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Abstract

The goal of this paper is to investigate the effects of randomly removed 
structural members of auxetic cellular material on the evaluation of elastic 
constants. Statistical volume element SVE size ensuring prescribed accuracy is 
adopted by giving relation with the size of representative volume element RVE 
considering number of statistical random defects. Statistical analysis is carried 
out within the Mathcad code. Inverted honeycomb structures with randomly 
removed structural members under the typical statistical boundary conditions 
are considered. The study is achieved by conducting finite element calculation 
by means of ABAQUS FEA of the auxetic structure leading to obtaining the 
stiffness matrix and strength. Timoshenko beam elements are used for 
material microstructure discretization with special attention paid on relation 
of mesh density with results accuracy. Influence of geometric microstructural 
parameters on examples of variety of inverted honeycomb microstructures is 
studied. As result dependence of residual effective elastic moduli and strength 
on defects density for each microstructure is specified.
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1.  Introduction

Cellular materials of various microstructural arrangements play important role 
in recent design trends and manufacturing in the material industry. Cellulars are 
used in different engineering areas such as aircraft, aerospace or transportation 
industry and also as structural elements in civil engineering structures and sport 
devices. Lattice materials offer special mechanical properties, therefore they 
are used not only as structures carrying loads but also for energy adsorbtion, 
heat dissipation or impact resistance (Evans, 1998; Fleck, 2004; Deshpande, 
2001; Gu and Evans, 1998; Wadley, 2006). These materials are finding their 
applications in structural elements such as panels, shells of various shapes or 
cores of sandwich panels. The effectice mechanical behavior of ideal lattice 
materials described by effective stiffness and strength is presented in works 
by Gibson (1997), Wang and McDowell (2004) and Janus-Michalska (2009). 
All  described cellulars reveal advantageous strength and stiffness-to-weight 
ratios. Specific or specialy tailored properties can be achieved by material 
anisotropy. The concept of creating of anisotropy in lattice materials by special 
cellular shapes is becoming crucial in the construction of modern materials.

One of these specific effective material properties is auxeticity, in other 
words the property of negative value of Poisson’s ratio. Materials, which expand 
in lateral direction when they are stretched logitudinally exhibit this property and 
are called ‘auxetics’. The concept of such mechanical behavior was described for 
the first time by Lakes in 1987. The word ‘auxetic’, which reffers to negative 
Poisson’s ratio material was used first in 1991. It was derived from the word 
‘auxetikos’, that in Greek means ‘that which tends to increase’. First cellular 
auxetics were widely investigated and described by Gibson and Ashby, Lakes, 
Kolpakov, Almgren in 80-ties of twentieth century. Research on auxeticity was 
continued by Evans and Alderson. A number of auxetic cellular configurations 
with variety of structural symmetry were proposed by Lakes, Theocaris , Smith, 
Gaspar, Grima and Yang. The extensive review on negative Poisson’s ratio 
materials is given by Prawoto (1998), Yang et al. (2004) and Caneiro et al. (2013).

Cellulars, available in practice, contain various kinds of microstructural 
manufacturing defects such as misalinged, thinner or fractured cell walls, 
stochastic dispersion of nodes and lattice nodes imperfections. An attempt 
of the classification of defected materials is given for example by Gaydachuk 
et al. (2006).

The presence of defects in cellular materials influences the overall behavior 
of material as the equivalent continuum. It also results in change of material 
anisotropy. A number of works are devoted to mechanical properties of defected 
cellulars. Most recent researches are carried out by Zhu et al.,(2011,2012), 
Wang  and McDowell (2004), Li et al.,(2005), Symons and Fleck (2008), 
Mukhopadhyay and Adhikari (2016), Ajdari et al., (2008), Cui et al., Chen (2010), 
Lu (2006) and Fleck (2004). Chen Ozaki (2009) considered single defect, and 
calculated the interaction between several defects.

Missing bars defects have the greatest influence on cellulars behavior 
and leads to degradation in equivalent mechanical properties and because of 
this reason is obviously a practical research subject. Effects of defects on in- 
-plane properties of periodic metal honeycombs is investigated by Guo (1999), 
Wang and McDowell (2003), Wang et al. (2004), Wallach and Gibson (2001). 
The research based on detailed study of random defects led to the conclusion 
that some cellular microstructures such as honeycombs are sensitive to 
degradation of their mechanical properties whereas some such as triangular are 
not sensitive.

Analysis of a randomly defected microstructure requires simulations on 
sample called statistical volume element, which should adopted to predict 
material constitutive properties. Size determination of the statistical volume 
element for randomly defected cellular material is of crucial importance. It is 
the smallest material volume element of the material for which macroscopic 
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constitutive representation is a sufficiently accurate model to represent 
constitutive response (Drugan and Willis, 1996). In practice the size of 
the SVE can be determined for a given accuracy of obtained properties. 
The  concept of SVE are extensively used in material science for analysis of 
random microstuctures, Yin et al. (2008), Gitman et al. (2004). The scaling 
from statistical  to representative volume element is the subject of works by 
Ostoja-Starzewski (1998,1999,2002), Valavala et al. (2009), Sena et al. (2013), 
Torquato (2002) and Xiangdong (2006).

