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Abstract

The dynamic response of railway tracks is a key factor influencing the 
operational safety and reliability of rail transport. Classical analytical methods 
for  modelling track dynamics become insufficient at higher operating 
speeds, as they typically assume linear behaviour and cannot account for 
nonlinearities  present in the fastening system or in the rail track foundation 
response. This increases the risk of damage, leading to traffic interruptions, 
financial losses, and reduced safety. To support predictive maintenance, 
it is necessary to develop databases based on in-situ measurements, 
complemented  with synthetic data obtained from validated analytical and  
semi-analytical models. This paper presents such a model, designed to analyse 
how the parameters of the track foundation – including stiffness and damping 
– affect the track's dynamic response to loads generated by a moving railway 
vehicle. The model incorporates experimentally confirmed nonlinear stiffness 
of the fastening system, represented by a  viscoelastic layer that provides 
continuous support for the rails.
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1.  Introduction

Modern methods used for modelling railway track dynamics are mainly 
numerical  or semi-numerical. These approaches significantly broaden the 
ability to analyse complex systems, especially in situations where direct 
measurement is difficult due to limited accessibility or the lack of sufficiently 
precise instrumentation. They also allow the study of the influence of external 
factors and the evaluation of optimisation scenarios for track structure  
design.

However, numerical approaches are often overused. Their results may 
be burdened with uncertainties resulting from the internal mechanisms of 
commercial software, which frequently operates as a “black box”. Incomplete 
knowledge of the modelled system, together with insufficient verification of 
the assumptions used, may lead to unreliable results. Therefore, validation of 
numerical simulations should be conducted using experimental measurements 
or simplified analytical models based on mathematical physics (Timoshenko, 
1926; Fryba, 1972; Shenga, Jones and Thompson, 2004; Bogacz and 
Czyczula,  2008; Czyczula, Koziol and Kudla et al., 2017). Analytical solutions 
remain an invaluable reference due to their transparency and mathematical 
accuracy (Mathews, 1958; Koziol and Pilecki, 2020; Koziol and Pilecki, 2021; 
Koziol, 2023).

When a closed-form analytical solution is not available, an approximation 
may  be formulated so that the result remains sufficiently close to the exact 
solution, whose existence is ensured by theory. Various non-numerical 
approximation techniques can be applied depending on the nature of the 
problem. Their use often requires high-performance computing tools; therefore, 
it is desirable to simplify the model by considering the essential characteristics 
of the analysed system. This heuristic approach begins with a clear formulation 
of the research question. Then it focuses on adapting an existing model or 
constructing a new one, ensuring that the simplifications still address the 
research objective without requiring a full mathematical and physical description 
of the system. Approximate solutions remain theoretically reliable in ranges 
inaccessible to experimental verification due to their grounding in mathematical 
reasoning (Koziol, 2010; Koziol and Mares, 2010; Koziol and Hryniewicz, 2012; 
Czyczula, Koziol and Kudla et al., 2017; Koziol, 2020). Selecting an appropriate 
computational method is therefore crucial, and approximate methods should 
not be replaced uncritically by numerical simulations. The building of hybrid 
models provides new possibilities for the analysis of railway track dynamics, 
especially in cases of considerations not only theoretical, but also supported 
by measurements made on real structures, which is reflected in the latest 
research  (Xie, Huang and Zeng et al., 2020; Lasisi and Attoh-Okine, 2021; 
Qu, Yang and Zhu et al., 2021; Fathi, Mehravar and Rahman, 2023; Wang, 
Bai and Liu, 2023; Ramos, Correia and Nasrollahi et al., 2024; Xin, Wang and 
Wang et al., 2024; Zadeh, Edwards and de O. Lima et al., 2024; Sun, Seyedkazemi 
and Nguyen et al., 2025; Zhai, Stichel and Ling, 2025).

Another important issue is the applicability range of the adopted model. 
In this study, experimental verification is applied where possible, together 
with an analysis of the model’s physical properties that extend beyond the 
primary research question. Determining the applicability range requires 
parametric studies, which may utilise various computational tools. A relevant 
example is the wavelet based solution for a multilayer continuous rail model 
described by reduced beam equations, used in the analysis of nonlinear system 
characteristics (Koziol, 2016; Koziol and Pilecki, 2020; Koziol and Pilecki, 2021; 
Koziol, Dimitrovova and Pilecki, 2021).

This paper applies such an approach to a two layer double beam model used 
to analyse the vertical dynamic response of a railway track. The system is solved 
using a semi analytical approach based on wavelet approximation of the Fourier 
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transform. The model includes experimentally confirmed nonlinear stiffness of 
the fastening system, represented as an additional viscoelastic layer providing 
continuous support of the rails.

