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Abstract

This work investigates the sensitivity of surface-wave dispersion characteristics 
in periodic phononic structures with two types of scatterers: cylindrical pillars 
and finite-depth circular holes. We develop high-fidelity finite element models 
of square unit cells with Bloch boundary conditions and analyse the effect of 
geometric parameters (diameter and height/depth) on eigenfrequencies at 
a Brillouin zone high-symmetry point. A global sensitivity analysis based on the 
one-factor-at-a-time method is performed to quantify parameter influence and 
non-linear interactions. The results show that, for pillar-type structures, the 
pillar height dominates the dynamic response, while for hole-type structures 
both diameter and depth have comparable effects. Large geometric variations 
lead to mode reordering and narrow frequency separations, which is critical for 
bandgap-oriented optimisation. The approach outlines a route towards tunable 
phononic platforms for wave-based imaging applications.

Keywords:  periodic structures, sensitivity analysis, Rayleigh waves, dispersion
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1.  Introduction

Metamaterials are mechanical structures with a characteristic periodic pattern 
that exhibit unusual dynamic behaviours not observed in nature (Hussein et al., 
2014). By adjusting the geometric parameters of the structure, metamaterials 
can be designed to demonstrate negative Poisson’s ratio, adjustable stiffness, 
high damping capacity, or customised wave propagation characteristics. These 
unique properties, particularly the existence of frequency bandgaps, have led 
to increased interest in periodic structures in recent years, making them the 
subject of intensive research. They are of great interest in various fields of 
science and industry, including materials science and mechanical engineering 
(Sun and Zhou, 2025; Guenneau et al., 2007). The basis of every metamaterial 
is its unit cell – a structural element repeated periodically in space – which 
determines the overall mechanical response of the structure. The topology, 
geometry, and material distribution in this unit cell determine its dynamic 
properties, including its frequency characteristics (Capolino, 2009; Engheta 
and Ziolkowski, 2006). The design of metamaterials can be viewed through 
the selection of geometric and material properties of the unit cell, e.g. via 
multi-criteria optimisation strategies (Yu et al. 2018 ;  Behrou et al., 2020). 
However, optimising the shape of a structure, especially in terms of its dynamic 
characteristics, is challenging in many respects. First, the relationship between 
the parameters of the elementary cell and the dynamic responses is often 
highly nonlinear and multidimensional (Capolino, 2009; Krushynska et al., 
2023). Furthermore, the structural analysis of a  three-dimensional elasticity 
problem is computationally intensive. Implementing a  direct optimisation 
approach, especially for a case of a large number of design parameters, may 
be time-consuming in terms of computation or insufficient in terms of the 
expected accuracy of the results, e.g. convergence problems may arise due 
to the presence of local minima or parameter interactions. Another issue that 
needs to be addressed in the context of the problem of defining the objective 
function and possible problems that may occur at the stage of optimisation 
calculations is that, in the case of large changes in the decision variables, 
a  situation may occur in which neighbouring vibration modes swap. This is 
particularly significant in an area where several modes have almost the same 
frequencies. It is therefore crucial to examine and understand the relationship 
between the geometry of the samples and their dynamic properties. The 
solution is to perform a  sensitivity analysis that will provide information on 
which parameters have the strongest influence on the response, thus guiding 
model simplification/surrogate modelling and optimisation. It is critical to note 
that the relationship between the geometrical features of the structure and its 
spectral response is nontrivial and nonlinear.

Sensitivity analysis is a  fundamental tool in engineering, allowing the 
determination of how variations in system parameters affect the response of 
interest (Saltelli et al., 2008). In mechanical systems, such analyses help to 
identify dominant parameters, reduce model complexity, and guide optimisation 
or uncertainty quantification. As a consequence, the key design parameters can 
be selected and their influence on the response can be evaluated. In general, the 
analysis can be performed once a model of the system is available, regardless of 
its type. The process of building a numerical model can be complex, especially 
when the relationships between inputs and outputs are uncertain and/or random. 
Sources of uncertainty can include both insufficient knowledge of the system 
and measurement errors, but also the influence of random phenomena. In such 
cases, the model can be treated as a black box, in which the exact relationships 
between the inputs and outputs of the system are unknown. The process of 
sensitivity analysis is a study that identifies how the changes in the model results 
can be attributed to different parameters in the input data. It involves exploring 
a  multidimensional space of input variables by cyclically solving a  model for 
alternative initial parameters and determining sensitivity measures based on 
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statistical quantities, thus determining which set of inputs has a dominant effect 
on the given outputs (Campolongo et al., 2007). Sensitivity analysis enables the 
identification and better understanding of the relationships between input and 
output variables in the model without the need to examine all possible solution 
cases. This makes it possible not only to look for errors in the model but also to 
identify parameters that have a negligible impact on the system. By identifying 
redundant parts of the model structure, it is possible to simplify the model, which 
translates directly into reduced design costs. Sensitivity analysis is also often an 
integral part of the optimisation process, in particular for the selection of the 
relevant optimisation parameters (Castillo et al., 2008; Allaire et al., 2004).

