3/4. W którem miej­
scu sznur odstanie od krzywej, gdy mimośrod jest mniejszy od 3/i?

(Coli. Ex., 1887.)

474. Siły centralne. Sznur o danej długości, przymocoma- 
ny iv dtoóch punktach nieruchomych, podlega działaniu siły cen­
tralnej. Wyznaczyć związek pomiędzy kształtem krzywej i pra­
wem, według którego działa siła. Będziemy mierzyli łuki, poczy­
nając od pewnego punktu A, obranego na sznurze, w kierun­
ku AB, i niech będzie s=AP. Środkiem g 
siły jest, dajmy na to, punkt O, i na // 
element ds — PQ działa siła Fds, którą /0r 
uważamy za dodatnią, gdy jest zwró- HP 
eona w stronę dodatnią promienia wo- — // 
dzącego, t. j. gdy siła jest odpycha- o /A 
jąca. Fig. 132.

Element PQ pozostaje w równo­
wadze pod działaniem naprężeń TiT+dT oraz siły centralnej 
Fds. Biorąc rzuty na styczną w P, otrzymamy

dT+ Fds cos =0, 
gdzie « oznacza kąt pomiędzy elementem ds i promieniem wo-
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dr dzacym, czyli kąt OPA. Ponieważ Cos =ds» 
powyższe sprowadza się do 

dT ——+F‘=0 . . .
dr

przeto równanie

....................... (1).

Moglibyśmy otrzymać drugie równanie, biorąc rzuty tych 
samych sił na normalną w P, ale dojdziemy do tego samego 
łatwiej, biorąc momenty wszystkich sił, działających na skoń­
czoną część sznura AP. Część ta pozostaje w równowadze pod 
działaniem naprężeń To, T oraz sił, z któremi O odpycha ka­
żdy element. Gdy weźmiemy momenty względem O, to te osta­
tnie nie wejdą do równania, i wypadnie

Tp = A............................................ (2), 
gdzie p oznacza prostopadłą z 0 do stycznej w P, A zaś jest 
momentem naprężenia To względem 0.

Dajmy na to, że styczne w dwóch jakichkolwiek punktach A, B 
do krzywej spotykają się w C. Łuk AB pozostaje w równowadze pod 
działaniem naprężeń w A i B oraz wypadkowej R sił centralnych, 
działających na wszystkie elementy. Wynika stąd, że linią działania tej 
wypadkowej będzie prosta, łącząca środek siły centralnej 0, z punktem 
przecięcia C stycznych w A i B. Jeżeli OY i OZ są prostopadłemi z 0 
do stycznych w A i B, to składając naprężenia, zobaczymy, że

YZ
B=A • ~oy7oz'

Gdy punkt P obiega sznur od A do B, to spodek prostopadłej 
z 0 do stycznej w P zakreśla krzywą spodkową. Gdybyśmy wykreślili 
tę krzywą, to mielibyśmy obraz naprężeń we wszystkich punktach 
sznura.

475. Mamy rozważyć teraz dwa przypadki.
Pierwszy. Postać krzywej jest dana, chodzi o wyznacze­

nie siły. Przy pomocy znanych twierdzeń rachunku różniczko­
wego możemy wyrazić równanie krzywej w postaci p=!(r). 
Wówczas z równań (1) i (2) otrzymamy

— A t=A-^ 9 
[9(r)]2

Stała A pozostaje nieokreśloną, bo jest rzeczą oczywistą, 
że równowaga nie dozna zakłócenia, gdy siła centralna wzro­
śnie w pewnym stosunku. Naprężenie w sznurze oraz reakcye 
w punktach zawieszenia wzrosną w tym samym stosunku.

Przypadek drugi. Przypuśćmy teraz, że siła jest dana, 
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a mamy wyznaczyć postać krzywej. Rugując T z (1) i (2), znaj- 
dziemy

j^B-f^dr....................................... (4).

Trzeba teraz rozwiązać to równanie różniczkowe. Zakładamy 
u= i fFdr = f(u); przy pomocy twierdzenia z rachunku róż­

niczkowego otrzymamy

A2{a2+\d^r[B-f^]2......................... (5).

Gdy przeprowadzimy separacyę zmiennych, to będzie

— Adu ,=9+C........................ (6).

Wykonawszy całkowanie, znajdziemy równanie biegunowe 
krzywej.

W równaniu ostatniem wchodzą trzy stałe nieokreślone, 
a mianowicie A, B i C. Do wyznaczenia ich mamy dane współ­
rzędne biegunowe (u,30), (u,9.) punktów zawieszenia. Scałko- 
wawszy (6), podstawiamy zamiast u, 3 te wartości skrajne i tym 
sposobem otrzymamy dwa równania pomiędzy owemi trzema 
stałemi. Prócz tego mamy daną długość sznura. Aby skorzy­
stać z tej danej, musimy naprzód wyznaczyć długość łuku. 
Znajdziemy z łatwością

, du?+(ud8)2ds2 = dr2 + {rd^y =------- ,4---- —,
i z pomocą (5) otrzymamy

J u2\[_B-f{uyy-A2u2\^7

Całkujemy w danych granicach zmiennej u i przyrównywamy 
rezultat do danej długości sznura; tym sposobem powstanie 
równanie trzecie do wyznaczenia trzech stałych.

Równanie (6) jest zgodne z tem, które podał Jan Bernoulli, Ope­
ra Omnia, Tomas Qaartus, p. 238. Stosuje on swe równanie do przy­
padku, w którym siła zmienia się, jak odwrotność n—tej potęgi odle­
głości, i przeprowadza krótką dyskusyę krzywych, gdy n=0 i n—2.

476. Prz. 1. Sznur jednorodny pozostaje w równowadze w postaci 
łuku koła pod działaniem środka sił, położonego w jakimkolwiek punkcie 0 
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Wyznaczyć prawo siły. Niech C będzie środkiem koła, OC^c, CP—a. 
W takim razie 2ap~r2+a2—c2, i

a(1)F=-AL=Ar.
dr (r2+a2-c2)2

A Jeżeli środek sił leży w jakimkolwiek 
punkcie okręgu, niezajętym przez sznur, to 
siła jest odwrotnie proporcyonalna do sze­
ścianu odległości.

Ponieważ Tp=A, przeto A jest doda- 
x tnie, i Fjest dodatnie; to znaczy, że siła musi 

być odpychająca. Jeżeli O leży na zewnątrz 
koła to dla części sznura, położonej pomię­
dzy biegunową punktu O i punktem O, p jest 
ujemne; jeżeli więc sznur zajmuje tę część 
okręgu, to A jest ujemne, i siła F musi być 

Fig. 133. przyciągająca.
Za zmienną niezależną obraliśmy r lub 

u; jeśli środek sił leży w środku koła, to założenie takie jest niemo­
żliwe, i przypadek ten wymaga traktowania odrębnego. Jest tu jednak 
rzeczą oczywistą, że sznur pozostanie w równowadze przy każdem 
prawie siły, jeżeli tylko siła ta jest odpychająca.

Prz. 2. Sznur jednorodny pozostaje w równowadze w postaci 
krzywej rn=an cos n8 pod działaniem siły centralnej F, wychodzącej 
z bieguna; okazać, że F— uun+2.

Prz. 3. Koniec sznura o długości nieskończonej jest umocowany 
w nieruchomym punkcie A; następnie sznur przechodzi przez gładką 
nieruchomą obrączkę B i dalej biegnie w nieskończoność w postaci 
linii prostej, pozostając na całej długości pod działaniem odpychają­
cej siły centralnej =pun, gdzie n>l. Okazać, że pomiędzy punktami A 
i B sznur tworzy krzywą 12=b"2cos(n— 2)8. Jeżeli n—2, to krzywa 
jest spiralną logarytmiczną.

Prz. 4. Sznur bez końca okala środek siły=pu", gdzie 2 > n > 1. 
Długość sznura nieograniczenie wzrasta tak, że jeden z apsydów*)  
oddala się nieskończenie od środka sił; okazać, że postać równowagi 

3

*) Punkt, w którym styczna jest prostopadła do promienia wo­
dzącego. Przyp. tłom.

sznura dąży do rn~ =b"2 cos (n—2)9. Jeżeli 1=9, to krzywa jest pa­
rabolą.

Prz. 5. Końce sznura jednorodnego o długości 21 są umocowane 
w nieruchomych punktach A, B w jednakowych odległościach od środka 
siły odpychającej—pu2. Kąt A0B—2<^, i OA=BB=b. Dowieść, że sznur 
tworzy krzywą
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M cos (3 sin a)
r cos a 

gdzie wartości rzeczywiste i urojone M i a wynikają z równań
M cos (Psin a)— 1 --------- :
b COS a

b
sin a= ± — sin (p sin a).

Równania (1) i (2) par. 474 będą w tym razie dT=[idu i Tp—A. 
Postępując zgodnie ze wskazówkami paragrafu 475, otrzymamy

r Adu± |------------------------—,=9+ C.

Jest to jedna z całek typowych w rachunku całkowym i przybiera ró­
żne postaci stosownie do tego, czy A2 — p.2 jest dodatnie, ujemne, czy 
też równe zeru. Czyniąc pierwsze z tych założeń, /.najdziemy po nie­
wielkich przeróbkach

(A2-^u
- --- —= u-Acos / u.2 \1/2(1-7) P+C).

Wzór ten zawiera właściwie wszystkie przypadki, bo gdy A2—p.2 
jest ujemne, to możemy po prawej stronie zamiast kosynusa kąta urojo­
nego napisać wartość jego w postaci wykładniczej.

Wyznaczając łuk w sposób, który poznaliśmy poprzednio, otrzy­
mamy z łatwością

Bs^=±{(Br+ii)2-A2\^+D, 

gdzie pierwiastek powinien mieć po odwrotnych stronach apsydu zna­
ki odwrotne.

Z warunków zadania wynika, że sznur musi być symetryczny 
względem prostej, dla której 0=0, a zatem C=0 i D=0. Zakładamy 

U.A—------ ; wówczas równanie krzywej sprowadzi się do 
COS a

p. tan2 a
Bi
1cos (sin a)

——1 ±--------------------
r cos Q

Prócz tego mamy
B2l2=(Bb+p.)2----—

COS^a

Rugujemy z tych równań B; wypadnie l sin a=±ń sin (3 sin a). Gdy te­

raz oznaczymy współczynnik zmiennej — przez M, włączymy podwój­

ny znak do wartości a i uwzględnimy, że r=b, gdy J==±3, to otrzy­
mamy wyniki wskazane.

Prz. 6. Sznur jest w równowadze w postaci krzywej zamkniętej 
dookoła siły odpychającej=pu2. Okazać, że krzywa jest kołem.

Powołując się na przykład poprzedzający, zauważymy, że r po­
zostanie bez zmiany, gdy 8 wrośnie o 2i, a zatem r musi być funkcyą 
trygonometryczną 8. Z tego wynika, że sin a—1, albo sin a=0. Gdy za­
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łożymy Mcose=M‘, to w przypadku pierwszym będzie —=cos3, co 

nie jest krzywą zamkniętą; w przypadku drugim wypada M= r, czyli 
koło.

Prz. 7. Sznur tworzy parabolę, środek siły leży w ognisku, i ró­
wnowagę można utrzymać, umocowawszy dwa punkty sznura. Znaleźć 
prawo, według którego działa siła i dowieść, że naprężenie w dowol­
nym punkcie P wynosi 2fr, gdzie f oznacza siłę w P na jednostkę dłu-
gości i r promień wodzący z ogniska (St John’s Coli., 1883.)

Prz. 8. Sznur nieskończenie długi przechodzi przez dwie gładkie
obrączki i pozostaje pod 
wrotnie proporcyonalnej 
Okazać, że część sznura 
koła.

Prz. 9. Cząsteczki

działaniem siły centralnej odpychającej, od- 
do sześcianu odległości od danego środka, 
pomiędzy obrączkami posiada kształt łuku 

(Coli. Ex., 1884.) 
sznura, umocowanego w dwóch punktach, 

odpychają się z siłą proporcyonalną do odległości. Dowieść, że w sta­
nie równowagi naprężenie w każdym punkcie jest proporcyonalne do 
pierwiastka kwadratowego z promienia krzywizny. (Math. Tripos, 1860.)

Prz. 10. Dowieść, że dla siły centralnej, zmieniającej się, jak 
odwrotność odległości, łańcuchową jednakowej wytrzymałości jest 
krzywa r" cos n$= an, gdzie 1—n jest stosunkiem gęstości do napręże­
nia. Okazać, prócz tego, że ten układ krzywych obejmuje koło, hiper­
bolę równoramienną, lemniskatę, a także spiralną logarytmiczną dla
n=0. (O. Bonnet, Liouville’s J., 1844.)

Prz. 11. Sznur, opasujący gładką krzywą płaską, jest przyciągany 
z siłą F do pewnego punktu, położonego w płaszczyźnie tej krzywej. 
Krzywa jest taka, że mogłaby ją obiegać swobodnie cząsteczka, pozo­
stająca pod działaniem tejże siły. Okazać, że ciśnienie sznura na krzy- 

, Fsin © c 
wą, rachowane na jednostkę długości, wynosi —-—   ,gdzie ozna-

2 p 
cza kąt, który promień wodzący ze środka siły tworzy ze styczną, p 
jest promieniem krzywizny, i c stałą dowolną.

Jeżeli krzywa jest spiralną logarytmiczną, środek siły znajduje 
się w biegunie, i jeden koniec sznura leży swobodnie na krzywej 
, , u. sin ©/1 1 \ 

w odległości a od bieguna, to ciśnienie wynosi —2 —2/

(Math. Tripos, 1860.)
Prz. 12. Swobodny sznur jednorodny, pozostający pod działa­

niem odpychającej siły centralnej F, tworzy w stanie równowagi pe­
wną krzywą; krzywą tą mogłaby swobodnie obiegać cząsteczka pod 
działaniem siły F', skierowanej do tego samego środka. Okazać, że 
F—kpF', gdzie k jest wielkością stałą; okazać dalej, że T—kpv2, gdzie u 
jest szybkością cząsteczki, a T naprężeniem sznura.

Prz. 13. Wiadomo, że cząsteczka może pod działaniem siły cen­
tralnej, odpychającej i proporcyonalnej do odległości, obiegać hiper­
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bolę równoramienną, której środek leży w środku siły. Opierając się 
na tem, dowieść, że sznur, tworzący hiperbolę równoramienną, może 
pozostawać w równowadze pod działaniem siły przyciągającej, stałej 
pod względem wielkości i skierowanej do środka krzywej. Dowieść 
jeszcze, że naprężenie zmienia się, jak odległość od środka.

477. Gdy istnieją dwa środki siły, to najłatwiej będzie otrzymać 
równania równowagi, biorąc rzuty na styczną i normalną. Niechaj r, r' 
oznaczają odległości jakiegoś punku P sznura od środków siły, F, F' 
siły centralne, które uważać należy odpowiednio za funkcye r i r', 
wreszcie p, p' prostopadłe ze środków siły do stycznej w P. Wypadnie

T pdT+Fdr+F'dr'=Q. . (1), ------F—F‘=0 . . (2).
p T r

Z pierwszego z tych równań otrzymamy
T=B—JFdr—fF'dF .......................................... (3).

Możemy założyć, że granica niższa tych całek odpowiada punktowi Po, 
danemu na sznurze, i w takim razie B będzie naprężeniem w Po. Pod­
stawiamy w (2) wartość T, którą otrzymaliśmy z (1), pamiętając przy- 

rdr — , . tem, że p = . Wypadnie
dp

d d
— (pfFdrU — ^fFdr^B................................ (4).
dp dp1

Z drugiej strony, gdy wyznaczymy T z (2) i podstawimy w (1), to znaj- 
dziemy

W zagadnieniu wchodzą cztery elementy, a mianowicie: (1) siła F, 
(2) siła F, (3) naprężenie T^ (4) równanie krzywej. Gdy dwa z nich są 
dane, to mamy już dostateczną liczbę równań do wykrycia dwóch po­
zostałych.

Prz. 1. Sznur, tworzący daną linię, byłby w równowadze pod 
działaniem każdego z dwóch różnych środków siły. Okazać, że pozo­
stanie on w równowadze i pod łącznem działaniem obydwóch środ­
ków, oraz że naprężenie w każdym punkcie jest równe sumie naprę­
żeń, pochodzących od sił, działających z osobna.

Prz. 2. Dowieść, że sznur jednorodny pozostanie w równowa­
dze w postaci krzywej F=2d2 cos 20 pod działaniem dwóch odpycha­
jących sił centralnych, wychodzących z punktów (a, 0), (—a, 0), przy-

U. czem każda z sił w odległości R wynosi na jednostkę długości—. Do- 
R

wieść także, że naprężenie we wszystkich punktach jest stałe i ró­
4p
3

wne (Coli. Ex., 1891.)
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478. Sznur na powierzchni. Sznur pozostaje na powierzchni 
gładkiej pod działaniem sił jakichkolwiek. Wyznaczyć położenie 
równowagi.

Niech będzie f(cc, y, z) = 0 równaniem powierzchni, Rds ci- 
śnieniem powierzchni na sznur, skierowanem na zewnątrz, 
i (Z, m, n) kosynusami kierunkowemi normalnej, skierowanej 
wewnątrz. Z geometryi wiadomo, że Z, m, n są odpowiednio 
proporcyonalne do pochodnych cząstkowych f(x, y^ z) wzglę­
dem x, y, z.

Jeżeli chodzi o równanie we współrzędnych Kartezyusza, to 
otrzymamy je od razu z równań paragrafu 455, dołączając tyl­
ko R do sił zewnętrznych. Będzie wówczas

d(74+x-R/=0ds \ dsI

— + Y -Rm= 0ds \ ds/

d(rdz)+z-Rn=o.ds \ dsI
Wchodzi tu więcej niewiadomych, niż w równaniach par. 

455, a mianowicie przybyła nowa niewiadoma R^ ale za to 
mamy o jedno równanie więcej, a mianowicie równanie po­
wierzchni.

479. Weżmy dowolny element sznura PQ. Poprowadźmy 
styczną PA do sznura w P, prostopadłą do niej PB, położoną 
w płaszczyźnie stycznej do powierzchni, i normalną PN do po­
wierzchni. Oczywiście promień krzywizny sznura PC leży w pła­
szczyźnie BPN. Oznaczmy przez X kąt CPN’, płaszczyzna CPA, 
ściśle styczna do sznura, tworzy także kąt X z normalną PN do 
powierzchni.

Element PQ pozostaje w równowadze pod działaniem sił 
następujących: (1) sił Xds, Yds, Zds, równoległych do osi współ­
rzędnych, które pominięto na figurze, (2) reakcyi Rds w kie­
runku NP, i (3) naprężeń w P i Q; w paragrafie 454 dowiedli­
śmy, że naprężenia te są równoważne z dT w kierunku PQ oraz 
Tds 1 •—— w kierunku PC.

P
Biorąc rzuty tych sił na styczną PA, otrzymamy
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, . , dx — , dij dz - dT+ Xds — + Yds — + Zds — == O, ds ds ds
skąd T-[-f (Xdx + Ydy + Zdz) = A

Nazywamy siły konserwa- 
tywnemi^ jeżeli ich składowe X, 
Y, Z są odpowiednio pochodne- 
mi cząstkowemi pewnej funkcyi 
W względem x^ y, z; funkcyę tę 
nazwijmy funkcyą sił (209). Daj­
my na to, że zachodzi właśnie 
ten przypadek; w takim razie 
całka w równaniu (1) jest równa 
pracy sił. Z równania tego wi­
dać, że suma naprężenia i pracy sił jest dla wszystkich punktów 
sznura wielkością stałą. Weźmy całkę w granicach dla dwóch 
punktów sznura P, P‘; znajdziemy, że różnica naprężeń w tych 
punktach jest niezależna od długości i kształtu sznura, zawartego 
pomiędzy nimi; jest ona równa różnicy prac w punktach P', P, 
wziętych w porządku odwrotnym.

Przyjmiemy, że p jest mierzone wewnątrz według PC, n ci­
śnienie powierzchni na sznur na zewnątrz według NP (457). 
Przyjmiemy dalej, że (l, m, n) są kosynusami kierunkowymi 
normalnej PN, mierzonej wewnątrz. Trzymając się takiej umo­
wy, weźmiemy rzuty sił na normalną PN do powierzchni. Wy- 
padnie

Tds---- cos X + Xds . I + Yds . m + Zds . n - Rds = 0.

Niech p‘ oznacza promień krzywizny przekroju powierzchni 
płaszczyzną NPA, czyli płaszczyzną, zawierającą normalną do 
powierzchni oraz styczną do sznura; z geometryi wiadomo, że 
p‘cosx=p. Uwzględniając to, znajdziemy

1 + XI + Ym + Zn = R 
P

(2).

Z równania tego wynika, że ciśnienie wypadkowe na po­
wierzchnię jest równe ciśnienia normalnemu, pochodzącemu z na­
prężenia, łącznie z ciśnieniem, które wywołują składowe sił ze­
wnętrznych. Gdy wyznaczymy przy pomocy (1) naprężenie w ja­
kimś punkcie P, to ciśnienie na powierzchnię wyniknie z (2), 
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jeżeli znamy kierunek stycznej PA do sznura. To ostatnie jest 
niezbędnę do wyznaczenia p‘.

Wreszcie weźmiemy rzuty sił na styczną PB do powierzchni. 
Oznaczmy kosynusy kierunkowe tej prostej PB przez X, M, v. 
Ponieważ prosta PB tworzy kąty proste z PN i PA, przeto ko­
synusy te można wyznaczyć z równań

. , p .da dy dzXf,+uf,,+vf,=0, X —+u-v—=0.* ds as ds
Biorąc rzuty, otrzymamy

Tpsinx+XA+Y ... ........................................ (3).

