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Alle Diejenigen, welchen die graphischen Methoden bei der In- 
genieurwissenschaft, wie sie Professor Culmann’s »Graphische Statik« 
lehrt, lieb geworden sind, haben gewiss auch schon den Mangel 
gefühlt, der beim Abschnitt über den continuirlichen Balken darin 
besteht, dass die Pfeilermomente nicht gezeichnet, sondern gerechnet 
werden müssen. Vielen der frühem Schüler der Ingenieurschule in 
Zürich wird es bekannt sein, dass seit 2 bis 3 Jahren hierin ein 
bedeutender Fortschritt gemacht worden ist, indem jetzt alle diese 
lästigen und langwierigen Rechnungen wegfallen, und Reissschiene, 
Winkel und Zirkel zu Hülfe genommen werden. Der Zweck dieses 
Aufsatzes ist, unter freundschaftlicher und verdankenswerther Zu­
stimmung des Herrn Professor Culmann, diese neuern graphischen, 
ursprünglich von Herrn Professor Mohr herrührenden Methoden 
denjenigen klar zu machen, die die frühere Methode des continuir­
lichen Balkens schon kennen. Wir werden also weder die elastische 
Linie noch den continuirlichen Balken vollständig behandeln, sondern 
erstere nur so weit, als wir sie nöthig haben, und letztem nur in 
den wirklich neuen Theilen,. d. h. in der Bestimmung der Pfeiler­
momente ; alles andre wird als bekannt vorausgesetzt und nur kurz 
wiederholt. Auch gestattet uns der Raum nicht, den continuir­
lichen Balken allgemein durchzunehmen, sondern wir beschränken 
uns auf den einfachsten Fall, d. h. auf constanten Querschnitt und 
gleichförmig vertheilte Belastung, was in der Praxis wohl immer 
genügen wird.

Wir besprechen also zuerst möglichst kurz die Eigenschaften 
und die Construction der elastischen Linie, und hierauf ihre An­
wendung zur Bestimmung der Pfeilermomente des continuirlichen 
Balkens.
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I. Die elastische Linie.

1. Ableitung der Gleichung.

Wenn ein gerader oder krummer Balken durch beliebige Kräfte 
belastet wird, so wird er sich biegen oder allgemein seine Form 
ändern. Die deformirte Axe desselben (die Verbindungslinie sämmt- 
licher Schwerpunkte nach der Formveränderung) nennen wir seine 
elastische Linie. Es ist bekannt, dass die Gleichung dieser Linie 
gewöhnlich aus einer Differentialgleichung zweiter Ordnung gefunden 
wird, nämlich aus

wobei P, F, etc. die 
kurz alle gegebenen

d % / (P, F, etc-^’
Kräfte, die Flächeninhalte der Querschnitte, 
oder bekannten Grössen bezeichnen. Wollen 

wir die elastische Linie graphisch finden, so müssen wir also eine 
doppelte Integration vornehmen, und diess geschieht durch zwei 
aufeinander bezogene Seilpolygone.

Suchen wir zuerst den Ausdruck, welcher 
ung- eines Balkenelementes an gibt.

Es wirke (Figur 1) auf das Element von 
Kraft R (Summe aller links vom Querschnitt

uns die Formänder-

der Länge △ s die 
wirkenden Kräfte).

Wir zerlegen sie in Q 
und P, wobei erstere 
normal, letztere parallel 
zum Querschnitt wirkt. 
P bewirkt wohl innere 
Schubspannungen, aber 
keine zu berücksichti­
gende Formänderung. 
Q hingegen dreht die 
Schnittfläche um die neu­
trale Faser, welche nach 
Nr. 63 d. Gr. St. die 
Antipolare des Angriffs­

punktes von Q in Bezug auf die Centralellipse des Querschnittes 
ist. Es sei r der Hebelarm von R, a derjenige von Q. i die Ent­
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fernung der neutralen Faser vom Schwerpunkt des Querschnitts, ö 
ferner der Winkel, um welchen der Schnitt gedreht wird, Q der 
Druck in der Schwerpunktsfaser pro Flächeneinheit und E endlich 
der Elasticitätscoefficient, so können wir folgende bekannte Beziehun­
gen aufstellen:

Aeusseres Moment $ = Rr = Qa.
Der Druck irgend einer Faser ist proportional ihrem Flächen­

inhalte und ihrer Entfernung von der neutralen Faser; summiren 
wir sämmtliche Drücke, so finden wir

0 = PQ
d. h. die Kraft Q ist gleich dem Fächeninhalte, multiplicirt mit 
dem Drucke 0 der Schwerpunktsfaser. Es verhält sich nun 9 zu 8, 
wie die Verkürzung der Schwerpunktsfaser zu ihrer Länge, oder

9 : 8 = iö ; As, woraus

• ö = —.— = —- = —9 (s. Nr. 76 d. Gr. St.)
ze rzs Fk‘8 

As 0 = — 88
In dieser äusserst einfachen Formel bedeutet $ das Moment 

der ausserhalb des Schnittes wirkenden Kräfte in Bezug auf den 
Schwerpunkt, △ s die Länge des Balkenelementes, I das Trägheits­
moment des Querschnittes und 8 den Elasticitätscoofficienten.

In dieser Form kann der Ausdruck auch für gebogene Balken 
angewandt werden; wir gehen aber unmittelbar zum geraden, 
horizontalen, mit verticalen Kräften belasteten Balken 
über. In diesem Fall zeichnen wir bei gegebenen äussern Kräften 
ein Seilpolygon, so geben uns dessen Ordinaten für jeden Querschnitt 
das äussere Moment $ an. Theilen wir den Balken in genügend 
kleine Elemente von der Länge △ s, bestimmen wir für jedes derselben 
den Winkel ö und reihen wir diese Elemente so aneinander, dass 
jeweilen zwei aneinanderstossende um den entsprechenden Winkel 8 
gegeneinander geneigt sind, mit andern Worten ihre Axen jeweilen 
den Winkel d miteinander bilden, so erhalten wir die elastische 
Linie. Diese Operation wird nun durch ein zweites Seilpolygon 
erreicht.
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Wir setze»
I = a b c z1“,

(wobei a die Verwandlungsbasis, b der erste Horizontalschub, c die 
Entfernung der äussersten Faser vom Schwerpunkt und z"’ die das 
Trägheitsmoment darstellende Länge ist; s. Gr. St. Nr. 58 d. 71 
und 72)

.As $ As 1
&a bcz“‘ £ab c z'"

so folgt hieraus:

2. Die Construction der elastischen Linie.

Wir zeichnen das erste Seilpolygon, welches die äussern Kräfte 
verbindet, mit dem Horizontalschub sah, so sind die Ordinaten 

9 desselben gleich —-; wir theilen die Momentenfläche in verticale 
8 ab

Lamellen von der Breite As, und reduciren sie auf die Basis c,
9 As• so bekommen wir Linien, welche gleich — .---- sind; diese Linien

8 a b c
tragen wir als Kräfte auf und construiren mit dem Horizontalschub 
z“' ein zweites Seilpolygon, so ist dies die elastische Linie; denn 
jede Seite dieses Seilpolygons ist dann gegenüber der vorhergehen­
den um einen Winkel ö gedreht worden, welcher im Kräftepolygon

9 As
durch Aufträgen von —- .----- und z4“ gebildet worden ist. Hiebei

8 a b c
ist noch der Umstand von grosser Bedeutung, dass der Querschnitt 
nicht constant zu sein braucht, weil ja der Beweis für jedes einzelne 
Balkenelement getrennt gilt; wir haben alsdann ein Seilpolygon mit 
veränderlichem Horizontalschub zu zeichnen.

Zu bemerken ist aber noch, dass diese Construction nur gültig 
ist, so lange die Einsenkung oder der Pfeil der elastischen Linie 
gegenüber ihrer Länge verschwindend klein ist, wie es ja in weit­
aus den meisten Fällen der Praxis, namentlich bei allen Brücken­
bauten , vorkommt. Würde sich der Balken unter der Belastung 
viel stärker einsenken, so müsste sich seine Spannweite verkürzen, 

9 Asdie Kraft — . -—- müsste vertical zur elastischen Linie aufge- 
& a b c



tragen werden, kurz die Construction wäre eine andere. Diese Be­
dingung hat auch zur Folge, dass wir, um mit der elastischen 
Linie überhaupt arbeiten zu können, sie verzerren müssen; denn 
sonst würde sie von einer geraden Linie nicht zu unterscheiden 
sein. Wir verzerren sie am einfachsten durch Verkleinerung des 
ersten Horizontalschubs 8 a b. Wir werden diese Grösse 200, 500, 
1000 etc. mal kleiner annehmen, als sie in Wirklichkeit ist, und 
dadurch alle verticalen Ordinaten 200, 500, 1000 etc. mal zu 
gross bekommen.

