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Abstract: The analysis of the impact of the star polymer topology on depletion interaction potentials,
depletion forces, and monomer density profiles is carried out analytically using field theory methods
and techniques as well as molecular dynamic simulations. The dimensionless depletion interaction
potentials and the dimensionless depletion forces for a dilute solution of ideal star polymers with
three and five legs (arms) in a Θ–solvent confined in a slit between two parallel walls with repulsive
surfaces and for the case where one of the surfaces is repulsive and the other inert are obtained.
Furthermore, the dimensionless layer monomer density profiles for ideal star polymers with an odd
number ( f̃ = 3, 5) of arms immersed in a dilute solution of big colloidal particles with different
adsorbing or repelling properties in respect of polymers are calculated, bearing in mind the Derjaguin
approximation. Molecular dynamic simulations of a dilute solution of star-shaped polymers in a
good solvent with N = 901 (3 × 300 + 1 -star polymer with three arms) and 1501 (5 × 300 + 1 -star
polymer with five arms) beads accordingly confined in a slit with different boundary conditions
are performed, and the results of the monomer density profiles for the above-mentioned cases are
obtained. The numerical calculation of the radius of gyration for star polymers with f̃ = 3, 5 arms
and the ratio of the perpendicular to parallel components of the radius of gyration with respect
to the wall orientation for the above-mentioned cases is performed. The obtained analytical and
numerical results for star polymers with an odd number ( f̃ = 3, 5) of arms are compared with our
previous results for linear polymers in confined geometries. The acquired results show that a dilute
solution of star polymer chains can be applied in the production of new functional materials, because
the behavior of these solutions is strictly correlated with the topology of polymers and also with
the nature and geometry of confined surfaces. The above-mentioned properties can find extensive
practical application in materials engineering, as well as in biotechnology and medicine for drug and
gene transmission.

Keywords: critical phenomena; soft matter; surface effects; polymers; field theory

1. Introduction

New developments in controlled polymerization techniques have made it possible to
synthesize complex polymer architectures with controlled dimensions and functionality.
One example of such polymers with complex architectures are star polymers, which
belong to the wider class of branched polymers. It is worth mentioning that star polymers
have been synthesized and characterized since 1980. For the past ten years or so, star
polymers and dendritic polymers (dendrimers) have been widely used in biomedical
applications such as drug delivery, tissue engineering, gene delivery, diagnostics, and
antibacterial biomaterials [1]. It is essential to thoroughly comprehend the statistical
and conformation properties of star polymers, since such understanding is connected
with the investigation of micellar and other polymeric surfactant systems [2,3] as well as

Int. J. Mol. Sci. 2024, 25, 9561. https://doi.org/10.3390/ijms25179561 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25179561
https://doi.org/10.3390/ijms25179561
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0147-5422
https://orcid.org/0000-0001-9776-5357
https://doi.org/10.3390/ijms25179561
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25179561?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 9561 2 of 19

networks [4,5]. Additionally, star polymers can be widely applied in the production of
new-generation functional materials and can be used in nano-technology and biomedical
sciences as drug, gene, and siRNA/DNA vectors [1]. Recently, promising results in the
synthesis of immobilized enzymes in organic–inorganic hybrid nanoflowers with greatly
improved catalytic activity and stability were obtained in [6].

It is no wonder that star polymers have been gaining increasing interest, as they
have unique topological structures and attractive physical as well as chemical properties,
such as low viscosity in dilute solutions, enhanced stimulus responsiveness, internal and
peripheral functionality, and encapsulation capability [1]. As it was shown recently [7],
the shape effects of polymer nanoparticles should be taken into consideration when the in
vitro and in vivo behaviors of such particles are discussed. For example, spherical polymer
nanoparticles had longer blood circulation time, higher tumor accumulation, and a greater
ability to extravasate from tumor vessels than cylindrical polymer brushes [7].

Star polymers have a three-dimensional hyperbranched structure and are formed from
linear polymers (star arms) of the same or different molecular weight which radiate out
from a central core. These macromolecules can be classified according to the monomer
composition, chemical structure, sequence distribution of the arms, and molecular nature of
the core [1]. A vast number of star polymer structures can be obtained through controlled
polymerization. In this respect, it is essential to consider star polymer structures with
block copolymers, network–core, and end-functionalized star polymers. In general, the
synthesis of star polymers can be generated by arm (leg)-first, core-first, and grafting-onto
approaches. Each of these methods has a distinct set of advantages and disadvantages,
which have recently been discussed in [1]. It is worth mentioning that the arm-first method
assumes the use of a multifunctional termination agent or a cross-linking of linear polymers
prepared using living-controlled polymerization techniques [1]. Star polymers, due to
their exclusive structure, exhibit some remarkable properties non-existent in simple linear
polymers. On the other hand, it is interesting to analyze the behavior of a dilute solution of
star polymers immersed in confined geometries, like a slit between two parallel walls, or of
star polymers plunged in a solution of colloidal particles of a large but finite size and with
different adsorbing as well as repelling properties with respect to the polymers.

As was mentioned in [8], we can differentiate two cases which generally lead to quali-
tatively different effects during the investigation of microscopic interactions in polymer–
colloid mixtures. One of them leads to the protection of the colloidal particles from
flocculation [9,10], and the other one leads to the depletion effect [11], i.e., when polymers
are expelled from the region between two particles due to entropic reasons. In such a situa-
tion, the depletion interaction potential gives rise to the depletion force between colloidal
particles or nanoparticles and a surface [8]. It can be assumed that the magnitude of the
depletion force depends on the concentration of the polymer solutions, the topology and
effective size of the polymers, the size and shape of the colloidal particles or nanoparticles,
and the separation distance. Improvements in experimental techniques have made it possi-
ble to measure with high accuracy the depletion force between a wall and a single colloidal
particle immersed in a dilute solution of nonionic linear polymers in a good solvent [11–13].

The universal density–force relation proposed some time ago in [14] for the different
cases of a dilute solution of linear polymers in confined geometries as well as for the
case of a semi-dilute solution of free linear polymers in a semi-infinite space containing a
mesoscopic colloidal particle of arbitrary shape was corroborated in [15] and verified using
numerical methods in [16,17] for the case of two repulsive walls.

In a series of our recent papers [18,19], the density–force relation for a dilute solution
of linear ideal and real polymers with the EVI confined in a slit geometry of two parallel
walls with different boundary conditions as well as for the case of a dilute solution of linear
polymers confined in a half space containing a spherical colloidal particle of big radius
was investigated by analogy, as was proposed in [15], and the corresponding universal
amplitude ratio was obtained in the framework of the massive field theory approach
directly in d = 3 dimensions up to the one-loop order. Additionally, the interaction of long,
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flexible, non-adsorbing linear polymers with big and small colloidal particles of mesoscopic
size with different shape was the subject of a series of papers [20,21].