Sensitivity analysis methods can be divided into local and global approaches 
(Saltelli et al., 2019). Local methods (gradient-based) may not account for 
nonlinear interactions between parameters. Global methods (e.g., the Sobol 
indices or the Morris method) provide a  more comprehensive picture of the 
relationships between the studied parameters, but they require additional 
computational effort. One of the simplest and most common sensitivity analysis 
approaches is the one-factor-at-a-time method. It involves solving the model 
for one changing input variable while keeping the remaining parameters at 
their base values. After completing the assumed number of cycles, the tested 
variable is restored to the base value and the procedure is repeated in the 
same way for the next parameter. The advantage of this approach is that any 
change observed in the model output will result from a change in a specific input 
variable. The sensitivity of the model to changes in the input parameter can be 
determined using statistical measures. Depending on the number and variability 
range of the inputs, the parameter space can contain a large number of points 
to be investigated. To avoid the necessity of checking all possible combinations 
of the inputs, a number of statistically driven samples (trajectories) are selected 
and evaluated to compute the sensitivity measures (Campolongo et al., 2011). 
The key element of the current work is to investigate and understand relations 
between the geometrical and material features of the samples and their dynamic 
properties, and to select those parameters that are of particular importance 
to the design. Consequently, the main goal of this study is to investigate and 
understand the relationships between the geometric features and dynamic 
properties of the unit cell of a  phononic structure, in an assumed pillar or 
hole configuration. We investigated the proposed structures with the aim of 
identifying a model suitable for practical imaging applications. In particular, our 
long-term objective is to develop a phononic platform that enables the excitation 
of arbitrarily shaped displacement patterns at the surface of the structure, which 
could serve as a basis for future wave-based imaging devices. Two factors are 
crucial in this context: the group velocity and the density of modes. By selecting 
a wavenumber at the boundary of the Brillouin zone, we potentially obtain both 
zero group velocity and a high density of modes, which can be tailored through 
the parameters identified in the sensitivity analysis.

The aim of this work is therefore to: (i) develop a numerical model of a periodic 
structure; (ii) perform global sensitivity analyses to identify the dominant design 
parameters; and (iii) discuss physical implications and provide guidelines for 
parametric optimisation.

2.  Methodology

2.1.  Model definition

In this work, we consider square unit cells (in the x − y plane) of a half-space 
(i.e. semi-infinite in the z direction), with one of two scatterers: (a) a pillar with 
a circular cross-section, and (b) a circular hole of finite depth (Liu et al., 2000). 
The geometry of both samples are shown in Fig. 1(a). The same model can be 
used where positive height renders a pillar and negative height results in a hole. 
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We treat pillars and holes separately during the modelling process as the height 
values close to zero result in weak scattering properties of pillars and holes.

For a numerical model of the half-space, the thickness is finite and has to be 
sufficiently large compared to the unit cell side length to avoid coupling of surface 
waves to the lower surface. After conducting a series of tests, we assumed that 
a thickness 20 times greater than the unit cell edge length is sufficient to study 
surface waves at the selected high-symmetry point. The actual thickness that 
was used in experiments is much larger, to eliminate recording of the waves 
that are reflected from the bottom surface. We rejected the typical choice of 
non-reflecting boundary conditions to avoid complex natural frequencies. For 
the chosen thickness we used fixed boundary conditions and performed some 
additional actions, to ensure we analyze only surface modes. First, for a given 
Bloch wavenumber, we computed the limiting frequencies, below which the 
downward-propagating wavevector component is imaginary, so this component 
is evanesecent. In addition, we introduced modes matching algorithm to detect 
only waves of interest. The remaining dimensions are also defined relative to 
the unit cell edge length. The exact values of geometric parameters for both 
cases are presented in Tab. 1, along with the ranges of parameters subject to 
modification during the sensitivity analysis process.