Prz. Sznur bez końca spoczywa na gładkiej elipsoidzie, biegnąc 
wzdłuż przecięcia kołowego przez środek. Okazać, że biF2=T2(b2—p2), 
gdzie F oznacza siłę na jednostkę długości; siła ta działa w płaszczy­
źnie stycznej i utrzymuje sznur w położeniu wskazanem. Dalej p jest 
odległością płaszczyzny stycznej od środka, a b połową osi średniej.

, (Trin. Coli., 1890.)

480. Linie geodezyjne. Dajmy na to, że na pewną część 
sznura siły zewnętrzne nie działają. W takim razie dla tej czę­
ści X=0, Y=0, Z=0. Z równania (1) wynika, że naprężenie jest 
stałe, a z równania (2), że ciśnienie jest proporcjonalne do krzy­
wizny powierzchni wzdłuż sznura. Równanie (3) wskazuje (w przy­
puszczeniu, że linia sznura nie jest prostą), że X=0, czyli, że 
w każdym punkcie płaszczyzna ściśle styczna do krzywej zawiera 
normalną do powierzchni. Krzywa taka zowie się w geometryi 
geodezyjną.

Odwrotnie, jeżeli sznur pod działaniem sił tworzy na po­
wierzchni linię geodezyjną, to z równania (3) wynika, że suma 
ich rzutów na kierunek prostopadły do płaszczyzny ściśle stycznej 
musi być w każdym punkcie sznura równa zeru.

481. Sznur na powierzchni obrotu. W przypadku, gdy 
sznur leży na powierzchni obrotu, można zastąpić równanie (3) 
paragrafu 479 równaniem prostszem, które otrzymamy, biorąc 
momenty względem osi obrotu. Jeżeli wypadkowa sił, działają­
cych na każdy element, przecina oś albo jest do niej równo­
legła, to osiągniemy uproszczenie dalsze. Należy tu ten często 
spotykany przypadek, gdy na sznur działa jedynie siła ciąże­
nia, a oś powierzchni jest pionowa.
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Obierzmy oś obrotu za oś z, i niech (r, 3, «) będą współ- 
rzędnemi biegunowemi, a (/, «, z) współrzędnemi cylindrycz- 
nemi jakiegokolwiek punktu sznura. Na figurze r'= ON, z —PN 
i © = kątowi NOx. Z równania powierzchni otrzymamy z = f(y'\ 
i przypuśćmy, że siły, działające na element ds, posiadają w kie­
runkach r\ r'd^, z odpowiednio składowe Pds, Qds, Zds.

Bierzemy teraz momenty 
względem osi obrotu. Moment 
reakcyi R jest oczywiście ze­
rem. Aby wyznaczyć moment 
naprężenia T, rozkładamy je 
równolegle i prostopadle do 
osi, a następnie mnożymy tę 
drugą składową przez ramię r'. 
Tym sposobem znajdziemy, że 
szukany moment jest równy 
Tr' sin $, gdzie 1 jest kątem, 
ze styczną do krzywej tworzącej; innemi słowy $ jest krzywo­
liniowym kątem OPA. Tak więc równanie momentów będzie 

d(Tr‘sin()+ Qr'ds = 0.(4).
Biorąc rzuty na styczną, jak w par. 479, otrzymamy

dT + Pdr' + Qr'd^ + Zdz — 0........................ (5).
Mamy prócz tego równanie geometryczne, wyrażające zwią­

zek pomiędzy sin $ i różniczkami współrzędnych punktu P. 
Dajmy na to, że krzywa tworząca OP obróciła się około Oz 
o kąt d^-, przecina wówczas ona sznur w P', a płaszczyznę, 
przechodzącą przez MP i równoległą do xy, w Q. W takim ra­
zie PQ = PP' An^, czyli r'd^> = ds . sin 1, a stąd

(r'd^2— {dr‘2+(r‘dę)2+dz2]sin?p .... (6).
Rugując T i sin P z (4), (5) i (6), otrzymamy równanie, z któ­
rego można będzie wywnioskować postać krzywej.

Gdy na sznur działa tylko siła ciążenia, i oś powierzchni jest 
pionowa, to równania przybierają postać prostszą, a mianowicie

Tr‘sin •=wB, T—wO+A)................................ (7).
Rugując T i sin ! przy pomocy (6), otrzymamy

( / dP \2 / dz \2,(2+A)2r‘2=B2 ........................................................(8).
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Gdy w równaniu tem podstawimy z równania powierzchni z=f{r'\ to 
wypadnie równanie biegunowe różniczkowe rzutu sznura na płaszczy­
znę poziomą. Ciśnienie powierzchni na sznur, zwrócone na zewnątrz, 
można wyznaczyć z równania (2) paragrafu 479.

482. Ciężki sznur na kuli, 
obierając za początek środek kuli 
przybierają postać prostą

Tsin 8 sin !=wB‘,

Stosujemy współrzędne bieguno we 
0. W tym razie równania zasadnicze

T=w(acos 3+A),

(sin 0dp)2=(sin 3dę)2 + d02} sin21. Ra= w (2a cos 9 + A);
• oznacza tu kąt, który sznur tworzy z łukiem południka, przechodzą­
cego przez punkt szczytowy, i B=^ctB'. Stąd otrzymamy równanie róż­
niczkowe sznura*)

*) Całkę, dającą « w funkcyi 3, sprowadził do funkcyi eliptycz­
nych Clebsch w Crelle’s J., t. 57. Greenhill i Dewar wystawili w Czerwcu 
1895 r. w Royal Society model sferycznej łańcuchowej algebraicznej. 
Przy odpowiednim doborze stałych rzut sznura na płaszczyznę pozio­
mą jest algebraiczną krzywą zamkniętą dziesiątego stopnia.

d8\2
—) +sin2J=sin*  0 d /

a COS 3 + A\2

W jakimkolwiek punkcie P panuje naprężenie wz, gdzie z oznacza 
wysokość punktu P nad pewną płaszczyzną poziomą, zwaną kierowni­
czą. Wszystkie punkty sznura muszą leżeć nad płaszczyzną kierowni­
czą, ta zaś leży o A niżej od środka kuli. Przypuśćmy, że normalna 
OP przecina w punkcie S kulę współśrodkową o promieniu dwa razy 
większym od promienia kuli danej. Punkt S jest przeciwśrodkiem 

, . wz‘ , . punktu P, a ciśnienie na sznur, zwrócone na zewnątrz, wynosi —, gdzie 

z' oznacza wysokość punktu S nad płaszczyzną kierowniczą. Przeciw- 
środek każdego punktu musi leżeć nad płaszczyzną kierowniczą albo 
niżej od niej stosownie do tego, czy sznur leży na wypukłej czy na 
wklęsłej stronie powierzchni kulistej (460).

Wartości stałych A i B zależą od warunków, które istnieją na 
końcach sznura. Widzimy, że B'=0, (1) jeżeli jeden z końców jest swo­
bodny, gdyż dla niego T=0, (2) jeżeli sznur przechodzi przez punkt 
szczytowy kuli, bo w takim razie znika sin 3, (3) jeżeli można przepro­
wadzić przez punkt szczytowy południk, styczny do sznura, bo w punk­
cie zetknięcia sin^O. We wszystkich tych przypadkach siny znika 
na całej długości sznura, a zatem sznur leży w płaszczyźnie pionowej.

Gdy sznur tworzy linię zamkniętą, to wielkości T, sin 3 i sin 
nie mogą znikać albo zmieniać znaku w żadnym punkcie jego, a zatem 

w najwyższym i najniższym punkcie ł=y Dla tych punktów będzie

skąd
Tsin 3=w B‘, T—w(a cos 3+ A),

sin 3 (a cos 3+A)=B‘.
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Równaniom tym czynią zadość tylko dwie dopuszczalne wartości cos 3. 
W samej rzeczy, wykreślmy dwie krzywe dla wspólnej odciętej (==cos 0, 
a rzędnemi niech będą odwrotności dwóch wartości T; otrzymamy 
elipsę i hiperbolę równoramienną, a ponieważ T musi być dodatnie, 
zatem wypadną tylko dwa przecięcia. Niech dla najwyższego i najniż­
szego punktu sznura będzie J==o i 8=3; obydwa te kąty są dodatnie. 
W takim razie

2A sin 20 — sin 2
a sina— sin 3

Z tego wynika, że płaszczyzna 

kuli, jeżeli a i 3 spełniają się

B cos a — cos^ 
 =sina sin 3 — .—. 

a sin a — sin 3
kierownicza przechodzi przez środek

T • do 2. Wogole naprężenia, a więc i odle­

głości płaszczyzny kierowniczej od punktów najwyższego i najniższego 
są odwrotnie proporcyonalne do odległości tych punktów od średnicy 
pionowej.

Jeżeli sznur tworzy koło, to płaszczyzna jego musi być pozioma 
lub pionowa; w przypadku ostatnim musi ona przechodzić przez śro­
dek kuli. Aby to udowodnić nadajemy sznurowi przesunięcie przygo­
towane, nie zmieniając jego postaci. Łatwo jest dojść, że wysokość 
środka ciężkości osiąga maksymum lub minimum tylko w przypadkach 
wzmiankowanych. Jeżeli sznur leży na kuli, to w obydwóch przypad­
kach środek ciężkości zajmuje położenie najwyższe, a więc równowa­
ga jest nietrwała (218). Tak samo można okazać, że każde położenie 
równowagi ciężkiego sznura na gładkiej kuli jest nietrwałe.

Prz. 1. Ciężki łańcuch jednorodny, przymocowany w dwóch 
punktach do gładkiej kuli, jest wyprężony tylko o tyle, aby punkt naj­
niższy wszedł w zetknięcie z kulą. Okazać, że ciśnienie jest w każdym 
punkcie proporcyonalne do wysokości tegoż nad punktem najniższym 
sznura. (Coli. Exam., 1892.)

Prz. 2. Sznur na gładkiej kuli przecina pod stałym kątem wszy­
stkie przekroje, uczynione przez pewną średnicę. Okazać, że sznur po­
zostanie w tern położeniu, jeżeli działa nań siła, proporcyonalna do 
odwrotności kwadratu odległości od owej średnicy, i że naprężenie 
zmienia się, jak odwrotność odległości. (Coli. Exam., 1884.)

Prz. 3. Sznur pozostaje w równowadze pod działaniem siły cią­
żenia w gładkim falistym rowku, wyżłobionym na powierzchni kuli. 
Rowek leży pomiędzy dwoma małemi kołami, których odległości ką­
towe od punktu szczytowego kuli są spełniające, i sznur nie wywiera 
żadnego ciśnienia na jego boki. Oznaczamy przez 1 ostry kąt, pod któ­
rym sznur przecina południk pionowy. Dowieść, że punkty, w któ­

rych • osiąga minimum, leżą w odległości kątowej — od punktu szczy­

towego i wyznaczyć wartość V w tych punktach. (Math. T., 1889.)
483. Sznur na powierzchni cylindrycznej. Prz. 1. Końce cięż­

kiego sznura są umocowane w dwóch punktach na powierzchni cy­
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lindrycznej, której tworzące mają położenie pionowe. Zbadać okolicz­
ności równowagi.

Niech PQ—ds będzie elementem sznura, ivds ciężarem tego ele­
mentu. Oś z obieramy równolegle

NX
Fig. 136.

do tworzących, w kierunku odwro­
tnym do kierunku siły ciążenia. Bio- 
rąc rzuty na styczną do sznura, znaj- 
dziemy podobnie, jak w (1) par. 479, 
T— wz—A. Bierzemy następnie rzuty 
na kierunek pionowy; według par. 
478 będzie — (T—} — w=0. Takie 

ds ds/
same równania określają równowa­
gę ciężkiego sznura w płaszczyźnie 

pionowej. Również i stałe całkowania wyznaczają się w obydwóch 
przypadkach z takich samych warunków. Stąd wynika, że gdybyśmy 
roziuinęli cylinder w płaszczyźnie pionowej, to skutkiem tego równowaga 
sznura nie doznałaby zakłócenia. A zatem okoliczności równowagi da­
dzą się wywnioskować z właściwości katenoidy pospolitej.

Aby wyznaczyć ciśnienie na cylinder, bierzemy rzuty na normal­
ną do powierzchni w punkcie P, albo też korzystamy ze wzoru ogól-

T
nego, znalezionego w par. 479. Otrzymamy R=—, a według twierdze- 

P
1 cos24 sin2 4 cos2^ 

nia Eulera o krzywiźnie — = 1 = , gdzie Pi, jest pro-
P‘ Pi 00 Pi 

mieniem krzywizny przekroju poziomego cylindra w punkcie M, 
a • kątem, który styczna do sznura w P tworzy z płaszczyzną po­
ziomą.

Prz. 2. Sznur wisi na kołowym cylindrze pionowym, tworząc 
dwa symetryczne układy zwojów, i Z, , z2, z3... są wysokościami punk­
tów skrzyżowania sznura nad jego punktem najniższym. Dowieść, że 
z, 22,+1= (zn+1z,)2. (Math. Tripos, 1859.)

Prz. 3. Łańcuch bez końca, umieszczony na chropowatym cy­
lindrze kołowym, ma właśnie zacząć się przesuwać pod działaniem 
siły, przyłożonej do jednego z jego punktów i równoległej do osi cy­
lindra. Dowieść, że linia, którą łańcuch tworzy na Cylindrze, będzie po 
rozwinięciu parabolą; prócz tego znaleźć, jaką długość posiada łań­
cuch, gdy taki przypadek zachodzi. (Math. Tripos.)

Prz. 4. Ciężki sznur jednorodny spoczywa na powierzchni gład­
kiego, poziomego cylindra kołowego, którego promień jest równy a. 
Oznaczamy przez (a, 3, z) współrzędne cylindryczne dowolnego punktu 
sznura, mierząc 8- od pionu. Dowieść, że T—w(b + acos^ i

r acd^ . .....z= I —----------------------,, gdzie b i c są wielkościami stałemi.
j l(b—a cos 8)2 — c2} /a

Jest rzeczą jasną, że rzut naprężenia na oś z jest wielkością stałą, 
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a mianowicie T—=ivc. Łącząc to z wzorem na T z przykładu 1, otrzy- 
ds

mamy drugi z wzorów żądanych.
Prz. 5. Końce ciężkiego sznura są zaopatrzone w obrączki, które 

mogą się swobodnie przesuwać na pręcie, zajmującym położenie naj­
wyższej tworzącej prostego kołowego cylindra o osi poziomej. Obrączki 
utrzymują w odosobnieniu dwie siły, z których każda jest równa wa, 
a najniższy punkt sznura leży na poziomie osi cylindra. Dowieść, że

D _( dł
4a J V3+sin?4

gdy granice całek są 0 i —;

L_( dł 1
8a J V3+sinay‘1+sin? 4‘

D oznacza tu odległość pomiędzy obrącz­

kami, a L długość sznura.
Wynika to z przykładu poprzedniego; według warunków zadania 

a—b=c. Całki można uprościć, zakładając tan—=sin4.

Prz. 6. Sznur jednorodny leży na poziomym cylindrze kołowym 
o promieniu a; końce jego są przymocowane na najwyższej tworzącej, 
a punkt najniższy leży o a niżej. Dowieść, że krzywizna w punkcie 

1
najniższym jest równa —. Jeżeli sznur przecina najwyższą tworzącą

pod kątem 60°, to w każdym punkcie tworzy on z osią kąt równy 
/ z \• arcseci H— ), gdzie z jest wysokością punktu nad osią. 

a /
Prz. 7. Końce ciężkiego sznura jednorodnego są umocowane 

w dwóch punktach najwyższej tworzącej gładkiego poziomego cylindra 
o promieniu a, długość zaś sznura jest taka, że jego punkt najniższy 
zaledwie dotyka cylindra. Okazać, że po rozwinięciu cylindra krzywa, 

, / dy\2 y y którą tworzy sznur, przybierze postać c2 ) = a‘cos- 2acCOS—, 
\dx/ a a 

gdy początek układu obierzemy w jednym z punktów umocowania.
(Math. T., 1883.)

484. Sznur na stożku prostym. Prz. 1. Sznur jest przymoco­
wany w końcach do dwóch punktów powierzchni prostego stożka 
i pozostaje w równowadze pod działaniem środka siły odpychającej F, 
położonego w wierzchołku. Okazać, że równowaga nie zostanie naru­
szona, gdy rozwiniemy stożek i sznur w płaszczyźnie, przechodzącej 
przez środek siły.

Obieramy wierzchołek O za początek, i niechaj (P, J‘, z) będą 
współrzędnemi cylindrycznemi punktu P sznura, a OP—r. Biorąc mo­
menty względem osi i rzuty na styczną, otrzymamy, jak w par. 481

Tr‘siny= B, TFSFdr=C........................... (1).
Wyobraźmy sobie, że powierzchnia stożka została rozcięta według
Statyka. 26
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tworzącej i rozwinięta wraz ze sznurem na płaszczyźnie. Niech w tein 
nowem położeniu (r, 3) będą współrzędnemi biegunowemi punktu P, 
a p odległością punktu O od stycznej do sznura w P. W takim razie 
p=rsiny, i równania (1) przybiorą postać

Tp=B', T+fFdr=C.................................(2).
Takie same równania warunkują równowagę sznura w płaszczy­

źnie pod działaniem siły centralnej, i stałe całkowania wyznaczają się 
w obydwóch przypadkach na podstawie tych samych warunków. Mo­
żemy więc przenieść wyniki, do których doszliśmy w paragrafie 474, 
na przypadek sznura, leżącego na stożku. Zaznaczamy przytem, że punk­
towi (r, 3) w płaszczyźnie odpowiada punkt (r\ 8‘ z) na stożku, i po­
między współrzędnemi zachodzą związki r‘=rsin a, 8‘ sin o=%, z=rcos a.

, T sin © Bcoso
Ciśnienie R=-= — —-—, gdyż według twierdzenia Eulera 

p I* sin2 a
, . . 1 cos2© , sin2©cosa

o krzywizme — =--------- 1---------------- (479).
p‘ co r'

Prz. 2. Obydwa końce sznura o długości 2Z są umocowane w tym 
samym punkcie A na powierzchni prostego stożka, i rzut sznura na 
płaszczyznę prostopadłą do osi ma równanie nr'—l cos (8‘ sin a), przy- 
czem dla punktu A S‘=x. Okazać, że sznur pozostanie w równowadze 
pod działaniem siły centralnej, posiadającej środek w wierzchołku 
stożka i odwrotnie proporcyonalnej do sześcianu odległości.

Prz. 3. Końce ciężkiego sznura są umocowane na powierzchni 
prostego kołowego stożka, którego oś jest pionowa, a wierzchołek u góry; 
sznur leży na powierzchni stożka. Dowieść, że gdy rozwiniemy stożek 
na płaszczyźnie, to linia sznura będzie miała równanie p(a+br)=1; po­
czątek leży tu w wierzchołku, p jest odległością stycznej od początku, 
i a, b są stałemi. (Coli. Ex., 1890.)

485. Sznur na powierzchni chropowatej. Sznur leży na 
pomierzchni chropowatej pod działaniem sił jakichkolwiek, i stan 
każdego elementu graniczy ze stanem ruchu; wyznaczyć warunki 
równowagi.

Można otrzymać żądane warunki z równań równowagi dla 
powierzchni gładkiej, wprowadzając tylko tarcie graniczne. Po­
wierzchnia wywiera na element ds ciśnienie dłds, a więc tarcie 
graniczne wynosi \xRds. Siła ta działa w jakimś kierunku PS, 
w płaszczyźnie stycznej do powierzchni (fig. 134). Kąt SPA 
oznaczymy przez $. Biorąc rzuty na osi główne jakiegoś pun­
ktu sznura, zupełnie jak w par. 479 otrzymamy

dT + Xdx + Ydy + Zdz + ]xRds cos 1=0
Ę + Xl+ Ym + Zn-R =0
P
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T—, tanx+XA+ Yy+Zv+ Rsin!=0 *).

*) Litera p. została użyta w tem równaniu w dwóch różnych 
znaczeniach, jako cos kierunkowy i jako współczynnik tarcia, co je­
dnak nie może wywołać nieporozumienia. Przyp. tłom.

Trzy te równania wyrażają warunki równowagi.

486. Najprostszy przypadek zachodzi wtedy, gdy siły ze­
wnętrzne są znikome wobec naprężenia. Podstawiając w tym 
razie na miejsce X, Y, Z zera, otrzymamy

—+ y.Rcost ds

— tan / + Rsiny =0

Z równań tych daje się wyprowadzić łatwo, że tanx+ psin=0. 
Do tego potrzeba, aby tan/ był mniejszy od M.; jeżeli przeto 
umieścimy sznur na powierzchni w taki sposób, aby płaszczyzna 
ściśle styczna do niego w którymkolwiek punkcie utworzyła 
z normalną kąt większy od arctan p, to równowaga będzie nie­
możliwa.

Rugując z równań powyższych $ i R, otrzymamy 

"5+, (*-tan*z)"=O

— (p2 — tan2x)"e.

Tak więc, gdy sznur tworzy na powierzchni daną linię 
i znajduje się w stanie, graniczącym z ruchem, to można wy­
znaczyć naprężenie w każdym punkcie.

Z równań powyższych wynika dalej, że gdy x=0, to i 1=0, 
czyli gdy sznur tworzy na powierzchni linię geodezyjną, to tar­
cie działa w kierunku stycznej do niego. Zakładając 1=0, znaj- 
dziemy z dwóch pierwszych równań

logT= C-M ds 
p”



— 404 —

Na linii geodezyjnej p‘ = p, możemy przeto z równania 
ostatniego wyprowadzić następujące uogólnienie twierdzenia 
z par. 463. Gdy lekki sznur na powierzchni chropowatej znajduje 
się w stanie, graniczącym z ruchem, i tworzy linię geodezyjną, to 
(1) taęcie w każdym punkcie działa na stycznej do sznura, i (2) 
stosunek naprężeń w dwóch jakichkolwiek punktach jest równy 
podstawie logarytmów naturalnych w potędze — p. razy większej 
od sumy kątów nieskończenie małych, które zatoczyła styczna 
w ruchu od jednego z tych punktów do drugiego.

