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Abstract

This work investigates the sensitivity of surface-wave dispersion characteristics
in periodic phononic structures with two types of scatterers: cylindrical pillars
and finite-depth circular holes. We develop high-fidelity finite element models
of square unit cells with Bloch boundary conditions and analyse the effect of
geometric parameters (diameter and height/depth) on eigenfrequencies at
a Brillouin zone high-symmetry point. A global sensitivity analysis based on the
one-factor-at-a-time method is performed to quantify parameter influence and
non-linear interactions. The results show that, for pillar-type structures, the
pillar height dominates the dynamic response, while for hole-type structures
both diameter and depth have comparable effects. Large geometric variations
lead to mode reordering and narrow frequency separations, which is critical for
bandgap-oriented optimisation. The approach outlines a route towards tunable
phononic platforms for wave-based imaging applications.
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1. Introduction

Metamaterials are mechanical structures with a characteristic periodic pattern
that exhibit unusual dynamic behaviours not observed in nature (Hussein et al.,
2014). By adjusting the geometric parameters of the structure, metamaterials
can be designed to demonstrate negative Poisson’s ratio, adjustable stiffness,
high damping capacity, or customised wave propagation characteristics. These
unique properties, particularly the existence of frequency bandgaps, have led
to increased interest in periodic structures in recent years, making them the
subject of intensive research. They are of great interest in various fields of
science and industry, including materials science and mechanical engineering
(Sun and Zhou, 2025; Guenneau et al., 2007). The basis of every metamaterial
is its unit cell — a structural element repeated periodically in space — which
determines the overall mechanical response of the structure. The topology,
geometry, and material distribution in this unit cell determine its dynamic
properties, including its frequency characteristics (Capolino, 2009; Engheta
and Ziolkowski, 2006). The design of metamaterials can be viewed through
the selection of geometric and material properties of the unit cell, e.g. via
multi-criteria optimisation strategies (Yu et al. 2018 ; Behrou et al., 2020).
However, optimising the shape of a structure, especially in terms of its dynamic
characteristics, is challenging in many respects. First, the relationship between
the parameters of the elementary cell and the dynamic responses is often
highly nonlinear and multidimensional (Capolino, 2009; Krushynska et al.,
2023). Furthermore, the structural analysis of a three-dimensional elasticity
problem is computationally intensive. Implementing a direct optimisation
approach, especially for a case of a large number of design parameters, may
be time-consuming in terms of computation or insufficient in terms of the
expected accuracy of the results, e.g. convergence problems may arise due
to the presence of local minima or parameter interactions. Another issue that
needs to be addressed in the context of the problem of defining the objective
function and possible problems that may occur at the stage of optimisation
calculations is that, in the case of large changes in the decision variables,
a situation may occur in which neighbouring vibration modes swap. This is
particularly significant in an area where several modes have almost the same
frequencies. It is therefore crucial to examine and understand the relationship
between the geometry of the samples and their dynamic properties. The
solution is to perform a sensitivity analysis that will provide information on
which parameters have the strongest influence on the response, thus guiding
model simplification/surrogate modelling and optimisation. It is critical to note
that the relationship between the geometrical features of the structure and its
spectral response is nontrivial and nonlinear.

Sensitivity analysis is a fundamental tool in engineering, allowing the
determination of how variations in system parameters affect the response of
interest (Saltelli et al., 2008). In mechanical systems, such analyses help to
identify dominant parameters, reduce model complexity, and guide optimisation
or uncertainty quantification. As a consequence, the key design parameters can
be selected and their influence on the response can be evaluated. In general, the
analysis can be performed once a model of the system is available, regardless of
its type. The process of building a numerical model can be complex, especially
when the relationships betweeninputs and outputs are uncertain and/or random.
Sources of uncertainty can include both insufficient knowledge of the system
and measurement errors, but also the influence of random phenomena. In such
cases, the model can be treated as a black box, in which the exact relationships
between the inputs and outputs of the system are unknown. The process of
sensitivity analysis is a study that identifies how the changes in the model results
can be attributed to different parameters in the input data. It involves exploring
a multidimensional space of input variables by cyclically solving a model for
alternative initial parameters and determining sensitivity measures based on
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statistical quantities, thus determining which set of inputs has a dominant effect
on the given outputs (Campolongo et al., 2007). Sensitivity analysis enables the
identification and better understanding of the relationships between input and
output variables in the model without the need to examine all possible solution
cases. This makes it possible not only to look for errors in the model but also to
identify parameters that have a negligible impact on the system. By identifying
redundant parts of the model structure, it is possible to simplify the model, which
translates directly into reduced design costs. Sensitivity analysis is also often an
integral part of the optimisation process, in particular for the selection of the
relevant optimisation parameters (Castillo et al., 2008; Allaire et al., 2004).