In order to comprehend the significance of the polymers’ topology, we should note
that the investigation of the physical effects arising from the confinement of polymers and
their topology plays an important role in the shaping of individual chromosomes and in
the process of their segregation, as was shown in [22]. The computational investigation
of the good solvent solution properties of knotted rings with minimal crossing number
in the range between mc = 0 and mc = 9 as well as for the case of star polymers with
number of arms in the region between f = 2 and f = 20 were carried out by combining the
MD simulation technique and path-integral calculations in [23]. Furthermore, numerical
calculations performed in [23] suggested that the configurational properties of knotted
rings and star polymers in a good solvent show a similar decrease with increasing minimal
crossing number and number of star polymer arms. Thus, it is very interesting to compare
the analytical results of the statistical properties of ring and star polymers.

In a series of our recent papers [8,24–26], an investigation into the influence of the
topology of ring polymers on the depletion interaction potential and the depletion force was
performed. The obtained results indicate that a dilute solution of ring polymers behaves in
a completely different way than a dilute solution of linear polymers in confined geometries.
The explanation of these results for the depletion interaction potential and the depletion
force can be derived from the assumption that topological effects in this situation start to
play a vital role.

Unfortunately, the analytical understanding of the processes which take place in the
case of immersing a dilute solution of star polymers with an odd number f̃ = 3, 5 of arms
in confined geometries like a slit of two parallel walls or in a solution of colloidal particles
of mesoscopic size with different boundary conditions is still incomplete, and extensive
investigation is required, especially in the context of the dimensionless monomer density
profiles, the depletion interaction potentials, and the depletion forces. Consequently, the
above-mentioned research is a subject of the analytical and numerical investigation in the
present paper. The obtained analytical and numerical results for star polymers with an odd
number f̃ = 3, 5 of arms are compared with our previous results for linear polymers and
ring polymers in confined geometries.

2. The Method
2.1. The Model and the Polymer–Magnet Analogy

In our investigations, we consider a dilute solution of star flexible polymers with
an odd number f̃ = 3, 5 of arms confined in a slit of two parallel walls with repulsive
surfaces as well as the case of walls with mixed surfaces, when one surface is repulsive
and the other is inert. We allow for the exchange of polymer coils between the slit and
the reservoir outside the slit. We consider a sufficiently dilute polymer solution, and thus
the interchain interactions and the overlapping between different polymers and different
arms of star polymers can be neglected, and in accordance with that, it is sufficient to
consider the behavior of a single star polymer with a different number f̃ = 3, 5 of arms
in confined geometry. In general, the behavior of a single ideal star polymer at Θ-solvent
can be described using the model of random walk (RW), and the behavior of a real star
polymer with the excluded volume interaction (EVI) for the temperatures above the Θ—
point can be described using the model of self-avoiding walk (SAW). When the EVI between
monomers becomes relevant, the star polymer coils are less compact than in the case of ideal
star polymers. The situation when the solvent temperature is below the Θ—temperature
corresponds to a poor solvent where polymer coils tend to collapse [27,28].

Bearing in mind the well-known similarity between the statistics of long flexible
polymers and the critical behavior of magnetic systems developed some time ago by de
Gennes [29], we can use powerful field theory methods and techniques for the investigation
of the critical behavior of star polymers. Thus, the scaling properties of long-flexible
polymer chains in the limit of an infinite number of monomers N may be derived from a
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formal n → 0 limit of the field-theoretical ϕ4 O(n)—vector model at its critical point [29].
The value 1/N in this model plays the role of a critical parameter analogous to the reduced
critical temperature τ = T−Tc

Tc
, where Tc is the critical temperature in the magnetic systems.

In order to better understand the meaning of the value 1/N, we can present the connection
of this value with the bulk correlation length ξ. As is known [29], the bulk correlation
length ξ, which behaves near criticality in the magnetic systems, can be expressed as:

ξ ∼ |τ|−ν (1)

On the other hand, in a dilute solution of polymers, scales like the average end-to-end distance:

ξ ∼
√
< R2 > ∼ Nν, (2)

where ν is a critical exponent which, in the case of a dilute polymer solution, corresponds
to a Flory critical exponent. The critical exponent ν equals 1/2 at d = 3 dimensions in the
case of ideal polymers and ν ≈ 0.588 for real polymer chains with the EVI.

Moreover, as it was mentioned earlier by de Gennes [30,31] and Barber et al. [32],
it is possible to observe a formal analogy between the adsorption of polymers on sur-
faces and the critical behavior of a magnet with a free surface. The deviation from the
adsorption threshold (c ∝ (T − Ta)/Ta) when polymers start to adsorb on the surface
(Ta is the adsorption temperature) changes sign at the transition between the adsorbed
(the so-called normal transition, when c < 0) and the non-adsorbed state (ordinary tran-
sition, when c > 0) [33–35]. In accordance with that, the value c, which corresponds to
the adsorption energy divided by kBT (or the surface enhancement constant in the field
theoretical treatment), plays the role of a second critical parameter. Thus, the adsorption
threshold for long-flexible star polymers, where 1/N → 0 and c → 0, corresponds to a
multicritical phenomenon.

When a dilute polymer solution is confined to a slit of two parallel walls, the properties
of the system depend on the ratio L/ξ as was shown in [36], where L is the distance between
two walls.

As it was noticed earlier by de Gennes [29], the partition function Z(x, x′) of a single
linear polymer chain with two ends fixed at x and x′ is connected with the two-point
correlation function G(2)(x, x′) =< ϕ⃗(x)ϕ⃗(x′) > in the framework of the ϕ4 O(n)—vector
model for n-vector field ϕ⃗(x) with the components ϕi(x), i = 1, . . . , n (and x = (r, z)) via
the inverse Laplace transform µ2

0 → L0:

Z(x, x′; N, v0) = ILµ2
0→L0

(< ϕ⃗(x)ϕ⃗(x′) > |n→0) (3)

in the limit, where the number of n components tends to zero and v0 is the bare coupling
constant which characterizes the strength of the EVI in the case of a dilute solution of
real polymers in a good solvent. In the case of a dilute solution of ideal polymers at
Θ—solvent, the bare coupling constant v0 equals zero. The conjugate Laplace variable L0
has the dimension of length squared. Moreover, L0 is proportional to the total number of
monomers N and equals R2

g = R2
x/2 for an ideal linear polymer in the bulk.