The aim of this work is an assessment of in-plane properties of inverted 
honycomb structured cellulars with missing microstructural beams. Comparison 
of the obtained results to intact (that is defect free) material stiffnesses is made. 
The objective is achieved in following steps: for each microstructure establishing 
smallest SVE for which no bias of the results is observed; generation of various 
realizations of randomly defected microstructure of the given defect density; 
FEM calculation leading to stiffness matrix and material strength; calculating 
accuracy of the obtained results. Numerical tests performed by means of 
ABAQUS FEA are carried out for several materials with different combinations 
of geometric parameters of their microstructure.

2.  Intact and defected auxetic cellulars

Cellular material with intact infinite two-dimensional structure of inverted 
honeycombs is presented in Fig. 1a. Microstructural skeleton is composed of 
beams connected in stiff joints. The geometry can be described by the following 
parameters: H – length of vertical beams, L – length of sloping beams, g – angle 
between vertical and sloping beam, tH – width of the vertical beams, tL – width 
of the sloping beams , as shown in Fig. 2. The structure with random missing bar 
defects is presented in Fig. 1b.

3.  Compliance tensor for intact microstructure

On the basis of classical theory of homogenized media presented by Nemat 
Naser (1998) representative volume element RVE is adopted for the analysis of 
linear eleastic behavior described by stiffness matrix and strength of equivalent 
material. Determination of equivalent continuum properties (stiffness or 
compliance matrix and material constants) is performed by the FEM calculation 
based on the idea of micromechanical framework (Janus-Michalska, 2009).

Fig.  1.  a) Intact auxetic two-dimensional 
regular material microstructure, b) auxetic 
microstructure with random missing bars (own 
elaboration)

Fig.  2.  Representative unit cell of intact 
microstructure and its geometric parameters 
(own elaboration)
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Hooke law for equivalent continuum written in Voigt notation is as follows:
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where engineering constants are: E , Ex y  – Young moduli in x and y direction, 
Gxy  – Kirchoff modulus in xy plane, η ηxy x xy y/ /,  – coefficients describing influence 
of shear stress on normal strain in x and y direction, η ηx xy y xy/ /,  – coefficients 
describing influence of normal stress in x and y direction on shear strain.

These constants can be obtained in tests of elongations in two directions 
and shear in xy plane. Due to symmmetry only six constant are independent: 
E , E , G , , ./ /x y xy xy xy x xy y, � � �

4.  The concept of statistical volume element

In the case of material microstructure with nonperiodic disorder the 
representative  volume must be a scale larger than the microscale to ensure 
a  homogenization. Microstructure with random missing beams reveals 
statistical  fluctuations of the effective properties over finite domains. In this 
case the effective linear properties of randomly defected material can be 
determined by numerical simulations on volume elements on mesoscale 
of material called statistical volume element, which is much larger than 
representative volume element and also much smaller than the material 
specimen. The concept of statistical volume element is based on mean values of 
effective properties of volumes assuming that a sufficient number of realizations 
is considered Kanit  et   al. (2005), Yin et al. (2008). The response of  the SVE 
must be independent  of the type of boundary conditions. The  volume  of 
statistical element should be large enough to ensure given accuracy of material 
properties obtained by spatial averaging of stress, or strain in a given domain. 
When considering a material as a realization of a randomly defected structures, 
we abandon the idea that there exists one single possible minimal SVE size. 
The  overall moduli can be obtained by averaging over small domains of the 
material, using greater number of realizations or over the larger volumes using 
fewer realizations. The  mean properties computed on finite size domains are 
called apparent (Jin, 2005; Kanit, 2003) or residual (Wang and McDowell, 
2004). If the domain size is too small these properties do not coincide with 
the effective ones. The smallest SVE called critical should be sufficiently 
large that no bias occurs in the estimation. This phenomenon is generated by 
edge effects (Jiang et al., 2001). For a given volume size one can predict the 
minimal number of realizations that must be considered for a given volume size 
in order to estimate the effective property for a given precision. Conversely in 
practice, for given volume size and number of realizations one can estimate the 
appearent properties precision.