Warunki równowagi sznura na powierzchni chropowatej podał 
Jellett w Theory of Friclion, i z nich wyprowadził równania artykułu 
niniejszego.

487. Prz. 1. Lekki sznur owija prosty cylinder kołowy w po­
staci śrubowej, a na końce jego działają siły F, F'. Okazać, że gdy stan 

F' cos2asznura graniczy z ruchem, to log—= ±——s, gdzie s jest długością 
F a

sznura, pozostającą w zetknięciu z cylindrem, a kątem śrubowej i a 
promieniem cylindra.

Śrubowa jest linią geodezyjną, a zatem związek powyższy wyni­

ka wprost z równań paragrafu poprzedniego; należy tylko zamiast — na- 
2 P‘

COS2a
pisać —— na zasadzie twierdzenia Eulera o krzywiźnie.

Prz. 2. Ciężki sznur AB, pierwotnie niewyprężony, leży na chro­
powatej płaszczyźnie poziomej w postaci łuku koła. Wyznaczyć naj­
mniejszą siłę F, która, działając na koniec B w kierunku stycznej, wy­
starczy do poruszenia sznura.
o , Niech punkt 0 będzie środkiem koła,

N..  I kąt AOP =%, a łuk AP — s. Przypuśćmy, 
: \..........    że element sznura PQ ma zacząć się po- 
•...\........................ /) ruszać w kierunku PP1, i oznaczmy kąt P'PQ 

pi // przez y. Z natury tarcia wynika, że ten kąt 4 
, ;............\ / / musi być mniejszy od prostego. Tarcie w P 

:............\ /. działa w kierunku odwrotnym, t. j. w kie- 
runku P'P, i jest równe piods. Równania ró-

P wnowagi będą
A dT—pwds cos! =0) (1)

Fig 137 Td^—\i.wds sin • = 01
Podstawiamy w pierwszem z tych równań 

wartość T, otrzymaną z drugiego. Uwzględniając przytem, że ds—ad^, 
otrzymamy dł=ds, a zatem

=9+ O...................................................(2)
Gdy podstawimy to w (1), to wypadnie T=pwa sin (3+C).



— 405 —

Jeżeli każdy element sznura jest już na granicy ruchu, to ró­
wnania (1) są ważne na całej długości. Ponieważ T musi być zerem, 
gdy 3=0, przeto C=0. Jeżeli więc długość sznura wynosi aa, to do po­
ruszenia wystarczy siła F=^wa sin a. Gdy długość sznura przekracza 
ćwiartkę okręgu, to wynik ten przestaje być słusznym, bo wówczas 
dla elementów, położonych w pobliżu B, kąt V byłby większy od pro­
stego.

Przypuśćmy teraz, że łuk AB jest większy od ćwiartki okręgu, i że 
siła F, przyłożona w B, wzrasta stopniowo, poczynając od zera. W pewnej

Tchwili siła F przybierze wartość uwasin o, gdzie &<—. Z poprzednie- 
2

go wynika, że wówczas skończony łuk EB, kończący się w B i odpo­
wiadający kątowi centralnemu EOB—a, doszedł do stanu, graniczącego 
z ruchem, i że naprężenie w E jest zerem. Gdy F=\twa, to składowa 
naprężenia w B w kierunku normalnej wynosi p.ivad^, i tarcie jest 
ściśle wystarczające do jej zrównoważenia. Gdy F przekroczy wartość 
[j.wa, to tarcie przestaje wystarczać do zrównoważenia siły normalnej.

Wynik więc ostateczny jest taki: do poruszenia sznura wystarcza 
siła F=paw sin a, jeżeli długość jego jest mniejśza od ćwiartki okręgu; 
jeżeli długość przewyższa ćwiartkę, a siła dojdzie do paw, to sznur 
zacznie się poruszać w tym końcu, na który działa siła (zob. par. 190).

Prz. 3. Lekki sznur, dźwigający na końcach ciężary, jest prze­
wieszony w jednej płaszczyźnie przez chropowatą kulę o promieniu a. 
Okazać, że odległość płaszczyzny sznura od środka nie może przekra­
czać a sin s, gdzie e oznacza kąt tarcia. (St. John‘s Coli., 1889.)

488. Praca przygotowana. Równania równowagi sznura można 
wyprowadzić z zasady pracy przygotowanej; w tym celu stosujemy do 
każdego elementu metodę, wskazaną w par. 203. W samej rzeczy, lewa 
strona równania, dotyczącego współrzędnej x, w par. 455 po pomno­
żeniu przez ds. dx będzie pracą przygotowaną, wynikającą z przesu­
nięcia o dx. W myśl tej metody należy naprężenia na końcach ele­
mentu zaliczyć do sił zewnętrznych. Można również wyrazić ową za­
sadę, jako warunek maksymum lub minimum (212), przyczem wejdą 
tylko siły zewnętrzne dane. Rozważymy jako przykład zagadnienie na­
stępujące.

Końce A, B sznura niejednorodnego o długości l są umocowane 
nieruchomo w polu sił, którego potencyał—V, i sznur pozostaje w równo­
wadze w jednej płaszczyźnie. Chodzi o wyznaczenie formy sznura.

Dajmy na to, że w punkcie, którego odległość łukowa od A wy- 
nosi s, gęstość liniowa jest m=f(sf Funkcya sił dla całego sznura bę­
dzie fVmds w granicach od 0 do l. Za zmienną niezależną obierzemy 
łuk s i będziemy uważali x, y za dwie funkcye tej zmiennej, pozosta­
jące w związku

dx\2 (dy\2—) +(—) =1ds/ \ds/ (1).
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W myśl prawidła Lagrange’a pomijamy to ograniczenie i czynimy 

(( /dx\2 / dy\2u=J{Vm+(as)+(7)—1}ds (2)

maks. — min. dla wszelkich waryacyi współrzędnych x i y; X jest tu 
funkcyą dowolną zmiennej S; obierzemy ją następnie w taki sposób, 
aby uczynić zadość warunkowi (1)*).

*) Uważamy s za odciętą, a x i y za dwie rzędne pewnej krzywej 
nieznanej; krzywa ta powinna być taka, aby u osiągało maks. — min. dla 
wszelkich waryacyi zmiennych x i y. Możemy utworzyć równania, po­
trzebne do wyznaczenia tej krzywej, przy pomocy prawideł rachunku 
waryacyjnego. Równanie jej zawiera X; uczyni ono zadość warunkowi 
(1), gdy stosownie obierzemy tę wielkość. Ponieważ (2) osiąga maks.— 
min. dla wszelkich waryacyi zmiennych x, y, przeto fVmdx osiąga 
maks.—min. dla tych waryacyi xiy, które czynią zadość warunkowi (1).

Granice są utrwalone, a skutkiem tego nie osiągnęlibyśmy wy­
raźnych korzyści, zmieniając wszystkie współrzędne; wyznaczymy więc 
waryacyę funkcyi u, uważając tylko a iy z zmienne a s za wielkość 
stałą. Wypadnie

0 V 
ax+—

dx dlx dy day— -----— ------ 
ds ds-----ds ds

ds.

Całkujemy przez części wyrazy trzeci i czwarty, nie zapominając o tem, 
że x, by znikają dla umocowanych końców sznura. Otrzymamy

3n= “{[m°V
J ( dx

d / dx\ OV d / dy )
2 — ( X— ) 3x+ m~----- 2 — X— ) 8y - ds. 
ds\ ds / J L dy ds \ ds //

W maks. — min. bu musi być zerem dla wszelkich wartości bx i by,
a zatem

dV d f dx
------- 2 — X— 
dx----- ds \ ds

=0, OV d------ 2 —
oy ds

dU)=o ■ • • (3).
ds /

Przywracając warunek (1), będziemy mieli trzy równania, z których x 
y i X dadzą się wyznaczyć w funkcyi s. Jest to zgodne z równaniami, 
które znaleźliśmy w par. 455, jeżeli napiszemy —2X zamiast T, Można 

dx dy 
także wyznaczyć A, mnożąc równania (3) odpowiednio przez —, — i do- 

ds ds
dając; wypadnie

Jest to zgodne z równaniem w par. 479 do wyznaczenia naprężenia.
Jeżeli sznur mieści się w trzech wymiarach na gładkiej powierzch­

ni, to maks.—min. funkcyi fVmds poddajemy dwóm warunkom 
x‘2+y‘2+z‘2—1=0, F{x, y, z)^=Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (I), 
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gdzie kreski oznaczają różniczkowanie względem s. Postępując we­
dług metody poprzedniej, czynimy

u= J{ Vm+)(x‘2+y2+2”— 1)+pF(x, y, z)]ds
maks.—min. Uważamy jedynie x, y, z za zmienne, całkujemy przez czę­
ści zupełnie tak samo, jak poprzednio, i przyrównywamy do zera współ­
czynniki waryacyi 8®, ^y, ^z, Wypadnie

V_2d
Ox ds

dF o
+ p—=0dx (II).

Dwa następne równania otrzymamy z pierwszego, pisząc tylko odpo­
wiednio y i z zamiast x. Trzy te równania łącznie z I określają x, y, 
z. X, p w funkcyi s. Będą one zgodne z równaniami paragrafu 478, gdy 
napiszemy —2X i —p. (F,?+F,2+F,2)‘a zamiast T i R.

489. Sznury sprężyste. Teorya sznurów sprężystych opie­
ra się na twierdzeniu, zwanem zazwyczaj prawem Hookea. Mo­
żna je w krótkości wypowiedzieć w sposób następujący. Sznur 
rozciągalny i wzdłuż jednorodny miał, dajmy na to, naturalną 
długość 11, a dwie siły T, przyłożone w końcach, rozciągnęły 
go do długości l. Stwierdzono doświadczalnie, że wydłużenie 
l — 11 pozostaje dla danego sznura w stałym stosunku do siły T.

Gdyby długość naturalna, t. j. długość sznura nierozcią- 
gniętego, była dwa razy większa, a więc 211, a działały takie 
same, jak poprzednio, siły T, to oczywiście każda z długości 11 
rozciągnęłaby się dokładnie tak, jak poprzednio, t. j. do dłu­
gości l. Tym sposobem wydłużenie takiego sznura o podwójnej 
długości byłoby dwa razy większe od wydłużenia sznura po- 
jedyńczego. Wogóle wydłużenie musi być proporcyonalne do 
długości naturalnej, gdy siła wydłużająca pozostaje bez zmiany.

Łącząc te dwa twierdzenia, widzimy, że 

gdzie E oznacza wielkość stałą, niezależną od długości natural­
nej sznura, jak również i od siły wydłużającej. Stała ta zowie 
się współczynnikiem sprężystości.

Umieśćmy dwa sznury podobne i równe jeden obok dru­
giego. Oczywiście, pragnąc wywołać pewne wydłużenie takiego 
sznura podwójnego, trzeba będzie zastosować siłę dwa razy 
większą od tej, która wywołuje takie same wydłużenie w sznu­
rze pojedyńczym. Z tego widać, że siła, wywołująca dane wy­
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dłużenie, jest proporcyonalna do pola przekroju sznura nieroz- 
ciągniętego, a zatem i współczynnik E jest proporcyonalny do 
przekroju sznura nierozciągniętego. Wartość współczynnika E, 
odniesiona do przekroju o polu jednostkowem, zowie się mo­
dułem Younga.

Zobaczymy, co znaczy ta stała E. Dajmy na to, że bez po­
gwałcenia prawa Hooke’a można rozciągnąć sznur do długości 
dwa razy większej od naturalnej. W takim razie l=21 v, i E— T. 
Tak więc E jest siłą; siła ta teoretycznie rozciągnęłaby sznur 
do długości dwa razy większej od naturalnej.

490. Prawu Hooke‘a podlega także rozciąganie i ściska­
nie innych ciał, np. prętów sprężystych. Stanowi ono podsta­
wę teoryi matematycznej stałych ciał sprężystych, obecnie je­
dnak chodzi nam jedynie o zastosowania do takich ciał, jak 
sznury, druty i t. d.

Prawo Hooke a jest słuszne tylko dopóty, dopóki wydłużenie 
nie przekracza pewnych granic, zwanych granicami sprężystości. 
Jeżeli wyciąganie jest nadmierne, to albo ciało się zrywa, albo 
w wewnętrznej budowie jego zachodzą pewne zmiany trwałe, 
skutkiem czego nie powróci ono do długości pierwotnej, gdy 
usuniemy siły rozciągające. W rozważaniach następnych zakła­
damy wszędzie, że granice sprężystości nie zostały przekro­
czone.

491. Prz. 1. Pręt jednorodny AB wisi na dwóch jednakowych 
niciach sprężystych; nici idą pionowo, a pręt jest poziomy. W samym 
środku C pręta usiadła mucha, skutkiem czego pręt opadł o h; nastę­
pnie mucha, wędrując po pręcie, doszła do punktu P. Dowieść, że

2h{AP2+BP^ . _ 
punkt P zejdzie o  AB2 niżejodpołożeniapierwotnego,aobni- 

2h(AP.AQ+BP.BQ) źenie jakiegokolwiek innego punktu pręta I będzie B2 —.

(St John’s Coli., 1887.)
Prz. 2. Ciężka płyta wisi na trzech nieco sprężystych sznurach, 

których długości naturalne są równe; sznury są przywiązane do płyty 
w trzech punktach, tworzących trójkąt ABC. Oznaczamy przez E, F, G 
współczynniki sprężystości i przez Xo, Jo, Z współrzędne powierzch­
niowe środka ciężkości płyty w odniesieniu do trójkąta ABC. Dowieść,

XXCo YJo ZZo że w tych samych współrzędnych 1   + —==0 jest równaniemE--- F---- G
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prostej przecięcia płyty w położeniu obecnem z płaszczyzną, w której 
leżałaby płyta, gdyby sznury były nierozciągalne.

(St John‘s Coli., 1885.)
492. Sznur ciężki jednorodny i sprężysty jest umocowany 

iv jednym końcu, a iv drugim dźwiga ciężar W. Wyznaczyć po­
łożenie równowagi oraz naprężenie w każdym punkcie sznura.

Przypuśćmy, że OAt jest sznurem nierozciągnię- 
tym, a PtQt jednym z jego elementów; OA ma wy­
obrażać sznur rozciągnięty, a PQ ten sam element 
w nowem położeniu. Oznaczmy przez w ciężar je­
dnostki długości sznura nierozciągniętego, i niech da- 
lej będzie l= OA,, xl~0Pl, l = OA, x—0P. Napręże­
nie T w punkcie P oczywiście równoważy ciężar części 
PA oraz W, a zatem

T=w(l1-xj)+ W........................ (1)
Gdyby część PA była rozciągnięta jednakowo

Pt
Qt

A,

Fig. 138.

na całej
długości, to moglibyśmy zastosować prawo Hooke’a do tej dłu­
gości skończonej, ponieważ jednak tak nie jest, możemy przeto 
stosować to prawo tylko do elementu PQ. Będzie więc

dx — dxr = dxr. eT .
gdzie s oznacza odwrotność współczynnika E. 

Rugując T, otrzymamy
dac , \ —da, =1+ew(h-e+ W],

a po scałkowaniu będzie

(2),

IV 1- + Wx, + C.

Stała całkowania C jest zerem, gdyż 21 i a znikają 
śnie. Dla x,=l wypadnie

jednocze-

l-l= ewl,2 +e Wl.

O O

- Q

1

2
Jeżeli sznur jest lekki, to wydłużenie, które 

W, wynosi e Wl Gdy ciężaru W w dolnym końcu 
wywołuje 
niema, to

wydłużenie =—Widzimy, ze własny ciężar sznura wywołuje 

takie same wydłużenie, jak połowa tego ciężaru, uwieszona w pun­
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kcie najniższym. Dalej widać, że wydłużenie całkowite, wywo­
łane przez ciężar własny sznura oraz przez ciężar zawieszony, 
jest równe sumie inyclłużeń^ któreby wywołały te ciężary^ dzia­
łając z osobna.

Prz. 1. Ciężki sznur sprężysty O A leży na linii największego 
spadku chropowatej płaszczyzny pochyłej. Jeden koniec jego O jest 
umocowany nieruchomo, a do drugiego A przywiązano ciężar W. Wy­
znaczyć największą długość, jaką może mieć sznur w stanie równo­
wagi.

Gdy sznur jest już wyciągnięty tak silnie, jak tylko można, to 
tarcie działa na każdy element wzdłuż płaszczyzny na dół i jest cał­
kowicie rozwinięte. Niech a będzie nachyleniem płaszczyzny do po­
ziomu, a p, p‘ współczynnikami tarcia odpowiednio sznura i ciężaru 
o płaszczyznę. Załóżmy f=sin a+u cos a, to fw zastąpi iv we wzorach 

A widpowyższych, i wydłużenie całkowite będzie l' — l—------- \-zfWl; f ozna-
2

cza to, co otrzymamy, pisząc p' we wzorze na f zamiast p.
Prz. 2. Ciężki sznur sprężysty AA' leży na linii największego 

spadku płaszczyzny chropowatej, której nachylenie do poziomu jest 
mniejsze od arclanp. Wyznaczyć największą długość, którą może mieć 
sznur, pozostając w równowadze.

W punktach sznura, położonych bliżej dolnego końca A, tarcie 
będzie działało na dół, a w okolicach górnego końca A' do góry. W pe­
wnym punkcie O sznur dzieli się na dwie części OA i OA', w których 
siły tarcia działają w kierunkach odwrotnych. Każdą z tych części 
można rozważać osobno, stosując metodę z przykładu poprzedzają­
cego. Potrzebne tu będzie równanie dodatkowe, do wyznaczenia dłu­
gości naturalnej z części OA; utworzymy je, przyrównywając napręże­
nia w O, które wywołują owe dwie części. Wypadnie

EM W COS %—1 =---  ---- tan2 a
1 p2 ,

Prz. 3. Powiązano końcami sprężyste sznury, których długości 
w stanie nierozciągniętym wynoszą I, l2, l3...., i zawieszono ten szereg 
za jeden koniec tak, że sznur l znalazł się najniżej. Okazać, że całko­
wite wydłużenie będzie

2 (-1 Wi l.2+82 W2l22+ ...)+W b (s2 la—83 la+ ...)+W2 l2 (83 la+ ....)+ ....;
wl7 W,... oznaczają tu ciężary sznurów nierozciągniętych na jednostkę 
długości, a 81, 82 ... są odwrotnościami współczynników sprężystości.

(Coli. Exam., 1888.)

493. Praca sznura sprężystego. Gdy długość lekkiego, 
sprężystego sznura zmieniła się pod działaniem siły zewnę­
trznej, to praca naprężenia jest równa iloczynowi ze skurczenia 
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sznura przez średnią arytmetyczną naprężeń początkowego i koń­
cowego.

Przypuśćmy, że w przypadku typowym długość wzrosła 
od a do a', a więc a - a' będzie skurczeniem sznura. Długość 
w stanie nierozciągniętym oznaczymy, jak poprzednio, przez 11. 
W myśl paragrafu 197 szukana praca wynosi

Tdl = L—idi= -E

gdyż granice całki są l^=a i l = a'. Można 
T + Tdać posiać (a-a).12—2, gdzie Tv i T2

2l1
wynikowi

oznaczają

temu na-

wartości,

które przybierze T, gdy zamiast l napiszemy a i a. 
wyraża prawidło, wypowiedziane na początku. (Ob. 
namics autora niniejszej książki).

Wzór ten
Regid Dy-

Prawidło to bywa często stosowane w dynamice, gdzie długość 
sznura może w ciągu ruchu podlegać różnym zmianom. Zaznaczamy, 
że prawidło nie przestaje być ważnem nawet w tym razie, gdy sznur 
w ciągu danego okresu staje się w pewnych chwilach luźnym, jeżeli 
tylko naprężenie istnieje w stanie początkowym i końcowym. Jeżeli 
sznur jest luźny w jednym ze stanów końcowych, to możemy i tu sto­
sować to samo prawidło, przyjmując, że w tym stanie sznur ma dłu­
gość naturalną.

Prz. 1. Okazać, że środek ciężkości sprężystego sznura, o którym 
S Wbyła mowa w par. 492, leży na głębokości 9 +* I, (3+7) pod punktem 

23
zawieszenia O. S oznacza tu ciężar sznura. Okazać prócz tego, że siła

ciążenia wykonała pracę el.
S2 \
3 + SW J- W’), podczas gdy sznur i cię­

żar przeszły z położenia nierozciągniętego O^j do położenia rozcią­
gniętego OA.

Prz. 2. Jeden koniec sprężystego sznura o długości a umocowa­
no na obwodzie koła tak chropowatego, że poślizg jest niemożliwy, 
a do drugiego przywiązano masę M, leżącą na ziemi. W początku, gdy 
sznur jest zaledwo wyprostowany, położenie jego jest pionowe. Oka­
zać, że aby nieco unieść masę z ziemi, obracając koło, trzeba wykonać

E
pracę Mga+Ealog—------- , gdzie E oznacza naprężenie, które podwo- 

E+Mg ’
iłoby długość sznura. Ciężar sznura uważamy za znikomy.