On the other hand, the Laplace transformed function G(2)(x, x′) can be expressed as
the n → 0 limit of the functional integral over vector fields ϕ⃗(x) with n components ϕi(x),
i = 1, . . . , n and x = (r, z):

G(2)(x, x′) =
∫

D[ϕ⃗(x)]e−H[ϕ⃗], (4)

with the Landau–Ginzburg–Wilson (LGW) Hamiltonian H(ϕ⃗) describing the system in
a semi-infinite (j = 1) [37] or confined geometry of two parallel walls (j = 1, 2) [36]. The
fundamental two-point correlation function of the free theory corresponding to the effective
LGW Hamiltonian in a mixed momentum-space (p, z) representation is:
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G(2)
ij (p, p′; z, z′) = (2π)d−1δijδ(p + p′) G̃∥(p; z, z′; µ0, c10 , c20 , L) , (5)

where the free Gaussian propagator G̃∥(p; z, z′; µ0, c10 , c20 , L) of the model in p − z repre-
sentation was obtained in one of our previous papers [36].

In the case of a dilute solution of star polymers with a different number f̃ = 3, 5 of
arms in a Θ-solvent immersed in a confined geometry like a slit of two parallel walls, the
respective correlation function should be modified by analogy, as was proposed by [3–5]
for the case of infinite space and semi-infinite space [38], and can be written in the form:

G f̃
st(µ0) =<

n

∑
j1,...j f̃ =1

Ti1,...,i f̃
ϕi1(x0)...ϕ

i f̃ (x0)ϕ
j1(x1) . . . ϕ

j f̃ (x f̃ ) >
Hst [ϕ⃗]
n→0 , (6)

where the average < ... > in Equation (6) is understood with respect to the Hamiltonian
Hst[ϕ⃗] of the system:

Hst[ϕ⃗] =
f̃

∑
a=1

∫
ddx
{

1
2
(
∇ϕ⃗a

)2
+

µ2
0,a

2
ϕ⃗a

2
}

+
f̃

∑
a=1

2

∑
j=1

cj0,a

2

∫
dd−1rϕ⃗a

2
, (7)

where µ2
0,a is the so-called “bare mass” in field-theoretical treatment, which, in the case of a

magnet, corresponds to the reduced temperature:

µ2
0,a − µ2

0c,a ∼ τ, (8)

where µ2
0c,a is its critical value. The vector fields ϕ⃗a, a = 1, . . . , f̃ have n components ϕi

a,
i = 1, . . . , n. The correspondent partition function for the star polymer can be obtained via
the inverse Laplace transform of the correlation function in Equation (6) by analogy, as was
mentioned in [3–5] for infinite space and in [38] for semi-infinite space.

We consider a dilute solution of star polymers with an odd number f̃ = 3, 5 of arms
immersed into a slit of two parallel walls and take into account that in field theory, the star
vertex is related to the local composite operator (see [39]) appearing in Equation (6):

(ϕ)
f̃
st(x) = Ti1,...,i f̃

ϕi1(x) . . . ϕ
i f̃ (x), (9)

where Ti1,...,i f̃
is a traceless symmetric SO(n) tensor satisfying the condition:

n

∑
i=1

Ti,i,i3,...,i f̃
= 0. (10)

In our consideration, we assume that the walls in a slit are located at the distance L
one from another in the z-direction such that the surface of the bottom wall is located at
z = 0 and the surface of the upper wall is located at z = L. The surfaces of the system are
characterized by a certain surface enhancement constant cj0,a, where j = 1, 2, and a can
change from a = 1 up to a = f̃ .

The interaction between star polymers with a different number of arms f̃ = 3, 5 and
the surfaces of the walls is implemented by different boundary conditions. In the case of
two walls with repulsive surfaces, the Dirichlet–Dirichlet boundary conditions (D-D b.c.)
can be written in the form:

ϕ⃗a(r, 0) = ϕ⃗a(r, L) = 0 or c1 → +∞, c2 → +∞, (11)
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and for the mixed case of one repulsive and the other one inert surface, the Dirichlet–
Neumann boundary conditions(D-N b.c.) are:

ϕ⃗a(r, 0) = 0,
∂ϕ⃗a(r, z)

∂z
|z=L = 0 or c1 → +∞, c2 = 0. (12)

The most common parameter to denote the polymer chain size that is observable
in experiments is the radius of gyration Rg. For example, for linear polymer chains:

< R2
g >= χ2

d
<R2

x>
2 , where χd is a universal numerical prefactor depending on the dimen-

sionality d of the system (see Refs. [35,40,41]) and Rx is the projection of the end to end
distance R onto the direction of the x axis. In the case of ideal polymers, one has χ2

d = d
3 .

Moreover, the mean square radius of gyration Rg, f̃ for star polymer chains is [42]:

< R2
g, f̃ >=

Nl2

6 f̃
(3 − 2

f̃
), (13)

and can be rewritten for f̃ = 3, 5 arms in the form, respectively:

< R2
g, f̃=3 >→ 7

18
< R2

x >, (14)

< R2
g, f̃=5 >→ 13

50
< R2

x >, (15)

where l is the monomer size. Taking into account the Derjaguin approximation [43] offers us
the possibility to investigate the interaction of star polymers with big mesoscopic colloidal
particles and show how methods of field theory with boundaries [34,36,37] allow us to
explain basic properties of polymer–colloid mixtures and polymer-induced interactions
between the particles. In the case of ideal chains, integrating out the polymer degrees of
freedom is a nontrivial task in the presence of the colloidal particles, as was mentioned
some time ago by Eisenriegler [44]. Moreover, the application of field theory methods
and techniques is very useful for the investigation of the behavior of a dilute solution of
star polymers with an odd number f̃ = 3, 5 of arms at Θ temperature where coil–globule
transition takes place and in the case of a good solvent in confined geometries of two
parallel walls with different adsorbing or repelling properties in respect to the polymers.

2.2. Thermodynamic Description

We consider a situation when a dilute solution of ideal star polymers with an odd
number f̃ = 3, 5 of arms in a slit is in equilibrium contact with an equivalent solution
in the reservoir outside the slit. In the present investigation of a dilute solution of star
polymers, we modify the thermodynamic description previously proposed for the case of
linear polymers in [36,45] .