3. Beispiel zur elastischen Linie.

Die besprochenen Constructionen werden klarer werden, wenn 
wir ein Beispiel zur elastischen Linie durchnehmen.

Es sei die elastische Linie für einen an dem einen Ende ein­
gemauerten eisernen Balken zu zeichnen; der Querschnitt sei I-förmig 
und bestehe aus Verticalplatte, Winkeleisen und 1 bis 3 je nach 
Bedürfniss aufgelegten Horizontalplatten. Die Belastung sei eine 
gleichförmig vertheilte. Die Länge des Balkens sei 6m, die Be­
lastung pro Meter = 3tn, der Maassstab der Figur 1 : 100, der­
jenige des Kräftepolygons 1 : 10.



8 —

Die Construction des Trägheitsmomentes ergab für a = 2em 
und b = 50°m: die drei verschiedenen z" = 80°m, 60°m und 
42°m. g sei rund gleich 2000t. Als erster Horizontalschub wurde 
& a b200 = 1000. angenommen und damit das erste Seilpolygon, die 

Parabel BC construirt. (Das Kräftepolygon wurde in der Figur 
ausgelassen. Ferner wurde die Belastung hundertmal grösser auf­
getragen, damit wir die Flächeninhalte der Lamellen im Maassstab 
1 : 10 bekommen.) ABC stellt nun die Momentenfläche dar. 
Wir theilen sie in 6 verticale Lamellen, und zwar so, dass sich 
der erste Querschnitt (mit 3 Horizontalplatten) auf die Lamelle 1. 
der zweite Querschnitt auf die Lamelle 2, der dritte Querschnitt 
(mit nur einer Horizontalplatte) auf die Lamellen 3 bis 6 erstreckt. 
Die Flächeninhalte der sechs Lamellen reduciren wir auf die Basis 
c = 31em und tragen die so erhaltenen Linien als Kräftepolygon 
1—6 auf, indem wir die Kräfte in den Schwerpunkten der Lamellen 
wirkend denken, (c, die Entfernung der äussersten Faser vom Schwer­
punkt des Querschnitts, ist zwar etwas veränderlich, jedoch so un­
bedeutend, dass wir sehr wenig fehlen, wenn wir seinen mittler 
Werth constant annehmen.)

Die erste Seite der elastischen Linie ist durch die Einmauerung 
gegeben; sie ist horizontal; folglich ist dadurch die Lage des ersten 
Pols des Kräftepolygons bestimmt. Parallel dem ersten Strahl im 
Kräftepolygon ziehen wir also die Seite A 1 des zweiten Seilpolygons; 
parallel dem Strahl nach 1,2 die Seite 1,2. Auf dem Strahl nach 
1,2 im Kräftepolygon wird nun der zweite Pol im Abstand z,"" 
von der Verticalen aufgetragen und damit die Seite 2,3 des Seil­
polygons construirt. Endlich kann ebenso der dritte Pol, welcher 
dem z3‘“ entspricht, aufgetragen und damit das Seilpolygon voll­
ständig gezeichnet werden. Dieses Polygon enthält nun die Tan­
genten an die elastische Linie, sodass diese leicht eingezeichnet 
werden kann. Da wir sah 200mal zu klein genommen haben, 
so sind alle verticalen Abstände dieser elastischen Linie 200mal 
zu gross. Da wir aber die Figur im Maassstab 1 : 100 gezeichnet 
haben, so sind die wirklichen Einsenkungen des Balkens gleich der 
Hälfte der gezeichneten; somit ist z. B. die Senkung des Endes 
B, B B‘ = 13mm-
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Denken wir uns, der mittlere Querschnitt erstrecke sich auf 
die ganze Länge, so kann diese Einsenkung leicht gerechnet werden 

p(2 [)4 
und findet sich ebenfalls nach der bekannten Formel B B‘ — ~——- — 

8 £ 3
= 13mm.

Sollte der Querschnitt nicht stufenweise, sondern allmählig 
wechseln, so müssten die Lamellen schmäler gemacht, und jederzeit 
das der Lamellenmitte entsprechende z"’ als Horizontalschub ge­
nommen werden.

II. Anwendung auf den continuirlichen Balken.

1. Elastische Linie des continuirlichen Balkens.

Bei Balken, die nur an ihren beiden Enden unterstützt, oder 
an dem einen Ende eingemauert, am andern frei schwebend sind, 
ist die Bestimmung der äussern Kräfte für jeden Querschnitt von 
keiner besondern Schwierigkeit. Sobald aber der Balken continuir- 
lieh ist, d. h. auf mehr als zwei Stützen aufliegt, so sind die Auf­
lagerdrücke nicht mehr auf einfachem Wege zu bestimmen; sondern 
man muss die Elasticität des Balkens zu Hülfe nehmen, um alle 
an ihm wirkenden äussern Kräfte kennen zu lernen. Es treten 
alsdann über den Zwischenpfeilern Momente auf. (S. Gr. St. Nr. 93.) 
Ihre Bestimmung auf graphischem Wege ist der Zweck dieses Auf­
satzes. Sie werden mit Hülfe der Bedingung gefunden, dass die 
elastische Linie des Balkens durch bestimmte Punkte, die Auflager, 
gehen muss.

Nach Culmann’s Gr. St. unterscheidet sich das Seilpolygon einer 
einzigen Oeffnung des continuirlichen Balkens von demjenigen eines 
nicht continuirlichen dadurch, dass bei ersterem die Schlusslinie 
herunterrückt (s. Fig. 122 d. Gr. St.), indem an den Auflagern 
nicht nur die Reactionen aufwärts, sondern auch noch Momente oder 
unendlich kleine unendlich ferne Kräfte wirken, welche bekannter­
massen (Nr. 38 d. Gr. St.), in ein Seilpolygon eingeflochten, eine 
parallele Verschiebung der Seilpolygonseite zur Folge haben. Be­
trachten wir nun die Momentenfläche, welche uns die elastische 
Linie liefern soll, so sehen wir, dass sie verschiedenen Sinn hat.
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Durch das Herabrücken der* Schlusslinie in einer Oeffnung wird die 
frühere Momentenfläche, welche wir die positive nennen wollen, ver­
kleinert, und es treten rechts und links von ihr entgegengesetzte 
oder negative Flächen auf. Es ist klar, dass diese entgegengesetz­
ten Flächen auch entgegengesetzte Wirkung auf die elastische Linie 
ausüben werden; letztere wird nämlich, so lange die Momentenfläche 
positiv ist, nach oben, so lange sie negativ ist, nach unten gekrümmt 
sein; an den Uebergangsstellen finden Wendepunkte statt. Diese 
Folgerungen lassen sich leicht ziehen, wenn man nur immer festhält: 
die elastische Linie entstehe dadurch, dass man die Momentenfläche 
in verticale Lamellen theilt und deren Flächeninhalte als Kräfte 
wirken lässt. Denn offenbar müssen dann diese Kräfte theils ab­
wärts , theils aufwärts wirken, und das entsprechende Seilpolygon 
wird theils nach unten, theils nach oben convex sein.

2. Eintheilung der Momenten fläche.

Wir wollen von jetzt an immer constanten Querschnitt voraus­
setzen und die Aenderungen der Construction infolge variablen Quer­
schnitts nur andeuten.

Betrachten wir die elastische Linie rein nur als ein Seilpolygon, 
welches Kräfte mit einander verbindet, so können wir den Satz an­
wenden, dass bei der Zusammensetzung der Kräfte die Reihenfolge 
ganz beliebig ist, wenn uns nur die schliessliche Mittelkraft inte-- 
ressirt. Da nun bei der Betrachtung einer einzigen Oeffnung nur 
die letzte Seite der elastischen Linie von Wichtigkeit ist, indem sie 
durch das Auflager gehen muss, so können wir die Lamellen der 
Momentenfläche in beliebiger Reihenfolge zusammensetzen, so lange 
wir eine einzige Oeffnung im Auge haben. Ja, wir können die 
Momentenfläche überhaupt anders als in verticale Lamellen eintheilen; 
wir könnten z. B. in jeder Oeffnung drei Theile unterscheiden, 
einen positiven und zwei negative, und jeden derselben als Kraft 
wirken lassen, deren Angriffspunkt in den Schwerpunkt des betreffenden 
Flächentheils fällt. (Dies gilt nur bei constantem Querschnitt; bei 
veränderlichem wäre Lamelleneintheilung unumgänglich, indem der 
Horizontalschub sich fortwährend ändert.) Wir gehen noch weiter 
und theilen die Momentenfläche einer Oeffnung in eine positive Fläche, 



11 -

welche gerade so gross ist, als wenn der Balken nicht continuirlich 
wäre (welche also von einem Auflager bis zum andern reicht), und 
in eine negative Fläche, welche sich offenbar als Trapez herausstellt.

