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Alle Diejenigen, welchen die graphischen Methoden bei der In-genieurwissenschaft, wie sie Professor Culmann’s »Graphische Statik« lehrt, lieb geworden sind, haben gewiss auch schon den Mangel gefühlt, der beim Abschnitt über den continuirlichen Balken darin besteht, dass die Pfeilermomente nicht gezeichnet, sondern gerechnet werden müssen. Vielen der frühem Schüler der Ingenieurschule in Zürich wird es bekannt sein, dass seit 2 bis 3 Jahren hierin ein bedeutender Fortschritt gemacht worden ist, indem jetzt alle diese lästigen und langwierigen Rechnungen wegfallen, und Reissschiene, Winkel und Zirkel zu Hülfe genommen werden. Der Zweck dieses Aufsatzes ist, unter freundschaftlicher und verdankenswerther Zustimmung des Herrn Professor Culmann, diese neuern graphischen, ursprünglich von Herrn Professor Mohr herrührenden Methoden denjenigen klar zu machen, die die frühere Methode des continuirlichen Balkens schon kennen. Wir werden also weder die elastische Linie noch den continuirlichen Balken vollständig behandeln, sondern erstere nur so weit, als wir sie nöthig haben, und letztem nur in den wirklich neuen Theilen,. d. h. in der Bestimmung der Pfeilermomente ; alles andre wird als bekannt vorausgesetzt und nur kurz wiederholt. Auch gestattet uns der Raum nicht, den continuirlichen Balken allgemein durchzunehmen, sondern wir beschränken uns auf den einfachsten Fall, d. h. auf constanten Querschnitt und gleichförmig vertheilte Belastung, was in der Praxis wohl immer genügen wird.

Wir besprechen also zuerst möglichst kurz die Eigenschaften und die Construction der elastischen Linie, und hierauf ihre Anwendung zur Bestimmung der Pfeilermomente des continuirlichen Balkens.

I. Die elastische Linie.

	
	
1.    Ableitung der Gleichung.





Wenn ein gerader oder krummer Balken durch beliebige Kräfte belastet wird, so wird er sich biegen oder allgemein seine Form ändern. Die deformirte Axe desselben (die Verbindungslinie sämmt-licher Schwerpunkte nach der Formveränderung) nennen wir seine elastische Linie. Es ist bekannt, dass die Gleichung dieser Linie gewöhnlich aus einer Differentialgleichung zweiter Ordnung gefunden wird, nämlich aus


d % / (P, F, etc-^’


wobei P, F, etc. die kurz alle gegebenen



Kräfte, die Flächeninhalte der Querschnitte, oder bekannten Grössen bezeichnen. Wollen wir die elastische Linie graphisch finden, so müssen wir also eine doppelte Integration vornehmen, und diess geschieht durch zwei aufeinander bezogene Seilpolygone.

Suchen wir zuerst den Ausdruck, welcher ung- eines Balkenelementes an gibt.


uns die Formänder-




der Länge △ s die wirkenden Kräfte).



Es wirke (Figur 1) auf das Element von Kraft R (Summe aller links vom Querschnitt
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Wir zerlegen sie in Q und P, wobei erstere normal, letztere parallel zum Querschnitt wirkt. P bewirkt wohl innere Schubspannungen, aber keine zu berücksichtigende Formänderung. Q hingegen dreht die Schnittfläche um die neutrale Faser, welche nach Nr. 63 d. Gr. St. die Antipolare des Angriffspunktes von Q in Bezug auf die Centralellipse des Querschnittes ist. Es sei r der Hebelarm von R, a derjenige von Q. i die Entfernung der neutralen Faser vom Schwerpunkt des Querschnitts, ö ferner der Winkel, um welchen der Schnitt gedreht wird, Q der Druck in der Schwerpunktsfaser pro Flächeneinheit und E endlich der Elasticitätscoefficient, so können wir folgende bekannte Beziehungen aufstellen:

Aeusseres Moment $ = Rr = Qa.

Der Druck irgend einer Faser ist proportional ihrem Flächeninhalte und ihrer Entfernung von der neutralen Faser; summiren wir sämmtliche Drücke, so finden wir

0 = PQ

	
	
	
d. h. die Kraft Q ist gleich dem Fächeninhalte, multiplicirt mit dem Drucke 0 der Schwerpunktsfaser. Es verhält sich nun 9 zu 8, wie die Verkürzung der Schwerpunktsfaser zu ihrer Länge, oder







9 : 8 = iö ; As,                   woraus

	
	
	
	
• ö = —.— = —- = —9   (s. Nr. 76 d. Gr. St.)









ze rzs Fk‘8 As 0 =.........— 88

In dieser äusserst einfachen Formel bedeutet $ das Moment der ausserhalb des Schnittes wirkenden Kräfte in Bezug auf den Schwerpunkt, △ s die Länge des Balkenelementes, I das Trägheitsmoment des Querschnittes und 8 den Elasticitätscoofficienten.

In dieser Form kann der Ausdruck auch für gebogene Balken angewandt werden; wir gehen aber unmittelbar zum geraden, horizontalen, mit verticalen Kräften belasteten Balken über. In diesem Fall zeichnen wir bei gegebenen äussern Kräften ein Seilpolygon, so geben uns dessen Ordinaten für jeden Querschnitt das äussere Moment $ an. Theilen wir den Balken in genügend kleine Elemente von der Länge △ s, bestimmen wir für jedes derselben den Winkel ö und reihen wir diese Elemente so aneinander, dass jeweilen zwei aneinanderstossende um den entsprechenden Winkel 8 gegeneinander geneigt sind, mit andern Worten ihre Axen jeweilen den Winkel d miteinander bilden, so erhalten wir die elastische Linie. Diese Operation wird nun durch ein zweites Seilpolygon erreicht.

Wir setze»

I = a b c z1“,

(wobei a die Verwandlungsbasis, b der erste Horizontalschub, c die Entfernung der äussersten Faser vom Schwerpunkt und z"’ die das Trägheitsmoment darstellende Länge ist; s. Gr. St. Nr. 58 d. 71 und 72)

.As  $ As 1

&a bcz“‘    £ab    c    z'"

so folgt hieraus:

	
	
2.    Die Construction der elastischen Linie.





Wir zeichnen das erste Seilpolygon, welches die äussern Kräfte verbindet, mit dem Horizontalschub sah, so sind die Ordinaten 9 desselben gleich —-; wir theilen die Momentenfläche in verticale 8 ab

Lamellen von der Breite As, und reduciren sie auf die Basis c,

9 As

	
	
	
• so bekommen wir Linien, welche gleich — .---sind; diese Linien







8 a b c

tragen wir als Kräfte auf und construiren mit dem Horizontalschub z“' ein zweites Seilpolygon, so ist dies die elastische Linie; denn jede Seite dieses Seilpolygons ist dann gegenüber der vorhergehenden um einen Winkel ö gedreht worden, welcher im Kräftepolygon

9 As

durch Aufträgen von —- .--- und z4“ gebildet worden ist. Hiebei

8 a b c

ist noch der Umstand von grosser Bedeutung, dass der Querschnitt nicht constant zu sein braucht, weil ja der Beweis für jedes einzelne Balkenelement getrennt gilt; wir haben alsdann ein Seilpolygon mit veränderlichem Horizontalschub zu zeichnen.

Zu bemerken ist aber noch, dass diese Construction nur gültig ist, so lange die Einsenkung oder der Pfeil der elastischen Linie gegenüber ihrer Länge verschwindend klein ist, wie es ja in weitaus den meisten Fällen der Praxis, namentlich bei allen Brückenbauten , vorkommt. Würde sich der Balken unter der Belastung viel stärker einsenken, so müsste sich seine Spannweite verkürzen, 9 As

die Kraft — . -—- müsste vertical zur elastischen Linie aufge-& a b c

tragen werden, kurz die Construction wäre eine andere. Diese Bedingung hat auch zur Folge, dass wir, um mit der elastischen Linie überhaupt arbeiten zu können, sie verzerren müssen; denn sonst würde sie von einer geraden Linie nicht zu unterscheiden sein. Wir verzerren sie am einfachsten durch Verkleinerung des ersten Horizontalschubs 8 a b. Wir werden diese Grösse 200, 500, 1000 etc. mal kleiner annehmen, als sie in Wirklichkeit ist, und dadurch alle verticalen Ordinaten 200, 500, 1000 etc. mal zu gross bekommen.