Sensitivity analysis methods can be divided into local and global approaches
(Saltelli et al., 2019). Local methods (gradient-based) may not account for
nonlinear interactions between parameters. Global methods (e.g., the Sobol
indices or the Morris method) provide a more comprehensive picture of the
relationships between the studied parameters, but they require additional
computational effort. One of the simplest and most common sensitivity analysis
approaches is the one-factor-at-a-time method. It involves solving the model
for one changing input variable while keeping the remaining parameters at
their base values. After completing the assumed number of cycles, the tested
variable is restored to the base value and the procedure is repeated in the
same way for the next parameter. The advantage of this approach is that any
change observed in the model output will result from a change in a specific input
variable. The sensitivity of the model to changes in the input parameter can be
determined using statistical measures. Depending on the number and variability
range of the inputs, the parameter space can contain a large number of points
to be investigated. To avoid the necessity of checking all possible combinations
of the inputs, a number of statistically driven samples (trajectories) are selected
and evaluated to compute the sensitivity measures (Campolongo et al., 2011).
The key element of the current work is to investigate and understand relations
between the geometrical and material features of the samples and their dynamic
properties, and to select those parameters that are of particular importance
to the design. Consequently, the main goal of this study is to investigate and
understand the relationships between the geometric features and dynamic
properties of the unit cell of a phononic structure, in an assumed pillar or
hole configuration. We investigated the proposed structures with the aim of
identifying a model suitable for practical imaging applications. In particular, our
long-term objective is to develop a phononic platform that enables the excitation
of arbitrarily shaped displacement patterns at the surface of the structure, which
could serve as a basis for future wave-based imaging devices. Two factors are
crucial in this context: the group velocity and the density of modes. By selecting
a wavenumber at the boundary of the Brillouin zone, we potentially obtain both
zero group velocity and a high density of modes, which can be tailored through
the parameters identified in the sensitivity analysis.

The aim of this work is therefore to: (i) develop a numerical model of a periodic
structure; (ii) perform global sensitivity analyses to identify the dominant design
parameters; and (iii) discuss physical implications and provide guidelines for
parametric optimisation.

2. Methodology
2.1. Model definition

In this work, we consider square unit cells (in the x — y plane) of a half-space
(i.e. semi-infinite in the z direction), with one of two scatterers: (a) a pillar with
a circular cross-section, and (b) a circular hole of finite depth (Liu et al., 2000).
The geometry of both samples are shown in Fig. 1(a). The same model can be
used where positive height renders a pillar and negative height results in a hole.
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We treat pillars and holes separately during the modelling process as the height
values close to zero result in weak scattering properties of pillars and holes.

For a numerical model of the half-space, the thickness is finite and has to be
sufficiently large compared to the unit cell side length to avoid coupling of surface
waves to the lower surface. After conducting a series of tests, we assumed that
a thickness 20 times greater than the unit cell edge length is sufficient to study
surface waves at the selected high-symmetry point. The actual thickness that
was used in experiments is much larger, to eliminate recording of the waves
that are reflected from the bottom surface. We rejected the typical choice of
non-reflecting boundary conditions to avoid complex natural frequencies. For
the chosen thickness we used fixed boundary conditions and performed some
additional actions, to ensure we analyze only surface modes. First, for a given
Bloch wavenumber, we computed the limiting frequencies, below which the
downward-propagating wavevector component is imaginary, so this component
is evanesecent. In addition, we introduced modes matching algorithm to detect
only waves of interest. The remaining dimensions are also defined relative to
the unit cell edge length. The exact values of geometric parameters for both
cases are presented in Tab. 1, along with the ranges of parameters subject to
modification during the sensitivity analysis process.