(Math. Tripos.)
Prz. 3. Dwie jednakowe tarcze o promieniu r, z których jedna 

jest nieruchoma, połączono zapomocą n sznurów równych i równole­
głych; naturalna długość każdego z nich jest równa l. Do tego aby 
tarczę ruchomą, obróconą o kąt 8, utrzymać w odległości x od nie­
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ruchomej, [potrzebny jest skrętnik, złożony z siły X i pary L; do­
wieść, źe

X = nEx
/I
\7, 
9

1)
Tg) L=2n Er2 sin 9 1 1)

L,Ę)’

gdzie 62=x2+4r2sin2y

Odsuwamy jedną

(Coli. Exam., 1885.)

tarczę od drugiej o x, a następnie obracamy
o kąt 0. Naprzód należy okazać, że długość każdego sznura wzrośnie 
z l na §. Stosując prawidło, podane wyżej, znajdziemy, że funkcya sił

W=n.
T(^-ld nE^-l.y

2l,
dW dW

W myśl paragrafu 208 Xdx+Ld^= —dxĄ d^. Gdy wyko- 
dx d^

. dW . dW
namy różniczkowanie A=dy i 1=9 to wypadnie rezultat żądany.

494. Ciężki sznur sprężysty na krzywej gładkiej. Prz. 1.
Ciężki sznur sprężysty opasuje krzywą gładką w płaszczyźnie piono-

7’2
wej. Okazać, że różnica pomiędzy wartościami wyrażenia T+-----w ja-

21
kichkolwiek dwóch punktach sznura wynosi tyleż, co ciężar części 
sznura, której długość naturalna jest równa odległości pionowej owych 
punktów. Z twierdzenia tego wynika, że dwa punkty, w których na­
prężenia są równe, leżą na jednym poziomie.

Niech dsr będzie długością naturalną pewnego elementu sznura 
ds. E

ds; według prawa Hooke’a dst=------ . Niech dalej W będzie ciężarem 
T-\-E

jednostki długości sznura nierozciągniątego', ciężar elementu ds sznura

rozciągniętego wyniesie w'ds, gdzie w‘=
w]

T+E
. Utwórzmy teraz równa-

2

nia równowagi, korzystając z figury 129 i rozumując tak samo, jak 
w par. 459, gdzie rozwiązywaliśmy zagadnienie analogiczne dla sznura 
nierozciągalnego. Oczywiście dojdziemy do takich samych równań, jak
(1) i (2) z tą 
wartość w' i 
wyniku.

Prz. 2.

jedynie różnicą, że zamiast w będzie w'. Podstawiając 
całkując, znajdziemy, że (1) prowadzi do wyżej podanego

Ciężki sznur sprężysty opasuje gładką krzywą w płaszczy­
źnie pionowej; okazać, że

7'2 72

Tt2rF"», Re-2r""%‘ 
gdzie T oznacza naprężenie w jakimś punkcie P, a R ciśnienie, które 
krzywa wywiera na sznur; rachujemy je na jednostkę długości sznura 
nierozciągniętego i uważamy, że jest skierowane na zewnątrz. Dalej 
y i y' są wysokościami punktu P i przeciwśrodka nad pewną stałą 
prostą poziomą, którą nazywamy kierownicą statyczną sznura (460). Do­
wieść prócz tego, źe żadna część sznura nie może leżeć poniżej kie- 
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równicy, i że punkty swobodne, o ile istnieją, muszą leżeć na kie­
rownicy.

Prz. 3. Ciężki sznur sprężysty leży na gładkiej cykloidzie zwró­
conej ostrzami do góry; jeden koniec jego jest przymocowany do krzy­
wej, a drugi swobodny znajduje się w wierzchołku. Pewna część sznu­
ra, zmierzona od końca swobodnego, posiada obecnie długość s, a w sta­
nie nierozciągniętym Si; okazać, że 7s=sinh YS1, gdzie 4aE2=w, a zaś 
jest promieniem koła tworzącego

Prz. 4. Sznur sprężysty spoczywa na gładkiej krzywej w pła­
szczyźnie pionowej, a końce jego zwisają swobodnie. Okazać, że mo-

, gdzie y
bdo 2 

ds/
żna wyznaczyć długość naturalną a z równania

2y+b
oznacza wysokość punktu nad końcami swobodnymi, a b długość na­
turalną części sznura, której ciężar jest równy współczynnikowi sprę­
żystości. Jeżeli długość naturalna każdej części zwisającej pionowo 
wynosi l, a przytem (l+b)2 — 2ab, i krzywa jest kołem o promieniu a, 
to długość naturalna części, pozostającej w zetknięciu z krzywą, wy­
nosi 2 \/ab log ( V2+1). (June Exam.. 1877.

Prz. 5. Sznur sprężysty leży wewnątrz gładkiej rurki kołowej 
i podlega działaniu siły przyciągającej ur, skierowanej do przeciwle­
głego końca średnicy, przechodzącej przez środek sznura, który zaj­
muje całe półkole. Dowieść, że największe naprężenie wynosi 
{A (A+2upa2)}‘a— X, gdzie X oznacza współczynnik sprężystości, a promień 
koła, i p masę jednostki długości sznura nierozciągniętego.

(Trinity Coli., 1878.)
Prz. 6. Sznur sprężysty o nieograniczonej długości leżał na stole 

chropowatym, tworząc linię prostą prostopadłą do gładkiego brzegu 
stołu tak, że koniec dotykał brzegu. Jednostka długości sznura nieroz- 
ciągniętego waży m, a dowolna część sznura na gładkim stole wycią­
gnęłaby się do długości podwójnej przy naprężeniu ma; współczynnik 

. . mau. .tarcia=p.. Do końca sznura przyczepiono ciężar ----- i pozwolono mu
2

zawisnąć spokojnie po za brzegiem, przyczem żadna część sznura roz­
ciągnięta podczas opadania ciężaru nie skurczyła się z powrotem. Do- 
. . .. ag (3p.—4)

wiesc, ze ciężar wisi o ------------  niżej od brzegu, a części sznura po-
8

ł a(u+2)łożone na stole w odległości, przewyższającej--------- , od brzegu, są
2

nierozciągnięte. (Trinity Coli.)

495. Lekki sznur sprężysty na krzywej chropowatej. Prz. 1. 
Sznur sprężysty rozpięto na krzywej chropowatej tak, że wszystkie 
elementy są w stanie, graniczącym z ruchem. Naprężenia na końcach 
wynoszą F, F', a pozatem żadne siły zewnętrzne nie działają. Okazać, 
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że *=ekr, gdzie • oznacza kąt pomiędzy normalnemi do krzywej 

w końcach.
Wynika to z takich samych rozważań, jak w par. 463.
Prz. 2. Sznur, którego współczynnik sprężystości—X, rozpięto na 

chropowatym łuku kołowym tak, że tarcie na całej długości jest gra­
niczne, a naprężenia na końcach wynoszą T i T'. Dowieść, że stosu­
nek długości sznura rozciągniętego i nierozciągniętego jest równy

T(T+))
T^r^s

T' 
log 7 : log

(St. John’s Coli., 1884.)
Prz. 3. Taśma sprężysta, której długość naturalna = 2a, opasuje 

cztery kołki chropowate A, B, C, D, umieszczone w wierzchołkach 
kwadratu o boku a. Ujmujemy taśmę w punkcie P pomiędzy A i B 
i ciągniemy w kierunku AB; okazać, że poślizg rozpocznie się jedno­

cześnie na A i B, jeżeli AP—-------- . (May Exam.)
M.T

e2 +1
Prz. 4. Słabo rozciągalny pas bez końca założono na dwa jedna­

kowe koła pasowe. Okazać, że moment największej pary, jaką pas mo- 
2a (c+ra) T 

że wywierać na każde koło, wynosi , gdzie a jest pro- 
Mi 2d 

ccoth 1 
2 p 

mieniem każdego z kół, c odległością pomiędzy środkami, p. współ­
czynnikiem tarcia i T naprężeniem, które pas otrzymał przy zakła­
daniu.--------------------------------------------------------------- (Math. Tripos, 1879.)

Prz. 5. Chropowaty cylinder kołowy o promieniu a jest osadzo­
ny na osi poziomej; do niego w punkcie Q najwyższej tworzącej przy­
mocowano koniec sprężystego sznura, którego długość naturalna = l. 
Drugi koniec umocowano w punkcie P, leżącym na zewnątrz cy­
lindra w odległości l od Q, a prosta PQ jest pozioma i prostopadła do 
osi cylindra. Następnie zaczęto cylinder zwolna obracać około osi 
w kierunku od P; okazać, że sznur będzie się ślizgał na całej długości, 
na której styka się z cylindrem, dopóki S, długość naturalna części 

nawiniętej, nie dojdzie do —. Od tej chwili wszelki poślizg ustanie, 

i związek pomiędzy S i kątem 3, o który cylinder się obrócił, będzie 
le^—(l— ap) el +ap, gdzie S=ap. (Coli. Exam., 1880.)

496. Sznur sprężysty pod działaniem sił jakichkolwiek. 
Utiuorzyć równania równowagi sznura sprężystego^ na który dzia­
łają siły jakiekolwiek. Niech dsx będzie długością naturalną ele-

T+E . . mentu ds. W myśl prawa Hooka ds = dsv —. Siły, działające 
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na ten element i pochodzące z przyciągania ciał innych, są 
proporcyonalne do długości nierozciągniętej; dajmy na to, że 
ich rzuty na osie główne wynoszą, jak w par. 454, Fds±1 Gdsl3 
Hds^. W paragrafie wzmiankowanym otrzymaliśmy równania 
równowagi (1), (2) i (3), przyrównywając do zera sumy rzutów 
sił na osie główne krzywej; równania te dadzą się zastosować 
i do sznura sprężystego, gdy zastąpimy Fds^ Gds^ Hds odpo­
wiednio przez Fdsr, Gdst, Hdsl^ innemi słowy, można otrzymać 
równania równowagi sznura sprężystego z równań, dotyczących 
sznura nierozciągalnego, uważając tylko, że działają siły

E E E
‘ T+E' T + E' T+E'

t. j. redukując siły zewnętrzne w stosunku E:{I + E).
497. Przypuśćmy dla przykładu, że sznur pozostaje na pewnej 

powierzchni gładkiej. Biorąc rzuty na styczną do sznura, jak w par. 479,
otrzymamy

7‘\ T‘2
1+—) dT+Xdx+ Ydy + Zdz—0, skąd T+—+ J (Xdx+ Ydy+ Zdz^ c.

7’2
Widzimy, że T +--------+ funkcya sił jest wielkością stałą na całej 

długości sznura (479).
Prz. Na sznur działa jedynie siła ciążenia; okazać, że równania 

równowagi, odpowiadające równaniom (1), (2) i (3) par. 479, przybie­
rają w tym razie postaci prostsze

T‘2 T‘ 2
T+-----—wz, Rp‘ ———wz', 2E---------- ‘ 2E 

T2 \
wz+—) tan X=wp‘ sin 8,

gdzie T oznacza naprężenie w dowolnym punkcie P, R ciśnienie po­
wierzchni na sznur, skierowane na zewnątrz, na jednostkę długości 
sznura nierozciągniętego, X kąt pomiędzy promieniem krzywizny sznura 
i normalną do powierzchni, z i z' wysokości punktu P i jego przeciw- 
środka S nad pewną płaszczyzną poziomą, 8 kąt pomiędzy pionem i pła­
szczyzną, przechodzącą przez normalną do powierzchni i styczną do 
sznura, i wreszcie w ciężar jednostki długości sznura nierozciągniętego. 
Jeżeli długość PS, odmierzona na normalnej do powierzchni na ze­
wnątrz, jest równa promieniowi krzywizny przekroju normalnego po­
wierzchni, poprowadzonego przez styczną do sznura w punkcie P, to 
S jest przeciwśrodkiem punktu P.

Jeżeli sznur leży na powierzchni obrotu o osi pionowej, to ró­
wnanie trzecie zastąpimy przez Tr‘sin • = B, gdzie r' jest odległością 
punktu P od osi powierzchni, • kątem pomiędzy styczną do sznura 
a południkiem i B wielkością stałą (481).
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498. Jako drugi przykład weżmy sznur sprężysty pod działaniem 
siły centralnej. Biorąc momenty względem środka siły oraz rzuty na 
styczną do sznura, po scałkowaniu otrzymamy

Tp—A,
72

T+— +2E
/ Fdr^ C.

Równania te 
rozciągałnego.

można spożytkować, jak w przypadku sznura nie-

499. Prz. 1. Sznur sprężysty pozostaje w równowadze pod dzia­
łaniem siły centralnej, tworząc łuk koła, a środek siły leży w jednym 
z niezajętych punktów tegoż okręgu. Okazać, że siła F— P (1+M — Y

13 \ 2E 12/
Prz. 2. Elementy sznura sprężystego odpychają się nawzajem 

z siłą proporcyonalną do iloczynu z mas i kwadratu odległości. Sznur 
ten spoczywa w równowadze na gładkiej płaszczyźnie poziomej. Do- 

d c2 
wieść, że dyT+“7+E=O gdzie T jest naprężeniem w punkcie, 

którego odległość od końca wynosi y, a c jest stałą zależną od właści­
wości sznura. Wyjaśnić prócz tego, jak wyznaczają się stałe całko­
wania.

Prz. 3. Elementy sznura sprężystego odpychają się nawzajem 
z siłą wprost proporcyonalną do odległości; sznur ten leży na gładkiej 
płaszczyźnie poziomej, jego długość naturalna wynosi 2lt, a długość 
obecna 21. Okazać, że cl=tan cl,, gdzie Ec"idx jest siłą, którą cały sznur 
wywiera na element o długości naturalnej dx, umieszczony w odle­
głości jednostkowej od punktu środkowego sznura.

Prz. 4. Sznur sprężysty spoczywa na chropowatej płaszczyźnie 
poziomej, do której są przymocowane końce jego, i tworzy krzy­
wą, której każda część jest w stanie, graniczącym z ruchem; dowieść, 

/ tyfjdty ) 
że naprężenie t czyni zadość równaniu (1-4—) s — ) + t2} = u‘w‘p2, 

\ A/d!/
gdzie iv jest ciężarem jednostki długości sznura nierozciągniętego, g 
współczynnikiem tarcia i p promieniem krzywizny. (Math. Tripos, 1881.)

Prz. 5. Końce sznura sprężystego są przymocowane w dwóch 
punktach do gładkiej powierzchni gładkiego pionowego, kołowego cy­
lindra, i sznur pozostaje w równowadze na tej powierzchni. Okazać, że 
gęstość sznura w każdym punkcie jest proporcyonalną do tangensa 
kąta, który płaszczyzna ściślestyczna w tym punkcie tworzy z prze­
krojem normalnym cylindra, poprowadzonym przez kierunek sznura.

(Math. T., 1886.)

500. Cięiki sznur sprężysty^ umocowany w dwóch punktach, 
pozostaje w równowadze w płaszczyźnie pionowej. Wyznaczyć ró­
wnanie jego.
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Zastosujemy tę samą metodę, która w par. 443 doprowa­
dziła do równania sznura niesprężystego. Powracając do fig. 123, 
oznaczymy długość naturalną łuku CP, t. j. łuku, mierzonego, 
od najniższego punktu do jakiegokolwiek punktu P, przez S1; 
reszta oznaczeń pozostanie bez zmiany, 
skończonej części CP^ otrzymamy

Tcost=T, . . (1),

Rozważając równowagę

Psin $ =WS, . . (2),

a stąd dii , ivs.—= tan!=-1
dx To

81 
c • • (3).

Z równań tych można otrzymać a i y w funkcyach ja­
kiejś zmiennej pomocniczej. Z (3) wynika, że si=ctan , a przeto 
będzie dogodnie obrać za tę zmienną pomocniczą S1 lub $. 

Gdy dodamy kwadraty (1) i (2), to wypadnie
T2 =^ w2(c1 + S]2) 

dcc diiPonieważ — = cos $ i —=sin $, przeto (o as

T

(4)-

z (1) i (2) otrzymamy

SC=
ivc clog c2 +s^

c

y=
T . 2

1 ’w 1 2E
Stałe całkowania obrano tu w taki sposób, aby w najniższym 

- . c^iv punkcie łańcuchowej sprężystej było x = o i J=c+%=. W ta- 

kim razie oś x jest kierownicą statyczną (494, prz. 2).

501. Prz. 1. Udowodnić następujące właściwości geometryczne 
łańcuchowej sprężystej:

T2
1) wy=T+2E‘

c2+s,22) p==

3) s=s-—(s V c2+82+c2log Si

Gdy uczynimy E nieskończenie wielkiem, to otrzymamy stąd znane 
właściwości katenoidy pospolitej.

Prz. 2. Rzędna PN przecina kierownicę statyczną w punkcie N; 
odmierzamy na tej rzędnej po obydwóch stronach N odcinki NM i NM\

z których każdy=
T2

2 Ew ‘
i z punktu M, położonego nad kierownicą, pro-

C

c

Statyka. 27
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wadzimy prostopadłą ML do stycznej w P. Okazać, że T— w. PM, 
72

st=PL, c—ML, w. MN = —, i że M' jest rzutem przeciwśrodka na 

rzędną.
Prz. 3. Ciężki sznur sprężysty jest zawieszony w dwóch punktach; 

dowieść, że
, c2 (tan t (T 0\) 

s=ctano----- <---------—logtan (----- 1-----2klcos4 8 \4 2/)’

s mierzymy od punktu najniższego, c oznacza naturalną długość sznura, 
którego ciężar jest równy naprężeniu w punkcie najniższym, a X na­
turalną długość sznura, którego ciężar jest równy współczynnikowi 
sprężystości. (Coli. Exam., 1880.)



ROZDZIAŁ XI.

MASZYNY.

502. Mechanizmy składają się zwykle z pewnych pro­
stych kombinacyi lin, prętów i płaszczyzn, czyli z tak zwanych 
maszyn prostych. Różni autorowie określają rozmaicie liczbę 
tych maszyn prostych, najczęściej jednak podawana bywa liczba 
sześć; składają się na nią dźwignia, blok, kołowrot, równia po­
chyła, klin i śruba).*

*) W opisie tych maszyn autor posiłkował się w znacznym sto­
pniu dziełami Treatise on Mechanics Katera, Mechanical Philosophy 
Pratta, Principles of Mechanism Willisa i in.

Zyskowność mechaniczna. W przypadkach najprostszych 
uważamy, że na maszynę prostą działają dwie siły. Jedna z nich, 
która ma wprawiać maszynę w ruch, nazywa się siłą porusza­
jącą^ drugą, którą maszyna ma przezwyciężać, nazywamy cię­
żarem. Stosunek ciężaru do siły poruszającej nazwiemy zysko- 
wnością mechaniczną maszyny.

503. Uważamy w przybliżeniu pierwszem, że różne części ma­
szyny są gładkie, że liny są zupełnie wiotkie, części stałe zupełnie 
sztywne i t. d. W niektórych maszynach założenia te są w przybliże­
niu słuszne, ale w innych odbiegają daleko od prawdy. Dla tego też 
jest rzeczą niezbędną w przybliżeniu drugiem modyfikować te założe­
nia. Liczymy się więc wedle możności z chropowatością powierzchni, 
wchodzących w zetknięcie, ze sztywnością lin, odkształcalnością ma- 
teryałów i t. d. Gdy wprowadzimy te poprawki, to wyniki będą wciąż 
jeszcze tylko przybliżeniem do prawdy, gdyż nie mamy możności po­
czynić poprawek zupełnie dokładnych. Tak np. wprowadzając do ra­
chunku tarcie, zakładamy, że ciała, pozostające w zetknięciu, są wszę­
dzie jednakowo chropowate, i że znamy dokładnie współczynniki tar­
cia. Pomimo to jednak wyniki, osiągnięte w drugiem przybliżeniu, 
będą znacznie bliższe prawdziwego stanu rzeczy, niż te, które otrzy­
maliśmy w przybliżeniu pierwszem.
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504. Skutek użyteczny. Wyobraźmy sobie maszynę, zło­
żoną z dźwigni, bloków i t. d., i przypuśćmy, że każda z tych 
części działa na następującą po niej z kolei. Do jednego z koń­
ców tego szeregu jest przyłożona siła P, wytwarzająca na dru­
gim końcu siłę, którą można zrównoważyć, działając na ten 
punkt z siłą Q. Możemy uważać tu P za siłę poruszającą, a Q 
za ciężar.

Puśćmy maszynę w ruch tak, aby każda z jej części 
uległa drobnemu przesunięciu, na jakie pozwalają istniejące 
związki geometryczne. Przesunięcie takie nazwiemy przesunię­
ciem prawdziwem maszyny. Obierzmy je za przesunięcie przy­
gotowane. Praca siły P będzie równa pracy siły Q wraz z pra­
cą oporów, istniejących w maszynie. Oporami tymi są tarcie, 
sztywność lin i t. d. Pewna część pracy siły poruszającej wy­
chodzi na przezwyciężenie oporów; mówimy, że część ta jest 
stracona. Praca siły Q zowie się pracą użyteczną maszyny. Skut­
kiem użytecznym nazywamy stosunek pracy użytecznej do pracy 
siły poruszającej podczas małego przesunięcia prawdziwego. Sku­
tek użyteczny byłby oczywiście równy jedności, gdyby wszy­
stkie powierzchnie były doskonale gładkie, wszystkie części stałe 
doskonale sztywne i t. d., ale w każdej maszynie prawdziwej 
skutek użyteczny jest z konieczności mniejszy od jedności.

505. Prz. Maszyna jest przeznaczona do podnoszenia ciężarów, 
i podniesiony ciężar pozostaje w zawieszeniu dzięki tarciu, chociaż 
siła poruszająca przestała działać; okazać, że skutek użyteczny jest 
mniejszy od połowy. Jeżeli natomiast do podnoszenia ciężaru potrzebna 
jest siła P, a do utrzymania go w zawieszeniu wystarcza siła P', to

. P+P' skutek użyteczny wynosi ——— (St John’s Coli., 1884.)