	
	
3.    Beispiel zur elastischen Linie.





Die besprochenen Constructionen werden klarer werden, wenn wir ein Beispiel zur elastischen Linie durchnehmen.

Es sei die elastische Linie für einen an dem einen Ende eingemauerten eisernen Balken zu zeichnen; der Querschnitt sei I-förmig und bestehe aus Verticalplatte, Winkeleisen und 1 bis 3 je nach Bedürfniss aufgelegten Horizontalplatten. Die Belastung sei eine gleichförmig vertheilte. Die Länge des Balkens sei 6m, die Belastung pro Meter = 3tn, der Maassstab der Figur 1 : 100, derjenige des Kräftepolygons 1 : 10.
[image: ]

Die Construction des Trägheitsmomentes ergab für a = 2em und b = 50°m: die drei verschiedenen z" = 80°m, 60°m und 42°m. g sei rund gleich 2000t. Als erster Horizontalschub wurde & a b

200 = 1000. angenommen und damit das erste Seilpolygon, die Parabel BC construirt. (Das Kräftepolygon wurde in der Figur ausgelassen. Ferner wurde die Belastung hundertmal grösser aufgetragen, damit wir die Flächeninhalte der Lamellen im Maassstab 1 : 10 bekommen.) ABC stellt nun die Momentenfläche dar. Wir theilen sie in 6 verticale Lamellen, und zwar so, dass sich der erste Querschnitt (mit 3 Horizontalplatten) auf die Lamelle 1. der zweite Querschnitt auf die Lamelle 2, der dritte Querschnitt (mit nur einer Horizontalplatte) auf die Lamellen 3 bis 6 erstreckt. Die Flächeninhalte der sechs Lamellen reduciren wir auf die Basis c = 31em und tragen die so erhaltenen Linien als Kräftepolygon 1—6 auf, indem wir die Kräfte in den Schwerpunkten der Lamellen wirkend denken, (c, die Entfernung der äussersten Faser vom Schwerpunkt des Querschnitts, ist zwar etwas veränderlich, jedoch so unbedeutend, dass wir sehr wenig fehlen, wenn wir seinen mittler Werth constant annehmen.)

Die erste Seite der elastischen Linie ist durch die Einmauerung gegeben; sie ist horizontal; folglich ist dadurch die Lage des ersten Pols des Kräftepolygons bestimmt. Parallel dem ersten Strahl im Kräftepolygon ziehen wir also die Seite A 1 des zweiten Seilpolygons; parallel dem Strahl nach 1,2 die Seite 1,2. Auf dem Strahl nach 1,2 im Kräftepolygon wird nun der zweite Pol im Abstand z,"" von der Verticalen aufgetragen und damit die Seite 2,3 des Seilpolygons construirt. Endlich kann ebenso der dritte Pol, welcher dem z3‘“ entspricht, aufgetragen und damit das Seilpolygon vollständig gezeichnet werden. Dieses Polygon enthält nun die Tangenten an die elastische Linie, sodass diese leicht eingezeichnet werden kann. Da wir sah 200mal zu klein genommen haben, so sind alle verticalen Abstände dieser elastischen Linie 200mal zu gross. Da wir aber die Figur im Maassstab 1 : 100 gezeichnet haben, so sind die wirklichen Einsenkungen des Balkens gleich der Hälfte der gezeichneten; somit ist z. B. die Senkung des Endes B, B B‘ = 13mm-

Denken wir uns, der mittlere Querschnitt erstrecke sich auf die ganze Länge, so kann diese Einsenkung leicht gerechnet werden p(2 [)4 und findet sich ebenfalls nach der bekannten Formel B B‘ — ~——- — 8 £ 3

= 13mm.

Sollte der Querschnitt nicht stufenweise, sondern allmählig wechseln, so müssten die Lamellen schmäler gemacht, und jederzeit das der Lamellenmitte entsprechende z"’ als Horizontalschub genommen werden.

	
II. Anwendung auf den continuirlichen Balken.



	
1.    Elastische Linie des continuirlichen Balkens.



Bei Balken, die nur an ihren beiden Enden unterstützt, oder an dem einen Ende eingemauert, am andern frei schwebend sind, ist die Bestimmung der äussern Kräfte für jeden Querschnitt von keiner besondern Schwierigkeit. Sobald aber der Balken continuir-lieh ist, d. h. auf mehr als zwei Stützen aufliegt, so sind die Auflagerdrücke nicht mehr auf einfachem Wege zu bestimmen; sondern man muss die Elasticität des Balkens zu Hülfe nehmen, um alle an ihm wirkenden äussern Kräfte kennen zu lernen. Es treten alsdann über den Zwischenpfeilern Momente auf. (S. Gr. St. Nr. 93.) Ihre Bestimmung auf graphischem Wege ist der Zweck dieses Aufsatzes. Sie werden mit Hülfe der Bedingung gefunden, dass die elastische Linie des Balkens durch bestimmte Punkte, die Auflager, gehen muss.

Nach Culmann’s Gr. St. unterscheidet sich das Seilpolygon einer einzigen Oeffnung des continuirlichen Balkens von demjenigen eines nicht continuirlichen dadurch, dass bei ersterem die Schlusslinie herunterrückt (s. Fig. 122 d. Gr. St.), indem an den Auflagern nicht nur die Reactionen aufwärts, sondern auch noch Momente oder unendlich kleine unendlich ferne Kräfte wirken, welche bekanntermassen (Nr. 38 d. Gr. St.), in ein Seilpolygon eingeflochten, eine parallele Verschiebung der Seilpolygonseite zur Folge haben. Betrachten wir nun die Momentenfläche, welche uns die elastische Linie liefern soll, so sehen wir, dass sie verschiedenen Sinn hat.

Durch das Herabrücken der* Schlusslinie in einer Oeffnung wird die frühere Momentenfläche, welche wir die positive nennen wollen, verkleinert, und es treten rechts und links von ihr entgegengesetzte oder negative Flächen auf. Es ist klar, dass diese entgegengesetzten Flächen auch entgegengesetzte Wirkung auf die elastische Linie ausüben werden; letztere wird nämlich, so lange die Momentenfläche positiv ist, nach oben, so lange sie negativ ist, nach unten gekrümmt sein; an den Uebergangsstellen finden Wendepunkte statt. Diese Folgerungen lassen sich leicht ziehen, wenn man nur immer festhält: die elastische Linie entstehe dadurch, dass man die Momentenfläche in verticale Lamellen theilt und deren Flächeninhalte als Kräfte wirken lässt. Denn offenbar müssen dann diese Kräfte theils abwärts , theils aufwärts wirken, und das entsprechende Seilpolygon wird theils nach unten, theils nach oben convex sein.

	
2.    Eintheilung der Momenten fläche.



Wir wollen von jetzt an immer constanten Querschnitt voraussetzen und die Aenderungen der Construction infolge variablen Querschnitts nur andeuten.

Betrachten wir die elastische Linie rein nur als ein Seilpolygon, welches Kräfte mit einander verbindet, so können wir den Satz anwenden, dass bei der Zusammensetzung der Kräfte die Reihenfolge ganz beliebig ist, wenn uns nur die schliessliche Mittelkraft inte--ressirt. Da nun bei der Betrachtung einer einzigen Oeffnung nur die letzte Seite der elastischen Linie von Wichtigkeit ist, indem sie durch das Auflager gehen muss, so können wir die Lamellen der Momentenfläche in beliebiger Reihenfolge zusammensetzen, so lange wir eine einzige Oeffnung im Auge haben. Ja, wir können die Momentenfläche überhaupt anders als in verticale Lamellen eintheilen; wir könnten z. B. in jeder Oeffnung drei Theile unterscheiden, einen positiven und zwei negative, und jeden derselben als Kraft wirken lassen, deren Angriffspunkt in den Schwerpunkt des betreffenden Flächentheils fällt. (Dies gilt nur bei constantem Querschnitt; bei veränderlichem wäre Lamelleneintheilung unumgänglich, indem der Horizontalschub sich fortwährend ändert.) Wir gehen noch weiter und theilen die Momentenfläche einer Oeffnung in eine positive Fläche, welche gerade so gross ist, als wenn der Balken nicht continuirlich wäre (welche also von einem Auflager bis zum andern reicht), und in eine negative Fläche, welche sich offenbar als Trapez herausstellt.