The Bloch periodic boundary conditions were applied to the vertical faces of 
the model ( i.e. assuming periodicity in the x − y plane). The bottom surface of the 
substrate was fixed. Initially, an alternative approach with a Perfectly Matched 
Layer (PML) below the homogeneous substrate layer was implemented and 
tested. It was found, however, that this choice resulted in a number of numerical 

Fig.  1.  a) Side view of a single unit cell along 
with the top view and the assumed coordinate 
system. The scatterer, i.e. pillar or hole, can 
be geometrically parametrized by a positive or 
negative value of height (+/-h), respectively. 
b) An example of the dispersion diagram for 
a unit cell with a pillar (black markers) and 
a hole (red markers) for the Γ - X path in the 
Brilluoiun zone. The green line denotes the 
sound cone (own elaboration)

Table 1. Geometric properties of the unit cell: * in the x−y plane; ** in the z-axis dimension;  
*** in the x−y plane with the coordinate system centred at (0,0) of the component  

(i.e. the bottom left corner, see Fig. 1). (own elaboration)

quantity symbol base value [µm] tested range [µm]

edge length * a 1.5 const.

substrate depth ** s 20a = 30 const.

pillar diameter * φ 0.7a = 1.05 0.525:1.47

pillar height* h 0.7a = 1.05 0.525:2.6

hole diameter * φ 0.7a = 1.05 0.105:1.365

hole depth* h 0.7a = 1.05 0.105:4.2

pillar/hole centre position *** xp , yp 0.5a = 0.75 const.
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issues, e.g. complex eigenvalues and multiple artificial modes (including 
multiple modes localised close to the PML layer). With the assumed substrate 
layer depth, the selection of the fixed boundary condition allows one to find the 
wave modes of interest — modes with the most energy localised at the surface 
— and compare them more easily.

The Bloch boundary condition of the for

	 u e uix k x kkx, ,� � � � �

	 (1)

was applied to the vertical faces of the unit cell, where u(x,k) is the displacement 
field, u e uix k x kkx, ,� � � � �  is the periodic part of the displacement field, eikx is the phase factor, 
and k = (kx ,ky) is the wavevector in the x−y plane (Khelif and Adibi, 2015). Please 
note that in the sensitivity analysis we study only the case of k = (kx ,0) at the 
X point, i.e. kx  = π/a, where a is the unit cell size. Moreover, modes at the Brillouin 
zone boundaries may display intriguing properties, e.g. localisation or zero group 
velocity. Our assumptions result in the following relation when comparing Bloch 
waves of adjacent unit cells:

	 u x a y k e u x y kx
ik a

x
x�� �� � �, , , , , 	 (2)

which for kx  = π/a gives

	 u x a y k u x y kx x�� �� � � �, , , , , 	 (3)

and

	 u x a y k u x y kx x�� �� � �2 , , , , 	 (4)

so the Bloch function has a period of two unit cells in the x direction.
A common characteristic that is related to periodic media is dispersion relation 

of the frequency and Bloch wavenumber. Fig. 1b) shows dispersion relations for 
a unit cell with a pillar and a hole. The horizontal axis shows the dimensionless 
wavenumber q ka� �

 and the vertical axis shows frequency in Hz.  The fixed 
diameter φ = 1 µm and height (depth) h = 1.5 µm for the pillar (hole) were chosen 
for the plots. The dashed line present at both plots denotes the limiting frequency 
for the surface modes. Comparing curves in Fig.  1b) it can be seen that more 
surface modes are present for the unit cell with the pillar. In addition, no complete 
bandgap is observed for the frequency range presented.

2.2.  Sensitivity measures

For the presented studies, we consider the one-factor-at-a-time method. In this 
approach, we attempt to evaluate the sensitivities of the output parameters to 
the inputs by screening the parameter space in a statistical sense. The method 
proposed in 1991 by Morris is particularly well suited for models with a  large 
number of uncertain factors and/or when the model calculations are expensive. 
Sensitivity analysis is performed for a given number j of model input variables, 
examining their effects and interactions on the output parameters. Each variable 
can take values in the assumed (predefined) range. Thus, the set of model input 
parameters under study forms a multidimensional space, including all possible 
combinations of available values for the parameters. By moving by a  fixed 
jump value sequentially through all coordinates in the j-dimensional space, 
a  single trajectory is created, which is a  set of model inputs based on which 
the model outputs are determined. Thanks to this information, it is possible to 
track changes in the output parameters of the model with a specific change in 
a given input variable. It involves calculating, for each input signal, a series of 
incremental coefficients, called elementary effects (EE), as
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where f(x) is the model response for successive steps of the single trajectory, 
j  is the number of input variables, ∆  is the fixed (normalised) discretisation 
step of the sensitivity grid, and p is the number of levels for each variable in the 
j-dimensional space.