Hierauf ist grosses Gewicht zu legen. Zum bessern Verständ- 
niss wiederholen wir diesen Vorgang im Hinblick auf Fig. 3, zweite 
Oeffnung. Die wirkliche Momentenfläche besteht aus einem positiven 
Theil, der Parabel CD C, und zwei negativen Theilen, den Parabel­
dreiecken AA‘C und BB‘C‘. Wir nehmen anstatt dieser die ganze 
Parabel fläche ADB und das Trapez AA‘ B‘B, oder was eben­
fallserlaubt ist, statt des Trapezes die zwei Dreiecke AA' B' und 
B B' A. Die Parabelfläche ist hiebei positiv, die beiden Dreiecke negativ.

Da wir die Belastung des continuirlichen Balkens als gleich­
förmig vertheilt annehmen, so werden die ersten Seilpolygone stets 
Parabeln sein, so dass wir uns wohl den Namen Parabelfläche als 
Abkürzung erlauben dürfen.

Durch diese Eintheilung der Momentenfläche in eine Parabel­
fläche und zwei Dreiecke haben wir einen grossen Vortheil erlangt. 
Während die drei zunächst liegenden Theile CDC, AA'C und 
B B‘C‘ alle drei sowohl von dem Pfeilermoment AA' als demjeni­
gen B B‘ abhängig sind, so haben wir es nach unsrer neuen Ein­
theilung mit drei Flächen zu thun, wovon die erste von den Pfeiler­
momenten ganz unabhängig ist, die zweite nur von dem linksseitigen 
und die dritte nur von dem rechtsseitigen Pfeilermoment abhängt.

3. Wahl der Constanten.
Da wir gleichförmig vertheilte Last und constanten Querschnitt 

allein berücksichtigen, so können wir in Hinsicht der Construction 
der elastischen Linie uns noch einige Abänderungen erlauben, die 
von grossem Vortheil sind. Es ist leicht einzusehen, dass am Wesen 
der Sache nichts geändert wird, wenn wir z. B. statt & a b irgend 
eine andere Grösse als Horizontalschub nehmen; das Seilpolygon 
wird nur dahin geändert, dass seine Ordinaten alle proportional ver- 
grössert oder verkleinert werden. Ebenso verhält es sich, wenn 
wir statt c eine andere constante Grösse als Verwandlungsbasis und 
statt des constanten znt irgend einen andern Horizontalschub be­
nützen. Die Figuren werden dadurch nur mehr oder weniger in 
verticaler Richtung verzerrt.
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Es ist nun von grossem Vortheil, wenn man die Verwandlungs­
basis gleich der halben Spannweite einer der Oeffnungen, am 
besten der zweiten, macht und statt z"" den dritten Theil dieser 
Spannweite nimmt. Es wäre alsdann 1/9 l, die neue Verwandlungs­
basis und 1/3 l, unser zweiter Horizontalschub. Was den ersten 
betrifft, so ist er bei der Bestimmung der Pfeilermomente ganz be­
liebig; doch nimmt man bei Fachwerkbrücken am besten ein Viel­
faches der Fachwerkshöhe h, also nh. Wollte man schliesslich die 
Ordinaten der elastischen Linie in richtiger Grösse haben,- so müsste 

nh.1, 1.1, 1, . 
man sie nur mit ——• multipliciren.

&a b.c. z“‘

4. Eigenschaften des Seilpolygonsuges.

Wir wollen in der Folge bei der Entwicklung der Construction 
zur Bestimmung der Pfeilermomente einen bestimmten Fall ins Äuge 
fassen, nämlich einen Balken über drei Oeffnungen l, l und l2, 
wovon die erste und dritte wie gewöhnlich gleich gross sind, wovon 
ferner die zwei ersten total, die dritte nur mit dem Eigengewicht 
belastet sind. (S. Fig. 3a.) Die Parabeln für die verticalen Be­
lastungen mögen durch Construction vermittelst des Kräftepolygons 
oder durch Berechnung des Pfeils gezeichnet worden sein. Die 
zwei über den Pfeilern entstehenden Momente seien gleich AA' und 
BB‘. Obschon dieselben vorläufig unbekannt sind, so ist es doch 
nicht nöthig, sie zuerst beliebig anzunehmen, sondern man kann sie 
direct construiren.

Führen wir die Trennung in positive Parabelflächen und negative 
Dreiecke in allen Oeffnungen durch, so bekommen wir in der ersten 
und letzten Oeffnung je ein, in allen Zwischenöffnungen, in unserm 
Fall in der zweiten, je zwei Dreiecke. Setzt man diese Einzel- 
flächen als Kräfte, die in den entsprechenden Schwerpunkten wirken, 
der Reihe nach zusammen, so entsteht ein Seilpolygonzug von der 
Form Fig. 3 b. Die Parabelflächen wirken in der Mitte jeder Oeffnung 
abwärts, die Dreiecksflächen in den beiden Dritteln jeder Oeffnung 
aufwärts. Unsere Aufgabe ist, diese letztem so gross zu 
machen, dass dieser Seilpolygonzug durch sämmtliche 
Auflager geht.
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Wir leiten sogleich auch einige Eigenschaften dieses Polygon­
zuges ab. Dass seine Ecken fortwährend theils auf den Halbirungs-, 
theils auf den Drittellinien der Oeffnungen liegen, haben wir soeben 
angeführt. Verlängern wir ferner z. B. die zweite und vierte Seite

des Zuges, KM und MN aufwärts, so schneiden sie sich in einem 
Punkte M, der der Mittelkraft der beiden zunächst liegenden Drei­
eckskräfte entspricht. (Nr. 27 d. Gr. St.) Diese beiden Dreiecke 
haben die Flächeninhalte 1/2 AA'.l0 und 1/2 AA'.lt; die Flächenin­
halte verhalten sich also wie l : l; folglich theilt nach bekanntem 
Satze die Mittelkraft die Entfernung der beiden Einzelkräfte in zwei
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Theile, die sich verhalten wie l, : lo, nämlich umgekehrt wie die 
Kräfte. Da aber die ganze Entfernung nach früher 1/3 /0 — 1/3 l, 
ist, so be'trägt die Entfernung der Mittelkraft von der ersten Componente 
1/3 l,, von der zweiten 1/3 l , und ihre Lage ist daher auf höchst 
einfache Weise zu finden: Wir tragen 1/3 l, von der Drittellinie 
der ersten Oeffnung nach rechts, oder was auf dasselbe herauskommt, 
1/3 l von der Drittellinie der zweiten Oeffnung nach links auf, wie 
es in Fig. 3 b angedeutet ist. Die so erhaltene Stelle oder Verti- 
callinie wollen wir das »verschränkte« Drittel nennen. Wir wissen, 
dass sich auf ihr jederzeit zwei Seiten des Seilpolygons schneiden.

5. Seilpolygone der positiven Momenten flächen.

Wir denken uns nun zunächst die Flächeninhalte der Parabeln 
auf die Basis 1/2 lk reducirt (wir nehmen, wie schon bemerkt, die 
zweite Oeffnung als diejenige an, welche uns die Constanten liefert, 
und wollen sie zur Abkürzung die »massgebende« nennen) und die 
erhaltenen Längen als Kräftepolygone aufgetragen mit einem Hori­
zontalschub gleich 1/3 l. Diese Kräftepolygone zu zeichnen, kann, 
wie wir gleich sehen werden, unterlassen werden; die Hauptsache 
ist, die dazu gehörenden Seilpolygone zu besitzen. Letztere bestehen, 
da. wir uns die ganze Parabelfläche in ihrem Schwerpunkt als eine 
einzige Kraft concentrirt denken, nur aus zwei Linien, die sich in 
der Mitte der Oeffnung schneiden. Wir verlängern jede derselben 
über die ganze Oeffnung, so dass zwei sich kreuzende Linien ent­
stehen, Fig. 3 c.