As was shown in [45], the free energy of the interaction between the walls in a grand
canonical ensemble is defined as the difference of the free energy of an ensemble where
the separation of the walls is fixed at a finite distance L and where the walls are separated
infinitely far from each other:

δFf̃ = −kBT Ñ ln

(
Z f̃ ,∥(L)

Z f̃ ,∥(L → ∞)

)
= −kBT Ñ

{
ln

(
Z f̃ ,∥(L)

Z

)
− ln

(
Z f̃ ,∥(L → ∞)

Z

)}
, (16)

where Ñ is the total amount of star polymers in the solution and T is the temperature. It
should be mentioned that here the value Z f̃ ,∥(L) is the partition function of one star polymer
located in volume V containing two walls at a distance L. In the case of star polymers with
an odd number f̃ = 3, 5 of arms, all equations for the correspondent partition functions,
the free energy, the depletion interaction potentials, and the depletion forces should be
modified because we have to do with polymers where a different number of arms are
connected in the core. For the sake of convenience, we renormalized the partition functions
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Z f̃ ,∥(L) and Z f̃ ,∥(L → ∞) on the function Z = VẐb, where Ẑb = IL
µ2

0L2−>
7R2

x
18L2

[ 1
µ6

0L6 ] for a

star polymer with f̃ = 3 arms and Ẑb = IL
µ2

0L2−>
13R2

x
50L2

[ 1
µ10

0 L10 ] for a star with f̃ = 5 arms in

order to obtain dimensionless expressions for the respective scaling functions. As in [36,45],
we split the total volume of the system V into two independent subsystems inside (Vi) and
outside (Vo) the slit.

The respective reduced free energy of interaction δ f f̃ per unit area A = 1 for the case
of star polymers confined in a slit of two parallel walls can be obtained. After performing
Fourier transform in the direction parallel to the surfaces and integration over dd−1r in
Equation (16), the functions Ẑi, f̃ and ẐHSi , f̃ depend only on the z-coordinates perpendicular
to the walls and we obtain:

δ f f̃ =
δFf̃

nBkBT
=

L −
∫ L

0
dz

Ẑi, f̃ (z)

Ẑb
+
∫ ∞

0
dz

(
ẐHS1, f̃ (z)

Ẑb
− 1

)
+

∫ ∞

0
dz

(
ẐHS2, f̃ (z)

Ẑb
− 1

)
. (17)

The value nB = Ñ/V is the number density of polymer chains in the bulk solution,
the function Ẑi, f̃ (z) denoting the partition function of star polymers inside the slit, and

ẐHSi, f̃
(z) with i = 1, 2 denotes the correspondent partition functions of the star polymer in

a half space.
The reduced free energy of interaction δ f f̃ , according to Equation (17), is a function

of the dimension of length. Dividing it by another relevant length scale, for example, the
size of the chain in bulk, e.g., Rx, yields a universal dimensionless scaling function of the
depletion interaction potential:

Θ f̃ (y) =
δ f f̃

Rx
, (18)

where y = L/Rx is a dimensionless scaling variable. The resulting scaling function of the
depletion force between two walls induced by the polymer solution is denoted as:

Γ f̃ (y) = −
d(δ f f̃ )

dL
= −

dΘ f̃ (y)

dy
. (19)

According to Equations (16) and (17), in the thermodynamic limit Ñ, V → ∞, the total
grand canonical free energy Ω f̃ of the polymer solution of star polymers within the slit is:

Ω f̃ = −nB kB T A Lω f̃ (20)

with

ω f̃ =
1
L

∫ L

0
dz

Ẑi, f̃ (z)

Ẑb
. (21)

Taking into account Equations (17) and (20), we can write for unit surface area A = 1:

Ω f̃

nBkBT
= fb L + fs1, f̃ + fs2, f̃ + δ f f̃ , (22)

with the reduced bulk free energy per unit volume fb = −1 and the reduced surface free
energy per unit area

fsi , f̃ =
∫ ∞

0
dz

(
1 −

ẐHSi , f̃ (z)

Ẑb

)
. (23)
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3. Results
3.1. Results of the Depletion Interaction Potentials and the Depletion Force Calculations for Star
Polymers with an Odd Number f̃ = 3, 5 of Arms

Let us consider at the beginning the case of a dilute solution of star polymer chains
with an odd number f̃ = 3, 5 of arms under a Θ-solvent condition trapped in the slit of two
parallel repulsive walls situated at a distance L one from another. After the introduction of
the respective modifications of the calculation scheme proposed for linear polymers in [36],
for the case of star polymer chains with an odd number f̃ = 3, 5 of arms, we obtain the re-
sults for the dimensionless depletion interaction potentials and the dimensionless depletion
forces. Taking into account the above-mentioned arguments of calculation, the free energy
of the system, the respective partition function Z f̃ ,∥(L) of a dilute solution of star polymers

with an odd number f̃ = 3, 5 of arms immersed in a slit of two parallel walls at a distance
L should be normalized on the partition function Z of one star polymer with the respective
number of arms in the same volume V without walls, as was mentioned above. This offers
us the possibility to obtain according to Equation (18) the results for the dimensionless
depletion interaction potentials Θ(DD)

f̃
(y) of a dilute solution of star polymers with three

and five arms inside a slit with two repulsive walls, which are, respectively:

Θ(DD)

f̃=3
(y) ≈ −

√
14
π

y2(
4
5

e−
9

14 y2 − 36
7

e−
18
7 y2

+ . . . ), (24)

Θ(DD)

f̃=5
(y) ≈ −

√
26
π

y2(
2350
351

e−
25
26 y2 − 25720

351
e−

50
13 y2

+ . . . ), (25)

where y = L
Rx

.
We can compare the results obtained in Equations (24) and (25) for an odd number of

arms with the results previously obtained in [8] for a star polymer with an even number of
arms f̃ = 4.

Taking into account Equation (19) in Section 2, the dimensionless depletion forces
Γ(DD)

f̃
(y) for star polymer chains with three and five arms immersed in the slit with D-D

b.c. are obtained:

Γ(DD)

f̃=3
(y) ≈

√
14
π

ye−
9
14 y2

(
8
5
− 36

35
y2)−√

14
π

ye−
18
7 y2

(
72
7

− 1296
49

y2) + . . . , (26)

Γ(DD)

f̃=5
(y) ≈

√
26
π

ye−
25
26 y2

(13.39 − 12.88y2)−√
26
π

ye−
50
13 y2

(146.55 − 563.66y2) + . . . . (27)

We can compare the results obtained in Equations (26) and (27) for an odd number of arms
with the results for a star polymer with an even number of arms f̃ = 4, obtained in our
previous paper [8].