5.  Statistical volume element simulations

For the determination of the precision corelated with minimal number of 
realizations and choice of critical sve, the proposed algorithm is as follows:

https://doi.org/10.37705/TechTrans/e2026001
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▶▶ choose mesoscale starting from greater value of mesoscale parameter, 
and generate given number n of different realizations of the microstructure 
for considered volume size;

▶▶ submit each microstructure to loading with boundary conditions related 
to tension-compression test and shearing test and calculate the apparent 
properties;

▶▶ compute mean value and variance of apparent property for the 
considered sve;

▶▶ calculate the precision for the estimation of effective property and check 
that the number of realizations was sufficient to achieve given accuracy 
if the precission is insufficient increase the n number;

▶▶ increase the number of realizations and check if it influences significantly 
the precision, decrease the number and check the precision;

for given sve indicate the minimal number of realization necessary for given 
precision
▶▶ change the mesescale (half value of mesoscale parameter) and repeat 

from the beginning;
▶▶ increase the number of realization to obtain the same accuracy as 

previously >N * n;
▶▶ point out to the minimal number of realizattion neccesary for given 

precision;
▶▶ compare with results from previous mesoscale;
▶▶ if comparison does not satisfy given precision it means that bias occurs 

and current mesoscale is not acceptable.
We consider fluctuations of the average values over different realizations 

of  the randomly defected material inside the area A. For sufficiently large 
area A, the apparent moduli do not depend on the type of boundary conditions 
and coincide with the wanted effective properties of the medium (Sab, 1992).

SVE can be defined for the given material property, given precision and given 
number of realizations we are ready to generate. The size of SVE of an estimated 
property can be related directly to the precision of the mean value.

The variance of computed apparent properties for each volume size is used 
to define the precision of the estimation.

According to the theory of samples the relative error on the mean value 
C  of  the apparent modulus C obtained with n realizations of area A can be 
calculated by the following formula:

	
�

�
rel

abs� �
C

D A
C n

C2 ( )
	

where: DC
2  variance of the apparent modulus, [ ; ]C D C DC C� �2 2  the interval 

of confidence.
Alternatively we can determine number of necessary realizations by the 

formula:
 
n

D A
C

C�
4 2

2 2

( )
.

�rel

The apparent elastic moduli are obtained in windows of decreasing sizes. 
When the mean value for small area with periodic conditions is different from 
the effective one obtained for large specimens bias is observed.

The different RVE sizes found for the different properties are estimated.

6.  Simulations of defected microstructures

Two intact structures made of PA6 polyamid are chosen as examples. Their 
microstructural properties are listed in Table 1.

https://doi.org/10.37705/TechTrans/e2026001
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Table 1. Specification of microstructures

Type Geometric parameters of skeleton [mm] Skeleton material Young modulus

    1)      H = 10.0  L = 7.5  tH = 0.75  tL = 1.0,  b = 60º  ES = 1800 MPa

    2)      H = 8.0  L = 16.0  tH = 1.0  tL = 0.5  g = 80º    ES  = 1800 MPa

The structures with their repetitive structural segments being windows of 
dimensions D10 × D20 are presented in Fig. 3. Addition of these segments to 
specimens guarantee the same boundary conditions in each specimen.

Mathcad subroutine generating Random Numbers create vectors of random 
numbers that are respectively uniformly distributed over an interval. These 
random beam memebers of skeleton are removed.

Calculations are conducted in rectangular domains called windows, 
which size is characterized by nondimensional parameter (Vernerey [33]) 
�� �D

D
D

D
1

1
2

20 0
,  which defines the mesoscale of observation.

7.  FEM analysis of microstructure

In order to calculate apparent properties series of numerical calculations are 
performed by means of ABAQUS FEA. Material microstructure is discretized 
by the plane network of Timoshenko beam elements. Mesh size convergence 
studies were initially performed, leading to the selection of number of beam 
elements for each cell wall for given accuracy. It should be checked also 
that this mesh density is sufficient to get a precision better than given on the 
statistical fluctuations and variance of the results when many realizations are 
considered.

In some simulations, large size of area cannot be handled. This means that 
it will be necessary to use meshes with a huge amount of degrees of freedom. 
Many realizations of defects were simulated for decreased area sizes.

The areas called windows are subjected to deformation relevant to 
elongation  and homogeneous shearing strain. These loadings correspond 
to typical experiments.

For elongation experiment simulation nodes on opposite edges of the mesh 
at left and right are moment free. The stress is calculated by dividing the sum 
of the reaction forces on the boundary nodes by the edge area. The  uniaxial 
stiffness  is calculated as the ratio of the calculated stress divided by the 
imposed strain.

For shearing test the specimen behavior is analyzed under the state of 
stress relevant to pure shear deformation shown in Fig. 4b. The shear stress 
is calculated by dividing the sum of the reaction forces on the boundary nodes 
by the edge area. The macroscopic shear stress divided by shear strain gives 
the macroscopic shear stiffness. The dimension of the specimens D1 and D1, 
relative to the segment size is defined by mesoscale coefficient.