The number of evaluated elementary effects (number of trajectories) should 
be large enough to cover the j-dimensional space of input variables within the 
assumed ranges of variability. In order to assess the overall significance of 
individual model parameters, two sensitivity indices are calculated based on 
elementary effects. The first parameter is the mean µ or modified mean µ*, given 
by Eq. (6), which estimates the overall effect of the factor on the outcome. The 
second sensitivity measure is the standard deviation σ, given by Eq. (7), which 
estimates the ensemble of higher-order effects of the factor, i.e. non-linear and/
or due to interactions with other factors.
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where N is the number of trajectories.
A large mean indicates a large factor effect. A large σ indicates that the effect 

depends strongly on the values of other factors, suggesting their non-linear 
interaction. Fig. 2 shows a diagram of the interpretation of sensitivity measures 
for the results of sensitivity analysis as the coefficient of variation σ/µ* (Morris, 
1991; Saltelli, et al. 2008; Campolongo et al., 2007).

2.3.  Numerical procedure

The model and analysis procedure outlined in earlier sections were implemented 
using a  combined framework of finite element software and Matlab. Detailed 
geometric features of the models are presented in Sec. 2.1. The material used 
for all the calculations is polycrystalline silicon. We assumed linear and isotropic 
mechanical properties in the numerical model. This choice can be justified by 
taking an assumption of very small, nanometer-sized, and randomly oriented 
grains. The exact values we used are: Young’s modulus E = 160 GPa, Poisson’s 

Fig.  2.  Graphical illustration of the sensitivity 
measures space µ* and σ (own elaboration)
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ratio ν = 0.22, and density ρ = 2320 kg/m3. Second-order tetrahedral serendipity 
elements were selected for discretisation to reduce the effects of excessive 
stiffening. Before selecting specific mesh properties (minimum and maximum 
element sizes and mesh rates), a convergence analysis was performed (Sigmund 
and Jensen 2003). The analysis consisted of solving the eigenvalue problem 
for the lowest 50 eigenvalues for multiple models. The mesh parameters 
investigated were (1) the minimum and (2) maximum element size, (3) maximum 
element growth rate, (4) the curvature coefficient, and (5) mesh refinement 
around small structural features. The models considered have simple geometry, 
which allowed us to significantly improve the accuracy of the results by adjusting 
the element size. The last three parameters were used for adjustments.

The convergence analysis was conducted in two stages. First, the maximum 
and minimum element sizes were modified, with the last three parameters 
(coefficients (3–5)) remaining constant (1.25, 0.5 and 0.6, respectively). We 
compared models in pairs where a  model with the finer mesh had two times 
smaller minimum and maximum element sizes. The relative error of natural 
frequencies was then calculated. The results of the finer model were taken as 
a reference. The relative error was calculated as:

	 e
f f

fn
nc nf

nf

�
�

	 (8)

where en is the relative error of the nth mode, and fnc and fnf are the nth natural 
frequencies of the coarser and finer model, respectively. The aim was to find 
a pair of models that results in a maximum relative error below 1%. The finer 
model was then taken as a reference model for the next step. In the next step, 
we selected models with the mesh coarser than the mesh of the reference 
model. The aim was to find a rough approximation of the model parameters that 
results in natural frequencies with an error not exceeding 3% when compared to 
the reference model. The parameters found by employing the above-mentioned 
procedure (presented in Tab. 2) were used in the sensitivity analysis.

Table 2. Mesh parameters for models used in the convergence analysis (own elaboration)

Model Max. element size
[µm]

Min. element size
[µm]

Max. element 
growth rate

Number of elements

Reference 0.20 0.02 1.25 139458

Final 0.80 0.08 1.50 2056

With the convergence analysis finished, the sensitivity analysis followed. 
It was performed using a set of developed Matlab functions that allow for the 
generation, modification, simulation, and post-processing of the results. The 
results are determined for a high-symmetry X point of the spectral properties 
and for a  limited number of eigenvalues (up to 50). We found that within this 
range, we could find a set of eigenvalues with the desired properties, i.e. multiple 
surface-localised modes in the selected frequency range.