The results obtained in Equations (24) and (25) for the dimensionless depletion in-
teraction potentials Θ(DD)

f̃
(y), as well as the results obtained in Equations (26) and (27)

for the dimensionless depletion forces Γ(DD)

f̃
(y) for ideal star polymer chains with an

odd number f̃ = 3, 5, of arms immersed between two repulsive walls are presented in
Figure 1a and Figure 1b, respectively.
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Figure 1. (a) The comparison of the obtained results for the dimensionless depletion interaction
potentials of star polymer chains with a different number of arms f̃ immersed in a slit with D-D b.c.
and the results for linear [36] and ring [8,25] polymer chains. (b) The comparison of the obtained
results for the dimensionless depletion forces of star polymer chains with a number of arms f̃
immersed in a slit with D-D b.c. and the results for linear [36] and ring [8,25] polymer chains.

Now, we proceed to the case of a dilute solution of ideal star polymers with an odd
number f̃ = 3, 5 of arms immersed inside a slit with mixed boundary conditions (D-N
b.c.). Following the above mentioned scheme, for the case of the dimensionless depletion
interaction potentials, in this case, we obtain the following results:

Θ(DN)

f̃=3
(y) ≈ −8

5
y2

√
14
π

e−
18
7 y2

+ . . . , (28)

Θ(DN)

f̃=5
(y) ≈ −24.06y2

√
26
π

e−
50
13 y2

+ . . . (29)

which we can compare with the results for a star polymer with an even number of arms
f̃ = 4, obtained in our previous paper [8].

The dimensionless depletion force Γ(DN)

f̃
(y) for star polymers with three and five arms

in the slit with mixed boundary conditions (D-N b.c.) are, respectively,

Γ(DN)

f̃=3
(y) ≈

√
14
π

ye−
18
7 y2

(
16
5

− 288
35

y2 + . . . ), (30)

Γ(DN)

f̃=5
(y) ≈

√
26
π

ye−
50
13 y2

(48.12 − 185.09y2 + . . . ). (31)

The results obtained in Equations (28) and (29) for the dimensionless depletion in-
teraction potentials Θ(DN)

f̃
(y), as well as the results obtained in Equations (30) and (31)

for the dimensionless depletion forces Γ(DN)

f̃
(y) for ideal star polymer chains with an odd

number f̃ = 3, 5 of arms immersed in the slit with mixed boundary conditions (D-N b.c.)
are presented in Figure 2a and Figure 2b, respectively.

To understand the influence of polymer chain topology on the depletion interaction
potentials and the depletion forces, Figures 1 and 2 also present results for ideal linear [36]
and ring polymer chains [25]. As is possible to see from Figures 1b and 2b, the depletion
force in the case of D-D b.c. has a greater absolute value than in the case of D-N b.c. for
all types of star polymer chains and a greater absolute value than the respective forces for
linear and ring polymer chains with 01 topology, where the standard notation Cp [46] was
used. The dimensionless depletion force for star polymers with an odd and even number
arms in the case of D-N b.c. demonstrates the opposite behavior to the depletion force for
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ring polymer chains and is repulsive. As is possible to see from Figures 1b and 2b, the
absolute value of the depletion force increases when the number of arms increases.
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Figure 2. (a) The comparison of the obtained results for the dimensionless depletion interaction
potentials of star polymer chains with a different number of arms f̃ immersed in a slit with D-N b.c.
and the results for linear [36] and ring polymer [8,25] chains. (b) The comparison of the obtained
results for the dimensionless depletion forces of star polymer chains with a number of arms f̃
immersed in a slit with D-N b.c. and the results for linear [36] and ring polymer [8,25] chains.

3.2. The Layer Monomer Density for Star-Shaped Polymers

We performed an investigation into the layer monomer densities of star polymers
ρλ, f̃ (z̃) defined by:

ρλ, f̃ (z̃)dz̃ =
(2Rg, f̃ )

1/ν

N
dNλ, f̃ (z̃), (32)

where the value dNλ, f̃ (z̃) means the number of monomers in the layer between z̃ and z̃+ dz̃,
and ν is a Flory critical exponent, as was mentioned in Section 2 above.

In general, the layer monomer densities ρλ, f̃ (z̃) can be obtained from monomer density
ρ f̃ (r̃, z̃) after integration over the d − 1 components parallel to the wall. It should be men-

tioned that the scaling dimensions of ρ f̃ (r̃, z̃) is l1/ν−d and equals the ordinary dimensions
of the quantity:

Ψa(x̃) =
(2Rg)1/ν

2L0
Φ2

a(x̃), (33)

where Φ2
a(x̃) are the insertions of the operators connected with source terms, which are

added to the Hamiltonian Hst in Equation (7) and appear in the corresponding generation
and correlation functions (see [37]).

The layer monomer densities of a single star polymer chain trapped inside a slit of
two parallel walls can be obtained by analogy, as was proposed for linear polymer chains
in [15], and can be written in the following form:

< ρ f̃ (x̃) >=
ILµ2

0→L′
0

∑
f̃
a=1 < Ψa(x̃) · ϕ⃗a(x)ϕ⃗a(x′) >ww

ILµ2
0→L′

0
∑

f̃
a=1 < ϕ⃗a(x)ϕ⃗a(x′) >ww

(34)

in the limit n → 0. The average <>ww in Equation (34) denotes a statistical average for a
Ginzburg–Landau field theory inside a slit between two walls. The dot in Equation (34)
means the usual cumulant average and IL is the inverse Laplace transform µ2

0 → L′
0,

where the value L′
0 determines the number of monomers of the corresponding star polymer

such that L′
0 equals R2

g, f̃
for an ideal star polymer with the respective number of arms in

the bulk.
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According to the normalization condition:
∫

ddx̃ < ρ f̃ (x̃) >= (2Rg, f̃ )
1/ν the property:

∫ L

0
dz̃
∫

dd−1 r̃ILµ2
0→L′

0

f̃

∑
a=1

< Ψa(r̃, z̃) · ϕ⃗a(x)ϕ⃗a(x′) >ww =

(2Rg, f̃ )
1/νILµ2

0→L′
0

f̃

∑
a=1

< ϕ⃗a(x)ϕ⃗a(x′) >ww, (35)

takes place.
Near the repulsive wall with Dirichlet b.c. (D b.c.), the short-distance expansion of Φ2

a
can be used [15,35,47,48], which in the present case has the form:

Ψa(r̃, z̃) → Bz̃1/ν [Φa,⊥(r̃)]2

2
, (36)

for distances l ≪ z̃. The surface operator [Φa,⊥(r̃)]2

2 with Φa,⊥ = ∂Φa(r̃,z̃)
∂z̃ |z̃=0 is the compo-

nent of the stress tensor perpendicular to the walls. Taking into account the correspondent
shift identity [34,35,49] in the case of a slit of two parallel walls situated at a distance L
from each other, for the layer monomer densities ρλ, f̃ (z̃) of star polymers in accordance
with Equations (34) and (36), the universal density force relation can be obtained for the
region l ≪ z̃ ≪ Rg, f̃ and can be presented in a form similar to the case of linear polymer
chains [15]:

< ρλ, f̃ (z̃) >= Bz̃1/ν
f f̃

kBT
, (37)

where

f f̃

kBT
=

d
dL

ln[ILµ2
0→L′

0

∫
ddx

∫
ddx′

f̃

∑
a=1

< ϕ⃗a(x)ϕ⃗a(x′) >ww] (38)

is the force per area that the star polymer exerts on the walls inside the slit.