Die Strecke, welche diese zwei Linien auf der Pfeilerverticalen 
abschneiden, entspricht jeweilen dem Moment der Parabelfläche in 
Bezug auf den Pfeiler; wir wollen die Grösse dieser Abschnitte 
rechnen. Es sei der Pfeil der Parabel in der zweiten Oeffnung 
gleich f, so ist ihr Flächeninhalt gleich 2/3 f^. Diess reducirt 
auf die Basis 1/2 l, gibt die Länge 4/3 f. Diese Länge, als Kraft 
gedacht, bewirkt auf den Pfeiler ein Moment gleich 4/3 f . 1/2 lr 
= 2 f. 1/3 l, (weil ihr Hebelarm gleich der halben Spannweite 
ist). Dieses Moment muss aber gleich dem gesuchten Abschnitt, 
multiplicirt mit dem betreffenden Horizontalschub, sein; letzterer ist 
1/3 l^; das Moment, 2 f . 1/3 l, , dividirt durch diesen Horizontal­
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schub, gibt den Abschnitt gleich 2 f. Wir brauchen also das Kräfte­
polygon nicht zu zeichnen, sondern nur den Pfeil der Parabel 
mit dem Zirkel abzugreifen, auf den Pfeilerverticalen links und rechts 
der Oeffnung doppelt aufzu tragen und die vier Punkte kreuz­
weis zu verbinden, so ist das Seilpolygon der Parabelfläche fertig. 
(Zum bessern Verständniss möge der Leser nachconstruiren.)

Etwas weitläufiger muss mit den beiden andern Oeffnungen 
verfahren werden. Da hier, wenn wir den Pfeil der Parabel mit 
f bezeichnen, der Flächeninhalt gleich 2/3 f l, die reducirte Fläche 

l l l l 2 
gleich 4/3 f' . —0, das Moment gleich 4/3 f — . — = 2f‘. ist,

/ L \2 so wird der Abschnitt durch Division mit 1/3 l, gleich 2f‘ (—0)

Es muss daher in den zwei Nebenöffnungen, oder überhaupt in 
allen Oeffnungen, welche nicht gleich gross sind wie die massgebende, 
der Pfeil zuerst mit dem Quadrat des Verhältnisses beider Oeffnun­
gen (der betreffenden zur massgebenden) multiplicirt und erst dann 
auf den Pfeilerverticalen doppelt aufgetragen werden. Diese Multi- 
plication ist leicht in der Oeffnung selbst graphisch vorzunehmen, 
indem man 1/2 l, von der Mitte der betreffenden Oeffnung aus nach 
rechts oder links aufträgt und durch Verschieben des Winkels zwei­
mal Parallellinien zieht, was wir hiemit nur andeuten wollen.

Da diese Seilpolygone der Parabelflächen von lauter bekannten 
und gegebenen Grössen abhangen, so können sie ohne weiters zum 
Voraus gezeichnet werden; sie werden daher zuerst in jeder Oeffnung 
construirt und bilden alsdann die Figur 3 c. Sie bieten uns den 
Vortheil, nicht nur über den Pfeilern, sondern an jeder beliebigen 
Stelle das Moment der in der Mitte der Oeffnung wirkenden Para­
belkraft als verticalen Abstand der zwei sich kreuzenden Linien 
abzugreifen. Wir werden später hievon Gebrauch machen.

6. Construction der festen Punkte und des Seilpolygonzuges.

Wir haben jetzt alle gegebenen und bekannten Grössen be­
sprochen, die allgemeinen Eigenschaften des Seilpolygonzuges abge­
leitet und wollen nun versuchen, mit ihrer Hülfe den Polygonzug 
zu zeichnen. Die Construction der Pfeilermomente wird sich alsdann
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hieraus ergeben. Es ist uns von vornherein nicht möglich, eine 
einzige Seite des Polygons zu zeichnen, sondern wir müssen uns 
zuerst nur mit der Aulfindung gewisser Punkte begnügen. Wir 
tragen zuerst auf einer Horizontalen die drei Spannweiten auf. (S. 
Fig. 3 d.) Denken wir uns die zweite Seite des Polygons 3b rück­
wärts verlängert, so schneidet sie auf der Verticalen durch das 
Widerlager eine Länge ab, die uns bekannt ist; sie entspricht dem 
Moment der in der ersten Oeffnung wirkenden Parabelkraft; dieses 
Moment oder diese Länge haben wir in Fig. 3 c construirt, es ist 
der Abschnitt der beiden sich kreuzenden Linien auf der Verticalen 
durch das Widerlager. Wir können daher diese Grösse in 3c ab­
greifen und in 3 d vom Auflager aus abwärts auftragen, so ist uns 
ein Punkt K1 der zweiten Seilpolygonseite bekannt. (Der Leser 
ist gebeten, mit dem Zirkel nachzuconstruiren.)

Von besonderer Wichtigkeit ist nun das Dreieck LMN, 3b. 
Wir wissen von diesem Dreieck folgendes: Seine drei Ecken liegen 
beziehungsweise auf drei bekannten Verticalen; seine erste Seite 
(wir erlauben uns, LM die erste, LN die zweite und MN die dritte 
Seite des Dreiecks zu nennen) geht durch den bekannten Punkt K 
und seine zweite durch den ebenfalls bekannten Auflagerpunkt des 
ersten Pfeilers. Unsere Aufgabe wäre, dieses Dreieck zu zeichnen; 
das ist aber, so lange wir nicht mehr bekannte Grössen haben, 
eine Unmöglichkeit. Indessen können wir doch eine Eigenschaft 
dieses Dreiecks zum Voraus angeben: Wir können einen Punkt 
angeben, durch welchen die dritte Seite desselben gehen muss. Wir 
wenden hier folgenden Satz der ebenen Geometrie an: »Wenn sich 
die drei Ecken eines Dreiecks auf drei Strahlen eines Strahlen­
büschels bewegen, ferner zwei Seiten desselben sich um feste Punkte 
drehen, so dreht sich auch die dritte Seite um einen festen Punkt, 
der mit den beiden ersten in einer geraden Linie liegt.« (Dieser 
Satz findet sich in Reye’s Geometrie der Lage, I. Abth. S. 51, und 
in Salmon’s analyt. Geom. d. Kegelschn., übers, von Fiedler, 2. Aufl. 
§ 50, S. 55.) Die Ecken des Dreiecks LMN liegen auf drei pa­
rallelen festen Linien (also auf Strahlen eines Büschels, dessen 
Centrum im Unendlichen liegt), und die zwei ersten Seiten gehen 
durch zwei feste bekannte Punkte ; folglich gibt es jedenfalls einen
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dritten Punkt, durch welchen die dritte Seite geht; und diesen Punkt 
können wir construiren, ohne auch sonst irgend etwas vom Dreieck 
zu wissen. In Fig. 3d ist dieser Punkt construirt worden: Man 
zieht durch K' eine beliebige Linie K'L'M', durch L und das 
Auflager die Linie L'N', verbindet M‘ mit N', zieht durch K' und 
das Auflager eine Linie, bis sie M'N1 in J schneidet, so ist J 
unser dritter Punkt. Denn das Dreieck mag nun sein, wie es 
will, so muss nach dem gegebenen Satz seine dritte Seite jedenfalls 
durch den Punkt J gehen. (Man kann sich sehr leicht davon über­
zeugen, dass J ein fester Punkt ist, indem man durch K‘ irgend 
eine andere beliebige Linie zieht und dieselbe Construction wieder­
holt.) Den Punkt J nennen wir einen festen oder Inflections- 
punkt.

Wenn wir nun auch noch keine der drei Linien LM^ LN, MN 
in ihrer wahren Lage und Richtung kennen, so haben wir doch aus 
den bis jetzt bekannten Eigenschaften eine neue abgeleitet; wir 
kennen einen Punkt, durch welchen MN oder die vierte Seite des 
Seilpolygonzuges geht. Wir schliessen folgendermassen weiter: Die 
vierte und fünfte Seite des Polygonzuges schneiden nach bekannten Sätzen 
auf jeder verticalen Linie das Moment der in der Mitte der zweiten 
Oefihung wirkenden Parabelkraft in Bezug auf die betreffende Stelle 
ab; diese Kraft ist uns bekannt, ihr Moment ebenfalls; wir können 
es in 3c für jede beliebige Stelle abgreifen, folglich auch für die 
Stelle, in welcher der Punkt J liegt. Wir ziehen daher durch J 
eine Verticallinie (sie ist strichpunktirt und heisst Inflections- 
linie) , und zwar abwärts und aufwärts durch 3 c und d. In 3 c 
greifen wir das Stück ab, welches die beiden sich kreuzenden Linien 
auf der strichpunktirten abschneiden, und tragen es in 3 d von J 
aus nach unten auf (der Leser möge nachconstruiren), so haben wir 
in J‘ einen Punkt der Seite fünf.

