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Abstract

The paper presents results of numerical analysis of the gabion retaining wall
stability. A real, complicated object is analysed. Gabions are modelled using
a homogenized Mohr-Coulomb model for mesh and filling. Interface elements
are used to allow discontinuous deformation field between adjacent gabions and
between gabions and subsoil. A parametric study of the influence of the mesh
and joints between gabions strength on the stability of the structure is performed.
Different modelling approaches are compared. Numerical simulations were
performed using ZSoil v25 Finite Element Method (FEM) system. Efficiency of
the proposed approach is shown.
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1. Introduction

A gabion is a cage, cylinder, or box made of steel wire mesh, filled with rock
samples. In civil engineering, gabions are often used to form gravity retaining
walls or gabion-faced reinforced soil retaining walls (when the steel mesh used
for gabion cages is also used as a soil reinforcement). Bridges abutments and
small hydrotechnical structures can also be built from gabions

Despite their simplicity, the numerical modelling of the interaction between
a gabion retaining wall and the soil is complicated. The main sources of
complications are nonlinear behaviour of the soil (both the retained soil and the
gabion filling) and the interactions (friction) between the steel mesh and the
soil, and between adjacent gabions (analysed by Bergado et al., 2003). Joints
between gabions and their limited strength are another source of complications
— this problem was analysed by Grodecki (2017).

The complicated behaviour of twisted hexagonal wire mesh is analysed by
many researchers. Laboratory static tensile tests and their numerical simulations
are used by Agostini et al. (1987), Bergado et al. (2003)), Bertrand et al. (2005,
2008), and Grodecki (2020).

The use of ultimate soil pressure theory (identical to that for conventional
gravity retaining walls) is often advised for stability calculations of the gabion
retaining walls, identical with the case of concrete or masonry retaining walls.
Usually, only two possible failure modes are considered — overturning and
horizontal sliding.

Numerical modelling of real gabion walls is a subject of a study by Grodecki
and Urbanski (2018). Tests of full-scale gabion walls and their numerical
simulations are presented in Agostini et al. (1987), Bertrand et al. (2008),
Grodecki (2021), and Jayasree (2008).

Gabions are usually modelled as an elastic continuum. In some works
(Bathurst and Rajagopal (1993), Jayasree (2008), Grodecki (2021), Grodecki
and Urbanski (2018)), homogenised Coulomb-Mohr model for gabions (mesh
and filling) is used. This approach allows to model another failure mode —
shearing failure of the filling and mesh tensional failure.

Theinterface (contact) elements are used to describe the friction between the
gabions and the retained soil, or the friction between gabions (if the connections
between gabions are not “perfect”, a problem analysed by Grodecki (2017)).
The retained soil is usually modelled using the Coulomb-Mohr elastic — plastic
model. The plane strain assumption is usually used. The problem of estimating
the friction parameters was analysed by Bergado et al. (2003).

The main goal of this article is to present the methodology used and the
results of the numerical analysis of the stability of a complex gabion retaining
structure. Results of the parametric study of the influence of the mesh and the
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joints between gabions strenght on the stability of the structure are presented.
The scope of this article in the field of gabion structure testing and modelling is
shown in Fig. 1.

2. Numerical simulations

A complicated construction with two stepped retaining walls was analysed. Both
walls have a height of 2 m; each consists of five layers of 0.5 x 0.5 m gabions
(one layer is buried in the subsoil) — see Fig. 1. The subsoil layers consist mostly
of silt, silty clay, and clay (I; from 0.20 to 0.50). Weathered limestone is present
in the deeper subsoil. No groundwater water table was observed.
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Numerical simulations were performed using the ZSoil v25 Finite
Element Method (FEM) system (characterized in detail by Commend et al.
(2022)). The ¢ - ¢ reduction method (described by Griffiths and Lane (1999),
Matsui and San (1999), Commend et al. (2022)) was used to estimate the
Stability Factor SF. All simulations were performed in plane strain conditions.
A Coulomb—Mohr elastic-plastic model with “cut-off” (no tension) condition was
used for the soil. 2D (plane strain) model was used, because the wall is relatively
long (about 35 m) and almost straight.

In order to model a discontinuous deformation field between gabions
and between gabions and the subsoil, interface elements were used. Their
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parameters were estimated according to Bergado et al. (2003) (the friction
angle between gabions and between gabions and the subsoil equal to 90% of
the internal friction angle) and Grodecki (2017) (the cohesion in the interface
elements, responsible for the limited tensile strength of the joints between
gabions, estimated to be 40 kPa). Truss elements responsible for modelling
the resistance of the joints between gabions to gap opening were used, with
the tensile strength of the joints equal to 20 kN/m (as advised by the US
standard — American Society for Testing and Materials, 2011; for details see
Grodecki, 2017). Details of the numerical model are shown in Fig. 3.