2.  Two-layer nonlinear model

The simplest model describing the vertical vibrations of a railway track during 
the passage of a train is a beam resting on an elastic foundation. This equation 
may contain additional terms characterizing the mechanical properties of the 
system, such as the nonlinear stiffness of the foundation.
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In the equation, the following notation is used: w x t( , ) [ ]m  – vertical 
vibrations of rails; EIr [ ]Nm2  – bending stiffness of rail steel; mr [ ]kg/m  – unit 
mass of rail; kr [ ]N/m2  – linear stiffness of the rail foundation; cr [ ]Ns/m2

 
– 

viscous damping of the rail foundation; k x tNr ( , ) [ ]N/m4  – nonlinear part of 
foundation stiffness; P x t( , ) [ ]N/m  – a set of forces generated by axles of train 
moving uniformly along rails with constant speed V [m/s].

The introduction of nonlinearity necessitates the use of approximations or 
other specialised computational techniques, typically leading to the linearization 
of the problem. Since the beams are of infinite length, the condition of radiation 
at infinity, also known as geometric damping, is naturally satisfied, ensuring 
that vibrations disappear at a certain distance from the excitation (in the 
case of a moving train, at a certain distance before and after it). This fact can 
be one of  the criteria for the correctness of the system solved using selected 
approximation techniques (Koziol, 2010).

A more complex system is the so-called multi-layer model, which, in the case 
of a railway track, takes the form of a two-layer system:
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u x t( , ) [ ]m  – vertical vibrations of rails; EIr [ ]Nm2  – bending stiffness of rail 
steel; mr [ ]kg/m  – unit mass of rail; kr [ ]N/m2  – linear stiffness of the layer 
between rails and sleepers (including fastening system); cr [ ]Ns/m2  – viscous 
damping of the layer between rails and sleepers (including fastening system); 
w x t( , ) [ ]m  – vertical vibrations of sleepers; ms [ ]kg/m  – unit mass of sleepers; 
ks [ ]N/m2  – linear stiffness of the rail track foundation; cs [ ]Ns/m2  – viscous 
damping of the rail track foundation; P x t( , ) [ ]N/m  – a set of loads generated by 
axles of train moving uniformly along rails with constant speed V [m/s].

This model already includes a fastening system, but it is linear, which does 
not fully reflect the system’s real properties. The first equation represents the 
vertical displacements of the rail, understood as a homogeneous beam, while 
the second, in the case of a stiffened beam, can represent a concrete slab in 
a ballastless rail track. To model the response of a conventional pavement, 
the bending stiffness must be removed from the second equation. Then the 
bottom layer becomes a rigid body that can represent a longitudinal sleeper, 
corresponding to a ballasted rail track with classic sleepers. The load must 
be modelled in an appropriate manner to reflect the rail deflections between 
the sleepers.
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The load modelled in the simplified case by a non-inertial force system 
contains several components that can be grouped into three categories:

	 Q x t P x t P x t P x t P x t Q x tk S D R kk
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There are three components responsible for: the part of the load that is 
constant in time, generated by the weight of the vehicle (quasi-static solution), 
the part of the load generated by periodic track irregularities (e.g. deflections 
between sleepers, wavy wear of the rail running surface, etc.) and the random 
part, which includes unspecified factors influencing the load variability (these 
may be, for example, random irregularities of the rail running surface) (Bogacz, 
Krzyżyński and Popp, 1998; Lombaert, Galvın and Francois et al., 2014; 
Koziol, 2017; Koziol and Kudla, 2018).

If the random part is omitted, a single load can be written as:

Q x t P P i t
a

x Vt s

a
H ak k l

k( , ) ( exp( ( ))) cos
( )

(� � � �
� ��

�
�

�

�
�0

21
2 2

� � �
� 22 2� � �( ) )x Vt sk

(4)

where: Ωk  – frequency of a single load (axle force); sk  – distances between 
forces (corresponding to the vehicle axles configuration); ϕl  – angular 
frequency associated with different wheel positions in relation to sleepers at the 
same moment; V  – train speed; H( )∗  – Heaviside function (used to describe 
the wheel-rail contact area); ∆P  – additional force generated by regular 
imperfections (e.g. deflection between sleepers).

The most complex model of this class is the double beam model with two 
nonlinearities, which, after removing the first term in the second equation, 
describes ballasted railway track vibrations generated by a moving rail vehicle:
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where, additionally: kNr [ ]N/m4  – nonlinear part of stiffness of the layer between 
rails and sleepers (including fastening system); kNs [ ]N/m4  – nonlinear part of 
stiffness of the rail track foundation.

Given the computational complexity of the model under consideration, 
approximations must be used to solve it, primarily due to the presence of 
nonlinearities. A suitable method is a semi-analytical approach that utilises 
Adomian’s decomposition for nonlinear terms and wavelet approximations 
based on Coiflet wavelet bases (to determine the inverse Fourier transform and 
Adomian polynomials (Adomian, 1989; Adomian, 1994; Mallat, 1998; Wazwaz, 
1999; Monzon, Beylkin and Hereman, 1999; Wojtaszczyk, 2000; Koziol, 2014). 
The effectiveness and accuracy of this method have been extensively studied 
and confirmed in numerous previous publications, making it a valuable tool 
for solving similar systems, particularly those exhibiting significant response 
variability under dynamic loads. In such cases, it is challenging to achieve 
numerical stability of the obtained solutions, and analytical methods do not 
provide sufficient knowledge to obtain a physically accurate solution. It should 
be emphasised that the model itself was validated based on comparison with 
other methods in the linear case, and also by comparison with experimental 
measurements in the case of taking into account the nonlinear stiffness of the 
foundation (Koziol, 2010; Koziol, 2016; Czyczula, Koziol and Kudla et al., 2017).
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Fig.  1.  Falns 441 Va coal wagon (photo by 
Piotr Tokaj, Railway Institute)

