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Abstract

The goal of this paper is to investigate the effects of randomly removed
structural members of auxetic cellular material on the evaluation of elastic
constants. Statistical volume element SVE size ensuring prescribed accuracy is
adopted by giving relation with the size of representative volume element RVE
considering number of statistical random defects. Statistical analysis is carried
out within the Mathcad code. Inverted honeycomb structures with randomly
removed structural members under the typical statistical boundary conditions
are considered. The study is achieved by conducting finite element calculation
by means of ABAQUS FEA of the auxetic structure leading to obtaining the
stiffness matrix and strength. Timoshenko beam elements are used for
material microstructure discretization with special attention paid on relation
of mesh density with results accuracy. Influence of geometric microstructural
parameters on examples of variety of inverted honeycomb microstructures is
studied. As result dependence of residual effective elastic moduli and strength
on defects density for each microstructure is specified.
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1. Introduction

Cellular materials of various microstructural arrangements play important role
in recent design trends and manufacturing in the material industry. Cellulars are
used in different engineering areas such as aircraft, aerospace or transportation
industry and also as structural elements in civil engineering structures and sport
devices. Lattice materials offer special mechanical properties, therefore they
are used not only as structures carrying loads but also for energy adsorbtion,
heat dissipation or impact resistance (Evans, 1998; Fleck, 2004; Deshpande,
2001; Gu and Evans, 1998; Wadley, 2006). These materials are finding their
applications in structural elements such as panels, shells of various shapes or
cores of sandwich panels. The effectice mechanical behavior of ideal lattice
materials described by effective stiffness and strength is presented in works
by Gibson (1997), Wang and McDowell (2004) and Janus-Michalska (2009).
All described cellulars reveal advantageous strength and stiffness-to-weight
ratios. Specific or specialy tailored properties can be achieved by material
anisotropy. The concept of creating of anisotropy in lattice materials by special
cellular shapes is becoming crucial in the construction of modern materials.

One of these specific effective material properties is auxeticity, in other
words the property of negative value of Poisson’s ratio. Materials, which expand
in lateral direction when they are stretched logitudinally exhibit this property and
are called ‘auxetics’. The concept of such mechanical behavior was described for
the first time by Lakes in 1987. The word ‘auxetic’, which reffers to negative
Poisson’s ratio material was used first in 1991. It was derived from the word
‘auxetikos’, that in Greek means ‘that which tends to increase’. First cellular
auxetics were widely investigated and described by Gibson and Ashby, Lakes,
Kolpakov, Almgren in 80-ties of twentieth century. Research on auxeticity was
continued by Evans and Alderson. A number of auxetic cellular configurations
with variety of structural symmetry were proposed by Lakes, Theocaris , Smith,
Gaspar, Grima and Yang. The extensive review on negative Poisson’s ratio
materials is given by Prawoto (1998), Yang et al. (2004) and Caneiro et al. (2013).

Cellulars, available in practice, contain various kinds of microstructural
manufacturing defects such as misalinged, thinner or fractured cell walls,
stochastic dispersion of nodes and lattice nodes imperfections. An attempt
of the classification of defected materials is given for example by Gaydachuk
et al. (2006).

The presence of defects in cellular materials influences the overall behavior
of material as the equivalent continuum. It also results in change of material
anisotropy. A number of works are devoted to mechanical properties of defected
cellulars. Most recent researches are carried out by Zhu et al.,(2011,2012),
Wang and McDowell (2004), Li et al.,(2005), Symons and Fleck (2008),
Mukhopadhyay and Adhikari (2016), Ajdari et al., (2008), Cui et al., Chen (2010),
Lu (2006) and Fleck (2004). Chen Ozaki (2009) considered single defect, and
calculated the interaction between several defects.

Missing bars defects have the greatest influence on cellulars behavior
and leads to degradation in equivalent mechanical properties and because of
this reason is obviously a practical research subject. Effects of defects on in-
-plane properties of periodic metal honeycombs is investigated by Guo (1999),
Wang and McDowell (2003), Wang et al. (2004), Wallach and Gibson (2001).
The research based on detailed study of random defects led to the conclusion
that some cellular microstructures such as honeycombs are sensitive to
degradation of their mechanical properties whereas some such as triangular are
not sensitive.