Gdy ciężar Q ma właśnie zacząć się podnosić pod działaniem 
siły P, to tarcie przeciwdziała tej sile, natomiast pomaga ono sile P' 
w podtrzymywaniu ciężaru Q. W obydwóch przypadkach tarcie jest 
jednakowe pod względem wielkości, a mianowicie posiada wartość 
graniczną. Niech x, y będą przesunięciami przygotowanemi punktów 
przyłożenia sił P i Q, gdy maszyna jest w ruchu, i przypuśćmy, że 
w obydwóch przypadkach wymienionych przesunięcia są jednakowe. 
Oznaczmy jeszcze przez U pracę tarcia; w takim razie Px = Qy-\-U 

i p’x=Qy— U. Skutek użyteczny jest równy--- . Rugując U, otrzymamy 

łatwo wzór, wskazany w zadaniu. Jeżeli w maszynie istnieją prócz 
tarcia jakieś inne opory, niemające górnej granicy, lecz wzrastające 
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ustawicznie ze wzrostem siły poruszającej, to skutek użyteczny będzie 
mniejszy od wartości wyżej podanej; można się o tern łatwo przeko­
nać w drodze takiego samego rozumowania.

506. Dźwignia. Dźwignią nazywamy sztywną sztabę, ru­
chomą około osi stałej. Punkt przecięcia dźwigni z osią zowie 
się punktem oparcia. Części dźwigni, zawarte pomiędzy punktem 
oparcia a punktami przyłożenia siły poruszającej i ciężaru zo- 
wią się ramionami dźwigni. Uważa się zwykle, że siła porusza­
jąca i ciężar działają w płaszczyźnie prostopadłej do osi.

Jeżeli siły działają na punkty ciała w kierunkach jakichkolwiek, 
to zagadnienie jest trójwymiarowe; rozwiązanie podaliśmy w par. 268. 
W rozważaniach dalszych pominiemy także tarcie w osi, gdyż przy­
padek ten rozważyliśmy już w par. 179.

507. Znaleźć warunki równowagi dwóch sił, działających 
na dźwignię w płaszczyźnie prostopadłej do osi.

W pierwszem przybliżeniu możemy uważać oś dźwigni za 
linię; przypuśćmy, że przecina ona płaszczyznę sił w punkcie C. 
Siły oznaczymy przez P i Q; są one przyłożone, dajmy na to, 
w punktach A, B do ramion CA, CB i działają w kierunkach 
DA, DB. Gdy dźwignia pozostaje w równowadze, to siły P i Q 
oraz reakcya punktu oparcia tworzą układ sił w równowadze, 
a zatem wypadkowa sił P, Q działa na prostej DC i równoważy 
się z ową reakcyą.

Warunki równowagi wynikają bezpośrednio z zasad, wy­
łożonych w par. 111. Niech CAL, CN będą prostopadłemi z C 
do linii działania sił. Biorąc momenty względem C, otrzymamy 
P. CM - Q. CN^=0. Z tego wynika, że siła poruszająca i ciężar 
są w stosunku odwrotnym do stosunku odległości ich linii dzia­
łania od punktu oparcia.

508. Aby znaleźć reakcyę punktu oparcia wyznaczamy wypad­
kową sił P i Q. Możemy tu zastosować którąkolwiek z rozlicznych me­
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tod, używanych do składania sił. Przypuśćmy dla przykładu, że poło­
żenie punktu D jest znane, i że kąt ADB=^. W takim razie
R2= P2+Q2+2PQ cos ©, gdzie R oznacza szukaną reakeyę.

Przypuśćmy {dalej, że mamy inne dane, że CA = a, CB = b, że 
siły P, Q tworzą z ramionami CA, CB kąty a, 3, i kąt ACB = y. W ta­
kim razie możemy wyznaczyć reakeyę w inny sposób. Oznaczmy przez 
3 kąt, który linia działania siły R tworzy z ramieniem CA, tak że kąt 
DCA—tz— 8. Bierzemy teraz rzuty na CA i na kierunek prostopadły.

Rcoss=Pcosa+Qcos (r— 3)
R sin 3=Psin a+Q sin (Y — 3).

Stąd można już łatwo wyznaczyć tan 8 i B.
Można otrzymać inne związki pomiędzy P, Q i R, biorąc momenty 

względem A lub B, albo względem jakiegoś innego punktu, na który 
wskazują dane zagadnienia. Również rzuty na inne kierunki mogą być 
w pewnych przypadkach dogodniejsze niż na te, które wskazaliśmy tu 
dla przykładu.

509. Jeżeli na dźwignię działa większa liczba sił, to znajdziemy 
warunek równowagi, biorąc momenty względem punktu oparcia; czy­
nimy tak, aby nie wprowadzać do równania reakcyi osi.

Gdy właśnie chodzi o tę reakeyę, to przenosimy wszystkie siły 
równolegle do punktu oparcia. Tym sposobem powstanie układ sił, 
przyłożonych w jednym punkcie, a mianowicie w punkcie przecięcia 
osi z płaszczyzną sił. Wypadkowa tego układu jest równa reakcyi 
szukanej.

510. W rozważaniach powyższych przyjmowaliśmy, że własny 
ciężar dźwigni jest znikomy w porównaniu z siłami P i Q. Dajmy na 
to, że ciężaru tego pomijać nie wolno, i oznaczmy go przez W. Teraz 
więc na ciało działają nie dwie lecz trzy siły, a mianowicie P i Q, 
przyłożone w A i B, oraz W, przyłożona w środku ciężkości dźwigni G. 
Przypuśćmy, że oś jest pozioma, i że CL jest odległością pionu, prze­
chodzącego przez G-, od punktu oparcia. Przypuśćmy prócz tego, że 
w przypadku typowym ciężar W i siła P usiłują obrócić dźwignię 
około C w tę samą stronę. Równanie momentów będzie teraz
P. CM— Q. CN+ W. CL—0. Gdy chodzi o reakeyę osi, to wyznaczamy 
wypadkową sił P, Q i W.

511. Zwykle dzielimy dźwignie na trzy rodzaje stosownie do po­
łożenia siły poruszającej i ciężaru względem punktu oparcia. W dźwi­
gni pierwszego rodzaju punkt oparcia leży pomiędzy siłą poruszającą 
i ciężarem. W rodzaju drugim ciężar działa pomiędzy punktem opar­
cia i siłą poruszającą, wreszcie w rodzaju trzecim siła poruszająca 
działa pomiędzy punktem oparcia i ciężarem. Rozważania paragrafu 507 
dotyczą wszystkich trzech rodzajów; różnice zajdą tylko w znakach 
rzutów i momentów.
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512. Zyskowność mechaniczną dźwigni mierzymy stosunkiem 
Q:P, a widzieliśmy, że stosunek ten jest równy CN‘.CM. Przykładając 
siłę poruszającą w taki sposób, aby jej odległość od punktu oparcia 
była większa od odległości ciężaru, możemy zrównoważyć wielki cię­
żar małą siłą. Tak np. drążek, używany do podważania ciężarów, jest 
dźwignią drugiego rodzaju. Punkt oparcia leży na podłodze, ciężar 
działa tuż za punktem oparcia, a siła poruszająca jest przyłożona na 
samym końcu drążka.

513. Udzielmy dźwigni małego przesunięcia, obracając ją 
o mały kąt około punktu oparcia. Punkty przyłożenia A, B 
sił P, Q zatoczą przytem małe łuki AA', BB', których, wspólny 
środek leży w punkcie oparcia, a więc przesunięcia punktów 
przyłożenia siły poruszającej i ciężaru są proporcyonalne do 
odległości tych punktów od punktu oparcia. Ale pośpiech pra­
cy mierzymy składową przesunięcia AA' w kierunku siły P. 
Gdy np. wywieramy siłę P, ciągnąc za linkę, przyczepioną w A, 
to długość linki, którą potrzeba wyciągnąć, mierzymy składo­
wą przesunięcia AA' w kierunku linki. Składowe przesunięć 
AA', BB w kierunkach sił P, Q wynoszą oczywiście AA'. sin a, 
BB' .sin 3; są one proporcyonalne do CA sin a, CB sin 3, czyli do 
CM, CN (fig. 141).

Gdy więc odsuniemy siłę poruszającą dalej od punktu 
oparcia niż ciężar i tym sposobem osiągniemy pewną zysko­
wność mechaniczną, to w tym samym stosunku przesunięcie 
ciężaru stanie się mniejszem od przesunięcia siły; przesunięcia 
mierzymy tu w kierunkach sił. Można powiedzieć, że o ile zy­
skujemy na sile, o tyle tracimy na pośpiechu.

514. Czytelnik z łatwością przypomni sobie liczne przykłady 
zastosowania dźwigni. Przykładami dźwigni pierwszego rodzaju mogą 
być wagi pospolite, nożyczki i t. d.

W taczkach, dziadkach do orzechów i t. d. mamy przykłady 
dźwigni drugiego rodzaju. Ciężar przewyższa tu siłę poruszającą. Sto­
sujemy taką dźwignię, gdy chodzi o spotęgowanie siły rozporzą- 
dzalnej.

W dźwigni trzeciego rodzaju ciężar jest mniejszy od siły poru­
szającej, lecz zato przesunięcie pierwszego jest większe od przesunię­
cia drugiej. Dźwignie takie są używane w tych razach, gdy pośpiech 
w pracy jest ważniejszy niż oszczędność na sile.

515. Najbardziej uderzające przykłady dźwigni trzeciego rodzaju 
spotykamy w organizmach zwierzęcych. Dźwigniami takiemi są koń­
czyny zwierząt. Główka kości stanowi punkt oparcia, mięsień, przymo­
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cowany do kości w pobliżu główki, wywiera siłę poruszającą, a ciężar 
kończyny w połączeniu z każdym innym oporem, który przeciwdziała 
ruchowi, jest ciężarem dźwigni. ^Lekkie skurczenie mięśnia wywołuje 
już znaczny ruch kończyny, co zwłaszcza w rękach i nogach człowie­
ka jest wielce uderzające. Tej właśnie okoliczności ciało ludzkie za­
wdzięcza swą ruchliwość.

516. Do badania równowagi dźwigni bardzo dogodnie jest 
stosować zasadę pracy przygotowanej. Dajmy na to, że na dźwi­

gnię działają siły P, Q, a C 
jest punktem oparcia. Gdy 
dźwignia obróci się około G 
o mały kąt 89, i punkty przy­
łożenia sił zajmą położenia 
A', B\ to będzie
P . AA'sin a - Q. BB‘sin3 = 0; 
a i 3 znaczą tu to samo, co 

w par. 508. Z równania tego wynika od razu P. GM^Q. CN.
517. Wagi Roberwala. W przyrządzie tym mamy doskonały 

przykład zastosowania zasady pracy przygotowanej. Składa się on 
z czterech prętów AA’, A'B', B'B, BA, połączonych w końcach prze­
gubami i tworzących równoległobok. Boki AB, A'B' mogą obracać się 
około osi poziomych C, C, urządzonych na nieruchomej, pionowej pro­
stej O CC. Ta prosta powinna być równoległa do AA i BB', ale może 
leżeć od nich w odległościach niejednakowych. Prócz tego mamy tu 
jeszcze pręty MM1, NN', połączone sztywno z AA, BB' pod kątami 
prostymi. Na nich zawieszone są w punktach H i K ciężary P i Q. 
Gdy całe urządzenie obraca się około C, C, to pręty AA, BB' zacho­
wują wciąż położenie pionowe, a pręty MM', NN' poziome.

Wagi Roberwala posiadają właściwość następującą: jeżeli ciężary 
P, Q równoważą się w jakiemś położeniu, to nie zakłócimy równowagi, 
przesuwając je na prętach MM', NN’. Można jeszcze dodać, że ciężary 
nie przestają się równoważyć, gdy przyrząd obróci się około C, C, i je­
den z podtrzymujących prętów MM', NN' pójdzie w górę, a drugi 
opadnie.
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Aby to udowodnić oznaczmy długości GA, G'A' przez a, długości 
CB, G'B' przez b i przypuśćmy, że pręty AB, A'B' tworzą z poziomem 
kąt 3. Gdy obrócimy przyrząd tak, że kąt 3 wzrośnie o d^, to pręt 
AA' opadnie w kierunku pionowym o acossdł, a pręt BB' wzniesie 
się o b cos 8d8. Jeżeli ciężary własne różnych części przyrządu są zni­
kome w porównaniu z P i Q, to w myśl zasady pracy przygotowanej 
będzie Pa cos^d^=Qb cos 3d8. Z tego wynika Pa=Qb; a więc warunek 
równowagi jest niezależny od położenia punktów H, K na prętach pod­
trzymujących i od nachylenia 8 prętów AB, A'B' do poziomu.

Jeżeli konstrukcya przyrządu jest taka, że równoważą się ciężary 
równe, to możemy wykryć różnicę w ciężarach dwóch ciał, zawiesza­
jąc je w dowolnych punktach prętów MM', NN'. Niepotrzeba tu dbać 
o to, aby ciężary były przyczepione w jednakowych odległościach od 
punktu oparcia, i na tern polega zaleta przyrządu.

Prz. 1. Pręty AB, A'B' ważą w, w', a ciała AA'M', BB'N' ważą 
W, W'; okazać, że

(w + w'A a—(P+ W) a-{Q + W’) b+---------2----- - = 0 

jest warunkiem równowagi. Następnie dowieść, że ciężary P, Q równo­
ważą się we wszystkich położeniach, jeżeli równoważą się w jednem, 
i wreszcie wyznaczyć punkt przyłożenia ciśnienia wypadkowego pod­
stawy EF na stół.

Prz. 2. Wagi są w spoczynku w położeniu poziomem; dowieść, 
że reakcya pozioma na czop 0 lub C tak się ma do jednego z cięża­
rów, jak różnica odległości środków ciężkości ciężarów od prostej CC' 
do CC. (Math. Tripos, 1874.)

Niechaj X, Y; X’, Y1 będą składowemi poziomemi i pionowemi 
reakcyi w A i A’. Biorąc momenty względem A' dla układu AM'A', 
otrzymamy Xa=Ph, gdzie AA'=a, MET—h. Prócz tego będzie X+X'=O, 
Y+ Y'=P. Widzimy, że X, X1 można wyznaczyć, gdy poszczególne warto­

ści Y, Y' są niewyznaczalne (268 i 148). Oznaczając odpowiednie skła­
dowe w B, B' przez X1, Y^ X’, Yt', znajdziemy w sposób podobny 
Xxa—Pk, gdzie k= NK. Na końce pręta AB działają siły X, Y, X,, Yi, 
a zatem składowa pozioma reakcyi na czop C będzie X— X1, co pro­
wadzi od razu do pożądanego wyniku.

518. Wagi pospolite. Wagi pospolite składają się z prostego 
pręta lub belki AB i z dwóch jednakowych szal E i F, zawieszonych 
na lekkich sznurach u końców belki. Belka może obracać się swo­
bodnie około punktu oparcia O, z którym łączy ją krótki pręt OG, pro­
stopadły do niej i przechodzący przez środek G. Środek ciężkości G- 
belki AB leży na prostej OC, a zatem, gdy belka i próżne szale są 
w równowadze, to prosta AB ma położenie poziome.

Ciała, które mają być zważone, kładziemy na szale; jeżeli ciężary 
ich są nierówne, to belka odchyla się od położenia poziomego. W po­
łożeniu równowagi środek ciężkości belki G nie leży już pionowo pod 
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Fig. 143.

punktem oparcia, i nachylenie 8 prostej AB do poziomu jest takie, że 
moment ciężaru belki względem 0 jest równy sumie momentów cię­
żarów ciał ważonych oraz szal względem tegoż punktu. Z tego wyni­
ka, że punkt oparcia nie powinien leżeć w środku ciężkości belki.

Oznaczmy przez P, Q cię­
żary, znajdujące się w szalach 
E, F, przez w ciężar każdej szali, 
przez W ciężar belki AOB, dalej 
niech będzie OG = h, OC = c, 
AB = 2a, wreszcie oznaczymy 
przez 8 nachylenie belki do po­
ziomu w stanie równowagi ukła­
du. Biorąc momenty względem O, 
otrzymamy

(P+w) (a cos 8 + c sin 8) — (Q + w) (a cos 8 — c sin 8) + Wh sin 8=0.
W równaniu tern współczynnik sumy (P+w) jest odległością punktu O 
od pionu AE; wyznaczamy go z łatwością, biorąc rzut linii łamanej 
OCA na kierunek poziomy. W podobny sposób wyznaczają się inne 
współczynniki. Z równania powyższego wypada

(O—P)a tan J=------ —----- •-------- .
(P+@+2w) c+ Wh

519. Dobre wagi czynią zadość trzem warunkom. Po pierwsze, 
belka AB posiada położenie poziome, gdy na szalach*leźą ciężary równe; 
do tego potrzeba, aby ramiona AC, CB były równe. Rozpoznanie po­
łożenia poziomego belki ułatwia lekki pręt, zwany języczkiem-, łączy się 
on z belką w środku C pod kątem prostym. Gdy belka przybiera po­
łożenie poziome, to języczek przechodzi przez punkt zawieszenia.

Drugim warunkiem jest czułość. Odchylenie^ nawet przy dro­
bnej różnicy pomiędzy P i Q powinno być dostatecznie duże, aby 
je można było łatwo zauważyć. Dla danej różnicy Q — P czułość 
wzrasta, gdy tan 3 wzrasta, można zatem mierzyć czułość stosun- 

tan 0 a 
kiem   =    —. Jeżeli wagi są tak zbudowane, że Wy- Q-P {P+Q+2w)c+Wh 8 J 
rażenie po prawej stronie równania ma dużą wartość, to czułość bę­
dzie dobra.

Widzimy, że czułość wzrasta, (1) gdy wzrasta długość belki AB, 
(2) gdy zmniejsza się długość pręta OC, (3) gdy zmniejsza się cię­
żar belki. Jeżeli zbudujemy belkę w taki sposób, że h i c będą miały 
znaki odwrotne, to czułość wzrośnie w dużym stopniu. Do tego po­
trzeba, aby punkt oparcia 0 leżał pomiędzy G i C.

Warunek trzeci nazywa się zwykle statecznością. Wagi powinny 
po odchyleniu prędko powracać do położenia poziomego. Belka waha 
się około położenia równowagi, i oko tem łatwiej rozpozna, czy poło­
żenie to jest poziome, im wahanie jest szybsze. Badanie tego warun­
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ku stanowi przedmiot dynamiki; z punktu widzenia statycznego nie 
daje się ono przeprowadzić w sposób właściwy.

520. Prz. 1. Jedno ramię belki wagowej jest dłuższe od dru­
giego, a ciężar belki jest znikomy. Dowieść, że ciężar prawdziwy ciała 
ważonego jest średnią geometryczną ciężarów pozornych, które otrzy­
mujemy, ważąc je na jednej szali, a potem na drugiej. (Coli. Exam.)

Prz. 2. Ramiona belki są niejednakowe ani pod względem wagi 
ani długości. Pewne ciało waży pozornie Q1 i Q2 stosownie do tego, 
na którą szalę je położymy. Podobnież R| i R2 są ciężarami pozorny­
mi innego ciała. Wyznaczyć prawdziwe ciężary obydwóch ciał i oka­
zać, że ciało, którego ciężary pozorne są równe, waży w rzeczywistości

1R2—2R1
Qi -- Q, -- R, + R,

(Coli. Exam., 1885.)

Prz. 3. Na fałszywych wagach ciężar P waży pozornie Q, a cię­
żar P' waży Q'. Dowieść, że prawdziwy ciężar X ciała, którego ciężar 
pozorny wynosi Y, wyznacza się z równania X(Q— Q')= 
=Y(P-P)+PQ-PQ‘. (Math. Tripos, 1870.)

Prz. 4. Dobre wagi pozostają w równowadze, gdy w szalach leżą 
nierówne ciężary P i Q. Gdy do P dodamy mały ciężarek, to ciężar Q 
podniesie się pionowo o tyle, o ile podniósłby się ciężar P, gdybyśmy 
ten sam ciężarek dodali do Q. (Math. Tripos, 1878.)

Z wzoru na tan 3 w par. 518 widać, że przyrosty kąta 8 będą 
jednakowe co do wartości bezwzględnych, czy drobny dodatek otrzy­
ma P czy Q, skutkiem więc powiększenia P lub Q belka obróci się 
w jedną lub drugą stronę o ten sam mały kąt, a zatem przesunięcia 
pionowe ciężarów będą w obydwóch przypadkach równe.

Prz. 5. Języczek wag jest osadzony cokolwiek niedokładnie; do­
wieść, że prawdziwy ciężar ważonego ciała jest prawie równy śre­
dniej arytmetycznej ciężarów pozornych, które wypadają przy waże­
niu na obydwóch szalach. (Coli. Exam.)

Prz. 6. Punktem oparcia wag było ostrze noża, spoczywające na 
poziomej płytce agatowej. Z czasem nóż się stępił o e i powstałe ciało 

cylindryczne posiada krzywiznę —, a w płytce wytworzyło się zagłę­

bienie o krzywiźnie —. Kładziemy na szale ciężary P i Q nieco różne; 
P

, / rp \ 1 
okazać, że odwrotność czułości wzrosła o (P-Q-W) s--—)—.

\ p—r/ia
Ciężary własne szal uważamy tu za znikome. (Coli, Exam., 1890.)

521. Beźmiany. Beźmian pospolity jest to po prostu dźwignia
A CB o nierównych ramionach A C, GB. Punkt oparcia leży nieco nad C. 
Ważone ciało Q zawiesza się na końcu B ramienia krótszego. Na dru- 
giem ramieniu, można przesuwać znany ciężar P; ustawiamy go w ta­
kim punkcie H, aby zachodziła równowaga. Niech G będzie środkiem
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ciężkości beźmianu, a w jego wagą. Trzy siły P, w i Q, przyłożone od­
powiednio w H, G i B są w równowadze. Biorąc momenty względem 
C, otrzymamy

P.HG+w . GC=Q. CB (1)
Obierzmy na krótszym ramieniu GB taki punkt D, aby było 

w . GG—P. GD; równanie (1) przekształci się na

P.HD=Q.CB...........................................
Tak więc do wyznaczenia ciężaru Q potrzeba zmierzyć HD. W tym 
celu odmierzamy od punktu D w stronę A szereg długości Dl, 12 
23...., z których każda jest równa GB. Ciężar Q będzie odpowiednio

5 H 4 3 2 1
B 

G C D K

Q
Fig. 144.

równy P, 2P, 3P...., gdy P stoi na znaku 1, 2, 3...., i układ jest w ró­
wnowadze. Odcinki 12, 23....są zwykle podzielone na części mniejsze, 
i tym sposobem długość HD daje się łatwo odczytać.