3.  Results

As discussed, the sensitivity study was conducted for unit cells of two types, i.e. 
with pillars or holes, with the goal of examining the impact of changes in selected 
geometric parameters on the dispersion characteristics at the high-symmetry 
X  point. For pillars, the impact of changes in the diameter and the height h of 
the pillar was examined, while for holes, changes in the diameter and the depth 
h of the round hole were analysed. Due to the low geometrical complexity of 
the numerical model and, consequently, the low computational cost, the study 
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used an exhaustive search method, which consisted of determining the output 
parameters for all possible combinations of input variables from the assumed 
variability ranges of the investigated parameters. For this purpose, in both cases, 
the two-dimensional space of variables and h was divided into 25 intervals in each 
direction. This resulted in 26 constant values of the diameter and 26 corresponding 
constant height or depth values from the specified range, which gave 676 pairs 
of values forming the basis of the input parameters of the numerical model. The 
ranges of changes in geometric parameters are presented in Tab. 1. The change in 
frequency (for a fixed kx = π/a) and the frequency separation of adjacent vibration 
modes within the selected frequency range were taken as the output variables.

3.1.  Wave propagation in a pillar-structured half-space

Fig. 3a) presents a  summary of numerical calculations performed for an 
elementary cell with a pillar. Each surface represents the frequency distribution 
for a given mode across the full range of input variables analysed, for k = (π/a,0). 
The parameters marked as Δφ and Δh denote incremental values resulting 
from the division of the respective parameter ranges into p  =  26 equal levels 
in accordance with the assumptions of the Morris screening method. As can be 
seen, the effect of changing the and h parameters on the frequency is not identical 
for all modes, which causes mode planes to interpenetrate and change their 
positions in the spectrum. To better illustrate this phenomenon, Fig. 3b) shows 
the contours of the planes belonging to specific modes, after their identification. 
Generally, it can be stated that the parameter h has the greatest influence on the 
change in frequency. Intuitively, the greatest decrease in frequency occurred 
for the largest values of pillar height and the base diameter value. This effect is 
a direct consequence of multiple modes of different types, i.e. longitudinal and 
bending, for long beam-like structures.

This observation is consistent with the variation coefficient calculations 
shown in Fig. 4(a), where each marker represents the variation coefficient for 
one mode, taking into account the sensitivity to changes in diameter (black 
markers) and height (red markers), respectively.

Analysis of the results presented in Fig. 4 allows the following conclusions:
▶▶ all variation coefficients are close to or above the line σ/µ* = 1, which, 

according to Fig. 2, indicates a  non-linear and/or non-monotonic 
dependence of the natural frequency value on the variables,

▶▶ a change in the height of the pillar has a  much greater impact and 
interaction on the result of the calculated model than a  change in the 
diameter,

Fig.  3.  Frequency distribution for an 
elementary cell with a pillar in the full space of 
input variables for the first six modes, Δφ and 
Δh denote incremental values resulting from 
the division of the respective parameter ranges 
into p = 26 equal levels (own elaboration)

a) Frequency distribution (mode identification required) b) Interpenetration of planes of individual vibration modes 
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▶▶ there is a noticeably different sensitivity of individual modes to changes 
in the geometric parameters of the pillar. Modes 1, 3, and 4  are 
practically insensitive to changes in the pillar diameter, and respond 
mainly to changes in its height. Meanwhile, modes five and six are clearly 
sensitive to variations in both geometric parameters. The difference in 
the sensitivity of individual modes can also be seen in Fig. 3, where for 
the fifth and sixth modes we observe a  shift of the frequency surface 
below the surfaces of the third and fourth modes. 

These conclusions are further strengthened by analysing the variation 
coefficients determined for frequency differences (adjacent modes), presented 
in Fig. 4(b). Analysis of this parameter can be useful in the context of optimisation 
for uniform mode distribution in the frequency spectrum or maximising bandgap 
widths within a  specific frequency range. As can be seen, the frequency 
differences between individual mode pairs (1–2 and 5–6) are minor, and the 
effect of changes in geometry (especially diameter) on frequency changes is 
comparable. This results in minimal possibilities for modifying the frequency 
difference between these modes. This fact is worth considering when defining 
the optimisation objective function.