Hierauf ist grosses Gewicht zu legen. Zum bessern Verständ-niss wiederholen wir diesen Vorgang im Hinblick auf Fig. 3, zweite Oeffnung. Die wirkliche Momentenfläche besteht aus einem positiven Theil, der Parabel CD C, und zwei negativen Theilen, den Parabeldreiecken AA‘C und BB‘C‘. Wir nehmen anstatt dieser die ganze Parabel fläche ADB und das Trapez AA‘ B‘B, oder was ebenfallserlaubt ist, statt des Trapezes die zwei Dreiecke AA' B' und B B' A. Die Parabelfläche ist hiebei positiv, die beiden Dreiecke negativ.

Da wir die Belastung des continuirlichen Balkens als gleichförmig vertheilt annehmen, so werden die ersten Seilpolygone stets Parabeln sein, so dass wir uns wohl den Namen Parabelfläche als Abkürzung erlauben dürfen.

Durch diese Eintheilung der Momentenfläche in eine Parabelfläche und zwei Dreiecke haben wir einen grossen Vortheil erlangt. Während die drei zunächst liegenden Theile CDC, AA'C und B B‘C‘ alle drei sowohl von dem Pfeilermoment AA' als demjenigen B B‘ abhängig sind, so haben wir es nach unsrer neuen Eintheilung mit drei Flächen zu thun, wovon die erste von den Pfeilermomenten ganz unabhängig ist, die zweite nur von dem linksseitigen und die dritte nur von dem rechtsseitigen Pfeilermoment abhängt.

	
3.    Wahl der Constanten.



Da wir gleichförmig vertheilte Last und constanten Querschnitt allein berücksichtigen, so können wir in Hinsicht der Construction der elastischen Linie uns noch einige Abänderungen erlauben, die von grossem Vortheil sind. Es ist leicht einzusehen, dass am Wesen der Sache nichts geändert wird, wenn wir z. B. statt & a b irgend eine andere Grösse als Horizontalschub nehmen; das Seilpolygon wird nur dahin geändert, dass seine Ordinaten alle proportional ver-grössert oder verkleinert werden. Ebenso verhält es sich, wenn wir statt c eine andere constante Grösse als Verwandlungsbasis und statt des constanten znt irgend einen andern Horizontalschub benützen. Die Figuren werden dadurch nur mehr oder weniger in verticaler Richtung verzerrt.

Es ist nun von grossem Vortheil, wenn man die Verwandlungsbasis gleich der halben Spannweite einer der Oeffnungen, am besten der zweiten, macht und statt z"" den dritten Theil dieser Spannweite nimmt. Es wäre alsdann 1/9 l, die neue Verwandlungsbasis und 1/3 l, unser zweiter Horizontalschub. Was den ersten betrifft, so ist er bei der Bestimmung der Pfeilermomente ganz beliebig; doch nimmt man bei Fachwerkbrücken am besten ein Vielfaches der Fachwerkshöhe h, also nh. Wollte man schliesslich die Ordinaten der elastischen Linie in richtiger Grösse haben,- so müsste nh.1, 1.1, 1,          . man sie nur mit----——• multipliciren.

&a b.c. z“‘

	
4.    Eigenschaften des Seilpolygonsuges.



Wir wollen in der Folge bei der Entwicklung der Construction zur Bestimmung der Pfeilermomente einen bestimmten Fall ins Äuge fassen, nämlich einen Balken über drei Oeffnungen l, l und l2, wovon die erste und dritte wie gewöhnlich gleich gross sind, wovon ferner die zwei ersten total, die dritte nur mit dem Eigengewicht belastet sind. (S. Fig. 3a.) Die Parabeln für die verticalen Belastungen mögen durch Construction vermittelst des Kräftepolygons oder durch Berechnung des Pfeils gezeichnet worden sein. Die zwei über den Pfeilern entstehenden Momente seien gleich AA' und BB‘. Obschon dieselben vorläufig unbekannt sind, so ist es doch nicht nöthig, sie zuerst beliebig anzunehmen, sondern man kann sie direct construiren.

Führen wir die Trennung in positive Parabelflächen und negative Dreiecke in allen Oeffnungen durch, so bekommen wir in der ersten und letzten Oeffnung je ein, in allen Zwischenöffnungen, in unserm Fall in der zweiten, je zwei Dreiecke. Setzt man diese Einzel-flächen als Kräfte, die in den entsprechenden Schwerpunkten wirken, der Reihe nach zusammen, so entsteht ein Seilpolygonzug von der Form Fig. 3 b. Die Parabelflächen wirken in der Mitte jeder Oeffnung abwärts, die Dreiecksflächen in den beiden Dritteln jeder Oeffnung aufwärts. Unsere Aufgabe ist, diese letztem so gross zu machen, dass dieser Seilpolygonzug durch sämmtliche Auflager geht.

Wir leiten sogleich auch einige Eigenschaften dieses Polygonzuges ab. Dass seine Ecken fortwährend theils auf den Halbirungs-, theils auf den Drittellinien der Oeffnungen liegen, haben wir soeben angeführt. Verlängern wir ferner z. B. die zweite und vierte Seite
[image: ]

des Zuges, KM und MN aufwärts, so schneiden sie sich in einem Punkte M, der der Mittelkraft der beiden zunächst liegenden Dreieckskräfte entspricht. (Nr. 27 d. Gr. St.) Diese beiden Dreiecke haben die Flächeninhalte 1/2 AA'.l0 und 1/2 AA'.lt; die Flächeninhalte verhalten sich also wie l : l; folglich theilt nach bekanntem Satze die Mittelkraft die Entfernung der beiden Einzelkräfte in zwei

Theile, die sich verhalten wie l, : lo, nämlich umgekehrt wie die Kräfte. Da aber die ganze Entfernung nach früher 1/3 /0 — 1/3 l, ist, so be'trägt die Entfernung der Mittelkraft von der ersten Componente 1/3 l,, von der zweiten 1/3 l , und ihre Lage ist daher auf höchst einfache Weise zu finden: Wir tragen 1/3 l, von der Drittellinie der ersten Oeffnung nach rechts, oder was auf dasselbe herauskommt, 1/3 l von der Drittellinie der zweiten Oeffnung nach links auf, wie es in Fig. 3 b angedeutet ist. Die so erhaltene Stelle oder Verti-callinie wollen wir das »verschränkte« Drittel nennen. Wir wissen, dass sich auf ihr jederzeit zwei Seiten des Seilpolygons schneiden.

	
5.    Seilpolygone der positiven Momenten flächen.



Wir denken uns nun zunächst die Flächeninhalte der Parabeln auf die Basis 1/2 lk reducirt (wir nehmen, wie schon bemerkt, die zweite Oeffnung als diejenige an, welche uns die Constanten liefert, und wollen sie zur Abkürzung die »massgebende« nennen) und die erhaltenen Längen als Kräftepolygone aufgetragen mit einem Horizontalschub gleich 1/3 l. Diese Kräftepolygone zu zeichnen, kann, wie wir gleich sehen werden, unterlassen werden; die Hauptsache ist, die dazu gehörenden Seilpolygone zu besitzen. Letztere bestehen, da. wir uns die ganze Parabelfläche in ihrem Schwerpunkt als eine einzige Kraft concentrirt denken, nur aus zwei Linien, die sich in der Mitte der Oeffnung schneiden. Wir verlängern jede derselben über die ganze Oeffnung, so dass zwei sich kreuzende Linien entstehen, Fig. 3 c.