Przyrząd tej postaci był w użyciu jeszcze w starożytnym Rzy­
mie, i z tego powodu bywa nazywany nieraz beźmianem rzymskim.

522, W beźmianie duńskim ciężary P i Q działają na stałe pun­
kty dźwigni; natomiast przesuwamy punkt oparcia na drążku AB, do­
póki nie nastąpi równowaga. Możemy tu ciężar P, zajmujący stałe po­
łożenie na dźwigni, połączyć z ciężarem dźwigni. Niech P' będzie cię­
żarem całego przyrządu, czyli P' — p p w, i niech G będzie środkiem 
ciężkości. Biorąc momenty względem 0, otrzymamy P'. GG —Q. GB, 
a stąd

P' .BG
BG= —----- .

P' + Q

Fig. 145.
Z tego wzoru można wyznaczyć BG, gdy Q=P, 2P‘, 3P‘..... Odpowie­
dnie położenia punktu G oznaczamy na dźwigni cyframi 1, 2, 3.... Przy 
takiej podziałce można od razu odczytać ciężar ciała, zawieszonego 
w końcu B, gdy znaleziony został punkt oparcia G.

Zawieśmy z kolei w B ciężary Q i Q+S, i przypuśćmy, że G i G' 
będą odpowiednimi znakami podziałki. Znajdziemy bez trudności, że 
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----------------=---------- . Jeżeli S jest dane, to prawa strona jest stała 
BC BO P'.BG 1

i, jak widzimy, odległości znaków podziałki od B tworzą postęp har­
moniczny, gdy ciężary tworzą postęp arytmetyczny. Tak więc w beź- 
mianie pospolitym odległości podziałki od pewnego punktu idą w po­
stępie arytmetycznym, a w beźmianie duńskim w postępie harmo­
nicznym.

523. Beźmian w porównaniu z wagami posiada zalety następu­
jące: (1) wszystkie ważenia odbywają się przy pomocy jednego tylko 
znanego ciężaru P, (2) gdy ważone ciało jest cięższe od P, to ciśnie­
nie na punkt oparcia jest mniejsze, niż w wagach. Z tego względu 
beźmian nadaje się lepiej do ważenia dużych ciężarów niż wagi. 
Z drugiej strony wagi posiadają tę wyższość, że przy użyciu du­
żej liczby małych gwichtów można wyznaczać ciężary ciał z wię­
kszą dokładnością, niż odczytując długość ramienia beźmianu na po- 
działce.

524. Prz. 1. Ciężar beźmianu pospolitego jest równy w, a gdy 
przyrząd jest dobrze wyregulowany, to odległość punktu oparcia od 
końca B, w którym wisi ważony ciężar, wynosi a. Punkt oparcia zo­
stał przesunięty o a dalej od B, i wówczas ciężar pewnego ciała wy­
pada W Dowieść, że otrzymamy ciężar prawdziwy, wprowadzając

a 
poprawkę (W+P+W) -----, gdzie P oznacza ciężar ruchomy,

d-o
(Math. Tripos, 1881.)

Prz. 2. Na beźmianie do ważenia w kg znaki podziałki robiono 
pilnikiem, a opiłki z każdego znaku ważą x kg. Gdy jeszcze nie było 
podziałki, to stawiając ruchomy ciężar P na końcu drążka, można było 
zważyć n+1 kg, a po wykonaniu podziałki tylko n. Okazać, że 
n(n+1) x = 2P, i znaleźć błąd, który popełnimy, ważąc m kg. Środek 
ciężkości beźmianu leżał początkowo pod punktem oparcia.

(Coli. Exam., 1885.)
Prz. 3. Czułość beźmianu, w którym ciężar danego drążka jest 

nieznaczny w porównaniu z ciężarem ruchomym, jest odwrotnie pro- 
porcyonalna do sumy ciężaru ruchomego i największego ciężaru, który 
daje się zważyć. (Math. Tripos, 1854.)

Prz. 4. Beźmian pospolity wzorcowano w przypuszczeniu, że drą­
żek waży Q, a ciężar ruchomy W, lecz obydwa te założenia są nie­
ścisłe. Na beźmianie tym dwa ciała, których ciężary prawdziwe wyno­
szą PiR, ważą pozornie P+X i R+Y. Dowieść, że drążek i ciężar 

, ..................... ...... W(X-Y) .Q{X-Y) a{PY-RX) ruchomy wazą mniej, niz założono, o D 1 "—D—- 1   ,

gdzie b^CG-, a^CB, i D=P-R+X-Y. (Math. Tripos, 1887.)
Prz. 5. Beźmian rzymski, którego ciężar całkowity jest równy 8, 

wzorcowano -przy punkcie oparcia 0, a następnie przesunięto ten punkt 
do 0' w stronę końca B, w którym zawiesza się ciężary ważone. Na
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beźmianie takim pewne ciało waży pozornie W; dowieść, że cię­

żar prawdziwy jest większy o (8+ W) CC
BC' '

(Triu. Coli., 1889.)

Prz. 6. W beźmianie zwykłym powiększono ruchomy ciężar P 
w stosunku (1+k):1. Okazać, że teraz, ważąc ciężar Q, popełniamy błąd 
kY, gdzie Y oznacza ciężar, który trzeba odjąć od Q, aby utrzymać 
równowagę, gdy P zostanie przysunięte do samego punktu oparcia.

(Coli. Exam., 1885.)
Prz. 7. W beźmianie duńskim odległość punktu oparcia od końca 

12 1
B wynosi a , gdy ważony ciężar ma nkg; okazać, że  --------------1—— 0. 

an+2 An+1 @n
(Math. Tripos, 1859.)

Prz. 8. Beźmian duński, który ważył początkowo W i posiadał 
dokładną podziałkę, okrył się rdzą; znaleziono na nim, że wagi po­
zorne dwóch ciężarów znanych X i Y są odpowiednio X—x i Y—y. 
Dowieść, że środek ciężkości rdzy dzieli wzorcowane ramię w stosun­
ku W(x—yy.Yx—Xy, i że waga rdzy w pierwszem przybliżeniu wy-

. W+Y W+X nosi--------x +—,----- Ty. (Math. Tripos, 1885.)

Prz. 9. Obwód tarczy mosiężnej, ważącej w, składa się z łuku 
koła BBC, większego od półkola, i dwóch stycznych AB, AC, tworzą­
cych kąt 2a. Tarcza ta stanowi część główną przyrządu do ważenia 
listów. Może ona obracać się w płaszczyźnie pionowej około środka 
koła O, a w punkcie A jest umocowany ciężarek P. List ważony za­
wiesza się w punkcie D, tak położonym na obwodzie koła, że kąt AOD 
jest prosty. Koło posiada podziałkę, a wskazówka wisi pionowo pod O. 
Gdy przyrząd nie jest obciążony, to punkt A leży pionowo pod O, 
i wskazówka stoi na zerze. Znaleźć wzór do wzorcowania koła i oka-

w
zać, że przyrząd wskaże —, gdy OA tworzy z pionem kąt

((x+2o) sin2o+2 sin acOS a) - w sin2 a 
arctan  — —(, jeżeli P — .

- (T—2a) sin‘a—2coso ) 3
(Math. Tripos, 1878.)

525. Blok. Blok pospolity składa się z kółka, które mo­
że obracać się swobodnie około osi. Linka leży w rowku, wy­
żłobionym na brzegu kółka, a na jej końce działają siły P i P'. 
Jeżeli blok jest gładki i ciężar linki znikomy, to naprężenie 
linki na całym łuku zetknięcia musi być jednakowe, a zatem 
siły P, P' są równe, i każda z nich jest równa naprężeniu 
(fig. 146). Toż samo będzie i wtedy, gdy blok chropowaty sie­
dzi na gładkiej osi (197).

526. Jeżeli oś bloka jest nieruchoma, to jedna z sił P, 
Q, działających na końce sznura, jest siłą poruszającą, a druga 
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ciężarem. Oczywiście blok stały nie daje zysku mechanicznego; 
pomimo to jednak maszyna ta, pozwalająca nadawać sile po­
ruszającej kierunek najdogodniejszy, bywa wielce użyteczna.

527. Można jednak osiągnąć zysk mechaniczny przy po­
mocy bloka ruchomego. Dajmy na to, że koniec wiotkiej linki 
jest umocowany w nieruchomym punkcie A; linka obiega blok 
C, dźwigający ciężar Q, a na drugi jej koniec B działa siła P

(fig. 147). W stanie równowagi linie linek po obydwóch stro­
nach bloka muszą spotykać się na linii działania siły Q (34), 
a zatem muszą tworzyć z pionem kąty równe. Niech każdy 
z tych kątów będzie równy a. W takim razie

2Pcosa= Q.
Zyskowność mechaniczna jest więc równa 2 cos a. Jeżeli kąt a 
jest większy od 60°, to zyskowność jest mniejsza od jedności. 
Gdy linki idą równolegle, to 2P= Q.

528. Prz. 1. Na bloku ruchomym, którego sznury idą pionowo, 
wisi ciężar W; utrzymuje go w równowadze inny ciężar P, przywią­
zany do swobodnego końca sznura, przerzuconego przez drugi blok 
stały. Okazać, że przy wszelkich położeniach ciężarów ich środek cięż­
kości zachowuje położenie niezmienne. (Math. Tripos, 1854.)

Prz. 2. W środku ciężkiego ruchomego bloka o promieniu r jest 
umocowany koniec sznura. Sznur ten przechodzi przez gładki kołek, 
następnie idzie pod blokiem i wreszcie przechodzi przez drugi kołek, 
osadzony pionowo nad punktem, w którym sznur opuszcza blok; do 
jego końca swobodnego jest przywiązany ciężar W. Obydwa kołki leżą

5rna jednym poziomie, a odległość pomiędzy nimi wynosi —. Dowieść, 
5w

że blok waży —, i wyznaczyć odległość pierwszego kołka od środka
bloka. (Coli. Exam., 1886.)



— 432 —

Prz. 3. Lekki sznur bez końca przechodzi przez dwa kołki, 
tworząc dwa łuki. Kołki leżą na jednym poziomie; w każdym łuku 
siedzi blok, i jeden z tych bloków jest dwa razy cięższy od drugiego. 
Okazać, że części sznura, styczne do górnego łuku tworzą kąt wię­
kszy od 120°. (Math. Tripos, 1857.)

529. Przyrządy złożone z bloków, czyli wielokrążki, mo­
żna podzielić na dwie klasy: przyrządy, należące do pierwszej, 
zawierają po jednej lince, gdy tymczasem w skład przyrządu 
klasy drugiej wchodzi większa liczba linek odrębnych. Zacznie- 
my od przyrządów klasy pierwszej.

Fig. 148.

Dwie ramki, zawierające jednakowe liczby 
bloków, są ustawione jedna naprzeciwko drugiej. 
Na rysunku w każdej ramce widzimy trzy bloki. 
Sznur przechodzi przez bloki w porządku ADBECF, 
i jeden koniec jego jest przymocowany do jednej 
z ramek. Siła poruszająca P działa na drugi ko­
niec sznura, a ciężar Q na ramkę.

Przypuśćmy, że każda ramka zawiera n blo­
ków, i niech W oznacza ciężar ramki dolnej. Wy­
pada, że 2n naprężeń sznurów równoważy ciężar 
Q+ W. Na całej długości sznura panuje napręże­
nie jednakowe i równe P, a zatem rzuty na kie­
runek pionowy dadzą 2nP^=Q+ W.

Gdyby wszystkie bloki były jednakowe, i środki ich 
leżały na jednym pionie, to sznury zachodziły by jedne 
na drugie. Z tego względu części sznura, idące pomię­
dzy blokami, nie są dokładnie równoległe. Uważając 
sznury za równoległe, popełniamy pewien błąd, który 
jednak bardzo niewiele znaczy wobec innych niedokła­
dności przyrządu (503).

Związek pomiędzy siłą poruszającą i ciężarem daje się 
również wyznaczyć przy pomocy zasady pracy przygotowanej. 
Dajmy na to, że ramka dolna wraz z ciężarem Q otrzymała 
przesunięcie przygotowane q w górę. Oczywiście każdy sznur 
zluzuje się o długość q. Aby sznur się wyprężył, to ciężar P 
musi opaść o q na każdą poszczególną część sznura, czyli musi 
opaść o 2qn. Z zasady pracy wynika, że

P. 2nq = (Q + W)q.

Stąd otrzymamy bezpośrednio związek poprzedzający.
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530. Często przyrząd tego rodzaju posiada budowę odmienną; 
bloki, należące do jednej ramki, siedzą na jednej osi, lecz każdy z nich 
może obracać się niezależnie od pozostałych. I przy tej konstrukcyi 
znaleziony wyżej związek pomiędzy siłą poruszającą i ciężarem nie 
przestaje być słusznym. Jeżeli wszystkie bloki mają jednakowe śre­
dnice, to podczas pracy przyrządu ich szybkości kątowe nie będą ró­
wne. Można jednak i tak skonstruować przyrząd, aby szybkości te były 
jednakowe, do tego potrzeba tylko dobrać odpowiednio średnice blo­
ków, a w takim razie wszystkie bloki jednej ramki mogą być połączo­
ne sztywno, albo wyrobione z jednej sztuki.

Aby urządzenie to zrozumieć przypuśćmy, że dolna ramka pod­
niosła się o centymetr w górę. W takim razie każdy sznur pomiędzy 
ramkami zluzuje się o centymetr. Zwróćmy naprzód uwagę na sznur 
prawy pomiędzy blokami C i F; sznur ten się wypręży, gdy blok F 
obróci się tak, aby po nim przeszedł centymetr sznura. Gdy to nastąpi, 
to lewy sznur pomiędzy tymi samymi blokami zluzuje się o dwa cen­
tymetry, a zatem blok C powinien tak się obrócić, aby przeszły po 
nim dwa centymetry. Tak samo znajdziemy, że po bloku E po­
winny przejść trzy centymetry i t. d. Jeżeli średnice bloków górnych 
mają się do siebie, jak 2:4:6.... a średnice bloków dolnych, jak 1:3:5:..., 
to wszystkie bloki obracają się z jednakowemi szybkościami kąto- 
wemi.

Przyrząd taki działa dobrze, jeżeli budowa jego jest bardzo do­
kładna; przy bardzo nawet drobnych odchyleniach od podanych pro- 
porcyi, sznury wyprężają się niejednakowo. Należy nawet uwzględniać 
grubość linki. Wynalazcą tej modyfikacyi wielokrążka, dzisiaj nieuży­
wanej, był White.

531. Prz. Wielokrążek o jednej lince posiada n bloków. Zna­
leziono, że ze względu na sztywność linki i tarcie o oś do podnie­
sienia ciężaru P potrzebna jest siła poruszająca aP + p, gdy linka 
przechodzi przez jeden blok. Dowieść, że siła poruszająca P utrzyma

a(an— 1) a(an—1) — n (a— 1) 
w zawieszeniu ciężar Q~ 1P+ ( 1)2 Pr 1 znależe, ja- 
ki ciężar dodatkowy trzeba dorzucić do P, aby podnieść Q.

(Math. Tripos, 1884.)
Sztywność lin była przedmiotem badań doświadczalnych Cou- 

lomba (170). Rozważanie doświadczeń jego zajęłoby zbyt wiele miej­
sca, podamy więc tylko w krótkości same wyniki. Dajmy na to, że 
linka ABCD przechodzi przez blok o promieniu r, styka się z nim 
w B i C i porusza się w kierunku ABCD. Aby uwzględnić sztywność 
części AB, która ma właśnie wejść na blok, uważamy, że linka jest 
wiotka, lecz na blok działa para opóźniająca apbT, gdzie T oznacza 
naprężenie; a i b są wielkościami stałemi, zależnemi od natury i roz­
miarów linki, ale niezależnemi wyraźnie od szybkości. Uwzględnimy 
sztywność części CD, która zeszła z bloka, wprowadzając parę a'+b'T', 

Statyka. 28 
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gdzie znowu T' jest naprężeniem w tej części linki. Stałe a' i b' są tak 
znacznie mniejsze od a i b, że drugą poprawkę zazwyczaj się pomija. 

, a+bT 
Biorąc momenty względem środka bloka, otrzymamy T’— T-- •

532. Przy użyciu kilku sznurów, można osiągnąć zysk me­
chaniczny zapomocą różnych kombinacyi bloków. Dwie z nich, 
podawane zazwyczaj w książkach elementarnych, mamy na figu­
rach 149 i 150.

W przyrządzie pierwszym każdy blok wisi na oddzielnej 
lince; jeden koniec tej linki jest przymocowany do punktu nie­
ruchomego, a drugi do bloka następnego. W przyrządzie dru­
gim linka, przechodząca przez blok, jest przymocowana w je­
dnym końcu do ciężaru, a w drugim do bloku następnego. 
Dwa te przyrządy są podobne pod względem rozkładu bloków, 
ale jeden z nich stanowi jakby odwrotność drugiego.

Oznaczmy przez W,, W,, .... ciężary bloków M1, M2^.... 
i przez T1, T2,.... naprężenia linek, które przez nie przechodzą. 
Na figurach 149 i 150 poznaczono bloki tylko wskaźnikami liter 
M,, M... .

Zwróćmy naprzód uwagę na fig. 149. Naprężenie T= P. 
Naprężenia linek po obydwóch stronach bloka M1 równoważą 
ciężar tego bloka i naprężenie T2, a zatem będzie

T,=2T, - w,=2P- w,.

Tak samo znajdziemy dla bloków M2, M,,...
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T,=2T2- W,=22P- 2W1 — iv ^

T, = 2T.- w, = 23 P—22w,—2w,—w,,

i t. d. dla wszystkich bloków pozostałych. Prawa strona każde­
go równania następnego jest oczywiście równa dwa razy wzię­
tej prawej stronie poprzedzającego minus jedno iv. Ostatecznie 
znajdziemy

Q=2Tn—ivn — 2nP—21-1W,—2"—2w,— ... —2w,-1—wn.
Jeżeli wszystkie bloki ważą jednakowo, to

Q^2nP~(2J,— P)iv.
Można łatwo otrzymać związek pomiędzy siłą poruszającą 

i ciężarem przy pomocy zasady pracy przygotowanej. Przypuść­
my, że blok najniższy otrzymał przesunięcie q w górę. Każda 
z linek po obydwóch stronach jego zluzuje się o q, i trzeba 
podnieść o 2q blok następny, aby je wyprężyć na nowo. Tak 
samo znajdziemy, że przesunięcie trzeciego bloka będzie dwa 
razy większe, niż drugiego, a więc wyniesie 22q i t. d. Osta­
tecznie wypadnie, że punkt przyłożenia siły poruszającej pój­
dzie w górę o 2nq. Mnożymy ciężar każdego bloka przez prze­
sunięcie jego; z zasady pracy wypadnie, że

(Q + wn)q + ivn_12q + wn^.2^q+ .... =P.2nq. 
Skróciwszy przez q, znajdziemy związek poprzedni.

533. W przyrządzie, wyobrażonym na figurze 150, naprę­
żenie Tr=P. Naprężenie linki po obydwóch stronach bloka M, 
wraz ciężarem jego równoważą się z naprężeniem T2, a zatem 
będzie T2=271+ wx — 2P+ W, . Prowadząc ten sam rachunek dla 
bloków następnych, będziemy otrzymywali takie same równa­
nia, jak w par. poprzedzającym, jedynie znaki przed w będą 
odwrotne. Tak więc

T, = 2 72 + w, =2P+2w,+ w,
T,=27,+w,=23P +22w,+2w,+w,,

i t. d. W tym razie wszystkie sznury podtrzymują ciężar Q, 
zatem T1+T2+ .... + Tn = Q+ W, gdzie W jest ciężarem sztaby.

Wprowadzając do ostatniego równania wartości naprężeń 
T^ 2, ..., znajdziemy
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Q+ W=(2n— 1)P+(2"—— 1)W1+(2"-2— 1)W,+ .... + Wn-1

W przypadku, gdy ciężary wszystkich bloków są równe, 
wzór ostatni sprowadza się do

Q+ W=(2"—1)(P+w)—niv.

W przyrządzie pierwszym (fig. 149) zyskownośę mecha­
niczna się obniża, gdy wzrastają ciężary bloków, w przyrządzie 
drugim dzieje się odwrotnie; tutaj ciężary bloków pomagają sile 
poruszającej podtrzymywać ciężar Q.

Zastosujemy teraz zasadę pracy przygotowanej. Wyobraź­
my sobie, że sztaba, podtrzymująca ciężar, pozostaje w spokoju, 
a blok najwyższy został przesunięty o q na dół. Każdy ze sznu­
rów po obydwóch stronach jego zluzował się o q-, sznury te 
wyprężą się z powrotem, gdy blok następny przesunie się o 2q 
na dół i t. d. Punkt przyłożenia siły poruszającej opadnie 
o 2nq. Przypuśćmy teraz, że po tern wszystkiem cały układ zo­
stał przesunięty o q w górę, skutkiem czego blok górny po­
wrócił na dawne miejsce (65). Ostatecznie ciężar Q wraz ze 
sztabą ABC podniósł się o q\ bloki, poczynając od najwyższe­
go, opadły odpowiednio o O, (2—1)q,(22—1)q,...., a punkt przy­
łożenia siły poruszającej o (2n—1)q. Z zasady pracy wynika

(Q+ W)q = wn^(2~\}q + wn_^—^q + ••••
.... + w,(2"-1—1)4+ P(2" — l)q.