As is known [15,35], the resulting force per area
f f̃

kBT exerted on the surfaces of a
confining slit by the polymer chain has the opposite sign to the depletion force Γ f̃ (y) in
Equation (19). The calculation of the force per area that the star polymer exerts on the walls

inside the slit
f f̃

kBT in Equation (38) is connected with the calculation of the contribution of
ω f̃ (see Equation (21)) to the total grand canonical free energy Ω f̃ in Equation (20).

The universal amplitude B is identified via scaling relations for the monomer density
and force and can be written in the form: B = limx→0x−1/νX(x, y)/Y(y), where X and Y
are universal functions.

Taking into account the Derjaguin approximation [43], we performed the calculation of
the layer monomer density profiles in the case when we have a dilute polymer solution of
star polymers with an odd number f̃ = 3, 5 of arms immersed in a solution of big colloidal
particles with different adsorbing or repelling properties in respect to the star polymers,
and compared them with the results for an even number of arms with f̃ = 4, obtained
in [8] and the results for linear [36] and ring polymers [8,25]. Moreover, we discussed two
cases of immersing a dilute solution of star polymers in confined geometries: (1) between a
wall and a big colloidal particle and (2) between two big colloidal particles with D-D b.c.
and D-N b.c., respectively.

The Derjaguin approximation [43], which describes the sphere by a superposition of
fringes with a local distance from the wall L(r∥) = ã + r2

∥/(2R), can be applied in the case
of a spherical mesoscopic colloidal particle with radius R much larger than the distance
of its closest point ”ã” to the surface and much larger than the radius of gyration Rg, f̃
of the star polymer. Immersing the big spherical colloidal particle in a dilute solution of
star polymers confined in a semi-infinite space changes the force exerted on the wall by
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the value ∆ f f̃ , where the index f̃ corresponds to the number of arms in the star polymer.
The depletion interaction of the particle with the wall can be obtained as the difference
between the forces with and without the particle. The above-mentioned arguments and
the universal density force relation in Equation (37) allow us to obtain the expression for
the layer monomer density profiles of a dilute solution of star polymers with a different
number of arms in a semi-infinite geometry containing a spherical particle of big radius in
the form:

< ρλ, f̃ (z̃) >wp= Bz̃1/ν(
∆ f f̃

kBT
+ nB), (39)

by analogy, as was proposed for the case of linear polymer chains in [18,19]. Here,
nB = Ñ/V is the number density of polymer chains in the bulk solution and Ñ is the
total amount of star polymers in the solution. The depletion interaction potential for a
dilute solution of star polymers between the particle and the wall can be obtained according
to [18,36] in the form:

ϕdepl, f̃ (ã)

nBkBT
= 2πRR2

x

∫ ∞

ã
Rx

dyΘ f̃ (y), (40)

and it allows us to calculate the contribution to the force per area that the star polymer
exerts on the surfaces of the particle and the wall (or on the surfaces of two particles):

∆ f f̃ = dϕdepl, f̃ (ã)/dã. (41)

In the case when we consider a dilute solution of star polymers between a wall and a big
colloidal particle, the value R corresponds to the radius R = R̃ of the particle. In the case
when we have two big colloidal particles, we have R = R1R2

R1+R2
with R1 ̸= R2. Θ f̃ (y) in

Equation (40) is the dimensionless scaling function of the free energy of a dilute solution of
star polymers confined in a slit, which was obtained in the previous section. Taking into

account the above-mentioned arguments, we can write the results for the force
∆ f f̃

nBkBT in the
case of star polymers with an odd number f̃ = 3, 5 of arms and compare them with the
results for f̃ = 4 arms [8]. Thus, in the case when the surface of a big colloidal particle and
the surface of the confining wall (or two colloidal particles) are at the D-D b.c., we obtain

the following results for the force
∆ f (DD)

f̃
nBkBT with an odd number of arms:

∆ f (DD)

f̃=3

nBkBT
≈

√
14πRRx

ã2

R2
x
(

8
5

e
− 9

14
ã2

R2
x − 72

7
e
− 18

7
ã2

R2
x ), (42)

∆ f (DD)

f̃=5

nBkBT
≈

√
26πRRx

ã2

R2
x
(13.39e

− 25
26

ã2

R2
x − 146.55e

− 50
13

ã2

R2
x ). (43)

Moreover, in the case of mixed walls with D-N b.c., we obtain for the force
∆ f (DN)

f̃
nBkBT with

an odd number of arms the following results:

∆ f (DN)

f̃=3

nBkBT
≈ 16

5

√
14πRRx

ã2

R2
x

e
− 18

7
ã2

R2
x , (44)

∆ f (DN)

f̃=5

nBkBT
≈ 48.12

√
26πRRx

ã2

R2
x

e
− 50

13
ã2

R2
x . (45)

Taking into account Equation (40) and the results presented in Figures 1a and 2a for
the dimensionless depletion interaction potentials, we can see that the absolute value of the
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dimensionless depletion interaction potentials of star polymers increase when the number
of arms of the star polymers increases. The absolute value of the dimensionless depletion
interaction potentials in the case when the particle and the wall are repulsive in respect to
polymer (the case of D-D b.c.) is definitely greater than in the case when the particle and
the wall have mixed boundary conditions (the case of D-N b.c.). Such behavior is observed
for all numbers of arms in star polymers.