Die Strecke, welche diese zwei Linien auf der Pfeilerverticalen abschneiden, entspricht jeweilen dem Moment der Parabelfläche in Bezug auf den Pfeiler; wir wollen die Grösse dieser Abschnitte rechnen. Es sei der Pfeil der Parabel in der zweiten Oeffnung gleich f, so ist ihr Flächeninhalt gleich 2/3 f^. Diess reducirt auf die Basis 1/2 l, gibt die Länge 4/3 f. Diese Länge, als Kraft gedacht, bewirkt auf den Pfeiler ein Moment gleich 4/3 f . 1/2 lr = 2 f. 1/3 l, (weil ihr Hebelarm gleich der halben Spannweite ist). Dieses Moment muss aber gleich dem gesuchten Abschnitt, multiplicirt mit dem betreffenden Horizontalschub, sein; letzterer ist 1/3 l^; das Moment, 2 f . 1/3 l, , dividirt durch diesen Horizontalschub, gibt den Abschnitt gleich 2 f. Wir brauchen also das Kräftepolygon nicht zu zeichnen, sondern nur den Pfeil der Parabel mit dem Zirkel abzugreifen, auf den Pfeilerverticalen links und rechts der Oeffnung doppelt aufzu tragen und die vier Punkte kreuzweis zu verbinden, so ist das Seilpolygon der Parabelfläche fertig. (Zum bessern Verständniss möge der Leser nachconstruiren.)

Etwas weitläufiger muss mit den beiden andern Oeffnungen verfahren werden. Da hier, wenn wir den Pfeil der Parabel mit f bezeichnen, der Flächeninhalt gleich 2/3 f l, die reducirte Fläche l                                                   l l                  l 2 gleich 4/3 f' . —0, das Moment gleich 4/3 f — . — = 2f‘. ist,

/ L \2 so wird der Abschnitt durch Division mit 1/3 l, gleich 2f‘ (—0)

Es muss daher in den zwei Nebenöffnungen, oder überhaupt in allen Oeffnungen, welche nicht gleich gross sind wie die massgebende, der Pfeil zuerst mit dem Quadrat des Verhältnisses beider Oeffnungen (der betreffenden zur massgebenden) multiplicirt und erst dann auf den Pfeilerverticalen doppelt aufgetragen werden. Diese Multi-plication ist leicht in der Oeffnung selbst graphisch vorzunehmen, indem man 1/2 l, von der Mitte der betreffenden Oeffnung aus nach rechts oder links aufträgt und durch Verschieben des Winkels zweimal Parallellinien zieht, was wir hiemit nur andeuten wollen.

Da diese Seilpolygone der Parabelflächen von lauter bekannten und gegebenen Grössen abhangen, so können sie ohne weiters zum Voraus gezeichnet werden; sie werden daher zuerst in jeder Oeffnung construirt und bilden alsdann die Figur 3 c. Sie bieten uns den Vortheil, nicht nur über den Pfeilern, sondern an jeder beliebigen Stelle das Moment der in der Mitte der Oeffnung wirkenden Parabelkraft als verticalen Abstand der zwei sich kreuzenden Linien abzugreifen. Wir werden später hievon Gebrauch machen.

	
6.    Construction der festen Punkte und des Seilpolygonzuges.



Wir haben jetzt alle gegebenen und bekannten Grössen besprochen, die allgemeinen Eigenschaften des Seilpolygonzuges abgeleitet und wollen nun versuchen, mit ihrer Hülfe den Polygonzug zu zeichnen. Die Construction der Pfeilermomente wird sich alsdann

If) —

hieraus ergeben. Es ist uns von vornherein nicht möglich, eine einzige Seite des Polygons zu zeichnen, sondern wir müssen uns zuerst nur mit der Aulfindung gewisser Punkte begnügen. Wir tragen zuerst auf einer Horizontalen die drei Spannweiten auf. (S. Fig. 3 d.) Denken wir uns die zweite Seite des Polygons 3b rückwärts verlängert, so schneidet sie auf der Verticalen durch das Widerlager eine Länge ab, die uns bekannt ist; sie entspricht dem Moment der in der ersten Oeffnung wirkenden Parabelkraft; dieses Moment oder diese Länge haben wir in Fig. 3 c construirt, es ist der Abschnitt der beiden sich kreuzenden Linien auf der Verticalen durch das Widerlager. Wir können daher diese Grösse in 3c abgreifen und in 3 d vom Auflager aus abwärts auftragen, so ist uns ein Punkt K1 der zweiten Seilpolygonseite bekannt. (Der Leser ist gebeten, mit dem Zirkel nachzuconstruiren.)

Von besonderer Wichtigkeit ist nun das Dreieck LMN, 3b. Wir wissen von diesem Dreieck folgendes: Seine drei Ecken liegen beziehungsweise auf drei bekannten Verticalen; seine erste Seite (wir erlauben uns, LM die erste, LN die zweite und MN die dritte Seite des Dreiecks zu nennen) geht durch den bekannten Punkt K und seine zweite durch den ebenfalls bekannten Auflagerpunkt des ersten Pfeilers. Unsere Aufgabe wäre, dieses Dreieck zu zeichnen; das ist aber, so lange wir nicht mehr bekannte Grössen haben, eine Unmöglichkeit. Indessen können wir doch eine Eigenschaft dieses Dreiecks zum Voraus angeben: Wir können einen Punkt angeben, durch welchen die dritte Seite desselben gehen muss. Wir wenden hier folgenden Satz der ebenen Geometrie an: »Wenn sich die drei Ecken eines Dreiecks auf drei Strahlen eines Strahlenbüschels bewegen, ferner zwei Seiten desselben sich um feste Punkte drehen, so dreht sich auch die dritte Seite um einen festen Punkt, der mit den beiden ersten in einer geraden Linie liegt.« (Dieser Satz findet sich in Reye’s Geometrie der Lage, I. Abth. S. 51, und in Salmon’s analyt. Geom. d. Kegelschn., übers, von Fiedler, 2. Aufl. § 50, S. 55.) Die Ecken des Dreiecks LMN liegen auf drei parallelen festen Linien (also auf Strahlen eines Büschels, dessen Centrum im Unendlichen liegt), und die zwei ersten Seiten gehen durch zwei feste bekannte Punkte ; folglich gibt es jedenfalls einen

dritten Punkt, durch welchen die dritte Seite geht; und diesen Punkt können wir construiren, ohne auch sonst irgend etwas vom Dreieck zu wissen. In Fig. 3d ist dieser Punkt construirt worden: Man zieht durch K' eine beliebige Linie K'L'M', durch L und das Auflager die Linie L'N', verbindet M‘ mit N', zieht durch K' und das Auflager eine Linie, bis sie M'N1 in J schneidet, so ist J unser dritter Punkt. Denn das Dreieck mag nun sein, wie es will, so muss nach dem gegebenen Satz seine dritte Seite jedenfalls durch den Punkt J gehen. (Man kann sich sehr leicht davon überzeugen, dass J ein fester Punkt ist, indem man durch K‘ irgend eine andere beliebige Linie zieht und dieselbe Construction wiederholt.) Den Punkt J nennen wir einen festen oder Inflections-punkt.

Wenn wir nun auch noch keine der drei Linien LM^ LN, MN in ihrer wahren Lage und Richtung kennen, so haben wir doch aus den bis jetzt bekannten Eigenschaften eine neue abgeleitet; wir kennen einen Punkt, durch welchen MN oder die vierte Seite des Seilpolygonzuges geht. Wir schliessen folgendermassen weiter: Die vierte und fünfte Seite des Polygonzuges schneiden nach bekannten Sätzen auf jeder verticalen Linie das Moment der in der Mitte der zweiten Oefihung wirkenden Parabelkraft in Bezug auf die betreffende Stelle ab; diese Kraft ist uns bekannt, ihr Moment ebenfalls; wir können es in 3c für jede beliebige Stelle abgreifen, folglich auch für die Stelle, in welcher der Punkt J liegt. Wir ziehen daher durch J eine Verticallinie (sie ist strichpunktirt und heisst Inflections-linie) , und zwar abwärts und aufwärts durch 3 c und d. In 3 c greifen wir das Stück ab, welches die beiden sich kreuzenden Linien auf der strichpunktirten abschneiden, und tragen es in 3 d von J aus nach unten auf (der Leser möge nachconstruiren), so haben wir in J‘ einen Punkt der Seite fünf.