Nun wenden wir wieder denselben Schluss an wie früher; statt 
K' haben wir jetzt den Punkt J', durch welchen die erste Seite 
desjenigen Dreiecks geht, das über dem zweiten Pfeiler gerade so 
liegt, wie LMN über dem ersten Pfeiler. Wir haben wieder drei 
verticale Linien, auf welchen die drei Ecken liegen, und zwei Punkte, 
J‘ und das dritte Auflager, durch welche zwei Seiten gehen; somit 
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können wir, wie es in 3d geschehen ist, wieder einen Punkt con- 
struiren, durch welchen die dritte Seite des neuen Dreiecks, oder 
die siebente Seite des Polygonzuges geht; es ist der Punkt J“. 
Gleicherweise wird nun fortgefahren, durch J“ eine verticale Linie 
gezogen, nach oben verlängert, in 3 c der betreffende Abschnitt 
durch die zwei sich kreuzenden Linien abgegriffen und von J“ aus 
nach unten aufgetragen, so ist ein Punkt der achten Seite des 
Polygonzuges gefunden. Wären noch mehr Oeffnungen vorhanden, 
so könnte diese Methode beliebig weit fortgesetzt werden.

Wir wären jetzt schon im Stande, den Polygonzug zu zeichnen; 
denn wir kennen von der letzten oder achten Seite zwei Punkte, 
und es ist nicht schwer, von rechts nach links gehend, das ganze 
Polygon, Seite für Seite, zu zeichnen. Denn der Schnitt der achten 
Seite mit der Mittellinie der dritten Oeffnung gibt uns einen Punkt 
der siebenten Seite, so dass zwei derselben bekannt sind; der Schnitt 
der siebenten Seite mit der ersten Drittellinie derselben Oeffnung 
gibt uns einen Punkt der sechsten Seite u. s. w. Indessen könnten 
dadurch Ungenauigkeiten entstehen, indem sich ein allfälliger kleiner 
Fehler fortpflanzen würde. Wir haben auch ein einfaches Mittel 
in Händen, diese Ungenauigkeit zu vermeiden, und dafür eine Menge 
Probeschnitte zu erhalten. Wir führen nämlich dieselbe Construc- 
tion nochmals aus, indem wir auf dem rechten Widerlager be­
ginnen und, genau wie vorhin von links nach rechts, nun von 
rechts nach links vorgehen. Es ist nicht nöthig, dieses Ver­
fahren weiter zu beschreiben; es würde nur eine Wiederholung des 
Frühem sein. Auch haben wir die betreffenden Linien in der Figur 
nicht hineingezeichnet. Man erkennt aber ohne weiters, dass nach 
Beendigung beider Constructioneu sich in jederOeffnung vier Punkte 
ergeben, welche je kreuzweise verbunden werden müssen, um in 
jeder Oeffnung zwei richtige Seiten des Polygons zu liefern. Dieses 
letztere ist in der Figur ebenfalls nicht ausgeführt worden, weil es 
sich in der dem Aufsatz beigefügten lithographirten Tafel wiederfindet, 
und weil wir später nochmals darauf zurückkommen. Ebenso ergibt 
sich nun von selbst, wie schliesslich der Seilpolygonzug vervollstän­
digt wird, sodass wir uns nicht länger dabei aufhalten.
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7. Construction der Pfeilermowente.
Wir sind nun auf dem Punkt angelangt, wo wir für den von 

uns gewählten, bestimmten Fall die elastische Linie oder vielmehr 
den Polygonzug 3 b zeichnen können. Es handelt sich nun darum, 
die zwei Pfeilermomente zu finden, welche diesem bestimmten Be­
lastungsfall entsprechen. Diess ist ausserordentlich einfach: Die 
vierte Seite des Zuges, MN, schneidet auf der ersten Pfeilervertica- 
len das eine, die fünfte Seite auf der zweiten Pfeilerverticalen das 
andere Pfeilermoment ab, sodass wir diese zwei Seiten nur aufwärts 
zu verlängern, die zwei Abschnitte abzugreifen und in 3 a als AA' 
und B B‘ aufzutragen brauchen.

Der Beweis ist ebenfalls einfach: Die zwei Linien NM und 
N L, 3 b, schneiden offenbar auf der ersten Pfeilerverticalen das Mo­
ment derjenigen Kraft ab, welche in N wirkt; eine kleine Rechnung 
zeigt uns, dass dieser Abschnitt gleich AA' sein muss: Die in N 
wirkende Kraft ist nämlich der Flächeninhalt des Dreiecks AA'B', 
gleich 1/2 A A’.l; reducirt man diese Fläche auf die Basis 1/2 I, 
so ergibt sich die Länge AA'; multiplicirt man diese mit dem He­
belarm der Kraft, 1/3 l,, so erhält man ihr Moment; dieses Moment 
ist aber auch gleich dem besagten Abschnitt, multiplicirt mit dem 
Horizontalschub, und da letzterer ebenfalls gleich 1/3 l, ist, so ist 
der Abschnitt der Linie MN auf der Verticalen durch den 
Pfeiler direct gleich dem Pfeilermoment. Es ist klar, dass 
es hiebei gar nicht nöthig ist, die Linie NL zu ziehen; denn sie 
geht stets durch das Auflager.

Zu bemerken ist hiezu noch folgendes: Die Pfeilermomente 
werden nur durch solche Linien abgeschnitten, welche in der mass­
gebenden Oeffnung liegen; für Linien in andern Oeffnungen gilt die 
eben ausgeführte kleine Rechnung nicht. Indessen ist es, wenigstens 
bei 2 — 5 symmetrischen Oeffnungen, immer möglich, sich an diese 
Bedingung zu halten. (Auch da, wo es nicht möglich ist, kann 
durch eine kleine graphische Multiplication der Abschnitte mit dem 
Quadrate des Verhältnisses zweier Oeffnungen leicht geholfen wer­
den.) Man kann jetzt auch den Grund erkennen, warum bei vier 
symmetrischen Oeffnungen die zweite und nicht die erste Oeffnung 
als massgebende genommen wird.
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Ist die Construction der Pfeilermomente unser einziger Zweck 
(und sie ist es in der Praxis), so braucht der Polygonzug gar nicht 
gezeichnet zu werden. Selbst die Seiten, welche die Pfeilermomente 
abschneiden, brauchen nicht ausgezogen zu werden; sondern man 
kann nur das Lineal an die gefundenen Punkte anlegen und mit 
der Zirkelspitze oder durch ein kleines Strichelchen die Grösse des 
Pfeilermomentes auf der Pfeilerverticalen markiren, wie es auch auf 
der lithographirten Tafel ausgeführt ist.

8. Verschiedene Belastungsfällc] Construction der Inflcctionslinien.

Wir haben hiemit den einen bestimmten Fall vollständig durch- 
genommen; wir gehen nun über zur Construction einer ganzen An- 
zahl von Belastungsfällen, nämlich aller derer, die nöthig sind, um 
die Maxima der Momente und der scheerenden Kräfte für jede Stelle 
des continuirlichen Trägers zu kennen. Wie der Balken belastet 
sein muss, damit das Moment und die scheerende Kraft an jeder 
Stelle ein Maximum werde, wollen wir als bekannt voraussetzen. 
(S. Gr. St. Nr. 96 und die Belastungsschemata auf Seite 321 und 
341.)

Sobald wir mehr als einen Fall zu behandeln haben, so kön­
nen wir eine bedeutende Vereinfachung der Construction vornehmen: 
Es ist die für alle Fälle gemeinschaftliche Construction der Inflec- 
tionslinien. Die Lage dieser (in Fig. 3 strichpunktirten) Linien 
ist nämlich ganz unabhängig von der Belastungsart und hängt nur 
von der Grösse und dem Verhältniss der Spannweiten ab. Man sieht 
bald ein, dass, wenn auch in 3d der Punkt K' höher oder tiefer 
läge, der Punkt J sich nur in verticaler Richtung verrücken könnte; 
denn die Verticallinien durch L‘, M‘ und N bleiben immer diesel­
ben und die ganze Figur ändert sich nur in verticaler Hinsicht. 
Ebenso verhält es sich mit J“ ; auch dieser Punkt wird stets auf 
derselben Verticalen liegen, weil J‘ sich fortwährend auf der Ver- 
ticalen JJ‘ bewegen muss. Wir werden daher gleich anfangs, ohne 
einen bestimmten Belastungsfall im Auge zu haben, die Inflections- 
linien construiren, und zwar sämmtliche, d. h. auch diejenigen, welche 
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entstehen, wenn man die Construction der Inflectionspunkte von 
rechts nach links vornimmt.