Analysis of a randomly defected microstructure requires simulations on
sample called statistical volume element, which should adopted to predict
material constitutive properties. Size determination of the statistical volume
element for randomly defected cellular material is of crucial importance. It is
the smallest material volume element of the material for which macroscopic
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Fig. 1. a) Intact auxetic two-dimensional
regular material microstructure, b) auxetic
microstructure with random missing bars (own
elaboration)

Fig. 2. Representative unit cell of intact
microstructure and its geometric parameters
(own elaboration)

constitutive representation is a sufficiently accurate model to represent
constitutive response (Drugan and Willis, 1996). In practice the size of
the SVE can be determined for a given accuracy of obtained properties.
The concept of SVE are extensively used in material science for analysis of
random microstuctures, Yin et al. (2008), Gitman et al. (2004). The scaling
from statistical to representative volume element is the subject of works by
Ostoja-Starzewski (1998,1999,2002), Valavala et al. (2009), Sena et al. (2013),
Torquato (2002) and Xiangdong (2006).

The aim of this work is an assessment of in-plane properties of inverted
honycomb structured cellulars with missing microstructural beams. Comparison
of the obtained results to intact (that is defect free) material stiffnesses is made.
The objective is achieved in following steps: for each microstructure establishing
smallest SVE for which no bias of the results is observed; generation of various
realizations of randomly defected microstructure of the given defect density;
FEM calculation leading to stiffness matrix and material strength; calculating
accuracy of the obtained results. Numerical tests performed by means of
ABAQUS FEA are carried out for several materials with different combinations
of geometric parameters of their microstructure.

2. Intact and defected auxetic cellulars

Cellular material with intact infinite two-dimensional structure of inverted
honeycombs is presented in Fig. 1a. Microstructural skeleton is composed of
beams connected in stiff joints. The geometry can be described by the following
parameters: H — length of vertical beams, L — length of sloping beams, y — angle
between vertical and sloping beam, t;; — width of the vertical beams, ¢, — width
of the sloping beams , as shown in Fig. 2. The structure with random missing bar
defects is presented in Fig. 1b.

b)

3. Compliance tensor for intact microstructure

On the basis of classical theory of homogenized media presented by Nemat
Naser (1998) representative volume element RVE is adopted for the analysis of
linear eleastic behavior described by stiffness matrix and strength of equivalent
material. Determination of equivalent continuum properties (stiffness or
compliance matrix and material constants) is performed by the FEM calculation
based on the idea of micromechanical framework (Janus-Michalska, 2009).

LY
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Hooke law for equivalent continuum written in Voigt notation is as follows:

L _ny nxy/x
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E E G
x y xy
ny T’Cy
T]x/xy ny/xy 1
| E, E, G, |

where engineering constants are: E_, E, -~ Young moduli in x and y direction,
G,, —Kirchoff modulusinxy plane, 1., M,,,, — coefficients describing influence
of shear stress on normal strain in x and y dyirection, Nasayr Ny/sy — COefficients
describing influence of normal stress in x and y direction on shear strain.

These constants can be obtained in tests of elongations in two directions
and shear in xy plane. Due to symmmetry only six constant are independent:

Ex) Ey) ny) ny) T]xy/x’ T’lxy/y'

4. The concept of statistical volume element

In the case of material microstructure with nonperiodic disorder the
representative volume must be a scale larger than the microscale to ensure
a homogenization. Microstructure with random missing beams reveals
statistical fluctuations of the effective properties over finite domains. In this
case the effective linear properties of randomly defected material can be
determined by numerical simulations on volume elements on mesoscale
of material called statistical volume element, which is much larger than
representative volume element and also much smaller than the material
specimen. The concept of statistical volume element is based on mean values of
effective properties of volumes assuming that a sufficient number of realizations
is considered Kanit et al. (2005), Yin et al. (2008). The response of the SVE
must be independent of the type of boundary conditions. The volume of
statistical element should be large enough to ensure given accuracy of material
properties obtained by spatial averaging of stress, or strain in a given domain.
When considering a material as a realization of a randomly defected structures,
we abandon the idea that there exists one single possible minimal SVE size.
The overall moduli can be obtained by averaging over small domains of the
material, using greater number of realizations or over the larger volumes using
fewer realizations. The mean properties computed on finite size domains are
called apparent (Jin, 2005; Kanit, 2003) or residual (Wang and McDowell,
2004). If the domain size is too small these properties do not coincide with
the effective ones. The smallest SVE called critical should be sufficiently
large that no bias occurs in the estimation. This phenomenon is generated by
edge effects (Jiang et al., 2001). For a given volume size one can predict the
minimal number of realizations that must be considered for a given volume size
in order to estimate the effective property for a given precision. Conversely in
practice, for given volume size and number of realizations one can estimate the
appearent properties precision.