Nun wenden wir wieder denselben Schluss an wie früher; statt K' haben wir jetzt den Punkt J', durch welchen die erste Seite desjenigen Dreiecks geht, das über dem zweiten Pfeiler gerade so liegt, wie LMN über dem ersten Pfeiler. Wir haben wieder drei verticale Linien, auf welchen die drei Ecken liegen, und zwei Punkte, J‘ und das dritte Auflager, durch welche zwei Seiten gehen; somit können wir, wie es in 3d geschehen ist, wieder einen Punkt con-struiren, durch welchen die dritte Seite des neuen Dreiecks, oder die siebente Seite des Polygonzuges geht; es ist der Punkt J“. Gleicherweise wird nun fortgefahren, durch J“ eine verticale Linie gezogen, nach oben verlängert, in 3 c der betreffende Abschnitt durch die zwei sich kreuzenden Linien abgegriffen und von J“ aus nach unten aufgetragen, so ist ein Punkt der achten Seite des Polygonzuges gefunden. Wären noch mehr Oeffnungen vorhanden, so könnte diese Methode beliebig weit fortgesetzt werden.

Wir wären jetzt schon im Stande, den Polygonzug zu zeichnen; denn wir kennen von der letzten oder achten Seite zwei Punkte, und es ist nicht schwer, von rechts nach links gehend, das ganze Polygon, Seite für Seite, zu zeichnen. Denn der Schnitt der achten Seite mit der Mittellinie der dritten Oeffnung gibt uns einen Punkt der siebenten Seite, so dass zwei derselben bekannt sind; der Schnitt der siebenten Seite mit der ersten Drittellinie derselben Oeffnung gibt uns einen Punkt der sechsten Seite u. s. w. Indessen könnten dadurch Ungenauigkeiten entstehen, indem sich ein allfälliger kleiner Fehler fortpflanzen würde. Wir haben auch ein einfaches Mittel in Händen, diese Ungenauigkeit zu vermeiden, und dafür eine Menge Probeschnitte zu erhalten. Wir führen nämlich dieselbe Construc-tion nochmals aus, indem wir auf dem rechten Widerlager beginnen und, genau wie vorhin von links nach rechts, nun von rechts nach links vorgehen. Es ist nicht nöthig, dieses Verfahren weiter zu beschreiben; es würde nur eine Wiederholung des Frühem sein. Auch haben wir die betreffenden Linien in der Figur nicht hineingezeichnet. Man erkennt aber ohne weiters, dass nach Beendigung beider Constructioneu sich in jederOeffnung vier Punkte ergeben, welche je kreuzweise verbunden werden müssen, um in jeder Oeffnung zwei richtige Seiten des Polygons zu liefern. Dieses letztere ist in der Figur ebenfalls nicht ausgeführt worden, weil es sich in der dem Aufsatz beigefügten lithographirten Tafel wiederfindet, und weil wir später nochmals darauf zurückkommen. Ebenso ergibt sich nun von selbst, wie schliesslich der Seilpolygonzug vervollständigt wird, sodass wir uns nicht länger dabei aufhalten.

	
7.    Construction der Pfeilermowente.



Wir sind nun auf dem Punkt angelangt, wo wir für den von uns gewählten, bestimmten Fall die elastische Linie oder vielmehr den Polygonzug 3 b zeichnen können. Es handelt sich nun darum, die zwei Pfeilermomente zu finden, welche diesem bestimmten Belastungsfall entsprechen. Diess ist ausserordentlich einfach: Die vierte Seite des Zuges, MN, schneidet auf der ersten Pfeilervertica-len das eine, die fünfte Seite auf der zweiten Pfeilerverticalen das andere Pfeilermoment ab, sodass wir diese zwei Seiten nur aufwärts zu verlängern, die zwei Abschnitte abzugreifen und in 3 a als AA' und B B‘ aufzutragen brauchen.

Der Beweis ist ebenfalls einfach: Die zwei Linien NM und N L, 3 b, schneiden offenbar auf der ersten Pfeilerverticalen das Moment derjenigen Kraft ab, welche in N wirkt; eine kleine Rechnung zeigt uns, dass dieser Abschnitt gleich AA' sein muss: Die in N wirkende Kraft ist nämlich der Flächeninhalt des Dreiecks AA'B', gleich 1/2 A A’.l; reducirt man diese Fläche auf die Basis 1/2 I, so ergibt sich die Länge AA'; multiplicirt man diese mit dem Hebelarm der Kraft, 1/3 l,, so erhält man ihr Moment; dieses Moment ist aber auch gleich dem besagten Abschnitt, multiplicirt mit dem Horizontalschub, und da letzterer ebenfalls gleich 1/3 l, ist, so ist der Abschnitt der Linie MN auf der Verticalen durch den Pfeiler direct gleich dem Pfeilermoment. Es ist klar, dass es hiebei gar nicht nöthig ist, die Linie NL zu ziehen; denn sie geht stets durch das Auflager.

Zu bemerken ist hiezu noch folgendes: Die Pfeilermomente werden nur durch solche Linien abgeschnitten, welche in der massgebenden Oeffnung liegen; für Linien in andern Oeffnungen gilt die eben ausgeführte kleine Rechnung nicht. Indessen ist es, wenigstens bei 2 — 5 symmetrischen Oeffnungen, immer möglich, sich an diese Bedingung zu halten. (Auch da, wo es nicht möglich ist, kann durch eine kleine graphische Multiplication der Abschnitte mit dem Quadrate des Verhältnisses zweier Oeffnungen leicht geholfen werden.) Man kann jetzt auch den Grund erkennen, warum bei vier symmetrischen Oeffnungen die zweite und nicht die erste Oeffnung als massgebende genommen wird.

Ist die Construction der Pfeilermomente unser einziger Zweck (und sie ist es in der Praxis), so braucht der Polygonzug gar nicht gezeichnet zu werden. Selbst die Seiten, welche die Pfeilermomente abschneiden, brauchen nicht ausgezogen zu werden; sondern man kann nur das Lineal an die gefundenen Punkte anlegen und mit der Zirkelspitze oder durch ein kleines Strichelchen die Grösse des Pfeilermomentes auf der Pfeilerverticalen markiren, wie es auch auf der lithographirten Tafel ausgeführt ist.

	
8.    Verschiedene Belastungsfällc] Construction der Inflcctionslinien.



Wir haben hiemit den einen bestimmten Fall vollständig durch-genommen; wir gehen nun über zur Construction einer ganzen An-zahl von Belastungsfällen, nämlich aller derer, die nöthig sind, um die Maxima der Momente und der scheerenden Kräfte für jede Stelle des continuirlichen Trägers zu kennen. Wie der Balken belastet sein muss, damit das Moment und die scheerende Kraft an jeder Stelle ein Maximum werde, wollen wir als bekannt voraussetzen. (S. Gr. St. Nr. 96 und die Belastungsschemata auf Seite 321 und 341.)

Sobald wir mehr als einen Fall zu behandeln haben, so können wir eine bedeutende Vereinfachung der Construction vornehmen: Es ist die für alle Fälle gemeinschaftliche Construction der Inflec-tionslinien. Die Lage dieser (in Fig. 3 strichpunktirten) Linien ist nämlich ganz unabhängig von der Belastungsart und hängt nur von der Grösse und dem Verhältniss der Spannweiten ab. Man sieht bald ein, dass, wenn auch in 3d der Punkt K' höher oder tiefer läge, der Punkt J sich nur in verticaler Richtung verrücken könnte; denn die Verticallinien durch L‘, M‘ und N bleiben immer dieselben und die ganze Figur ändert sich nur in verticaler Hinsicht. Ebenso verhält es sich mit J“ ; auch dieser Punkt wird stets auf derselben Verticalen liegen, weil J‘ sich fortwährend auf der Ver-ticalen JJ‘ bewegen muss. Wir werden daher gleich anfangs, ohne einen bestimmten Belastungsfall im Auge zu haben, die Inflections-linien construiren, und zwar sämmtliche, d. h. auch diejenigen, welche entstehen, wenn man die Construction der Inflectionspunkte von rechts nach links vornimmt.