The Bloch periodic boundary conditions were applied to the vertical faces of
the model (i.e. assuming periodicity in the x — y plane). The bottom surface of the
substrate was fixed. Initially, an alternative approach with a Perfectly Matched
Layer (PML) below the homogeneous substrate layer was implemented and
tested. It was found, however, that this choice resulted in a number of numerical

Table 1. Geometric properties of the unit cell: * in the x-y plane; ** in the z-axis dimension;
***in the x—y plane with the coordinate system centred at (0,0) of the component
(i.e. the bottom left corner, see Fig. 1). (own elaboration)

quantity symbol base value [[tm] tested range [[Lm]

edge length * a 1.5 const.
substrate depth ** S 20a =30 const.

pillar diameter * [0} 0.7a=1.05 0.525:1.47
pillar height* h 0.7a=1.05 0.525:2.6
hole diameter * (|) 0.7a=1.05 0.105:1.365
hole depth* h 0.7a=1.05 0.105:4.2
pillar/hole centre position *** X Yy 0.5a=0.75 const.

X

Fig. 1. a) Side view of a single unit cell along
with the top view and the assumed coordinate
system. The scatterer, i.e. pillar or hole, can
be geometrically parametrized by a positive or
negative value of height (+/-h), respectively.
b) An example of the dispersion diagram for

a unit cell with a pillar (black markers) and

a hole (red markers) for the I - X path in the
Brilluoiun zone. The green line denotes the
sound cone (own elaboration)
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issues, e.g. complex eigenvalues and multiple artificial modes (including
multiple modes localised close to the PML layer). With the assumed substrate
layer depth, the selection of the fixed boundary condition allows one to find the
wave modes of interest — modes with the most energy localised at the surface
— and compare them more easily.

The Bloch boundary condition of the for
u(x,k)=e"i(x,k) ()

was applied to the vertical faces of the unit cell, where u(x, k) is the displacement
field, ii(x,k) is the periodic part of the displacement field, e**is the phase factor,
and k= (kx,ky) is the wavevector in the x-y plane (Khelif and Adibi, 2015). Please
note that in the sensitivity analysis we study only the case of k = (k,0) at the
X point, i.e. k,=m/a, where ais the unit cell size. Moreover, modes at the Brillouin
zone boundaries may display intriguing properties, e.g. localisation or zero group
velocity. Our assumptions result in the following relation when comparing Bloch
waves of adjacent unit cells:

u(x+a,y,k )=e"u(x,y,k,), (2)
which for k, = t/a gives
u(x+a,y,k, ) =—u(x,pk,), @3)
and
u(x+2a,y,k,)=u(x,y,k,) (4)

so the Bloch function has a period of two unit cells in the x direction.

A common characteristic that is related to periodic media is dispersion relation
of the frequency and Bloch wavenumber. Fig. 1b) shows dispersion relations for
a unit cell with a pillar and a hole. The horizontal axis shows the dimensionless
wavenumber g :"7“ and the vertical axis shows frequency in Hz. The fixed
diameter ¢ = 1 pm and height (depth) 4 = 1.5 um for the pillar (hole) were chosen
for the plots. The dashed line present at both plots denotes the limiting frequency
for the surface modes. Comparing curves in Fig. 1b) it can be seen that more
surface modes are present for the unit cell with the pillar. In addition, no complete
bandgap is observed for the frequency range presented.

2.2. Sensitivity measures

For the presented studies, we consider the one-factor-at-a-time method. In this
approach, we attempt to evaluate the sensitivities of the output parameters to
the inputs by screening the parameter space in a statistical sense. The method
proposed in 1991 by Morris is particularly well suited for models with a large
number of uncertain factors and/or when the model calculations are expensive.
Sensitivity analysis is performed for a given number j of model input variables,
examining their effects and interactions on the output parameters. Each variable
can take values in the assumed (predefined) range. Thus, the set of model input
parameters under study forms a multidimensional space, including all possible
combinations of available values for the parameters. By moving by a fixed
jump value sequentially through all coordinates in the j-dimensional space,
a single trajectory is created, which is a set of model inputs based on which
the model outputs are determined. Thanks to this information, it is possible to
track changes in the output parameters of the model with a specific change in
a given input variable. It involves calculating, for each input signal, a series of
incremental coefficients, called elementary effects (EE), as
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£ zf(xl,...,xi+A,...,x/.)—f(x)’A= 1
A p-1
where f(x) is the model response for successive steps of the single trajectory,
j is the number of input variables, A is the fixed (normalised) discretisation
step of the sensitivity grid, and p is the number of levels for each variable in the
j-dimensional space.