5. Statistical volume element simulations

For the determination of the precision corelated with minimal number of
realizations and choice of critical sve, the proposed algorithm is as follows:
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» choose mesoscale starting from greater value of mesoscale parameter,
and generate given numbern of different realizations of the microstructure
for considered volume size;

» submit each microstructure to loading with boundary conditions related
to tension-compression test and shearing test and calculate the apparent
properties;

» compute mean value and variance of apparent property for the
considered sve;

» calculate the precision for the estimation of effective property and check
that the number of realizations was sufficient to achieve given accuracy
if the precission is insufficient increase the n number;

» increase the number of realizations and check if it influences significantly
the precision, decrease the number and check the precision;

for given sve indicate the minimal number of realization necessary for given

precision

» change the mesescale (half value of mesoscale parameter) and repeat
from the beginning;

» increase the number of realization to obtain the same accuracy as
previously >N * n;

» point out to the minimal number of realizattion neccesary for given
precision;

» compare with results from previous mesoscale;

» if comparison does not satisfy given precision it means that bias occurs
and current mesoscale is not acceptable.

We consider fluctuations of the average values over different realizations
of the randomly defected material inside the area A. For sufficiently large
area A, the apparent moduli do not depend on the type of boundary conditions
and coincide with the wanted effective properties of the medium (Sab, 1992).

SVE can be defined for the given material property, given precision and given
number of realizations we are ready to generate. The size of SVE of an estimated
property can be related directly to the precision of the mean value.

The variance of computed apparent properties for each volume size is used
to define the precision of the estimation.

_According to the theory of samples the relative error on the mean value
C of the apparent modulus C obtained with n realizations of area A can be
calculated by the following formula:

€ . = gabs _ 2"l)C (A)
rel E E\/Z
where: D variance of the apparent modulus, [C—2D.; C+2D.] the interval
of confidence.
Alternatively we can determine number of necessary realizations by the

4D¢(4)
Cery
The apparent elastic moduli are obtained in windows of decreasing sizes.
When the mean value for small area with periodic conditions is different from

the effective one obtained for large specimens bias is observed.
The different RVE sizes found for the different properties are estimated.

formula: n=

6. Simulations of defected microstructures

Two intact structures made of PA6 polyamid are chosen as examples. Their
microstructural properties are listed in Table 1.
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Table 1. Specification of microstructures

Type Geometric parameters of skeleton [mm] Skeleton material Young modulus

1) H=10.0 L=7.5t,=0.75 t =1.0, p=60° E;=1800 MPa
2) H=8.0 L=16.0 {,=1.0 t =0.5 y=80° E; =1800 MPa

The structures with their repetitive structural segments being windows of
dimensions D1, x D2, are presented in Fig. 3. Addition of these segments to
specimens guarantee the same boundary conditions in each specimen.

1) B | pmins [l
— T
NN T ==
b | =I5
e of o - o - o] sl 0=
Pl ., = | e |

Mathcad subroutine generating Random Numbers create vectors of random
numbers that are respectively uniformly distributed over an interval. These
random beam memebers of skeleton are removed.

Calculations are conducted in rectangular domains called windows,
which size is characterized by nondimensional parameter (Vernerey [33])

8= D%)l = D%)z , which defines the mesoscale of observation.
0 0

7. FEM analysis of microstructure

In order to calculate apparent properties series of numerical calculations are
performed by means of ABAQUS FEA. Material microstructure is discretized
by the plane network of Timoshenko beam elements. Mesh size convergence
studies were initially performed, leading to the selection of number of beam
elements for each cell wall for given accuracy. It should be checked also
that this mesh density is sufficient to get a precision better than given on the
statistical fluctuations and variance of the results when many realizations are
considered.

In some simulations, large size of area cannot be handled. This means that
it will be necessary to use meshes with a huge amount of degrees of freedom.
Many realizations of defects were simulated for decreased area sizes.

The areas called windows are subjected to deformation relevant to
elongation and homogeneous shearing strain. These loadings correspond
to typical experiments.

For elongation experiment simulation nodes on opposite edges of the mesh
at left and right are moment free. The stress is calculated by dividing the sum
of the reaction forces on the boundary nodes by the edge area. The uniaxial
stiffness is calculated as the ratio of the calculated stress divided by the
imposed strain.

For shearing test the specimen behavior is analyzed under the state of
stress relevant to pure shear deformation shown in Fig. 4b. The shear stress
is calculated by dividing the sum of the reaction forces on the boundary nodes
by the edge area. The macroscopic shear stress divided by shear strain gives
the macroscopic shear stiffness. The dimension of the specimens D1 and D1,
relative to the segment size is defined by mesoscale coefficient.

Fig. 3. Two microstructures with repetitive
structural segments of dimensions D1 x D2

(own elaboration)
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(own elaboration)

Simple shear and uniaxial elongation tests are performed on samples with
different mesoscale.