Hiezu dient Fig. 4. Die Spannweiten werden auf einer Hori
[image: ]

zontalen aufgetragen und in allen Oeffnungen die Verticallinien in den Dritteln und verschränkten Dritteln gezogen. Da die Lage von K‘ in 3 d auf diejenige der Inflectionslinien keinen Einfluss hat, so rücken wir ihn hinauf in’s Auflager und ziehen durch dieses die erste Linie, entsprechend K'L'M“, dann die zweite Linie, entsprechend L'N, dann die dritte, entsprechend M^N', so schneidet diese letztere auf der Horizontalen den Punkt ab, durch welchen die Inflections-linie geht; denn K'J fällt mit der Horizontalen selbst zusammen. Dieser Punkt ist mit einem Ringelchen bezeichnet. Von ihm aus führen wir die Construction noch einmal aus und bekommen den ebenfalls mit einem O bezeichneten Punkt in der dritten Oeffnung. Würden wir dieselbe Construction von rechts nach links vornehmen, so bekämen wir in Folge der Symmetrie der Oeffnungen genau symmetrische Punkte, sodass wir, hierauf gestützt, die beiden letzten Punkte (die ebenfalls mit O O angegeben sind) durch Abstechen mit dem Zirkel erhalten können. Die Figur ist so einfach, dass sie wohl keiner weitern Erläuterung bedarf.

Durch diese Inflectionspunkte, welche in jeder Aussenöffnung einmal, in jeder Zwischenöffnung doppelt vorkommen, werden alsdann die verticalen Inflectionslinien gezogen. Und nun ist die Construction der Pfeilermomente auf ein blosses Abgreifen mit dem Zirkel und Ziehen von Strichelchen zurückgeführt. Das Moment am Widerlager wird in 3 c abgegriffen und in 3 d aufgetragen; an den erhaltenen Punkt und das zweite Auflager wird das Lineal angelegt und auf der linken Inflectionslinie der zweiten Oeffnung ein

Punkt markirt; von diesem aus wird das oberhalb abzugreifende Moment (der Abschnitt auf der Inflectionslinie) nach unten aufgetragen, an den erhaltenen Punkt und das dritte Auflager wieder angelegt und auf der linken Inflectionslinie der dritten Oeffnung ein Punkt markirt u. s. f. Dasselbe wird rückwärtsgehend wiederholt, und dann werden die gesuchten Pfeilermomente durch Anlegen an je zwei entsprechende Punkte über den Pfeilern abgeschnitten.

	
9.    Seilpolygone der positiven Momentenflächen für sämmtliche Belastungsfälle.



Es bleibt uns nun noch Fig. 3 c zu besprechen übrig. Sie muss uns nämlich nicht nur die Momente für einen Fall, sondern für alle in der betreffenden Oeffnung vorkommenden Belastungsfälle liefern. Es sind deren acht, nämlich die Belastung durch Eigengewicht, die Totalbelastung und sechs partielle Belastungsarten. (S. d. Schema.) Wir richten Fig. 3 c so ein, dass die erste Seite (welche von links oben nach rechts unten gerichtet ist) für alle acht Fälle gemeinschaftlich ist, was natürlich möglich ist, da wir bei gegebener Kraft und gegebenem Horizontalschub die Richtung der ersten Seilpolygonseite immer noch beliebig wählen können. Es handelt sich daher nur darum, für jeden der acht Fälle die zweite Seite zu finden. Wir erinnern daran, dass 3c entstanden ist, indem man die Momentenfläche auf 1/2l, reducirt und mit dem Horizontalschub 1/3 f ein Seilpolygon gezeichnet hat. Wir verfahren gerade wie bei dem speciellen Fall, den wir schon besprochen haben: Wir rechnen die Abschnitte, welche die zwei Linien, d. h. die zwei Seiten des Seilpolygons 3 c auf den Pfeilern erzeugen; und zwar dadurch, dass wir den Flächeninhalt der Momentenfläche rechnen und mit dem Abstand ihres Schwerpunktes von jedem der zwei nächsten Auflager multipliciren, mit andern Worten, das Moment der Momentenfläche in Bezug auf die beiden Auflager bestimmen. Wir bekommen alsdann auf jeder Seite eine Länge, welche auf der Pfeilerverticalen von dem Schnittpunkt der ersten gemeinschaftlichen Seite aus aufzutragen ist, und zwar links nach unten und rechts nach oben. Diese Längen werden bei partieller Belastung ungleich, weil die Belastungscurve aus zwei verschiedenen Parabelstücken besteht, die Momentenfläche daher unsymmetrisch ist, und ihr Schwerpunkt nicht mehr in der Mitte liegt.

	
	
Um nun das Moment der Momentenfläche für eine auf die Länge ß . / (wobei ß eine absolute Zahl, keine Länge bedeutet) sich erstreckende Belastung zu rechnen, denken wir uns das Eigengewicht von der zufälligen Belastung getrennt, und behandeln letztere besonders. (Diess ist erlaubt, da sich bei parallelen Kräften die Momente einfach addiren.) Die zufällige Belastung pro Ifd. Mtr. sei P2, so beträgt gegenwärtig die Last ßpzl. (S. Fig. 5.) Wir Fig- 5.   ,            zeichnen für diese Last ein Seilpo--___________-—_-) lygon mit dem Horizontalschub H, 1 I 41 7 so besteht es für die Strecke ßl aus A einer Parabel, für den übrigen Theil der Oeffnung aus einer geraden Linie.





k/         Wir ziehen die Schlusslinie, theilen die so erhaltene Momentenfläche durch eine Gerade in ein Dreieck und ein Parabelsegment und behandeln jeden Theil besonders. Wir berechnen den Flächeninhalt jedes der beiden Theile und multipli-ciren ihn mit dem Abstand des betreffenden Schwerpunktes von dem rechtsseitigen Auflager.

Das Dreieck hat die Basis l und die Höhe h, den Flächeninhalt ^hl. Das Parabelsegment hat die Basis ßl und die Höhe k, also den Flächeninhalt 2/3 ßl:l. Beide Flächeninhalte zusammen:


F=(*+ 2 ßh)l.

Der Abstand des Dreieckschwerpunktes vom rechten Auflager ist gleich dem arithmetischen Mittel der Abstände seiner drei Ecken, d. h. gleich }( + ßl + 0) = }(1 +B)l. Der Abstand des Parabelsegmentschwerpunktes ist gleich ^ßl. Folglich

das Moment der Dreiecksfläche = 1(1 - + ß)hl2; das Moment der Parabelfläche = 1/3 ß2kl2;

beide zusammen         M, = 1[(1+)h—2ß*/]l2.

Das Moment M der ganzen Fläche in Bezug auf das linke Auflager ist, da 9, + 9, = F.I ist:

M, = Fl - m, = (]h + 3ßk)12 - [z( + B)h + 3B3k]12 =(h—4Bh—GBA — 3B%L)12

	
I,    = ((2 - B) (h + 2ßk)l2



Nun müssen wir die Werthe von h und k berechnen, h mit dem Horizontalschub H multiplicirt, ist das Moment des linken Auflagerdruckes in Bezug auf die Stelle, wo die Belastung beginnt; es findet sich also, wenn wir diesen Auflagerdruck mit dem Hebelarm l — Bl multipliciren; ebenso findet sich }h — 2k, wenn wir denselben Druck mit l — 1ßl multipliciren. Dieser Auflagerdruck ist aber gleich

ßpzl. = 3ß2pxl; folglich:

Hh = ^ß2pj(l - ß)l und n(h+2%) = }B‘p. ( - ~ß)l.

Aus diesen Gleichungen finden sich h und k.

" = —n—

3 82(2 - ß) P.l‘ "F--H--' 8h folglich h = 4 (1 - 3) R.