The number of evaluated elementary effects (hnumber of trajectories) should
be large enough to cover the j-dimensional space of input variables within the
assumed ranges of variability. In order to assess the overall significance of
individual model parameters, two sensitivity indices are calculated based on
elementary effects. The first parameter is the mean p or modified mean W', given
by Eqg. (6), which estimates the overall effect of the factor on the outcome. The
second sensitivity measure is the standard deviation o, given by Eq. (7), which

estimates the ensemble of higher-order effects of the factor, i.e. non-linear and/
or due to interactions with other factors.

(5)

P o) —— ®)
NS p—1
1 & 2 1
Gj:\/E;(EEi—H].) ]A:E (7)

where N is the number of trajectories.

Alarge mean indicates a large factor effect. A large o indicates that the effect
depends strongly on the values of other factors, suggesting their non-linear
interaction. Fig. 2 shows a diagram of the interpretation of sensitivity measures
for the results of sensitivity analysis as the coefficient of variation o/u" (Morris,
1991; Saltelli, et al. 2008; Campolongo et al., 2007).

Coefficient of variation o / p*

non-linear and/or
non-monotonic

S
w15 N
k] J,"',
AE’ AV il : .
= < almost monotonic
A; 1
8
T : 205
®© GP -
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2.3. Numerical procedure

The modeland analysis procedure outlined in earlier sections were implemented
using a combined framework of finite element software and Matlab. Detailed
geometric features of the models are presented in Sec. 2.1. The material used
for all the calculations is polycrystalline silicon. We assumed linear and isotropic
mechanical properties in the numerical model. This choice can be justified by
taking an assumption of very small, nanometer-sized, and randomly oriented
grains. The exact values we used are: Young’s modulus E = 160 GPa, Poisson’s

Fig. 2. Graphicalillustration of the sensitivity
measures space LL"and G (own elaboration)

6 https://doi.org/10.37705/TechTrans/e2025026 . Pt



B::: technical
=[O transactions No. 2025/026

ratio v =0.22, and density p = 2320 kg/m?. Second-order tetrahedral serendipity
elements were selected for discretisation to reduce the effects of excessive
stiffening. Before selecting specific mesh properties (minimum and maximum
element sizes and mesh rates), a convergence analysis was performed (Sigmund
and Jensen 2003). The analysis consisted of solving the eigenvalue problem
for the lowest 50 eigenvalues for multiple models. The mesh parameters
investigated were (1) the minimum and (2) maximum element size, (3) maximum
element growth rate, (4) the curvature coefficient, and (5) mesh refinement
around small structural features. The models considered have simple geometry,
which allowed us to significantly improve the accuracy of the results by adjusting
the element size. The last three parameters were used for adjustments.

The convergence analysis was conducted in two stages. First, the maximum
and minimum element sizes were modified, with the last three parameters
(coefficients (3-5)) remaining constant (1.25, 0.5 and 0.6, respectively). We
compared models in pairs where a model with the finer mesh had two times
smaller minimum and maximum element sizes. The relative error of natural
frequencies was then calculated. The results of the finer model were taken as
a reference. The relative error was calculated as:

o M Jul ©®

n _fnf

where ¢, is the relative error of the n™ mode, and f, and f, are the n™ natural
frequencies of the coarser and finer model, respectively. The aim was to find
a pair of models that results in a maximum relative error below 1%. The finer
model was then taken as a reference model for the next step. In the next step,
we selected models with the mesh coarser than the mesh of the reference
model. The aim was to find a rough approximation of the model parameters that
results in natural frequencies with an error not exceeding 3% when compared to
the reference model. The parameters found by employing the above-mentioned
procedure (presented in Tab. 2) were used in the sensitivity analysis.