Fig.  3.  Two microstructures with repetitive 
structural segments of dimensions D10 × D20 
(own elaboration)

https://doi.org/10.37705/TechTrans/e2026001


No. 2026/001

7https://doi.org/10.37705/TechTrans/e2026001

civil engineering and transport

Simple shear and uniaxial elongation tests are performed on samples with 
different mesoscale.

8.  Results of numerical analysis

Scale dependent response leading to determination of apparent moduli and 
their  statistics is studied numerically. For the same microstructure, it will 
be shown that the analysis leading to obtaining the RVE size and number of 
realizations differs if Young modulus or shear modulus or strength is considered.

Density of material of intact structure can be calculated as follows:

�
� �int

( )
( cos ) sin

.�
�

�
2

2
L H

H L L
L Ht t

The densities of considered intact microstructures are:

� �1 20 277 0 146int int. , . .� �

For numerical simulations samples with the same loss of relative density are 
considered and the results are compared.

For the considered structures with their geometric parameters relative 

foss of densities 
��
�

i

i

int

int

 are the same for each microstructure if the number of 

defected beams m, is the same.
The following realizations are considered:

realizations for 
��
�

int

int

. %�16 17 	 realizations for 
��
�

int

int

. %�9 37

m 1 4 9 16 25……144	 m 9 36 81
d  1 2 3 4 5……12	 d  4 8 12 

realizations for 
��
�

int

int

. %�7 41 	 realizations for 
��
�

int

int

. %� 4 16

m 4 16 36 64	 m 1 4 9 16 36
d  3 6 9 12	 d  2 4 6 8 12

realizations for  
��
�

int

int

. %�1 18 	 realizations for 
��
�

int

int

. %�1 04

m 1 4 9 16 	 m 1 4 9 
d  3 6 9 12 	 d  6 8 12

Some ralizations begins for large SVE, since one defected beam gives 
required percentage of loss of density.

Fig.  4.  Homogeneous deformations 
in tests a) elongation, b) pure shearing 
(own elaboration)
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8.1.  Apparent moduli

Numerical simulations on samples of the microstructure are carried out. 
Number of random samples or realizations were evaluated for each case using 
FE analysis, leading to computed estimates of effective elastic stiffness for 
elongation and shear loading conditions. For minimal number of specimens, 
increasing number has no noticeable effects on the averages.

Constants for materials of intact microstructures are as follows:

EX1 = 118,5 MPa, nxy1= –1,687, Gxy1= 0,0263 MPa, EX2= 198,5 MPa,

nxy2= –1,231, Gxy2= 0,0879 MPa.

Normalized material constants for defected structures as functions of loss 
of density are presented in figures below.

The reductions of effective Young’s modulus and Poisson ratio are much 
more sensitive to the number of defected beams in the SVE than the reduction 
of shear modulus. This is because the shear modulus mainly results from from 
bending of cell walls, which is more compliant, whereas Young modulus results 
from compression or bending, which is stiffer. The loss of stiffer elements 
results in greater loss of density.

Minimal number of realizations for chosen precision e = 2% relevant to 
Young modulus, Poisson’s ratio and shear modulus is visualized in Fig. 6, 7, 8 
(subsequent curves for 1.04%, 1.85%, 4.16%, 7.41%, 9.37%, 16,17% loss of 
density).

Fig.  5.  Normalized apparent Young’s 
modulus, Poisson’s ratio and shear modulus 
by effective properties of intact structure, 
plotted against the reduction in density 
(own elaboration)

Fig.  6.  Young modulus – minimal number 
of realization in dependence on mesoscale 
coefficient and defects, a) structure 1, 
b) structure 2 (own elaboration)

https://doi.org/10.37705/TechTrans/e2026001
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Simulations for abtaining statistically representative properties should be 
conducted using SVE of greater arrays than 4X4 segments for loss of density 
9.37%, or 6X6 for loss 16.17%, otherwise bias occurs. The scatter of  results 
or interval of confidence for the effective Young’s modulus among the various 
realizations for each SVE size is greater than interval corresponding shear 
realizations. Generally all results depend on geometric microstructural 
parameters.

9.  Conclusions

An approach based on statistical analysis is proposed to study the influence 
of random material microstructure defects on material constitutive properties 
of  auxetic cellulars. Statistical volume element simulations are carried out to 
predict apparent material constants corresponding to various realizations of 
random microstructure defects. A computing framework based on finite element 
analysis on randomly defected microstructure samples has been developed. 
As a result the number of realizations associated with a given precision of the 
estimation of the apparent material property and mescsale coefficient can be 
obtained. It  is shown that it depends on the investigated material property. 
Defects density influence on apparent constitutive moduli is investigated. 
Numerical tests show the dependence of the results on microstructural 
geometric  parameters. The variety of results is obtained due to missing 
bars defect. The greater influence is observed for deformation switching from 
stretching dominated to bending dominated. The mechanical properties 
calculated this way can be compared with experiments.
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