Dzielimy przez q, i wypada to samo, co poprzednio.

534. Sztaba ABC tylko w takim razie zachowa położenie pozio­
me, jeżeli ciężar Q będzie uczepiony w stosownym punkcie. Działają 
na nią w punktach A, B,.... naprężenia Tx, T2,—., które równoważy 
ciężar Q, działający na pewien punkt H, oraz ciężar własny sztaby W 
w punkcie środkowym G. Przedziały AB, BC,.... zależą od promieni 
bloków, a mianowicie AB—2a2 — al, BC=2a3 — a2 i t. d.; a,, a2,.... ozna- 
czają właśnie te promienie. Bierzemy momenty względem A:

T2. AB+ T3. AC+...^Q . AR+ W. AG.

Równanie to określa położenie punktu H.
Jeżeli niemożna pominąć ciężarów linek lub sznurów, to włącza­

my ciężar części sznura, zawartej pomiędzy Mr i M2 do W,, ciężar 
sznura pomiędzy M2 i M, do W2 i t. d. Ciężary Sznurów, łączących 
punkty A, B, C... z blokami, są na fig. 149 podtrzymywane przez nie­
ruchome punkty A, B, C..., a na fig. 150 mogą być dołączone do cię­
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żaru belki ABC. Wreszcie ciężary sznurów, owijających bloki, przyłą­
czamy do ciężarów tych bloków.

535. Jeżeli ciężary bloków dają się pominąć, i każdy z nich wisi 
na oddzielnej lince, to można z łatwością wyznaczyć związek pomię­
dzy siłą poruszającą P a ciężarem Q i w tym przypadku, gdy sznury 
nie są równoległe.

Niech 201, 20.2, 20,, .... będą kątami, 
które tworzą proste części linek, owija­
jących bloki M1} M2, Ma,.. , a 7, T2, T3,... 
niech oznaczają naprężenia. Rozumując, 
jak poprzednio, znajdziemy, że
T^P, T,=2T coso, T,=2T, cos 0,, i t. d.
Jeżeli przyrząd składa się z n bloków, to 
wypadnie

Q=2"P • cos 01 . cos 0.2... COSO,
536. Prz. 1. W wielokrążku, w którym wszystkie linki są przy­

mocowane do ciężaru Q, ciężar najniższego bloka jest równy sile po­
ruszającej P, następnego 3P i t. d., wreszcie najwyższego bloka rucho­
mego 3"—2P. Dowieść, że stosunek P : O jest równy 2:(3W —1).

(Math. Tripos, 1856.)
Prz. 2. W przyrządzie, wyobrażonym na fig. 149, ciężary bloków, 

poczynając od najwyższego, tworzyły postęp arytmetyczny, i siła po­
ruszająca P równoważyła ciężar Q. Następnie bloki przestawiono w ten 
sposób, że blok najwyższy umieszczono najniżej, drugi od góry zajął 
drugie miejsce od dołu i t. d. Po tych zmianach będzie zachodziła ró­
wnowaga, jeżeli siła P zajmie miejsce Q i odwrotnie. Okazać, że 
n(Q + P}=2W, gdzie W oznacza ciężar ogólny bloków, a n ich liczbę.

(Coli. Exam., 1882.)
Prz. 3. Na wielokrążku, fig. 150, złożonym z n bloków, zawie­

szono ciężar Q, a przytem przeprowadzono koniec sznura, przechodzą­
cego przez blok najniższy, pod jeszcze jednym blokiem ruchomym, 
następnie przez blok stały i wreszcie przywiązano go do ciężaru Q. 
Przy takiem urządzeniu układ zachowuje równowagę bez żadnej siły 
poruszającej. Dowieść, że Q=(3.21—n—1)w, gdzie w oznacza wagę 
jednego bloka; prócz tego znaleźć punkt sztaby, w którym powinien być 
przyczepiony ciężar Q. (Math. Tripos, 1876.)

Prz. 4. Na wielokrążek, wyobrażony na fig. 150, działa siła po­
ruszająca, równa ciężarowi najniższego bloka. W przyrządzie 1ym cię­
żar każdego bloka przewyższa trzykrotnie ciężar następnego niższego; 
okazać, że naprężenie każdego sznura jest równe ciężarowi bloka, który 
ten sznur opasuje. (Coli. Exam.)

Prz. 5. Na przyrządzie, wyobrażonym na fig. 149, zawieszono cię­
żar Q; W,, iv2,—.wn oznaczają ciężary bloków. Dowieść, że przyrząd 
daje zysk mechaniczny tylko w takim razie, gdy
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I-W„+2(I-W,-1) + 22(0- W,-2)+ ■■■■ +2"-1(-w)
jest dodatnie. (Math. Tripos, 1869.)

Prz. 6. Przyrząd, wyobrażony na fig. 151, składa się z dwóch 
lekkich bloków; części sznurów, idące od punktów nieruchomych, są 
równoległe, a siła poruszająca działa poziomo. Dowieść, że zysko- 
wność mechaniczna wynosi V3. (St John’s Coli., 1883.)

Prz. 7. W wielokrążku, fig. 150, siła poruszająca zeszła o centy­
metr na dół; o ile wzniesie się ciężar? (Math. Tripos, 1859.)

Prz. 8. W przyrządzie, wyobrażonym na fig. 150, rozmiary blo­
ków są małe w porównaniu z długościami sznurów; dowieść, że pra­
gnąc uwzględnić w rachunku ciężary sznurów, należy do Q, W, W2 .... W,1 
dodać odpowiednio to, co ważą długości sznura

1,+h,+..+1,—+h, 2(h- I), 2(h,- hi),.... 2(,-- hn_^.
W tern h, h2 .... hn oznaczają wysokości n bloków (ważących odpo­
wiednio W,, w^^^Wn) nad poziomem, na którym końce sznurów są 
przyczepione do ciężaru Q, a h wysokość punktu przyłożenia siły po­
ruszającej nad tym samym poziomem. (Math. Tripos, 1877.)

Prz. 9. Wielokrążek, w którym wszystkie sznury są równoległe, 
i ciężary bloków pomagają sile poruszającej, składa się z n bloków; 
każdy z nich waży w i posiada średnicę 2a. Dowieść, że punkt zawie­
szenia ciężaru Q jest odległy o

2"+12+[(n—3)2"+n + 3]w
n 2 (2n-1)Q a

od linii działania siły poruszającej. (Math. Tripos, 1883.)
Prz. 10. Wielokrążek, zbudowany według fig. 150, składa się 

z czterech bloków; do jednego końca sztaby, dźwigającej ciężar, jest 
przywiązany sznur, na który zwykle działa siła poruszającą, a do dru­
giego sznur czwarty, i wszystkie sznury idą równolegle. Każdy blok 
waży dwa razy więcej i posiada średnicę dwa razy większą niż na­
stępny blok niższy, a ciężar zawieszony na wielokrążku waży 33 razy 
więcej od najniższego bloka. Znaleźć, w którem miejscu sztaby jest 
przyczepiony ciężar. . (Trin. Coli., 1885.)

Prz. 11. Przyrząd, wyobrażony na fig. 149 składa się z n bloków, 
z których każdy waży w. Sznur r-owy, rachując od tego, który prze­
chodzi przez blok najwyższy, może wytrzymać najwyżej naprężenie T. 
Okazać, że największy ciężar, jaki przyrząd taki może unieść, wy­
nosi 2‘—*+1T-(2"—"+1-1)w. (Trin. Coli., 1890.)

Prz. 12. Znaleziono, że do podniesienia ciężaru P(l — 3) potrze­
bna jest conajmniej siła P, działająca na koniec sznura, przerzuconego 
przez blok. W przyrządzie, wyobrażonym na fig. 149, każdy blok waży 
aQ, a ciężar Q jest zaledwo zrównoważony. Okazać, że siłę poruszającą 

n^Q
bez zakłócenia równowagi można powiększyć o ——, jeżeli a i8 są tak 

małe, że ich kwadraty i iloczyny wolno pominąć.
(Coli. Exam., 1888.)
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537. Równia pochyła. Wyznaczyć związek pomiędzy siłą 
poruszającą i ciężarem na równi pochyłej.

Cząsteczka C leży na płaszczy­
źnie AB, tworzącej z poziomem kąt a. 
Normalna CN do płaszczyzny tworzy 
także kąt a z pionem CV. Niech. Q 
będzie ciężarem cząsteczki C, i dajmy 
na to, że na O działa w kierunku CK 
siła P, a kąt NCK = «p. Przypu­
szczamy, że prosta CK leży w pionowej płaszczyźnie VCN.

Jeżeli płaszczyzna jest gładka, to wywiera ona na czą­
steczkę reakcyę Rf działającą wzdłuż normalnej CN. W myśl 
paragrafu 35 będzie

sina sin« sin(« — a) (1).

Reakcya R musi być dodatnia, bo w razie przeciwnym 
cząsteczka odeszłaby od płaszczyzny, a z tego oraz z równań 
powyższych wynika, że « musi być większe od a. Można się 
zresztą o tern przekonać wprost z figury 152. Oczywiście siła P 
tylko w takim razie może zrównoważyć Q i R, gdy jej linia 
działania idzie wewnątrz kąta, który tworzy CV z dalszym cią­
giem NC.

W przypadku, gdy P działa w kierunku AB, P =

i P=Qsin a, R=Qcoso. Jeżeli P działa poziomo, to •=-+a, 

i wówczas P=Q tan a, R=- 
cos a

538. W przypadku, gdy równia jest chropowata, niech p==tan e 
będzie współczynnikiem tarcia. Zatoczmy około normalnej CN, jako osi, 
prosty stożek o kącie wierzchołkowym 2e; będzie to stożek tarcia (173). 
Wewnątrz niego leży reakcya całkowita R', którą płaszczyzna wywiera 
na cząsteczkę. Dajmy na to, że linią działania tej reakcyi jest CH; kąt 
NCH—i zawiera się pomiędzy — e i +e. Za modłę uważamy ten przy­
padek, w którym a jest większe od e, a « większe od każdego z tych 
kątów. Przypadek ten wyobraża fig. 153. Będzie więc

_P_ =__I___ __ R'
sin (a — i) sin‘( — i) sin («—a) (2).

Jeżeli siła P jest tak duża, że cząsteczka ma właśnie zacząć posuwać
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się w górę, to reakcya R‘ działa na CE, a kąt i= — e. Oznaczmy tę war­
tość siły P przez P; w takim razie

Pi _ Q _ R'
sin (a+s)___ sin (P+e)____ sin (p—a)

Gdy siła P jest tak mała, że cząsteczka zaledwo utrzymuje się na równi, 
to reakcya R1 działa na tworzącej CD, a i—s. Oznaczmy przez Pa taką 
wartość siły P; wówczas otrzymamy

P2 _____ Q_ ___ R‘
sin (a—e) sin (P — e) sin (p—a) (4).

Reakcya R' jest dodatnia tylko wtedy, gdy q> a, co wynika tak­
że z figury, bo linia działania siły P, równoważącej R' i Q, musi leżeć 
pomiędzy CV i dalszym ciągiem DC. Tak samo znajdziemy, że nie mo­
żna posunąć cząsteczki w górę, nie odrywając jej od płaszczyzny, je­
żeli kierunek siły, z którą działamy, nie leży pomiędzy CV i dalszym 
ciągiem EC.

Gdy e> o (fig. 154), to cząsteczka pozostanie na równi w spo­
czynku, o ile stanu tego nie zakłóci jakaś siła P. Równanie (3) określa 
wielkość siły, która właśnie wystarcza do przesunięcia cząsteczki w gó­
rę; siła ta musi działać wewnątrz kąta,- który tworzy CV z dalszym 
ciągiem EC. Jeżeli siła ma być ściśle dostateczna do posunięcia czą­
steczki na dół, to musi ona działać pomiędzy CV i przedłużeniem DC; 
określa ją pod względem wielkości równanie (4).

539. Prz. 1. Siła P, działając równolegle do gładkiej równi po- 
chyłej, podtrzymuje ciężar Q i wywiera na równię reakcyę R. Dowieść, 
że ta sama siła, działająca poziomo, podtrzyma ciężar R i wywrze re­
akcyę Q. (Coli. Ex., 1881.)

Prz. 2. Wyznaczyć wielkość i kierunek najmniejszej siły, która 
przesunie cząsteczkę w górę na chropowatej równi pochyłej.

TZ (3) widać, że P1 jest najmniejsze, gdy +8=2, t. j. gdy siła 

jest nachylona do równi pod kątem tarcia.
Prz. 3. Wyznaczyć wielkość i kierunek najmniejszej siły, która 

utrzyma cząsteczkę na chropowatej równi pochyłej.
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Prz. 4. Dana cząsteczka 0 spoczywa na danej gładkiej równi po­
chyłej; podtrzymuje ją siła, działająca w kierunku danym. Równia jest 
nieważka, i jej bok AL może się przesuwać na gładkim poziomym stole. 
Jaką siłę poziomą przyłożyć należy do ściany pionowej BL, aby utrzy­
mać równię w spokoju? Wyznaczyć także punkt przyłożenia ciśnienia 
wypadkowego, które równia wywiera na stół.

Prz. 5. Ciężka cząsteczka jest połączona lekkim drutem z pun­
ktem chropowatej równi pochyłej i może się obracać około tego pun­
ktu w płaszczyźnie równi, a równia tworzy z poziomem kąt

/ u \
arctan---- g)° Wyznaczyć granice kąta 8, który tworzy drut z pozio­

mą na równi w stanie równowagi. (Coli. Exam.)
Prz. 6. Dwie jednakowe cząsteczki leżą na dwóch równiach po­

chyłych; łączy je sznur, położony całkowicie w płaszczyźnie pionowej, 
prostopadłej do prostej przecięcia równi, i przechodzący przez gładki 
kołek, umocowany pionowo nad ową prostą. Cząsteczki są w stanie, 
graniczącym z ruchem, i części sznura tworzą z pionem kąty równe. 
Okazać, że różnica nachyleń równi do poziomu jest równa podwójne­
mu kątowi tarcia. (Math. Tripos, 1878.)

540. Kołowrót. Wyznaczyć zależność pomiędzy siłą poru­
szającą i ciężarem w kołomrocie.

Niech a będzie promieniem wału AB, i c promieniem koła. 
Siła poruszająca P działa na linkę, owijającą kilka razy koło

i przymocowaną na obwodzie; podobnież ciężar Q działa na 
linkę, nawiniętą na wał. Biorąc momenty względem osi wału,

Cotrzymamy Pc=Qa. Zyskowność mechaniczna wynosi —.

Przypuśćmy, ze punkty przyłożenia siły poruszającej i cię­
żaru przejdą odpowiednio drogi p, q, gdy koło obróci się o pe­
wien kąt. Znajdziemy, że

P - c _ 0
q a P’
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541. Gdzie chodzi o dużą zyskowność mechaniczną, tam wypa- 
dłoby zastosować albo bardzo duże koło albo bardzo cienki wał- 
W pierwszym przypadku maszyna byłaby ciężka i niedogodna, w dru­
gim wał byłby prawdopodobnie za słaby dla danego obciążenia. W takich 
razach można stosować urządzenie, wyobrażone na fig. 156. Wał skła­
da się tu z dwóch części niejednakowo grubych, i linka jest nawinięta 
na obydwie. Gdy siła poruszająca opada, to linka podtrzymująca ciężar, 
nawija się na część grubszą wału i odwija z cieńszej. Oznaczmy przez 
a i b promienie tych części. Jeżeli na bloku wisi ciężar Q, to napręże-

Qżenie linki jest równe 2 Biorąc momenty względem osi, otrzymamy

Pc= Q(a—b)
2

. Zyskowność mechaniczna jest równa promieniowi koła 

podzielonemu przez połowę różnicy promieni wału. Możemy, dowolnie 
powiększać zyskowność, czyniąc promienie te dostatecznie blizkimi; 
wytrzymałość maszyny się skutkiem tego nie zmniejszy. Maszyna taka 
zowie się kołowrotem różnicowym.

542. Prz. 1. Linka przechodzi pod blokiem, a końce jej są na­
winięte w odwrotnych kierunkach na dwie części wału o niejednako­
wych średnicach. Obydwie części linki pomiędzy wałem i blokiem są 
równoległe. Jaki ciężar, przyczepiony dó bloku, podniesie człowiek, 
ciągnący pionowo jedną z części linki z siłą P? (Coli. Exam.)

Prz, 2. W kołowrocie różnicowym końce sznura nie są przymo­
cowane do wału, lecz połączone ze sobą; obejmują one drugi blok, 
dźwigający drugi ciężar. Wszystkie części sznura pomiędzy wałem 
i blokami idą pionowo. Wyznaczyć najmniejszą siłę, z którą trzeba 
działać na sznur, aby podnieść ciężar większy. (Math. Tripos)

543. Gdy zarówno siła poruszająca, jak i ciężar, działają na obwo­
dy kół, to koła te mogą siedzieć na jednym wale, ale są w użyciu 
i inne metody łączenia. Jeżeli odległość pomiędzy kołami jest znaczna, 
to łączymy je zapomocą pasa, założonego na obwody. W wielu ra­
zach jedno koło działa na drugie za pośrednictwem zębów, osadzonych 
na obwodach.

544. Koła zębate. Wyznaczyć związek pomiędzy siłą po­
ruszającą i ciężarem w układzie dwóch kół zębatych.

Dajmy na to, że siła poruszająca P i ciężar Q działają na 
obwody kół o promieniach a i b^ osadzonych na osiach A, B 
pary kół zębatych, i niech p, q będą przesunięciami przygo- 
towanemi punktów przyłożenia tych sił. W takim razie Pp— Qq. 
Lecz p = a8, i q = b^2^ gdzie 3, i 32 oznaczają kąty, o które 
obróciły się koła podczas udzielonego przesunięcia, - a zatem 
P_b8

a 9,
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Niezbędny warunek spokojnego biegu całego mechanizmu 
polega na tem, aby stosunek szybkości kątowych kół zębatych 
był wielkością stałą. Można warunkowi temu uczynić zadość, 
nadając odpowiedni kształt zębom. Będziemy uważali, że warunek 
ten został spełniony. Stąd wynika, że i stosunek .2 jest stały.

Podzielmy odległość
środków 
na takie

kół zębatych A, B 
dwie części a, i b1.

aby było A1432 
b, 9,’ i wyobraźmy

sobie dwa koła, 
środków A, B

zatoczone ze 
promieniami

a,, b1. Koła te, zwane podzia- 
łowemi, stykają się w punkcie 
C; szybkości punktów, poło­
żonych na ich obwodach, są 
równe, a zatem koła podzia­
łowe podczas biegu kół zębatych toczą się jedno po drugiem bez 
poślizgu.

P a b
Z poprzednich związków wynika, że Q “ab. Pominęli­

śmy tu pracę, która wychodzi na przezwyciężenie tarcia pomię­
dzy zębami i w łożyskach.

545. Przypuśćmy, że ząb jednego koła styka się z zębem dru­
giego w pewnym punkcie D, i niech EDF będzie wspólną normalną 
do stykających się powierzchni zębów. Punkt D został pominięty na 
figurze, ale oczywiście leży on w pobliżu punktu C- Rozłóżmy szyb­
kość każdego z dwóch punktów, które obecnie są w zetknięciu w D, 
na dwie składowe w kierunku EDF i w kierunku prostopadłym. Oczy­
wiście dwie pierwsze składowe, czyli rzuty szybkości na wspólną nor­
malną, muszą być równe, bo inaczej zęby rozeszłyby się zaraz w na­
stępnej chwili. Jeżeli przeto h, k są odległościami środków A, B od 
EDF, to 0'1h—^2k, a więc stosunek — musi być stały. Często warun- 

k 
kowi temu czyni się zadość w sposób następujący. Zębom nadaje się 
kształt taki, aby normalna w każdym punkcie linii granicznej czyli 
profilu zęba była styczna do pewnego okręgu, zatoczonego ze środka 
koła zębatego. W takim razie podczas biegu kół prosta EDF będzie 

h 
wciąż wspólną styczną do takich dwóch okręgów, a stosunek — bę- 
dzie równy stosunkowi ich promieni.
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Ta metoda kształtowania zębów jest przypisywana powszechnie 
Eulerowi.

Gdy dane są środki A, B kół zębatych i szybkości kątowe, z które- 
mi te mają pracować, to można wykreślać profile zębów w sposób na­
stępujący. Wyznaczamy na AB taki punkt C, aby było AC. 9, = BC.82; 
następnie prowadzimy przez C prostą EOF, która nie powinna odchylać 
się zbytnio od prostopadłej do AB, i ze środków A, B zataczamy koła, 
styczne do ECF. Profile zębów będą rozwijającemi tych kół, i prosta 
ECF będzie wspólną normalną do dwóch profili, stykających się w pun­
kcie D. Gdy koła pracują, to punkt zetknięcia D przesuwa się na pro­
stej ECF.

Przy takiej konstrukcyi zębów koła będą pracowały należycie 
nawet wtedy, gdy odległość pomiędzy środkami A i B ulegnie nie­
wielkiej zmianie. Istotnie po takiem przesunięciu wspólna normalna 
do profili w punkcie zetknięcia pozostanie wciąż styczną do tych sa­
mych kół w ich nowem położeniu. Zmieni się nachylenie prostej ECF 
do AB, ale odległości h i k pozostaną te same, a z tego wynika, że 
i stosunek szybkości kątowych nie ulegnie zmianie.

Są w użyciu i inne formy zębów; wybór zależy od różnych 
względów praktycznych, których tu roztrząsać nie możemy.

546. Prz. 1. Maszyna posiada n osi równoległych. Siła porusza­
jąca i ciężar działają na koła o promieniach a, i bn, osadzone na 
osiach krańcowych, a każde dwie następujące po sobie osi są połą­
czone zapomocą pary kół zębatych; promienie pierwszej pary wyno­
szą odpowiednio b, i a2, drugiej ba i a i t. d. Wyznaczyć stosunek 
ciężaru do siły poruszającej.