Setzen wir diese Werthe ein, so bekommen wir

	
m,    = 3 [4(1 - 33) k + 2334] l2 =ax@- 83) ß2p. I2




	
9,    = 8(2-3 (4-28)1/2 - 2n(2 - 8)*8*p."2



Wir haben bis jetzt gar nicht berücksichtigt, dass die Momentenfläche auf 1l2 l reducirt und das neue Seilpolygon mit dem Horizontalschub 1/3 l construirt werden muss. Es ist dies auch nicht röthig, da wir folgendermassen verfahren: Wollen wir von der partiellen Belastung zur totalen übergehen, so haben wir einfach ß == 1 zu setzen, und es findet sich dann für rechts wie für links 9= anp.l*

Vergleichen wir diesen Werth mit denjenigen für partielle Belastung, so sehen wir, dass die letzteren nur durch gewisse Coefficienten von ersterem verschieden sind, und dass diese Coefficienten allein von

der Länge der Strecke abhängen, auf welcher die Belastung liegt (wie sich auch erwarten liess). Ist uns daher der in 3c aufzutragende Abschnitt für ganze zufällige Belastung gegeben, so können wir durch Multiplication desselben mit gewissen Factoren die betreffenden Abschnitte für partielle Belastung erhalten. Für Eigengewicht, sowie für Totalbelastung wird einfach der doppelte Pfeil der betref-


fenden Parabel (unter Umständen mit




2

multiplicirt) aufgetra-



4,

gen, und nun wird der der zufälligen Belastung entsprechende Abschnitt nach gewissen Verhältnissen eingetheilt, und wir haben unmittelbar die gesuchten Abschnitte für partielle Belastung.

Diese Verhältnisse werden gegeben durch (2 — 32) 32 für das rechte Auflager und durch (2— 3)2 32 für das linke Auflager unter der Voraussetzung, dass die Last von rechts her vorrücke. Gerade umgekehrt ist es für die von links her kommende Belastung. Da wir uns in der praktischen Anwendung nur auf 1/4, 2/4 und 3/4 Belastung beschränken, so können wir diese Verhältnisszahlen ein für allemal rechnen. Wir bekommen folgende, schon Gr. St. S. 318 mitgetheilte, kleine Tabelle:


		
an den Pfeiler anstehende
	
vom Pfeiler abstehende


		
Belastung, (2—82) ß'2
	
Belastung, (2—8)2 ß2


	
1/4 Belastung
	
31. = 0,1211
	
49 = 0,1914

256


	
1/2 »
	
7

— = 0,4375
	
9 ------- = 0,5625

16


	
34 »
	
207

256 = 0,8086
	
225

256 = 0,8789


	
Den der
	
zufälligen Belastung entsprechenden Theil nach diesen




Verhältnisszahlen einzutheilen, geschieht am besten nach den gewöhnlichen Regeln für graphisches Multipliciren und Dividiren. Es wird von einem Endpunkt der einzutheilenden Länge aus eine beliebige Linie gezogen; auf dieser werden die sechs Zahlen in beliebigem Maassstabe (z. B. ein Decimeter als Einheit) aufgetragen; der der Einheit entsprechende Punkt wird mit dem andern Endpunkt der einzutheilenden Länge verbunden, und durch die sechs Punkte werden Parallelen gezogen. (In der lithographirten Tafel wurde diese Construction nicht ausgezogen.)

Sehr zu empfehlen ist hiebei, sich streng an eine bestimmte Nummerirung zu halten, indem sonst leicht, besonders im Anfang. Verwechslungen entstehen. Man benütze untenstehendes Schema.

	
10.    Erklärung des Kräfteplans.



Zum Schluss wollen wir noch die gesummten an einem Kräfteplan vorzunehmenden Operationen mit Bezug auf die lithographirte Tafel wiederholen. Diese Tafel gibt die vollständige Construction für einen Träger von vier Oeffnungen und zwar für denselben, der in Culm. Gr. St. Nr. 102 auf rechnerischem Wege behandelt worden ist. Die Spannweiten, Belastungen und Maassstäbe sind eingeschrieben. Da die gerechneten Pfeilermomente an Genauigkeit nichts zu wünschen übrig lassen, so haben die Leser dadurch Gelegenheit, die Richtigkeit der graphischen Methoden einer strengen Prüfung zu unterziehen. Wir fügen hier das Belastungsschema von S. 321 d. Gr. St. bei, aber mit einer andern Nummerirung der einzelnen Fälle, welche schon seit einigen Jahren der früher vorgezogen wird.
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Wenn die Oeffnungen der Brücke symmetrisch sind, wie es hier angenommen ist und wie es beinahe immer der Fall sein wird, so kann man sich, was auch früher geschehen ist, auf das Zeichnen der Hälfte der Balkenöffnungen beschränken (bei drei Oeff-nungen auf zwei, bei fünfen auf drei u. s. f.). Einige Schwierigkeit verursacht dann freilich die Construction der Pfeilermomente, indem man, um das Abschneiden der Punkte über die ganze Brücke fortzusetzen, in der Mitte umklappen und rückwärts gehen muss, worüber wir weiter unten noch sprechen werden. Was das Ausziehen des Kräfteplans betrifft, so wird man am besten thun, die lithographirte Tafel als Muster zu nehmen, um die Construction vollständig sowohl als deutlich zu haben.

Die erste Arbeit ist, die Kräfte- und Seilpolygone für sämmtliche Belastungsfälle zu zeichnen (Fig. 1, 2, 7 und 8), wie es in der Gr. St. S. 322 — 32 5 erklärt ist. Die Parabeln für Eigengewicht und Totalbelastung werden entweder mit Hülfe des Kräftepolygons oder dadurch construirt, dass man ihren Pfeil berechnet. Was die partiellen Belastungen betrifft, so wird hier die Last bei halben Belastungen an zwei, bei 1/4 und 3/4 Belastungen an vier Punkten concentrirt gedacht und nur der Polygonzug gezeichnet , weil jederzeit nur die Endpunkte des Seilpolygons verlangt werden.

Dann folgen die zweiten Seilpolygone der Momentenflächen (Fig. 3 und 9). Zuerst werden die Pfeile der Parabeln, diejenigen der ersten Oeffnung entsprechend reducirt, doppelt aufgetragen, und zwar für Eigengewicht wie für Totalbelastung. Die entsprechenden Punkte werden verbunden, sodass drei sich in einem Punkte schneidende Linien entstehen. Nun werden die der zufälligen Belastung entsprechenden Längen nach obigen Verhältnisszahlen eingetheilt (diese Verhältnisszahlen sind an der rechten Verticallinie beigeschrieben), die Punkte mit den betreffenden Nummern versehen und je zwei entsprechende derselben verbunden. Von diesen Verbindungslinien sind immer infolge der Construction zwei einander parallel; sie wurden nicht ganz, sondern nur in kurzen Strecken an den Pfeilerverticalen und den Inflectionslinien ausgezogen.

Drittens werden die Inflectionslinien nach Fig. 4 im Text construirt (Fig. 4 und 10 der Tafel). Auch dieser Theil der Construction muss, wie die Bestimmung der Pfeilermonte, über die ganze Brücke fortgesetzt werden, und hiezu ist ebenfalls in der Mitte ein Umklappen erforderlich. Indessen wird letzteres infolge der Symmetrie der Brücke etwas modificirt. Nachdem nämlich zuerst der linke Inflectionspunkt der zweiten Oeffnung bestimmt worden ist, ist es nicht nöthig, denjenigen der dritten Oeffnung zu zeichnen und symmetrisch zur mittlern Pfeilerverticalen auf die andere Seite zu übertragen, um den rechten Inflectionspunkt der zweiten Oeffnung zu erhalten; letzterer kann direct construirt werden: Vom linken Punkt der zweiten Oeffnung aus wird eine beliebige schiefe Linie nach rechts gezogen, das Stück, welches sie auf der rechts liegenden Drittellinie abschneidet, von der Horizontalen aus nach unten aufgetragen, und der so erhaltene Punkt mit dem Schnittpunkt auf der mittlern Pfeilerverticalen verbunden, so schneidet diese Verbindungslinie auf der Horizontalen den gesuchten Inflectionspunkt ab. Die Richtigkeit ist nicht schwer einzusehen. Von diesem Punkt aus bestimmt man schliesslich, nach links gehend, den Inflectionspunkt der ersten Oeffnung.

