The sliding strip of the current collector (pantograph) of a rail vehicle is an element directly cooperating with the catenary and is exposed to abrasion, electric discharge and various types of damage. It is therefore the most frequently replaced element. However, often sliding strips are exchanged before exceeding the limit thickness value, which increases the costs related to technical maintenance. Because the wear process is dependent on many factors, heuristic methods are necessary to predict the thickness of the sliding strip. Knowing the predicted thickness value, it will be possible to adapt the maintenance cycle. In the article, the results of simulations carried out based on the developed structure of the artificial neural network are also presented.
Nakładka ślizgowa odbieraka prądu pojazdu szynowego jest elementem bezpośrednio współpracującym z siecią trakcyjną w związku, z czym narażona jest na zużycie ścierne, elektroerozyjne oraz różnego rodzaju uszkodzenia. Jest, zatem elementem najczęściej wymienianym. Często jednak nakładki wymieniane są przed przekroczeniem granicznej wartości grubości, co zwiększa koszty związane z obsługą techniczną. Ponieważ proces zużycia jest zależny od wielu czynników, dlatego do predykcji grubości nakładki ślizgowej niezbędne jest zastosowanie metod heurystycznych. Znając prognozowaną wartość grubości, możliwe będzie odpowiednie dostosowanie cyklu utrzymania. W artykule przedstawiono wyniki symulacji przeprowadzonych na podstawie opracowanej struktury sztucznej sieci neuronowej.