Table 2. Mesh parameters for models used in the convergence analysis (own elaboration)

Model Max. element size | Min. element size | Max. element | Number of elements
[Lml] [Um] growth rate
Reference 0.20 0.02 1.25 139458
Final 0.80 0.08 1.50 2056

With the convergence analysis finished, the sensitivity analysis followed.
It was performed using a set of developed Matlab functions that allow for the
generation, modification, simulation, and post-processing of the results. The
results are determined for a high-symmetry X point of the spectral properties
and for a limited number of eigenvalues (up to 50). We found that within this
range, we could find a set of eigenvalues with the desired properties, i.e. multiple
surface-localised modes in the selected frequency range.

3. Results

As discussed, the sensitivity study was conducted for unit cells of two types, i.e.
with pillars or holes, with the goal of examining the impact of changes in selected
geometric parameters on the dispersion characteristics at the high-symmetry
X point. For pillars, the impact of changes in the diameter and the height h of
the pillar was examined, while for holes, changes in the diameter and the depth
h of the round hole were analysed. Due to the low geometrical complexity of
the numerical model and, consequently, the low computational cost, the study
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used an exhaustive search method, which consisted of determining the output
parameters for all possible combinations of input variables from the assumed
variability ranges of the investigated parameters. For this purpose, in both cases,
the two-dimensional space of variables and / was divided into 25 intervals in each
direction. This resulted in 26 constant values of the diameter and 26 corresponding
constant height or depth values from the specified range, which gave 676 pairs
of values forming the basis of the input parameters of the numerical model. The
ranges of changes in geometric parameters are presented in Tab. 1. The change in
frequency (for a fixed k, = n/a) and the frequency separation of adjacent vibration
modes within the selected frequency range were taken as the output variables.

3.1. Wave propagation in a pillar-structured half-space

Fig. 3a) presents a summary of numerical calculations performed for an
elementary cell with a pillar. Each surface represents the frequency distribution
for a given mode across the full range of input variables analysed, for k= (1/4,0).
The parameters marked as A¢ and Ah denote incremental values resulting
from the division of the respective parameter ranges into p = 26 equal levels
in accordance with the assumptions of the Morris screening method. As can be
seen, the effect of changing the and h parameters on the frequency is not identical
for all modes, which causes mode planes to interpenetrate and change their
positions in the spectrum. To better illustrate this phenomenon, Fig. 3b) shows
the contours of the planes belonging to specific modes, after their identification.
Generally, it can be stated that the parameter h has the greatest influence on the
change in frequency. Intuitively, the greatest decrease in frequency occurred
for the largest values of pillar height and the base diameter value. This effect is
a direct consequence of multiple modes of different types, i.e. longitudinal and
bending, for long beam-like structures.

This observation is consistent with the variation coefficient calculations
shown in Fig. 4(a), where each marker represents the variation coefficient for
one mode, taking into account the sensitivity to changes in diameter (black
markers) and height (red markers), respectively.

Analysis of the results presented in Fig. 4 allows the following conclusions:

» all variation coefficients are close to or above the line o/p" = 1, which,

according to Fig. 2, indicates a non-linear and/or non-monotonic
dependence of the natural frequency value on the variables, Fig. 3. Frequency distribution for an
» a change in the height of the pillar has a much greater impact and elementary cell with a pillar in the full space of

interaction on the result of the calculated model than a change in the ~ inputvariables for the first six modes, A and
Ah denote incremental values resulting from

diameter, the division of the respective parameter ranges
intop = 26 equal levels (own elaboration)
x10°
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Fig. 4. Results of elementary effect
calculations using the Morris method for a unit
cell with a pillar for the first six modes. CVy is
the variation coefficient associated with the
diameter change, while CV,, is the variation
coefficient associated with the height change
(own elaboration)

b) CV for eigenfrequency differences

» there is a noticeably different sensitivity of individual modes to changes
in the geometric parameters of the pillar. Modes 1, 3, and 4 are
practically insensitive to changes in the pillar diameter, and respond
mainly to changes in its height. Meanwhile, modes five and six are clearly
sensitive to variations in both geometric parameters. The difference in
the sensitivity of individual modes can also be seen in Fig. 3, where for
the fifth and sixth modes we observe a shift of the frequency surface
below the surfaces of the third and fourth modes.