3.2.  Wave propagation in a hole-structured half-space

Subsequently, analogous calculations were performed for a  unit cell with 
a circular hole. Fig. 5 presents a summary of the results. Each surface represents 
the frequency distribution for a  given mode across the full range of input 
variables analysed. In this case, all modes examined are sensitive to changes 
in the parameters and h, with both parameters having an approximately equal 
effect on the frequency of a given mode.

Fig. 6a) and 6b) show the frequency variation coefficients and frequency 
differences calculated for the model with a blind hole, respectively. Each marker 
represents the variation coefficient for a  single mode, taking into account 
sensitivity to changes in input parameters (φ – black markers, h – red markers).

a) CV for eigenfrequencies b) CV for eigenfrequency differences

Fig.  4.  Results of elementary effect 
calculations using the Morris method for a unit 
cell with a pillar for the first six modes. CVR is 
the variation coefficient associated with the 
diameter change, while CVH is the variation 
coefficient associated with the height change 
(own elaboration)
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The analysis of the distribution of variation coefficients for all inputs leads to 
the following conclusions:

▶▶ as in the case of a pillar, all variation coefficients are close to or above 
the line σ/µ* = 1 (nonlinear and/or non-monotonic relationship between 
natural frequency values and variables),

▶▶ a change in the diameter of the hole has a greater impact and interaction on 
the result of the calculated model than a change in depth for a specific mode,

▶▶ natural frequencies with higher values are less sensitive to changes in 
input variables.

a) Frequency distribution (mode identification required) b) Interpenetration of planes of individual vibration modes 

Fig.  5.  Frequency distribution for an 
elementary cell with a hole in the full space of 
input variables for the first six modes, Δφ and 
Δh denote incremental values resulting from 
the division of the respective parameter ranges 
into p = 26 equal levels (own elaboration)

Fig.  6.  Results of elementary effect 
calculations using the Morris method for a unit 
cell with a hole for the first six modes. CVR is 
the variation coefficient associated with the 
diameter change, while CVH is the variation 
coefficient associated with the depth change 
(own elaboration)

a) CV for eigenfrequencies b) CV for eigenfrequency differences
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4.  Conclusions

The work presented here focuses on the sensitivity analysis of two phononic 
structures: one with a cylindrical pillar and one with a circular hole of finite depth. 
The diameter and height/depth were selected as the parameters subject to 
change. Due to the limited number of unit cell geometry parameters examined, 
it was decided to search the entire assumed variable space. The analysis of the 
results obtained was carried out using elementary effect calculations with the 
Morris method (onefactor-at-a-time). The sensitivity analysis was performed 
based on changes in natural frequencies within a defined frequency range and 
changes in frequency differences for adjacent modes, for a  fixed wavevector 
corresponding to a high-symmetry point in the dispersion space. The analyses 
were carried out using the finite element method and Matlab, and employed 
libraries that allow their coupling. This approach was selected to allow 
automatic model generation, performing simulations, and post-processing of 
the results. This combination of software tools allows for automatic analysis of 
hundreds of models required for the sensitivity analysis. The key observations 
and conclusions are:

▶▶ the change in the pillar height has the greatest impact on the observed 
frequency parameters,

▶▶ the effect of changing the pillar geometry is visible primarily at higher 
frequencies,

▶▶ for the hole-type scatterer, both geometric parameters affect the 
observed frequency characteristics; however, for a given mode, variations 
in the hole diameter have a noticeably stronger influence than variations 
in its depth,

▶▶ higher natural frequencies are less sensitive to changes in input 
parameters for structures with the hole,

▶▶ for both types of scatterers (pillar and hole), the interaction of geometric 
parameters is strongly non-linear and/or heterogeneous,

▶▶ the analysis of the frequency graph of the studied structure (Figs. 3 and 5) 
shows that significant changes in the values of decision variables cause 
the planes of individual vibration modes to cross over for both pillar 
and hole structures. For specific optimisation purposes, it is therefore 
necessary to identify the modes and take this information into account 
in the optimisation process. Relying only on the frequency values carries 
the risk that the optimisation process will not achieve the intended goal.