8. Results of numerical analysis

Scale dependent response leading to determination of apparent moduli and

their statistics is studied numerically. For the same microstructure, it will

be shown that the analysis leading to obtaining the RVE size and number of

realizations differs if Young modulus or shear modulus or strength is considered.
Density of material of intact structure can be calculated as follows:

(2Lt +Hty)
- Z(H—Lcosy)Lsiny.

The densities of considered intact microstructures are:
Prine =0.277, Py =0.146.

int

For numerical simulations samples with the same loss of relative density are
considered and the results are compared.
For the considered structures with their geometric parameters relative

foss of densities % are the same for each microstructure if the number of
piint
defected beams m, is the same.
The following realizations are considered:

Ap. Ap.
realizations for h=16.17% realizations for h:9.37%

pint pint

m1491625...... 144 m9 3681

0 12345...... 12 0 4812

realizations for %=7.41% realizations for %=4.16%
plnt pmt

m4 16 36 64 m1491636

4 36912 0246812

realizations for %zl.m% realizations for %zl.m%
Pint Pint

ml14916 ml149

036912 0 6812

Some ralizations begins for large SVE, since one defected beam gives
required percentage of loss of density.
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8.1. Apparent moduli

Numerical simulations on samples of the microstructure are carried out.
Number of random samples or realizations were evaluated for each case using
FE analysis, leading to computed estimates of effective elastic stiffness for
elongation and shear loading conditions. For minimal number of specimens,
increasing number has no noticeable effects on the averages.

Constants for materials of intact microstructures are as follows:

B, =118,5MPa, v, =-1687,G_=0,0263 MPa,E, =198,5 MPa,
v,,=-1,231,G_,=0,0879 MPa.

Normalized material constants for defected structures as functions of loss
of density are presented in figures below.

E(d%)—mean values as a function of percent G(d%)—mean values as a function of percent

1,2 of defects 1,2 of defects

2 1
038 0,8
0,6 0,6
04 0,4
0,2 0,2

0 0

0 5 10 15 20 0 5 10 15 20

v(d%)—mean values as a function of percent

152 of defects

i
08
0,6
i Fig. 5. Normalized apparent Young’s

! modulus, Poisson’s ratio and shear modulus
0,2 by effective properties of intact structure,

0 plotted against the reduction in density

0 5 10 15 20 (own elaboration)

The reductions of effective Young’s modulus and Poisson ratio are much
more sensitive to the number of defected beams in the SVE than the reduction
of shear modulus. This is because the shear modulus mainly results from from
bending of cell walls, which is more compliant, whereas Young modulus results
from compression or bending, which is stiffer. The loss of stiffer elements
results in greater loss of density.

Minimal number of realizations for chosen precision € = 2% relevant to
Young modulus, Poisson’s ratio and shear modulus is visualized in Fig. 6, 7, 8
(subsequent curves for 1.04%, 1.85%, 4.16%, 7.41%, 9.37%, 16,17% loss of
density).

a) b)

n(3) -

400

300

Fig. 6. Young modulus — minimal number
of realization in dependence on mesoscale
coefficient and defects, a) structure 1,

b) structure 2 (own elaboration)
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Fig. 7. Shear constant — minimal number

of realization in dependence on mesoscale
coefficient and reduction of density

a) structure 1, b) structure 2 (own elaboration)

Fig. 8. Poisson’s ratio — minimal number

of realization in dependence on mesoscale
coefficient and reduction of density

a) structure 1, b) structure 2 (own elaboration)

a) b)

n(3) - n(d) -

250

200
150
100

50

a)

600

500

400

300

200

100

Simulations for abtaining statistically representative properties should be
conducted using SVE of greater arrays than 4X4 segments for loss of density
9.37%, or 6X6 for loss 16.17%, otherwise bias occurs. The scatter of results
or interval of confidence for the effective Young’s modulus among the various
realizations for each SVE size is greater than interval corresponding shear
realizations. Generally all results depend on geometric microstructural
parameters.

9. Conclusions

An approach based on statistical analysis is proposed to study the influence
of random material microstructure defects on material constitutive properties
of auxetic cellulars. Statistical volume element simulations are carried out to
predict apparent material constants corresponding to various realizations of
random microstructure defects. Acomputing framework based on finite element
analysis on randomly defected microstructure samples has been developed.
As a result the number of realizations associated with a given precision of the
estimation of the apparent material property and mescsale coefficient can be
obtained. It is shown that it depends on the investigated material property.
Defects density influence on apparent constitutive moduli is investigated.
Numerical tests show the dependence of the results on microstructural
geometric parameters. The variety of results is obtained due to missing
bars defect. The greater influence is observed for deformation switching from
stretching dominated to bending dominated. The mechanical properties
calculated this way can be compared with experiments.
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