The results of calculations for the layer monomer density profiles of a dilute solution
of star polymers with a different number of legs f̃ immersed between a particle and a wall
in the case of D-D b.c. and D-N b.c. according to Equation (39) and Equations (42) and (43)
and Equations (44) and (45) are presented in Figure 3a and Figure 3b, respectively.
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Figure 3. (a) The layer monomer density profiles of a dilute solution of star polymers with a different
number of legs f̃ immersed between a particle and a wall in the case of D-D b.c. with L = 50[l],
R = 20[l], and ã = 0.015[l]. (b) The layer monomer density profiles of a dilute solution of star
polymers with a different number of legs f̃ immersed between a particle and a wall in the case of
D-N b.c. with L = 50[l], R = 10[l], and ã = 1.3[l].

As is possible to see from Equations (39)–(41) and (13), the layer monomer densities
depend not only on Rg, f̃ , but also on the size of the mesoscopic particle R and its dis-
tance z̃ from the wall. The results of calculations for the layer monomer density profiles
< ρλ, f̃ (z̃) >wp (Equations (39)–(41)) of a dilute solution of star polymers with a different
number of arms in a semi-infinite geometry containing a particle of big radius in the case
of D-D b.c. (see Equations (42) and (43)), and D-N b.c. (see Equations (44) and (45)) are
presented in Figure 3a and Figure 3b, respectively. As is possible to see from Figure 3a, the
maximum of the layer monomer density profiles is in the middle of the distance between
the particle and the wall in the case of D-D b.c. For distances z∗ = z̃/L bigger than half
of the distance between particle and wall (z∗ > 0.5), the layer monomer density profiles
symmetrically decrease to zero. Moreover, increasing the star polymer complexity of the
structure leads to a reduction in the layer monomer density profiles value at the D-D b.c. In
the case of D-N b.c., the maximum of the layer monomer density profiles is observed at the
wall where the adsorption threshold takes place (see Figure 3b). In this case, star polymers
with a more complicated topological structure have higher values of the layer monomer
density profiles at the wall where the adsorption threshold takes place.

We can see that in the case when we have two particles of the same size, the respective
contribution to the layer monomer density profiles < ρλ, f̃ (z̃) >wp from immersing the
particles becomes twice smaller than in the case when we have one particle near the wall.

3.3. Results of Molecular Dynamic Simulations of Linear, Ring, and Star-Shaped Polymers in a Slit

We performed molecular dynamics simulations of star polymers with an odd number
of arms modifying the software that we wrote in C++ previously [8]. Polymers with
three and five arms were built of 901 and 1501 monomers, respectively (central monomer
and an appropriate number of arms, each containing 300 particles). The attractive and
repulsive interactions of the neighboring monomers in a polymer chain were modeled
using the finite extensible nonlinear elastic (FENE) and the Weeks–Chandler–Andersen
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(WCA) potentials, respectively. Potential was chosen to preserve the topologies of polymers,
as it has one minimum and for r → ∞ potential U(r) → ∞. Non-neighboring monomers
interacted by the 12–6 Lennard–Jones potential. We used the Verlet integration algorithm
with ∆t = 0.005. In order to keep the temperature constant in the NVT ensemble, we used
the velocity scaling thermostat, which was applied during the integration scheme. We set
temperature T to 1.

The monomer–wall interaction with two walls at a distance L from one to another is
given by the 9–3 Lennard–Jones potential with a cut-off [50]:

ULJ9−3(r) =
3
√

3
2

ϵ

[(σ

r

)9
−
(σ

r

)3
]

. (46)

We assumed ϵ = 1 and σ = 1. The cut-off of the monomer–monomer potential depends
on the boundary conditions. The potential cut-off was set to either Rcut−o f f = 31/6 for a
repulsive wall and Rcut−o f f = 10 for an attractive one.

As was mentioned above, the monomer–monomer potential is composed of FENE
(attractive part) and WCA (repulsive part).
The FENE potential [51] is given by:

UFENE(r) =

{
−ϵ if r < 21/6σ,
4ϵ
[(

σ
r
)12 −

(
σ
r
)6
]

if r ≥ 21/6σ.
(47)

We assumed ϵ = 1 and σ = 1. For the repulsive part, we used:

UWCA(r) =

 − 1
2 kR2

0 ln
[

1 −
(

r
R0

)2
]

if r < R0,

+∞ if r ≥ R0.
(48)

We assumed k = 30 and R0 = 3/2. The cut-off of the repulsive part of the monomer–
monomer potential is equal to Rcut−o f f = 21/6.

As the first task, the program with no boundary conditions was run for each polymer
shape 10 times to determine the radius of gyration Rg, f̃ . All simulations were initially equi-
librated for t = 500 and then all data were collected for t = 3000. As the result, we obtained
Rg, f̃=3 = 30.69 and Rg, f̃=5 = 28.51 for three- and five-arm star polymers, respectively. The
results are similar to those for four-arm stars obtained in [8]; however, polymers with more
arms have a smaller radius of gyration. This is due to the excluded volume effect at the joint
of the arms and the higher monomer density closer to the core of a molecule. Moreover, we
performed the calculation of the ratio Rg⊥/Rg∥ of the perpendicular to the surfaces Rg⊥
and the parallel to the surfaces Rg∥ contribution to the radius of gyration. The results of the
calculation of the ratio Rg⊥/Rg∥ for a dilute solution of star polymers with an odd number
f̃ = 3, 5 of arms for the case of a narrow slit with L = 0.5Rg, f̃ and the case of a wide slit
with L = 2.0Rg, f̃ for different boundary conditions N-N b.c., N-D b.c., and D-D b.c. are
presented in Table 1.

Table 1. The value of Rg⊥/Rg∥ for a dilute solution of star polymers with a different number f̃ = 3, 5
of arms for the case of a narrow slit with L = 0.5Rg, f̃ and the case of a wide slit with L = 2.0Rg, f̃ for
different cases of boundary conditions: N-D b.c. and D-D b.c.

L b.c. f̃ = 3 f̃ = 5

0.5Rg ND 0.007 0.007
0.5Rg DD 0.082 0.076

2.0Rg ND 0.008 0.010
2.0Rg DD 0.341 0.326
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Knowing the Rg, f̃ , we performed simulations with various boundary conditions (two
repulsive walls, two attractive walls, and one attractive and one repulsive wall) for the
case of a wide slit with L = 2Rg, f̃ and a narrow slit with L = 0.5Rg, f̃ . We performed
the calculation of the monomer density profiles, which were normalized as follows: the

separations z of the walls were normalized to 1 and monomer densities as
∫ 1

0 ρ(z) =
Rg, f̃

L .
Simulations of polymers with an odd number of arms were more difficult than the previous
ones for an even number f̃ = 4 of arms [8], because in the case of two attractive walls, arms
of an uneven number always stick to the walls. Therefore, in this case, density profiles were
symmetrized in the following way: (ρnew(z) =

ρ(z)+ρ(1−z)
2 ).