Prz. 2. Dwa koła równe i podobne, zaopatrzone w zęby proste 
i wązkie, w kierunkach promieni, ruszają z położenia, w którem dwa 
zęby stykają się według prostej. Dowieść, że zetknięcie pomiędzy zę­
bami będzie istniało bez przerw, jeżeli odległość pomiędzy środkami

2i TC
jest większa od 2acos— lecz mniejsza od 20 cos—, gdzie n oznacza 

liczbę zębów każdego koła, i a promień, mierzony aż do końca zęba.
(Math. T., 1872.)

Prz. 3. Znaleźć zależność pomiędzy siłą poruszającą i ciężarem 
dla jednej pary kół zębatych, nie uciekając się do zasady pracy przy­
gotowanej.

Reakcya B, którą jeden ząb wywiera na drugi, działa na prostej 
EDF. Biorąc z kolei momenty względem A i B otrzymamy Pa = Bh, 
Qb—Bk. Stąd łatwo wyprowadzić szukaną zależność.

547. Klin. Wyznaczyć związek pomiędzy siłą poruszającą 
i ciężarem dla klina.
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Mamy rozsunąć dwa ciała M i N, wciskając pomiędzy nie 
klin ABC. Na fig. 158 ciałami temi są dwie jednakowe paki, 
stojące na podłodze, ale oczywiście mogą to być ciała dowolne.

Przypuszczamy, że klin jest 
równoramienny, i że dwusiecz­
na CN stoi pionowo. Oznaczmy 
przez 20 kąt ACB i przypuśćmy, 
że klin styka się z ciałami M^ N 
w punktach D, E nie nazna­
czonych na rysunku; niech da­
lej R^ R będą reakcyami nor- 
malnemi w tych punktach, a F. F siłami tarcia. Gdy klin ma 
właśnie zacząć się zagłębiać, to F= Rtane, gdzie tane jest współ­
czynnikiem tarcia.'

Dajmy na to, że siła poruszająca P działa na punkt N 
pionowo na dół; siły tarcia działają w kierunkach CA, CB. 
Biorąc rzuty na kierunek pionowy otrzymamy

P=2R(sina+ tan e cos a) 2R sin (a + s) 
cos e

Reakcya całkowita Rr w punkcie D jest wypadkową sił 
R i ^R.

Jeżeli ciało M może się przesuwać jedynie w kierunku 
poziomym, to nie cała reakcya R' jest czynna w wytwarzaniu 
ruchu. Jej składowa pozioma X usiłuje poruszyć ciało M, ale 
składowa pionowa przyciska tylko pakę do podłogi, powiększa­
jąc tarcie graniczne. Znajdziemy, że

> . • Rcos (o.+£)A == R cos a — R tan s . sin a == —---------- .COS 8
, X Z tego wynika, że zyskowmośc mechaniczna p wynosi 

cot (a + e)
2 ’

548. Zyskowność mechaniczna jest tem większa, im mniejszy 
jest kąt a. Istnieje jednak pewna granica, której kąt ten przekraczać nie 
powinien; zbyt ostry klin mógłby być do zamierzonego celu nie dosta­
tecznie wytrzymały.

Jako przykłady klina można wskazać noże, siekiery, dłóta, gwo­
ździe i t. d. Wogóle mówiąc, klin używa się w tych razach, gdy cho­
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dzi o wywarcie wielkiej siły na małej przestrzeni. Siła poruszająca 
bywa najczęściej wytwarzana zapomocą uderzeń.

Nie uważaliśmy za potrzebne rozważać oddzielnie przypadku, 
gdy klin jest gładki; założenie takie tak dalece odbiega od rzeczy­
wistości, że wyniki byłyby pozbawione wszelkiego znaczenia prak­
tycznego.

549. Gdy siła jest wywierana zapomocą uderzeń, które 
wpędzają klin co raz głębiej pomiędzy ciała, to wyznaczenie 
ruchu klina należy do zadań dynamiki. Tu chodzi tylko o zba­
danie warunków równowagi ciała trójkątnego, które tkwi po­
między dwoma innemi ciałami chropowatemi, i na które działa 
siła P.

Jeżeli jednak klin otrzymuje szereg uderzeń, to możemy 
postawić pytanie, co się dzieje w przerwach pomiędzy temi ude­
rzeniami. Jedno z dwojga, albo klin dzięki tarciu tkwi wów­
czas nieruchomo, albo zaczyna powracać do położenia pierwo­
tnego, wypierany przez sprężystość materyałów. Załóżmy, że te 
siły, wypierające klin, dają się wyrazić przez dwie równe re- 
akcye R, R, działające na ściany boczne, i oznaczmy przez Pt 
siłę, niezbędną do utrzymania klina w zajętem położeniu. Tar­
cie współdziała teraz z siłą Pr\ aby ją wyznaczyć należy w ró­
wnaniach równowagi napisać —€ zamiast s, a zatem wypadnie

p _ 2R sin (a — s)
1 cos £

Jeżeli a przewyższa s, to Pi jest dodatnie; znaczy to, że jakaś 
siła jest niezbędna do utrzymania klina w danem położeniu. 
Jeżeli kąt a jest mniejszy od s, to klin siedzi mocno, bo tarcie 
wystarcza aż nadto do utrzymania go na miejscu. Natomiast 
do wyciągnięcia klina niezbędna jest siła równa P1, lecz z od­
wrotnym znakiem. Tak więc klin będzie siedział mocno, albo 
zacznie wychodzić stosownie do tego, czy kąt ACB jest mniej­
szy czy większy od podwójnego kąta tarcia.

Prz. 1. Dowieść, że gdy kąt A lub B (fig. 158) jest mniejszy od 
kąta tarcia, to żadna siła P nie będzie w stanie rozsunąć ciał M, N.

TJeżeli kąt A jest mniejszy od e, to 0+8>, a zatem siła X jest 

ujemna. Również łatwo okazać, że gdy kąt A jest równy e, to całko­
wita reakcya klina na ciało ma kierunek pionowy. Klin wówczas tylko 
przyciska ciało do podłogi.
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Prz. 2. Ciała M, N mają niejednakowe wysokości i są niejedna­
kowo chropowate; w położeniu równowagi linie działania siły P i re- 
akcyi całkowitych R‘, R2‘ zbiegają się w jednym punkcie. Ciała posia­
dają, dajmy na to, takie kształty, że klin musi jednocześnie posuwać 
się po obydwóch; zakładamy dalej, że siła Pi działa prostopadle do 
AB i właśnie wystarcza do utrzymania klina w spokoju. Dowieść, że

_P______ __ R2‘ _ _ Ri‘
sin (2a — Si — e2) cos (a —ej COS (a— 82) 

Okazać prócz tego, że siły tarcia same utrzymują klin w zajętem po­
łożeniu, jeżeli kąt C jest mniejszy od £1+82.

Prz. 3. Wyprowadzić z zasady pracy przygotowanej związek po­
między siłą poziomą X i siłą poruszającą P dla równoramiennego 
klina gładkiego, fig. 158. Rozważyć dwa przypadki: (1) jedno z ciał 
M, N jest nieruchome, (2) obydwa przesuwają się jednakowo, gdy klin 
jest w ruchu.

550. Śruba. Wyznaczyć zależność pomiędzy siłą porusza­
jącą i ciężarem dla śruby.

Wyobraźmy sobie kołowy cylinder AB, którego powierzch­
nię obiega wypukły gwint, i styczne do gwintu tworzą z pła­
szczyzną prostopadłą do osi cylin­
dra stały kąt a. Śruba taka jest 
dopasowana dokładnie do próżne­
go cylindra, na którego powierzchni 
wewnętrznej jest wycięty odpowie­
dni rowek; w rowek ten wchodzi 
gwint śruby. Na figurze nie na­
szkicowano rowków na próżnym 
cylindrze; są one zawarte w mu­
trze EF.

Można łatwo zdać sobie sprawę 
z położenia gwintu na cylindrze przy 
pomocy konstrukcyi następującej. Wy­
cinamy z papieru taki trójkąt prosto­
kątny LMN, aby wysokość jego MN 
była równa wysokości cylindra AB, 

Fig. 159.

aby kąt, który podstawa LM
tworzy z przeciwprostokątną LN, był równy a. Owijamy następnie ten 
trójkąt na cylindrze AB W miarę tego, jak podstawa trójkąta nawija 
się na podstawę cylindra, przeciwprostokątną wytwarza linię, według 
której biegnie gwint śruby.

Dajmy na to, że na koniec dźwigni CD, prostopadle do 
niej, działa siła poruszająca. Oznaczmy długość ramienia AC 
przez a i promień cylindra przez b. Zakładamy, że mutra EF 
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jest nieruchoma; w takim razie punkt B będzie się stopniowo 
przesuwał w miarę tego, jak C obraca się koło AB. Przypuść­
my, że na B działa ciężar Q.

Niech G będzie małym łukiem gwintu, pozostającym w ze­
tknięciu z łukiem rowka takiej samej długości, niech dalej Ba bę­
dzie reakcyą normalną pomiędzy tymi łukami, a [iBa siłą tarcia.

Często śruby posiadają gwinty prostokątne; można uwa­
żać, że gwint taki powstaje, gdy mały prostokąt porusza się 
naokoło cylindra, przyczem jeden bok jego pozostaje wciąż na 
powierzchni cylindra, a płaszczyzna przechodzi przez oś cylin­
dra. Jeżeli gwint ma taką postać, to linia działania reakcyi B 
leży w płaszczyźnie stycznej do cylindra, a kierunek jej tworzy 
z osią cylindra kąt a. W innych śrubach przekrój gwintu by­
wa odmienny, np. trójkątny. W takim razie linia działania re­
akcyi B tworzy z płaszczyzną styczną do cylindra pewien kąt 3. 
Rozkładamy wówczas B na dwie składowe, z których jedna 
przecina oś cylindra pod kątem prostym, a druga leży w pła­
szczyźnie stycznej. Ta druga wynosi Rcoss, a kierunek jej two­
rzy z osią cylindra kąt a. Gwint jest wszędzie jednakowy, a za­
tem 3 jest stałe na całej długości.

Dajmy na to, że siła poruszająca ma właśnie przeważyć; 
w takim razie tarcie działa na przekor tej sile. Biorąc rzuty 
na oś cylindra oraz momenty względem tejże osi, otrzymamy.

Q = ^Bo . coss cos o - ZRo . usin o
Pa=XRs. bcosssin a + ZRs. p.b cos o.

Gdy podzielimy pierwsze z tych równań przez drugie, to wy- 
padnie

Q cos 9 cos a — M. sin a a
P cosSsina+ucoso b

551. Gdy można pominąć tarcie i uważać śrubę za gładką, to 
zakładamy p==0. W takim razie wypadnie, że zyskowność mechaniczna

. acoto . , ,, . . wynosi   . Przypuśćmy, że punkt ruchomy, wędrujący po gwincie, 
b

odbył całkowity obrót naokoło cylindra; jednocześnie przebiegnie on 
w kierunku osi cylindra drogę h, równą odległości pomiędzy skrętami 
gwintu. Odległość ta zatem będzie h=2xbtano. Wyznaczamy stąd tana 
i podstawiamy we wzorze poprzedzającym. Znajdziemy, że zyskowność 

c 
mechaniczna w śrubie gładkiej wynosi —, gdzie c oznacza długość 

okręgu, który zatacza siła poruszająca.
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552. Można z łatwością otrzymać związek pomiędzy siłą 
poruszającą i ciężarem w śrubie gładkiej z zasady pracy przy­
gotowanej. Gdy pod działaniem siły poruszającej ramię AC wy- 
kona obrót całkowity, to śruba oraz ciężar Q przejdą drogę h, 
równą odległości pomiędzy dwoma skrętami gwintu, mierzonej 
w kierunku osi. Jeżeli przeto pomijamy tarcie, i w maszynie 
żadne inne straty pracy nie zachodzą, to Pc=Qh, gdzie c ozna- 
cza długość okręgu, który zatacza P.

Gdy uwzględniamy tarcie pomiędzy gwintem i rowkiem, 
to z par. 550 wypadnie, że skutek użyteczny maszyny wynosi 
Qh cos 9—utana
Pc cos+pcota

Gdy gwint jest prostokątny, to kąt 3 jest zerem, i skutek 
. . . Qh tana . użyteczny wyraża się w prostszej postaci p=.—7 3, gdzie &L C tan (O. —F €) 

oznacza kąt tarcia.
Gdy ciężar Q właśnie bierze górę nad siłą poruszającą, to 

we wzorach powyższych M., lub s, zmienia znak na odwrotny.
553. Prz. 1. Zakończenie gładkiej śruby przesuwa się o 2/3 cala, 

gdy śruba wykonywa 11 obrotów. Jaka siła powinna działać na koniec 
ramienia 18 cali długiego, aby zakończenie wywierało siłę 1000 funtów?

(Trin. Goli., 1884.)
Prz. 2. Mutra śruby z gwintem prostokątnym jest nieruchoma. 

Dowieść, że żadna siła, działająca w kierunku osi, nie obróci śruby 
jeżeli stromość gwintu nie jest większa od kąta tarcia e.

(Coli. Exam., 1878.)
Prz. 3. Gwint śruby chropowatej jest prostokątny; dowieść, że 

tarcie pochłonie najmniejszą ilość pracy, jeżeli stromość śruby będzie 
, I — 2e

równa —4 (St John’s Coli., 1889.)

Prz. 4. Gwint śruby jest kwadratowy o małym przekroju, odległość 
pionowa pomiędzy skrętami wynosi h, i siła poruszająca działa na ra­
mię a. Okazać, że skutek użyteczny maszyny jest największy, jeżeli 

/ tc 8
a=A tan 4 +2): gdzie b oznacza promień śruby, a e kąt tarcia.

(Math. Tripos, 1867.)
Prz. 5. Pionowa śruba chropowata o gwincie prostokątnym 

podtrzymuje ciężar bez pomocy siły poruszającej. Okazać, że gwint 
. . . lcoteskłada się conajmniej z ——— skrętów, gdzie l oznacza długość, a b pro- 

mień cylindra, na którym gwint jest nacięty.

Statyka. 29



PRZYPISEK DO PAR. 126 i 127.

Podajemy tu dowód twierdzeń, zastosowanych w wymie­
nionych paragrafach; dowód ten jest oparty na rzeczach tak 
elementarnych, jak równanie normalnej do stożkowej i równa­
nie prostej, łączącej dwa punkty.

Niech ©, «‘ będą anomaliami ekscentrycznemi punktów 
P, Q stożkowej. Obieramy osi stożkowej za osi współrzędnych; 
w takim razie równania normalnych w owych punktach będą

G_M =a?b2,
COS (P sin P

Stąd znajdziemy rzędną

as by
cos «p‘ sin «‘ = a2—b2.

7 punktu przecięcia. Wypadnie

by
• ©+‘ sin 2

a2 -b2 t — t‘cosF2
sin o sin. . . (1).

Dalej rzędna środka cięciwy PQ będzie
_ b (+
J = o (sin (P + sin P) = bsin COS

a zatem
, 2 . COS2b- 7  sinsin’

P—P
2 ’

+P‘
2

Tworzymy jeszcze

x— cos a

d2—b2 i] „t—P
COS—— COS

równanie cięciwy PQ :

©+‘

2’—’
-1 ■ (2).

y • t + t ©—«+ - % - SI n 1 — — - COS— b 2 2 0 . . . (3).

2

2
Niech teraz p, p' i q oznaczają odpowiednio odległości cię­

ciwy PQ od ognisk i środka stożkowej. Posługując się znanym 
wzorem na odległość punktu od prostej, otrzymamy
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PP
q2

«— «‘COS ‘ e cos (] cos — — — e cos —o— (

cos2 P-P
2

a po prostem przekształceniu wypadnie

Wyjaśniliśmy w tekście, że odpowiednie równanie dla 6 
byłoby niedogodne, gdyż ogniska małej osi są urojone. Dajmy 
na to, że cięciwa PQ przecina osi współrzędnych w punktach 
L i M; z równania (3) znajdziemy, że -

(p—«‘ ©p—cp'
CL _ Cos 12 CM^
a t +«‘ ‘ b . t + P' cos —o— sin —o—

Z (2) wynika teraz bezpośrednio

b2 / \ CL2—a2 + 52 a2 / 6 \ CM2—b2+a2 - 
a2y- CL2 ’ baxh)- CM2 • ()

Drugi z tych związków otrzymujemy z pierwszego, zmieniając 
litery. To są wzory, które stosowaliśmy w par. 126, prz. 3. 
Wprowadzając CM po prawej stronie (1), znajdziemy

CM. 7 _ CL.^
— ab2 =sin Psin P, a2—62=cos COSP • • • (6).

Gdy P i Q się zejdą, to §, 7 staną się współrzędnemi środ­
ka krzywizny w P. Otrzymamy wówczas z (1) znane wzory

bn as , _a—bassin"P‘ a3—ba=cos*® • • ■ (7)

Jeżeli współrzędne x, y środka G cięciwy są dane, to sa­
ma cięciwa jest określona; równanie jej będzie

(4—x)x _(— y)y 
a2 b2

Stąd znajdziemy łatwo odcinki CL i CM, a wówczas z (2) lub 
(5) otrzymamy
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(b2 0 . (xc2 y2)2 xc 2
a2—b2 y J a2 b2 J a2

( a2 6 1 (32 y2)2 y2 
| a2—ba x ja? * 62 j 62

(8)

Niech X, Y będą współrzędnemi punktu przecięcia T stycz­
nych w Pi Q; wówczas mamy

X_Y XX yY. 
x y‘ a2 * b2 ‘ 

gdyż w G biegunowa punktu T przecina prostą, łączącą T ze 
środkiem stożkowej. Wyznaczymy łatwo x, y w funkcyi X, Y, 
i wówczas równania (7) przybiorą postać

1 (a2—b2)(X2—a2) t_ (a2—b2)(Y2~b2)
Y = a2Y2 + b2X2 ‘ X~ a2Y2 + b2X2 * • (6)

Są to równania, które zużytkowaliśmy w par. 127.
Prz. 1. Końce jednorodnego pręta muszą pozostawać na gład­

kim drucie eliptycznym, i pręt jest w równowadze pod działaniem 
środka sił, położonego w środku elipsy; działanie to jest wprost pro- 
porcyonalne do odległości (par. 51). Okazać, że środek ciężkości G albo 

CR2 
leży na jednej z osi, albo odległość jego od środka wynosi------------ , 

(a2 + b2)"a 
gdzie CR jest połową średnicy, przechodzącej przez G; w tym drugim 

CD2 
przypadku połowa długości pręta wynosi----------—, gdzie CD jest śre- 

(n2 + b2)
dnicą sprzężoną z CR. Okazać prócz tego, że styczne w końcach pręta 
tworzą kąt prosty.

Prz. 2. Sznur jest przywiązany w środku pręta, którego końce 
muszą pozostawać na gładkim drucie eliptycznym. Okazać, że jeżeli 
pręt nie jest równoległy do jednej z osi elipsy, i ciągniemy za sznur 
w kierunku prostopadłym do pręta, to równowaga jest niemożliwa.

Prz. 3. Okazać, że w przypadku paraboli równania (5), (8) i. (9) 
przybierają postaci prostsze

AR
n=2y.m

2
-----XY, m

U2 2 Y2
&==2x —AR+m=x H----- I m = — X+------- + m,

m m
gdzie A oznacza wierzchołek, R punkt przecięcia cięciwy z osią, 2m 
latus rectum, a litery pozostałe mają te same znaczenia, co poprzednio.
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Prz. 4. Okazać, że długość L cięciwy w funkcyi odległości ogni­
skowych p, p' wyraża się tak: 

L _2R2/, pjL a V b2‘
a2b2_24(p-P)’

R2
gdzie R oznacza pół średnicy, równoległej do cięciwy.

Prz. 5. Dwie cięciwy stożkowej są równoległe do dwóch śred­
nic sprzężonych i styczne do innej danej stożkowej współogniskowej 
dowieść, że suma długości tych cięciw jest stała.

Prz. 6. Normalne w czterech punktach stożkowej P, Q, R, S 
schodzą się w punkcie (§, ); dowieść, że środki sześciu cięciw, łączą­
cych punkty P, Q, R, S, leżą na stożkowej.

(a?- b2) (a2g2 — b2x2)+a2b2 (Er+y)=0.

Wynika to od razu z (8).
Prz. 7. Ciężki pręt jednorodny spoczywa w gładkiem naczyniu 

elipsoidalnem, którego jedna oś jest pionowa. Dowieść, że pręt musi 
leżeć w jednej z płaszczyzn głównych elipsoidy.

Obieramy osi elipsoidy za osi współrzędnych; w takim razie ró­
wnania normalnych w końcach pręta będą 

a2 b2 c2 a2 b2 c2—(-x)==(-y)=== (4—z), -0-x‘)==(-y‘)==(-z‘). 
x J z x J z

Do równowagi jest rzeczą niezbędną, aby równaniom tym czyniły za­

dość wartości =U9 , =zft. Podstawiając znajdziemy, że — = —, 
2 2 y Z 

jeżeli y, y' lub z, z' nie są zerami. Zakładamy y'=py, z’=pz; wypadnie 
wówczas

— (L- x)=b2 (p — 1)=c2 (p- 1), 202 (t-*)=bal—- = c2 1—-.
x X e p p

Jeżeli b2 nie jest równe c2, to p = 1, a zatem y' — y, z' = z, x‘=x; to by 
znaczyło, że końce pręta leżą w jednym punkcie. Ponieważ jest to nie­
możliwe, przeto y, y' albo z, z’ muszą być zerami, i pręt leży w je­
dnej z płaszczyzn głównych.
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