Hiezu dient Fig. 4. Die Spannweiten werden auf einer Hori­

zontalen aufgetragen und in allen Oeffnungen die Verticallinien in 
den Dritteln und verschränkten Dritteln gezogen. Da die Lage von 
K‘ in 3 d auf diejenige der Inflectionslinien keinen Einfluss hat, so 
rücken wir ihn hinauf in’s Auflager und ziehen durch dieses die 
erste Linie, entsprechend K'L'M“, dann die zweite Linie, entsprechend 
L'N, dann die dritte, entsprechend M^N', so schneidet diese letztere 
auf der Horizontalen den Punkt ab, durch welchen die Inflections- 
linie geht; denn K'J fällt mit der Horizontalen selbst zusammen. 
Dieser Punkt ist mit einem Ringelchen bezeichnet. Von ihm aus 
führen wir die Construction noch einmal aus und bekommen den 
ebenfalls mit einem O bezeichneten Punkt in der dritten Oeffnung. Wür­
den wir dieselbe Construction von rechts nach links vornehmen, so 
bekämen wir in Folge der Symmetrie der Oeffnungen genau sym­
metrische Punkte, sodass wir, hierauf gestützt, die beiden letzten 
Punkte (die ebenfalls mit O O angegeben sind) durch Abstechen 
mit dem Zirkel erhalten können. Die Figur ist so einfach, dass 
sie wohl keiner weitern Erläuterung bedarf.

Durch diese Inflectionspunkte, welche in jeder Aussenöffnung 
einmal, in jeder Zwischenöffnung doppelt vorkommen, werden als­
dann die verticalen Inflectionslinien gezogen. Und nun ist die Con­
struction der Pfeilermomente auf ein blosses Abgreifen mit dem 
Zirkel und Ziehen von Strichelchen zurückgeführt. Das Moment 
am Widerlager wird in 3 c abgegriffen und in 3 d aufgetragen; an 
den erhaltenen Punkt und das zweite Auflager wird das Lineal an­
gelegt und auf der linken Inflectionslinie der zweiten Oeffnung ein
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Punkt markirt; von diesem aus wird das oberhalb abzugreifende 
Moment (der Abschnitt auf der Inflectionslinie) nach unten aufge­
tragen, an den erhaltenen Punkt und das dritte Auflager wieder 
angelegt und auf der linken Inflectionslinie der dritten Oeffnung 
ein Punkt markirt u. s. f. Dasselbe wird rückwärtsgehend wieder­
holt, und dann werden die gesuchten Pfeilermomente durch Anlegen 
an je zwei entsprechende Punkte über den Pfeilern abgeschnitten.

9. Seilpolygone der positiven Momentenflächen für sämmtliche 
Belastungsfälle.

Es bleibt uns nun noch Fig. 3 c zu besprechen übrig. Sie 
muss uns nämlich nicht nur die Momente für einen Fall, sondern 
für alle in der betreffenden Oeffnung vorkommenden Belastungsfälle 
liefern. Es sind deren acht, nämlich die Belastung durch Eigen­
gewicht, die Totalbelastung und sechs partielle Belastungsarten. (S. 
d. Schema.) Wir richten Fig. 3 c so ein, dass die erste Seite 
(welche von links oben nach rechts unten gerichtet ist) für alle 
acht Fälle gemeinschaftlich ist, was natürlich möglich ist, da 
wir bei gegebener Kraft und gegebenem Horizontalschub die Rich­
tung der ersten Seilpolygonseite immer noch beliebig wählen können. 
Es handelt sich daher nur darum, für jeden der acht Fälle die 
zweite Seite zu finden. Wir erinnern daran, dass 3c entstanden 
ist, indem man die Momentenfläche auf 1/2l, reducirt und mit dem 
Horizontalschub 1/3 f ein Seilpolygon gezeichnet hat. Wir verfahren 
gerade wie bei dem speciellen Fall, den wir schon besprochen ha­
ben: Wir rechnen die Abschnitte, welche die zwei Linien, d. h. 
die zwei Seiten des Seilpolygons 3 c auf den Pfeilern erzeugen; und 
zwar dadurch, dass wir den Flächeninhalt der Momentenfläche rech­
nen und mit dem Abstand ihres Schwerpunktes von jedem der zwei 
nächsten Auflager multipliciren, mit andern Worten, das Moment 
der Momentenfläche in Bezug auf die beiden Auflager bestimmen. 
Wir bekommen alsdann auf jeder Seite eine Länge, welche auf der 
Pfeilerverticalen von dem Schnittpunkt der ersten gemeinschaftlichen 
Seite aus aufzutragen ist, und zwar links nach unten und rechts 
nach oben. Diese Längen werden bei partieller Belastung ungleich, 
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weil die Belastungscurve aus zwei verschiedenen Parabelstücken be­
steht, die Momentenfläche daher unsymmetrisch ist, und ihr Schwer­
punkt nicht mehr in der Mitte liegt.

Um nun das Moment der Momentenfläche für eine auf die 
Länge ß . / (wobei ß eine absolute Zahl, keine Länge bedeutet) sich 
erstreckende Belastung zu rechnen, denken wir uns das Eigenge­
wicht von der zufälligen Belastung getrennt, und behandeln letztere 
besonders. (Diess ist erlaubt, da sich bei parallelen Kräften die 
Momente einfach addiren.) Die zufällige Belastung pro Ifd. Mtr. 
sei P2, so beträgt gegenwärtig die Last ßpzl. (S. Fig. 5.) Wir 

Fig- 5. , zeichnen für diese Last ein Seilpo- 
- -—_-) lygon mit dem Horizontalschub H, 
1 I 41 7 so besteht es für die Strecke ßl aus 
A einer Parabel, für den übrigen Theil 

der Oeffnung aus einer geraden Linie.
k/ Wir ziehen die Schlusslinie, theilen 

die so erhaltene Momentenfläche durch eine Gerade in ein Dreieck 
und ein Parabelsegment und behandeln jeden Theil besonders. Wir 
berechnen den Flächeninhalt jedes der beiden Theile und multipli- 
ciren ihn mit dem Abstand des betreffenden Schwerpunktes von dem 
rechtsseitigen Auflager.

Das Dreieck hat die Basis l und die Höhe h, den Flächenin­
halt ^hl. Das Parabelsegment hat die Basis ßl und die Höhe k, 
also den Flächeninhalt 2/3 ßl:l. Beide Flächeninhalte zusammen:

F=(*+ 2 ßh)l.
Der Abstand des Dreieckschwerpunktes vom rechten Auflager 

ist gleich dem arithmetischen Mittel der Abstände seiner drei Ecken, 
d. h. gleich }( + ßl + 0) = }(1 +B)l. Der Abstand des Pa­

rabelsegmentschwerpunktes ist gleich ^ßl. Folglich

das Moment der Dreiecksfläche = 1(1 - + ß)hl2; 
das Moment der Parabelfläche = 1/3 ß2kl2;
beide zusammen M, = 1[(1+)h—2ß*/]l2.

Das Moment M der ganzen Fläche in Bezug auf das linke 
Auflager ist, da 9, + 9, = F.I ist:
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M, = Fl - m, = (]h + 3ßk)12 - [z( + B)h + 3B3k]12 
=(h—4Bh—GBA — 3B%L)12

I, = ((2 - B) (h + 2ßk)l2
Nun müssen wir die Werthe von h und k berechnen, h mit 

dem Horizontalschub H multiplicirt, ist das Moment des linken Auf­
lagerdruckes in Bezug auf die Stelle, wo die Belastung beginnt; es 
findet sich also, wenn wir diesen Auflagerdruck mit dem Hebelarm 
l — Bl multipliciren; ebenso findet sich }h — 2k, wenn wir densel­

ben Druck mit l — 1ßl multipliciren. Dieser Auflagerdruck ist aber 
gleich

ßpzl. = 3ß2pxl; folglich:

Hh = ^ß2pj(l - ß)l und 
n(h+2%) = }B‘p. ( - ~ß)l.

Aus diesen Gleichungen finden sich h und k.

" = —n—
3 82(2 - ß) P.l‘ 

"F H ' 8h 
folglich h = 4 (1 - 3) R.

Setzen wir diese Werthe ein, so bekommen wir

m, = 3 [4(1 - 33) k + 2334] l2 =ax@- 83) ß2p. I2

9, = 8(2-3 (4-28)1/2 - 2n(2 - 8)*8*p."2
Wir haben bis jetzt gar nicht berücksichtigt, dass die Momen­

tenfläche auf 1l2 l reducirt und das neue Seilpolygon mit dem Ho­
rizontalschub 1/3 l construirt werden muss. Es ist dies auch nicht 
röthig, da wir folgendermassen verfahren: Wollen wir von der par­
tiellen Belastung zur totalen übergehen, so haben wir einfach 
ß == 1 zu setzen, und es findet sich dann für rechts wie für links 

9= anp.l*
Vergleichen wir diesen Werth mit denjenigen für partielle Belast­
ung, so sehen wir, dass die letzteren nur durch gewisse Coefficienten 
von ersterem verschieden sind, und dass diese Coefficienten allein von
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fenden Parabel (unter Umständen mit

der Länge der Strecke abhängen, auf welcher die Belastung liegt (wie 
sich auch erwarten liess). Ist uns daher der in 3c aufzutragende 
Abschnitt für ganze zufällige Belastung gegeben, so können wir 
durch Multiplication desselben mit gewissen Factoren die betreffenden 
Abschnitte für partielle Belastung erhalten. Für Eigengewicht, 
sowie für Totalbelastung wird einfach der doppelte Pfeil der betref-

4,
2

multiplicirt) aufgetra-

gen, und nun wird der der zufälligen Belastung entsprechende Ab­
schnitt nach gewissen Verhältnissen eingetheilt, und wir haben unmit­
telbar die gesuchten Abschnitte für partielle Belastung.