In the case of two repulsive walls in a wide slit region with separation L = 2Rg, f̃ , we
observed that the monomer density profiles for star polymers are higher than the respective
results for linear and ring polymers in the middle of the slit and near the walls, as is possible
to see in Figure 4a. As one can see from Figure 4b, the situation looks completely different
in the case of a narrow slit. In this case, the monomer density profiles for ring polymers
(see [8]) are higher than the respective results for linear and star polymers with a different
number of arms in the middle of the slit. Such behavior is connected with the different
topologies of the polymers, as well as their corresponding values Rg, f̃ of the radius of
gyration. It should be mentioned that the behavior of the monomer density profiles near
the walls is completely the opposite.
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Figure 4. The comparison of the monomer density profiles ρ(z) of linear [8] and star-shaped polymers
with number of arms f̃ between two repulsive walls with a separation of (a) L = 2Rg, f̃ (wide slit)
and (b) L = Rg, f̃ /2 (narrow slit).

In the case of one attractive and one repulsive wall (Figure 5a,b), we observed that the
monomer density profiles for star polymers are higher than the corresponding results for
linear and ring polymers. Furthermore, the maxima of peaks for the above mentioned cases
are shifted for the case of wide and narrow slits. As is possible to see from Figure 5a,b, in
the case of a wide slit, the polymers are not influenced by the presence of the repulsive wall.
The situation looks different in the case of a narrow slit, where the positions and shapes of
peaks are shifted when compared to the case of a wide slit.

Figure 6a,b present the result for the case of two attractive walls. The resulting
monomer density profiles indicate that the polymer tends to stay near the attractive walls.
The biggest difference is observed in the case of a narrow slit where a non-zero monomer
density is observed in the middle of the slit, especially in the case of ring polymers.

As is possible to see from Figures 4a–6b, the topological and entropic effects play
a crucial role in the monomer density profiles near the walls. The obtained molecular
dynamic simulation results for the monomer density profiles for the case of two repulsive
walls (see Figure 4a,b) and the case of one repulsive and one attractive wall (see Figure 5a,b)
qualitatively coincide with the analytical results for the layer monomer density profiles
presented in Figure 3a and Figure 3b, respectively. The difference in absolute value is
connected with the fact that the analytical calculations in Figure 3a,b were performed for
a dilute solution of star polymers with a number of monomers N → ∞ immersed in a
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solution of big colloidal particles with different adsorbing or repelling properties in respect
to the star polymers, but the numerical calculations were performed for the case of a dilute
polymer solution of star polymers with a fixed number of monomers immersed inside
a slit.
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Figure 5. The comparison of the monomer density profiles ρ(z) of linear [8] and star-shaped polymers
with number of arms f̃ between one repulsive and one attractive wall with a separation of (a)
L = 2Rg, f̃ (wide slit) and (b) L = Rg, f̃ /2 (narrow slit).
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Figure 6. The comparison of the monomer density profiles ρ(z) of linear [8] and star-shaped polymers
with number of arms f̃ between two attractive walls with a separation of (a) L = 2Rg, f̃ (wide slit)
and (b) L = Rg, f̃ /2 (narrow slit).

4. Discussion and Conclusions

The present paper is devoted to the analytical investigation of a dilute solution of
ideal star polymers with an odd number f̃ = 3, 5 of arms immersed in a Θ-solvent and
confined in a slit of two parallel walls as well as in a solution of big spherical colloidal
particles which is characterized by different adsorbing and repelling properties in respect
to the polymers.

The dimensionless depletion interaction potentials and the dimensionless depletion
forces for a dilute solution of ideal star polymers with an odd number f̃ = 3, 5 of arms in a
Θ-solvent confined in a slit of two parallel walls with repulsive surfaces and for the case of
one repulsive and inert surface were obtained analytically and compared with the results
for a star polymer with an even number of arms f̃ = 4, obtained previously in [8]. The
obtained results indicate that the depletion force in both cases for a dilute solution of star
polymers is attractive, but greater than the respective forces for linear and ring polymers.
It should be noticed that the depletion force in the case of walls with mixed boundary
conditions is definitely smaller than in the case of two repulsive surfaces.

Taking into consideration the Derjaguin approximation, the dimensionless layer monomer
density profiles of a dilute solution of star polymers with an odd number f̃ of arms confined
in a half space containing the mesoscopic spherical colloidal particle of big radius R (or two
big colloidal particles with R1 ̸= R2) for the case of D-N b.c. and D-D b.c. were obtained.
From Equations (39)–(41) and the results presented in Equations (42)–(45), we can see that
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the layer monomer density depends on the radius of gyration of the star polymers (see
Equation (13)), the size of the mesoscopic colloidal particle R, and the distance between the
wall and the particle or between two particles.

As mentioned above, we obtained the numerical results for the monomer density
profiles of a dilute solution of star polymers with the EVI in a good solvent confined
in a slit of two repulsive walls (see Figure 4a,b) and one repulsive and one attractive
wall (see Figure 5a,b). The above-mentioned results, obtained in Section 3.3, qualita-
tively coincide with the analytical results for the layer monomer density profiles obtained
in Sections 3.1 and 3.2 and presented in Figure 3a and Figure 3b, respectively. The dif-
ference in absolute value is connected with the fact that the analytical calculations in
Sections 3.1 and 3.2 were carried out for a dilute solution of star polymers with a number of
monomers N → ∞ immersed in a solution of big colloidal particles with different adsorb-
ing or repelling properties in respect to the star polymers, and the numerical calculations
in Section 3.3 were performed for the case of a dilute polymer solution of star polymers
with a fixed number of monomers immersed inside a slit.

We come to the conclusion that a more complicated topological structure of star
polymers leads to the reduction in the layer monomer density profiles in the vicinity of two
repulsive walls, which corresponds to the case of D-D b.c. But an increase in star polymer
topological complexity in the case of mixed walls leads to an increase in the layer monomer
densities at the adsorbing surface (see Figure 3a,b).

The obtained analytical and numerical results indicate that a dilute solution of star
polymers with a different number f̃ of arms can be used for the production of new-
generation functional materials because the behavior of these solutions depends on the
topology of polymers, as well as on the nature and geometry of confined surfaces. These
properties of a dilute solution of star polymers with a different number of arms can find
very broad practical application in nano-technology, biotechnology, and medicine for drug
and gene transmission, as well as in tissue engineering.
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