Gabions were modelled as a homogenised Coulomb-Mohr type continuum
(mesh + filling). According to Agostini et al. (1987), Bathurst and Rajagopal
(1993), and Jayasree (2008) the friction angle of a homogenised continuum is
equal to the friction angle of the filling, and some additional cohesion appears
as a result of the mesh. Such additional cohesion can be estimated on the basis
of large-scale triaxial tests, as proposed by Bathurst and Rajagopal (1993) and
Jayasree (2008), from the following equation

r

c. = Ady tan(45O +9j D
2 2

where: ¢ — friction angle of the filling, ¢, — additional cohesion [kPa], Ac, —
increase of the hydrostatic pressure in triaxial test [kPa]

G—ZMSC' 1 @)
P d (1-s,)

where: g, — axial strain of the mesh at failure, according to US standard
(American Society for Testing and Materials, 2011) about 0.06-0.07,
g, — circumferential strain
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where: M — elastic moduli of the mesh [kN/m], d — lowest gabion dimension [m].
Elastic moduli of the mesh M could be calculated from equation:

M= @

where: f, — mesh tensile strength [kN/m].

Using ¢ = 40°, €, = 0.07, f, = 20 kN/m, d = 0.5 m value of the ¢, = 50 kPa was
obtained.

Parameters of the soils and gabions used in this study are presented in
Table 1.

Table 1. Parameters of the gabion and soil used in the stability analysis (own elaboration)

Material E [MPa] v [kN/m;] o [°] c [kPa]
Silt, silty clay I, = 0.30 16.5 20.5 13.5 13.0
Silt, silty clay I, = 0.20 20.5 20.5 15.0 17.0
Clay I, = 0.50 11.0 19.5 10.0 8.5
Weathered limestone 186.5 21.0 50 0.0
Gabions 200 22.0 40 50.0
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Fig. 4. Stability loss mode (sliding surface),
SF = 1.60, Coulomb-Mohr model for gabions
(own elaboration)

Fig. 5. Stability loss mode (sliding surface),
SF = 1.65, elastic model for gabions (own
elaboration)

For the assumptions presented above, a reasonable value of the Safety
Factor (SF = 1.60) was obtained. The stability loss mode is rather complex
(see Fig. 4). The upper part of the sliding surface is circular; the lower part is
flat; shear failure of the gabion in the bottom wall is observed.
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For comparison of the obtained results, the simulations using the elastic
model for gabions were performed. The obtained SF value of 1.65 shows that,
for the proposed parameters of the mesh, the influence of the material model
for gabions on the stability of the structure is small but noticeable. The sliding
surface in the lower part is slightly different — it passes beneath the buried
gabion of the lower wall (Fig. 5).
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In order to judge whether the mesh and the joints between gabions strength
has a significant influence on the stability of the structure, a parametric study
was conducted. The mesh strength from 4 to 80 kN/m and the joints strength
from 0 (no joints at all) to 50 kN/m were assumed.

The obtained results show almost no influence of the joints strength on the
structure stability. Even for ‘no joints at all’ (a bad design practice!) and the
mesh strength of 20 kN/m, the value of SF = 1.55 was obtained — the friction
between gabions is large enough to maintain a reasonable stability margin of
the structure. Crucial in this case problem of estimating the friction parameters
was analysed by Bergado et al. (2003). Information about the choice of the
proportion between mesh opening and filling particle sizes should be analysed
during detailed design of the structure.
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However, a weak mesh leads to a decrease in SF. The minimal value of
SF =1.44 is obtained for the mesh strength of 4 kN/m. This value is independent
of joints strength. Stability loss mode is identical, like in Fig. 4.

Increase of the mesh strength up to 70 kN/m together with increase of the
joints strength up to 50 kN/m do not leads to significant SF arise. Upper value
of the possible SF is, of course, value obtained for elastic model of the gabions
SF=1.65. Obtained results are illustrated by Fig. 6.
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The obtained results of the performed parametric study lead to the findings
described below:

» In this particular case, the strength of the joints between gabions has
almost negligible influence on the stability of the structure.

» The strength of the mesh has significant influence on the stability
of the wall. The preliminarily assumed mesh strength of 20 kN/m is
a reasonable choice — a further increase does not lead to a significant
increase in the SF.

» The stability loss mode could change in the lower part with changes in
the mesh strength.

3. Final remarks

The presented numerical simulations of gabion wall stability show that such
simulations could be a useful engineering tool in the design process of gabion
structures. It’s worth noticing that in some cases the stability loss occurs
together with shear failure of the gabions. Therefore, the limited shear strength
of the gabions should be taken into account. For safety purposes and verification
of the performed calculations, geodetic monitoring of the displacements of the
structure is advised.
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