Diese Verhältnisse werden gegeben durch (2 — 32) 32 für das 
rechte Auflager und durch (2— 3)2 32 für das linke Auflager unter 
der Voraussetzung, dass die Last von rechts her vorrücke. Gerade 
umgekehrt ist es für die von links her kommende Belastung. Da 
wir uns in der praktischen Anwendung nur auf 1/4, 2/4 und 3/4 
Belastung beschränken, so können wir diese Verhältnisszahlen ein 
für allemal rechnen. Wir bekommen folgende, schon Gr. St. S. 318 
mitgetheilte, kleine Tabelle:

an den Pfeiler anstehende vom Pfeiler abstehende
Belastung, (2—82) ß'2 Belastung, (2—8)2 ß2

1/4 Belastung 31. = 0,1211 49 = 0,1914
256

1/2 »
7

— = 0,4375
9 

------- = 0,5625
16

34 » 207
256 = 0,8086

225
256 = 0,8789

Den der zufälligen Belastung entsprechenden Theil nach diesen
Verhältnisszahlen einzutheilen, geschieht am besten nach den ge­
wöhnlichen Regeln für graphisches Multipliciren und Dividiren. Es 
wird von einem Endpunkt der einzutheilenden Länge aus eine be­
liebige Linie gezogen; auf dieser werden die sechs Zahlen in be­
liebigem Maassstabe (z. B. ein Decimeter als Einheit) aufgetragen; 
der der Einheit entsprechende Punkt wird mit dem andern End­
punkt der einzutheilenden Länge verbunden, und durch die sechs 
Punkte werden Parallelen gezogen. (In der lithographirten Tafel 
wurde diese Construction nicht ausgezogen.)
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Sehr zu empfehlen ist hiebei, sich streng an eine bestimmte 
Nummerirung zu halten, indem sonst leicht, besonders im Anfang. 
Verwechslungen entstehen. Man benütze untenstehendes Schema.

10. Erklärung des Kräfteplans.

Zum Schluss wollen wir noch die gesummten an einem Kräfte­
plan vorzunehmenden Operationen mit Bezug auf die lithographirte 
Tafel wiederholen. Diese Tafel gibt die vollständige Construction 
für einen Träger von vier Oeffnungen und zwar für denselben, der 
in Culm. Gr. St. Nr. 102 auf rechnerischem Wege behandelt wor­
den ist. Die Spannweiten, Belastungen und Maassstäbe sind einge­
schrieben. Da die gerechneten Pfeilermomente an Genauigkeit nichts 
zu wünschen übrig lassen, so haben die Leser dadurch Gelegenheit, 
die Richtigkeit der graphischen Methoden einer strengen Prüfung 
zu unterziehen. Wir fügen hier das Belastungsschema von S. 321 
d. Gr. St. bei, aber mit einer andern Nummerirung der einzelnen 
Fälle, welche schon seit einigen Jahren der früher vorgezogen 
wird.

B e 1 a s t u n g s s c h e m a. 
r. ................ ......................... ........................... .....................

2 ............. ....................................................... .........................  
3 .. .................................... .............................. ....................  
4 ........................................................... ........................  
5 ................. ............................... ....................................................... 
6 .......................................... .......................................................
7.................... ................................... ............. ..........................
8........................................................ .......................................................

11....................................................... ............................. .........................
12....................................... ............... .......................................................
13.............................................. ...............................................................
14 .________________________________________
15 . ............................ ......................................................
16 . _______ ______________________
17 . ____________ ______________
18...................... ..................................................... ......................
Wenn die Oeffnungen der Brücke symmetrisch sind, wie es 

hier angenommen ist und wie es beinahe immer der Fall sein 
wird, so kann man sich, was auch früher geschehen ist, auf das 
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Zeichnen der Hälfte der Balkenöffnungen beschränken (bei drei Oeff- 
nungen auf zwei, bei fünfen auf drei u. s. f.). Einige Schwierig­
keit verursacht dann freilich die Construction der Pfeilermomente, 
indem man, um das Abschneiden der Punkte über die ganze Brücke 
fortzusetzen, in der Mitte umklappen und rückwärts gehen muss, 
worüber wir weiter unten noch sprechen werden. Was das Aus­
ziehen des Kräfteplans betrifft, so wird man am besten thun, die 
lithographirte Tafel als Muster zu nehmen, um die Construction 
vollständig sowohl als deutlich zu haben.

Die erste Arbeit ist, die Kräfte- und Seilpolygone für 
sämmtliche Belastungsfälle zu zeichnen (Fig. 1, 2, 7 und 8), wie 
es in der Gr. St. S. 322 — 32 5 erklärt ist. Die Parabeln für 
Eigengewicht und Totalbelastung werden entweder mit Hülfe des 
Kräftepolygons oder dadurch construirt, dass man ihren Pfeil be­
rechnet. Was die partiellen Belastungen betrifft, so wird hier die 
Last bei halben Belastungen an zwei, bei 1/4 und 3/4 Belastungen 
an vier Punkten concentrirt gedacht und nur der Polygonzug gezeich­
net , weil jederzeit nur die Endpunkte des Seilpolygons verlangt 
werden.

Dann folgen die zweiten Seilpolygone der Momenten­
flächen (Fig. 3 und 9). Zuerst werden die Pfeile der Parabeln, 
diejenigen der ersten Oeffnung entsprechend reducirt, doppelt aufge­
tragen, und zwar für Eigengewicht wie für Totalbelastung. Die 
entsprechenden Punkte werden verbunden, sodass drei sich in einem 
Punkte schneidende Linien entstehen. Nun werden die der zufälli­
gen Belastung entsprechenden Längen nach obigen Verhältnisszahlen 
eingetheilt (diese Verhältnisszahlen sind an der rechten Verticallinie 
beigeschrieben), die Punkte mit den betreffenden Nummern versehen 
und je zwei entsprechende derselben verbunden. Von diesen Ver­
bindungslinien sind immer infolge der Construction zwei einander 
parallel; sie wurden nicht ganz, sondern nur in kurzen Strecken 
an den Pfeilerverticalen und den Inflectionslinien ausgezogen.

Drittens werden die Inflectionslinien nach Fig. 4 im Text 
construirt (Fig. 4 und 10 der Tafel). Auch dieser Theil der Con­
struction muss, wie die Bestimmung der Pfeilermonte, über die ganze 
Brücke fortgesetzt werden, und hiezu ist ebenfalls in der Mitte ein 
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Umklappen erforderlich. Indessen wird letzteres infolge der Sym­
metrie der Brücke etwas modificirt. Nachdem nämlich zuerst der 
linke Inflectionspunkt der zweiten Oeffnung bestimmt worden ist, 
ist es nicht nöthig, denjenigen der dritten Oeffnung zu zeichnen und 
symmetrisch zur mittlern Pfeilerverticalen auf die andere Seite zu 
übertragen, um den rechten Inflectionspunkt der zweiten Oeffnung 
zu erhalten; letzterer kann direct construirt werden: Vom linken 
Punkt der zweiten Oeffnung aus wird eine beliebige schiefe Linie 
nach rechts gezogen, das Stück, welches sie auf der rechts liegen­
den Drittellinie abschneidet, von der Horizontalen aus nach unten 
aufgetragen, und der so erhaltene Punkt mit dem Schnittpunkt auf 
der mittlern Pfeilerverticalen verbunden, so schneidet diese Verbin­
dungslinie auf der Horizontalen den gesuchten Inflectionspunkt ab. 
Die Richtigkeit ist nicht schwer einzusehen. Von diesem Punkt 
aus bestimmt man schliesslich, nach links gehend, den Inflections­
punkt der ersten Oeffnung.