These conclusions are further strengthened by analysing the variation
coefficients determined for frequency differences (adjacent modes), presented
in Fig. 4(b). Analysis of this parameter can be usefulin the context of optimisation
for uniform mode distribution in the frequency spectrum or maximising bandgap
widths within a specific frequency range. As can be seen, the frequency
differences between individual mode pairs (1-2 and 5-6) are minor, and the
effect of changes in geometry (especially diameter) on frequency changes is
comparable. This results in minimal possibilities for modifying the frequency
difference between these modes. This fact is worth considering when defining
the optimisation objective function.

3.2. Wave propagation in a hole-structured half-space

Subsequently, analogous calculations were performed for a unit cell with
acircular hole. Fig. 5 presents a summary of the results. Each surface represents
the frequency distribution for a given mode across the full range of input
variables analysed. In this case, all modes examined are sensitive to changes
in the parameters and h, with both parameters having an approximately equal
effect on the frequency of a given mode.

Fig. 6a) and 6b) show the frequency variation coefficients and frequency
differences calculated for the model with a blind hole, respectively. Each marker
represents the variation coefficient for a single mode, taking into account
sensitivity to changes in input parameters (¢ — black markers, h — red markers).
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The analysis of the distribution of variation coefficients for all inputs leads to

the following conclusions:

» as in the case of a pillar, all variation coefficients are close to or above
the line o/u" =1 (nonlinear and/or non-monotonic relationship between

natural frequency values and variables),

» achange in the diameter of the hole has a greater impact and interaction on
the result of the calculated model than a change in depth for a specific mode,
» natural frequencies with higher values are less sensitive to changes in

input variables.
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coefficient associated with the depth change
(own elaboration)
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4. Conclusions

The work presented here focuses on the sensitivity analysis of two phononic
structures: one with a cylindrical pillar and one with a circular hole of finite depth.
The diameter and height/depth were selected as the parameters subject to
change. Due to the limited number of unit cell geometry parameters examined,
it was decided to search the entire assumed variable space. The analysis of the
results obtained was carried out using elementary effect calculations with the
Morris method (onefactor-at-a-time). The sensitivity analysis was performed
based on changes in natural frequencies within a defined frequency range and
changes in frequency differences for adjacent modes, for a fixed wavevector
corresponding to a high-symmetry point in the dispersion space. The analyses
were carried out using the finite element method and Matlab, and employed
libraries that allow their coupling. This approach was selected to allow
automatic model generation, performing simulations, and post-processing of
the results. This combination of software tools allows for automatic analysis of
hundreds of models required for the sensitivity analysis. The key observations
and conclusions are:

» the change in the pillar height has the greatest impact on the observed
frequency parameters,

» the effect of changing the pillar geometry is visible primarily at higher
frequencies,

» for the hole-type scatterer, both geometric parameters affect the
observed frequency characteristics; however, for a given mode, variations
in the hole diameter have a noticeably stronger influence than variations
in its depth,

» higher natural frequencies are less sensitive to changes in input
parameters for structures with the hole,

» for both types of scatterers (pillar and hole), the interaction of geometric
parameters is strongly non-linear and/or heterogeneous,

» theanalysis of the frequency graph of the studied structure (Figs. 3 and 5)
shows that significant changes in the values of decision variables cause
the planes of individual vibration modes to cross over for both pillar
and hole structures. For specific optimisation purposes, it is therefore
necessary to identify the modes and take this information into account
in the optimisation process. Relying only on the frequency values carries
the risk that the optimisation process will not achieve the intended goal.

» the manufacturing of real samples is always subject to uncertainty
regarding the final dimensions, both due to manufacturing tolerances
and the occurrence of potential unintentional manufacturing errors.
Conducting a sensitivity analysis allowed us to observe the impact
of these factors on the observed dynamic parameters. The obtained
results suggest that, within a small range of variations, the impact of
unintentional geometric for both types of scatterers will have a negligible
effect on the structure’s properties
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