Die Figuren 5 und 11 enthalten die Construction der Pfeilermomente, welche wir oben erklärt und bewiesen haben. Auch hier muss, wie schon gesagt, in der Mitte umgeklappt werden, wenn man das Abschneiden der Punkte über die ganze Brücke fortsetzen will. Indessen ist es auch in diesem Fall nicht nöthig, über die mittlere Pfeilerverticale hinauszugehen. Denn anstatt einen Punkt auf der linken Inflectionslinie der dritten Oeffnung abzuschneiden und dann horizontal auf die rechte Inflectionslinie der zweiten Oeffnung zu übertragen, kann man den Schnittpunkt auf der letztem bestimmen und ihn symmetrisch zur gemeinschaftlichen Horizontallinie nach oben übertragen, was infolge der Symmetrie beider In-flectionslinien natürlich auf dasselbe herauskommt. (Für die Fälle 4 und 14 ist diese Uebertragung durch kleine Klammern und punk-tirte Bogen angedeutet. Für die übrigen Fälle findet sie gar nicht statt.) Führt man das Abschneiden der Punkte von rechts nach links aus, so muss man zuerst links beginnen und dann wieder in der Mitte umklappen. Es ist hier sehr nöthig, anfangs grosse Vorsicht* anzuwenden und stets zu überlegen, was man vor sich hat.

Jeder der sechzehn Belastungsfälle muss hier einzeln durchgenommen werden. Es ist rathsam, die Fälle 4, 14, 8 und 18, welche ganze Belastungen enthalten, zuerst zu behandeln und dann die übrigen.

Wollte man aber jeden Fall vollständig durchnehmen, so bekäme man eine viel zu grosse, nicht mehr zu beherrschende Anzahl Punkte; man beschränkt sich daher hiebei auf das allernothwendigste; alle überflüssigen Linien und Punkte werden ausgelassen, und nur diejenigen Momente werden wirklich construirt, die zu unserm Zweck durchaus nöthig sind. Für den Fall 1 z. B. brauchen wir nur das Moment über dem ersten Pfeiler. Zu diesem sind nur zwei von den vier Punkten nöthig, die in der zweiten Oeffnung vorkommen; von diesen zweien ist der eine schon beim Fall 4 gefunden worden, sodass nur noch der andere zu zeichnen ist. Alle übrigen Punkte, die zum Fall 1 gehören, lässt man weg. Es ist indessen hier nicht möglich, diese Vereinfachungen vollständig und ausführlich zu beschreiben ; es muss dem Zeichner selbst überlassen werden, durch eigene Untersuchung dasjenige auszufinden und auszuscheiden, was unnöthig ist. Nur als kleinen Anhaltspunkt wollen wir noch bemerken, dass z. B. für den Fall 11 acht Punkte nöthig sind, um die zwei verlangten Pfeilermomente zu bestimmen, und dass sechs davon schon durch die Fälle 4 und 14 gefunden worden sind. Ganz dasselbe gilt von den Fällen 12 und 13.

Wir anempfehlen auch bei dieser Figur eine strenge Bezeichnung durch Nummern, wodurch am besten Fehler vermieden werden können.

Für die Fälle 4 und 14 sind die Seilpolygonzüge vollständig ausgezogen worden, weil sie in verschiedener Beziehung die wichtigem und hervorragendem sind. Beide Fälle sind einander symmetrisch; folglich fällt die zweite Hälfte des Polygonzuges von 4, wenn sie umgeklappt wird, mit der ersten Hälfte von 14 zusammen und umgekehrt. Die zu 4 und 14 gehörenden Punkte sind durch X und O bezeichnet; sämmtliche übrigen tragen die entsprechenden Nummern, sodass das Studiren und Nachconstruiren der Zeichnung möglichst erleichtert ist.

Die erhaltenen Pfeilermomente werden alsdann abgegriffen und in der obersten Figur, jedes an seinem Platze, aufgetragen. Da hiebei in gewisser Beziehung oft gefehlt wird, so wollen wir darauf aufmerksam machen, dass diese Pfeilermomente nicht alle von der gemeinschaftlichen Horizontalen aus, sondern jederzeit von den Endpunkten des betreffenden Seilpolygons aus aufgetragen werden müssen. Die Fälle 4 und 14 liefern uns nun die positiven Maximalmomente und zugleich die negativen für die Mitte der Oeffnungen; 8 und 18 geben uns die negativen Maximalmomente über und zunächst den Pfeilern. Zur Bestimmung der Maxima der scheerenden Kräfte wird im Kräftepolygon eine Parallele zur betreffenden Schlusslinie im Seilpolygon gezogen und die scheerende Kraft daselbst abgegriffen. (Die Division dieser Kräfte durch 3 wird dadurch erleichtert, dass man im Kräftepolygon in der Entfernung h vom Pol eine Senkrechte zieht und alle nöthigen Punkte des Kräftepolygons darauf projicirt.) Hierüber, sowie über das schliessliche Aufträgen der Curven der Maximalmomente und der Maxima der scheerenden Kräfte (Fig. 6 und 12) brauchen wir nichts weiter zu sagen, da wir auf die in Culm. Gr. St. S. 324—326 enthaltene ausführliche Beschreibung verweisen können.

Ueberhaupt haben wir gesucht, uns streng an das zu halten, was wirklich neu ist und alles schon Bekannte nur flüchtig anzudeuten. Wir wissen zwar wohl, dass das Studium dieses Aufsatzes allein zum völligen Verständniss nicht hinreicht; die Erfahrung hat gelehrt, dass dazu das selbstständige Zeichnen eines Kräfteplans fast unumgänglich nöthig ist. Der ganze Gegenstand enthält keine besonders schwierigen Punkte; seine Häuptschwierigkeit besteht nur in der Weitläufigkeit seiner Erklärung und Beweisführung. Aber wir hoffen, dass die Leser die Mühe und den Zeitaufwand nicht scheuen werden, sich selbst eine Aufgabe zu stellen und auszuführen, und dass dadurch unser Zweck dennoch erreicht werde, den ehemaligen Schülern der Ingenieurabtheilung möglichst kurz die neuen Methoden bekannt zu machen.

Es liesse sich freilich noch mancherlei besprechen, das sich eng an diesen Aufsatz anschliesst; namentlich lassen sich die Entwicklungen der ungünstigsten Belastungen (Nr. 96 d. Gr. St.) mit Hülfe der elastischen Linie leichter und schöner vornehmen. Es hat

nämlich gar keine Schwierigkeit, nach den besprochenen Regeln eine einzelne, an beliebiger Stelle aufgebrachte Last zu behandeln; wir können, gerade wie für gleichförmig vertheilte Belastung, das erste und zweite Seilpolygon zeichnen, sämmtliche Pfeilermomente construiren und im ersten Seilpolygon auftragen. Es wird sich dann einfach Fig. 130 d. Gr. St. ergeben, nur mit dem Unterschied, dass die dortige gebrochene Linie bei uns in eine Gerade übergeht, die dortige geradlinige Schlusslinie dagegen bei uns gebrochen wird. Sehr schön lässt sich dann hieraus der S. 283 gesperrt gedruckte Satz beweisen, und durch ziemlich einfache Betrachtungen kann man aus der Figur ableiten, welche Wirkung eine Einzellast in jeder Oeffnung auf das Moment sowohl als auf die scheerende Kraft ausübt, und hieraus, wie der Balken belastet sein muss, damit an beliebiger Stelle einerseits das Moment, andrerseits die scheerende Kraft ein Maximum werde. Wir möchten die Leser einladen, selbst diese Entwicklungen zu versuchen.

Es ist ferner interessant, zu untersuchen, welchen Einfluss verschieden hohe Stützpunkte haben, und besonders, wie sich die Construction gestaltet, wenn ungleichförmige Belastung und variabler Querschnitt vorausgesetzt werden. Da uns der Raum fehlt, um hierauf weiter einzugehen, so müssen wir die Leser, auf die, wie wir hoffen, bald erscheinende zweite Auflage der Graphischen Statik
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