Die Figuren 5 und 11 enthalten die Construction der 
Pfeilermomente, welche wir oben erklärt und bewiesen haben. 
Auch hier muss, wie schon gesagt, in der Mitte umgeklappt wer­
den, wenn man das Abschneiden der Punkte über die ganze Brücke 
fortsetzen will. Indessen ist es auch in diesem Fall nicht nöthig, 
über die mittlere Pfeilerverticale hinauszugehen. Denn anstatt einen 
Punkt auf der linken Inflectionslinie der dritten Oeffnung abzuschnei­
den und dann horizontal auf die rechte Inflectionslinie der zweiten 
Oeffnung zu übertragen, kann man den Schnittpunkt auf der letztem 
bestimmen und ihn symmetrisch zur gemeinschaftlichen Horizontal­
linie nach oben übertragen, was infolge der Symmetrie beider In- 
flectionslinien natürlich auf dasselbe herauskommt. (Für die Fälle 
4 und 14 ist diese Uebertragung durch kleine Klammern und punk- 
tirte Bogen angedeutet. Für die übrigen Fälle findet sie gar nicht 
statt.) Führt man das Abschneiden der Punkte von rechts nach 
links aus, so muss man zuerst links beginnen und dann wieder in 
der Mitte umklappen. Es ist hier sehr nöthig, anfangs grosse Vor­
sicht* anzuwenden und stets zu überlegen, was man vor sich hat.

Jeder der sechzehn Belastungsfälle muss hier einzeln durch­
genommen werden. Es ist rathsam, die Fälle 4, 14, 8 und 18, 
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welche ganze Belastungen enthalten, zuerst zu behandeln und dann 
die übrigen.

Wollte man aber jeden Fall vollständig durchnehmen, so be­
käme man eine viel zu grosse, nicht mehr zu beherrschende Anzahl 
Punkte; man beschränkt sich daher hiebei auf das allernothwendigste; 
alle überflüssigen Linien und Punkte werden ausgelassen, und nur 
diejenigen Momente werden wirklich construirt, die zu unserm Zweck 
durchaus nöthig sind. Für den Fall 1 z. B. brauchen wir nur das 
Moment über dem ersten Pfeiler. Zu diesem sind nur zwei von 
den vier Punkten nöthig, die in der zweiten Oeffnung vorkommen; 
von diesen zweien ist der eine schon beim Fall 4 gefunden worden, 
sodass nur noch der andere zu zeichnen ist. Alle übrigen Punkte, 
die zum Fall 1 gehören, lässt man weg. Es ist indessen hier nicht 
möglich, diese Vereinfachungen vollständig und ausführlich zu be­
schreiben ; es muss dem Zeichner selbst überlassen werden, durch 
eigene Untersuchung dasjenige auszufinden und auszuscheiden, was 
unnöthig ist. Nur als kleinen Anhaltspunkt wollen wir noch be­
merken, dass z. B. für den Fall 11 acht Punkte nöthig sind, um 
die zwei verlangten Pfeilermomente zu bestimmen, und dass sechs 
davon schon durch die Fälle 4 und 14 gefunden worden sind. Ganz 
dasselbe gilt von den Fällen 12 und 13.

Wir anempfehlen auch bei dieser Figur eine strenge Bezeich­
nung durch Nummern, wodurch am besten Fehler vermieden werden 
können.

Für die Fälle 4 und 14 sind die Seilpolygonzüge vollständig 
ausgezogen worden, weil sie in verschiedener Beziehung die wichtigem 
und hervorragendem sind. Beide Fälle sind einander symmetrisch; 
folglich fällt die zweite Hälfte des Polygonzuges von 4, wenn sie 
umgeklappt wird, mit der ersten Hälfte von 14 zusammen und 
umgekehrt. Die zu 4 und 14 gehörenden Punkte sind durch X 
und O bezeichnet; sämmtliche übrigen tragen die entsprechenden 
Nummern, sodass das Studiren und Nachconstruiren der Zeichnung 
möglichst erleichtert ist.

Die erhaltenen Pfeilermomente werden alsdann abge­
griffen und in der obersten Figur, jedes an seinem Platze, auf­
getragen. Da hiebei in gewisser Beziehung oft gefehlt wird, so 
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wollen wir darauf aufmerksam machen, dass diese Pfeilermomente 
nicht alle von der gemeinschaftlichen Horizontalen aus, sondern jeder­
zeit von den Endpunkten des betreffenden Seilpolygons aus aufge­
tragen werden müssen. Die Fälle 4 und 14 liefern uns nun die 
positiven Maximalmomente und zugleich die negativen für die Mitte 
der Oeffnungen; 8 und 18 geben uns die negativen Maximalmomente 
über und zunächst den Pfeilern. Zur Bestimmung der Maxima der 
scheerenden Kräfte wird im Kräftepolygon eine Parallele zur betref­
fenden Schlusslinie im Seilpolygon gezogen und die scheerende Kraft 
daselbst abgegriffen. (Die Division dieser Kräfte durch 3 wird da­
durch erleichtert, dass man im Kräftepolygon in der Entfernung h 
vom Pol eine Senkrechte zieht und alle nöthigen Punkte des Kräfte­
polygons darauf projicirt.) Hierüber, sowie über das schliessliche 
Aufträgen der Curven der Maximalmomente und der Maxima 
der scheerenden Kräfte (Fig. 6 und 12) brauchen wir nichts weiter 
zu sagen, da wir auf die in Culm. Gr. St. S. 324—326 enthaltene 
ausführliche Beschreibung verweisen können.

Ueberhaupt haben wir gesucht, uns streng an das zu halten, 
was wirklich neu ist und alles schon Bekannte nur flüchtig anzu­
deuten. Wir wissen zwar wohl, dass das Studium dieses Aufsatzes 
allein zum völligen Verständniss nicht hinreicht; die Erfahrung hat 
gelehrt, dass dazu das selbstständige Zeichnen eines Kräfteplans fast 
unumgänglich nöthig ist. Der ganze Gegenstand enthält keine be­
sonders schwierigen Punkte; seine Häuptschwierigkeit besteht nur 
in der Weitläufigkeit seiner Erklärung und Beweisführung. Aber 
wir hoffen, dass die Leser die Mühe und den Zeitaufwand nicht 
scheuen werden, sich selbst eine Aufgabe zu stellen und auszuführen, 
und dass dadurch unser Zweck dennoch erreicht werde, den ehe­
maligen Schülern der Ingenieurabtheilung möglichst kurz die neuen 
Methoden bekannt zu machen.

Es liesse sich freilich noch mancherlei besprechen, das sich 
eng an diesen Aufsatz anschliesst; namentlich lassen sich die Ent­
wicklungen der ungünstigsten Belastungen (Nr. 96 d. Gr. St.) mit 
Hülfe der elastischen Linie leichter und schöner vornehmen. Es hat
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nämlich gar keine Schwierigkeit, nach den besprochenen Regeln eine 
einzelne, an beliebiger Stelle aufgebrachte Last zu behandeln; 
wir können, gerade wie für gleichförmig vertheilte Belastung, das 
erste und zweite Seilpolygon zeichnen, sämmtliche Pfeilermomente 
construiren und im ersten Seilpolygon auftragen. Es wird sich 
dann einfach Fig. 130 d. Gr. St. ergeben, nur mit dem Unterschied, 
dass die dortige gebrochene Linie bei uns in eine Gerade übergeht, 
die dortige geradlinige Schlusslinie dagegen bei uns gebrochen wird. 
Sehr schön lässt sich dann hieraus der S. 283 gesperrt gedruckte 
Satz beweisen, und durch ziemlich einfache Betrachtungen kann 
man aus der Figur ableiten, welche Wirkung eine Einzellast in 
jeder Oeffnung auf das Moment sowohl als auf die scheerende Kraft 
ausübt, und hieraus, wie der Balken belastet sein muss, damit an 
beliebiger Stelle einerseits das Moment, andrerseits die scheerende 
Kraft ein Maximum werde. Wir möchten die Leser einladen, selbst 
diese Entwicklungen zu versuchen.

Es ist ferner interessant, zu untersuchen, welchen Einfluss 
verschieden hohe Stützpunkte haben, und besonders, wie sich die 
Construction gestaltet, wenn ungleichförmige Belastung und variabler 
Querschnitt vorausgesetzt werden. Da uns der Raum fehlt, um 
hierauf weiter einzugehen, so müssen wir die Leser, auf die, wie 
wir hoffen, bald erscheinende zweite Auflage der Graphischen Statik







DER CONTINUIRLICHE BALKEN

4 gleichförmig belastete Offiungen von 52,65,65,52 met. Weite bei constantem Q uerschnitt







WYDZIAEY POLITECHNICZNE KRAKOW

Kdn., Czapskich 4 — 678. 1. XII. 52. 10.000

BIBLIOTEKA GEOWNA

132266

100000299734