3.  Computational results and preliminary analysis

Due to the high complexity of the approximation, a special computational 
algorithm  was developed, running in the Wolfram Research environment. 
The  example calculations used actual values of the structure and vehicle 
parameters. The vehicle considered in the analysis is the Falns 441  Va 
coal wagon  (Fig. 1), with four axles configured at distances of 1.8 m, 
5.04 m, and 6.84  m.  A  static load generated by this wagon is equal to 
P P P0 0112 500 0 2� � �, ; . .N �

The following ballasted rail track parameters are assumed (Czyczula, Koziol 
and Kudla et al., 2017):
1.	 Rail type 60E1: Young’s modulus E � �2 1 108. ,kN/m2  moment of inertia in 

the vertical plane Ir � � �3055 10 8 m4 , unit mass mr =60 kg/m, rail rolling 
surface without imperfections.

2.	 Rail foundation (fastening system): kr � �8 8 107. ,N/m2  cr =3950 Ns/m2 , 
kNr � �5 1013 N/m4

 
( );kNr =1013 N/m4

3.	 Rail track foundation: k ks s� � � �8 5 10 2 8 107 7. ( . ),N/m N/m2 2  
cs � �81 103 Ns/m2 ,  k kNs Ns� � �10 5 1013 13N/m N/m4 4( );

4.	 Unit mass of sleeper: ms =267 kg/m;
5.	 Train speed: V =70 km/h.

Figures 2 and 3 present the maximum vibration response of the rails and 
sleepers in the vertical direction, given as the complex modulus of the vertical 
vibration response obtained from the wavelet-based semi-analytical solution. 
Solid lines denote nonlinear results, while dashed lines represent linear stiffness 
behaviour.

Fig.  2.  Maximal response of rail track in good 
condition – complex modulus of vibrations in 
vertical direction (solid – nonlinear; dashed – 
linear; kNr kNs> ): (a) rails; (b) sleepers (own 
elaboration)

https://doi.org/10.37705/TechTrans/e2025021
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A strong influence of the nonlinearity of the rail fastening system can be 
observed, especially in the case of a severely degraded track bed. It is worth 
emphasizing that the considered nonlinearity of the stiffness parameter  
improves the rail response, measured by the displacement amplitude, while 
worsening the sleepers dynamics (Figs. 2 and 3).

Degraded track foundation conditions (lower stiffness of the subgrade layer) 
result in more intense vibration activity in the rails, despite lower displacement 
amplitudes. This behaviour indicates that the fastening layer and sleepers absorb 
part of the vibration energy. The nonlinear stiffness of the fastening system 
alters the energy transfer between layers of the track structure, suggesting 
that the proper selection of fastening stiffness could be used as an optimisation 
parameter for predictive maintenance. This observation can be confirmed 
by examining the energy flow between the track layers, which remains to be 
investigated in further work.

Furthermore, the results show that in degraded rail track conditions with 
increased nonlinear stiffness in the foundation (Fig. 4), vibration behaviour 
changes markedly compared to the well-conditioned track. These effects are 

not observed in tracks in good condition. Therefore, it is concluded that the 
nonlinear mechanical properties of track components play a more significant 
role in lines with reduced bearing capacity, where the linear stiffness of the track 
foundation is significantly weakened.

4.  Conclusions

The study leads to the following conclusions:
▶▶ The proposed multilayer rail track model, combined with the semi- 

-analytical computational method (wavelet-based Fourier 
approximation), allows efficient analysis of the vertical dynamic 
response of railway tracks.

▶▶ Nonlinear stiffness of the rail fastening system has a significant effect 
on vibration levels, especially in degraded track conditions.

Fig.  3.  Maximal response of rail track in bad 
condition – complex modulus of vibrations in 
vertical direction (solid – nonlinear; dashed – 
linear; kNr kNs> ): (a) rails; (b) sleepers (own 
elaboration)

Fig.  4.  Vertical vibrations of rail track in bad 
condition with degraded foundation (solid – 
nonlinear; dashed – linear; kNr kNs< ): (a) rails; 
(b) sleepers (own elaboration)

https://doi.org/10.37705/TechTrans/e2025021
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▶▶ Increasing nonlinear fastening stiffness reduces rail displacement 
amplitudes, but simultaneously intensifies the dynamic response 
of sleepers.

▶▶ The influence of nonlinear foundation stiffness on the rail track response 
is small or negligible compared to the influence of nonlinear properties 
of the fastening system.

▶▶ The model makes it possible to analyse the effect of track component 
stiffness on vibration energy distribution, which may support 
optimisatio of fastening design for vibration control.

▶▶ The presented approach is computationally efficient and suitable for 
large parametric studies, enabling the generation of synthetic datasets 
useful for predictive maintenance models.
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