▶▶ the manufacturing of real samples is always subject to uncertainty 
regarding the final dimensions, both due to manufacturing tolerances 
and the occurrence of potential unintentional manufacturing errors. 
Conducting a  sensitivity analysis allowed us to observe the impact 
of these factors on the observed dynamic parameters. The obtained 
results suggest that, within a  small range of variations, the impact of 
unintentional geometric for both types of scatterers will have a negligible 
effect on the structure’s properties



No. 2025/026

architecture and urban planning

12 https://doi.org/10.37705/TechTrans/e2025026

References

Allaire, G., Jouve, F., and Toader, A.-M. (2004). Structural optimization using 
sensitivity analysis and a  level-set method. Journal of Computational 
Physics 194(1):363–393.

Behrou, R., Abi Ghanem, M., Macnider, B.C., Verma, V., Alvey, R., Hong, J., 
Emery, A.F., Kim, H.A., Boechler, N. (2021). Topology optimization of 
nonlinear periodically microstructured materials for tailored homogenized 
constitutive properties, Composite Structures 266: 113729. https://doi.
org/10.1016/j.compstruct.2021.113729

Campolongo, F., Cariboni, J., and Saltelli, A. (2007). An effective screening 
design for sensitivity analysis of large models. Environmental Modelling 
and Software 22(10): 1509 – 1518. 

Campolongo, F., Saltelli, A., and Cariboni, J. (2011). From screening to 
quantitative sensitivity analysis. a  unified approach. Computer Physics 
Communications 182(4): 978–988.

Capolino, F. (2009). Theory and Phenomena of Metamaterials. Boca Raton, FL: 
CRC Press.

Castillo, E., M´ınguez, R., and Castillo, C. (2008). Sensitivity analysis in 
optimization and reliability problems. Reliability Engineering and System 
Safety 93(12): 1788–1800. 

Engheta, N. and Ziolkowski, R. W. (2006). Metamaterials: Physics and Engineering 
Explorations. New York: John Wiley & Sons, Hoboken.

Guenneau, S., Movchan, A., P´etursson, G., and Anantha Ramakrishna, S. 
(2007). Acoustic metamaterials for sound focusing and confinement. New 
Journal of Physics 9(11): 399.

Hussein, M. I., Leamy, M. J., and Ruzzene, M. (2014). Dynamics of phononic 
materials and structures: Historical origins, recent progress, and future 
outlook. Applied Mechanics Reviews 66(4): 040802.

Khelif, A. and Adibi, A.U. (2015). Phononic crystals: Fundamentals and applications. 
Krushynska, A.O., Torrent, D., Arag´on, A.M., Ardito, R., Bilal, O.R., Bonello, 

B., Bosia, F., Chen, Y., Christensen, J., Colombi, A., Cummer, S. A., Djafari-
Rouhani, B., Fraternali, F., Galich, P. I., Garcia, P. D., Groby, J.-P., Guenneau, 
S., Haberman, M. R., Hussein, M. I., Janbaz, S., Jim´enez, N., Khelif, A., Laude, 
V., Mirzaali, M.J., Packo, P., Palermo, A., Pennec, Y., Pic´o, R., L´opez, M. R., 
Rudykh, S., Serra-Garcia, M., Torres, C.M. S., Starkey, T.A., Tournat, V., and 
Wright, O.B. (2023). Emerging topics in nanophononics and elastic, acoustic, 
and mechanical metamaterials: an overview. Nanophotonics 12(4): 659–686.

Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., and Sheng, P. (2000). 
Locally resonant sonic materials. Science 289(5485): 1734–1736.

Morris, M.D. (1991). Factorial sampling plans for preliminary computational 
experiments. Technometrics 33(2): 161–174.

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, 
S., and Wu, Q. (2019). Why so many published sensitivity analyses are 
false: A systematic review of sensitivity analysis practices. Environmental 
Modelling and Software 114: 29 – 39. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, 
M., and Tarantola, S. (2008). Global Sensitivity Analysis: The Primer. John 
Wiley Sons, Chichester.

Sigmund, O. and Jensen, J. S. (2003). Systematic design of phononic band-
gap materials and structures by topology optimization. Philosophical 
transactions. Series A, Mathematical, physical, and engineering sciences 
361(1806): 1001 – 1019. 

Sun, J. and Zhou, J. (2025). Metamaterials: The art in materials science. 
Engineering 44: 145–161.

Yu, X., Zhou, J., Liang, H., Jiang, Z., and Wu, L. (2018). Mechanical metamaterials 
associated with stiffness, rigidity and compressibility: A  brief review. 
Progress in Materials Science 94: 114–173. 


